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Abstract

Vegetated marine habitats are globally important carbon sinks, making a significant contri-

bution towards mitigating climate change, and they provide a wide range of other ecosystem

services. However, large gaps in knowledge remain, particularly for seagrass meadows in

Africa. The present study estimated biomass and sediment organic carbon (Corg) stocks of

four dominant seagrass species in Gazi Bay, Kenya. It compared sediment Corg between

seagrass areas in vegetated and un-vegetated ‘controls’, using the naturally patchy occur-

ence of seagrass at this site to test the impacts of seagrass growth on sediment Corg. It also

explored relationships between the sediment and above-ground Corg, as well as between

the total biomass and above-ground parameters. Sediment Corg was significantly different

between species, range: 160.7–233.8 Mg C ha-1 (compared to the global range of 115.3 to

829.2 Mg C ha-1). Vegetated areas in all species had significantly higher sediment Corg com-

pared with un-vegetated controls; the presence of seagrass increased Corg by 4–6 times.

Biomass carbon differed significantly between species with means ranging between 4.8–7.1

Mg C ha-1 compared to the global range of 2.5–7.3 Mg C ha-1. To our knowledge, these are

among the first results on seagrass sediment Corg to be reported from African seagrass

beds; and contribute towards our understanding of the role of seagrass in global carbon

dynamics.

Introduction

Carbon sinks in terrestrial ecosystems are better studied than those in marine plant communi-

ties. However, the global importance of vegetated coastal habitats as carbon sinks has become

appreciated over the last decade [1]. These ‘blue carbon’ ecosystems (tidal marshes, mangroves

and seagrass meadows) have recently been demonstrated to capture and store huge stocks of

carbon, and their management and conservation may play an important part in global climate

change mitigation strategies [2,3,4,5]. Although they occupy less than 2% of the world’s ocean

surface area [6], blue carbon ecosystems are estimated to bury nearly 27.4 Tg C yr-1 which is

about 10% of the yearly estimated organic carbon (Corg) burial in the oceans [7]. Unlike many

terrestrial systems that store Corg primarily in living biomass, vegetated coastal ecosystems

store much of their Corg stock in the sediment, which may produce carbon sinks of hundreds
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to thousands of years age [7]. However, this stored Corg risks being released back to the atmo-

sphere when blue carbon ecosystems are degraded [7].

Seagrass meadows are the most extensive of the blue carbon ecosystems, with an estimated

global surface area of between 300,000 to 600,000 km2 [1,7]. Despite this wide spatial coverage

seagrasses are the least well-studied blue carbon ecosystem. They provide important ecosystem

services that include: support for commercial fisheries, worth $ 3500 ha-1 yr-1 [8], and subsis-

tence fisheries [9], sediment stabilization [10], improved water quality and light availability

[11,12] and nutrient cycling (estimated to be worth $ 3.8 trillion yr-1 globally [13]. In addition,

seagrasses are recognized as one of the most efficient carbon sinks on the planet [3]. Seagrass

meadows store about twice as much Corg per unit area as soils in productive temperate and

upland tropical forests, and provide a global carbon sink of approximately 19.9 Pg [3,14]. This

is approximilately equal to the combined amount of Corg stored in the world’s tidal marshes

and mangrove forests which is estimated at 10 Pg [15]. An estimated 50% of the Corg buried in

seagrass meadows’ sediment is thought to be of external origin [4]. The dense canopies of sea-

grasses reduce water flow velocity, thus promoting the trapping and deposition of sediment

and particles from the water column [16,17]. Analysis of a global data set revealed that the

mean seagrass biomass Corg was 2.52 ± 0.48 Mg Corg ha-1 (±95% CI), while sediment Corg was

estimated to account for between 0.002–48% of the sediment dry weight [3]. However, these

findings may be inaccurate considering the uneven distribution of research into seagrass car-

bon budgets globally and the large variation recorded between different sites. Much of the

information on seagrasses, especially on sediment Corg, is from Mediterranean and Australian

seagrass beds [1,2,7]. Past global reviews of seagrass carbon acknowledged the disproportion-

ately low contribution of data from the African continent [3,18]. A recent review of seagrass

biomass and productivity in Africa found no published estimates of seagrass sediment carbon

from the continent [19]. Seagrass beds are suffering rapid global decline; almost a third of all

seagrass areas are thought to have been lost in the last 140 years [20] and current rates of loss

are estimated at around 1.5% year-1 [21]. This implies that a significant amount of the stored

Corg could soon be remineralized and that the potential for future carbon capture is being

diminished, undermining efforts to mitigate climate change [3]. However, the amount of car-

bon that could be remineralised at a global scale remains highly uncertain. This is because:

first, the vulnerability of this stored carbon to ecosystem change and degradation is little stud-

ied (with one recent paper showing surprising persistence of buried carbon following seagrass

removal [14]. Second, the huge gaps in knowledge on the extent and quantity of the global sea-

grass carbon sink make global estimates very imprecise. Improving our knowledge of carbon

storage and burial rates in seagrass ecosystems, of how these variables differ between sites and

of the controls on burial rates and sink sizes is fundamental in achieving a better understand-

ing of how seagrass meadows may contribute to slowing global warming.

Whilst previous seagrass studies in Gazi Bay have focused on species distribution, commu-

nity composition, growth dynamics, nutrient content and carbon export between the sea-

grasses and the adjacent ecosystems [19–26], no study here (or elsewhere in Africa) has

considered the carbon stocks and how these might compare with naturally occuring un-vege-

tated areas. The current work aimed to fill this gap by estimating the carbon stocks in the sea-

grass meadows of Gazi Bay, Kenya. At the same time, the work explored whether different

seagrass Corg pools could be estimated using easy to measure parameters such as the above-

ground biomass (AGB) and shoot height. Specifically, the objectives of the study were:

1. To compare sediment Corg between areas with seagrass and adjacent un-vegetated areas for

each of the four dominant seagrass species in order to estimate the impact of these species

on sediment carbon storage.
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2. To determine the % Corg associated with each of the four dominant seagrass species at Gazi

Bay and the relative contribution of biomass and sediment to the Corg per unit area of the

seagrass species as well as their relationship to the above-ground parameters.

3. To explore the relationships between sediment Corg and the above ground carbon (and also

above-and belowground biomass ratios for the dominant seagrass species of Gazi Bay.

Materials and methods

Study site

This study was carried out at Gazi Bay (4˚25’S, and 39˚30’E), located on the southern coast of

Kenya, about 55 km from Mombasa City through permission issued by the National Commis-

sion for Science, Technology & Innovation (NACOSTI): Permit no NACOSTI/P/14/2443/769

on 17th February 2014. The bay is a shallow tropical coastal water system (mean depth < 5m),

approximately 1.75–3.5 km wide and 3.25 km long with a surface area of ~ 17 km2 [22]. It is

open to the Indian Ocean through an entrance in the south with depths varying between 3 and

8m in the eastern and western regions respectively [27]. It is characterized by two creeks, a

western creek that extends to a fresh water inflow (R. Kidogoweni) on the north western side

of the bay and an eastern creek that lacks such an inflow. On the south western side of the bay

is another fresh water inflow from R. Mkurumuji (Fig 1).

The main climatic drivers are the southeast monsoons (May-September) and the northeast

monsoons (November-March). An offshore wind prevails throughout the year. Long rains

occur between March and May while the short rains occur between October and November

[27,28]. However, inter-annual shifts in these seasons are common [29]. The tide at Gazi Bay is

normally mixed semi-diurnal, with a tidal range of 1.4 m and 3 m at neaps and springs respec-

tively. These tides generate strong reversing currents in the tidal creeks and relatively weaker

currents in the open regions of the bay. The shoreward wind and the tidal currents combine to

vertically mix the water column in the bay, leading to formation of a more homogeneous

water, with a salinity range of 34.5–35.5ppt. A significant lateral and vertical salinity gradient

develops during the rainy periods as a result of increased river discharge and the runoff [27].

The flushing ability of mixed semi-diurnal tides in the bay varies depending on tidal range,

tidal elevation, and the nature of the tide. Tides are generally swift during springs and tend to

rapidly disperse lower salinity water [27,30]. The rates of water exchange are also high during

spring tides compared to neap tides. On the other hand, currents at neaps are sluggish and

inhibit flushing of brackish water. This flushing pattern of the tide combined with river runoff

has a far-reaching effect in the form of nutrient and material exchanges on the linkage between

mangrove, seagrass, and coral reef ecosystems [30–32]. Seagrasses, which are found at the cen-

tre of the bay, cover an area of ~ 7 km2 [21,26,28].

All the twelve seagrass species described along the East African coast have been recorded in

Gazi Bay, usually attached to both soft and hard substrates in the bay [33–35]. The seagrass

community in the bay consists of four dominant species: Thalassodendron ciliatum (Forssk.)

den Hartog, Thalassia hemprichii (Enhrenberg) Aschers., Enhalus acoroides (L.f.) Royle and

Syringodium isoetifolium (Aschers.) Dandy. These are observed to grow either as monospecific

stands or mixed with other seagrass species, with their coverage extending from the intertidal

to the subtidal areas in sandy and rocky substrates [22]. The other, less abundant species, are:

Cymodocea rotundata Ascherson, Cymodocea serrulata (R. Braun) Aschers. & Magnus, Halo-
dule uninervis (Forssk.) Aschers., Halodule wrightii (Aschers.), Halophila minor (Zoll.) den

Hartog, Halophila ovalis (Braun) Hooker, Halophila stipulaceae (Forssk.) Aschers. and Zostera
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capensis (Setch) [22,35]. The meadows are usually luxuriant for most of the year except during

short periods of intense grazing and desiccation. The seagrass meadows of Gazi Bay fall under

Diani-Chale Marine National Reserve which was established in 1994. It also forms the north-

ern boundary of the proposed Transboundary Marine Conservation Area between Kenya and

Tanzania (TBCA) [36]. At present there is no enforcement of its protected status due to weak

governance. The use of seine and drag nets by artisanal fishermen is a daily activity in the shal-

low waters of the bay. Although there are no published data on the effects of this fishing, anec-

dotal information and personal observation suggests this is a cause of degradation of the

seagrass in areas of intense fishing.

Sampling design

We used sampling precedures specific for coastal blue carbon and the revised Intergovernmen-

tal Panel for Climate Change (IPCC) carbon accounting protocols for coastal wetlands [37,38].

Intensive studies were made within mono-specific stands of four seagrass species: T. hempri-
chii, E. acoroides, T. ciliatum and S. isoetifolium. These species were selected on the basis of

their local dominance, as determined by the initital reconnaisance survey carried out by the

team. Samples were taken from a wide area following a stratified random design, which

extended from plots adjacent to the mangrove forest, all the way to the seagrasses near the

mouth of the R. Mkurumuji (Fig 1), in order to sample the spatial variability of biomass and

sediment Corg. associated with the four target species in the bay. Forty quadrats, each measur-

ing 0.25 m2, were sampled for the biomass carbon for each of the three species, T. hemprichii,
E. acoroides and T. ciliatum whilst 20 quadrats were sampled for S. isoetifolium, owing to its rel-

atively small spatial distribution.

Determination of species type, canopy cover, shoot density and canopy

height

Sample plots were established within the identified seagrass strata placing the quadrats of

0.25m2 at minimum intervals of 15m in each seagrass strata. This was done during low spring

Fig 1. Seagrass sampling points in the seagrass meadows of Gazi Bay, Kenya.

https://doi.org/10.1371/journal.pone.0177001.g001
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tides since at this time the seagrass beds are exposed and accessible on foot. Species type was

determined in situ with the help of field manuals [39]. Shoot density and canopy cover were

determined by counting all the shoots within quadrats and extrapolating to per m2 while the %

canopy cover was obtained through visual estimates. Canopy height was determined through

the measurement of heights of 10% of randomly selected individual shoots from the total

within the quadrat and calculating the mean heights.

Estimation of above-ground and below-ground biomass

The above-ground biomass (AGB) was obtained by harvesting all plant materials above-

ground within the 0.25m2 quadrats. In the laboratory, the seagrass was cleaned with fresh

water, sorted and scraped with a razor blade to remove epiphytes. Seagrass fronds were then

washed in 10% hydrochloric acid to remove any calcareous material after which they were

dried in an oven at 60˚C for 72 hours. For below-ground biomass, four cores were taken in

each of the four quarters of the 0.25m2 quadrats with a Russian peat sampler (50cm long and

5cm diameter). Initial washing was done in the field using a 500μm sieve. In the laboratory fur-

ther washing and rinsing of the samples was carried out. Upon sieving, the materials were

sorted into component parts: roots, rhizomes and necromass (that is dead roots or rhizomes)

and dried in an oven at 60˚C for 72 hours. The combined below-ground biomass values for

the roots, rhizomes and necromass from the four cores per quadrat were summed and then

converted to per m-2. The total biomass carbon was obtained by multiplying biomass with a

carbon conversion factor of 0.34 (assuming that carbon constitutes 34% of the biomass) and

then extrapolated to per hectare following recommended protocols for estimating carbon for

marine ecosystems [37,38].

Measurements of bulk density, % organic matter and sediment Corg

Two sediment cores, each extending to a depth of 50cm, were collected in each quadrat, using

the peat sampler from the vegetated and the un-vegetated areas, chosen to act as natural ‘con-

trols’ for each species. Vegetated areas were identified as those with seagrass cover while un-

vegetated areas were the naturally occurring bare patches, measuring 3 to 6m in diameter, in

the midst of the seagrass covered areas.

In the laboratory, the samples were sliced into 5cm sub-sections and were oven dried at

60˚C for 72 hours to obtain a constant weight. Similar cores were collected in un-vegetated

seagrass areas to serve as ‘controls’.

Dry bulk density (DBD) (the dry weight of sediment per unit volume) was calculated for

each of the ten sub-sections per core as follows:

DBD ðg=cm3Þ ¼ Dry weight=Original volume of the sediment

Organic matter was measured in each of the ten sub-sections per core by Loss on Ignition

(LOI) techniques, using a muffle furnace at 450˚C for 6 hours. LOI weight was used to calcu-

late the %OM content as follows:

% LOI ¼ ððInitial dry weight � Weight remaining after ignitionÞ=Initial dry weightÞ � 100:

The sediment Corg values were arrived at using one of the two equations depending on the

organic matter content of the sediment sample:

% LOI < 0:2 : % Corg ¼ 0:40 �% LOI � 0:21

% LOI > 0:2 : % Corg ¼ 0:43 �% LOI � 0:33;

Carbon storage in the seagrass meadows
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following recommended protocols for estimating carbon for the marine ecosystems [3,37].

Estimates for the top 50 cm of the sediment were extrapolated to one metre.

Data analysis

Assumptions of normality and homogeneity of variance were tested by examining residuals in

all relevant tests; where these were not met, data were transformed to meet parametric assump-

tions. One way ANOVAs were used to test for the differences in above-ground, below-ground

and total biomass between species, with Tukey post—hoc analyses used to compare means

when significant differences were detected. Linear regression analysis was used to determine

possible relationships between above-and below-ground biomass and also between sediment

Corg and the above-ground biomass for the species areas. Nested two-way ANOVAs were used

to compare sediment Corg between each species and its un-vegetated control cores. In all statis-

tical tests, the significance level was set at α = 0.05.

Results

Sediment Corg in seagrass areas and un-vegetated ‘controls’

There was higher sediment Corg in the vegetated seagrass areas compared to the un-vegetated

areas (Fig 2). Strikingly these differences persisted down to 50cm depth in all species; initial anal-

yses using depth and ‘treatment’ (i.e. vegetated vs un-vegetated) as fixed factors in two way ANO-

VAs showed significant treatment effects but no depth or depth-treatment interaction effects.

Hence fully nested ANOVAs, in which depth was nested within cores and treatment (vegetated/

un-vegetated) to recognise non-independence of depth slices from the same cores, were subse-

quently used. These revealed highly significant effects of treatment on Corg density for each of

the species: F (1, 180) = 38.68, p< 0.001 for T. hemprichii; F (1, 180) = 27.89, p< 0.001 for T. cilia-
tum; F (1, 180) = 32.16; p< 0.001 for E. acoroides and F (1, 180) = 11.55, p = 0.003 for S. isoetifolium.

The sediment Corg varied between meadows of different species with the highest being

recorded in E. acoroides at 295.7 ± 63.6 (mean ± 95% C.I) Mg C ha-1 and the lowest in S. isoeti-
folium at 160.7 ± 40.3 Mg C ha-1 (Fig 3). A one way ANOVA showed significant differences in

Corg among the species (F (3, 56) = 6.24, p = 0.001).

Comparison of the sediment Corg and the above-ground biomass Corg

The sediment Corg constituted the bulk of the total Corg, in all four species areas (Fig 4). The

sediment Corg of 295.7 ± 63.6 Mg C ha-1 (mean ± 95% C.I) for T.ciliatum accounted for the

highest proportion at 98.1% of the total Corg per unit area dominated by the species while

95.8% was the lowest proportion recorded in S. isoetifolium areas. Plotting the sediment Corg

against the above-ground biomass Corg for each of the four seagrass species showed no signifi-

cant relationships.

Relationships between above-and below-ground biomass

The highest mean AGB was associated with T. ciliatum while the lowest was associated with E.

acoroides (Table 1). The highest mean BGB was recorded in the S. isoetifolium while the lowest

was recorded in the T. ciliatum. Comparison of AGB and BGB relationships in the four species

revealed a highly significant relationship in E. acoroides, (F (1, 38) = 25.02, p< 0.001) but there

were no significant relationships between the BG and the AGB in the other species. BGB con-

stituted the highest biomass component with an average of 82.2 ± 8% (or ~ 4:1 BG:AG biomass

ratio) for all the species, with E. acoroides having the highest at 90.9 ± 1% and T. ciliatum hav-

ing the lowest at 71.0 ± 5%.

Carbon storage in the seagrass meadows
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Relationships between the total biomass and above-ground parameters

Total biomass varied between the species with the highest being recorded in S. isoetifolium at

1985 ± 246 g DW m-2 while T. ciliatum had the lowest at 1405 ± 233 g DW m-2. The total bio-

mass was significantly different between the species (F (3, 136) = 4.13, p = 0.008). No significant

Fig 2. Carbon density (mean ± 95% C.I.) along depth profiles in the vegetated and un-vegetated areas

associated with the dominant seagrass species of Gazi Bay (a. T. hemprichii b. E. acoroides c. T.

ciliatum d. S. isoetifolium).

https://doi.org/10.1371/journal.pone.0177001.g002
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relationships were found between the total biomass and shoot density for any of the species

and neither between the total biomass and the shoot height, except in T. ciliatum (F(1,38) =

9.83, p = 0.004). The positive relationship between shoot density and % canopy cover was

apparent across species (Table 1).

Fig 3. Variation in sediment Corg between the vegetated and un-vegetated areas for the four seagrass

species (means± 95% C.I.).

https://doi.org/10.1371/journal.pone.0177001.g003

Fig 4. Relative % of the total Corg (± 95% C.I) for the sediment and the biomass associated with the

four dominant seagrass species at Gazi Bay.

https://doi.org/10.1371/journal.pone.0177001.g004

Table 1. Mean (± 95% C.I) shoot density, canopy cover (%), canopy height (cm), above-ground (AGB), below-ground (BGB) and total biomass (TB)

characteristics of the dominant seagrass species at Gazi Bay, Kenya.

Species Shoot density(m-2) % C. cover C. ht (cm) AGB (g. DW m-2) BGB g. DW m-2) TB (g. DW m-2) % BGB

T. hemprichii 996 ± 94 69.3 ± 4.2 18.4 ± 1.4 202.1 ± 29.9 1361.1 ± 281.8 1563.1± 279.2 82.8±3

E. acoroides 248 ± 28 47.5 ± 4.2 55.1 ±4 1 155.9 ± 23.7 1669.2 ± 217.6 1825.8 ± 234.8 90.9±1

T. ciliatum 531 ± 67 61.9 ± 3.7 36.7 ±3.9 308.2 ± 33.5 1096.6 ± 221.4 1404.9 ± 232.5 71.0±5

S. isoetifolium 4351 ± 500 72.0 ± 7.0 23.3 ± 2.7 300.8 ± 42.6 1683.8 ± 242.9 1984.7 ± 245.5 84.0±4

https://doi.org/10.1371/journal.pone.0177001.t001
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Discussion

The current study investigated biomass and sediment Corg stocks associated with the four

dominant seagrass species of Gazi Bay, providing amongst the first data from Africa for sea-

grass sediment Corg [40]. It also compared sediment Corg in contiguous vegetated and un-vege-

tated areas for each of the species and demonstrated highly significant differences in carbon

density, with the presence of seagrass enhancing sediment carbon stocks by a factor of 4–6,

depending on the species. The mean sediment Corg estimated for the top one metre of the sedi-

ment (using IPCC protocols to extrapolate downwards from the 50cm measured depth) from

seagrass vegetated areas was 236 ± 24 Mg C ha-1. This is well above the mean of 166 Mg C ha-1

derived from a global data set [3], (although within the range of 115.5–829.2 Mg C ha-1).

Across all species, sediment depth did not have a significant effect on sediment Corg and the

differences observed between vegetated and un-vegetated areas were consistent down to 50cm.

This suggests a surprising degree of spatial consistency and longevity in these relatively small

(typically 3 to 6m diameter) patches of seagrass meadow and bare areas. Sediment Corg domi-

nated the carbon stocks in all species areas, constituting over 97% of the total Corg compared

to less than 3% contributed by the biomass. Much of this sediment carbon is likely to be

allocthonous; globally an average of ~50% of sediment Corg associated with seagrass meadows

is derived from external sources [4]. In Gazi Bay much of this comes from mangroves; previ-

ous studies in Gazi Bay showed that mangrove carbon is exported to the seagrass beds where it

is stripped from the water column and settles [25,41] with an estimated 21–71% of carbon

exported from the fringing mangrove forests captured within the seagrass meadows [22].

Whilst there is a growing literature exploring sediment carbon in seagrass meadows there

are few explicit comparisons of vegetated with un-vegetated areas. A limited number of studies

have compared the sediment carbon stocks or both the stocks and burial rates in bare areas

and naturally or artificially recolonized meadows [14,40–45]. For instance, a study on carbon

accumulation in a restored seagrass meadow in Virginia, USA, in which sediment cores were

taken to 10-20cm depth, [44] reported that after 9 years the meadow had 3 times more carbon

than the un-vegetated areas, suggesting powerful effects of seagrass on C sequestration at this

site and a rapid recovery in this service following restoration. A synthesis of global data [5]

gave a mean sediment C burial rate of 138 g C m-2 yr-1 in seagrass beds. A recent study in Oys-

ter Harbour of Western Australia [40] reported that a restored seagrass meadow took 18 years

to acquire a carbon accumulation rate of 26.4 ±0.8 g C m-2 yr-1 and that a naturally vegetated

area which was used as a reference had 63% and 37% more carbon than the un-vegetated and

restored areas respectively. To our knowledge, the present study is the first one to compare

sediment Corg for seagrass in naturally occuring vegetated and un-vegetated areas in Africa

and it demonstrates an exceptionally powerful effect of seagrass on C sequestration, with rela-

tive C densities being higher in areas under seagrass compared with appropriate un-vegetated

control areas and the differences being higher than in any other relevant studies.

A recent study using a global data set [46] reported an average sediment accretion rate of

2mm yr-1 for seagrasses. If the sediment at Gazi accumulated at the same rate this suggests a

minimum age of 250 years for sediment at 50cm, demonstrating that the current locations of

seagrass meadow and bare patches are likely to have persisted for at least decades. However, a

robust estimation method requires in-situ dating studies.

The present study did not establish any significant relationships between sediment and bio-

mass Corg in any of the species. Lack of strong relationships between either the sediment Corg

and the AGB or between the AGB and BGB measures means that AGB was not a suitable

proxy for the determination of BGB or sediment Corg for any of these species and coring is

therefore necessary for accurate estimates of these variables.
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The biomass estimates obtained in the present study were within the range of published

data for the same species in other parts of the world although tended towards the high end of

these ranges [18,34,47]. The mean for the total biomass Corg for the four seagrass species was

5.9 ± 0.9 Mg C ha-1. As was the case for sediment Corg, this value is well above the global mean

of 2.51 ± 0.49 Mg C ha-1 (although Posidonia oceanica in the Mediteranean has greater biomass

than our species, with a mean of 7.29 ± 1.52 Mg C ha-1) [3]. Across all species, the BGB was

much higher than the AGB, accounting for over 80% of the total. The fact that AGB in all spe-

cies was substantially lower and slightly more variable than the BGB could be attributed to

higher turnover rates for the AGB occasioned by grazing pressure, mechanical removal by

tides and human activities such as seine fishing, events that were observed in the bay in the

course of this study. Whilst larger species, such as E. acoroides, with large fronds and big roots

and rhizomes, are likely to accumulate more biomass during growth which is invested in their

below-ground tissues, shoot density is also an important parameter in determining per unit

area BGB. Syringodium isoetifolium, which had a substantially higher shoot density and % can-

opy cover than the other species, recorded higher BGB than even the larger species.

Seagrasses cover an estimated area of 7km2 within Gazi Bay [22], this is approximately 41%

of the bay area considering the entire bay area of 17km2). Extrapolation of the mean biomass

and the sediment Corg values in the top one metre of the sediment gives an estimated total of

168,642 Mg C for seagrass meadow carbon stocks in the bay as a whole. If these findings are

representative of seagrass meadows along much of the African coast the current absence of

African sites from the global data will result in an underestimate of average carbon storage in

seagrass meadows.

There are many sources of uncertainty in this estimate, however; for example we considered

only the four dominant species, which constitute ~ 70% of the seagrasses of the bay, and other

species areas may show different C densities. Future research at Gazi should not only aim to

quantify the Corg from all seagrass species but should undertake a thorough mapping and esti-

mation of the sedimentary Corg of the seagrasses of the entire bay for a better understanding of

the carbon storage capacity of seagrasses there.

The present study has established that, as for other species and sites, the sediment Corg con-

stitutes by far the major C pool for the seagrass beds of Gazi Bay. The highly significant differ-

ences in Corg between vegetated and un-vegetated areas underlines the importance of seagrass

meadows as shallow marine C sinks, a service that adds to the many other justifications for

their conservation. This study provides among the first estimates of sediment Corg from sea-

grasses in the Africa. As such it contributes to the growing global literature on the importance

of seagrass meadows as C sinks. It also provides information of potential relevance to the con-

servation and management of seagrasses in the area. Gazi Bay hosts a pioneer carbon offset

project “Mikoko Pamoja”, the first initiative in the world to restore and protect mangroves

through the sale of carbon credits (http://www.planvivo.org/project-network/mikoko-pamoja-

kenya). Knowledge of the carbon stocks associated with seagrasses in the bay may open oppor-

tunities for bundling seagrass ecosystem services with those of the mangrove ecosystem, an

approach that makes ecological sense, given the strong connections between the two

ecosystems.
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