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Abstract

Purpose – One of the main components of multi-objective, and therefore, many-
objective evolutionary algorithms is the selection mechanism. It is responsible for
performing two main tasks simultaneously. First, it has to promote convergence
by selecting solutions which are as close as possible to the Pareto optimal set. And
second, it has to promote diversity in the solution set provided. In the current work,
an exhaustive study that involves the comparison of several selection mechanisms
with different features is performed. Particularly, Pareto-based and indicator-based
selection schemes, which belong to well-known multi-objective optimisers, are
considered.
Design/methodology/approach – Each of those mechanisms is incorporated into
a common multi-objective evolutionary algorithm framework. The main goal of
the study is to measure the diversity preserved by each of those selection meth-
ods when addressing many-objective optimisation problems. The Walking Fish
Group (WFG) test suite, a set of optimisation problems with a scalable number of
objective functions, is taken into account to perform the experimental evaluation.
Findings – The computational results highlight that the the reference-point-based
selection scheme of the Non-dominated Sorting Genetic Algorithm III (NSGA-
III) and a modified version of the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), where the crowding distance is replaced by the Euclidean distance, are
able to provide the best performance, not only in terms of diversity preservation,
but also in terms of convergence.
Originality/value – The performance provided by the use of the Euclidean dis-
tance as part of the selection scheme indicates this is a promising line of research
and, to the best of our knowledge, it has not been investigated yet.

Keywords: multi-objective evolutionary algorithm; many-objective optimisation; selection
mechanism; diversity preservation; convergence; Walking Fish Group (WFG) test suite.
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1 Introduction
Multi-objective optimisation is aimed to deal with optimisation problems defined by
a set of objective functions, which must be optimised in a simultaneous way. Those
objective functions are conflicting one to each other. In the related literature, these
types of problems are referred to as Multi-objective Optimisation Problems (MOPs).
MOPs can be found on a significant number of real-world applications in different
fields, such as aircraft engineering (Reynoso Meza et al. 2017), engine design (Patel
et al. 2017), renewable energies (Tanwar & Khatod 2017), and controller design (Freire
et al. 2017), among many others. Many-objective Optimisation Problems (MaOPs) are
those MOPs where more than three objective functions have to be optimised (Ishibuchi
et al. 2008). The Pareto optimal front or Pareto optimal set are the terms used to refer
to the solution of a MOP, and therefore, a MaOP. The Pareto optimal front consists of
a set of trade-off points in the space of the objective functions.

At this point, we should note that the Pareto optimal set can be obtained by means of
mathematical programming approaches, in case the MOP we are dealing with satisfies
several requirements, for instance, convexity of the feasible set, and linearity or convex-
ity of the objective functions (Branke et al. 2008). Nevertheless, in general, providing
the solution of a MOP is an NP -complete problem (Bäck 1996). Bearing the above in
mind, exact algorithmic approaches are not applicable, and consequently, a wide range
of heuristic and meta-heuristic techniques has been proposed in the related literature to
deal with MOPs. Multi-objective Evolutionary Algorithms (MOEAs) (Coello Coello
et al. 2007) are one of the most popular algorithmic schemes to address MOPs in a suc-
cessful way. A large number of Multi-objective Evolutionary Algorithms (MOEAs) has
been designed to tackle MOPs (Coello Coello et al. 2007), such as the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2002), the Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2) (Zitzler et al. 2001), the Multi-objective Evolutionary
Algorithm based on Decomposition (MOEA/D) (Zhang & Li 2007), the Grid-based
Evolutionary Algorithm (GrEA) (Yang et al. 2013) and the Indicator-based Evolution-
ary Algorithm (IBEA) (Zitzler & Künzli 2004), among others.

The approach used to select the individuals that will survive for the next generation
of a MOEA is referred to as the selection scheme, and is one of the most important
components in these types of algorithms. Particularly, the selection scheme is respon-
sible for balancing the convergence and the diversity of the solution set provided. One
of the most frequently used selection mechanisms is based on Pareto optimality con-
cepts. Pareto-based selection usually takes into account two independent selection
criteria (Liu et al. 2017). First of all, individuals are ranked by applying Pareto opti-
mality such that the non-dominated individuals are assigned to a better rank. After-
wards, in order to differentiate individuals that have been assigned to the same rank,
a diversity-based criterion is used. Pareto-based selection has proven to be one of the
most successful selection methods to deal with a large number of MOPs. When ad-
dressing MaOPs, however, the application of Pareto-based MOEAs is not appropriate.
In the case of dealing with MaOPs, the larger the number of objective functions, the
higher the number of non-dominated solutions. In this scenario, the Pareto-based se-
lection approach becomes inaccurate when ranking individuals, and consequently, the
selection pressure of the whole MOEA decreases. This lack of convergence causes that
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the solution set provided is not close enough to the Pareto optimal set.
With the aim of improving the performance of Pareto-based MOEAs when dealing

with MaOPs, three options have been explored mainly (Liu et al. 2017). The first option
is based on providing new dominance definitions that are able to increase the selection
pressure of the MOEA. Examples would be the dominance area control (Sato et al.
2011) and the L-optimality (Zou et al. 2008). The improvement or replacement of the
diversity-based selection criterion is the second option. An example of the above is the
novel diversity preserving strategy based on dynamic crowding distance proposed by
Yang et al. (2017). The third option consists of providing MOEAs that do not make use
of Pareto-based selection (Liu et al. 2017): decomposition-based MOEAs, grid-based
MOEAs and indicator-based MOEAs. Finally, the order in which the convergence and
diversity-based criteria are considered to select individuals has also been analysed. For
instance, Jiang & Yang (2016) proposed a novel MOEA called Diversity-first Based
Evolutionary Algorithm (DBEA) that considers diversity, rather than convergence, as
the first criterion in the selection mechanism. DBEA demonstrated to attain a better
performance for a significant number of the functions tested in comparison to the well-
known NSGA-III.

A very important research question to be answered and that has arisen as a very
active research field is how to measure the performance of MOEAs properly (Li et al.
2014). A wide range of quality indicators, such as the hypervolume indicator (Zitzler
et al. 1999) and the Diversity Comparison Indicator (Li et al. 2014), among others,
have been proposed for measuring either convergence or diversity or both of them. In
the current paper, we focus on quality indicators specifically designed for measuring
the diversity of a solution set.

Considering the above discussion, in this work we carry out an exhaustive compar-
ison of different selection mechanisms with different features highlighting the impact
they have on the diversity preserved by MOEAs when addressing MaOPs. For doing
that, several selection methods belonging to well-known MOEAs are incorporated into
a common multi-objective evolutionary algorithm framework and applied to a set of
MaOPs with a scalable number of objective functions called the Walking Fish Group
(WFG) test suite (Huband et al. 2005). Different quality indicators are used to assess
the performance of the algorithmic schemes tested. At this point, it is worth mentioning
that an initial study regarding the above issue was performed by the authors in Martı́
et al. (2017). The main contribution of the current work with respect to that previous
one is we provide a significant extension of the experimental evaluation by considering
a larger number of objective functions, which increases the complexity of the MaOPs
addressed noticeably. Furthermore, we also provide a comprehensive statistical analy-
sis involving the different selection mechanisms tested.

The rest of the paper is organised as follows. Section 2 briefly describes all the
foundations related to the work carried out in this paper, including the formal definition
of a MOP, the particular MOEAs we have taken into consideration for our analyses, as
well as their corresponding selection mechanisms. The particular quality indicators
selected to measure the diversity of the solution sets attained by those MOEAs are also
depicted. Afterwards, the experimental evaluation carried out, as well as the results
obtained, are commented in Section 3. Finally, some conclusions and lines of further
research are shared in Section 4.
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2 Foundations
A Multi-objective Optimisation Problem (MOP) can be defined as the problem in which
a set of objective functions f1(x), . . . , fM (x) should be jointly optimised1;

min F (x) = 〈f1(x), . . . , fM (x)〉 ; x ∈ S ; (1)

where S ⊆ Rn is known as the feasible set and can be expressed as a set of restric-
tions over the decision set, in our case, Rn. The image set of S produced by function
vector F (·), i.e., O ⊆ RM is called the feasible objective set or criterion set. The so-
lution to these types of problems is a set of trade-off points. The optimality of a given
solution can be defined in terms of the Pareto dominance relation.

Definition 1 (Pareto dominance relation). For the optimisation problem specified in
(1) and having x,y ∈ S, x is said to dominate y (expressed as x ≺ y) iff ∀fj=1,...,M ,
fj(x) ≤ fj(y) and ∃fi=1,...,M such that fi(x) < fi(y).

Definition 2 (Non-dominated subset). In problem (1) and having the set A ⊆ S, Â,
the non-dominated subset of A, is defined as

Â = {x ∈ A |6 ∃x′ ∈ A : x′ ≺ x} .

The solution of (1) is Ŝ, the non-dominated subset of S. Ŝ is known as the efficient
set or Pareto-optimal set (Branke et al. 2008). The Pareto-optimal front, Ô, is the
image of Ŝ in the feasible objective set.

If problem (1) has certain characteristics, e. g., linearity or convexity of the objec-
tive functions or convexity of S, the efficient set can be determined by mathematical
programming approaches (Branke et al. 2008). However, in the general case, finding
the solution of (1) is an NP–complete problem (Bäck 1996). In this case, heuristic
and/or meta-heuristic methods, such as Evolutionary Algorithms (EAs) (Coello Coello
et al. 2007), have arisen as one of the most popular techniques for successfully address-
ing MOPs.

A wide range of Multi-objective Evolutionary Algorithms (MOEAs) has been pro-
posed in the related literature to tackle MOPs successfully (Coello Coello et al. 2007).
A significant number of those MOEAs incorporates a Pareto-based selection scheme.
Individuals are ranked by applying Pareto optimality, and the non-dominated ones
are selected to survive with a higher probability. Nevertheless, it has been demon-
strated that Pareto-based selection is not suitable for MOPs with more than three ob-
jective functions, which are usually known as Many-objective Optimisation Problems
(MaOPs) (Ishibuchi et al. 2008).

Several are the challenges that arise when trying to deal with MaOPs, for instance,
an exponential increase of non-dominated individuals when the number of objective
functions rises, which deteriorates the selection pressure of the whole optimiser, as
well as issues related to the visualisation of the Pareto front approximations obtained,
among others.

1To simplify all definitions, we are considering that every objective function has to be minimised.
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2.1 Assessing the diversity of a Pareto set approximation
Several are the quality indicators that have been proposed for measuring different as-
pects related to the shape of a Pareto set approximation, mainly, convergence, spread
and uniformity2. From the above three aspects, we note that both spread and unifor-
mity, which are closely related, determine the diversity of a Pareto set approximation.
This section is devoted to briefly describe some well-known quality indicators that we
apply herein as performance metrics. We have selected the Diversity Measure (Sec-
tion 2.1.1) and the Diversity Comparison Indicator (Section 2.1.2) for our analyses be-
cause they focus on diversity according to the taxonomy proposed by Li et al. (2014).
The hypervolume (Section 2.1.3) has also been chosen, since it not only focuses on
diversity but also on convergence, and is one of the most frequently used indicators to
assess the performance of MOEAs.

2.1.1 Diversity Measure (DM)

The Diversity Measure (DM) was proposed to calculate the amount of diversity of a
Pareto set approximation (Deb & Jain 2002). For doing that, it considers a reference set.
The solutions belonging to both the reference set and the approximation are assigned
to different grids or divisions of a hyperplane with M − 1 dimensions, with M being
the number of objectives of the problem at hand. Those divisions are called hyper-
boxes. The number of solutions assigned to a particular hyper-box, as well as the
number of solutions assigned to its neighbour hyper-boxes, are used to evaluate that
hyper-box. The larger the number of hyper-boxes containing solutions that belong to
both the reference set and the approximation, the larger the indicator value, which is
in the range [0, 1]. Bearing the above in mind, the value one indicates that maximum
diversity has been reached. In this case, every solution of the approximation has been
assigned to a hyper-box containing solutions of the reference set. At the same time,
a DM value equal to zero means that the Pareto front approximation is not diverse at
all, since no point belonging to the former has been assigned to a hyper-box which
contains solutions of the reference set. According to Li et al. (2014), DM has several
disadvantages when dealing with MaOPs:

1. A reference set with solutions uniformly distributed in the Pareto front is
required. Providing a reference set is an arduous task, even more in the case of
many-objective optimisation. Furthermore, the number of solutions in the said
reference set should be approximately equal to the number of solutions in the
Pareto set approximation.

2. A distribution estimation has to be calculated for each hyper-box. There exist
rM−1 hyper-boxes, with r being the number of divisions in every dimension.

3. A value function has to be computed for each neighbour hyper-box when es-
timating the distribution of a given hyper-box. A particular hyper-box has 3M−1
neighbours. As a result, computing that value function may be challenging in the
case of dealing with MaOPs.

2Since the shape of Pareto set approximations are taken into consideration, quality indicators are usually
defined by considering the objective function space rather than the decision variable space.
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4. An inaccurate value of the approximation diversity could be provided, since
the Manhattan distance is taken into account, rather than the Euclidean distance.

2.1.2 Diversity Comparison Indicator (DCI)

The great majority of those indicators aimed to measure the amount of diversity of a
Pareto set approximation are not suitable for problems with a large number of objective
functions (Li et al. 2014). The Diversity Comparison Indicator (DCI) was specifically
proposed to measure the diversity of many-objective Pareto front approximations (Li
et al. 2014). It tries to solve the aforementioned drawbacks that arise when metrics,
such as DM, are applied to assess the performance of MaOPs. DCI takes different
Pareto front approximations and evaluates their relative contribution to diversity instead
of calculating the absolute contribution of a unique Pareto set approximation.

It considers a grid environment, which consists of a set of hyper-boxes, where
the solutions belonging to the approximations are distributed. Only nonempty hyper-
boxes, i.e., hyper-boxes where one or more non-dominated solutions belonging to the
mixed set of approximations have been assigned, are taken into account by DCI to
calculate the contribution of each approximation. Hence, given a particular approx-
imation, if its solutions are assigned or are close to the majority of the nonempty
hyper-boxes, then its contribution to diversity will be significant in comparison to the
contribution of the other Pareto set approximations. If its solutions are not assigned
or are far away from most of those nonempty hyper-boxes, however, then its contri-
bution to diversity will be poor. The contribution of each Pareto set approximation
to each nonempty hyper-box has thus to be calculated. That contribution is measured
in terms of the grid distance between the Pareto set approximation and the hyper-box
considered.

The grid distance GD between two hyper-boxes h1 and h2 in the grid is computed
as it is shown by (2), with hk1 and hk2 giving the coordinates of h1 and h2 in the k-th
objective, respectively. It can be observed that the Euclidean distance is considered by
DCI.

GD(h1, h2) =

√√√√ M∑
k=1

(hk1 − hk2)2 (2)

The grid distance D between an approximation P and a hyper-box h is the mini-
mum grid distance between h and any other hyper-box, referred to as G(p), containing
at least one solution p belonging to P :

D(P, h) = min
p∈P
{GD(h,G(p))} (3)

Therefore, the contribution CD of an approximation P to a hyper-box h can be
computed as follows:

CD(P, h) =

{
1−D(P,h)2

M+1 , D(P, h) <
√
M + 1

0, D(P, h) ≥
√
M + 1

(4)
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Finally, considering a Pareto front approximation P , its DCI value can be calculated
as it is shown by (5), where the number of nonempty hyper-boxes is given by S.

DCI(P ) =
1

S

S∑
i=1

CD(P, hi) (5)

The main advantages of this indicator are the following ones:

1. It does not require a reference set, in opposition to other indicators, such as
DM.

2. It cannot only be applied to compare two Pareto front approximations, but
several of them.

3. The execution time of DCI, which belongs to O(M(LN)2), is independent
of the number of hyper-boxes. L is the number of Pareto set approximations
and N is the number of solutions in those approximations.

2.1.3 Hypervolume indicator

The hypervolume indicator, Ihyp(A), (Zitzler et al. 1999, 2007, Knowles 2002, Knowles
et al. 2006) computes the volume of the region H delimited by a given set of points,
A, and a set of reference points, N , as it is shown by (6). Therefore, larger values of
the indicator will correspond to better solutions.

Ihyp (A) = volume

 ⋃
∀a∈A;∀n∈N

hypercube(a,n)

 (6)

The hypervolume indicator is also known as the S metric or the Lebesgue measure.
It has many attractive features that have favoured its application and popularity. In
particular, it is the only indicator that has the properties of a metric and the only one
to be strictly Pareto monotonic (Fleischer 2003, Zitzler et al. 2003). Because of these
properties, this indicator has been used not only for performance assessment but also
as part of some MOEAs (see Section 2.4 for further information).

To measure the absolute performance of an algorithm, the reference points should
be nadir points ideally. These points are the worst elements of O or, in other words,
the elements of O that do not dominate any other element. To contrast the relative
performance of two sets of solutions, though, one can be used as the reference set.
These matters were further detailed by Zitzler et al. (2002) and Knowles et al. (2006).

Having N , the computation of the indicator is a non-trivial problem. Indeed, its
determination is known to be computationally intensive, thus rendering it unsuitable
for MaOPs. As a result, a significant amount of research has focused on improving
the computational complexity of this indicator (While et al. 2006, 2005, Fonseca et al.
2006, Beume 2009). The exact computation of the algorithm has been shown to be
#P-hard (Bringmann & Friedrich 2010) in the number of objectives. These types of
problems are the analogous of NP for counting problems (Papadimitriou 1994). There-
fore, all algorithms calculating the hypervolume must have an exponential run-time
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with regard to the number of objectives if P 6= NP , something that seems to be
true (Deolalikar 2010).

According to the most recent results, the indicator is known to be O(n log n +
nM/2) (Beume 2009) for more than three objectives (M > 3); O(n log n) for M =
2, 3 (Fonseca et al. 2006). One alternative to circumvent the complexity hurdle is to
apply estimation algorithms capable of yielding an approximation of the indicator at
a more convenient temporal cost. Monte Carlo sampling (Bader & Zitzler 2008) and
k-greedy strategy (Zitzler et al. 2010) have been applied successfully.

The hypervolume can also be used to measure the progress of an algorithm as the
evolution proceeds. For doing that, the relative formulation of the binary hypervolume
indicator (Knowles et al. 2006) is usually considered:

Ihyp (A,B) = Ihyp (A)− Ihyp (B) . (7)

Substituting A and B by the non-dominated elements of the current and the previ-
ous iteration, PF∗t and PF∗t−1, respectively, the indicator can be expressed as:

Ihyp (t) = Ihyp (PF∗t )− Ihyp
(
PF∗t−1

)
. (8)

2.2 MOEA selection
A wide variety of algorithms, like the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) (Deb et al. 2002), which is described at Section 2.3, or the improved Strength
Pareto Evolutionary Algorithm (SPEA2) (Zitzler et al. 2001), have been designed by
incorporating Pareto optimality as the main selection criterion. Nevertheless, Pareto-
based selection is not suitable for many-objective optimisation. One of the main op-
tions to increase the performance of Pareto-based MOEAs when dealing with MaOPs
is to modify or replace the diversity-based criterion present at their selection scheme.
This is the choice addressed, for instance, by the Non-dominated Sorting Genetic Al-
gorithm III (NSGA-III) (Jain & Deb 2014).

A different class of MOEAs are those incorporating a quality or performance in-
dicator, like the hypervolume (Zitzler et al. 1999) or the R2 indicator (Hansen &
Jaszkiewicz 1998), into the selection mechanism. These quality indicators are usu-
ally designed for assessing either convergence or diversity or both of them. Individuals
are thus selected depending on their contribution to convergence and/or diversity of
the solution set they belong to. That contribution is measured by the particular quality
indicator applied. The indicator-based MOEAs we have selected for our analyses will
be depicted at Section 2.4.

2.3 Pareto-based selection with crowding distance: NSGA-II
NSGA-II is an improvement over the original Non-dominated Sorting Genetic Algo-
rithm (NSGA) (Srinivas & Deb 1994). NSGA-II incorporates two key operations: fast
non-dominated sorting of the population and crowding distance computation with the
aim of promoting diversity in the population.
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The crowding distance considers the size of the largest cuboid enclosing each indi-
vidual without including any other member of the population. This feature is used to
keep diversity in the population, where solutions belonging to the same rank and with a
higher crowding distance are assigned a better fitness than those with a lower crowding
distance, avoiding the use of the fitness sharing factor.

2.4 Indicator-based selection
This section is devoted to describe the particular indicator-based MOEAs we have se-
lected in order to carry out our study. Particularly, we have selected two algorithms
that incorporate two well-known quality indicators. The first one makes use of the
hypervolume indicator, while the second one applies the R2 indicator.

2.4.1 SMS-EMOA

The S-metric Selection Evolutionary Multi-objective Optimisation Algorithm (SMS-
EMOA), which was proposed by Beume et al. (2007), is a steady-state algorithm, i.e.,
only one offspring is produced and only one individual has to be removed from the
population at every generation. The hypervolume is not computed exactly. Instead, the
k-greedy strategy is employed. These decisions were made in the hope of tackling the
high computational demands of computing the hypervolume.

The key element of SMS-EMOA is the method for determining which element
of the population will be replaced by the offspring. This is done by applying a non-
domination ranking. From the individuals that are dominated by the rest of the pop-
ulation, one individual is selected such that it makes the minimum contribution to the
hypervolume considering the whole set. Then, this individual is removed from the pop-
ulation and substituted by a new individual generated by the usual variation operators.
It may happen that there exists a unique non-dominated front (where all individuals
in the population are non-dominated). In this particular case, the individual with the
lowest contribution to the total hypervolume is selected to be replaced.

2.4.2 R2-EMOA

The R2-EMOA algorithm was originally proposed by Trautmann et al. (2013) and
was analysed in depth by Brockhoff et al. (2015). As in the case of SMS-EMOA,
R2-EMOA is a steady-state approach, but it incorporates the R2 indicator (Hansen &
Jaszkiewicz 1998) as the secondary criterion for guiding the selection. The individual
a∗ belonging to the worst rank Rh and allowing the smallest R2 indicator value asso-
ciated to the remaining individuals of that worst rank to be obtained, is selected to be
replaced by the offspring. The aforementioned procedure is depicted by (9). Parame-
ters r∗ and Λ are the utopian point and the set of weight vectors, respectively, which
allow preferences of a decision maker to be incorporated into R2-EMOA (Trautmann
et al. 2013).

a∗ = arg min {r(a) : a ∈ Rh} ; ∀a ∈ Rh : r(a) = R2 (Rh\ {a} ; Λ; r∗) (9)
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We note that the R2 indicator, as the hypervolume, assess the main three features
that a Pareto front approximation should fulfil: convergence, spread and uniformity.
The R2 indicator, however, presents two main differences with respect to the hyper-
volume. First, the computation of the hypervolume, which takes exponential time in
the number of objectives3 is avoided. Second, it may avoid the biased behaviour of the
hypervolume indicator regarding the solution sets provided, which are usually focused
on the knee area of the Pareto front. This is due to the potential incorporation of pref-
erences of a decision maker. Similarly, it was shown that, in the bi-objective case, the
R2 indicator presents an even more biased behaviour than the hypervolume (Brockhoff
et al. 2015).

2.5 Reference-point-based selection: NSGA-III
Another promising line for tackling MaOPs comes from the reference-point-based
many-objective version of the NSGA-II, referred to as NSGA-III. Similarly to NSGA-
II, NSGA-III employs the Pareto non-dominated sorting to partition the population into
a number of fronts. In the last front however, rather than using the crowding distance
to determine the surviving individuals, a novel niche-preservation operator is applied.

This niche-preservation operator relies on reference points organised in a hyper-
plane in order to promote a diverse population. As a result, solutions associated with
a smaller number of crowded reference points are more likely to be selected. Finally,
we note that a sophisticated normalisation scheme is incorporated into the NSGA-III,
which is aimed to effectively handle objective functions of different scales.

3 Experimental results
The leitmotiv of this work is to study the impact that different selection methods have on
population diversity when dealing with MaOPs. A shared MOEA framework was used
to analyse the selection methods considered under the same experimental conditions.
The said framework provided a testing ground common to all approaches, and as a re-
sult, we were able to solely focus on the topic of interest. The shared MOEA is similar
to other previously proposed algorithms and falls into the (µ+λ) evolutionary strategy
scheme. The algorithm is summarised in Fig. 1 as the procedure shared moea( ).
It starts with an initial random population, P0, of µ individuals. After that, at every
iteration, t, an offspring population with λ individuals, Poff, is created by applying
the variation operators in apply variation( ) on the current population, Pt. Sub-
sequently, the best µ individuals are kept for the next generation population Pt+1 by
applying a given selection function, sel func(), which is specified as a parameter.
Once the stopping criterion is satisfied, the non-dominated subset of Pt is returned.

We note that for our analyses we considered the selection schemes of the following
MOEAs, which were introduced at Section 2.2: NSGA-II, NSGA-III, SMS-EMOA,
R2-EMOA and a modified version of NSGA-II, where the Euclidean distance substi-
tutes the crowding distance in the selection mechanism.

3In the case of dealing with two or three objectives, efficient multi-objective optimisers based on the
hypervolume indicator have been proposed.
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function shared moea(sel func, µ, λ)
. sel func, selection function to be used.
. µ and λ, population and offspring sizes.
t← 0; P0 ← random population(µ).
while stopping criterion not met do
Poff ← apply variation(Pt, λ).
Pt+1 ← sel func(Pt ∪ Poff, µ).
t← t+ 1.

return non dom set(Pt+1), final non-dominated set.

Figure 1: Algorithmic representation of the shared MOEA framework.

Table 1: Parameterisation of the different algorithmic approaches
Parameter Value Parameter Value

Number of variables (n) 30 Population size (µ = λ) 50× 10
M
3

Number of objectives (M ) 3, 6, 9, 12, 15 Simulated Binary Crossover pmate = 0.8; η = 20.0

Stopping criterion 103+
M
3 evals. Polynomial Mutation pmut =

1
n ; η = 20.0

We chose the WFG multi-objective problem toolkit (Huband et al. 2006) as the
benchmark suite. It describes nine complex problems, referred to as WFG1–WFG9,
that test whether the optimisation algorithms are capable of handling different chal-
lenges, like separability, multi-modality and deceptive local optima, among others.
WFG1 is a separable and uni-modal problem with a mixed (concave and convex)
Pareto-optimal front. WFG2 has a concave discontinuous Pareto-optimal front and
is separable with a combination of uni-modal and multi-modal objective functions.
WFG3 is a non-separable uni-modal problem with a linear degenerate Pareto-optimal
front. WFG4 is a separable and strongly multi-modal problem that, like the remaining
problems, has a concave Pareto-optimal front. This front lies on the first orthant of a
skewed hyper-sphere located at the origin. WFG5 is also a separable problem but it has
a set of deceptive locally optimal fronts. This feature is meant to evaluate the capacity
of the optimisers to avoid getting trapped in local optima. The next problem, WFG6,
is a separable problem without the strong multi-modality of WFG4. The remaining
three problems have the added difficulty of having a parameter-based bias. WFG7 is
uni-modal and separable, like WFG4 and WFG6. WFG8 is a non-separable problem
while WFG9 is non-separable, multi-modal and has deceptive local optima.

Each problem was addressed with M = 3, 6, 9, 12, 15 objective functions. At
the same time, the number of function evaluations was used as the stopping criterion.
Particularly, executions were stopped once 103+

M
3 function evaluations were carried

out, thus performing longer runs for those problems with a higher number of objective
functions. The population size of the different approaches was fixed by considering the
number of objective functions of the problem at hand as well, i.e. , µ = λ = 50×10

M
3 .

For all cases, we ran all experiment instances 50 times4. The remaining parameters

4The source code supporting our findings is available at https://github.com/rio-group/
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Figure 2: Box plots of the hypervolume values obtained after executing the algorithms
on each problem and number of objectives (the lower the values the better).

were fixed as it is shown in Table 1. Finally, the diversity of the resulting solution sets
was computed using the hypervolume, DCI and DM indicators, which were described
at Section 2.1. As we previously mentioned, the hypervolume indicator is able to
capture both convergence of the approximation and its diversity, while both DCI and
DM are meant for assessing diversity only.

These results are summarised as box plots in Figs. 2, 3 and 4 for the values of hy-
pervolume, DCI and DM, respectively. It is particularly interesting that the selection
mechanism of NSGA-III, as well as the application of the Euclidean distance rather
than the crowding distance by NSGA-II, consistently yielded better results as the num-
ber of objective functions grew.

Although illustrative, box plots can not be used to reach a definitive conclusion.
That is why statistical hypothesis tests are called for. In our case, for each prob-
lem/number of objective functions combination, we performed a Kruskal–Wallis test
(Kruskal & Wallis 1952) with the indicator values achieved by each algorithm. In this
context, the null hypothesis of this test is that all algorithms are equally capable of
solving the problem. If the null hypothesis was rejected, which was actually the case
in all instances of the experiment, the Conover–Inman procedure (Conover 1999) was
applied in a pairwise manner to determine whether a particular algorithm attained bet-

multi-objective-selection.
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Figure 3: Box plots of the diversity comparison indicator (DCI) obtained after exe-
cuting the experiment runs on each problem and number of objectives (the higher the
values the better).

ter results than another. A significance level α = 0.05, corrected using the Dunn-Šidák
correction, was taken into consideration. The results of these tests are presented in Ta-
ble 2 for the hypervolume, Table 3 for DCI and Table 4 for DM, respectively. In them,
it can be verified the results observed in the box plots. In particular the Euclidean and
NSGA-III selection methods managed to yield substantially better results.

In spite of the effort made to make as illustrative as possible those tables, it is
relatively hard to reach a conclusive assessment of the results. To further facilitate the
understanding of the results, we decided to adopt a more integrative representation like
the one proposed by Bader (2010). This representation groups, either by problem or
by number of objectives, the results provided by the different algorithms. It does so
by computing the number of times a given algorithm was statistically better than the
remaining ones. That is, for a given set of algorithms A1,. . . , AK , a set of P test
problem instances Φ1,m,. . . ,ΦP,m, configured with m objectives, the function δ(·) is
defined as

δ (Ai, Aj ,Φp,m) =

{
1 if Ai � Aj solving Φp,m
0 in other case , (10)

where the relation Ai � Aj defines if Ai is significantly better than Aj when solving
the problem instance Φp,m, as computed by the statistical tests previously described.
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Figure 4: Box plots of the diversity metric (DM) obtained after executing the experi-
ment runs on each problem and number of objectives (the higher the values the better).

Relying on δ(·), the performance index Pp,m(Ai) of a given algorithmAi when solving
Φp,m is then computed as

Pp,m (Ai) =

K∑
j=1;j 6=i

δ (Ai, Aj ,Φp,m) . (11)

This index intends to summarise the performance of each algorithm with regard to its
peers.

Fig. 5 exhibit the results computing the performance indexes grouped by problems
and dimensions. Two groups of results are shown. On one hand, the mean performance
indexes yielded by each algorithm when solving each problem in all of its configured
objective dimensions,

P̄p (Ai) =
1

|M|
∑
m∈M

Pp,m (Ai) . (12)

and, on the other hand, the mean values of the index grouped by each feasible objective
set dimension,

P̄m (Ai) =
1

P

P∑
p=1

Pp,m (Ai) , (13)
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(d) DCIs grouped by number of objectives.
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(e) DMs grouped by problem.
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(f) DMs grouped by number of objectives.

Figure 5: Summarised representation of the statistical hypothesis tests. A higher posi-
tion on the charts implies better results.

with m = {3, 6, 9, 12, 15}.
This summarised representation allows the results previously identified to be easily

verified. It becomes evident that the NSGA-II applying the Euclidean distance yielded
important and outstanding results. When doing the analysis grouping results by prob-
lems (Figs. 5a–5e), it is clear that the Euclidean distance-based approach managed to
yield consistently better results, with a few exceptions where it was outperformed by
the selection scheme of SMS-EMOA. At the same time, the analysis grouping results
by number of objectives (Figs. 5b–5f) brings even more interesting results. In this
case, the Euclidean distance-based approach provided the best results for more than
three objective functions, with the only exception that considers the hypervolume indi-
cator and nine objectives, where it addressed results slightly worst than SMS-EMOA.
At this point, we should note that the computational cost of the Euclidean distance-
based approach is a fraction of that invested by SMS-EMOA.
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4 Final remarks
How to keep the diversity in a population of individuals is one of the most important is-
sues when designing MOEAs. In the case of addressing MaOPs, diversity preservation
is even more crucial. As it has been shown in the related literature, current MOEAs, and
more particularly, their selection methods are not able to provide diverse solution sets.
In the current work, we have presented a comprehensive comparison of different selec-
tion schemes belonging to well-known MOEAs, in terms of the diversity they are able
to preserve when tackling MaOPs. Nine complex test cases with an increasing number
of objective functions have been considered for the experimental evaluation. Results
obtained from the simulations show the limitations of the current selection methods
and shed some light on the directions we should take for progressing in this field. In
particular, we can conclude that the reference-point-based selection scheme incorpo-
rated into the NSGA-III and the modified version of the NSGA-II, where the Euclidean
distance replaces the crowding distance, are able to provide better performance, and not
only in terms of diversity as DM and DCI indicates, but also in terms of convergence
(hypervolume), specially in the case of the modified version of the NSGA-II.

There are other state-of-the-art algorithms that would be interesting to include in
the study. One particular case is the Multi-objective Evolutionary Algorithm based on
Decomposition (MOEA/D) (Zhang & Li 2007) and its derivations. This algorithm was
not included in this study because it relies on a decomposition of the search space, and
consequently, the selection scheme operates in a different way. Nevertheless, one of
the future lines of research prompted by this work is how to extrapolate these results
for creating an optimal decomposition of the search space. Similarly, there are some
important results that should be explored more in depth: the use of the Euclidean dis-
tance as part of the selection scheme. Our experimental evaluation indicates this is a
promising line of research and, to the best of our knowledge, it has not been investi-
gated yet.
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Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller,
E. Burke & N. Jonoska, eds, ‘Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO’2002)’, Morgan Kaufmann Publishers, San Francisco,
California, pp. 666–673.

Zitzler, E., Thiele, L. & Bader, J. (2010), ‘On set-based multiobjective optimization’,
IEEE Transactions on Evolutionary Computation 14(1), 58–79.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. & Grunert da Fonseca, V. (2003),
‘Performance assessment of multiobjective optimizers: An analysis and review’,
IEEE Transactions on Evolutionary Computation 7(2), 117–132.

Zou, X., Chen, Y., Liu, M. & Kang, L. (2008), ‘A new evolutionary algorithm for solv-
ing many-objective optimization problems’, IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 38(5), 1402–1412.

20



Table 2: Results of the statistical hypothesis tests for the hypervolume values. Cases
where the algorithm in the row was significantly better than the algorithm in the column
are marked with a plus sign (+). For those cases where the algorithm in the row was
significantly worse than the algorithm in the column a minus sign (−) is used. Finally,
cases where results were statistically similar are marked with a ∼.
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+ ∼ ∼ × ∼
+ + ∼ ∼ ×
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+ + × ∼ ∼
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+ + ∼ ∼ ×

× − − − −
+ × − + −
+ + × + ∼
+ − − × −
+ + ∼ + ×

× − − − −
+ × ∼ ∼ ∼
+ ∼ × ∼ ∼
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R2-EMOA − ∼ ∼ × ∼
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+ × − − −
+ + × ∼ ∼
+ + ∼ × ∼
+ + ∼ ∼ ×

× − − − −
+ × − + −
+ + × + ∼
+ − − × −
+ + ∼ + ×

× − − − −
+ × ∼ ∼ ∼
+ ∼ × ∼ ∼
+ ∼ ∼ × ∼
+ ∼ ∼ ∼ ×

× − − − −
+ × − ∼ ∼
+ + × + ∼
+ ∼ − × −
+ ∼ ∼ + ×
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7

NSGA-II × ∼ ∼ ∼ ∼
NSGA-III ∼ × ∼ ∼ ∼

SMS-EMOA ∼ ∼ × ∼ ∼
R2-EMOA ∼ ∼ ∼ × ∼
Euclidean ∼ ∼ ∼ ∼ ×
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+ × − − −
+ + × ∼ ∼
+ + ∼ × ∼
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× − − − −
+ × − + −
+ + × + ∼
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× − − − −
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Table 3: Results of the statistical hypothesis tests for the diversity comparison indicator
(DCI) values. See Table 2 for notation details.
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NSGA-II × − − − −
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+ × + + −
+ − × ∼ −
+ − ∼ × −
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+ − × ∼ −
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+ − × ∼ −
+ − ∼ × −
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+ − × + −
+ − − × −
+ + + + ×
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+ + + + ×
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Table 4: Results of the statistical hypothesis tests for the diversity metric (DM) values.
See Table 2 for notation details.
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NSGA-II × ∼ + + −
NSGA-III ∼ × + + −

SMS-EMOA − − × ∼ −
R2-EMOA − − ∼ × −
Euclidean + + + + ×

× − − − −
+ × + + ∼
+ − × ∼ −
+ − ∼ × −
+ ∼ + + ×

× − − − −
+ × ∼ ∼ −
+ ∼ × ∼ −
+ ∼ ∼ × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

W
FG

3

NSGA-II × + − + −
NSGA-III − × − + −

SMS-EMOA + + × + −
R2-EMOA − − − × −
Euclidean + + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

× − − − −
+ × ∼ + −
+ ∼ × + −
+ − − × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

W
FG

4

NSGA-II × − ∼ ∼ −
NSGA-III + × + + ∼

SMS-EMOA ∼ − × ∼ −
R2-EMOA ∼ − ∼ × −
Euclidean + ∼ + + ×

× − − − −
+ × + + ∼
+ − × − −
+ − + × ∼
+ ∼ + ∼ ×

× − − − −
+ × − ∼ −
+ + × ∼ ∼
+ ∼ ∼ × ∼
+ + ∼ ∼ ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

W
FG

5

NSGA-II × + ∼ − −
NSGA-III − × ∼ − −

SMS-EMOA ∼ ∼ × − −
R2-EMOA + + + × ∼
Euclidean + + + ∼ ×

× − − − −
+ × + + −
+ − × − −
+ − + × −
+ + + + ×

× − − − −
+ × ∼ + −
+ ∼ × + −
+ − − × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

W
FG

6

NSGA-II × − ∼ − −
NSGA-III + × ∼ ∼ −

SMS-EMOA ∼ ∼ × ∼ −
R2-EMOA + ∼ ∼ × −
Euclidean + + + + ×

× − − − −
+ × + + −
+ − × − −
+ − + × −
+ + + + ×

× − − − −
+ × + ∼ −
+ − × ∼ −
+ ∼ ∼ × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

W
FG

7

NSGA-II × + ∼ − −
NSGA-III − × − − −

SMS-EMOA ∼ + × − −
R2-EMOA + + + × ∼
Euclidean + + + ∼ ×

× − − − −
+ × + + ∼
+ − × − −
+ − + × −
+ ∼ + + ×

× − − − −
+ × ∼ + −
+ ∼ × + ∼
+ − − × −
+ + ∼ + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

W
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8

NSGA-II × − ∼ ∼ ∼
NSGA-III + × + + +

SMS-EMOA ∼ − × ∼ ∼
R2-EMOA ∼ − ∼ × ∼
Euclidean ∼ − ∼ ∼ ×

× − − − −
+ × + ∼ −
+ − × − −
+ ∼ + × −
+ + + + ×

× − − − −
+ × ∼ + −
+ ∼ × + −
+ − − × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×

W
FG

9

NSGA-II × ∼ ∼ ∼ ∼
NSGA-III ∼ × ∼ + +

SMS-EMOA ∼ ∼ × + ∼
R2-EMOA ∼ − − × −
Euclidean ∼ − ∼ + ×

× − − − −
+ × ∼ + −
+ ∼ × + −
+ − − × −
+ + + + ×

× − − − −
+ × − + −
+ + × + −
+ − − × −
+ + + + ×

× − − − −
+ × + + −
+ − × + −
+ − − × −
+ + + + ×

× − − − −
+ × + + −
+ − × ∼ −
+ − ∼ × −
+ + + + ×
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