
Agent Motion Planning with GAs Enhaned by Memory ModelsMartijn C.J. BotVrije UniversiteitFaulty of SieneDe Boelelaan 10811081 HV Amsterdam+31 20-4447790mbot�s.vu.nl
Neil UrquhartShool Of ComputingNapier University219 Colinton RoadEdinburgh+44 0131 455 4432n.urquhart�napier.a.uk

Ken ChisholmShool Of ComputingNapier University219 Colinton RoadEdinburgh+44 0131 455 4216k.hisholm�ds.napier.a.ukAbstratThe Tartarus problem may be onsidered abenhmark problem in the �eld of robotis. Aroboti agent is required to move a number ofbloks to the edge of an environment. The lo-ation of the bloks and position of the robotis unknown initially. The authors presenta framework that allows the agent to learnabout its environment and plan ahead us-ing a GA to solve the problem. The authorsprove that the GA based method provides thebest published result on the Tartarus prob-lem. An exhaustive searh is used within theframework as a omparison, this provides ahigher sore still. This paper presents thetwo best Tartarus results yet published.1 IntrodutionThe Tartarus problem may be onsidered a benhmarkproblem in the area of non-Markovian agent motionplanning. The agent is plaed within an environment,with no prior knowledge of the environment and lim-ited means by whih to gather information on theenvironment (see Figure 1). The task to be under-taken involves moving bloks plaed at random po-sitions within the environment to the outer edges ofthe environment. There is only a �nite amount of en-ergy available to the agent, thus limiting the numberof moves that an be made.The hallenge is therefore to devise a solution to theproblem that an gather information on the environ-ment and solve the problem at the same time. Weenhane a geneti algorithm with a long term memorymodel for inorporating information that was found inprevious steps. We will show that our approah out-performs leading algorithms on this problem.

2 Problem Desription2.1 An overview of the Tartarus ProblemWithin the Tartarus problem, a roboti agent is plaedin an environment that onsists of a 6x6 square grid(akin to a hekers board, see Figure 1). The agent o-upies one square, while also on the board are 6 blokseah of whih oupy one square. The objet of the ex-erise is for the agent to push the bloks to the edge ofthe board, soring 1 point for eah blok moved to anedge or two points for eah blok pushed into a orner.The maximum sore then is 10. Only one blok maybe pushed at one time. Eah time the agent movesforward, rotates or pushes a blok forward it uses oneunit of energy.The agent's sensors an only detet the ontents of the8 squares diretly surrounding the agent's position.The objetive of the agent is to maximize the averagesore over 100 randomly generated boards.2.2 Board InitialisationThe board is initialised by plaing all 6 bloks in ran-dom squares, and then plaing the agent in a randomsquare faing a random diretion. Neither the bloksnor the agent will be initially plaed adjaent to theedge. A on�guration of 4 bloks plaed together an-not be moved by the agent (beause it an only moveone blok at a time). Therefore the board is neverinitialised with four bloks arranged in a square.2.3 SensorsThe agents' sensors are apable of sensing the ontentsof the eight squares adjaent to the agents' urrentposition. The sensors an detet whether eah squareis empty, ontains a blok, or onstitutes part of anedge. The agent annot sense its orientation or its

View of the agentTartarus boardFigure 1: Example Tartarus boardposition on the grid.2.4 Energy LevelsWithin the Tartarus problem, there is no time limit,but the agent has only a limited amount of energy.The agent has an initial energy level of 80 units, eahmove forward or rotation osts the agent 1 unit of en-ergy. One all the energy has been used, the agent anno longer move and the attempt to solve the problemeases.3 Previous WorkPrevious tehniques applied to the Tartarus Prob-lem inlude geneti algorithms, neural networks, �nitestate mahines and geneti programming.Teller[Teller, 1994℄ used geneti programming with in-dexed memory to ahieve an average sore of 4.5.In [Balakrishnan and Honavar, 1996℄, neural networkshave been utilised with a maximum sore of only 4.5.The highest sore ahieved so far has been by[Ashlok and Joenks, 1998℄, whose GP-based algo-rithm averageda sore of 8.2. Earlier GP based work by Ashlok andMRoberts[Ashlok and MRoberts, 1997℄ ahieved asore of 8.15.The most reent researh has been undertaken by[Ashlok and Freeman, 2000℄ who utilised a GA toevolve a �nite state mahine. The �nite state mahineinterprets the results of the sensors and at eah hangein state an issue a ommand to the agent. The aver-age �nal sore ahieved by Ashlok and Freeman was7.11.All of the researh outlined above utilised some formof internal state or memory within the agent to allow

the agent to learn about the environment. Solutionsthat haven't utilised some form of internal state withinthe agent have not ahieved an average sore of greaterthan 2.By examining previous researh, it may be onludedthat the agent needs to be equipped with the ability tohold an internal state within some form of 'memory'.4 Formulating the Solution4.1 Human Attempts to Solve the ProblemThe authors initially arried out an informal experi-ment using human agents (i.e. a human ontrolling theagent by manually issuing ommands). One agent wasasked to solve the problem while only being allowedto view the inputs from the eight sensors. The seondagent was allowed paper and penil to draw a mapof the environment as they explored it. Eah agentattempted to solve the problem 10 times. The experi-ment revealed that even with the proessing power ofa human brain, the eÆieny of the solutions inreaseddramatially when the agent was allowed to ollate theinformation gathered through its sensors in the formof a map. Without a map, the human agent averageda sore of 7.2, but with the energy levels redued to 0in every ase. By allowing the human agent to build amap, the average sore rises to 9.1 with more energyleft.The authors' pereived reason for the human agentsimproved performane when drawing a map, was theability to use the information in the map to pre-plansequenes of moves before issuing ommands to theagent. Cognitive psyhologists have estimated humanshort-term memory only to apable of ontaining 7�2'hunks' of information. The human agent workingwithout the map may have been unable to reall theprevious values of the sensors, and build a 'memorymap' of the area.4.2 A Desription of the Chosen Solution4.2.1 OverviewThe information ontained in the agents' sensors maybe onsidered equivalent to the human short-termmemory. They are both transient and of low apaity.The informal experiment onduted in setion 4.1 andprevious researh reviewed in setion 2 both suggesteda requirement for the agent to be given some formof 'long-term' memory. This long-term memory willontain information about the environment, gatheredfrom the short-term memory (sensors) as the agent ismoved.

Having established the requirement for short and long-term memories, we now require to proess the infor-mation stored in the long-term memory to allow theagent to arry out its task. The proessor funtion willbe arried out by a Geneti Algorithm (GA). The GAwill evolve ommand sequenes onsisting of Forward,Left or Right moves to allow the agent to push thebloks disovered so far to the edge of the board. Af-ter a set number of evaluations the GA will be haltedand the ommand sequene ontained within the besthromosome will be exeuted by the agent. As soon asthe agent disovers a new feature within the landsape,it stops exeuting the ommand sequene and the GAis restarted to evolve a new ommand sequene basedon the updated information now ontained within thelong-term memory.4.2.2 The Long and Short Term MemoriesAs has already been desribed, the short-term memoryis the bu�er for the eight sensors. Eah time the agentmoves, the information ontained within the sensorswill be replaed by values relating to the agents' newposition.The long-term memory is a 11x11 grid. The long-termmemory must be bigger than the board, beause theagent ould initially be plaed almost anywhere on theboard. The long-term memory is large enough to allowthe data sensed from the agents initial position to beplaed in the entre and then the map to be built outfrom this point.Eah of the 121 loations within long-term memoryan hold one of �ve values;1. Blok: This square de�nitely ontains a blok2. Empty: This square is de�nitely empty3. Edge: This square is on the edge4. Probably Empty: This square has not been ex-plored yet, but it is assumed that it is empty5. Something: The agent has tried to push a blokinto this square, but ouldn't as it is either o-upied by another blok or it forms part of theedgeAs the agent progresses in solving the Tartarus prob-lem, the map ontained within long-term memory isbuilt-up. This map is used by the GA �tness fun-tion (see setion 4.2.4) when evaluating ommand se-quenes.

4.2.3 Wall Dedution HeuristisBeause the harateristis of the environment, its size,shape and the number of bloks ontained within itare known, the agent may be enhaned with a numberof simple heuristis. These heuristis assist the agentwhen interpreting data ontained in short-term mem-ory and then enhaning the map ontained in long-term memory.The dedution of the walls may be assisted by a num-ber of simple rules. If one piee of wall is found, thenthe entire wall an be dedued. If a wall is found thenwe an establish the position of the wall running par-allel to it.When a blok is disovered at loation x, we an de-due that the walls an be no further than 5 squaresin any diretion, thus the 11x11 grid an be reduedin size. This heuristi has been named 'Smart WallDedution' (SWD) by the authors. Further analysishas resulted in the enhanement of SWD not only touse bloks but assume that a wall is never more than5 squares from any explored square. The modi�edheuristi has been named Even-Smarter Wall Dedu-tion (ESWD).One all 6 bloks have been found, any remainingmemory loations marked as 'Something' must holdwalls, and vie-versa one the entire wall has been dis-overed any remaining 'Something's must be bloks.This has been named the '6 blok heuristi'.4.2.4 The Geneti AlgorithmThe geneti algorithm is used within the agent toevolve ommand sequenes that may be arried outby the agent. Eah hromosome onsists of a list ofommands in the form:MMLMMMRM....The ommands are referred to as ommand sequenes,and are interpreted thus:M - Move forward 1 squareL - Rotate leftR - Rotate rightThe length of the hromosomes was altered duringthe experiments arried out. Initially the hromosomelength was set to 80, this being the maximum num-ber of ommands that may be arried before the agentruns out of energy.

Table 1: Chromosome InitialisationPrevious Genes Possible values for urrent geneL L MR R ML L or MR R or MTable 2: Initial �tness funtion rewardsCriterion RewardA blok has just been pushed 3A previously unknown square explored 2A blok has just been pushed into a wall 7The GA is initialised with semi-random strings ofgenes. The authors identi�ed a number of patternsthat may our within the hromosome that wouldresult in the agent wasting energy (e.g. by rotatingaround in a irle). A simple initialisation sheme hasbeen set up that restrits the hoie of gene based onthe previous genes (see Table 1). This sheme ensuresthat the initial population is free from wasteful pat-terns. Note that no repair ours after mutation orrossover.The reombination operator used is standard two-point rossover based on two parents reating onehild. The mutation operator selets an individualwith probability 0.1, a gene within that individual isthen seleted for mutation with the probability 0.02.The mutation onsists of altering the value of the se-leted gene to M, L or R randomly.A steady-state population of 500 is maintained. Sele-tion and replaement of individuals will be failitatedby using a tournament seletion operator. A tourna-ment size of 7 was found to give reasonable results.The �tness funtion evaluates the hromosome by sim-ulating the exeution of the ommand sequene usinga opy of the map ontained within long-term memory.The �tness funtion evaluates eah ommand and re-wards it based in the probable position of the agent af-ter the ommand has been exeuted riterion as shownin Table 2.After ompleting the route the �nal sore (bloksagainst a wall + bloks in orners) is added to the�tness weighted by a fator of 100. Beause the Tar-tarus problem has to be ompleted within a �nite num-ber of moves, the �tness funtion only examines thoseommands that ould be exeuted given the remaining

energy level.5 Experiments5.1 Experimental setupBeause of the deterministi nature of the GA usedwithin the agent and the wide variety of starting on-�gurations that exist for the Tartarus problem eahexperiment was arried out 100 times using randomlygenerated environments.The software was initially implemented using ANSIstandard C++, running on Redhat Linux. To allowfor greater exibility the software was subsequentlyre-written in Java. Later versions of the software wereimplemented aross a 128 CPU parallel proessing net-work.5.2 The Initial VersionThe initial version used a population size of 100 indi-viduals, a mutation rate of 0.10 and a rossover rateof 0.10. Initially the GA was allowed to run until 1000tournaments had been ompleted. Unless it is men-tioned, it an be assumed that these basi parameterswere used. The initial version inorporated no heuris-tis, and evaluated as many ommands as the urrentenergy level would allow. The average sore ahievedover 100 boards was 4.38. The distribution of soreswas varied, one board soring 8, four soring 7 and theremaining 95% ahieved sores of 6 or less.Analysis of boards where the agent ahieved a lowsore showed that a frequent problem was the agentpushes a blok while unknown to the agent there'sanother blok or a wall behind this blok. In thisase, the agent knows there's something behind thisblok, but it does not know whether this is a blokor a piee of wall. Noting this in the long-term mem-ory map would be useful, beause the agent would beless likely to try and push this blok. In the �tnessevaluation (see Setion 4.2.4), no points are gained fortrying to push a blok while knowing this is not possi-ble. In order to be able to note down suh informationin long-term memory, the data type 'Something' (seeSetion 4.2.2) was added, allowing the average soreover 100 boards to rise to 6.09.With the addition of the initial SWD heuristi (as de-sribed in setion 4.2.3) the average sore was furtherinreased to 6.21.It was felt that the GA was running for too brief aperiod, and beause there is no time onstraint on theTartarus problem, the authors allowed the GA to run

Table 3: Average sores over 100 boards using ad-vaned edge detetion, the six blok heuristi and for-ing a restart after hitting a known wallESWD 6-blok Restart After Wall sore0 0 1 7.520 0 0 7.390 1 1 7.600 1 0 7.321 0 1 7.411 0 0 7.441 1 1 7.501 1 0 7.40for 10,000 tournaments. To avoid premature onver-gene the population size was inreased to 500. Thismodi�ation aused the system to slow down, but theaverage sore inreased to 7.95. In the ase of twoboards the systemmanaged to solve the Tartarus prob-lem ompletely by ahieving the maximum sore pos-sible (10).5.3 Advaned HeuristisFurther analysis showed that the GA sometimes pro-dued a ommand sequene that fored the agent tomove forward into a wall. In our implementation,driving the agent into a wall halts exeution of theommand sequene and starts a new GA to evolve anew sequene. It was deided that although this movemight appear to be illogial, the restarts might be un-neessary. The remainder of the ommand sequenemay ontain ommands to solve the problem, and al-though energy might be wasted walking into a wall,a high overall sore might be ahieved. The e�et ofswithing foring restarts is shown in Table 3 (thirdolumn).The '6 Blok' heuristi and the ESWD heuristis (seesetion 4.2.3) have been implemented and the resultsobtained through their use an be seen in Table 3.Referene to Table 3 allows us to draw the followingonlusions, the best sore was ahieved using the 6-blok heuristi, with the use of ESWD and allowingthe GA to restart after the agent hits a wall.The �nal sores ahieved by the GA with the additionof the heuristis an be seen in Figure 2. The 'bump'at sore 4 is aounted for by those instanes wherethe GA has pushed 4 bloks together by aident inthe beginning of the run. The largest distribution isat sore 8, with a bell-like urve around it.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Figure 2: Sore distributions for Table 35.4 Combining the GA with brute-foreWhen there is only a small amount of energy left, it isquiker for the system to perform an exhaustive searhusing every possible ommand sequene, rather thanrunning the GA again. When the number of amountof remaining energy drops to below a given threshold,the system employees exhaustive searh to �nish theproblem.In Setion 5.5 the exat number of legal strings is al-ulated for eah length. If the number of strings ex-amined by the GA (= #tournaments + populationsize) is more than the total number of legal strings,exhaustive searh will take plae.The GA has always been allowed, so far to produeommand strings that if fully exeuted would use upall the agents' remaining energy. It was felt that someimprovement might be forthoming if the GA was onlyallowed to produe small strings. This will not onlyonentrates the evolution into a smaller searh spae,but also redues that amount of energy lost.Table 4 shows the results when examining hromosomelengths between 7 and 20. The GA in �gure 12 is alsousing the brute fore method for alulating the �nalstrings.By only looking ahead a small number of moves (about12) the sores rise up to 8.77. The reason for this im-provement may be attributed to the fat that the GAalmost never exeutes the last moves in the ommandsequene, while they do ount in the �tness alulation.Whilst starting to solve the problem, new informationonerning the landsape will be frequently be found,

Table 4: Results for reduing the number of moves forthe GA to look ahead. In olumn three, the averagenumber of times the GA is run per board is shown.The average number of evaluations per board is thenumber of strings onsidered per board (= #runs *(populationsize + #tournaments)). The average num-ber of ations per board is the number of ations(M,L,R) onsidered by the agent (=#evals * hromo-somelength).Len of Avg. #runs evals/ ations/hromo sore of GA board board7 8.42 20.60 30900 2163008 8.69 19.14 28710 2296809 8.67 18.48 27720 24948010 8.66 18.41 27615 27615011 8.63 18.04 27016 29717612 8.77 17.33 25995 32004013 8.67 17.32 25980 33774014 8.73 16.64 24960 35910015 8.60 17.23 25845 38767520 8.67 16.63 24945 498900after only a few ommands have been exeuted. It iswasteful and even misleading to inlude the later stepsin the �tness funtion.There should be an optimum number of moves to lookahead when evolving a ommand sequene. Too fewmoves will prevent the GA evolving a meaningful se-quene, but too many moves are misleading.The exeution time of a board is typially between 3and 5 minutes. Note that our system was not opti-mized for speed, that it was written in Java and ranon a fairly slow proessor (Pentium 200 MHz).5.5 Method for Calulating the ExatNumber of Allowed Strings for a GivenLengthThere is a large number of ineÆient ommand se-quenes, suh as an LR sequene where the R reversesthe e�et of the L without any side-e�et. All stringswith LR, RL, LLL or RR in it (RR is equivalent to LL,thus redundant) are therefore not onsidered when do-ing an exhaustive searh.The number of 'legal' strings an be alulated as fol-lows. After an M, what an follow is M, LLM, LM orRM. The rewrite rules are given in Figure 3.La(x), Lb(x), R(x) and M(x), i.e. the number of Las,Lbs, Rs and Ms at level x in the tree are alulated as

M

La

R
Lb

M
La Lb RM MM Figure 3: Legal stringsfollows: La(x) = M(x� 1)Lb(x) = M(x� 1)R(x) = M(x� 1)M(x) = M(x� 1) + La(x� 1) ++Lb(x� 1) +R(x� 1)with M(0) = 1;La(0) = Lb(0) = R(0) = 0. Levelx = 0 is arti�ial, but with this initial setting all legalstrings of length 1 and higher are orret.5.6 A omparison to a non-evolutionaryheuristiGiven the suess of the exhaustive searh in enhan-ing the GA, a full omparison of solving the Tartarusproblem by replaing the GA with exhaustive searhhas been arried out. All the heuristis used to pro-due the data shown in Table 4 are still in use. Theonly di�erene is that instead of using an GA to evolvethe ommand sequene using mutation and rossover,every possible ommand sequene generated using therules in Setion 5.5 is evaluated and the best takenas the ommand sequene. The maximum sore pre-sented in Table 5 (8.81) is slightly greater than thatpresented in Table 4 (8.77). An exhaustive searhwill usually always outperform an Geneti Algorithm,given the non-deterministi nature of the GA. Notethough that for shorter lengths, the GA outperformsthe exhaustive searh, whih is most likely due to thegreater number of restarts of the GA. What is signi�-ant is the number of evaluations required per board,the exhaustive searh evaluates 70% more ommandsequenes for an overall gain of 0.5%. A ompari-son of the exhaustive searh (look ahead length 14)and the GA (look ahaead length 12) may be seen inFigure 4. The exhaustive searh method is espeiallygood at soring the maximum 10 points, while the GAsore distribution peaks between 8 and 9. This wouldsuggest that the exhaustive searh is better at �nd-ing solutions to omplete the problem that the GA,due to the exhaustive searh always �nding the opti-mal partial solution for the urrent board state. Theexhaustive searh heuristi performs best with a look

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

Score

O
cc

ur
an

ce
s

GA
Exhaustive search

Figure 4: Sore distributions for the GA with hro-mosome length 12 and the exhaustive heuristi withhromosome length 14ahead of 14. This may be partly due to the fat that wehave 80 energy points. If we assume that the algorithmprodues stings of length l and restarts n times. Thebest performane will be reieved in situations wheren � l is equal to the energy level (ie all the moves inthe �nal string an be exeuted). If we examine the nlrelationship below we an dedue that a length of 14with 6 restarts allows 10 out of 14 moves in the �nalstring to be evaluated. Looking forward to the resultsin Table 5, we an see that indeed l = 15 performsworse than both l = 16 and l = 14.6*12 = 72 7*12 = 846*13 = 78 7*13 = 915*14 = 70 6*14 = 845*15 = 75 6*15 = 904*16 = 64 5*16 = 80Further researh is needed to determine the exat re-lationship between hromosome length and the �nalresult. A major problem is the unpreditablity of thenumber of runs of the GA. The number of runs is de-termined by the nature of the landsape that the agentis operating in.5.7 Upsaling propertiesIn this setion we will investigate how well our ap-proah sales up to larger boards with more bloks.Following [Teller, 1994℄ we will use the following for-mulas for the number of piees and the initial amount

Table 5: Results for reduing the number of moves forthe exhaustive heuristi to look ahead. The numberof valid ommand sequenes is alulated as in Se-tion 5.5. The last two olumns are similar to those inTable 4.Len Avg. # #valid evals/ ations/sore runs om seq board board1 0.84 80 3 240 2402 0.96 40 6 240 4803 3.44 27 13 352 10564 6.98 20 28 560 22405 7.39 16 60 960 48006 7.01 14 129 1806 108367 8.19 12 277 3324 232688 8.64 10 595 5950 476009 8.40 9 1278 11502 10351810 8.65 8 2745 21960 21960011 8.79 8 5896 47168 51884812 8.81 7 12664 88684 106420813 8.76 7 27201 190407 247529114 8.91 6 58425 350550 490770015 8.57 6 125491 752946 1129419016 8.78 5 269542 1437710 23003360of energy:Piees = 1=3 � (N � 2)2Energy = 2(N2 + 2N � 3)� 10N is the width (and height) of the board. The �10in the latter formula is somewhat arti�ial, but forreasons of omparability we will use it.The results with hromosome length 12 are given inTable 6. Clearly the sores do not sale up terriblywell. The reason for this is the (very) limited amountof initial energy, whih makes initial exploration infea-sible.If we allow an initial energy of N3, as arguedin [Balakrishnan and Honavar, 1996℄, and make twomore modi�ations, results are muh better (see Ta-ble 7). Note that with larger boards, initial situationsmay our that are partly unsolvable, e.g.XXX XXXThe modi�ations are:� Make explorePoints a dereasing funtion of time.

Table 6: Results with hromosome length 12 for largerboardsN Piees Energy Max sore Average sore6 6 80 10 8.777 9 110 13 10.968 12 144 16 13.019 17 182 21 15.7810 22 224 26 17.82Table 7: Results with hromosome length 12 for largerboards with energy=N3 and square penaltyN Piees Energy Max. Sore Energysore used6 6 216 10 9.23 113.387 9 343 13 12.17 146.208 12 512 16 14.95 206.529 17 729 21 19.55 290.7510 22 1000 26 23.06 419.26After some tuning we used the following formula:ep = 2 + 10 � e�4� initialEnergy�energyinitialEnergy� Introdue a penalty for pushing a blok into aknown four blok square. We used a very strongone: �tness = 0 if this happens.6 Conlusions and future researhThe authors have presented a novel approah to theTartarus Problem. We have ahieved the highest sorein literature for the Tartarus Problem. An averagesore of 8.91 has been ahieved by the exhaustivesearh heuristi with the �tness funtion introduedin this work.The use of GA ombined with the long-term mem-ory gave an average result of 4.5, equivalent to thatahieved using parse trees[Teller, 1994℄ and neuralnetworks[Balakrishnan and Honavar, 1996℄. The ad-dition of heuristis to assist with the building of thelong-term memory map suh as smart wall dedutionand the 6-blok heuristi improved results. The mostsigni�ant improvement, soring 8.77, was ahieved bythe redution in the length of the ommand sequene(hromosome).Given the relative ineÆieny of the exhaustive searh,the hybrid GA approah developed by the authorswould appear to be the most e�etive solution to theTartarus problem yet published.

When allowed more initial energy, the agent soreslose to optimal on all boards, even of larger sizes.The basi agent developed here is now ompetent atsolving the Tartarus problem. Future researh maylook at the possibilities of arrying out more omplextasks in similar environments. Although the �tnessfuntion and some of the heuristis used are spei�to this problem, it remains to be seen whether theapproah taken an be reapplied elsewhere.AknowledgementsWe would like to thank Ernesto Costa and JasonMaassen for their helpful ontributions to our work.This work was based on an problem set at the CoILSummer Shool 2000. We would like to thank AdrianTrenaman for setting the problem.Referenes[Ashlok and Freeman, 2000℄ Dan Ashlok and Jen-nifer Freeman. A pure �nite state baseline for tar-tarus. In CEC 2000, volume 2, pages 1223{1230,2000.[Ashlok and Joenks, 1998℄ Dan Ashlok and MarkJoenks. ISA lists, A di�erent representationfor program indution. In John R. Koza, Wolf-gang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb,Maro Dorigo, David B. Fogel, Max H. Garzon,David E. Goldberg, Hitoshi Iba, and Rik Riolo, edi-tors, Geneti Programming 1998: Proeedings of theThird Annual Conferene, pages 3{10, University ofWisonsin, Madison, Wisonsin, USA, 22-25 July1998. Morgan Kaufmann.[Ashlok and MRoberts, 1997℄ Dan Ashlok andMRoberts. A gp-automata reprise of astro teller'sbulldozer experiment. Tehnial Report AM97-17,ISU Mathematis, 1997.[Balakrishnan and Honavar, 1996℄ Karthik Balakrish-nan and Vasant Honavar. On sensor evolution inrobotis. In John R. Koza, David E. Goldberg,David B. Fogel, and Rik L. Riolo, editors, Ge-neti Programming 1996: Proeedings of the FirstAnnual Conferene, pages 455{460, Stanford Uni-versity, CA, USA, 28{31 July 1996. MIT Press.[Teller, 1994℄ Astro Teller. The evolution of mentalmodels. In Kenneth E. Kinnear, Jr., editor, Ad-vanes in Geneti Programming, hapter 9, pages199{219. MIT Press, 1994.

