
Abstract—While our conventional cryptography methods, such

for AES (encryption), SHA-256 (hashing) and RSA/Elliptic Curve

(signing), work well on systems which have reasonable processing

power and memory capabilities, these do not scale well into a

world with embedded systems and sensor networks. Thus

lightweight cryptography methods are proposed to overcome

many of the problems of conventional cryptography. This includes

constraints related to physical size, processing requirements,

memory limitation and energy drain. This paper outlines many of

the techniques that are defined as replacements for conventional

cryptography within an Internet of Things (IoT) space and discuss

some trends in the design of lightweight algorithms.

Index Terms— Lightweight cryptography, Resource limited

devices, encryption, Hashing functions. PHOTON, SPONGENT,

Lesamanta-LW, Enocoro, Trivium, PRESENT, CLEFIA

I. INTRODUCTION

While AES and SHA work well together within computer

systems, they struggle in an IoT/embedded world as they take

up: too much processing power; too much physical space; and

consume too much battery power. In the last decade, a large

number of lightweight cryptography primitives have been

proposed and used over resource-limited devices. Both the

national (NIST) and international (ISO/IEC) organizations

outline a number of methods which can be used for lightweight

cryptography, and which could be useful in IoT and RFID

devices [1]. They define the device spectrum as:

 Conventional cryptography. Servers and Desktops.

Tablets and smart phones.

 lightweight cryptography. Embedded Systems. RFID and

Sensor Networks.

With embedded systems, we commonly see 8-bit, 16-bit and

32-bit microcontrollers, and which would struggle to cope with

real-time demands for conventional cryptography methods.

And in the 40+ years since the first 4-bit processor, there is even

a strong market for 4-bit processors. RFID and sensor network

devices, especially, have limited numbers of gates available for

security, and are often highly constrained with the power drain

on the device.

So AES is often a non-starter for many embedded devices. In

lightweight cryptography, we often see smaller block size

(typically 64 bits or 80 bits), smaller keys (often less than 90

bits) and less complex rounds (and where the S-boxes often just

have 4-bits). Along with this it has been identified as having

weaknesses our side channel attacks. In [2], the researchers

attack a 128-bit AES key on an Arduino device using

differential power analysis (DPA) and correlation power

analysis (CPA), and crack it within 30 minutes.

For lightweight cryptography, the main constraints that we

have are typically related to power requirements, gate

equivalents (GEs), and timing. With passive RFID devices, we

do not have an associated battery for the power supply, and

where the chip must power itself from energy coupled from the

radio wave. An RFID device is thus likely to be severely

constrained in the power drain associated with any

cryptography functions, along with being constrained for the

timing requirements and for the number of gates used. Even if

an RFID device has an associated battery (active RFID), it may

be difficult to recharge the battery, so the drain on power must

often be minimised.

On the other hand, the IoT are unleashing the next wave of

innovations due to its inherent capability of connecting

intelligent ‘things’ in a physical world into cloud-based

information technology architecture. The data and privacy

protection in IoT is fundamental to the success of IoT and it will

present new security challenges in cryptographic security,

credentialing, and identity management [3].

There is thus often a compromise between the cryptography

method used and the overall security of the method. Thus often

lightweight cryptography methods balance performance

(throughput) against power drain and GE, and do not perform

as well as main-stream cryptography standards (such as AES

and SHA-256). Along with this the method must also have a

low requirement for RAM (where the method requires the usage

of running memory to perform its operation) and ROM (where

the method is stored on the device). In order to assess the

strengths of various methods we often define the area that the

cryptography function will use on the device – and which is

defined in µm2.

In the Internet of Things (IoT), many interconnected resource

constrained devices are not designed to carry out expensive

conventional cryptographic computation, which makes it

difficult to implement sufficient cryptographic functions. To

guarantee security and privacy protection in the IoT becomes a

serious concern when integrating resource constrained devices

into the IoT securely since they are incapable of carrying out

sufficient cryptographic algorithms [3].

In recent, the lightweight symmetric cryptography has been

developed for IoT, including hash functions and MACs like

Quark, Marvin, and block/streaming ciphers such as

PRESENT, SPONGENT, and so on. Asymmetric cryptography

that can be used for IoT includes number-theoretic

cryptography, such as ECC, PBC, etc., post-quantum

cryptography lattices and codes [4]. Since most IoT devices are

Prof William J. Buchanan (1), Dr Shancang Li (2), Dr Rameez Asif (1)
(1) The Cyber Academy, Edinburgh Napier University, UK

(2) University of the West of England, UK

Lightweight Cryptography Methods

working on a multi-task mode, so the software performance is

crucial for the lightweight cryptography and existing

lightweight solutions such as Chaskey, FLY, LEA, SPARX,

etc. show good evaluation results [5]. In the IoT case, the cipher

types, block size, key size, relevant attacks, etc. should be taken

into considerations.

In the lightweight cryptanalysis, typical attacks include

single-key/related-key, distinguisher/key-recovery, weak-keys,

meet-in-the-middle-attack, etc. In [4], a lightweight crypto-

analysis model is addressed to against generic attacks. For

lightweight cryptography, the size of key, block and tag are

usually considered in cryptanalysis, specifically, for multi-key

attacks, power of precomputation, brute-force attacks, etc. In

many cases, the applicability over resourced-limited devices are

crucial.

In the past decade, a number of lightweight cryptography

protocols, algorithms, and primitives have been standardized as

the ISO/ICE 29121. For security communication, the

lightweight primitives have been embedded into existing

protocols, such as IPSec, TLS, and a number of embedded

cryptography libraries have been released such as wolfSSL,

CyaSSL, sharkSSL, RELIC, etc.

II. CHALLENGES IN LIGHTWEIGHT CRYPTOGRAPHY

Lightweight cryptography targets a very wide variety of

resource constrained devices such as IoT end nodes and RFID

tags [6] that can be implemented on both hardware and software

with different communication technologies. It is very difficult

for resource-limited environment to implement the standard

cryptographic algorithms due to the implementation size, speed

or throughput, and energy-consumption. The lightweight

cryptography trade-offs implementation cost, speed, security,

performance, and energy consumption on resource-limited

devices. The motivation of lightweight cryptography is to use

less memory, less computing resource, less power supply to

provide security solution that can work over resource-limited

devices. The lightweight cryptography is expected simpler and

faster compare to conventional cryptography. The disadvantage

of lightweight cryptography is less secured [6].

A. Hardware Implementation

In hardware implementation of the lightweight cryptography

primitives, the code size, the memory consumption (RAM), and

energy consumption are the important metrics. To well evaluate

the lightweight cryptography, the exact type of circuit (such as

the clock), memory, storing of the internal states and key states

should be taken into consideration. However, it does not mean

shorter block and key size are better since it may cause insecure

against related-key attacks [6]. In some case, the read-only

‘Mask’ technology is used to burn keys into devices (chips) to

reduce the key space. In recent, in [7] an energy efficiency of

hardware implementation metric is proposed, in which the

latency is used to evaluate the time taken to perform a given

operation [8].

B. Software Implementation

In software implementation case, the implementation size, and

RAM consumption, and the throughput (bytes per cycle) are

preferable metrics for the lightweight applications [5]. The

smaller the better. In software cases, the unified FELICS (Fair

Evaluation of lightweight Cryptographic Systems) framework

is proposed to evaluate the performances of lightweight block

or stream ciphers’ performances in implementation size, RAM

consumption, and time taken to perform a given operation [9].

Table 1 shows the FELICS results of popular lightweight cipher

algorithms for three different implementations: 8-bit AVR, 6-

bit MSP, and 32-bit ARM.

Due to the circuit implementation, the implementation size,

RAM consumption and the throughput are not independent and

reduce the number of operations can decrease both memory and

time consumption [6][9].

Table 1. FELICS results for lightweight ciphers [6]

C. Lightweight Cryptography Design Trends

Based on metrics discussed both in hardware case and software

case, most lightweight algorithms are designed to use smaller

internal states, short block and key sizes. Indeed, most

lightweight block ciphers use only 64 bit blocks (AES is

demanded a 128-bit block and a 128-bit key). The lightweight

implementation usually leads smaller RAM consumption and it

is good at processing smaller messages as well. In designing

lightweight cryptography solutions, following trends are

noticed: (1) Short block and key size will bring problems: short

block can cause problems such as CBC erodes faster than other

part when the number of n-bit blocks encrypted approaches 2n/2

[9], meanwhile the short key size can increase the risks of key-

related attacks [3]; (2) The number of operations in symmetric

lightweight cryptography roughly doubles when the input size

of a symmetric-key primitive double [5]. In PHOTON family,

the number of rounds is always 12, the number of S-box doubles

if the size doubles. Similarly, in AES 256, the number of rounds

is 14, the number of s-box doubles if the block size doubles; (3)

The lightweight cryptography always is driven by the

applications; as a result, lightweight primitives should be

designed to apply new academic insights as well as to best

match existing protocols.

III. METHODS

For lightweight cryptography PHOTON [10], SPONGENT [4]

and Lesamanta-LW [11] are defined as standards for hashing

methods within ISO/IEC 29192-5:2016, PRESENT and

CLEFIA for block methods within ISO/IEC 29192-2:2012, and

Enocoro and Trivium for stream methods within ISO/IEC

29192-3:2012.

A. Hashing

While we will all have 32-bit or 64-bit processors in our mobile

phones and desktops, and have much more the 1GB of memory,

in an IoT world we often measure memory capacity in just a

few KiloBytes (KB), and where 8-bit processors rule the roost.

The cost of a simple 8-bit processor can be defined in 10s of

cents, compared with hundreds of dollars for our complex

processors. And so our crypto hash functions for MD5 and

SHA-1, and most of our other modern hash methods, are just

not efficient for IoT devices. NIST have thus recommended

new hashing methods such SPONGENT, PHOTON, Quark and

Lesamnta-LW. These methods produce a much smaller

memory footprint, and have a target an input of just 256

characters (whereas typically hash functions support up to 264

bits).

SPONGENT uses the sponge function (Figure 1) [4]. With

the sponge construction, we use a fixed-length permutation (or

transformation) and a padding rule. This construction thus takes

a variable length input and map it to a variable-length output.

The input is (Z2)* of any length and then converts it into (Z2)n,

where n is defined as part of the process. Overall the method

uses a finite-state machine process, and iterates through the

states with the addition of the input data. The concept of sponge

function was created Bertoni, who created Keccak [12]. They

can use either use a publicly known unkeyed permutation (P-

Sponge) or with a random function (T-Sponge). Along with

their usage in hashing, they can also be used in creating stream

ciphers.

Figure 1 Sponge function [4]

The sponge construction uses a function f which has a

variable-length input and a defined output length. It operates on

a fixed number of bits (b) - the width. The sponge construction

then operates on a state of b=r+c bits. r is defined as the bitrate

and c as the capacity (Figure 1). Initially an input string is

padded using a reversible padding rule (such as adding NULL

characters), and then segmented into blocks of r bits. Next the

b bits of the state are set to zero, and the sponge construction

next defines:

 Absorbing phase. This is where the r-bit input blocks are

X-ORed into the first r bits of the state, interleaved with

applications of the function f. After all the input blocks

have been processed, we then move to a squeezing phase.

 Squeezing phase. This is where the first r bits of the state

are outputted as blocks and, interleaved with the function

f. The number of bits of the output are defined as part of

the process.

Overall the last c bits of a state are never changed by the input

blocks and never output within the squeezing phase. For an 88-

bit hash we have (SPONGENT-088-080-00 - Spongent-

88/80/8: n=88 bits, b=88 bits, c=80 bits, r=8 bits, R=45) and for

128-bit (SPONGENT-128-128-008 - Spongent-128/128/8:

n=128 bits, b=136 bits, c=128 bits, r=8 bits, R=70) [13].

Lesamnta-LW which uses AES methods as its core [11]. One

thing to notice about Lesamnta-LW is that the S-box structure

is the same as you would find in AES. The authors think that it

only requires 8.24 kGates, and has a throughput of 125Mbit/sec

(which is five times faster than SHA-256, which also gives a

256-bit hash): For the RAM requirements on an 8-bit processor,

the authors estimate that Lesamnta-LW only requires 50 bytes

of RAM [14].

Quark is defined in three main methods: u-Quark, d-Quark,

and s-Quark, and uses a sponge function [15]. It can be used for

hashing and in stream encryption. u-Quark has the lowest

footprint and provides 64-bit security on 1379 digital gate,

whereas s-Quark provides 112-bit security [16].

Keccak is a family of cryptographic sponge functions that has

become the FIPS 202 (SHA-3) standard in 2015 [17]. The

Keccak is based on the sponge construction, in which the

underlying function is a permutation chosen in a set of seven

Keccak-f permutations, denoted as Keccak-f (25, 50, 100, 200,

400, 800, 1600) with seven different width of the permutation

of {1, 2, 4, 8, 16, 32, 64}. The Keccak can provide nice

flexibility and good performance both in hardware and software

with moderate implementation size and RAM consumption and

suitable for lightweight applications.

PHOTON is lightweight cryptography method for hashing

and is based on an AES-type approach [10]. It can create 80-bit,

128-bit, 160-bit, 224-bit and 256-bit hashes [10]. It takes an

arbitrary-length input and produces a variable-length output.

The method is defined as PHOTON-n-r-r’, where n is the

hash size, r is the input bit rate, and r’ is the output bit rate.

Sample hashed values for “abc” are [18]:

Photon 80 signature (PHOTON-80/20/16)
("abc") = 3151cb8f09f5a4908531

Photon 128 signature (PHOTON-128/16/16)
("abc") = e1bb314c7c9ace3ea0ed6fd1d762d216

Photon 160 signature (PHOTON-160/36/36)
("abc") = c11d4cd3da84bc245430ba7cf696d0092941ba58

Photon 224 signature (PHOTON-224/32/32)
("abc") =
7798abbae697af77eaa56f358ec9845ee947c6d3c7daca9e7ae4
76ec

Photon 256 signature (PHOTON-256/32/32)
("abc") =
c412435e329f6f4837a5e55eda83d66d8a8eae5d9744931f9c7c
bb7e55584df6

The internal state is defined as t (bits), and is calculated as t=c+r

(where c is the capacity). With PHOTON we use a sponge

function and where we take input bits and XOR with bits taken

from the current state. Overall there are three main phases:

 Initialisation. This phase takes the input bit stream and

breaks into r bits (and pads if required).

 Absorbing. In this phase, for all the message blocks, we

take r-input bits and XOR with r bits of the state, and

interleave with a t-bit permutation function.

 Squeezing. In this phase, we extract r bits from the current

internal state, and apply a permutation function (P) to it.

This will continue until the number of output bits is equal

to the required hash size.

The internal permutation function (P) is similar to AES with 12

rounds, and which each round has the functions of (Figure 2):

 AddConstants. In this function, the first column with the

internal state is XOR-ed with round (r) and internal

constants.

 SubCells. In this function, the internal state is fed through

the PRESENT S-box (Figure 5).

 ShiftRows. In this function, the internal state cell row [i] is

cyclically shifted by i positions to the left.

 MixColumnsSerial. In this function, the internal state cell

column is multiplied by the MDS (Maximum Distance

Separable) matrix.

Table. 2 shows a summary of lightweight hashing functions

commonly used in both academic and industry [6].

Figure 2 PHOTON functions [10]

Table 2. lightweight hash functions [6]
lightweight Hash Function Digest

[bits]
Code

[bytes]
RAM

[bytes]
RAM

[bytes]
RAM
stack

Cycle (8-
byte msg)

Cycle (50-
byte msg)

Cycle (100-
byte msg)

Cycle (500-
byte msg)

SPONGENT-256/256/128 256 364 16 96 5 1 542 923 3 856 916 6 170 900 25 454 100

SPONGENT-160/160/80 160 598 10 60 6 795 294 2 783 241 4 771 186 20 674 746

S-Quark 256 1106 4 60 5 708 783 1 417 611 2 339 023 9 4270 23

D-Quark 176 974 2 42 5 631 871 1 516 685 2 570 035 10 996 835

Keccak[r=40,c=160] 160 752 5 45 3 58 063 162 347 278 269 1 205 627

Keccak[r=144,c=256] 256 608 18 92 4 90 824 181 466 317 221 1 313 291

PHOTON-160/36/36 160 764 9 39 11 620 921 1 655 364 2 793 265 11 999 914

PHOTON-256/32/32 256 1244 4 68 10 254 871 486 629 787 896 3 105 396

B. Streaming

One of the first to show promise for a replacement for AES for

lightweight cryptography is PRESENT [19]. It uses smaller

block sizes and the potential for smaller keys (such as for an 80-

bit key). PRESENT users either an 80-bit (10 hex characters) or

a 128-bit encryption key (16 hex characters). It operates on 64-

bit blocks and uses an SPN (substitution-permutation network)

method. With SPN, as with AES (Rijndael), we operate on

blocks of plaintext and apply a key and then use a number of

rounds which we use substitution boxes (S-boxes) and

permutation boxes (P-boxes). The operations used are typically

achieved through XOR/bitwise rotation, and parts of the key are

introduced though the rounds of operation. The decryption

process is then the reverse of the encryption rounds, and the S-

boxes/P-boxes are reversed in their operation.

Within Figure 3 we see an example of a single round, and

where 8-bits of data is entered, and then EX-OR with the first

eight bits of the key. Next the output from this operation is fed

into an S-box which maps in the inputs to the output (for

example 0x0 will be mapped to 0xC. After this we feed the

output into a P-box which will scramble the bits in a defined

way. The output of this is then fed into the next round, and

5

which will follow the same process, but this time our input is

from the previous round, and from the next eight bits of the key.

Figure 3 SPN method

An S-box substitutes a small block of bits (the input of the S-

box) by another block of bits (the output of the S-box). This

substitution should be one-to-one, to ensure invertability (hence

decryption). In particular, the length of the output should be the

same as the length of the input (the picture on the right has S-

boxes with 4 input and 4 output bits), which is different from S-

boxes in general that could also change the length, as in DES

(Data Encryption Standard), for example. An S-box is usually

not simply a permutation of the bits. Rather, a good S-box will

have the property that changing one input bit will change about

half of the output bits (or an avalanche effect). It will also have

the property that each output bit will depend on every input bit

[20].

Within PRESENT, we take a block of 64 bits and apply an

80-bit or a 128-bit key. Overall it has 32 rounds (Figure 4),

which is made up of: a round key operation; an S-box layer; and

a P-box layer. The key round operation takes part of the key and

EX-ORs it with the data input into the round. It then operates

on 4x4 bit S-boxes, and which considerably cuts down on

processing power (Figure 5). In AES we map for 16 bit inputs

to 16-bit outputs (0x00 to 0xFF) but for PRESENT we have 4-

bit values and which map onto 16 output values (0x0 to 0xF).

For example, an input of 0x0 would output a value of 0xC. In

Figure 6 we see the permutation of the bits for inputs of 32 bits,

so that Bit 1 is mapped to Bit 16. The output from the layer

provides the output from the round.

Figure 4 PRESENT method [19]

Figure 5 sboxlayer mapping [19]

Figure 6 pLayer mapping [19]

Another contender is the super-fast XTEA method. XTEA

(eXtended TEA) is a block cipher which uses a 64-bit block size

and a 64-bit key. It was designed by David Wheeler and Roger

Needham at the Cambridge Computer Laboratory, and part of

an unpublished technical report in 1997. The amazing thing

about XTEA is that it does its operations with just a few lines

of code [21]:

#include <stdint.h>

/* take 64 bits of data in v[0] and v[1] and 128 bits of key[0] - key[3]
*/

void encipher(unsigned int num_rounds, uint32_t v[2], uint32_t const
key[4]) {
 unsigned int i;
 uint32_t v0=v[0], v1=v[1], sum=0, delta=0x9E3779B9;
 for (i=0; i < num_rounds; i++) {
 v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + key[sum & 3]);
 sum += delta;
 v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + key[(sum>>11) &
3]);
 }
 v[0]=v0; v[1]=v1;
}
void decipher(unsigned int num_rounds, uint32_t v[2], uint32_t const
key[4]) {
 unsigned int i;
 uint32_t v0=v[0], v1=v[1], delta=0x9E3779B9, sum=delta*num_rounds;
 for (i=0; i < num_rounds; i++) {
 v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + key[(sum>>11) &
3]);
 sum -= delta;
 v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + key[sum & 3]);
 }
 v[0]=v0; v[1]=v1;
}

Other block ciphers, too, are now being called back from

retirement, including RC5, as they have proven to be fairly

simple in their operation, but relatively secure. The great thing

about RC5 is that it has a variable block size (32, 64 or 128 bits),

and has key sizes from 0 to 2,040 bits. Along with this, it can

have from 0 to 255 rounds. When it was first created, the

recommended implementation was a block size of 64 bits, a

128-bit key and 12 rounds, but, in an IoT world, this can be

optimised to the device.

For lightweight crypto, the NSA released SIMON in 2013,

and which was optimized for hardware implementations. It has

key sizes of 64, 72, 96, 128, 144, 192 or 256 bits, and block

sizes of 32, 48, 64, 96 or 128 bits [22] and SPECK (which is

optimized for software implementations) [23].

Mickey V2 is a lightweight stream cipher and was written by

Steve Babbage and Matthew Dodd. It creates a key stream from

an 80-bit key and a variable length initialization vector (of up

to 80 bits). The keystream has a maximum length of 240 bits

[24].

Trivium is a lightweight stream cipher and It was created

Christophe De Cannière and Bart Preneel, and has a low

footprint for hardware. It uses an 80-bit key, and generates up

to 264 bits of output, with an 80-bit IV [25].

Grain is a Light Weight Stream Cipher and was written by

Martin Hell, Thomas Johansson and Willi Meier. It has a

relatively low gate count, power consumption and memory. It

6

has an 80-bit key, and has two shift registers and a non-linear

output function [26].

Enocoro is a lightweight stream cipher and was defined by

Hitachi. It has a 128-bit key and a 64-bit IV value. Along with

this it is included in ISO/IEC 29192 International Standard for

a lightweight stream cipher method (ISO/IEC 29192-3:2012)

[27].

C. Block

CLEFIA is a well-studied lightweight block cipher and was

written by Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho

Moriai, and Tetsu Iwata, and can be implemented with 6K

gates. It was defined by Sony, and has 128, 192 and 256 bit

keys, and 128-bit block sizes. Along with this it is included in

ISO/IEC 29192 International Standard for a lightweight block

cipher method (ISO/IEC 29192-2:2012) [28].

RC5 ("Ron's Cipher 5"), created in 1994 by Ron L. Rivest,

also shows great potential for a lightweight cryptography

method. It is a block cipher which has a variable block size (32,

64 or 128 bits), a variable number of rounds, and a variable key

size (0 to 2,048 bits). It can thus be used to match the encryption

to the capabilities of the device. If it is a low-powered device

with a limited memory and a relatively small physical footprint,

we could use a 32-bit block size and an 80-bit key, with just a

few rounds. But we can ramp up the security if the device can

cope with it, and use 128-bit block sizes and a 128-bit key. It

can also be flexible, where a single change on either side can

improve or reduce the requirements.

 The flexibility around the key size, block size and rounds,

supports a range of design choices, in a way that AES struggles

with. AES, for example, uses relatively large key sizes of 128

bits, 192 bits and 256-bits, with 128-bit block sizes. It also a

fixed number of rounds depending on the key size, such as 10

rounds for 128-bit encryption, 12 rounds for 192-bit encryption,

and 14 rounds for 256-bit encryption. These requirements, for

an IoT device, often consume considerable amounts of memory

and processing resource, and will often have a significant effect

on the power consumption, draining the battery resource. The

following uses RC5/32/12/16 (32-bit blocks, 12 rounds and 16-

byte key - 128 bits): [29].

D. Signing

Chaskey Cipher is a permutation-based lightweight

cryptography method for signing messages (MAC) using a 128-

bit key. The Chaskey takes a 128-bit block using a 128-bit

Addition-Rotation-XOR based permutation. The hardware

implementation only requires 3,334.33 gates equivalent with an

operating clock frequency of 1 MHz. With SHA-256 we need

around 15,000 gates, while Keccak (SHA-3) requires 4,658

gates [30].

Message: hello
Key (128 bits - 32 hex): BD63710BAF4753D0367DBF6A875ACAAB
Signature: db6a554716651bc3a818e0c1d01d582d
Encrypt (CBC): 18c381d3811319c24af6cd71af70f97f

E. Asymmetric Encryption

Our normal public key methods do not quite work on RFID

devices, so let's look at the proposed method for proving that a

RFID device is real. The method proposed by the ISO/IEC is

ISO/IEC 29192-4:2013 includes ELLI (Elliptic Light),

cryptoGPS [31] and ALIKE [32]. ELLI uses Elliptic Curves

along with a Diffie-Hellman related handshake between the

RFID tag and the RFID reader [33]. Within Elliptic Curve we

start with a point on a curve (P) which is known. Then we

multiply this point with a large number (ε) to produce another

point (A) on the curve:

A = ε P (1)

and where A will be the public key, and ε is the private key. If

ε is large enough it is then difficult to compute ε even though

we have A and P. Now let's look at the basics of ELLI. For this

RFID tag contains a random value of ε (the private key), and

the RFID reader generates a random value of λ. On creating the

RFID tag, we calculate (Figure 7):

B = ε P (2)

along with the signature of B which has been signed by a key

that the RFID reader can validate. Thus the tag contains: [ε, B,

PublicKeySign(B)]. Each time the RFID reader wants to

validate the tag it takes its random value (λ) and computes:

A = λ P (3)

Next the RFID reader sends A to the RFID tag. The RFID tag

then multiplies the value of A by its private key (ε) to get C:

C = ε A (4)

It then sends back its public key (B), the value of C and the

signature of the public key which the reader can verify. The

reader then computes D:

D = λ B (5)

and compares C and D. If they are the same we have verified

the private key. This is true as:

C = ε (A) = ε (λ P) (6)

D = λ (B) = λ (ε P) (7)

It is secure as it uses the Elliptic Curve Diffie Hellman Problem

(ECDHP). If Eve wants to produce a fake RFID tag she receives

the challenge of:

A = λ P

and now must return a valid response (C), along with a public

key which has been signed by an authority. Since Eve only has

A and B, she cannot compute a valid response for C as she does

not know λ and ε, in order to compute [33]:

λ.ε.P

IV. CONCLUSION

Lightweight cryptography has received increasing attentions

from both academic and industry in the past two decades. A

large number of lightweight algorithms have been proposed

such as PRESENT, CLEFIA, LED, KANTAN, etc. This paper

7

reviews the most popular lightweight cryptography solutions

over resource limited devices and analyzed the strengths and

disadvantages. This paper also gives an overview of the state-

of-the-art ultra-lightweight and IoT cryptography that could be

used over resource-limited smart devices such as intelligent

sensor, RFID, and so on.

Figure 7 Abstraction of the ELLI method

V. REFERENCES

[1] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha,

“Report on lightweight cryptography,” 2017.

[2] O. Lo, W. J. Buchanan, and D. Carson, “Power analysis

attacks on the AES-128 S-box using differential power

analysis (DPA) and correlation power analysis (CPA),” J.

Cyber Secur. Technol., vol. 1, no. 2, pp. 1–20, 2016.

[3] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a

survey,” Inf. Syst. Front., vol. 17, no. 2, pp. 243–259, Apr.

2015.

[4] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varici,

and I. Verbauwhede, “{SPONGENT}: The Design Space of

Lightweight Cryptographic Hashing,” 2011.

[5] A. Biryukov and L. Perrin, “State of the Art in Lightweight

Symmetric Cryptography.”

[6] N. Mouha, “The Design Space of Lightweight

Cryptography,” NIST Light. Cryptogr. Work. 2015, pp. 1–19,

2015.

[7] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari,

T. Akishita, and F. Regazzoni, “Midori: A Block Cipher for

Low Energy,” in Proceedings, Part II, of the 21st

International Conference on Advances in Cryptology ---

ASIACRYPT 2015 - Volume 9453, Springer-Verlag New

York, Inc., 2015, pp. 411–436.

[8] R. Avanzi, “The QARMA Block Cipher Family. Almost

MDS Matrices Over Rings With Zero Divisors, Nearly

Symmetric Even-Mansour Constructions With Non-

Involutory Central Rounds, and Search Heuristics for Low-

Latency S-Boxes,” IACR Trans. Symmetric Cryptol., vol.

2017, no. 1, pp. 4–44, Jan. 2017.

[9] D. Dinu, A. Biryukov, J. Großschädl, D. Khovratovich, Y. Le

Corre, and L. Perrin, “FELICS – Fair Evaluation of

Lightweight Cryptographic Systems,” 2015.

[10] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON

Lightweight Hash Functions Family,” Crypto, pp. 222–239,

2000.

[11] S. Hirose, K. Ideguchi, H. Kuwakado, T. Owada, B. Preneel,

and H. Yoshida, “A Lightweight 256-Bit Hash Function for

Hardware and Low-End Devices: Lesamnta-LW,” Springer,

Berlin, Heidelberg, 2011, pp. 151–168.

[12] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,

“Keccak,” Springer, Berlin, Heidelberg, 2013, pp. 313–314.

[13] William J Buchanan, “SPONGENT.” [Online]. Available:

http://asecuritysite.com/encryption/spongent. [Accessed: 30-

Jul-2017].

[14] William J Buchanan, “Lesamnta-LW.” [Online]. Available:

http://asecuritysite.com/encryption/lw. [Accessed: 30-Jul-

2017].

[15] J. P. Aumasson, L. Henzen, W. Meier, and M. Naya-

Plasencia, “Quark: A lightweight hash,” J. Cryptol., vol. 26,

no. 2, pp. 313–339, 2013.

[16] William J Buchanan, “QUARK.” [Online]. Available:

http://asecuritysite.com/encryption/quark. [Accessed: 30-Jul-

2017].

[17] J. Kelsey, S. Change, and R. Perlner, “SHA-3 derived

functions: cSHAKE, KMAC, TupleHash and ParallelHash,”

Gaithersburg, MD, Dec. 2016.

[18] William J Buchanan, “PHOTON.” [Online]. Available:

http://asecuritysite.com/encryption/photon. [Accessed: 30-

Jul-2017].

[19] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A.

Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe,

“PRESENT: An Ultra-Lightweight Block Cipher,” Cryptogr.

Hardw. Embed. Syst. - CHES 2007, pp. 450–466.

[20] William J Buchanan, “PRESENT.” [Online]. Available:

http://asecuritysite.com/encryption/present. [Accessed: 30-

Jul-2017].

[21] William J Buchanan, “XTEA (eXtended TEA).” [Online].

Available: http://asecuritysite.com/encryption/xtea.

[Accessed: 30-Jul-2017].

[22] William J Buchanan, “SIMON.” [Online]. Available:

http://asecuritysite.com/encryption/simon. [Accessed: 30-

Jul-2017].

[23] William J Buchanan, “SPECK.” [Online]. Available:

http://asecuritysite.com/encryption/speck. [Accessed: 30-Jul-

2017].

[24] William J Buchanan, “Mickey V2 Light Weight Stream

Cipher.” [Online]. Available:

http://asecuritysite.com/encryption/mickey. [Accessed: 30-

Jul-2017].

[25] William J Buchanan, “Trivium Light Weight Stream Cipher.”

[Online]. Available:

http://asecuritysite.com/encryption/trivium. [Accessed: 30-

Jul-2017].

[26] William J Buchanan, “Grain Light Weight Stream Cipher.”

[Online]. Available:

http://asecuritysite.com/encryption/grain. [Accessed: 30-Jul-

2017].

[27] “ISO/IEC 29192-3:2012 - Information technology -- Security

techniques -- Lightweight cryptography -- Part 3: Stream

ciphers.” [Online]. Available:

https://www.iso.org/standard/56426.html. [Accessed: 22-

Aug-2017].

[28] William J Buchanan, “CLEFIA.” [Online]. Available:

https://asecuritysite.com/encryption/clefia. [Accessed: 30-

Jul-2017].

[29] William J Buchanan, “RC5.” [Online]. Available:

https://asecuritysite.com/encryption/rc5. [Accessed: 30-Jul-

2017].

[30] William J Buchanan, “Chaskey Cipher.” [Online]. Available:

http://asecuritysite.com/encryption/chas. [Accessed: 30-Jul-

2017].

[31] Q. Dong, W. Ding, and L. Wei, “Improvement and optimized

implementation of cryptoGPS protocol for low-cost radio-

frequency identification authentication,” Secur. Commun.

Networks, vol. 8, no. 8, pp. 1474–1484, May 2015.

[32] C. Fan, T. Chiang, and R. Hsu, “Light-Weight Authentication

and Key Exchange Protocols with Forward Secrecy for

Digital Home,” J. Comput., vol. 18, no. 2, pp. 61–74, 2007.

[33] M. Braun, E. Hess, and B. Meyer, “Using Elliptic Curves on

8

RFID Tags,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol.

8, no. 2, 2008.

