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ABSTRACT

A heterogeneous cloud system, e.g. a Hadoop 2.6.0 platform provides distributed but cohesive services with rich features
on large-scale management, reliability and error tolerance. As big data processing is concerned, newly built cloud clusters
meet the challenges of performance optimisation focusing on faster task execution and more efficient usage of computing
resources. Present proposed approaches concentrate on temporal improvement, i.e. shortening MapReduce (MR) time,
but seldom focus on storage occupation; however, unbalanced cloud storage strategies could exhaust those nodes with
heavy Map/Reduce cycles, and further challenge the security and stability of the entire cluster. In this paper, an adaptive
method is presented aiming at spatial-temporal efficiency in a heterogeneous cloud environment. A prediction model
based on an optimised K-ELM algorithm is proposed for faster forecast of job execution duration and space occupation,
which consequently facilitates the process of task scheduling through a multi-objective algorithm called TS-NSGA-II.
Experiment results have shown that compared to the original load-balancing scheme, our approach can save approximate
47-55 seconds averagely on each task execution. Simultaneously, 1.254‰ of differences on hard disk occupation were
made among all scheduled reducers, which achieves 26.6% improvement over the original scheme. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, distributed computing has been widely
investigated and deployed in both academic and industrial
fields due to its features of large-scale, virtualization,
failure control among connected components, and asyn-
chronised communication. Cloud computing as one of the
successful commercial distributed systems provides users

†Please ensure that you use the most up to date class file, available from the SEC
Home Page at
http://www3.interscience.wiley.com/journal/114299116/home

with on-demand services by allocating rational computing
and storage resources transparently [1, 2].

MapReduce paradigm proposed by Google is being
exploited by a fast growing number of companies and
research institutes [3]. Hadoop, as a type of open-
source implementation provided by Apache, gives them
a good chance to conduct efficient big data processing
and discover potential and valuable information in a
non-traditional way. Enterprises and companies therefore
benefit from analysing and dealing with real-time data. At
the moment, data analysis applications in a cloud have
shown different complexity, resource requirements and
data delivery deadlines; such diversity has created new
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requirements of job scheduling, workload management
and program design in a cloud. Several projects have
been launched to reduce challenges on writing complex
programs for data analysis and/or data mining, e.g. Pig
[4] built upon the MapReduce engine in the Hadoop
environment. In addition, HBase [5] and Hive [6],
implemented by Apache, are wildly used in a cloud
environment to achieve better performance. In these
applications, however, low-level improvement based on
MapReduce is still required due to its direct interaction
with HDFS (Hadoop Distributed File System) [7]. An
outstanding strategy that improves the security and
stability of a cloud system is necessary.

While the optimization of job scheduling in MapReduce
has been widely conducted in recent activities [8-20],
current Hadoop systems still suffer from poor load-
scheduling strategies due to their lack of consideration on
the usage of cloud storage, which would bring heavy loads
on certain data nodes and therefore cause a long delay on
total execution. Although theoretically infinite computing
resources can be provided in a cloud system, unreasonable
increment of mappers/reducers cannot achieve processing
efficiency, and even waste more storage to complete.

A scheme is therefore presented in this paper to achieve
process efficiency and load balance in a cloud system both
spatially and temporally. Our contributions are three folds
as follows:

(1) A prediction model called PMK-ELM is firstly built
providing prediction on the number of reducers
needed for newly coming tasks, as well as possible
execution duration and storage size they may take.

(2) An optimized algorithm based on NSGA-II [21]
called TS-NSGA-II is then designed to maintain
such an equalized status that the total time
completing the job distributed in each reducer is
almost same while keeping the ratio of hard disk
space similar.

(3) A practical Hadoop environment is constructed
to verify the feasibility and performance of the
scheme.

The remainder of this paper is organized into five
sections. Related work on load balancing is reviewed in
Section II. In Section III, preliminaries of core algorithms
manipulated in our approach are introduced. Section IV
explains the adaptive method to achieve fair loads during
map and reduce processes. Results are presented and
evaluated in Section V with a comparison of corresponding
algorithms. Finally, Section VI concludes the paper and
identifies potential future work.

2. RELATED WORK

A balanced load is hard to be achieved due to the
imbalanced input data of Reduce phase. [9] proposed an
optimization method, by repartitioning the inputting data

of map and reduce tasks, all available data node can
complete its task at the same time. This method can handle
all kinds of load deflections, but it is too difficult to be
implemented, and it has greatly changed Hadoop. Also,
extra reassigning tasks would produce additional network
overhead. Partition methods are also research hot pots,
such as those methods based on historical data [10] and
the sampling results [11], which could allocate input data
to different nodes more flexibly. Though these methods
can achieve dynamic load balancing, their performance
system was not verified in an actual Hadoop system.
Through offline and online analysis, resource requirements
can be predicted by using a benchmark or real application
workloads, for example, [12] proposed a prediction model
based on SVM in a heterogeneous environment. Combined
with an adaptive algorithm HAP, it can be used for
predicting the amount of data assigned to different tasks
node. However, the reduce tasks required repeated cutting
and consolidation of data blocks, which can lead to
extra time cost. In addition, the training phase of SVM
would require much time. A prediction model focused on
resource consumption of MapReduce processes, based on
a classification and regression tree, was presented by Jing
et al. [16].

The efficiency of virtualization deployment has been
extensively studied. [13] proposed a general method
for estimating resource requirements when running
applications in a virtual environment. [14] studied the
resource requirement of starting a new virtual instance.
Through a resource prediction model, dynamic resource
provision was achieved in a cloud environment. Metrics
for performance and load efficiency assessment in cloud
systems have also gained much attention. [15] described a
method for more accurate assessment of distributed cloud
application performance.

Besides the above methods, some researchers are
studying optimizing the speculative execution strategy
in MapReduce. A key advantage of MapReduce is its
automatic processing failure. Its high fault tolerance makes
it easier for a programmer to use. If a node collapses,
MapReduce will restart the task on different machines.
Some speculative execution strategies have been proposed
in some literature. Google only started backup tasks
when a job was close to completion; their experiments
showed that proposed speculate execution can reduce the
execution time of operation 44% [3]. In order to improve
the performance of the cluster, Hadoop and Microsoft
Dryad [31] also provided an implementation speculative
execution strategy.At first, their strategy was roughly the
same as that proposed by Google. However, an optimized
speculative execution called Longest Approximate Time
to End (LATE) algorithm was proposed in which a
different metric was defined to start tasks for speculative
execution. The remaining time was estimated, rather than
considering the progress of the current task. LATE gave
a more clear assessment of struggling tasks’ impacts
on the overall job running time. But the time that
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every stage occupies was not stable while the std
representing standard deviation used in LATE cannot be
applied in all applications. Qi et al. therefore proposed
MCP to overcome the disadvantages in LATE. MCP
identified slow tasks based on average progress rate of
a whole cluster though in reality, the progress rate can
be unstable. Struggles can be appropriately judged in
homogenous environments. However, there are still a lot of
disadvantages in MCP, including average progress rate and
its mediocre performance in heterogeneous environments.

Data placement schemes have also been researched. To
address this problem, a new Data-gRouping-Aware data
placement scheme was proposed in [19]. It extracts optimal
data groupings and re-organizes data layouts to achieve
load balancing in per group. CoHadoop was proposed
in [20]; it permits applications to decide where data
should be stored. However, these schemes are aimed at
the data placement when storing the data and not fit for
MapReduce. Furthermore, they cannot be applied when
data have been stored.

Comprehensive load and usage efficiency have achieved
large improvement in a distributed environment. However,
it is still challenging to achieve spatial-temporal efficiency
in a cloud system, especially in a heterogeneous one.

3. PRELIMINARIES

A detailed introduction to some advanced techniques used
in this paper is given in this section.

3.1. MapReduce

In MapReduce, computation works are implemented
through map tasks and reduce tasks. Map tasks put
different pairs of data into multiple lists grouped by
different keys. So, data having the same key are distributed
to the same list. Then, results generated by map tasks, as
intermediate data, are pulled by reduce tasks to process
further and get the final results [22].

MapReduce jobs are divided into multiple tasks, then,
these generated tasks are distributed to nodes and executed
in the cluster. Map tasks are partitioned into different
datanodes according to a logical split of input data
that generally resides on HDFS [23]. Reduce tasks are
produced according to an equation in reduce stage. The
map task reads the data from HDFS as input data, map
functions designed by the user are then applied and put the
results into buffers. This data are written to the memory of
the node executing the map task when it is less than the
threshold user set. Otherwise, this data will be spilled into
the hard disk of the nodes. There are three phases in reduce
tasks, called shuffle (copy), sort (merge), and reduce. In the
shuffle phase, the reduce tasks pull the intermediate data
files generated by the map tasks. Then, the intermediate
files from all the map tasks are sorted in the following
phase. After all the intermediate data are shuffled and
transferred, the reduce phase starts working.

Job scheduling in Hadoop is performed by the
namenode, which manages a number of datanodes in the
cluster. In MapRedeuce 2.x, each datanode will prepare
containers for map tasks and reduce tasks, which can be
seen as an abstraction of resource and used to execute
the task. The number of map and reduce container
is calculated the configuration file. Application Master
periodically checks the heartbeats coming from datanodes
and calculates the reported state of free resources and
current progress of tasks that they are currently executed.

3.2. Basic ELM

Recently, Artificial Neural Networks (ANNs) have been
widely applied in applications involving classification
or function approximation [24]. However, they also
suffer from low learning speed, which has become the
main bottleneck when applying an ANN algorithm to
practical applications. In order to overcome this drawback,
many researchers explore the approximation capability
of feedforward neural networks, especially in a limited
training set, from the point of view of mathematics. A
novel machine learning algorithm called Extreme Learning
Machine (ELM) [25, 26] was therefore designed based
on Single-hidden Layer Feedforward Neural networks
(SLFNs) [27].

Let X = {x1, x2, ..., xN |xi ∈ RD, i = 1, 2, ..., N}
denote the training set with N samples, D represent
dimension. Let Y = {y1, y2, ..., yN |yi ∈ R} denote the
vectorised label where column j ({j = 1, 2, . . . , P}) set
by 1 for class j while other columns set by 0, and P is
the number of classes. Then, the model of a single layer
hidden layer neural network having L hidden neurons and
an activation function g(x) can be expressed as

L∑
j=1

βj ·g(< wj , xi > +bj) = yi (1)

where i = 1, 2, ..., N , wj and βj represents the weight
vectors from inputs to hidden layer and from hidden layer
to output layer, respectively, bj is the bias of jth hidden
neuron, g(< wj , xi > +bj) is the output of the jth hidden
neuron with respect to the input sample xi . Note that (1)
can be rewritten in a compact form as

H · β = Y ′ (2)

where H is the hidden layer output matrix of SLFNs
and β is the output weight matrix, Y ′ is the transpose
of Y . Optimal weights and bias of SLFNs can be found
by using back propagation learning algorithms, which
requires users to specify learning rates and momentum.
However, there is no guarantee that the global minimum
error rate can be found. Thus, the learning algorithm
suffers from local minima and over-training. In exploration
of the approximation capability of feedforward neural
networks in a finite training set, it is found that SLFNs
can reach the approximate capacity at a specified error
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ε(ε > 0) level with the hidden layer neurons is much less
than the number of training samples. And based on the
minimum norm least-squares function, the weight matrix
β in (2) can be solved by

β = H+ · Y (3)

Where H+ is a MooreCPenrose matrix generalized inverse
of matrix H .

3.3. K-ELM

K-ELM(Kernel-ELM) has simplified the complexity of the
ELM algorithm, with the improvement of the operation
speed. Meanwhile it improves the simulation precision of
the algorithm and the fitting ability based on the original
ELM algorithm. In K-ELM, a positive number is added to
the diagonal of HTH or HHT , which makes the ELM
algorithm more stable and present a better generalization
performance [28, 29]. The prediction model established
based on the training set can be described as:
Minimum value:

LPELM =
1

2
∥ β∥2 + 1

2
C

N∑
i=1

∥ ξi∥2 (4)

Constraint:

h(xi)β = yi
T − ξi

T , i = 1, 2, ..., N (5)

where β = [β1, β2, ..., βL] is the weight of the hidden
layer outputs. Cis the ridge regression parameter. ζi is the
error vector between expected outputs and training outputs,
h(xi) is output vector of hidden neurons corresponding to
the training sample xi. Finally, the output function of ELM
regression can be expressed as

f(x) = h(x)HT ( I
C
+HHT )−1T

=

 K(x, x1)
...
K(x, xN )

 ( I
C
+ΩELM )

−1
T

(6)

.
Similar to SVM, nuclear ELM (or kernel-based ELM,

K-ELM) is not required to set the number of neurons in the
hidden layer and the activation function types. Common
kernel functions are shown as followed.

Linear: K(xi, xj) = xi · xj

Polynomial: K(xi, xj) = (xi · xj + b)d, b ≥ 0

RBF: K(xi, xj) = exp(−σ||xi − xj ||2), σ > 0

Sigmoid: K(xi, xj) = tan(axi · xj + b), a > 0, b <
0

3.4. NSGA-2

NSGA-II as one of the multi-objects optimization
algorithms has lots of operations that are the same as those

in GA. For example in NSGA-II, the population undergoes
initialization, crossover and mutation as usual. However
there are three main differences:

(1) each chromosome is sorted based on non-
domination sorting into a front to obtain a fitness
value;

(2) crowding distance used to measure the diversity of
the population is employed to decide the distance
between individuals;

(3) the population with the current population and
current offspring (obtained by crossover and
mutation) is sorted again based on the rank and the
crowding distance.

After that, the best N (population size) individuals are
selected to be the next generation. The main consideration
in the design of the NSGA-II algorithm consists of six
aspects, involving code generation, determination of the
initial population, fitness evaluation, selection, crossover
and mutation. Detailed procedure is shown in Figure 1.

Figure 1. Flow chart of NSGA-2
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4. APPROACH TO LOAD BALANCING

4.1. A method for partition reconstruction

MapReduce uses a hash function as the original partition
function, where splits are generated and distributed
to different reducers. The Original hash function may
lead to sever load skew, especially in a heterogeneous
environment, which will decrease the speed of some node.
However, the overall job finishing time is decided by the
node that finishes the task at last according to wooden
barrel effect. Algorithm1 depicts the way that fairly equal
size of splits is ensured for distribution, which helps the
system dispense different volume of data to the different
node having different computing capacity. Before starting
the work, we run the WordCount application on each node
separately to get the approximate capacity of each node.
Then, the volume of data is given away according to a
different capacity. According to algorithm1, the list of the
partition has a relatively balanced data amount according
to different capacities.

Algorithm 1 Partition Reconstruction

Input:
The input size of reduce stage, size;
The number of data chunks , number;

Output: partion list
Get the list of capacity of each server Lc
Set iterator = 1
for iterator < number ,iterator ++ do

Get the ratio list according to ratio list =
capacity/avg capacity

Maxr = Max(ratio list)
Minr = Min(ratio list)
if Maxr/Minr > 1.5 then

Maxr = minr = (Maxr +Minr)/2
Add Minr and Maxr to ratio list

else
Break

end if
end for
partion list = size ∗ ratio list
return partion list

4.2. A prediction model for load balancing based
on K-ELM

In this section, the training set is set as:TS = {time,
reducer no, datanode no, input size,shuffle size},
where reducer no represents the reducer number,
actually, it also indicates the sequence when reducers
run. datanode no represents the number of a datanode.
Generally, a datanode can be mapped to several reducers.
Here input size does not represent the input size of the
whole task, but the input size of reducers at the reduce
stage. shuffle size denotes the data size of a reducer
that needs to shuffle when map processes have finished.

In details, the building progress of prediction model
for execution time based on K-ELM (PMK-ELM) is as
follows:

Step 1: Data pre-processing. First, samples that contain
great network congestion are removed. Then the trimmed
datasets are divided into training samples and test samples.
The training samples are used for training the prediction
model, whereas the test ones are for checking if the
prediction model has been well trained.

Step 2: Model training. To build the K-ELM prediction
model (PMK-ELM), training parameters of the model are
obtained by using the training set sample generated by Step
1. The specific processes are as follows:

(1) Randomly generated weights between the input
layer and the hidden layer, and between the hidden
layer neurons w and the threshold value b;

(2) Use the hidden layer neuron activation function to
calculate the hidden layer output matrix H;

(3) Work out output layer weights.

Step 3: Data validation. Datasets generated by Step 1
are used to validate the PMK-ELM algorithm. According
to the parameters trained in Step 2, the predictive values
of test sets can be retrieved, which are then compared with
the actual values to verify the prediction performance of
the model.

4.3. TS-NSGA-II

4.3.1. Mathematical model
When a map task is completed, the data will be shuffled

and merged, and then assigned to different reducers;
however, the amount of data assigned to each reducer is
not equal, which consequently causes uneven allocation
of reducers to datanodes. In order to make reduce tasks
consume less time and hard disk space occupation,
following conditions should be satisfied:

(1) The data amount handled by a reducer assigned to
a datanode cannot be more than disk usage of the
datanode;

(2) A reducer can only be assigned to a datanode, but a
datanode can handle multiple reducers, as in Figure
2.

Although an actual reduce process is parallel, it is
assumed in a virtual serialization line. A datanode called
F is further abstracted so that when the procedure arrives
at F, the reduce task is completed, as shown in Figure 3.

Assuming that the output of map tasks can be randomly
divided into m data chunks and there are n datanodes in
the clusters. If tmn represents the execution time that each
reducer needs, then the execution time of each split can be
noted as a matrix Mt, as shown below:

Mt =

 t11 . . . t1n
...

. . .
...

tm1 · · · tmn
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Figure 2. Relationship between datanodes and reducers

Figure 3. Virtual serialization

In order to evaluate the usage of storage space, the
percentage of input size Smn from total unused size slmn

are calculated and noted as psmn.

psmn = smn/slmn (7)

Then the hard disk space ratio of each split can be
described as Ms:

Ms =

 ps11 . . . ps1n
...

. . .
...

psm1 · · · psmn


Finally, the elements of Mt and Ms are combined to

format a new matrix M with new elements expressed as
(t, ps)mn, as shown below:

M =

 (t, ps)11 . . . (t, ps)1n
...

. . .
...

(t, ps)m1 · · · (t, ps)mn


The real execution time of datanode i can be described

as ti, whereas the split size can be represented as Si.
Accordingly, the real processing results list L can be
calculated as:

L = {(t, ps)1, (t, ps)2, ..., (t, ps)n}

Here, two objective functions can be formatted as shown
in (8) and (9); whereas the constraints are shown as (10)
and (11), where in (10), InSum represents the total sum
of reduce Input size.

minT =

n∑
i=1

∣∣∣∣ t− ti

t

∣∣∣∣ (8)

minS =

n∑
i=1

|psi − ps| (9)

InSum =

n∑
i=1

si (10)

ti > 0, psi > 0. (11)

4.3.2. Design of TS-NSGA-II
The design of algorithm consists of six aspects,

including determination of the initial population, fitness
evaluation, selection, mutation, code generation and
crossover. Major changes have been made on the latter two.

(1) Code generation

Non-negative integers are used as the index of
reducers, i.e. 0, 1, 2, ...,M − 1 for M reducers,
however. On the other hand, N datanodes are
indexed using positive integers, i.e. 1, 2, ..., N . In
this case, distribution of M reducers to N datanodes
may generate NM possible combinations.

(2) Crossover

The original NSGA-II algorithm uses Simulated
Binary Crossover (SBX) [19] in this stage; however,
in our scheme, crossover probability called pc is
used for better grouping after being selected. The
Crossover stage in this scheme consists of two
steps:

1) Randomly match a group of chromosomes;
2) During matching chromosomes, randomly

set intersections to make matched individual
chromosomes exchange their information.

Chromosome should always be kept permutations,
so the procedure of crossover is: after randomly
selecting paired chromosomes, two crossover
positions are randomly generated; the cross section
of elements on the other side of the parent is also
removed. Then, the new cross section is added to the
sequence of the parent that has cut out some of the
elements. Taking two pairs of chromosomes as an
example, where chromosome A=2313|1122|32 and
chromosome B = 3123|2213|12. The cross section
is divided by a vertical bar. First, the element
corresponding to |1122| of A is removed from B, so
B’ = 312312; then a gene fragment of A is added to
B, so the offspring B” is 3123|1211|22. Similarly,
the offspring A” is 2313|3222|13. For new produce
offspring A” and B”, it needs to be decided whether
the total data size is bigger than the storage quota.
If not, they are regarded as effective; otherwise,
iteration will be operated. The complete procedure
of the algorithm is shown in Algorithm 2 as follow:
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Algorithm 2 Crossover

Input:
The list of chromosomes, Li;
Crossover probability, pc;
The hard disk space ratio of each split, PSmn;

Output: New list of chromosomes, NewLi
Randomly match a group of individual in Li according
to pc noted as A and B
while true do

Randomly generate two number not larger than the
length of A, described as m, n(m <= n)

Divide A into 3 parts:SeqAm,SeqAc,SeqAn
Do the same operator to B
Get SeqBm,SeqBc,SeqBn
A′ = SeqAm∪SeqAn,B′ = SeqAm∪SeqAn
A′′ = A′∪SeqBc,B′′ = B′∪SeqAc
Get the ps according to psmn

if ps is smaller than 1 then
Break

else
Continue

end if
end while
Replace A with A′′ and B with B′′ in NewLi
return NewLi

5. EXPERIMENT AND ANALYSIS

In order to test the performance and benefits of the
load balancing scheme, a practical heterologous cloud
testing environment was implemented, which consists of
a desktop computer and a server. The server has 288 GB
of memory and 10 TB of SATA hard disks. The desktop
contains 12GB of memory, a single 500GB disk and a Core
2 Quad processor. Eight virtual machines were created in
the server with different amounts of memory and number
of shared processors. The detailed information is shown in
Table I.

Table I. The detailed information of each virtual machine

NodeId Memory(GB) Core processors

Node1 10 8
Node2 8 4
Node3 8 1
Node4 8 8
Node5 4 8
Node6 4 4
Node7 18 4
Node8 12 8

K-means (KM) and WordCount algorithms were
manipulated to evaluate the performance of load scheme.
The Purdue MapReduce Benchmarks Suite provides us
with the K-means clustering workload, where 26 GB of
free datasets, and a free datasets of 50GB in WordCount
clustering workload [30] were selected as the inputs.

All our test applications were built based on Hadoop
2.6.0. According to the Apache Hadoop documents,
mapreduce.tasktracker.reduce.tasks.maximum has been set
as 1.

Overall testing processes were conducted in three
stages.

(1) Dataset Collection. A Hadoop analysis tool was
implemented to get historical data.

(2) Execution Time Prediction. The PMK-ELM was
enabled to predict the execution time of next reduce
tasks.

(3) Load balancing. The core MRContainerAllocator
class was modified in the Hadoop system to apply
the results generated by TS-NSGA-II.

5.1. Evaluation of PMK-ELM

To evaluate the performance of PMK-ELM, different
input size and different numbers of reducers were tested
during experiments, as depicted in Table II. SVM (PM-
SVM) proposed in [12] was also replicated in the testing
environment for comparison purposes. A log analysis tool
was developed to collect training and test sets.

Table II. Experiment parameters

Dataset size
(pieces)

Training
dataset size

(pieces)

Testing
dataset size

(pieces)

K-Means 910 800 110
WordCount 800 700 100

A Generic Algorithm (GA) was employed to generate
the parameters that PM-SVM and PMK-ELM need. In the
experiments, max gen was set as 200 and the range of C
and b was from 0 to 1000. σ and p were set between 0 and
100. The size of the population was set as 50. The results
generated by GA are shown in Table III. MAPE was used
to evaluate the results, same as the method mentioned in
[12].

Table III. The best parameters generated by GA

K-Means WordCount
PMK-
ELM

PM-
SVM

PMK-
ELM

PM-
SVM

C 15.838 - 20.521 -
σ 0.069 - 0.867 -
b - 2.285 - 6.961
p - 41.967 - 16.583

MAPE 10.05% 10.60% 12.64% 13.42%

In Table IV, the results are the average value after having
run for 50 times. The training time of PMK-ELM is almost
80 times shorter than PM-SVM. Moreover, for both group,
the test time of PMK-ELM is about 80 times shorter than
PM-SVM. Besides, the accuracy of PMK-ELM is higher
than PM-SVM, too.
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Table IV. The performance comparison between PMK-ELM and
PM-SVM

Training
Time(sec)

Testing
Time(sec)

K-Means PMK-ELM 0.055 0.004
PM-SVM 4.462 0.250

WordCount PMK-ELM 0.043 0.03
PM-SVM 3.324 0.307

Figure 4. Comparison between PMK-ELM and PM-SVM in
execution time of K-Means

Figure 5. Comparison between PMK-ELM and PM-SVM in
execution time of WordCount

In Figure 4, Figure 5, Figure 6 and Figure 7 the detailed
results of PMK-ELM and PM-SVM are depicted. In Figure
4 and Figure 5, the line of PMK-ELM lays more closely
to the real value than that of PM-SVM in two groups.
On the peaks, this phenomenon is more apparent in both
pictures. Although values predicted by PMK-ELM are
not very accurate under some circumstance, accuracy of
PMK-ELM is relatively higher compared with PM-SVM.
In the Figure 6 and Figure 7, the errors of PMK-ELM
are distributed near 0 intensively, while PM-SVM shows
separate distribution. Trend shown in these pictues in

consistent with that shown in Figure 4 and Figure 5, which
shows the performance of the PMK-ELM is better than
PM-SVM. Furthermore, when the training time and test
time are taken into consideration, PMK-ELM is obviously
a better choice.

Figure 6. Distribution of error of K-Means

Figure 7. Distribution of error of WordCount

5.2. The performance of proposed load
balancing scheme

In this section, the K-Means experiment is firstly run once
with its execution time and hard disk space recorded.
Corresponding results are shown in Table V and VI.

From Table V and Table VI, we can see that Reducer3
and Reducer6 consumed when executing the task, so the
overall execution time is decided by the longest time. In
Table VI, Node1 did not take part in the task, which has
a better performance and may help the overall task finish
earlier.

Then, we deleted the results generated by the
application and applied PMK-ELM and TS-NSGA-II
to this application and we got a better performance.
The points shown in Figure 8 and Figure 9 are all

8 Security Comm. Networks 2015; 00:1–11 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls



Qi Liu A Speculative Approach to Spatial-Temporal Efficiency

Table V. Hard disk space change with original Hadoop settings

NodeId Before
Execution(GB)

After
Execution(GB)

Node1 405.16 403.08
Node2 406.79 404.69
Node3 404.82 402.75
Node4 412.36 410.23
Node5 405.09 402.83
Node6 413.44 411.32
Node7 404.71 404.71
Node8 404.51 402.11

the feasible solutions created by our scheme in two
groups of experiments. Our scheme randomly chooses
a group of solutions from each group, one is group
A={1,4,6,2,8,5,3}, which represents assigning reducer0 to
datanode1, reducer1 to datanode4 and so on, the other
group is B={1,5,6,4,7,8,3}. The benefits we got are shown
in Figure 8,Figure 9, Table VII, Table VIII and Table IX.

Table VI. Execution time of different reducers

NodeId Reducer
Group

Reducer
Execution Time(sec)

Node1 Reducer0 196
Node2 Reducer5 199
Node3 Reducer1 227
Node4 Reducer4 226
Node5 Reducer3 240
Node6 Reducer6 269
Node7 - -
Node8 Reducer2 181

Figure 8. Results of Group A

As shown in Figure 10, the maxim reducer execution
time of Group A and B is shorter than the original Group,
which determines the group A and B finish the reduce
stage faster than the original. The results shown in Table
IX also prove it. Not only does our load balancing scheme
make the application run faster, but also helps the hard

Figure 9. Results of Group B

Table VII. Hard disk space change with original Hadoop settings

NodeId Before Execution(GB) After Execution(GB)
A B

Node1 405.16 403.08 403.08
Node2 406.79 404.53 406.79
Node3 404.82 402.70 402.70
Node4 412.36 410.29 408.03
Node5 405.09 402.99 403.03
Node6 413.44 411.05 411.05
Node7 404.71 404.71 402.58
Node8 404.51 402.38 402.41

disk occupation more reasonable. Table VIII shows the
hard disk occupation when PMK-ELM and TS-NSGA-II
are applied. S in Table IX is an evaluation parameter that
has described in Eq.(9) in Section IV, which also shows our
scheme has a better performance in job execution time.

Figure 10. Comparison between original and optimized
schemes in reducer execution time
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Table VIII. Comparison between original and optimize schemes
in disk balancing(S)

Original A B

S(‰) 1.709 1.415 1.125

Table IX. The overall execution time change with PMK-ELM and
TS-NSGA-II

Original(sec) A(sec) B(sec)

Overall Job
Execution Time

615 560 568

6. CONCLUSIONS

In this paper, an adaptive approach is proposed combined
with a prediction model, PMK-ELM and a multi-object
selective algorithm, TS-NSGA-II. The PMK-ELM can
help facilitate the prediction of the execution time of
tasks; whereas the TS-NSGA-II is designed to facilitate
the selection of a suitable number of reducers. The
experiment results have shown that both models achieve
a good performance. About 47-55 seconds have been
saved during experiments. In terms of storage efficiency,
only 1.254‰ of differences on hard disk occupation were
made among all scheduled reducers, which achieves 26.6%
improvement than the original scheme. In the future,
we would like to optimize the speculative strategy in
MapReduce and try to improve the performance of the
strategy.
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