
1

MOSAIC: Simultaneous Localization and
Environment Mapping using mmWave without

a-priori Knowledge
Ali Yassin1, Youssef Nasser1, Ahmed Al-Dubai2, Mariette Awad1

1Department of Electrical and Cmputer Engineering, Maroun Semaan Faculty of Engineering and Architecture,
American University of Beirut, Lebanon

2School of Computing, Edinburgh Napier University Edinburgh, Scotland, United Kingdom

Abstract—Simultaneous Localization and environment map-
ping (SLAM) is the core to robotic mapping and navigation as
it constructs simultaneously the unknown environment and lo-
calizes the agent within. However, in millimeter wave (mmWave)
research, SLAM is still at its infancy. In this paper, we introduce
MOSAIC a new approach for SLAM in indoor environment
by exploiting the map-based channel model. More precisely, we
perform localization and environment inference through obstacle
detection and dimensioning. The concept of Virtual Anchor
Nodes (VANs), known in literature as the mirrors of the real
anchors with respect to the obstacles in the environment, is firstly
introduced. Then, based on these VANs, the obstacles positions
and dimensions are estimated by detecting the zone of paths
obstruction, points of reflection and obstacle vertices estimation.
Cramer-Rao Lower Bounds (CRLB) are then derived to find
the optimal number of anchor nodes and measurements points
that improve the localization and mapping accuracy. Simulation
results have shown high localization accuracy and obstacle
detection in different environments using mmWave technology.

Index Terms—Millimeter wave, Triangulateration (TL), Angle-
Difference-of-Arrival (ADoA), Virtual Anchor Node (VAN), Si-
multaneous Localization and Mapping, Obstacle Detection.

I. Introduction

MilliMeter Wave (mmWave) wireless communication sys-
tems have recently gained great research interests due to
their benefits in terms of spectrum, propagation characteristics,
potential applications and services [1][2]. The shortness of the
coverage range of anchor nodes (ANs) operating at mmWave
frequencies triggers the deployment of a capillary network
of ANs in the buildings offering enhancements in terms of
localization. Among the potential services offered by mmWave,
localization and mapping appear as key factors in enabling new
means and tools for communications systems [3], particularly
indoor positioning systems (IPS).
Recently, IPS have been at the center of attention for researchers
because of the vast technological enhancement in smart phones
and tablets, and the evolving technology of Internet of Things
(IoT) as a future service in 5G. For instance, localization is
critical for detecting products stored in a warehouse, medical
equipment and personnel in a hospital, firemen in a building
with fire, etc. With the evolution of mmWave communication
systems, IPSs will exploit the infrastructure of future mmWave

groundwork.
In literature, there exist few researches on localization systems
operating at mmWave frequencies. Most of the research
work was focused on measuring the delay spread, Time-of-
Arrival (ToA), Time-Difference-of-Arrival (TDoA) and Angle-
of-Arrival (AoA) methods [4][5].
The channel characteristics at the mmWave frequencies differ
from low frequencies range in many aspects; hence, the ex-
ploitation of these characteristics for localization and mapping
should be totally revised and new approaches are to be proposed.
At the same time, these properties open the door for additional
applications such as mmWave based radar systems. Indeed,
researches have shown that the channel at mmWave behaves
as quasi-optical channel in which the Line of Sight (LoS) ray
is dominant. Moreover, it has been shown that the channel
power exponentially decays in None-Line-of-Sight (NLoS)
environment where a single-bounce is usually carrying most
of the power. On the other hand, the characteristics of the
channel at those frequencies showed that reflections don’t
generate significant amount of scattering [7], and that the
transmitted beam will have the same directivity after reflections
with slight scattering [8]. Hence, Snells law holds in terms
of the equality between the angles of departure and incidence
upon reflection [9]. As a consequence, these propagation
characteristics make the localization and mapping a very
challenging task at mmWave. The appropriate localization
procedures and mapping approaches should be then derived
[10][11][12].
Originally, the concept of Simultaneous Localization and
Mapping (SLAM) was achieved (in robotics) by moving a
robot in an unknown environment to be recognized. The
process is based on steering a laser beam across a dense
number of test directions. Then, the round-trip time (RTT)
of the signal reflected by the obstacles is estimated in each
direction. Hence, the distance to obstacles, inferred from the
RTT, was used to build the indoor map. Accurate ranging and
high angle resolution are the two main inputs for an accurate
SLAM. Such aspects were usually achieved through laser
technology. Nevertheless, as the technology has to be equipped
with laser and mechanical steering devices it is considered to
have a complex and high-cost integration in mobile devices
[13][14]. At mmWave frequencies, very few works have dealt
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with SLAM approaches. We particularly mention the works
of [15] and [16] where the authors proposed a radar-based
system operating at mmWaves to overcome the shortcomings
of laser. They provided high ranging accuracy using wideband
signals and high directional antenna with mechanical steering.
Technically, the reflected signal from the obstacle is scanned
in front of the radar transceiver to estimate the distance from
the obstacle. Thanks to the large system bandwidth and high
temporal resolution of the paths, the proposed approaches
therein have shown high accuracy. However, the system has to
be in radar-like configuration, i.e. perpendicular to the obstacle,
in order to have highly accurate mapping. We should mention
that this radar-like system was possible in mmWaves as the
latter promotes the implementation of massive antenna arrays
at the ANs [17]-[20]. This is indeed possible due to the reduced
size of antenna arrays. For instance, the works in [21]-[24]
proposed new designs of personal radar with SLAM features
using massive antenna arrays placed in a smart-phone or tablet.
Likewise, the authors of [25] adopted mmWave technology
with multi-antenna radar system to scan the environment even
if the smart-phone is kept in the user pocket. The concept of
SLAM is expected to be widely spread in the future, especially
in the domain of IoT [26].
In this paper, our approach for SLAM in mmWave technologies
is totally different. The proposed work does not impose any
constraint on the receiver orientation and configuration; rather,
it exploits the rays characteristics and the separation capabilities
of these rays at the receiver to propose an innovative framework
(called MOSAIC) for localization and mapping purposes. More
precisely, the paper exploits one or more of the localization
metrics, i.e. AoA, ToA, and RSS, to achieve the Obstacle
Detection, mapping and dimensioning. The latter are assumed
to have different shapes and randomly distributed in the indoor
environment. Throughout the paper, the system model is firstly
derived for one AN and one receiver and then extended to
multiple ANs. The number of ANs has been optimized through
Cramer-Rao Lower Bounds (CRLB) derivations. The CRLBs
outcomes are then used in the simulations to assess the proposed
localization and mapping approaches.
Technically speaking, we will briefly introduce a first approach
available in literature on the localization of a receiver (Rx)
in a known environment using the concept of virtual anchor
nodes (VANs). Then, as shown in Fig. 1, the concept of Rx
localization is extended to unknown environment. In this case,
MOSAIC proposes to exploit the information obtained by at
least two channel metrics (ToA, AoA, RSS) to estimate the
RX position. To implement a joint localization and mapping,
MOSAIC is based on the estimation of the VANs positions,
followed by the estimation of the obstacles sides directions
and positions. Then, MOSAIC proposes two approaches for
the obstacles dimensions (i.e. sides).
This paper extends our previous work in [29] in which the room
geometry has been identified using the AoA metric only. The
contributions of this paper could be summarized as follows:

• Exploitation of the map-based mmWave channel charac-
teristics to provide localization and mapping in indoor
scenarios.

• Extension of our previous work in [29] based on AoA
metrics to other metrics (RSS and TDoA): this extension
is needed since in real scenarios these channel metrics
are available and could be exploited to improve the
localization and mapping accuracy

• Exploitation of the VANs principle widely used in liter-
ature to realize the obstacle positioning, dimensioning
and mapping. In the paper, MOSAIC proposes two
different approaches for mapping. The first one is based on
estimating the cloud of reflection points (CoRP) belonging
to the obstacle borders. The CORP will be used to estimate
the obstacles limits, positions and dimensions. The second
is based on determining the obstacles vertices.

• Derivation and exploitation of the CRLB to optimize the
number of anchor nodes (ANs) needed to achieve a target
accuracy.

• Validation of proposed approaches through extensive
simulation results.

Fig. 1. Steps needed in MOSAIC

The rest of this paper is organized as follows. In Section 2, we
develop the system model and the localization methodology
of the receiver using mmWave. In Section 3, we introduce
localization approaches in mmWave with an extension to un-
known environment. In section 4, we propose new approaches
for context inference by estimating obstacles positions and
dimensions. In Section 5, the effect of the number of ANs is
discussed using the CRLB. Then, we provide in section 6 the
simulation results for an indoor environment, while conclusions
are drawn in Section 7.

II. MOSAIC: SystemModel and Environment

A. System Environment

We consider in this paper a 2D indoor environment consisting
of a room bounded by 4 walls for the sake of simplicity. The
extension to 3D environment is left for further work. The room
geometry is assumed to be known with single transmitter and
single receiver. This assumption does not change any step in
the proposed approaches neither in the conclusions but makes
the model simpler to argue. The room boundaries and radio-
reflective obstacles in the reflective objects are grouped in a set
O. Obstacles are described as two-dimensional flat polygonal
faces with sharp vertices and straight edges. Each oriented
obstacle S is denoted by its perpendicular line, described by:

y = py + α ∗
(
x − px

)
(1)

where p =
(
px, py

)
is a point of intersection between the

obstacle and its perpendicular and α is the slope of the line
orthogonal to the obstacle S. By assumption, a single mmWave
transmitter (Tx) is deployed in the room at a location pT x.
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Additionally, the transmitter is assumed to broadcast its position
to the node(s) targeted for localization.
Throughout the paper, AoA will be the main metric for
localization and mapping. It is very robust against power
loss and absorption at mmWave [27]. The AoA spectrum has
been widely used in literature. It gives the power received at
each angle of arrival hence it is usually modeled as a 2 × Np

matrix, SPp (θ), that records the amplitude of each received ray
component (RRC) as a function of the azimuth θ at a given
location p, where Np is the number of RRCs. Each RRC can
be either due to a LoS link between the transmitter and the
receiver or due to NLoS link caused by reflections of one or
more surfaces in the obstacle set O. Localization in this case is
achieved by observing NLoS paths as virtual LoS rays coming
through virtual LoS links from VANs. A sorting in decreasing
order of SPp (θ) according to the first row, i.e. to ray power,
allows to characterize the received signal in which the first
column has the highest power. In practice, if the receiver and
transmitter are in LoS, this column represents θ0, the AoA of
the LoS ray, and its corresponding power. The columns 2 : Np

represent the NLoS paths.

B. Virtual Anchors

The concept of VAN in mmWaves has been introduced in
literature [28]. As shown in Fig. 2, it is based on the fact
that each NLoS ray is emitted from a virtual anchor node
placed at the mirror position of the transmitter with respect
to the reflector. In LoS conditions, we might have

(
Np − 1

)
RRCs that correspond to NLoS paths. The locations of the
VANs are determined by mirroring the transmitter pT x with
respect to the surfaces in the obstacle set O since it is the
source of signal reflections. We denote V = {v0, v1, . . .} to be
the set of the positions of all possible VANs, and we denote
V = {V0,V1, . . .} to be a partition of V as follows. We let
V0 = pT x, and each set Vi, i = 1, 2, . . . represents all VANs
that have been mirrored i times due to reflections caused by
any surface in the obstacle set O [28]. Actually, there is no
limit on the number of reflections of the signal transmitted
by pT x. However, a mmWave signal fades quickly during its
propagation as it reflects off the surfaces. So, we limited the set
V by assuming a maximum reflection order µ = 1 in this paper1.
Hence, the set of all VANs will be represented as Vµ =

⋃µ
i=0 Vi.

As shown in Fig. 2, the anchors vi and v j represent first and
second order of reflection respectively; hence, vi ∈ V1 and
v j ∈ V2. Nevertheless, we limited µ for single reflection.

III. Localization using mmWaves

In this section, we consider a harsh environment with one
Tx and one Rx only. We tackle the problem of localization
in mmWave using AoA techniques due its robustness against
power loss in mmWave [27]. The other conventional approaches
such as TDoA and RSS could be also adopted but are not
described in details for the sake of simplification. In this section
and for the sake of clarification, we assume that the location
orientation and dimensions of the obstacle are known at the

1The number of reflections at mmWave is usually limited to 2 as the power
is almost negligible afterwards. In this paper, µ = 2 is left for further studies

receiver. Hence, the target in this section is to introduce the
localization techniques that are necessary for the mapping
approaches proposed in unknown environment in the next
section.

Fig. 2. VANs related to first and second order of reflections

A. The Triangulateration (TL) Algorithm in Known Environ-
ment: an AoA based Approach

This algorithm is based on estimating the location of a
receiver at position p using a set of triangulation steps followed
by a verification of the estimated positions [28][29].
The TL provides good accuracy with low complexity versus
the conventional maximum likelihood (ML) algorithm2. TL
steps are based on forming a triangle between the unknown
receiver and each VAN. As shown in Figure 2, the following
relations are constructed using trigonometric relations in the
right triangle formed between the receiver and VAN vi as
follows:

xvi − xRx
1 = ρ1,i ∗ cos θ1,i (2)

yvi − yRx
1 = ρ1,i ∗ sin θ1,i (3)

where vi =
(
xvi , yvi

)
and pRx

1 =
(
xRx

1 , yRx
1

)
are the VANs and the

unknown receiver respectively. θ1,i and ρ1,i are the AoA and
the distance of the RRC ”transmitted virtually” from the VAN
vi to the receiver at position pRx

1 , respectively. In this section,
we aim at estimating the position of the receiver, i.e. x1

1 and
yRx

1 in (2) and (3). Hence, using θ1,i and vi, the problem turns
out to find ρ1,i. The latter could be easily estimated by simply
differentiating between the signal originated from different
VANs. Hence, for each pair of VANs vi and v j, the following
equation holds:

V = Γ.P (4)

where V, Γ, and P are defined as follows:

V =

[
xvi − xv j

yvi − yv j

]

Γ =

[
cos θ1,i − cos θ1, j
sin θ1,i − sin θ1, j

]
2For a fair comparison, ML results will be provided in the simulations

results section.
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P =

[
ρ1,i
ρ1, j

]
Solving (4), we obtain:

P = Γ−1.Vi, j (5)

Knowing P, the estimation of the position pRx
1 of the receiver

can be done by inserting ρ1,i in (2) and (3). The TL steps are
repeated K times, that is the total number of all possible pairs
of

(
vi, v j

)
, i , j in the set V1. So, we will obtain K estimates

of the receiver position. The final estimate will be the average
of all estimates pk, k = 1, 2, . . .K.

B. TL Extension to unknown environment

When the environment is unknown (i.e. there is no infor-
mation on the obstacles in the room), the first step of the
TL approach could not be applied as the VANs positions are
unknown. To solve this problem, we can easily assume that
there are measurements about another localization metric such
as ToA, RSS and AoA3. In this case, the LoS/NLoS components
of these metrics offer suitable localization accuracy. To do so, if
for instance both AoA and ToA measurments are available, the
rays of both metrics are sorted in a decreasing order in terms
of power. The first ray will be denoted as the LoS and the rest
are the NLoS rays. The receiver position will be then deduced
as the intersection point which verifies both the AoA and ToA
based distance equations. The algorithm for Rx localization is
defined as follows.
• Find the distance between the Tx pT x and Rx pRx

1 using
ToA measurements of the first path. Theoretically, the
distance of travel for the first ray is calculated from the
ToA as follows:

ρ1,0 = c ∗ toa1,0 (6)

where c is the speed of light, ρ1,0 is the distance traveled
by the first ray (LoS ray) and toa1,0 is the ToA of the first
ray, assumed to be in LoS.

• Find θ
′

1,0, the triangulated angle of θ1,0 i.e. the AoA of
the first ray (LoS ray), as follows:

θ
′

1,0 = π/2 − θ1,0, 0 ≤ θ1,0 ≤ π/2
θ
′

1,0 = θ1,0 − π/2, π/2 ≤ θ1,0 ≤ π

θ
′

1,0 = 3π/2 − θ1,0, π ≤ θ1,0 ≤ 3π/2
θ
′

1,0 = θ1,0 − 3π/2, 3π/2 ≤ θ1,0 ≤ 2π

(7)

• Estimate the position of the receiver as follows:

PRx = PTx + ρ1,0 ×Ω ×

[
sin θ

′

1,0
cos θ

′

1,0

]
(8)

where pRx
1 =

[
xRx

1 yRx
1

]T
, pT x =

[
xT x yT x

]T
and Ω

is defined as follows:
Ω =

[
−1 −1

]T
, 0 ≤ θ1,0 ≤ π/2

Ω =
[

1 −1
]T
, π/2 ≤ θ1,0 ≤ π

Ω =
[

1 1
]T
, π ≤ θ1,0 ≤ 3π/2

Ω =
[
−1 1

]T
, 3π/2 ≤ θ1,0 ≤ 2π

(9)

3This assumption is valid as these measurements are primordial for channel
estimation at mmWaves

It is very clear from these derivations that localization in
mmWave can be easily done with or without environment
knowledge as long as there is sufficient measurements. More-
over, it is straightforward to mention that the availability of
the LoS components highly improves the accuracy of the
localization approaches. In case the LoS ray is not available,
the estimation of the Rx position will be biased. However,
as shown in [30], the estimation error could be very small if
appropriate algorithms are implemented. In this paper, we are
not tackling the separation between LoS and NLoS components
even though it is possible [30]. Our main focus however is
to propose suitable approaches for obstacle localization and
mapping keeping in mind that the accuracy of the localization
approaches will enhance the accuracy of the context and
environment mapping. The latter is tackled in the next section.

IV. Context Inference and ObstacleMapping

The main target of this section is to estimate obstacles
locations and their dimensions using the received signal at
Rx. MOSAIC implements obstacle detection in two steps: (1)
estimating the position of the VANs using TL (i.e. using AoA),
RSS and TDoA; (2) estimating the obstacle direction and
obstacle dimensions4.

A. Estimation of VANs positions

Here, three different algorithms are proposed depending on
the available meeasurement metrics. The first algorithm is
based on the TL discussed earlier, the second one is based on
the RSS while the third is based on TDoA.

1) Algorithm 1: TL for Estimating VANs: As stated above,
the first step consists in estimating the positions of the VANs.
However, these depend on the obstacles whose positions and
dimensions are assumed unknown. Mathematically speaking,
this requires estimating the different parameters

(
xvi , yvi , ρ1,i

)
which represent the coordinates of the VANs and their distances
with respect to the receiver.
The scenario is developed under harsh conditions, i.e. one
transmitter and one receiver are only available for both
localization and context inference. Hence, to deal with these
conditions, we propose to move the receiver step-by-step
while updating the estimation. Technically, the estimation of(
xvi , yvi , ρ1,i

)
depends on the relative position of the receiver

with respect to the VANs, as shown in Fig. 3. For instance,
assuming that the AoA for the LoS path between the transmitter
and receiver and the AoA for the NLoS path (LoS virtually)
between the transmitter and receiver (VAN and receiver) fall
in the first quadrant, the system of equations describing the
relation between the different parameters in

(
xvi , yvi , ρ1,i

)
defined

in (2) and (3) is as follows:{
xvi − xRx = ρ1,i × cos θ1,i
xRx − xT x = ρ1,0 × sin θ1,0

(10){
yvi − yRx = ρ1,i × sin θ1,i

yRx − yT x = ρ1,0 × cos θ1,0
(11)

4All the calculations hereafter are presented in ideal conditions, i.e. without
measurements errors, for the sake of simplification. However, in simulations,
a bias due to measurements errors is added to different models
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where ρ1,0 is the distance between the original receiver position
and the transmitter, θ1,0 is the AoA for the LoS link between
the transmitter and the receiver, ρ1,i is the distance between the
VAN to be localized and the original receiver position and θ1,i
is the AoA for the NLoS link corresponding to vi. By solving
the above two systems of equations, we obtain:{

xvi − xT x = ρ1,0 × sin θ1,0 + ρ1,i × cos θ1,i
yvi − yT x = ρ1,0 × cos θ1,0 + ρ1,i × sin θ1,i

(12)

The receiver now is moved to a new position pRx
2 as shown

in Fig. 3 so that we can solve the new system of equations
where the unknown variables become the positions of the VANs.
The same procedure is repeated over a new AoA spectrum
corresponding to the new receiver position.

Fig. 3. Estimated VANs by moving the receiver from pRx
1 to pRx

2

The new system of equations defines the relation between the
parameters in

(
xvi , yvi , ρ1,i

)
corresponding to the new receiver

position is given by:{
xvi − xT x = ρ2,0 × sin θ2,0 + ρ2,i × cos θ2,i
yvi − yT x = ρ2,0 × cos θ2,0 + ρ2,i × sin θ2,i

(13)

where ρ2,i and θ2,i are the distance and the AoA, respectively,
corresponding to the link between the VAN vi and the new
receiver position pRx

2 . Then, the estimation of the VANs is done
by combining the two systems of equations in (12) and (13).
This leads to the following:[

cos θ1,i − cos θ2,i
sin θ1,i − sin θ2,i

] [
ρ1,i
ρ2,i

]
=

[
− sin θ1,0 sin θ2,0
− cos θ1,0 cos θ2,0

] [
ρ1,0
ρ2,0

]
(14)

The two unknowns, ρ1,i and ρ2,i, are calculated as follows:[
ρ1,i
ρ2,i

]
= Σ−1

[
− sin θ1,0 sin θ2,0
− cos θ1,0 cos θ2,0

] [
ρ1,0
ρ2,0

]
(15)

where Σ =

[
cos θ1,i − cos θ2,i
sin θ1,i − sin θ2,i

]
. ρ1,i and ρ2,i are then replaced

in (12) or (13) to estimate xvi and yvi . Knowing that RRCs
come from the transmitter via a LoS link and from VANs via
NLoS links, this process is iterated over all entries of the AoA
power spectrum S Pp (θ), a (2 × Np matrix), to estimate the
positions of all VANs. The calculations are repeated at every
receiver position.

2) Algorithm 2: RSS for Estimating VANs: The RSS
approach can be also used to estimate the positions of VANs
required for obstacle detection. The received power at these
anchor nodes follows a log-normal shadowing pathloss model
in mmwave channels [31][32].The received power, Pi, is
calculated using the following equation:

Pi [dBm] = P0 − 10η log10 ρi + wi, i = 1, . . . ,Np − 1 (16)

where P0 is the power at the reference distance ρ0, η is the
pathloss exponent (PLE), ρi is the Euclidean distance between
the receiver and the VAN vi, Np is the number of RRCs, and
wi is the zero mean Gaussian random variable measured in dB
scale with shadowing fading effect described by the standard
deviation σRS S . The square of the distance ρi between the VAN
vi and the receiver pRx is represented as follows:

ρ2
i =

∥∥∥vi − pRx
∥∥∥2

2 =
(
xvi − xRx

)2
+

(
yvi − yRx

)2
(17)

Without loss of generality, we assume the transmitter to be the
reference. Hence, for i >= 1, we define the following:

xRxρ2
i − ρ

2
0 = x2

vi
− 2xRxxvi + y2

vi
− 2yRxyvi (18)

Expressing (18) in matrix form, we obtain the following
equation: 

2x1 2y1
...

...
2xNp−1 2yNp−1

 .
[

xRx

yRx

]
=


x2

1 − x2
0 + y2

1 − y2
0 + ρ2

0 − ρ
2
1

...
x2

Np−1 − x2
0 + y2

Np−1 − y2
0 + ρ2

0 − ρ
2
Np−1


(19)

The real distance ρi is not known in RSS localization;
hence, noisy estimations of the distance, ρ̃i, obtain from
(16), are related with the unknown position of the receiver
pRx =

[
xRx, yRx

]T
as follows:

RpRx = T (20)

where R and T are defined as follows:

R =


2 (x1 − x0) 2 (y1 − y0)

...
...

2
(
xNp−1 − x0

)
2
(
yNp−1 − y0

)


T =


x2

1 − x2
0 + y2

1 − y2
0 + ρ2

0 − ρ
2
1

...
x2

Np−1 − x2
0 + y2

Np−1 − y2
0 + ρ2

0 − ρ
2
Np−1


Here, we write directly the system of equations at N different
positions

{
pRx

1 ,pRx
2 , . . . ,pRx

N

}
. Hence, the following system of

equations is generated based on the difference between the
measurements taken at pRx

1 and pRx
n , n = 2, . . .NRx, respectively:

R
(
pRx

1 − pRx
n

)
= T1 − Tn

=


ρ̃2

0/Rx1 − ρ̃
2
1/Rx1 − ρ̃

2
0/Rxn + ρ̃2

1/Rxn
...

ρ̃2
0/Rx1 − ρ̃

2
Np−1/Rx1 − ρ̃

2
0/Rxn + ρ̃2

Np−1/Rxn

 (21)
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where ρ̃2
i/Rxn is the estimated distance between VAN vi and

the receiver at position pRx
n , knowing that ρ2

i/Rxn is defined as
follows:

ρ2
i/Rxn =

∥∥∥vi − pRx
n

∥∥∥2
2 =

(
xvi − xpRx

n

)2
+

(
yvi − ypRx

n

)2
(22)

The target is to estimate R in order to estimate the positions
of the VANs. A simple Least Square (LS) estimator gives:

R̂ = Td · PT
d

(
PdPT

d

)−1
(23)

where Td and Pd are now defined as follows:

Pd =
[

pRx
1 − pRx

2 pRx
1 − pRx

3 . . . pRx
1 − pRx

NRx

]
(24)

Td =
[

T1 − T2 T1 − T3 . . . T1 − TNRx

]
(25)

As a result, the positions of the VANs are estimated as follows:
x1 y1
...

...
xNp−1 yNp−1

 =
1
2

R̂ +


x0 y0
...

...
x0 y0

 (26)

3) Algorithm 3: TDoA for Estimating VANs: TDoA can
be also used for the estimation of the VANs. The distances
between the receiver and the VAN vi in absence of noise is
represented as follows:

ρi
0 = c × ti

0 = ρi − ρ0, i = 1, . . . ,Np − 1 (27)

where ti
0 is the TDoA of the received signal at the pair of the

VAN vi and the transmitter respectively, and c is the speed
of the signal propagation. As shown in (27), the estimated
TDoAs are converted to range difference of arrival (RDoA)
measurements creating a set of nonlinear equations describing
the hyperbolic range difference. The receiver position can be
estimated from the intersection of the resultant hyperboloids.
In realistic scenarios, RDoA measurements ρ̃i

0 are obtained
with noise as modeled in the following equation:

ρ̃i
0 = ρi

0 + wi
0 = ρi − ρ0 + wi

0, i = 1, . . . ,Np − 1 (28)

where wi1 is the zero mean Gaussian random noise vector of
the RDoA measurement. (28) can be written as ρ̃i

0+ρ0 = ρi+wi
0.

Hence, squaring and substituting with (17), we obtain:

xRx (xi − x0) + yRx (yi − y0) + ρ0ρ̃
i
0 =

1
2

[(
x2

i − x2
0

)
+

(
y2

i − y2
0

)
− ρ̃i

0
2
]

+
1
2

wi
0

2
+ ρiwi

0

(29)

Hence, the model is given by:

G · pRx = H (30)

where G, and H are defined as follows:

G =


x1 − x0 y1 − y0

...
...

xNp−1 − x0 yNp−1 − y0



H =


1
2

(
m1

0 − ρ̃
1
0

2)
− ρ0ρ̃

1
0

...
1
2

(
mNp−1

0 − ρ̃
Np−1
0

2)
− ρ0ρ̃

Np−1
0



where mi
0 = vT

i vi − pT x T pT x. Knowing that the measurement
error wi

0 is small, the noise vector ε0 is approximated as follows:

ε0 ≈
[
w1

0ρ1, . . . ,w
Np−1
0 ρNp−1

]T
(31)

Three TDoA measurements are observed at three different
positions of the receiver pRx

1 , pRx
2 and pRx

3 respectively. The
following system of equations is constructed based on the
difference between the measurements taken at pRx

1 and pRx
2 and

those taken at pRx
1 and pRx

3 , respectively:

G
(
pRx

1 − pRx
2

)
= H1 −H2

=


1
2

(
ρ̃1

0/Rx2
2
− ρ̃1

0/Rx1
2)

+ ρ0/Rx2ρ̃
1
0/Rx2 − ρ0/Rx1ρ̃

1
0/Rx1

...
1
2

(
ρ̃

Np−1
0/Rx2

2
− ρ̃

Np−1
0/Rx1

2
)

+ ρ0/Rx2ρ̃
Np−1
0/Rx2 − ρ0/Rx1ρ̃

Np−1
0/Rx1


(32)

G
(
pRx

1 − pRx
3

)
= H1 −H3

=


1
2

(
ρ̃1

0/Rx3
2
− ρ̃1

0/Rx1
2)

+ ρ0/Rx3ρ̃
1
0/Rx3 − ρ0/Rx1ρ̃

1
0/Rx1

...
1
2

(
ρ̃

Np−1
0/Rx3

2
− ρ̃

Np−1
0/Rx1

2
)

+ ρ0/Rx3ρ̃
Np−1
0/Rx3 − ρ0/Rx1ρ̃

Np−1
0/Rx1


(33)

Equations (32) and (33) can be written in matrix notations as:

G · Pd = Hd (34)

where Pd and Hd are defined as follows:

Pd =
[

pRx
1 − pRx

2 pRx
1 − pRx

3

]
(35)

Hd =
[

H1 −H2 H1 −H3

]
(36)

The LS solution of G yields:

Ĝ = Hd · P−1
d (37)

As a result, the positions of the VANs are estimated as follows:
x1 y1
...

...
xNp−1 yNp−1

 = Ĝ +


x0 y0
...

...
x0 y0

 (38)

It is worth mentioning that all these solutions could be easily
updated to Weighted LS (WLS) or other estimators. Therein,
we restrict ourself to the WLS solution for the RSS given in
Appendix due to lack of space.

B. Obstacle Detection

After the estimation of the VANs, the target is to detect the
obstacles in the room. Referring to Fig. 3, obstacle detection is
achieved using either RSS and AoA or TDoA and AoA. The
obstacle detection is done by the following steps:
• The VANs positions are firstly estimated as detailed in

the previous section.
• Since the VANs are the mirrors of the transmitter with

respect to all surfaces of the obstacles in the room, the
obstacles are then the perpendicular to the line connecting
the transmitter to each estimated VAN respectively. The
perpendicular line passes through the midpoint of the
segment

[
vipT x

]
.

• Equation (1) is used to write the equation of the obstacle
surface, where α and p =

[
px, py

]
are the slope and
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midpoint of segment
[
vipT x

]
, respectively. Fig. 3 shows

the estimated obstacles by firstly estimating its location
(the midpoint between Tx and VAN) and direction.

• Using the AoA and the estimated positions of the receiver,
VAN and obstacle, the point of reflection at the obstacle
can be easily deduced. It is simply the point of intersection
between the line

[
vi,pRx

]
and the obstacle line. Definitely,

this point of reflection is a point on the obstacle.
• At each receiver measurement, this procedure is iterated

over all pairs of
(
vi,pT x

)
, i = 1, 2, . . . ,Np, where Np is the

number of VANs. At each iteration, an estimated point of
reflection belonging to the obstacle side is created. Using
all these measurements, a cloud (set) of reflection points
(CoRP) is generated.

• Using the CoRP, an interpolation between these points is
applied. It is followed by a simple smoothing operation.

In summary, obstacle surfaces are detected and estimated using
a set of connected reflection points. Using the concept of
mirroring, we iterate over all pairs of

(
vi,pT x

)
to detect an

obstacle surface. Then, the problem turns down to estimate the
obstacle limits.

C. Obstacle Dimensioning: Finding the Obstacle Limits

Fig. 4. Region of possible reflections

After detecting the direction of the obstacles in the room
and its corresponding position, the boundaries of the obstacle
are left to be set. Here two approaches could be applied
(jointly or separately):
Approach 1: Estimate the vertices by power measurements
As shown in Fig. 4, a point of reflection is obtained at
the obstacle if the receiver moves within the region of all
possible reflections determined by the obstacle limits, the
position of the transmitter, and the related VAN. Hence, the
AoA/TDoA/RSS spectrum generated at all receiver positions
will dramatically change when the receiver leaves the region
of reflection. Indeed, mmWave signals suffer from absorption
loss by each obstacle. Hence, a change in the reflection
environment will change. Without loss of generality, when the
receiver moves to the right or to the left outside the region of
reflection shown in Figure 4, the power of the received signal
at the corresponding AoA will dramatically change raising the
existence of the object limit. So the latter could be estimated
by a simple border detection through power measurements, i.e
separating the power of an obstacle ray from noise or walls
rays. In this paper, the detection is based on a simple energy
detector algorithm whose threshold is set to maximize the

probability of detection.
Approach 2: Estimate the vertices as intersections of the
obstacle sides: This approach could be applied if the obstacle
is of 2D shape (not 1D). As shown in the previous section,
each side of the obstacle is firstly determined via its direction
and a point on it. Hence, the limits (i.e. the vertices) of the
obstacles are simply determined by the intersections of these
sides.

D. Clustering the Cloud of Vertices Points

Each measurement at each Rx position provides an estimation
of the point of reflection first and then, through obstacle limits
calculations, provides an estimation of the vertices constituting
the obstacle. However, as these measurements are biased due
to noise, a clustering of all measurements is required. Without
loss of generality, the K-means algorithm [33] has been used
to cluster the set of estimates of the obstacle vertices. Then,
the sum of absolute differences approach is implemented to
specify the centroids of the clusters. The latter represent the
component-wise median of a set of estimations for an obstacle
vertex.

E. Discussion on MOSAIC

One AN was used so far for receiver localization and obstacle
detection. If the obstacle is known then the estimation of the
receiver position follows from the VANs positions. However,
when the obstacle information is not available, the estimation
of both the receiver and the VANs positions can be done if
enough measurements metrics (TDoA and AoA, RSS and AoA)
are available.

The estimation accuracy depends on the availability of LoS
path. When it is not available, the measurements (mainly the
AoA) will be biased since in our approach, the first path is
considered to be the LoS. To overcome this problem and reduce
the bias, it is very important to increase the number of ANs
leading to an increase in the LoS measurements. This is indeed
one of the major problems in mmWave systems. On the other
side, the limits of the obstacle are estimated if and only if the
receiver is within the range of reflection. Nevertheless, this is
not always the case with a single receiver at a given position
and single AN. Consequently, at a receiver position, increasing
the number of ANs will also enhance the estimation accuracy
of the obstacle limits. So, a question arises: how many ANs
do we need in MOSAIC?

V. Optimal Number of ANs
The target in this section is to explore the effect of increasing

the number of ANs in terms of localization accuracy and
mapping capabilities. Indeed, it has been shown in the previous
section that the environment mapping depends on the estimation
of the VANs which depends on the localization accuracy of the
receiver. However, increasing the number of ANs indefinitely
leads to additional measurements to be processed from one
side and might not provide the best accuracy from the other
side. To answer this question, we derive the CRLB of each
algorithm proposed in Section 4 at each position of the Rx.
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A. CRLB Derivations with N ANs

The optimal number of ANs needed is analyzed via CRLB
optimization for each metric.

1) CRLB for Algorithm 1 (The TL Approach): Here, we
assume that the AoA measurements taken at the receiver
coming from all ANs are independent. Assuming a wideband
multipath model, we estimate the receiver position using the
TL and ADoA techniques based on a Gaussian AoA model.
This model represents scenarios where there is a strong LoS
component that could be resolved by the receiver separately
from multiple NLoS components due to local scattering. For a
single transmitter pT x with an AoA θ(pT x) at the receiver, we
consider a Gaussian LoS model with local scattering defined
as:

pLoS

(
θ̂/pT x

)
=

1
√

2πσ
(
1 − 2Q

(
π

2σ

)) exp(−

(
θ̂ − θ

(
pT x

))2

2σ2 (39)

where θ̂ ∈ [0, π], Q (t) =
∫ ∞

t exp(−t2/2)/
√

2πdt and σ2 is the
estimation error variance, representing the spatial extent of
scattering. Additionally, the remaining AoA measurements
due to reflected and scattered NLoS paths are assumed to be
virtually in LoS with VANs. Hence, the distribution of these
NLoS paths is defined as follows:

pNLoS

(
θ̂i/vi

)
=

1
√

2πσ
(
1 − 2Q

(
π

2σ

)) exp(−

(
θ̂i − θi (vi)

)2

2σ2 (40)

where θi (vi) is the true AoA coming from the VAN vi to the
receiver knowing that v0 = pT x. Hence, the AoA estimates
are generated for a wideband multipath model based on the
following distribution:

pwideband

(
θ̂1, θ̂2, . . . , θ̂Np/p

T x
)

=

pLoS

(
θ̂1/pT x

)
pNLoS

(
θ̂2/v2

)
. . . pNLoS

(
θ̂Np/vNp

) (41)

where Np is the number of RRCs. Accordingly, the log-
likelihood function for the estimates of the AoA for all RRCs
is as follows:

L
(
θ̂1, θ̂2, . . . , θ̂Np/p

T x,V
)

= −

Np∑
i=0

(
θ̂i − θi (vi)

)2

σ2 (42)

Based on what has been derived for single transmitter in
terms of the probability density function (pdf) of the wideband
multipath model in (41), the log-likelihood function for the
estimates of the AoA for all RRCs corresponding to multiple
transmitters is as follows:

L
(
θ̂1, θ̂2, . . . , θ̂Np/p

T x,V
)

= −

NT x∑
m=1

Np∑
i=0

(
θ̂i − θi

(
vm,i

))2

σ2 (43)

where θi
(
vm,i

)
is the true AoA coming from the VAN vm,i

corresponding to the transmitter pT x
m reaching the receiver pRx

and vm,0 = pT x
m . Then, we construct the Fisher information

matrix (FIM) F
({

pT x,V
})

in order to calculate the CRLB, which
is F−1

({
pT x,V

})
. For the Gaussian model in (41), F

({
pT x,V

})
is defined as follows:

F
({

pT x,V
})

=
∑NT x

m=1

∑Np
i=0

sin2(θi)
σ2ρ2

m,i
−

∑NT x
m=1

∑Np
i=0

cos(θi) sin(θi)
σ2ρ2

m,i

−
∑NT x

m=1

∑Np
i=0

cos(θi) sin(θi)
σ2ρ2

m,i

∑NT x
m=1

∑Np
i=0

cos2(θi)
σ2ρ2

m,i

 (44)

where ρm,i is the distance between vm,i corresponding to the
transmitter pT x

m and the receiver pRx. Knowing that the total
error of localizing the receiver is the sum of variances along
x and y, we define the CRLB for localization under NLoS
environment using the TL technique as follows:

CRLBAOA|NLoS = Tr
(
F−1

({
pT x,V

}))
=

σ2 ∑NT x
m=1

∑Np

i=0
1
ρ2

m,i∑NT x
m=1

∑Np

i=0
∑Np

k=i+1
sin2(θi−θk)
ρ2

m,iρ
2
m,k

(45)

In case of LoS environment, the CRLB for localization using
TL technique based on AoA approach is as follows:

CRLBAOA|LoS =

σ2 ∑NT x
m=1

1
ρ2

m,LoS∑NT x
m=1

∑NT x
k=m+1

sin2(θm−θk)
ρ2

m,LoS ρ
2
k,LoS

(46)

2) CRLB for Algorithm 2 (RSS Metric): : In RSS based
approach, the log likelihood function (LLF) of the pdf of Pi is
expressed as follows:

log (Pr (P; d)) =

log


NT x∏
m=1

Np∏
i=1

10/ log 10√
2πσ2

RS S

1
Pm,i

exp

−
(

10η
σRS S log 10

)2

8

log
d2

m,i

d̃2
m,i

2



= NT x × Np × log

 10

log (10)
√

2πσ2
RS S

 +

NT x∑
m=1

Np∑
i=1

log
(

1
Pm,i

)
−

(
10η

σRS S log 10

)2

2

(
log

(
dm,i

d̃m,i

))2


(47)

where dm,i is the distance between the VAN vm,i corresponding
to the transmitter pT x

m and the receiver pRx and d̃m,i is its
estimate. Then, the second partial derivative is defined as
follows:

∂2 (
log (Pr (P; d))

)
∂d2 = −

(
10η

σRS S log 10

)2

ln 10

NT x∑
m=1

Np∑
i=1

1
d2

m,i

(
1

ln 10
− log

(
dm,i

d̃m,i

))
(48)

Hence, the optimal number of ANs is obtained by optimizing
the following CRLB for a target localization accuracy:

CRLBRS S =
−1

∂2(log(Pr(P;d)))
∂d2

=
ln 10(
10η

σRS S log 10

)2

1∑NT x
m=1

∑Np

i=1
1

d2
m,i

(
1

ln 10 − log
(

dm,i

d̃m,i

)) (49)

3) CRLB for Algorithm 3 (TDoA Metric): The ToA mea-
surements taken at the receiver from multiple ANs are assumed
to be independent. The distances between the receiver and the
VAN vm,i corresponding to the transmitter pT x

m in absence of
noise is represented as follows:

dm,i1 = c × tm,i1 = dmi − dm1,m = 1, . . . ,NT xandi = 1, . . . ,Np

(50)
where tm,i1 is the TDoA of the received signal at the pair of
the VAN vm,i and the transmitter pT x

m respectively, and c is the
speed of light. As shown in (50), the estimated TDoAs are
converted to range difference of arrival (RDoA) measurements



9

creating a set of nonlinear equations describing the hyperbolic
range difference. In realistic scenarios, RDoA measurements
d̃m,i1 are obtained with noise and modeled as:

d̃m,i1 = dm,i1 + wm1 = dmi − dm1 + wm,i1,m = 1, . . . ,NT x (51)

where i = 1, . . . ,Np and wm,i1 is the zero mean Gaussian
random noise vector of the RDoA measurement with a(
Np − 1

)
×

(
Np − 1

)
covariance matrix Σd. Thus, the pdf of

d̃m,i1 defined in (51) is as follows:

Pr
(
d̃; d

)
=

NT x∏
m=1

Np∏
i=1

1√
2πc2σ2

T

exp

−
(
d̃m,i1 − dm,i1

)2

2c2σ2
T


=

1(
2πc2σ2

T

) NT x×Np
2

exp

−
∑NT x

m=1
∑Np

i=1

(
d̃m,i1 − dm,i1

)2

2c2σ2
T


(52)

Applying the same methodology used for RSS, we calculate
the second partial derivative of the LLF for the pdf defined in
(52) as follows:

∂2
(
log

(
Pr

(
d̃; d

)))
∂d2 = −

NT x × Np

c2σ2
T

(53)

Consequently, the optimal number of ANs required to achieve a
TDoA localization accuracy defined by the CRLB is as follows:

N∗T x|optimal =
c2σ2

T

Np ×CRLBT DoA
(54)

B. Discussion

The CRLB of the different metrics decreases with the number
of ANs, except for AoA, in which a further discussion should be
provided. Indeed, when the AoA metric is used for localization
and mapping, it is very important to separate between the
LoS and NLoS cases. In the former, an additional number of
ANs increases the resolvability of the Rx location as it will
be shown in next section. However, in the case of NLoS, the
increase in the ANs will increase the number of ambiguities
hence it deteriorates the estimation. This is not the case in
RSS or ToA since they are used to support the TL approach.
Another conclusion can be derived from the calculations of
the CRLBs. Equations (49) and (54) show that the number
NT x of ANs and the number Np of RRCs can be exchanged
without changing in the CRLB. This means that both RSS and
TDoA present similar results if the number of anchor nodes is
increased or the number of reflections is increased.
Finally, the RSS measurements are sensitive to the absorption
loss at mmWaves: a parameter which creates a bias in the
distance estimation if it is not taken into account. In practice,
the absorption loss depends on the reflection coefficient at the
obstacle; it is left for future research directions.

VI. Simulation Results

A. Parameters and Environment Settings

The room geometry is of rectangular shape of size 10 ×
10m2. The south-western corner of the room is assumed to be
the reference of the Cartesian coordinate system. The angles

are measured with respect to the positive part of the x-axis.
The transmitter is set at position pT x = (0.2, 0.2) m. The
antenna at the transmitter is assumed to be omnidirectional;
hence, the transmitted power PT x (θ) is constant for all θ. An
antenna array is considered at the receiver with a reception
beam pattern described as PRx (θ) = exp

(
− θ2

2s2

)
, s = 0.1. The

value of parameter s and the Gaussian shape have been devised
empirically. Additionally, all results are simulated for 10000
realizations.

B. Performance of the Rx Localization Algorithm in unknown
Environment

In this section, we provide the simulation results of the
localization accuracy in an unknown environment. We remind
the reader that an unknown environment refers to the case
where there is no information about the obstacles in the room.
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Fig. 5. Simulation Results of the Hybrid Approach

We implemented different combinations of the basic stan-
dalone positioning techniques (TL, RSS, and TDoA) to achieve
additional enhancement in the localization accuracy. Fig. 5
shows the RMSE of estimating the receiver’s position using TL,
TL in combination with TDoA, TL in combination with RSS
and TL in combination with RSS and TDoA. It is very clear
that the hybrid approach presents the best results. Particularly,
the combination of the TL and TDoA has a good accuracy
and presents comparable results with those obtained with all
metrics. In terms of localizing VANs, Fig. 6 shows that the
estimation error ranges from 0 m to almost 1.9 m as the
noise of the TDoA measurements σT DOA increases to 0.2 ns,
depending on the number of Rx positions taken into account
in the measurement process. It is clear that the accuracy of
localizing the VANs presents negligible error if the number of
Rx positions is increased. For instance, the error is shown to
be less than 0.075 m at σT DOA = 0.2 ns and less than 0.04
m at σT DOA = 0.1 ns with 100 Rx positions. This means that
a mobile receiver can perfectly estimate the positions of the
VANs.
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Fig. 6. Estimation error of localizing VANs based on TDoA approach using
LS and ML versus σT DOA

C. Optimal Number of ANs

Increasing the number of ANs is proposed for the sake of
enhancing localization and obstacle mapping accuracy. This
increase is expected to increase the probability of LoS links and
the number of estimations for the obstacle vertices. Thus, the
optimal number of ANs is recognized as a compromise between
the number that achieves the best localization accuracy and the
number that achieves full detection of an obstacle. As shown
in Fig. 7, the localization accuracy for TL becomes worse
with the increase in the number of ANs. The decrease of the
CRLB level using TL with the increase in the number of ANs
is due to the NLoS environment. The AoA localization based
technique is highly sensitive to errors under NLoS scenario
since the rays coming from NLoS paths will deteriorate the
localization accuracy. This is indeed expected as AoA is very
sensitive to errors as shown in literature. For instance, an error
of 5◦ might lead to high direction error which is translated by
high position error.
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Fig. 7. CRLB of localization accuracy using AoA under LoS/NLoS conditions
for various number of ANs

However, in LoS conditions, the increase in the number of
ANs decreases the CRLB level of the localization accuracy as
shown in Fig. 7. In such scenario, the AoA of the LoS ray is
less biased to error compared to that of the NLoS ray; hence,
the increase in the number of ANs enhances the localization
accuracy. Moreover, the increase in the number of ANs is
shown in Fig. 8 to decrease the CRLB using RSS and TDoA

for localizing the receiver. Finally, as expected, the increase of
the number of ANs is shown to increase the mapping ability
by increasing the frequency of detecting all vertices. It is very
clear that at least 30 ANs are needed to have a good estimation
of the VANs hence the obstacle vertices.

0 5 10 15 20 25 30 35

Number of APs

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

C
R

L
B

[m
]

σ
ToA

=0.1ns

σ
ToA

=0.9ns

σ
RSS

=0.5 dB

σ
RSS

=5dB

Fig. 8. CRLB of localization accuracy versus number of ANs using TDoA
and RSS
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Fig. 9. RMSE versus σAoA for estimating receiver under LoS/NLoS channel

D. Obstacles Mapping

After localizing the VANs, the obstacles in the room are to
be mapped in terms of their positions, dimensions and limits.
Three types of obstacles have been considered: a square, a
triangle and a hexagon. Fig. 10 shows the estimated vertices of
a triangular obstacle in the room with NT x = 12 and NT x = 42
ANs, respectively, using the TL (ref. Section IV.A) with σAoA =

0.09rad (almost5o) and the K-means algorithm to cluster the
set of estimated obstacle vertices. It is very clear that the
TL approach presents very good accuracy if the number of
ANs is large enough. Moreover, the results are in line with
CRLB derived in the previous section which specifies at least
30 ANs for good accuracy. Fig. 11 and Fig. 12 present the
mapping results of rectangular and hexagonal obstacles using
the RSS and TDoA approaches, provided in Section IV. B and
C respectively with σRS S = 0.1W and σToA = 0.1ns. Here,
the cloud of vertices points at each measurement is shown
as well as the resulting estimated vertices using K-means
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algorithm. Moreover, 42 ANs were used to estimate accurately
a square obstacle, as shown in Fig. 13, using the TDoA with
σToA = 0.05ns.
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Fig. 10. Obstacle (triangle) mapping using the TL approach to estimate the
VANs
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Fig. 11. Obstacle (rectangle) mapping using RSS approach

E. Analysis and Conclusions on the Simulations Results

The CRLB level of the TL, i.e. AoA, approach has shown
a decrease with the increase in the number of ANs under LoS
environment as shown in Fig. 9. Nevertheless, this is not the
case with NLoS environment. However, as the obstacle mapping
highly depends on the localization accuracy from one side and
needs the reflection paths from the other side, it becomes very
important to select the optimal number of ANs which is able
to realize both localization and mapping. Another important
resides in the AoA measurement errors as they highly affect
the accuracy of the obstacle mapping. However, thanks to the
large number of antennas implemented in mmWave technology,
these errors are very small [30]. Similarly, TDoA is shown to
achieve high accuracy in terms of localizing VANs with respect
to the noise variance of the ToA measurements. In practice,
the ToA based approach provides a negligible estimation error
in the localization approach. However, the mapping needs an
estimation of the AoA which again needs to be very accurate.
In terms of raw accuracy, 10 GHz bandwidth is required to
achieve accurate estimation using TDoA with an error in the
order of 0.1 ns in terms of σToA. This is indeed one advantage
of using mmWave whose band can reach few GHz.
RSS based approach is the worst in terms of estimating the
VANs positions due to an increased error in the Rx localization

as shown in the CRLB given in Fig. 9. Moreover, this bias is
increased in practice due to the absorption loss by the obstacles
on the NLoS rays powers. Finally, it is worth mentioning that
the simulation results have shown that the localization and
mapping within the MOSAIC framework present an excellent
accuracy reaching few centimeters if appropriate parameters
are selected.
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Fig. 12. Obstacle (hexagon) mapping using TDoA
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Fig. 13. Effect of the increase in σT DoA on the estimation of the vertices of
a square obstacle using TDoA

VII. Conclusion

In this paper, we presented MOSAIC a framework for joint
localization and mapping. The concept is based on few steps
based on localization of the receiver, followed by the estimation
of the VANs and then obstacle mapping and dimensioning.
The performance of the localization techniques is tested through
simulations in terms of RMSE and CDF of the location
estimation error. In terms of obstacle detection, the paper
proposed a new approach based on VANs and mirroring. A
thorough analysis of the proposed approaches has been made in
the paper from theoretical and algorithmic point of view. It has
been shown that increasing the number of ANs increases the
probability of localization and obstacle detection. Simulations
have shown that finding the optimal number of ANs using
the CRLB is a compromise between localization and obstacle
mapping accuracy. The paper consists a first of its kind in
mapping an indoor environment based on the RSS, ToA and
AoA measurements. Definitely, much work could be achieved
in the future. Among others, the localization and detection
of multiple objects is a possible future direction. Also, the
localization, detection and classification (object, human, etc) of
moving objects will be of order in the future research directions.
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Appendix: RSS-WLS solution

The aim here is to enhance the estimation taking into account
the noise variance. We start with an example of 3 measurements
and then the equations are updated accordingly. Equation ( 21)
can be written as:

PWLS · RWLS = TWLS (55)

where PWLS , RWLS and TWLS are defined as follows:

PWLS =



P12 (1) P13 (1)
P12 (2) P13 (2) 0 . . . 0

0
. . .

...
...

... . . . P12 (1) P13 (1)
0 . . . P12 (2) P13 (2)



RWLS =


2 (x2 − x1)

2 (y2 − y1)
...

2
(
xNp − x1

)
2
(
yNp − y1

)


TWLS =


Td (1, 1)

Td (1, 2)
...

Td

(
Np − 1, 1

)
Td

(
Np − 1, 2

)


where P12 = pRx
1 −pRx

2 and P13 = pRx
1 −pRx

3 . Additionally, know-
ing that the dimensions of RWLS and TWLS are 2×

(
Np − 1

)
×1

and the dimension of PWLS is 2∗
(
Np − 1

)
×2∗

(
Np − 1

)
. Hence,

PWLS can be written as follows:

PWLS = I ⊗
[

P12 (1) P13 (1)
P12 (2) P13 (2)

]
(56)
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where I is the identity matrix of dimension
(
Np − 1

)
×
(
Np − 1

)
.

Consequently, RWLS of the VANs can be estimated by:

R̂WLS =
1
2

(WWLS · PWLS )−1 WWLS · ·TWLS (57)

where the weighting matrix WWLS is equal to the inverse of
the covariance matrix ΣWLS of the vector TWLS .


