
Managing complex taxonomic data in

an object-oriented database

Cedric Raguenaud

A thesis submitted in partial fulfilment for the

requirements of Napier University

for the degree of Doctor of Philosophy

January 2002

Abstract

This thesis addresses the problem of multiple overlapping classifications in object-oriented databases

through the example of plant taxonomy. These multiple overlapping classifications are independent

simple classifications that share information (nodes and leaves), therefore overlap.

Plant taxonomy was chosen as the motivational application domain because taxonomic classifications

are especially complex and have changed over long periods of time, therefore overlap in a significant

manner.

This work extracts basic requirements for the support of multiple overlapping classifications in general,

and in the context of plant taxonomy in particular. These requirements form the basis on which a

prototype is defmed and built. The prototype, an extended object-oriented database, is extended from

an object-oriented model based on ODMG through the provision of a relationship management

mechanism. These relationships form the main feature used to build classifications. This emphasis on

relationships allows the description of classifications orthogonal to the classified data (for reuse and

integration of the mechanism with existing databases and for classification of non co-operating data),

and allows an easier and more powerful management of semantic data (both within and without a

classification). Additional mechanisms such as integrity constraints are investigated and implemented.

Finally, the implementation of the prototype is presented and is evaluated, from the point of view of

both usability and expressiveness (using plant taxonomy as an application), and its performance as a

database system. This evaluation shows that the prototype meets the needs of taxonomists.

2/196

Acknowledgements

I would like to express here my gratitude to the people that made this work possible:

First of all, I would like to thank my PhD supervisors, Prof. Jessie Kennedy and Dr Peter 1. Barclay.

Prof. Kennedy is a Professor at the School of Computing, Napier University. She is at the origin of this

work, as she directed me first to databases when I knew very little about them, and later to plant

taxonomy that became a motivation for both this PhD and my current job. Without her and without the

(sometimes heated) discussions we have had over the years, none of this would have been possible. I

am indebted to her for her patience with me, particularly for my English writing at first, then for my

stubbornness to not understand her and what she wants, especially when she is right. I would also like

to thank her for having made sure that I could continue my PhD by providing me with a continuous

source of income (even when it was not easy).

I would like to thank my second supervisor, Dr Barclay, a lecturer at Napier University who left the

nest to explore the real world, for his support all along my PhD. His presence helped me bring my

English to an (nearly) acceptable level, which was a necessity to go anywhere near the completion of

this PhD and its associated papers. His ideas and his opinions have helped me building mine. Also, our

interesting discussions about science fiction, French, English, Gaelic, and other non-computing matters

were a welcome break fi'om computers and plants, and his support toward the end of my research when

the finalising of this thesis became painful was invaluable. I would also like to thank him for giving me

feedback when he was too busy to do so.

I am grateful for the help the taxonomists at the Royal Botanic Garden Edinburgh, Dr Mark Watson, Dr

Martin Pullan, and Dr Mark F. Newman have provided me during the years of this work, and for

working in the weird area that is plant taxonomy. Their patience to explain how counter-intuitive things

work made this work possible and interesting. I would like above all to thank Dr Newman for his

patience in testing my (numerous, flawed) prototypes until a viable version was finally reached.

I would also like to thank Philippe Li-Thiao-Te for having shown me the way through a PhD in doing it

first, and thanking me in his thesis acknowledgements. I hope you have a good life in Hong-Kong.

Finally, I would like to thank my parents, who have always helped me, in particular in offering me my

first computer when I was 12 (they did not know the consequences), even though they don't approve of

my doing a PhD instead of working for real money in the real world.

Thank you to you all.

Edinburgh, 04 th December 2001

3/196

Contents

Introduction .. 9
1. 1 Plant taxonomy ... 10
1.2 Models of taxonomy ... 11
1.3 TaxonOluic databases .. 12
1.4 Motivation .. 12
1.5 Purpose of this work ... 13
1.6 Structure of this thesis .. 13

2 TaxonOluic work ... 15
2.1 TaxonOluic working practices ... 15

2.1.1 Classification .. 16
2.1.2 Natuing ... 18
2.1.3 The multiple classification problem ... 21

2.2 Known luodels of taxonomy ... 24
2.3 Accurate taxonOluic model ... 28
2.4 Requirements .. 30

2.4.1 Taxonomy-motivated requirements .. 31
2.4.2 Database-motivated requirements ... 33

2.5 Conclusion .. 33
3 Classifications and existing database systems .. 35

3.1 Classification mechanislus ... 35
3.1.1 Materialization .. 35
3.1.2 Power types .. 36
3.1.3 Conclusion .. 37

3.2 Database systems .. 37
3.2.1 Relational systems .. 38
3.2.2 Object-oriented systems ... 42
3.2.3 Graph-based systelus .. 46
3.2.4 Extended object-oriented systems .. 50
3.2.5 Conclusion .. 53

3.3 Conclusion .. 55
4 Proluetheus/ODMG .. 56

4.1 Notation .. 58
4.2 The basic object-oriented model (ODMG) ... 60
4.3 Relationships .. 62
4.4 Selnantics ... '" 65

4.4.1 Aggregations ... 66
4.4.2 Associations .. 69
4.4.3 Built-in attributes .. 69
4.4.4 Constraints .. 72
4.4.5 Attribute inheritance ... 74
4.4.6 Collections .. 75
4.4.7 COlupatibility .. 76

4.5 Instance synonylus .. 77
4.6 Classifications ... 78

4.6.1 Relationships as classifiers ... 78
4.6.2 Classifying in context ... 80

4.7 Exatnple .. 81
4.8 Notes on this model .. 83

4.8.1 The reference problelu .. 83
4.8.2 Collections .. 84
4.8.3 Attribute inheritance ... 84

4.9 Conclusion .. 85
5 Queries and rules .. 89

5.1 Queries .. 89
5.1.1 Syntax and semantics .. 89

5.1.1.1 Model .. 89
5.1.1.2 Relationships .. 91
5.1.1.3 Graphs ... 94

4/196

5.1.2 Notes on POOL .. 99
5.1.2.1 Select only queries ... '" .. 99
5.1.2.2 Object conservation .. 99
5.1.2.3 Methods .. 100
5.1.2.4 POOL and type checking .. 100
5.1.2.5 Set comparisons/sub-queries (in) .. 101

5.2 Rules/Constraints .. 101
5.2.1 Rules in Prometheus ... 102

5.2.1.1 Event. .. 103
5.2.1.2 Condition/Condition of applicability .. '" 105
5.2.1.3 Action/Condition/Constraint ... 106
5.2.1.4 Types of rules '" ... 107

5.2.1.4.1 Invariants ... 107
5.2.1.4.2 Pre-conditions .. 107
5.2.1.4.3 Post-conditions ... 108
5.2.1.4.4 Relationship rules .. 108

5.2.2 Execution strategy .. 109
5.2.2.1 Scheduling .. 109
5.2.2.2 Error handling ... III

5.2.3 PCL ... 112
5.2.3.1 Deficiencies of OCL ... 113
5.2.3.2 Extensions to OCL .. 113
5.2.3.3 Translation .. 113

5.3 Conclusion .. 114
6 Architecture and implementation ... 117

6.1 ArchitectureoftheOODB .. 117
6.1.1 Event layer .. 118
6.1.2 Object layer .. '" '" 119
6.1.3 Views layer ... 119
6.1.4 Index layer .. 120
6.1.5 Query layer ... 121

6.1.5.1 Execution .. 121
6.1.5.2 Indexing .. 122
6.1.5.3 OptiInisations .. 122

6.1.6 Rules layer .. 123
6.1.7 HTTP Server ... 125

6.2 Usage .. 125
6.2.1 Objects .. 125
6.2.2 Relationships .. 127

6.3 Conclusion .. 128
7 Evaluation ... 130

7.1 Taxonomic evaluation .. 130
7.1.1 Support for multiple classifications .. , 130
7.1.2 Historical classifications ... 131
7.1.3 Support for working practices .. 133

7.1.3.1 Typical taxonomic queries .. 133
7.1.3.2 Constraints and the ICBN '" ... 134

7.1.3.2.1 Object rules .. 135
7.1.3.2.2 Relationship rules .. 136

7.1.3.3 Querying by context ... 137
7.1.4 What-if scenarios .. 138
7.1.5 Conclusion .. 139

7.2 Database performance evaluation ... 139
7.2.1 Perfonnance testing .. 140

7.2.1.1 FrOln 007 ... 141
7.2.1.2 What is tested .. 142

7.2.1.2.1 Raw perfonnance ... 142
7.2.1.2.2 Queries ... 145
7.2.1.2.3 Structural modifications ... 146

7.2.1.3 Notes ... 147

5/196

List of figures

Figure 1: Hierarchy of ranks '" .. 17
Figure 2: Simple taxonomic type hierarchy .. 19
Figure 3: Derivation of nmnes example '" .. 21
Figure 4: Multiple classifications ... : 23
Figure 5: HICLAS exmnple .. 27
Figure 6: Taxonomic model (from [Pullan '00]) ... 28
Figure 7: Materialization exmnple .. 36
Figure 8: Power types ... 37
Figure 9: Diagram of a class ... 58
Figure 10: Diagram of a relationship class ... 59
Figure 11: Diagrmn of inheritance .. 59
Figure 12: Diagram of exclusivity .. 59
Figure 13: Diagram of sharability .. 60
Figure 14: Meta model ... 64
Figure 15: Exclusivity .. 73
Figure 16: Sharability ... 73
Figure 17: attribute inheritance in aggregation relationship ... 74
Figure 18: Attribute inheritance in ADAM .. 74
Figure 19: Multiple classification example .. 80
Figure 20: Smnple schema. '" .. 81
Figure 21: Example of constraint condition ... 105
Figure 22: Object-centric constraint ... 112
Figure 23: PCL exmnple #1 .. 113
Figure 24: PCL exmnple #2 .. 113
Figure 25: Translation ofPCL into a Prometheus rule ... 114
Figure 26: Prometheus architecture .. 118
Figure 27: Event layer .. 118
Figure 28: Prometheus object meta model ... 119
Figure 29: View layer ... 120
Figure 30: Rule layer .. 124
Figure 31: Rule system architecture ... 125
Figure 32: PCL rule creation .. 126
Figure 33: Constraint with queries ... 126
Figure 34: Relationship template .. 128
Figure 35: Fmnily name rule .. 135
Figure 36: Genus nmne rule ... 135
Figure 37: Type existence rule ... 135
Figure 38: Species rank rule ... 136
Figure 39: Series rank rule ... 136
Figure 40: Placelnent rule ... 137
Figure 41: 007 partial schelna 1 .. 141
Figure 42: 007 partial schelna 2 .. 142
Figure 43: Benclunark schema ... 149
Figure 44: Constant increase in cost (T5) ... 150
Figure 45: Non-constant increase in cost (Sl) .. 150
Figure 46: Non-constant increase in cost (S2) .. 150
Figure 47: POET benchlnark schema ... 182
Figure 48: Prometheus benclunark schema .. 183

List of tables

Table 1: Odell's relationships ... 66
Table 2: Henderson-Sellers' relationships .. 66
Table 3: Allowed combinations of behaviours ... 76
Table 4: COlnparative table .. 86
Table 5: Query languages comparative table .. 115

7/196

Contributing papers

Mmtin R. Pullan, Mark F. Watson, Jessie B. Kennedy, Cedric Raguenaud, Roger Hymn, "The

Prometheus Taxonomic Model: a practical approach to representing multiple taxonomies", Taxon

49, pp 55-75, 2000

Cedric Raguenaud, Jessie Kennedy, Peter J. Barclay, "The Prometheus Database for Taxonomy",

12th Intemational Conference on Scientific and Statistical Database Management (SSDBM 2000),

Berlin, Germany, pp 250-252, 2000

Cedric Raguenaud, Jessie Kennedy, Peter J. Barclay, "The Prometheus Taxonomic Database",

IEEE Intemational Symposium on Bio-Informatics and Biomedical Engineering (BIBE 2000),

Arlington Virginia, USA, pp 63-70, 2000

Cedric Raguenaud, Martin Graham, Jessie Kennedy, "Two Approaches to Representing Multiple

Overlapping Classifications: a Comparison", l3 th Intemational Conference on Scientific and

Statistical Database Management (SSDBM 2001), Fairfax, Virginia, USA, pp 239-244, 2001

Cedric Raguenaud, Martin R. Pullan, Mark F. Watson, Jessie B. Kennedy, Mark F. Newman,

Peter 1. Barclay, "Implementation of the Prometheus Taxonomic Model: a comparison of

database models and query languages and an introduction to the Prometheus Object Oriented

Model", to appear in Taxon 51, 2002

Cedric Raguenaud, Jessie Kennedy, "Multiple Overlapping Classifications: Issues and Solutions",

14th Intemational Conference on Scientific and Statistical Database Management (SSDBM

2002), Edinburgh, Scotland, to appear, 2002

8/196

1. Introduction

1 Introduction

Classification is a widespread concept that helps categorise, and therefore simplify knowledge in order

to facilitate its manipulation. Classifications also provide a means to increase knowledge by

representing relationships between classified things that might provide new insights into the data (e.g.

discovering that two groups thought to be independent are in fact related in some way, deducing

knowledge from relationships between groups such as pharmaceutical properties), allow automatic

reasoning (e.g. propagation of attributes in computing models [Pirotte '97] [Dlaz '90]), or SUppOlt user

interactions (e.g. searches).

For example, library catalogues are a kind of classification where books are placed into categories (e.g.

"Fiction") in order to ease interaction and simplify tasks related to the books. These categories are not

necessarily exclusive: a book may appear in several categories simultaneously (e.g. English writing,

Crime, and in the authors' category). These categories overlap even more if independent libraries are

put together, as librarians may have chosen alternative classification mechanisms. Medical

classification mechanisms, such as the International Classification of Diseases (I CD), catalogue and

relate diseases in order to make diagnosis, prevention, and cure possible. Diseases are put into

categories according to four classification criteria (topological, etiological, operational, and ethical

political), which may lead to different classifications [Bowker '99]. Classification of living organisms

also generates several classifications. For example, viruses have many origin stories (they could have

been originally plasmids or transposons, they might have degenerated from primitive cells, they might

have evolved from RNA polymers, or they might hav~ evolved from viroids) therefore can be classified

in different ways [Bowker '99]. Another example is plant taxonomy, where plant specimens are

classified in order to describe the knowledge available about them and relate similar specimens or

groups of specimens (taxa). In taxonomy, a single taxonomist may decide to classify a set of specimens

differently overtime because of new discoveries or ideas. In addition, the integration of multiple

sources makes the management of all classifications difficult.

These classifications, especially overlapping classifications, are therefore a fact of life and their

manipulation a necessity of computing systems. This work endeavours to develop a mechanism to

support these classifications through the study of plant taxonomy and its requirements. As will be

shown, plant taxonomy is a very complex domain that poses several interesting challenges to the

computing world. It has therefore been chosen as the application domain for the work presented here

and is used to test the ideas proposed and the prototypes built. The following sections introduce the

motivations for this work, stmting with plant taxonomy, and the aims of this thesis.

9/196

1. Introduction

1.1 Plant taxonomy

Taxonomy is a biological domain that uses classifications to categorise and understand the living

world. The work of a taxonomist is to collect specimens, study them, classify them according to certain

aspects, and name them. This classification work allows references to living things in other biological

domains. Taxonomic classifications have two important aspects: they need to unambiguously identify

specimens so that they can be referred to uniquely; and they can be redefined over time. Being able to

identify specimens unambiguously is not only impOliant for taxonomy, but for all fields of biology and

more generally any domain that needs to refer to living things uniquely. For example, pharmaceutical

research needs to be able to refer to organisms unambiguously so that experiments can be reproduced

and checked. If specimens are not identified properly or if they are confused with others because of an

inadequate classification system, all experimental results may be meaningless. When geneticists decode

the genome of a specimen (or set of specimens), they need to know how the specimens they study

relate and they need to make sure that they belong to the same group.

As taxonomic classifications are built partially on opinions (although substantiated by observation), it

is impossible to describe a definitive classification for a set of specimens. Indeed, two taxonomists may

consider different aspects of the specimens they observe as most important, and therefore they may

build different classifications where these different aspects are highlighted. In addition, progress in

technology and ideas mean that new aspects of specimens can be studied (e.g. DNA sequencing) or

new ideas used to guide classification (e.g. changing geographical borders, the new availability of

taxonomic information from previously closed countries such as Russia or China). Over time, this

process generates several classifications of the same (or overlapping) specimen groups by different

taxonomists. As in taxonomy, anything that has been validly published is considered valid forever,

even though the publication may contain errors (misapplication of a name, mistakes in the

observations), all the classifications created since the dawn of taxonomy are considered valid today and

may be used to base new classifications on. This process generates data that taxonomists must take into

account when they reclassify (revisions). Computers and databases therefore become more of a

necessity in taxonomy in order to support taxonomists in their work.

The extent of the data that must be managed in order to represent a significant part of the known plant

kingdom and in order to proceed to the revision of a plant group is enormous. Families that contain

thousands of genera, and genera that contain hundreds of species are not uncommon. Currently,

taxonomists do a lot of their work on paper, which has many practical limitations. For example the

representation of the names appearing in celiain plant groups during a revision can take several sheets

of paper and hardly offers a suitable medium for taxonomists to have an overall idea of the group. If the

descriptions associated with the groups to which the names are attached were to be represented, the

amount of data would be overwhelming. Working on paper also requires that the taxonomist does all

the work and therefore is able to remember all the data or a significant part of it so that comparisons

10/196

1. Introduction

can be performed. It is clear that such amounts of data cannot be effectively manipulated by hand. The

amount of data necessary to working taxonomists is not only important in the context of a single

classification, but as they produce multiple concurrent classifications, the amount of data necessary to

capture knowledge about the living world increases at a high rate.

Moreover, there is a need for official taxonomic repositories that could be used in judiciary actions

(e.g. ban of some substances issued from the processing of specific plants) or biodiversity initiatives

(e.g. species conservation). These repositories, although not required to contain detailed information

about all aspects of plants, should allow unique identification or refell'al of organisms. As these

repositories should be accessed by both specialised taxonomists and members of the public, the

information should be exact (taxonomists looking for information about existing classifications want

exact information) and consistent (members of the public are not able to judge the validity or the

relevancy of the information they receive). The amount of data necessary for such projects is even

more impOltant than for a single revision or classification, and is undoubtedly beyond the abilities of a

single person or group of persons. Plant taxonomy is therefore a domain in urgent need of suitable

computing support.

1.2 Models of taxonomy

Many models of taxonomy have been proposed (e.g. lOPI [Berendsohn '97], CDEFD [Berendsohn

'99]), some coupled with a database model (e.g. Taxon-object [Saarenmaa '95], HICLAS [Zhong '96],

Pandora [Pankhurst '93]). Most of these models of taxonomy are based on a biased idea of taxonomy,

namely that there is one single accepted way to look at the world and its living organisms. However, as

indicated earlier, there is no single classification to describe the world, therefore these single view

models of taxonomy are not suited for taxonomic work in a context beyond a single isolated

classification or revision. Moreover, in ignoring the multiplicity of taxonomic classifications, they are

unable to SUppOlt taxonomists fully in their work. For example, such models are unable to provide

taxonomists with information about specimens classified in various published classifications. They are

also unable to SUppOlt automatic processes such as finding synonyms, i.e. groups that share a certain

number of specimens or taxonomic types, or allocating names. A few of these models (lOPI, HICLAS)

recognise the impOltance of multiple classifications of specimens and propose an approach to capture

them. However, even those models are limited in their application to taxonomic work: IOPI supports

multiple classifications through the creation of potential taxa, which leads to a very large number of

potential taxa; HICLAS captures multiple classifications by recording the life of a taxon (its

movements from classification to classification), but by doing so only records the opinion of a

taxonomist, not objective information.

11/196

1. Introduction

1.3 Taxonomic databases

Many database models have been used to support these models of taxonomy (relational, object

oriented, and graph-based models). However, the majority of them rely on the relational model, which

has well-known limitations to support complex modeling domains and complex applications (e.g.

CAM/CAD). As a consequence, existing taxonomic databases do not support sufficiently the work of

taxonomists who still have to rely on work on paper and slow research in libraries. For example, they

are unable to implement the rules of taxonomic work (ICBN [Oreuter '94]). Other models have been

considered (e.g. graph-based [Zhong '96]) but these models are also limited in their ability to SUppOlt

complex application domains. Indeed, they are built on a very simple mathematically sound model that

requires large amounts of data in order to describe sizable domains.

The representation of biological classifications in particular is difficult. A few approaches have been

proposed (e.g. Materialization [Pirotte '94], Power types [Odell '94a]). These approaches represent

classifications at two different levels: materialization uses the class/meta-class level, and power types

use the instance level. The choice of level for the representation of the classifications depends on the

data to be represented. Indeed, a class/meta-class approach implies that not many changes will occur

once the classifications have been created. Changes would mean that schema evolution (e.g. [Bertino

'93]) must be suppOlted in the system, with the restrictions it brings. Working at instance level implies

more flexibility, but can introduce a performance overhead, as many aspects of the data will not be

fixed but be dynamically recalculated when necessary I.

1.4 Motivation

This work is therefore motivated by the following facts:

Taxonomists need databases that support their way of working, and the many taxonomic database

systems created over time show this need (e.g. Pandora [Pankhurst '93], Alice [White '93], Taxon

Object [Saarenmaa '95], BO-BASE [Walter '93], Brahms [Filer '94], CDEFD [Berendsohn '99]

(model only), lOP I [Berendsohn '97] (model only) and HICLAS [Zhong '96]).

A major problem of existing taxonomic models and applications is their failure to support multiple

overlapping classifications. This leads to inconsistencies, errors, and a biased view of taxonomy.

Although supporting multiple overlapping classifications is a difficult task, it could be generalised

in order to be embedded in a database system so that other application domains can exploit it2
• This

would make classification application development easier and more efficient.

I Whatever approach is chosen, the representation of multiple overlapping classifications is never tackled, and
misunderstanding of taxonomic information lead the models to make these classifications impossible.
2 Whether knowledge should be concentrated in the database or in the user application is debatable [paton '99] and
there is no clear limit between the two approaches. For this work, it is considered that the database should support
as many features as possible, but should remain generic, i.e. the features should not be supported in a specific
context only (e.g. plant taxonomy).

121196

1. Introduction

No model to support multiple overlapping classifications exists in the literature, although this is

not a plant taxonomy specific problem. These multiple overlapping classifications are a feature of

many domains, therefore their investigation may provide techniques for a wide range of

applications (e.g. in a library catalogue, books could be classified simultaneously in categories

English, Fiction, Crime, in publisher categories, and author name categories).

1.5 Purpose of this work

This research work envisages the provision of generic features to support multiple overlapping

(possible conflicting) classifications for plant taxonomy. This will be achieved through:

The extraction of requirements and analysis of these requirements. As plant taxonomy is a domain

that requires mUltiple classifications, it is used as an application domain in order to test the ideas

presented here. To do so, this thesis first identifies the basic requirements of such a mechanism in

as broad a context as possible, i.e. necessitating as little changes to an existing database and

keeping in mind that other domains may use the same principles.

Using these requirements, traditional database models are reviewed and their ability to support

taxonomy discussed.

It then endeavours to provide a solution to the problems highlighted in taxonomy, especially the

multiple overlapping classifications problem. The resulting model should allow taxonomists to

capture, compare, and contrast existing and new classifications.

In order to provide a usable database system that supports these mUltiple classifications, this thesis

also proposes a query language adapted to that specific problem (although not restricted to it).

In addition, features such as integrity constraints and rules are investigated in order to support a

wide range of taxonomic tasks that are identified as being able to be automated, and to support

data integrity in general.

1.6 Structure of this thesis

This thesis is organised into 8 chapters, plus references and appendices. Chapter 2 explains taxonomy

in sufficient detail to show what its peculiarities are, and motivates the rest of the work. It also reviews

a new model of taxonomy elaborated within the Prometheus group [Pullan '00]. To conclude, chapter 2

lists a series of requirements, motivated both by taxonomic considerations and database considerations,

which a taxonomic database should offer.

Chapter 3 and subsequent chapters present work developed for this thesis. Chapter 3 presents and

discusses several approaches to biological classifications. These classifications are not to be assimilated

with object-oriented database system classifications. These models have been proposed in the literature

as good ways of representing biological classifications, but they do not consider the peculiarities of

plant taxonomy fully. This chapter also presents the main database models available today (relational,

13/196

1. Introduction

object-oriented, graph-based, and extended object-oriented), and studies their ability to support

taxonomic applications and data. It shows that several of these models propose interesting features that

could SUppOit some aspects of taxonomic information (e.g. graph manipulations, extensive

programming language, constraints support). However, it also shows that there is no single model

philosophy that supports all the requirements of taxonomic work.

Chapter 4 describes the database model developed during for this thesis work. The new model

emphasises relationships as a primary modelling and implementation tool. These relationships are

added to an ODMG-based database model. This chapter argues that relationships should replace

references in order to allow semantic relationships in all circumstances. These relationships, or links,

are also used to support the definition of multiple overlapping classifications according to the

requirements specified in chapter 2. They also offer several features that provide a better development

environment than most other models (e.g. semantics, constraints).

Chapter 5 presents the query language defined to support classifications (in particular plant taxonomy),

and introduces the lUles/constraint mechanism. OQL is extended in order to benefit from the new

database stlUctures and offer support to taxonomic applications. The extensions include: uniform

treatment of relationships and objects, specific operators for manipulation of relationships (e.g.

selective downcast), exploration and traversal of graphs, and extraction of (parameterised) graphs. The

rules/constraint mechanism is inspired from several existing mechanisms and includes immediate and

differed rules, several execution strategies, and automatic actions (e.g. transaction abortion). It also

provides additional features specific to plant taxonomy such as interactive rules, relationship-centred

rules, and rules with condition of applicability.

Chapter 6 presents the architecture and implementation of the prototype. The prototype is a framework

that proposes classes that can be used or extended to fit user applications' needs. The architecture of the

prototype is discussed in detail and justified. The chapter also shows how some of the requirements

expressed in chapter 2 have been taken into account during the building of the prototype.

Chapter 7 evaluates the system described in chapters 4,5, and 6. The evaluation is performed from two

distinct viewpoints: the taxonomy viewpoint and the database viewpoint. The taxonomic evaluation is

performed through the description of typical interactions between a taxonomic application and a

taxonomic user and the database system. Through the specification and the implementation of a

benchmark inspired by 007 [Carey '93], the performance of system built is compared to the

performance of its underlying storage system, and the cost of the features described in chapter 4 is

calculated and analysed.

Finally, chapter 8 concludes the thesis and discusses the success of the work presented here. It also

outlines fmther work, which includes performance improvements and distribution of the system over

many localised taxonomic database systems.

14/196

2. Taxonomic work

2 Taxonomic work

The purpose of this work is the design of a database system that is able to handle multiple

classifications of concepts. As an application example, plant taxonomy has been chosen, as the rules

that govern it are complex, the revision of groups is common, therefore the rate of evolution of

knowledge and data is rapid. The resulting classification information is hard to represent without the

help of a suitable computing system. The problems encountered in plant taxonomy are not unique.

They not only appear in other biological taxonomy areas, but also in other domains where classification

is an important process (e.g. in libraries). The fmdings of this work are therefore applicable to similar

problems in other domains.

This section describes how taxonomists work, what are the known models of taxonomy, and the model

that represents more faithfully how taxonomists really work. This section also extracts the basic

requirements of a suitable database model for this application domain in particular and for

classifications in general.

2.1 Taxonomic working practices

Taxonomy is defined as "orderly classification of plants and animals according to their presumed

natural relationships" [Webster '01]. The purpose of taxonomy is the creation of classifications of

specimens (that can be biological specimens or other kind of specimens), and the attribution of names

to these specimens. These classifications allow a better identification and understanding of what the

specimens are, which allows the extraction of further knowledge by studying the relationships these

specimens have with each other. In this section, the way taxonomic work is performed is presented and

the rules that govern it are given. Although the descriptions focus on plant taxonomy (which is

hereafter called taxonomy for simplification), they apply in part to zoological taxonomy and other

taxonomic disciplines.

The processes involved in taxonomy are of two kinds: one is classification, and the other naming. The

first one allows the description of classifications from which knowledge can be extracted by studying

the relationships between different groups (e.g. medicinal propelties, evolution history). The second

one allows the creation of handles for specimens so that they can be referred to unambiguously. It is

argued in [Pullan '00] that these processes are distinct in nature. It is shown why in this section. The

classification process is first described, and then the naming process is presented.

15/196

2. Taxonomic work

2.1.1 Classification

The first step of proceeding to the creation of a classification is the collection of as much published

material on the group to be studied as possible. This information can be found in previous published

classifications of the same or similar groups, or from determinations on herbarium sheets.

Determinations do not have classification value, as they are simply the application of a name by a

taxonomist to a specimen on a herbarium sheet (plant specimen) without justification or publication.

They only show a taxonomist's point of view and represent how the taxonomist thought that the plant

specimen should be named. They can however provide information as to what a particular taxonomist

thought when in the process of building a classification and are therefore useful information.

The next step is the collection of plant specimens. These specimens can be collected in the field, in

herbaria, or from published monographs. Since taxonomy is a very old discipline and has grown over

the centuries, taxonomists rarely classify entirely new specimens or plant groups. They usually have an

idea of where they might come from and where to collect new specimens. This information can be

found in previous classifications of a similar group (especially in the case of a revision of a specific

taxonomic group). When all the specimens have been collected, a taxonomist starts the classification

process.

During this process the taxonomist chooses a set of criteria to be used in order to distinguish the groups

of specimens and the relations between these groups. For example, one taxonomist might choose as a

discriminating property the shape or colour of leaves, the form of petals, or the place of origin of the

specimens. These criteria are chosen arbitrarily, as there is no rule that dictates this process in the

International Code of Botanical Nomenclature (ICBN [Greuter '94]). The choice is not totally random,

as a taxonomist usually has an idea of the propelties of the specimens under study from the collection

of existing information in previous classifications and previous professional expertise. However, this

choice is very impOltant, as it underlines the whole process of creating a classification. Indeed, if a

taxonomist chooses different sets of criteria, different classifications might be created.

During this phase of the work, the taxonomist arranges specimens into piles according to the set of

criteria that were chosen. Each of these piles is then transfOlmed into a group of specimens, or taxon.

The set of specimens that are placed into a taxon is called the circumscription or delimitation of the

taxon. There is no rule on the number of taxa or the number of specimens in each taxon. However, at

least one specimen must be present in each group in order to build a specimen-based process. When all

the piles are created, they act as surrogate for the specimens they contain. They are then grouped with

other piles (classified) in order to form a hierarchic structure: the classification hierarchy. The process

is repeated as many times as necessary for each additional level. Plant taxonomy classifications are

therefore in essence sets of connected one-level classifications of specimens or specimen surrogates,

where each level is classified by the next higher level.

16/196

2. Taxonomic work

Once classifications have been created, levels, or ranks, are assigned to each of the piles in the

hierarchy. Ranks are the essential information that allows the application of the ICBN to a given

classification. The ICBN distinguishes three types of ranks: primary ranks, secondary ranks, and

additional sub ranks. Primary ranks contain Regnum, Divisio (also called Phyllum) , Classis, Ordo,

Familia, Genus, and Species. Secondary ranks include Tribus, Seetio, Series, Varietas, and Forma. Sub

ranks are created by adding "sub" in front of primary or secondary names: Subregnlll11, Sllbdivisio,

Subclass is, Subordo, Sub/amilia, Subtribus, Subgenus, Subsectio, Subseries, Subspecies, Subvarietas,

and Sub/orma. These sub ranks represent sub-divisions of the rank whose name "sub" has been added

to. All these ranks and their relative position are shown in Figure 1. Only primary ranks are compulsory

in classifications, and taxonomists are free to use any number of the secondary and sub ranks, as long

as their order is always valid. For example, it is acceptable to work on a classification where only

Regnum, Divisio, Ordo, Genus, Sectio, and Species have been selected (all primary ranks and one

secondary rank). Ranks are ordered, i.e. each rank follows another rank in a very specific order.

According to the ICBN, ranks specify the way taxa can be arranged, their propelties, and later the

method to derive their names. For example, the ICBN specifies that a taxon that is placed at rank

Species must always be placed below a taxon that is placed at a rank between Genus inclusive and

Species exclusive. Taxonomists usually select only a portion of the rank hierarchy in which to do their

work because the amount of information the conjunction of all ranks would produce would be

unmanageable. For example, a typical range would be between Genus and Species (this can include

hundreds or thousands of groups) or Genus and Subspecies.

Secondmy Sub ranks
I

Primary L..:.l-;.-----, Primary

Figure 1: Hierarchy of ranks

17/196

2. Taxonomic work

When these classifications are published, additional information, such as author, publication, and

ideally classification decisions (e.g. what characteristics of plants have been used to build the various

levels of the classification), need to be added to the objects that represent classification nodes.

Once a classification has been built, names must be found for the various groups that have been

defined.

2.1.2 Naming

Creation of names.

Names in taxonomy do not carry any taxonomic opinion, i.e. they do not represent any classification

information. They are only the records that a name has been used and published at a specific rank by a

taxonomist or that certain combinations of names have been used.

The choice of names is largely free. However, certain rules apply. They should be single worded except

Genus names that can use a hyphen. Names at ranks between Series and Species (Species excluded)

must start with a capital letter, whereas names at ranks below Species and at Species rank must start

with a lowercase letter. In addition, the ending of names at ranks above Genus are pre-defined: names

at family level must end with -aceae3
• Names at rank sub-family must end with -oideae. Names at rank

tribe must end with -eae. Names at rank sub-tribe must end with -inea.

Names form small hierarchies independent of classification and have an importance of their own. Two

hierarchies can be distinguished: type hierarchies and placement hierarchies. Type hierarchies represent

the fact that some names or specimens have been selected as the taxonomic type for other groups. For

example, a Genus level name must have a Species level name as one of its taxonomic types, and a

Species level name must have one or more specimens as its taxonomic type (Figure 2). There exist

many different taxonomic types that convey slightly different semantics. For example, a holotype

signifies that the taxonomic type was selected by the taxonomist that published the name; a lectotype

signifies that the taxonomic type has been selected by a taxonomist that was not the taxonomist that

published the name (the information might have been missing or the rules of nomenclature may have

changed); a neotype signifies that the type specimen has been lost, therefore a taxonomist that is not the

taxonomist that has published the name has selected a new taxonomic type (probably among the

isotypes); a syntype is a taxonomic type that is a synonym of another taxonomic type, and an isotype is

a taxonomic type that is equivalent to an existing taxonomic type (lecto, holo or neo). The rules that

govern the use of these specimens vary slightly. For example, when a name is derived from a group of

specimens, the holotype is always the taxonomic type to be used in priority, then the lectotype, then the

neotype. Isotypes are not used for naming if they are not selected as lectotypes. Names can have many

3 8 exceptions: Palmae, Gramineae, Cruciferar, Leguminosae, Guttiferae, Umbelliferae, Labiatae, Compositae

18/196

2. Taxonomic work

taxonomic types, but they can only have one lectotype, or one holotype, or one neotype. They can

however have as many isotypes as necessary.

Apium L.
(Genus)

Holotype ,,.
Apium graveolens L.

(Species)

Lectotype
r

C. von Linnaeus
#Herb.Cliff. 107

Apium I BM

Figure 2: Simple taxonomic type hierarchy

The placement hierarchy is only used for nomenclatural completeness. For example, it is necessary for

a Species name to be related to a name of rank Genus so that the binomial name can be derived

accurately, e.g. the Species name graveolens can be paired with the Genus name Apium in order to

form the complete Species name Apium graveo/ens. Ifno nomenclatural information is needed (e.g. for

names at ranks above Genus which are not composed names), no placement relationship is used. It is

important to note that this placement relationship only represents the use of a specific combination of

names, not a classification statement (e.g. graveolens specimens are part of Apium).

In addition, names contain the name or abbreviation of the name of the taxonomist that has published

it. For example, in Figure 2 the two names are followed by the letter L., which signifies that the

taxonomist whose abbreviation is L. (Carlus von Linnaeus) has published the name. If a name is reused

and placed into a new context (e.g. when a Species name is placed in a new Genus name), the name of

the taxonomist that used the name first is placed between brackets. For example, if a taxonomist whose

abbreviation is T. published Cyclospermum graveolens after Apium graveolens L. had been published,

the new name would become Cyclospermum graveolens (L.)T.

Derivation of names.

Once the classification has been completed and ranks assigned, the taxonomist selects some specimens

in each group. These specimens are called type specimens. A type specimen is a specimen that has been

published as a taxonomic type (a typical representative) for a name. All names must have a taxonomic

type (the process is called typification), that is used in order to derive names from sets of specimens.

The oldest published taxonomic type specimen is selected from each group, and its name becomes the

name of the group. If no type specimen was placed in a group, one specimen is elected as the

taxonomic type of the group, and a new name is created and published. The process repeats with the

taxa that contain the specimens. Indeed, taxa can also be the taxonomic type of other taxa of higher

rank. For example, Genus taxa have a Species taxon as their taxonomic type. In that case, instead of

19/196

2. Taxonomic work

selecting and electing specimens, taxa or names are selected and elected as taxonomic types. In the case

of a new use of a name (e.g. a Species name has been placed in a new Genus), a new name must be

created and published. For example, if Apium inundatum L. exists and its taxonomic type is found in a

classification taxon, but the classification taxon is placed under a taxon whose derived name is

Heliosciadium, a new name Heliosciadium inundatum (1.) must be created and published so that

groups in the classification can be named.

The assignation of names from classifications is both a top-down and bottom-up process. The selection

of names starts from the highest level of the classification hierarchy. Each of the groups encountered is

named down to the lowest level using taxonomic type information and the ICBN. This is particularly

important for multinomial names (e.g. Species names and below), as the name of their higher taxon

must be known before they are themselves named. Indeed, as explained before, the use of an existing

name in a different context (e.g. moving a Species to a different Genus) requires the publication of a

new name. But the selection of a name for each level involves the set of all specimens that have been

used at any level below the group. For this, all groups that were placed in the taxon under study and all

the groups placed in groups below that are examined by recursing down classification trees until the

specimen level is encountered, which may vary from one branch of classification to another. Each of

the specimens found is examined, and the taxonomic type hierarchy is traversed in a bottom-up fashion

from specimens in order to find the names that have been published at the appropriate rank. When such

a name is found, it becomes the name of the new taxon. Ifno such name is found, a new name must be

published. The process then goes down a level, and each of the groups placed in the first taxon is

named. In the case of multinomial names, special care must be taken to ensure that the combinations of

names that are derived have already been validly published.

Figure 3 shows an example of derivation of names in a classification. Taxon 2 is first created by

grouping two specimens together because they have common properties that are considered important

by the taxonomist. Then, this taxon is put inside another taxon (Taxon 1), possibly along with other

taxa. Taxon 2 is declared to be at rank Species, and Taxon 1 at rank Genus. In order to derive names,

first Taxon 1 is named. All specimens described in one of its subgroups, at any level, are collected, and

the taxonomic type specimens extracted. Since Taxon 2 contains two type specimens, there is no need

to elect new taxonomic types. When examining the dates of publication of the names of these two type

specimens, it can be seen that one is the taxonomic type of Apium repens (Jacq.)Lag. and the other one

the taxonomic type of Heliosciadium nodiflorum (1.)W.DJ.Koch. These two names are placed in

Genus names, but only Heliosciadium nodiflorum (1.)W.DJ.Koch. is the taxonomic type of another

name. Therefore that name is selected and the traversing of the hierarchy of taxonomic types upwards

continues. Heliosciadium W.DJ.Koch. is reached, which is a name placed at rank Genus. Since Taxon

1 is also placed at rank Genus and only one name at rank Genus was found, Taxon 1 becomes

Heliosciadium W.D.J.Koch. If many names at rank Genus had been found, the oldest validly published

one would have been chosen. Then Taxon 2 is considered. Taxon 2 is a taxon at rank Species, therefore

the process applied to Taxon 1 is repeated but stopped at that rank. When examining the type

201196

Genus

Species

Specimen

2. Taxonomic work

specimens, it can be seen that Taxon 2 can either be Apium repens (Jacq.)Lag. or Heliosciadium

nodiflorum (L.)W.DJ.Koch. However, Apium rep ens (Jacq.)Lag. was published in 1821, whereas

Heliosciadium nodiflorum (L.)W.D.J.Koch. was published in 1824. Taxon 2 must therefore be Apium

repens (Jacq.)Lag. However, because Taxon 2 is a Species group, its name is a binomial name. But the

combination of Heliosciadium (Taxon 1) and rep ens (the epithet name of the binomial Species name)

(Taxon 2) has never been published. Therefore a new name needs to be published, Heliosciadium

rep ens (Jacq.)Raguenaud., and the type specimen of Apium repens (Jacq.)Lag. is elected to be the

taxonomic type of Heliosciadium repens (Jacq.)Raguenaud.

Placement

Apium graveolens L.
(Species) 1753

Lectotype

C. von Linnaeus
#Herb.Cliff. \07

Apium 1 BM

Apium L.
(Genus) 1753

Placement

Apium repens (Jacq.)Lag.
(Species) 1821

Heliosciadium W.DJ.Koch.
(Genus) 1824

Taxon 1

--Holciiype-- ------------------
Placement

Heliosciadium nodiflorum (L.)W.DJ.Koch
(Species) 1824

W.DJ.Koch, Nova
Acta Phys.-Med.

Acad. Caes. Leop.
Carol. Nat. Cur. 12(1)

12{)

Taxon 2

Figure 3: Derivation of names example

2.1.3 The multiple classification problem.

One of the main problems associated with taxonomy is the presence of mUltiple conflicting

classifications. Because, as was said, taxonomists choose the set of criteria that will be used in the

process of building a classification, many taxonomists may choose many different sets of criteria and

see the same set of specimens through them. Even a single taxonomist might choose different sets to

refer to the same group at two different points in time, for example because of advances in technology

(e.g. the increasing use of DNA has generated many new classifications). Because these criteria are

central to the process of classifying, choosing different sets of criteria often results in building different

classifications. For example, if leaf shape is chosen as an important criterion, the resulting

classification is likely to be different from a classification built on the assumption that place of

collection is more important. As taxonomists do not need to relate to existing classifications and place

the new work in the context of all previous classifications, the result is multiple overlapping

classifications that can be conflicting.

21/196

2. Taxonomic work

The following example (Figure 4) shows a possible scenario that leads to the creation of multiple

classifications of the same set of specimens. In order to make understanding easier, actual taxonomic

information is not used, but geometric shapes are selected to illustrate the argument. The top left figure

is the earliest classification and is based on a smallish set of specimens. The criterion used for this

classification was the shape of the specimens, which resulted in a two-level hierarchy. The specimens

are represented as shapes, the first level of the classification as a plain line oval that could be a Species

rank group, and the highest level is represented by a dashed line oval that could be a Genus rank group.

As this classification is the first classification, the taxonomist elects type specimens for each group and

decides on a name (that needs to be published). The Squares group is typified by the white square

because in the taxonomist's opinion this is the most typical example of square shapes, the Triangles

group by the light grey triangle and the Ovals group by the black oval. Shapes in general are typified by

the white square specimen because it is the oldest published type, hence the Shapes group's type is the

Squares group.

Subsequently, (top right) a second taxonomist decides that an intermediate level in the classification

would make things clearer (for example at rank Section). New groups are created that represent finer

gatherings of specimens. As a result of the reordering of specimens, some groups do not have types,

therefore the taxonomist chooses to elect type specimens in these groups (white rectangle and dark grey

circle). The application of the ICBN results in the assignment of names to groups that contain already

published types: Squares, Ovals, and Triangles that contain the specimens white square, black oval, and

light grey triangle respectively. The groups that contain new type specimens receive new names:

Rectangles and Circles for the groups that contain white rectangle and dark grey circle respectively.

These Species level groups are gathered in higher level groups: 4 angled shapes, that contains

Rectangles and Squares, 3 angled shapes, that contain Triangles, and Round shapes, that contain Ovals

and Circles. The type specimen of these groups should be the oldest published type specimens from

lower groups, therefore the type specimen of 4 angled shapes is white square, the type specimen of

Triangles is the light grey triangle, and the type specimen of Round shapes is black oval. By extension,

taxonomists say that the group Squares is the type of 4 angled shapes, Ovals is the type of Round

shapes, and Triangles is the type of 3 angled shapes. The same rule applies to the highest level group

whose type specimen is the white square, therefore its name remains Shapes.

A third taxonomist (bottom left) finds some new specimens (diamond shapes) and decides that shape is

not an important characteristic after all and reclassifies the larger specimen set according to their

brightness. This creates a two level classification with five groups (he ignores one particular shade, the

mid-grey square, as there is only one instance of it and it must therefore be a mistake to include it in the

classification). Co-incidentally each group contains an existing type specimen and therefore no new

types need to be defined for the classification. In practice often several types will end up in one group,

which then requires the oldest type specimen to be chosen as the type. Notice that now, after

rearrangement of shapes, the group called Circles not only contains a circular shape, but also contains a

triangle, a square, and an ovoid shape. Since the ICBN requires that the oldest type specimen represents

22/196

2. Taxonomic work

the group it belongs to, this is an expected, although unintuitive, result. Because the white square is the

oldest published specimen, it remains the representative for all the shapes and the group called Squares

is the type of all the shapes.

Finally a fourth taxonomist (bottom right) undertakes a revision, and reclassifies the specimens by

shape again. But because new specimens have been discovered by taxonomist 3, and because

taxonomist 4 is aware of taxonomist 2's work, the new classification contains 3 levels as taxonomist

2's classification, and new specimens, as in taxonomist 3's classification.

Shapes

Squares

........... l-h.O'""
/_'- -

/~TriangleS

Type specimens

Shapes

II

/

Triangles ___________ ! ______________ ~ircles
Squares --------_.-----------

Old type specimens

Shapes 3 angled shapes
Ovals Triangles

Squares
Round shapes I

---j-------i

Circles

New type specimen Old type specimens New type specimen

New type specimen

Shapes 3 angled shapes
Ovals Triangles

Round shapes

---------/---------------

Old type specimens

Figure 4: Multiple classifications

In the process of a revision, it is common that a taxonomist experiments with different representations

of the groups that are being classified. It is also common that taxonomists want to compare newly

created classifications to previously published classifications. The groups can be compared on the basis

of the set of specimens they contain at any level. From these comparisons, synonyms can be

discovered. Two taxa are synonyms if they contain overlapping sets of specimens. This overlap can be

complete (full synonyms) or partial (pro parte synonyms). In addition, these synonyms can share the

same taxonomic type (in which case they are hOl11otypical synonyms) or not (in which case they are

heterotypical synonyms).

231196

2. Taxonomic work

The representation of multiple classifications is an important consequence of taxonomic work. As it is

inevitable that many classifications will be created over time using overlapping sets of specimens, and

given that all these classifications are equally valid and can be referred to in order to name a particular

specimen, it is essential to be able to specify the classifications, or contexts, in which specimens are

described. It is therefore unthinkable to create a single classification that would represent everything.

Doing so would impair the representation of knowledge about existing species and would potentially

lead to loss of information. This loss of information may lead to communication problems or even legal

problems. For example, when a pharmaceutical company undertakes research on a specific substance

and refers to it as a product of a specific plant using a classification scheme that is not aware of

alternative means of classifying the same organism, there is no way for this company to be aware that

the same plant has already been studied by a different company or even by another of its departments.

It is also possible that two scientists working on the same specimens are not aware of that fact because

they both use different classification schemes and are not aware of different denominations for their

specimens. It has even been seen that research has been done on specimens as unrelated specimens,

whereas they were in fact classified as belonging to the same species in another classification. That

research has produced strange correlated results that have alerted the scientists.

It is also impOliant that this process be specimen-based, as specimens, because they are physical

entities that can be seen and studied in detail, are the only piece of objective information available after

the process of classification has ended. Indeed, taxonomists are not required to describe their opinions

and assumptions when they publish a classification. It is therefore impossible to be certain of what a

taxonomist was thinking when building a classification. Therefore, specimens are used by other

taxonomists to understand the meaning of specific groups, thereby providing a basis for objective

comparison. A name-based process would create ambiguity and inconsistency. For example, Apium

graveolens L. is a name that has been used by at least two groups of taxonomists (Tutin and Popper et

al.). However, without specimen information, it is impossible to know whether these two names

represent the same concept or if they have been used in a different manner, but the groups classified

have inherited the same names. It can be seen in the example in Figure 4 that the same name can be

used to refer to very different groups of specimens in different classifications.

2.2 Known models of taxonomy

From the description of taxonomy in the previous section, two important points can be identified:

1. The taxonomic process is divided into two distinct processes, namely the creation of

classifications and the creation and derivation of names.

2. It is vital to be able to represent multiple classifications in order to capture accurately the state of

the knowledge and the reality of the world.

Given these two important requirements, existing taxonomic models can be studied (e.g. Pandora

[Pankhurst '93], Alice [White '93], Taxon-Object [Saarenmaa '95], BG-BASE [Walter '93], Brahms

[Filer '94], CDEFD [Berendsohn '99] (model only), IOPI [Berendsohn '97] (model only) and HICLAS

24/196

2. Taxonomic work

[Zhong '96]) and their weaknesses discussed. It will be shown that no taxonomic model properly

supports taxonomic work and taxonomic practices (i.e. ICBN), and that only two models are close to

providing an adequate support for taxonomy (HICLAS, IOPI).

Regarding requirement (2), it can be shown that most of all known taxonomic models do not satisfy the

criterion. Indeed, these taxonomic models or systems adopt a simplified view of taxonomy where only

one classification is represented at a time. The previous section showed that this is not a realistic view.

These models are all based on similar representations of taxonomy. All represent the main component

of a taxonomic classification by a taxon that is placed below another taxon, and above a series of other

taxa. Each taxon can only have one parent, which means that they can only appear in one classification.

In order to overcome this limitation, some of these models support the defmition of synonyms,

homonyms, and accepted names (e.g. Pandora). The disadvantage of this approach is that the user is

forced into choosing one viewpoint from which to describe classifications, and make decisions

regarding the status of a specific group (e.g. they must choose which group is the accepted group and

which is a synonym).

In addition, they are also name-based systems, which implies that the meaning of taxa (their

circumscription as a set of physical specimens, some or all of which must be type specimens) is not

clearly defined. As a consequence of this lack of information, it is not possible to design an automatic

mechanism for naming or checking the name of taxa. Therefore, regarding criterion (1), they provide

insufficient support for taxonomic work (e.g. a revision). It is also impossible to have an objective view

of the data, as names are not objective entities. Indeed, taxonomists may attach meanings to certain

names, but their point of view may differ from that of other taxonomists.

Only two models attempt to capture multiple classifications: IOPI [Berendsohn '97] (model only) and

HICLAS [Zhong '96]. However, these models take an approach that does not allow them to capture

properly (e.g. HICLAS) and easily (e.g. IOPI and its numerous potential taxa) how taxonomists work

and relate their respective work, or to compare effectively classifications.

The IOPI model is a name-based model, as the working group that created it consider that although a

specimen based approach would be the best approach, it is impractical at the present time because:

A substantial percentage of taxa exists which are well circumscribed and not beset with

nomenclatural problems, a vast amount of information exists that is only linked to names.

The priority at the time of the creation of the model was the generation of a nomenclatural

checklist, which is a taxon-based approach.

Therefore, although the specimen-based approach is considered a good approach, the IOPI model

concentrates on the representation of taxa. Provision is however given to allow the representation of

specimens. Because, as was described in section 2.1, the definition of the meaning attached to a name

varies from a taxonomist to the next, it is not possible to represent a single named group once and for

all. The IOPI approach consists in defining potential taxa. A potential taxon is a taxon identified by its

25/196

2. Taxonomic work

name, but also by a publication that distinguishes between the distinct meanings given to the name.

That potential taxon is attached to a plant name which represents the name of the taxon.

It appears that lOPI combines the concepts of nomenclatural status of a name (was it validly

published?) and the status of the taxon in the classification (is the taxon synonymous with another?).

This is because all status information is linked to the potential taxon. This mechanism does not allow

the representation and comparison of concurrent classifications. Moreover, IOPl requires the user to

make a statement about the status of the taxon rather than allowing the system to work out that

information. With lOPI taxonomists must declare synonyms and specify an accepted name for each

group of synonyms. Instead, synonyms could be discovered by a process that examines specimen lists

and infers which taxa are synonymous. This would avoid the artificial creation and manipulation of

accepted names.

From a classification point of view, the taxa defined in IOPl may be classified under many higher rank

taxa. New potential taxa are created for each distinct classification and are placed in higher potential

taxa. This provides the basic mechanism for multiple classification. It is not clear however how

classifications are identified and managed. In addition, a name is still attached to this taxon, which

means that the name can become incorrect in certain circumstances (e.g. when a specific Species

epithet is moved to a new Generic taxon). It also means that the taxonomist creating the classification

must decide what the name is, and there is no provision for a system generation of names, or automatic

reorganisation of classifications in order to assign the correct names. Automatic derivation of names

would in addition be made impossible in most cases, as lOPI considers the representation of specimens

impractical, therefore generally ignores them. Moreover, not enough information is stored in relation to

the classification process, so when taxa are classified under taxa which are also multiply classified, the

concept of multiple hierarchies does not appear and the different classifications are mixed together

without any means to differentiate them clearly. The IOPl approach does not allow easy classification

comparisons because the different taxa defined have no common reference point.

HlCLAS uses a different approach to the multiple classification problem. HlCLAS is based on the

concept of taxon-view. A taxon-view is a quadruple of the following elements: taxon name,

author/authority, year, and publication number. HICLAS defines two types of trees: the classification

tree, where taxon-views are stored, and operational trees. These two trees are orthogonal. HICLAS

represents classification hierarchies as parallel trees without classification interaction. These trees may

only be related because an operational tree may link them. For example, when synonymous taxa (from

a name point of view) are used, a primary taxon-view is created, and equivalent views (secondary

views) are related to it. These operational trees represent the life of a taxon view by recording the

operations that have been applied to it: origination (when it is the first of its kind), more (the movement

of one taxon from one classification to another), merge (the creation of a secondary taxon by

combining two existing taxa), partition (the division of a taxon into two distinct taxa), promotion (the

move of a taxon from a rank to a higher rank), demotion (the mode of a taxon from a rank to a lower

261196

2. Taxonomic work

rank), and recognition (the use of a taxon in a different classification with the same parent/child

information). For example, the classification example in Figure 3 that lead to the creation of the new

name Heliosciadium repens (Jacq.)Raguenaud. would have been represented in HICLAS as the

movement of the taxon rep ens (the epithet name of the binomial Species name) from Apium to

Heliosciadium by authority Raguenaud (Figure 5).

This approach has a clear drawback: because taxon-views in HICLAS represent both naming and

classification information, the movement of rep ens from Apium to Heliosciadium implies that the two

rep ens taxon-views represent the same things. However, according to the lCBN, the fact that a name

appears in two taxa of higher rank (they seem to move fi·om one to another) only implies that the two

versions of the name use the same type (specimen or taxon), not that they represent the same concepts.

For example, in Figure 4, taxonomist 2 and 3 have used the same names because they have used the

same type specimens, but their concepts are clearly very different in terms of specimens (e.g. the white

circle specimen will be called Circle in taxonomist 2's classification whereas it will be called Square in

taxonomist 3's because of the precedence of types).

The comparison of taxa in HICLAS can be performed in two ways:

The comparison can be made on the basis of names, i.e. two taxon-views mayor may not have the

same name, whether they are or are not in the same classification

The comparison can be made on the basis of operational trees, where the history of two taxa can be

compared and relationships between them inferred.

Although the representation of the life-cycle of taxon-views is interesting as it shows the evolution of

ideas, because it is based on a confusion of the concepts of names and classifications, the information

that can be extracted is not valuable. The evolution of classification in Figure 4 shows why: the use of

names to record the history of concepts implies that names are understood objectively whereas their

meaning in terms of specimens varies. Therefore, when a taxonomist records that one taxon has been

moved from a group to another, the assumption is made that the two taxa, identified by their name are

the same. But it was shown that this assumption is meaningless.

Apium

..
rep ens

<Lag. 1821> -----..-

Heliosciadium
1

..
repens

<Raguenaud 2000>

Figure 5: HICLAS example

27/196

2. Taxonomic work

2.3 Accurate taxonomic model

Sections 2.1 and 2.2 have shown that taxonomy is a complex domain to represent. They have also

shown that existing taxonomic models do not appropriately capture the data used in taxonomy and the

processes applied to it. The Prometheus project (http://www.prometheusdb.org) has therefore been set

up and has undertaken the definition of a new model of taxonomy that would faithfully capture the data

and the processes associated with plant taxonomy.

In order to capture multiple classifications and support taxonomists' work, three features appear to be

necessary in the taxonomic model:

Names must be separated from the classification so that many taxa may share the same name or a

taxon may have different names

Names must be derived automatically so that the name of a taxon can be generated according to a

classification and the ICBN. This implies a separation between the processes of classifying and

naming, and the use of type specimens.

The classification hierarchy must be able to handle multiple specimen classifications so that a

specimen may be classified under many different taxonomic groups

Figure 6 shows the Prometheus conceptual model of taxonomy. As it is only a conceptual model,

information is missing or is not described in detail. In this model, nomenclatural and classification

information have been separated in order to emphasise the distinction between the two processes, and

in order to allow the representation of multiple overlapping classifications.

[-~~ -;P~:i::; ff --------------------~---;i;C:~:C~i~t~o~ -1
'. I D .. * :

~\- t Work~e /. :

D •. */i: ' (/ : ----\ :
~ ___ TY!,\: !. /u/ u\ ~~~ / circimScriPfiOri.

"'''1
m

,'' 0 .. ' I ~=o;;;==-=-;i==:~,,-====~P:~'"L..~"
,~...... 1\

.. ,~ .. , ... ", Rank
:_._) nexlRank \

: 0:;1/ I \
, , 0 .. 1" D .. 1 .\......

NomenclaturalStatus: . ""-'RrevioU~-"r'~~ _. ___ -¥:thor ~

\-
-~-----------

[NameEleme:gJ conservation?

/ !\ \

\
__ 00'_. n_. ~-. "'1 ponservedf5@8 RejectedOutright

'-__________________________ ::-.:-c::-::.;-::.:-.;;-:..:-::.:-.:-c::-::.;::-,::J-I- ,

Nomenclatural side Classification side

Figure 6: Taxonomic model (from [Pullan '00])

28/196

2. Taxonomic work

The name side of taxonomy is captured by Nomenclatural Taxa (NT). NTs are complex names that not

only are a name, but also contain all necessary information to uniquely identify them. An NT is a

unique combination of many pieces of information such as the place of publication of the name, the

type of the name, its rank, its nomenclatural status (whether it was validly published or not), and its

rejection/conservation status. The classification side of taxonomy is captured by Circumscription taxa

(CT). A CT, is a composite object constituted of a publication, an author, possibly ascribed and

calculated names (NTs or WorkingName objects), and of a set of circumscription items that can be

specimens or other CTs. The common elements between the two sides of the diagram are specimens

and ranks. Indeed, the ICBN specifies that specimens (type specimens) should be used in order to

derive names from classification information. Therefore, the crossing from classification to names is

performed through them. Ranks are also common elements because taxa on both sides should be

defined at the same level. For example, a CT at rank Species should only receive as its name an NT

defined at the same rank.

In the context of a revision, when a classification is represented, CTs are created and sets of specimens

or other taxa are attached to them through the circumscription relationship. This creates a hierarchy of

CTs whose order follows the order of ranks (or a subset thereof). CTs should not be named before the

end of the classification process because it would influence taxonomists and force them into making

decisions about their specimens as a result of their understanding of names. Working names are

therefore used in order to represent the CTs without nomenclatural information. Once the complete

classification has been created, names can be derived from the available data using type specimens, as

explained in section 2.1. Calculated names (NTs) are thereafter assigned to CTs.

In the context of representation of existing classifications (i.e. historical data), CTs are represented with

name information because this information is already available. Therefore, working names are not used

to serve as handles for CTs, and ascribed names are specified to represent published names. For

example, in the example in Figure 3, once the names have been derived from the classification data,

they are published and become unchangeable. However, because of the presence of historical data or

because of mistakes (misspelling, selection or publication of the wrong names), published names are

not always the names that should be derived in the current state of knowledge or according to the

current rules of nomenclature. In order to represent that published name, taxa may have therefore an

additional name called the ascribed name.

Unlike most models of taxonomy, the Prometheus model does not represent accepted names and

synonymous names. Indeed, the representation of such synonyms is the result of the representation of a

single classification from which the world is seen. In Prometheus, because the model represents all

classifications without priority, synonyms can be detected in two ways:

Name-based synonyms are located by comparing the names attached to CTs. This is the approach

taken by other taxonomic models. In this approach, two groups that have the same name are said

synonym.

29/196

2. Taxonomic work

Specimen-based synonyms can be inferred from the description of the circumscription of CTs.

This allows a more reliable detection of synonyms, as previously undetected synonyms can be

located. For example, a single specimen overlap between two groups appearing in different

classifications may indicate a misplaced specimen or confusion in the groups.

Regarding the limitation raised in the IOPI model about incomplete nomenclatural information, which

is often promoted as the reason why a specimen-based approach to taxonomy is not practical, the

Prometheus model forces taxonomists to typify (through lectotypification) existing names that have not

been typified by their author. As typification is now the norm in taxonomy, it is sensible to ask

taxonomists, that use names published before typification was the norm, to elect types for their use of

the names (as lectotypes for example). This way of working with types is supported. It is also sensible

because when these names have been published, although no type was elected, representatives of the

names were generally given as representatives. These representatives can now become taxonomic types

without changing the intent of the creator of the names (as some of the specimens that were chosen as

representatives become types).

Note that this model mainly applies to new classifications. Historical classifications can be represented

as current classifications when type information, and possibly the whole specimen infOlmation, is

available to the taxonomist. In this case, taxa are defined as sets of specimens and hierarchies of taxa

form classifications. These classifications are as objective as possible and reliable.

When specimen information is not available, for example for old classifications, the taxonomic

database should allow the representation of classifications based purely on taxa (no specimen

information is available). This approach however has an important limitation: the derivation of names,

according to the ICBN, is based on type specimens. If this information is not available (e.g. if a

classification was published before 1751), the system could not derive names automatically or check

that some of the actions taken by the user are valid (some actions would still be automatically checked,

e.g. the respect of the rank hierarchy).

The Prometheus taxonomic model is therefore the first accurate model of taxonomy.

2.4 Requirements

The description of the process of taxonomy of section 2.1 can be analysed in order to extract the

inherent properties of the data and processes that a database must support in order to provide the

necessary features for a taxonomic database specifically and classification applications in general. This

section describes these properties and draws the consequences for the database system. The

requirements are of two natures: taxonomy-motivated requirements and database-motivated

requirements.

30/196

2. Taxonomic work

2.4.1 Taxonomy-motivated requirements

Taxonomy related requirements arise from the inherent structure of taxonomic data and the nature of

the processes applied to it.

1. Tree/graph structure: the most obvious property of taxonomic data is that it appears to be

constituted of a set of hierarchies (directed connected trees). This set of hierarchies, when

interconnected via specimens forms a directed graph. Therefore, a database system that would be

used to support taxonomy would need to support the definition of graphs. In order to support the

process of a revision, it is also necessary to be able to copy classifications so that they can be

extended to form new versions or form the basis of a new view of a plant group, therefore be able

to see graphs as an entity and manipulate that entity as a whole.

2. Directed graphs: the fact that these graphs are directed is very important, as the levels in the

hierarchies are controlled by the rank hierarchy that are standardised and ordered. In addition,

these ranks are not compulsory, therefore the hierarchies should not be fixed. For example one

classification may use the ranks Genus, then Sub-Genus, then Species. But as ranks between

Genus and Species may be ignored, another classification may use only Genus and then Species. It

was also said that the elements of these hierarchies are ordered, as groups can be seen as nested

within others. The direction of graphs is therefore vital information, although the depth of these

graphs may vary.

3. Multiple classifications: because taxonomists consider different criteria the most important

criteria on the basis of which they build their classifications (e.g. because of opinions, changes in

technology), the same set of specimens can be classified in multiple ways over time. Since these

different classifications are equally valid, classifications in taxonomy form multiple overlapping

classifications. It is therefore important that any system used to model taxonomic data is able to

capture multiple overlapping hierarchies.

4. Traceability: as a consequence of multiple classification of specimens, traceability is fundamental.

Traceability allows the explanation, in the data, of the motivation for a particular classification. For

example, a taxonomist should be able to explain why a particular taxon has been placed in another.

5. Composite objects: plant names are stored in the form of Nomenclatural Taxa (NTs), i.e. names

with their types and pUblication data. These NTs are unique combinations of their various

constituents (according to [Pullan '00], publication, author, type, placement, epithet, and rank) and

are only meaningful as the set of these constituents. Therefore complex entities must be

manipulated so that complex concepts such as NTs are meaningfully used. This implies a clear

distinction between the internal representation of a concept and its relations to other entities in the

system. In addition, the representation of composite objects is necessalY to provide full generic

support for classification structures. Indeed, classifications are not always built on a part-of

relationship. They can be built for example on functionality relationships (objects in the

classification hierarchy use other objects and are used by other objects), or

containment/membership (that is not necessarily a part-of semantics [Odell '94b]). These

31/196

2. Taxonomic work

classifications therefore need to make a clear distinction between what is perceived to be part of

the objects that are classified (their definition as aggregation of values and other objects), and what

is considered to be outside of the objects, including the classification relationship.

6. Population-based classifications: As presented in section 2.1, plant taxonomy classifications are

population-based classifications, i.e. they categorise populations of specimens in a hierarchy of

concepts. The concepts that are used for describing the categories are entities that have a life and

an importance in themselves, they are not entities that only classify other objects, as it is often the

case in other classification problems. These classification concepts are therefore objects/instances

(e.g. names with their publication, authority, taxonomic type information, and their rank or level)

that a taxonomist manipulates and publishes, even if no classification exists. These classification

concepts are very volatile and can be redefined (republished with a new taxonomic type for

example) or moved in classifications during the process of a revision.

7. ROles: Specimens, when they are used in publications for nomenclatural purposes, become type

specimens. NTs may also be used as types. The fact that a specimen has become a type specimen

in the context of an NT changes its behaviour. It can from that moment be used for deriving names

from classifications. However, being a type is neither a property of an NT nor a propelty of a

specimen (especially since specimens can be promoted to or demoted from the status of type).

Entities may therefore acquire roles and these roles may alter the behaviour of the entities or of the

system towards these entities. In object-oriented modelling (Figure 6), the representation of the

relationship between these objects is essential and is information in itself.

8. Rules/constraints: in addition, the way taxa are named varies according to the ranks studied (see

ICBN). For example, Species names and below are multinomial names, whereas above the Species

rank names are monomial. These rules may also change over time. It is therefore important that a

taxonomic system offers flexible ways to represent these rules and SUppOit their definition fully.

9. Recursive behaviour: finally, the extraction of the specimens that are to be considered for the

calculation of names to be attached to defined circumscriptions involves the exploration of the

classification hierarchies, whatever the ranks and the number of ranks used in each classification

hierarchy, until specimens are found. The set of all specimens is then studied and type specimens

extracted. From this list of type specimens, potential NTs are selected (by traversing nomenclatural

hierarchies in a bottom-up fashion), and the oldest validly published NT is selected as the name of

the circumscription CT. The exploration of classification and nomenclature hierarchies must be

recursive and flexible. The recursive behaviour of the system is also necessary in order to compare

classifications. Indeed, as was presented in section 2.1, the only objective fixed points of

classifications are specimens. So in order to compare two taxa, whatever their ranks, it is necessary

to recurse down classifications until all specimens related to these taxa are collected.

Requirements 1, 3, 5, 6, 8, and 9 can be generalised to any classification mechanism that faces the

multiple classification problem. Indeed, these mechanisms all require the ability to describe

trees/graphs in order to represent classifications. They also require the ability to capture multiple

concurrent classifications and composite objects if they need to classify complex information.

32/196

2. Taxonomic work

Requirement 8 is a general requirement for many databases, but particularly for databases that need to

enforce a code of practice. Requirement 9 is also necessary in order to manipulate and explore the

classifications. Requirements 2, 4, and 7 may not always be needed by classification mechanisms.

Directionality may only be important if this is inherent to the data as it is in taxonomy. However,

directionality does not impair mechanisms that have no use for it. Requirements 4 and 7 may not be

necessary for other domains.

2.4.2 Database-motivated requirements

Database-motivated requirements are requirements that are inherent to a classification database system

but are independent from taxonomy itself.

10. Integration with existing system: specialist databases already exist, and it would be a plus if the

system designed by this work could be integrated with as little changes to an existing system as

possible.

11. Generic classifications: unlike other classifications, plant taxonomy classifications are not is-a

classifications. Indeed, the concepts used as classifiers are abstract names (taxa), e.g. Apium, and it

would be wrong to say that graveolens at rank Species is-a Apium at rank Genlls because it has

been placed in Apium. Although ranks are central to the process of classifying, it would also be

wrong to say that a Species is-a Genus. Plant taxonomy classifications are rather placement

classifications, i.e. graveolens has been placed in Apium (and therefore becomes Apium graveolens

after application of the ICBN) for some reason that the taxonomist can describe. It is therefore

important that the model supports any kind of classification semantics.

12. Orthogonality of classification and classified information: in order to support the processes

associated with taxonomy, the classification and the objects classified should be clearly distinct

and identifiable. For example, some operations manipulate classifications (e.g. for reorganisation),

and they would be impossible if the classification information could not be clearly and generically

identified. This also allows the classification of any kind of data.

Requirements 10, 11, and 12 are general requirements that apply to any classification mechanism.

Indeed, integration with an existing system is always a plus if such a system already contain a lot of

information. In addition, the genericity and orthogonality of classifications make such mechanisms

more suitable to other application domains and should never hamper classification mechanisms.

2.5 Conclusion

This section has described the purpose and the workings of plant taxonomy. Plant taxonomy is a

challenging domain, as the processes involved in the various activities connected with taxonomic work

(e.g. representation of existing knowledge, revisions, extraction of new knowledge by the study of

33/196

2. Taxonomic work

available information) are not trivial. They involve the collection of information on existing

classifications, the application of the ICBN, and the derivation of names based on provided data

according to complex rules.

Most models of taxonomy are inappropriate and few offer the basic features necessary (although they

are limited, e.g. multiple classification in lOPI) to represent taxonomy. All of existing models take a

simplistic or flawed view of taxonomy, often reducing it to the representation of a single subjective

point of view on the diversity of the world's organisms. The resulting models are therefore limited in

the services they can offer taxonomists (e.g. the support of the process of revision requires the ability to

be able to experiment with classification groups and their expected names), and ambiguous or non

rigorous in their representation of the world (a specimen might not have only one name).

A model of taxonomy representing exactly how taxonomy works has been explained. That model

emphasises the distinction between the two main processes that constitute taxonomy (especially in the

case of a revision): the process of classification, and the process of naming. These two processes and

their data are therefore represented as distinct hierarchies whose connection points are specimens. This

approach allows an objective view of taxonomy where taxonomists are not forced into making

decisions when they can only guess the meaning of the data they handle (e.g. on the meaning of a

particular name according to different people). It therefore provides the basis for a better representation

and support of taxonomy based on objective observation and available data instead of judgements and

opinions. In essence, it provides a specimen-based view of multiple overlapping classifications.

The analysis of that model allows the extraction of the requirements that a computing system built to

support taxonomic work ought to fulfil. These requirements include a graph-based aspect (to represent

interconnected hierarchies), a recursive aspect (to explore and extract information from the graphs), the

ability to model complex data (e.g. composite objects), and a rule-based aspect (for the enforcement of

the ICBN).

Database technology can thereafter be applied or developed to automate the common processes and

move the responsibility to ensure that the data is correct from the user to the computer. However, as the

next section will show, existing database technology suffers from clear limitations that can only be

overcome by the definition of an extended database model.

34/196

3. Classifications and existing database systems

3 Classifications and existing database systems

This chapter reviews classification mechanisms in computing and existing database in relation to

classifications.

3.1 Classification mechanisms

Classifications in computing are often understood as object/class classifications where object-oriented

classes are organised into an inheritance hierarchy according to their content and their inheritance

relationships to other classes. These classifications are generally straightforward (although they might

allow exceptions [Borgida '89] or contradiction [Borg ida '88]) especially in the sense that they do not

change too much over time. As was explained in section 2, although taxonomic classifications do not

change once they have been published, they are likely to change when revisions are attempted within

the revision process. They are also based on opinions, substantiated by observation of characters for

example, not on properties or relationships with other groups (unlike inheritance for example). It is

therefore clear that one must make a distinction between what is a computing classification (class

hierarchy) and a taxonomic classification.

Some classification mechanisms have been described in the literature for biological classifications. For

example the Materialization relationship [Pirotte '94] and power types [Odell '94a]. These computing

classification mechanisms appear at two levels: modelling (how to conceptually represent a

classification) and implementation (how can these mechanisms be handled in a computing system). The

distinction between these two levels is not always clear, as some implementation models implement

modelling classification mechanisms as a feature of the implementation (e.g. materialization). Others

are modelling mechanisms (e.g. power types). These are of interest for this work, as a classification

mechanism is necessary to handle taxonomic information.

This section discusses their ability to represent taxonomic classifications when the full complexity of

taxonomy is considered.

3.1.1 Materialization

The materialisation, or classification pattern, combines classes and metaclasses to form classification

concepts. Each classification class is "two faceted", i.e. it is comprised of an instance of a classification

metaclass and a subclass of a more general class. These concepts therefore become classified by the

meta-class. Figure 7 shows such a classification: A Car is a kind of vehicle (it inherits from Vehicle)

but has a fixed licence class. The licence class is an instance of the meta-class V_type and is attached to

the Car class. In practice, the instance aspect of classification classes act as class constants. The

35/196

3. Classifications and existing database systems

concrete class has only one abstract meta-class, and each meta-class can have many concrete

representations.

V_type
license

*1 yeilicle

Serial #

Licence=c\ass 3
seats

-. Is-a

." .. "" .. ~ Is-of

Figure 7: Materialization example

This approach, although powerful to describe some sorts of classifications, has serious limitations when

plant taxonomy is considered (even though biological classifications are cited as an example). The

classifications created using materialization are relatively static classifications, as they involve only the

creation of classes as classifying entities (e.g. Car). In taxonomy, the concepts that are classified and

that classify are instances, not classes. In addition, moving the classification process to the class level

would generate many problems due to the dynamic aspect of plant taxonomy. The result would be a

large number of classes (dozens of thousands), and enormous reclassification problems (e.g.

class/instance migration, materialization modifications with knock on effects on existing classes and

classifications). In addition, materialization does not provide support for the multiple reclassification

on the same concepts (taxa or specimens) over time. First of all, the concrete classes have only one

abstract class, which makes it impossible to classify classes in distinct manners: subclasses of the

concrete class have always an instance of a single meta-class. Secondly, if this restriction were

removed, there would be no way to trace the reasons for the distinct classifications. Finally, [Pirotte

'94] shows that population-based and category-based classifications are different matters although they

are related. As was said earlier, plant taxonomy classifications are population-based classifications,

therefore materialization is not suitable.

3.1.2 Power types

Another example of classification mechanism is power types [Odell '94a]. Power types allow the

definition of classifications of instances into other classifying instances. Figure 8 shows an example of

power type where instances of Trees (real world trees) can be classified into instances of Tree species.

In fact, instances of Tree species are subtypes of Tree. Unlike materialization, power types are an

instance-based mechanism. This supports a dynamic approach that materialization makes cumbersome

by manipulating classes.

36/196

3. Classifications and existing database systems

1---In Tree Tree III species

Figure 8: Power types

However, some problems regarding plant taxonomy ought to be noticed. First, objects are classified in

only one category. This means that it would be impossible for a plant to specimen be a member of two

species (in different classifications). Although it is true in the context of a single classification, it is not

in the context of multiple classifications. Secondly, this pattern does not support the definition of

multiple classifications, as it is not possible to identify distinct classifications (except by embedding

classification information in classifying object, which would mean that they can only be part of a single

classification). Thirdly, no traceability mechanism is provided, therefore it would be impossible to

know how and why a paliicular specimen or classifying group has been placed where it is.

3.1.3 Conclusion

The level at which classifications should be managed is debatable. Some approaches insist on class or

meta-class level classifications (e.g. [Pirotte '94]), others on instance-level classifications (e.g. [Odell

'94a]). The difference is significant: the implementation of one or the other may have an impact on the

performance of the overall system, or could more or less easily be integrated with a query language

(e.g. query languages are generally less able to query classes or meta-classes than instances).

In addition, database practicalities should be considered. As was said in section 2, taxonomy is a

discipline that always changes, either in the context of a single revision, or in the broader context of all

revisions. It is a well-known fact that schema evolution is not an easy task. (e.g. [Bertino '93]).

Changing the definition of classes or their relationships with other classes requires following many

rules, possibly re-computing classification hierarchies, and this sometimes is simply impossible. The

Materialization approach in this context is likely to generate many problems.

3.2 Database systems

This section reviews existing database models (relational, object-oriented, graph based, and extended

object-oriented) and their query languages, and studies their ability to satisfy the requirements for

classification mechanisms and databases highlighted in section 2.4. A more complete overview of

database systems is presented to the interested reader in [Raguenaud '01].

37/196

3. Classifications and existing database systems

3.2.1 Relational systems

Most taxonomic databases use an underlying relational [Codd '70] storage system (e.g. Pandora

[Pankhurst '93], Alice [White '93], BG-BASE [Walter '93], Brahms [Filer '94]). Relational systems are

therefore a sensible starting point to review how classification databases could be implemented. This

section reviews the support these systems offer regarding the requirements expressed in section 2.4.

1. Tree/graph structure: as was said in section 2, hierarchies are at the centre of taxonomic data. It

is vital that a database used for taxonomy is able to store and manipulate hierarchies. The classical

relational model [Codd '70] is a flat model that does not easily represent this concept of hierarchy.

Indeed, because eVeIything is represented as tables and all the treatments occur at the table level, it

is not possible to describe accurately structures that span many tables or represent recursive

structures such as trees. However, graph structures can be represented with tables if nodes and

edges are both stored in different tables. Although this representation may be sufficient in some

cases, it is not satisfYing regarding taxonomy because these graph structures are not understood by

the system as specific structures. Indeed all the database management system handles are indistinct

tables. Extended (Third Manifesto [Darwen '95], which does not appear to have been

implemented) and object-relational (e.g. Postgres [Stonebraker '90], Oracle [Oracle '01]) models

can support nested relations by providing extensible types, allowing a simple form of hierarchy

representation. For example, one of the attributes of a relation can be the relation itself or another

relation. However this representation is still very simple and would not support for example

weighted graphs, as relations would be nested but the nesting would not convey information.

Therefore only the simplest form of trees/graphs could be captured. Finally, as all these options are

too simple to accurately represent trees/graphs, they lead to complex processes/manipulations and

possibly integrity constraint problems. These complex processes would have a negative impact on

the efficiency of the overall system.

2. Directed graphs: directionality is necessary to represent the way data is articulated, i.e. which

entities are below which and in which direction information flows. If hierarchies are modelled as

explained above, direction can only be represented by the choice of names in relations that play the

role of edge. However, this does not clearly describe the direction of relationships as it relies on

user understanding of the names of the attributes of a relation. The system itself has no concept of

edge or direction and tables are manipulated irrespective of their semantics (e.g. edge or node).

Although this may not be a problem for the representation of data, it may influence the way

queries and applications are written, as the user or user applications need to have knowledge of the

mechanism that handles directionality and need to emulate them. This would increase the cost of

developing applications and the risk of inconsistencies.

3. Multiple classifications: since the relational model does not support the definition of hierarchical

structures as a feature of the system (they have to be managed by the user application), it cannot

manipulate overlapping hierarchies. However, one feature offered by most relational systems,

38/196

3. Classifications and existing database systems

views [Cannan '92], may be of interest for the representation of multiple classifications. Views

would allow the filtering of relations according to specific criteria in order to present a partial view

of the information to the user, e.g. a single or several classifications at a time. The idea is seductive

but practical problems arise: the definition of views may be very complex, as a single classification

contains a high number of different concepts (e.g. names, taxa, types, publications, authors). The

selection of all these concepts would require an important number of queries (at least one for each

table of interest), which would not only be hard to express (new relations may need to be created),

but would also have a negative impact on the performance of the system. Combined with the

difficulty to capture trees/graphs, it appears that multiple classifications in the context of a

relational model are not practical.

4. Traceability: traceability is an important feature that allows better understanding of author

motivations. Depending on the approach chosen for representing trees, traceability may be

supported by relational models. For example, if relations are used to represent edges (instead of

nodes), then these edges can contain information that can capture classification motivation,

therefore traceability. However, embedding information mainly on edges has the disadvantage of

not being able to represent all information. For example, the representation of a relation that

captures the concept of person requires many attributes and placing them on edge relations may

not be possible, e.g. would that mean that an edge to another concept would contain the concept on

the edge, which would at least require a nested relational model?

5. Composite objects: composite objects allow the definition of clear boundaries for objects, which

permits better understanding and integrity constraints. Because the structure of tables is simple in

classical relational models and the only way to describe data is the creation of simple tables, a lot

of the semantics of the data is lost in the process. For example, although some Entity-Relationship

notations offer inheritance as a basic feature, it is impossible to represent in the database. Complex

mechanisms must be used in order to map the design to the database. These mechanisms are not

interpreted by the system itself, and the user application must be designed to handle such

information. For example using foreign keys between a table and another to represent inheritance

and interpret this link in the user application, or embed all the attributes that all the classes in a

hierarchy can have in one table and differentiate the nature of the entities through flags can only be

understood and handled by the user application. Extended relational models deal more efficiently

with this problem by offering inheritance (single in the case of the Third Manifesto). Other design

semantics such as the definition of aggregation relationships are lost in the implementation, which

means that composite objects cannot be properly represented. This creates an impedance mismatch

between these two steps of the application development and makes programming and maintenance

harder.

6. Population-based classifications: population-based classifications use members of the classified

population as categories, it is the case in taxonomy. Population-based classifications requires the

ability to manipulate concepts at any level of the classification. The fact that the relational model is

a very simple model would allow this, as any node in a classification would be represented by a

relation and treated as any other relation, any participant in a classification could be a relation.

39/196

3. Classifications and existing database systems

7. Roles: roles give objects the ability to be multi-faceted, as some objects are in taxonomy (e.g.

specimens). Relational databases do not SUppOit mechanisms that would allow the acquisition of

roles per se. However, it would be possible to create mUltiple views on a relation that would

display different attributes according to the role intended for each view. For example, a view

storing all specimens that are referred to by another table as a type could describe a type specimen

view. However, this technique would not easily support the changes in behaviour that must occur

when an entity changes role. This is because the various views would not be mutually exclusive,

and it would be left to the user application to manage the various behaviours and spot when a

particular entity has switched role. In addition, more instances and more manipulations of

instances may lead to referential integrity problems (e.g. if a foreign key refers to a specimen in the

Specimens relation and this specimen is promoted to type specimen and moved to the

TypeSpecimens relation, would it be removed from the Specimens relation? How would all the

foreign keys be updated?).

8. Rules/constraints: rules and constraints are necessary in general in databases, but particularly in

taxonomy where a code (the ICBN) must be enforced. Relational databases support a powerful and

well-adapted constraint mechanism (e.g. SQL92 [Cannan '92]). However, this mechanism is

tailored to the structures that are definable in the database, therefore suffer from limitations due to

the fact that it is designed to manipulate simple structures, not graphs or complex objects. This

mechanism may therefore not be able to capture the rules necessary to fully implement the ICBN.

9. Recursive behaviour: recursive behaviour is necessary to manipulate recursive or graph-based

structures like taxonomic data. SQL also has limitations regarding the operations that can be

attempted on the data stored. Indeed, because the operations are centred on tables, operations are

"localised". In standard SQL, it is not possible for example to describe a recursive exploration of

the database because this involves the description of an unlimited or unknown number of joins. It

is therefore impossible to extract information such as the set of all nodes that appear at any depth

below one particular node. The only solution, unsatisfactory, is the explicit description of all the

joins necessary to traverse the recursive structure. This solution would make the writing of queries

harder (the depth needs to be known in advance). In most cases, these queries would be replaced

by programs that would allow reuse and depth independence, but would make the evaluation of

such queries less efficient (programs would not be as optimised as queries). Proprietary and

research extensions exist that attempt to overcome some of these problems. For example, the

Oracle relational/object-relational database offers an limited operator that allows the repetitive

traversing of a set of tables, thereby providing a means to emulate recursive behaviour. Other

research systems, e.g. SQL * [Koymen '93], Resql [Wood '90], provide mechanisms that allow the

description of recursive statements via DATALOG-like rules to describe graph traversals or via

path expressions respectively. However, these extensions are not standardised, not common, and

often very limited (SQL* only supports recursive rules in insert statements, does not allow nested

recursive statement, and does not provide depth control operators).

10. Integration with existing system: integration means that the addition of new mechanisms are

made as smoothly as possible, i.e. without changing the way existing applications work. Relational

40/196

3. Classifications and existing database systems

database models would not represent classification information accurately, as classifications would

necessarily be of a generic type of relation (i.e. classification relations would not be recognised by

the system as a type of relation that needs to be treated in a specific way). However, these relations

would be smoothly integrated in the database schema as these relations would comply with the

underlying relational model.

11. Generic classifications: generic classifications are necessary to support unforeseen applications or

non-taxonomic applications. Relational models propose relations as the basic entity. These

relations do not represent is-a or is-of relationships, therefore relational models would be unable to

capture is-a or is-of classifications. All classifications in a relational database would be generic

classifications. This can be acceptable in the case of taxonomy because taxonomic classifications

are not is-a nor is-of classifications, however, it may be a severe restriction for other kinds of

classifications.

12. Orthogonality of classification and classified information: orthogonality provides independence

between classified data and classification mechanism. This is an advantage for supporting new

applications and classifying existing taxonomy information. Because relational models offer

relations as the only piece of information, it would be hard to represent classified entities distinctly

from classification information. The only distinction that could be done would be on the basis of

names, not semantics. For example, user applications would need to know that the relation named

X is part of the classification information, whereas the relation named Y is part of the classified

information.

This section has shown that the relational data model and its extensions, because of their simplicity,

would allow the integration of new information smoothly. However, that same simplicity of model

renders relational systems unsuitable for classification applications. One limitation is the impossibility

to represent appropriately trees/graphs, and in particular complex graphs such as weighted graphs

where information is necessary on edges. Any possible solution would either result in overly

complicated user models that would make user applications more complex and querying harder, or user

models that would not capture all the available infOlmation. In addition, high level concepts such as

composite objects would not be managed in a satisfactory manner, and in all cases semantics would be

lost in the implementation in the relational data model. This section has also said that views are an

interesting mechanism that would provide a means to emulate some of the required features (e.g.

multiple views on a taxonomic database to extract individual classifications, and simple roles).

However, the simplicity of the model would limit the ability of such approaches to support fully these

features (e.g. integrity problems may arise with migration of rows between tables to emulate roles).

Finally, the query languages proposed for these models suffer from limitations regarding their

interpretation of semantics (e.g. the non-existence of semantic relationships in the model) and

regarding recursive structures (either because recursion does not exist at all, or exists in a limited

manner).

41/196

3. Classifications and existing database systems

3.2.2 Object-oriented systems

Object-oriented systems have been less often used to support taxonomic applications. However they

offer higher-level features that may be of help to design classification systems in general, and

taxonomic classification systems in particular. They have been designed to overcome some of the

shortcomings of relational systems listed in section 3.2.1 (e.g. [Fishman '89] [Atkinson '90] [Bertino

'93] [Brady '97]).

Over the years, many approaches have been proposed in order to design an object-oriented system: the

design of a system whose persistent layer is a relational DB [Keller '93] [Keller '94] [Hohenstein '96]

(in particular through the usage of object-oriented views [Delobel '95] [Fahl '97] [Vermeer '95]

[Barsalou '91]), the design of mediators that automatically map objects to relations (used today in

object-oriented applications that use ODBC), and the design of a pure object-oriented system [Fong

'97] [Joseph '91] [Fishman '89] [Maier '90] [Ishikawa '93] [Peters '93b] [Scholl '93] [Hori '95] [Cattell

'97] [Weiser '89] [Leung '93] [Kim '89] ['92] [Bretl '89] (with semi-automatic migration of relational

data [Ramanathan '97] or not [Fong '97]).

This section reviews the support these systems offer regarding the requirements expressed in section

2.4.

1. Tree/graph structure: object-oriented databases can support the definition of simple object

graphs. Indeed, objects and their references form a graph. This approach has two drawbacks: first

it uses references to link objects, but these references are embedded within objects, therefore there

is no clear distinction between objects and classification. Second, only the simplest graphs can be

represented, as edges show only the existence of a link between two nodes (as a reference),

without further information. Weighted graphs are impossible. Although object-oriented databases

can represent graphs of objects using references or using inheritance, their query language does not

support manipulation as a graph. Embedding the necessary specific code in the application could

provide support for this, however, this would also increase development and maintenance

overheads. An alternative approach would be the representation of graph edges by normal objects

that user applications would recognise as edges. This has the advantage of providing a means to

capturing complex graphs such as cyclic or weighted graphs. However, this would be limited in the

sense that edge objects would not be recognised as relationships or references by the database

system. Therefore, the insertion of an additional level of indirection would make user applications

more complex and may lead to integrity problems (updating an object edge is more complicated

than updating a reference). In addition, writing queries would be made harder by the additional

level of indirection and the necessity to select these edge objects explicitly if they are required in

the query result.

2. Directed graphs: directionality allows the representation of the direction of information flows. In

hierarchies, it can be the direction of the hierarchy. Directionality is inherently supported in object-

42/196

3. Classifications and existing database systems

oriented databases by object references/pointers. However, in the case of complex relationships (in

the ODMG sense), the direction of the relationship is lost because of the utilisation of inverse

references/pointers to support the various cardinalities. One has therefore to choose between

cardinality control and directionality, which is not desirable.

3. Multiple classifications: some object-oriented models propose a form of multiple classifications:

classification of types by distinguishing types from classes [Irani '93] [Norrie '95] [Joseph '91]

[Hori '95] [Borgida '88] [Cattell '97] (sometimes with exceptions [Borgida '88] or behaviour

classes [Irani '93] [Peters '93a] [Ozsu '95]). This multiple classification mechanism is however too

limited to be applied to taxonomy. First, it is an is-a classification mechanism, therefore other

types of classifications could not be handled. Second, classification information is implicitly

represented, therefore would limit the ability of the system to capture complex tree/graph

information (e.g. weighted graphs). Third, these classifications are not generic graphs, as they

cannot be cyclic. Fourth, changes to the classes may lead to important class reorganisation

problems such as schema evolution ([Banerjee '87] [Crestana-Taube '96] [Bertino '93]). They

would also lead to very large schemas that could become unmanageable (a schema for a flora may

contain hundreds of thousands of groups). It is not clear how overlapping classifications can be

represented in a different way in object-oriented databases. Indeed, as the representation of graphs

rely solely on the definition of objects as nodes and references as edges, it is not possible to

describe the specifics of the relationships that would capture the overlap. Additionally, this may

limit the ability of the system to be dynamically reorganised (this would imply schema, which

would introduce problems, limitations, and important overheads). View mechanisms allow the

definition of different appearances for objects and classes [Schek '91] [Run den steiner '92a]

[Bellahsene '97] [Santos '94]. The view mechanism can maintain a global schema that contain all

classifications, and extract individual classifications to present them to the user [Rundensteiner

'92a] [Bellahsene '96] [Kim '95]. Additional classes (involved in the is-a overall classification) can

be created in the process in order to provide a consistent overall database schema [Run den steiner

'94]. Views are more flexible than schema-based approaches, as they can be created with the query

language [Del3loch '92] or a view definition language [Rundensteiner '92b], and some view

mechanisms allow reorganisation and possibly automatic class integration in existing schemas and

views [Rundensteiner '94]. In the case of an ongoing revision, the cost of creating and modifying

views, even if they are materialised [Kuno '95a] [Kuno '98], may be too high to allow taxonomists

to work. For example conflicts must be detected and resolved, if the view mechanism supports this

feature.

4. Traceability: traceability is necessary in the context of some application domains (e.g. taxonomy)

in order to understand the motivations behind other taxonomists' work. Whether one of the

mechanisms described above is chosen or not, traceability is an unresolved issue in object-oriented

classifications. Indeed, nothing allows the description of the motivation of choices or mechanisms

that lead to the creation of particular classifications in both the schema-based approach and the

view-based approach.

43/196

3. Classifications and existing database systems

5. Composite objects: composite objects allow the clear representation of boundaries of objects,

therefore their easier management and the enforcement of integrity constraints. Object-oriented

databases provide the means to describe composite entities. This is achieved through the use of

type casting, inheritance, and encapSUlation. However, the description is limited by the available

semantics. For example, in most object-oriented databases it is not possible to describe the

semantics of the composite entities, i.e. what the relationship of the component elements is to the

other elements in the object and to the composite object as a whole [OMG '99] [Bock '94] [Bock

'98] [Rumbaugh '91] [Odell '94b] [Rumbaugh '88] [Rumbaugh '94] [Rumbaugh '95] [Kim '87]

[Henderson-Sellers '97]. Notable exceptions are Orion [Kim '87] that uses constraints on objects to

support a form of relationship semantics, and Bertino [Bertino '98] that offers an extension to

ODMG's ODL that provides means to define some integrity constraints

(dependence/independence, sharing/non sharing) associated with the references of the ODMG

model. This in addition leads to improper class design where relationships that should be

independent are embedded in object types [Norrie '93].

6. Population-based classifications: population-based classifications require the manipulation of

generic entities as classifying objects, which is necessary in plant taxonomy. The schema-based

approaches suggested earlier also have the disadvantage of leading to category-based

classifications, where the classifying objects are categories that have little importance or

information in themselves (classes), and the classified objects are assigned to one of more

category. It was said in chapter 2 that the classifying objects, the taxa, have a role to play

independently of classifications and are complex objects. Representing these objects as classes

would lead to loss of information (once again because of the lack of semantic relationships,

especially at the class level).

7. ROles: roles provide support for objects that may change their appearance depending on their

context, as specimens do in taxonomy. Role acquisition is paltially supported by object-oriented

principles. Indeed, the fact that objects have a hidden state and behaviour allows them to behave

differently depending on their internal state. This change of behaviour can also be the consequence

of the state of external objects. More advanced role acquisition mechanisms exist [Gottlob '96]

[Richardson '91] [Stein '89] [Wong '97] [Wieringa '94] [Albano '91] [Kuno '95b]. These

mechanisms allow objects to look different depending on the view other objects have on them and

allow the acquisition of properties at runtime. An important limitation of these role mechanisms

regarding classifications is that they only act at class level, which would imply that the chosen

classification mechanism must be devised to act at class level. However, it was said earlier (section

3.1.1) that this approach is too restrictive to be an option in the case of multiple classification

mechanisms, especially in the context of plant taxonomy. In addition, a more practical problem is

that most proposals restrict the applicability of their mechanism to very specific database models

that exhibit peculiar features (e.g. Smalltalk and its dynamical late binding system). These features

restrict the database systems that are available to implement such mechanisms, and may lead to a

very inefficient database system (for example through the impossibility to type check queries in

advance to allow optimisations and rewriting, which would be inefficient [Grumbach '99]).

44/196

3. Classifications and existing database systems

8. Rules/constraints: constraints allow the enforcement of the ICBN and rules may help the

automatic deduction of information (e.g. names). Constraints are well supported in object-oriented

databases and deductive object-oriented databases (e.g. [Paton '99], [Gatziu '91], Ode [Gehani '91],

[Chakravarthy '94], NAOS [Collet '94], EXACT [Diaz '91]). Most of these mechanisms use Event

Condition-Action (ECA) rules described as part of the defmition of objects or not. Because some

of these mechanisms integrate rules and programming language, rules are able to represent any

statement and take any action (efficiency may be an issue).

9. Recursive behaviour: recursive behaviour is required for the manipulation of hierarchical data

such as classifications. Most object-oriented query languages are not recursive (e.g. [Cluet '98]

[Bussche '92] [Abiteboul '95] [Mitchell '93] [Peters '93b] [Leung '93] [Straube '90]). Only few

support the definition of transitive closure (e.g. [Kifer '92]) or regular path expressions (e.g.

[Christophides '96]), but this is a limited form of recursion as no complete patterns can be defined.

In addition, it is not possible to define specific depths of traversal (e.g. optionality, which requires

a depth of at least one).

10. Integration with existing system: integration emphasises the necessity to allow existing

applications to exist, i.e. changes to the an existing system should be consistent and minimal. As

object-oriented databases only SUppOit classifications at the schema level, the integration of

additional mechanisms would require the representation of classifications at class level. Although

this is not an approach that seems suitable for taxonomy (see requirements in section 2.4.2), this is

the approach chosen by the only existing object-oriented taxonomic database (Object-taxon

[Saarenmaa '95]). Therefore the integration of such mechanisms may not require much redesign.

11. Generic classifications: generic classifications are a necessity to support unforeseen

classifications and support any kind of classification. Object-oriented models could only model

three kinds of classifications: is-a (inheritance), is-of (aggregation), and generic classifications

(reference). Is-a and is-of classifications are not appropriate to taxonomy, therefore only a generic

kind of classifications could be described. This generic kind of classification would not be able to

support fully taxonomic working practices as its mechanism would be too simplistic.

12. Orthogonality of classification and classified information: orthogonality allows the separation

of data and classification information, which makes generic classifications more straightforward

and allow classification of existing information. Because the only type of relation between two

objects is the reference, there would be no clear distinction between the objects classified and their

classification information, as this information would be embedded in their type. Therefore, the

classified objects would need to be designed so as to be classified. They could however be

wrapped in other objects, but these other objects would need to be specifically designed to be

classified. Classification and classified objects could not be independent.

This section has shown that although object-oriented models have the ability to capture trees/graphs in

different ways (inheritance hierarchies, objects and references), these approaches are limited in many

ways (they are either schema-based or can only capture the simplest graphs). They also lack the ability

to capture traceability and to express composite objects fully. These limitations make most object-

45/196

3. Classifications and existing database systems

oriented models unsuitable to support the definition of multiple overlapping classifications, especially

classification mechanisms that need to be orthogonal to the classified material. Some mechanisms

provided by few of these systems present however interesting features. Views for example allow a

limited representation of multiple classifications (based on schemas). Roles are also a feature of some

object-oriented systems, but their application appears limited to specific models and may have

important overheads. Some object query languages also offer some support for classification work, as

they provide regular path expressions that emulate recursivity.

3.2.3 Graph-based systems

Relatively recently, graph-based database models have been developed for new types of applications.

Their motivations were mainly the ability to represent intuitively the data that was to be stored in the

database and their ability to represent any kind of information, including for example relational

schemas [Papakonstantinou '95] or semi-structured data [Abiteboul '97].

As graph models seem to be able to represent any kind of data, they may offer promising features for

the support of classification mechanisms. Some of the graph models are presented here and their

support for the several requirements of classification work identified in section 2.4 analysed.

I. Tree/graph structure: graph-based models are built on the mathematical concept of graph. In

such models, everything is represented by sets of nodes and edges that represent interaction

between nodes. Although the principles are the same, several approaches can be distinguished:

Node information bearing (TSIMMIS [Chawathe '94], Lore [McHugh '97])

Edge information bearing models (BDS95 [Buneman '95])

Node based models (GOOD [Gemis '93], Spider [Rodgers '97])

Edge-based models (BDS95)

Or both (PROGRES [SchUrr '98], Telos [Mylopoulos '90], ConceptBase [Jarke '95], [Watters

'90], [Tompa '89], Gram [Amann '92])

Flat (GOOD, Spider, Hygraph [Consens '94a], Gram)

Nested models (Hyperlog [Poulovassilis '98], [Zhuge '98])

Hypergraph ([Tompa '89], [Watters '90], [Catarci '95])

Schema-based (GOOD, Spider, Telos, PROGRES, ConceptBase, Gram)

Schema-less (TSIMMIS, Lore, BDS95) models (although they use representations of a

schema derived from the data, e.g. dataguides [Goldman '97], representative objects [Nestorov

'97] which can be automatically [Nestorov '97112] [Ashish '97112] or manually generated).

The features proposed by each model enable it to offer support for different types of applications.

For example, semi-structured data, which is based on a schema-less approach, is suitable to capture

domains where the schema is very large or where the distinction between schema and data is

blurred [Abiteboul '97]. Very flexible models such as Telos or ConceptBase are suitable to

represent knowledge [Mylopoulos '90]. Graph-based models therefore inherently represent

46/196

3. Classifications and existing database systems

hierarchies, which are a special case of a general graph (tree). By explicitly modelling nodes and

edges of a graph, they allow the representation of any kind of graph, including weighted graphs or

cyclic graphs. There are many different approaches to modelling graphs.

2. Directed graphs: direction is necessary to capture the direction of hierarchies (e.g. top to bottom).

Most graph models offer directed graphs only.

3. Multiple classifications: graph models have not been used to tackle the problem of overlapping

classifications. Therefore, none of the reviewed models offers mechanisms to represent concurrent

graphs distinctly and clearly. The main limitation of these models is their lack of support for

distinguishing concurrent graphs when they share nodes or edges. However, as for object-oriented

models, views may offer a way to express alternative classifications. View mechanisms have been

proposed in the context of graph-based databases [Zhuge '98] [Wood '90] and semi-structured

databases [Suciu '96] [Abiteboul '98]. Graph views are generally made easier by the fragmented

aspect of graph data where objects do not exist as such, but take the form of nodes related by

edges. Graph views are essentially filtering mechanisms where sets of nodes and edges are

selected. The restructuring problems that object-oriented views face do not appear. These

proposals are all limited to specific aspects of graph databases: [Zhuge '98] only extracts views as

sets of objects; [Wood '90] does not deal with updates and deletions; [Suciu '96] only works with

join-free queries and insert statements. Only [Abiteboul'98] proposes a generic view mechanism

that takes into account the specificity of graphs, and supports all operations. This view mechanism

may allow the extraction of sub graphs from a general graph as classifications extracted from an

overlapping larger classification.

4. Traceability: traceability is required in order to understand what motivated the choice of other

users (e.g. other taxonomists) when they built their classifications. As multiple classifications are

not supported, traceability is not possible. In particular, if views are used, then it is not possible to

record the reason for the creation of views.

5. Composite objects: composite objects provides the means to describe the boundaries of objects

and enforce integrity constraints. Graph-based models do not support clearly the distinction

between aggregation and association relationships, and their fine nuances. Even when graph query

languages (e.g. [Mendelzon '97]) show the necessity to distinguish between internal and external

structures, these structures are never explicitly captured by the data models. The resulting models

therefore sometimes appear to confuse multiplicity and semantics of relationships. Only a few

provide a very limited and simplistic mechanism. For example, Hyperlog offers both references,

that can be seen as associations, and nesting, that can be regarded as aggregation. Although this is

not the purpose of the model, these two kinds of relationships could be used to model simple forms

of semantics. They would be limited though, as nesting always implies containment, which is not a

constant semantics of aggregation relationships. The model defined for WebOQL [Arocena '98] is

also an exception where two kinds of relationships exist: internal and external (applied to web

pages). The only model that offers extensive support for semantics is ConceptBase [Jarke '95],

where rules/constraints can be attached to relationships in order to enforce their semantics. The

47/196

3. Classifications and existing database systems

semantics that can be expressed are not exhaustive, as for example abstract semantics such as

spatial or matter relationships cannot be captured, but are nonetheless interesting.

6. Population-based classifications: population-based classifications, of which taxonomy is an

example, require the ability to use any object as a class. The inherent supp0l1 for graph structures

makes it possible to design a system that captures the volatility of classifications (taxonomic

classifications in particular). Semi-structured data even offer the libe11y of ignoring any kind of

schema. It is therefore possible to describe population-based classifications where any participant

may have importance in itself. Simply linking nodes together with edges would support this

requirement.

7. Roles: roles provide support for objects that may appear differently or be treated differently by the

system under certain circumstances (e.g. specimens in taxonomy). Roles do not appear to have

been studied in the context of graph models.

8. Rules/constraints: Rules and constraints are useful to enforce working practices (e.g. the ICBN)

and deduce information (e.g. group names). As query languages, graph rules/constraints can be

expressed using patterns (e.g. [Paredaens '93] [Mi.inch '98]) and textual descriptions (declarative

rules, e.g. [Jarke '93] [Mylopoulos '90], and for semi-structured data [Rousset '97] [Fernandez '99]

[Calvanese '99]). These rule mechanisms offer varying degrees of complexity: some support

recursive behaviour as queries [Fernandez '99], some do not [Mi.inch '98]. Some allow complex

checks [Jarke '93] [Fernandez '99], whereas others only allow simple node/edge existence/non

existence checks [Calvanese '99]. These varying abilities make some of these mechanisms

unsuitable for classification rules. For example, if recursion is not supported, then it is impossible

to test graph configuration beyond the simplest checks. If only a node/edge existence check is

supported, then it may not be possible to express some constraints. Note that none of these

mechanisms describes event management and constraint evaluation techniques. The lack of

complex event detection may hamper the implementation of the ICBN, as some constraints may be

hard to enforce (e.g. a change in the publication date of a specimen may lead to the necessity to

reorganise whole classifications).

9. Recursive behaviour: recursive behaviour is required to manipulate and explore hierarchical

structures such as classifications. Many approaches to querying graph structures have been

proposed. Some of them are based on pattern matching (GOOD [Gemis '93], Spider [Rodgers '97],

Hyperlog [Poulovassilis '98]), others are based on SQLlOQL-like languages extended to support

the peculiarities of graphs ([Quass '95] [Buneman '96] [Abiteboul'96] [Arocena '98] [Mendelzon

'97] [Fernandez '97b] [Abiteboul '97]), and very few use a recursive notation that exploits the

underlying recursive graph model ([Fernandez '97a]). Their support for recursion takes two forms:

the inherent recursive language developed for a recursive model [Fernandez '97a] and the use of

regular path expressions to simulate recursivity on a non recursive model ([Arocena '98]

[Mendelzon '98] [Papakonstantinou '95] [Fernandez '97b] [Abiteboul'97] [Abiteboul'96] [Zhuge

'98] [Wood '90]). As many of these query languages were developed for semi-structured data, they

are very flexible and powerful (e.g. they can rewrite the database graph, interpret incomplete

481196

3. Classifications and existing database systems

queries, or explore the database graph via structural recursion). These features would be of interest

to a classification mechanism.

10. Integration with existing system: integration is motivated by the need to keep existing

applications and information running after the addition of new mechanisms. As graph models

support graph/tree representation inherently, the addition of classification mechanisms could be

done in a well-integrated manner as long as the recipient system is also graph-based.

II. Generic classifications: generic classifications are classifications that may classify anything, e.g.

non-taxonomic applications. Graph-based models generally only support one kind of relationship

between nodes. Only a few support classes and is-a classifications (e.g. Hyperlog [Poulovassilis

'98]). If relationships are classified (in the object-oriented sense), then it is possible to create

classifications that are of the required type. However, if they are not, classifications become

indistinguishable from any data in the system. The limitation of graph-based models is that they do

not interpret the semantics of relationships. Therefore it is possible to describe is-a or is-of

classifications, as well as generic classifications, but the system would not be able to interpret their

meaning. For example is-a edges may be created in models that support the extension of edge

types, but they would only be called is-a edges, and inheritance rules would not be enforced.

12. Orthogonality of classification and classified information: orthogonality, by separating the

processes of information gathering and classification, provides en environment where it is more

natural to create mUltiple overlapping classifications. As many graph-models are not node-oriented

(as most semi-structured models), they do not offer any distinction between the classified objects

and their classification status. In addition, as they do not support semantic relationships, they do

not provide any mechanism to circumscribe the classified objects. The classification status of

objects is therefore indistinguishable from their defmition. Other models, that propose the

description of nodes and edges, can represent the classification information and the objects, but

once again as most do not support any kind of nuances in semantics, the definition of classified

objects and their classification status cannot be distinguished (or only on the basis of names in user

applications).

This section has shown that graph-based models offer valuable features for the support of classification

mechanisms. The first is their inherent support for tree/graph structures. This allows them to capture

naturally classifications. The second is the ability of several models to capture both node and edge

information, which provides a means to represent complex graphs. Some, through view mechanisms,

may also provide mechanisms that support the definition of simple overlapping classifications, but they

are limited in their support for update/deletion operations, or their ability to extract complete graphs.

This section has also shown that semi-structured systems in particular offer powerful query languages

that support recursion and would be useful for classification mechanisms, and interesting

rule/constraint mechanisms. However, this section has also shown that traceability and therefore the

representation of multiple overlapping classifications are unresolved issues. In addition, the absence of

semantics in the models makes the orthogonality of classification and classified data impossible. All

49/196

3. Classifications and existing database systems

should be managed in an ad hoc manner by user applications. Graph models are certainly good

candidates for a classification system, but they need to be extended to support all the required features.

3.2.4 Extended object-oriented systems

Extended object-oriented systems as considered here are specific kinds of object-oriented systems that

emphasise relationships as well as objects (other object-oriented models de-emphasise relationships

[Consens '94b]). This emphasis of relationships is justified by the fact that the traditional way of

representing associations is unnatural as they require the implementation of references inside objects

instead of real associations among objects [Albano '91] [Diaz '90] [Norrie '92]. Moreover, associations

may have attributes of their own, and implementing them within the objects that participate in the

relationship destroys the concept of association [Norrie '93] and loses the independence of the objects

involved in the relationship [Albano '91]. Not only is this unnatural, but it may violate object-oriented

principles, for example when constraints are necessary [Doherty '93]. These models therefore argue

that there needs to be relationships as first-class concepts in object-oriented models.

The suitability of these models regarding the requirements expressed in section 2.4 is studied now:

1. Tree/graph structure: extended object-oriented models can represent graph structures. Their

degree of support for graph structures varies: some support the definition of explicit but simple

graphs (e.g. SORAC [Doherty '93]); others SUppOlt the defmition of more complex graphs such as

weighted graphs (e.g. OMS [Norrie '93], GraphDB [GUting '94], ADAM [Diaz '90], Albano

[Albano '91]). In all cases, these graphs explicitly represent both nodes (objects for GraphDB and

SORAC, or unary collections for OMS and Albano) and edges (specific relationship objects for

GraphDB and SORAC, or binary/n-ary collections for OMS and Albano). Although this is not the

purpose of most of them, GraphDB has shown that they can be adapted to support generic graphs,

therefore classifications. Note that GraphDB is also the only system that offers support for graph

manipulation and exploration.

2. Directed graphs: directionality is necessary in classification structures to understand the flow of

information (e.g. the direction from the most general to the most specific). Not all presented

models support directed graphs (e.g. [Albano '91] represents undirected graphs). However most of

them do. It is interesting to note that none of the models SUppOltS both directed and undirected

graphs.

3. Multiple classifications: extended object-oriented models do not intrinsically support mUltiple

classifications. They only support the definition of unspecialised graphs. Additional mechanisms,

at the model and/or at the query language level, would need to be developed in order to support

multiple overlapping classifications. Some models, e.g. OMS, provide a classification mechanism

based on collections where things may appear in several collections simultaneously. The facts that

the categories used in the classifications are objects that have an importance of their own and carry

data (e.g. taxonomic type, publication) and these classes are classified that are surrogates for

specimens are also classified (see chapter 2) make this approach unsuitable. Unlike object-oriented

50/196

3. Classifications and existing database systems

and many graph-based models, no view mechanism is available for these approaches. In many

cases, they are built from scratch in order to support uncommon features (e.g. GraphDB, SORAC,

Albano) or are built on top of existing database systems that do not support views (e.g. ADAM).

As a consequence, the representation of concurrent classifications as views of a single larger

classification is impossible.

4. Traceability: traceability allows the tracking of decisions, thereby providing a tool to understand

other users' work. Traceability is an unresolved issue. As the models presented do not support the

definition of concurrent classifications, traceability is not natively suppOlted. There is no built-in

way to know why a classification has been created and why a specific object participates in it.

However, some of these models support attributes on relationships (Albano, GraphDB, ADAM),

therefore it can be imagined that these classification relationships also record the motivations for

classifications.

5. Composite objects: composite objects are a necessity to record the boundaries of objects and

facilitate enforcement of integrity constraints. Some of the models presented here offer some kind

of support for the definition of the semantics of relationships. OMS [Norrie '93] and Albano

[Albano '91] are collection based models. Special kinds of collections (binary in the case of OMS)

represent associations. These associations are semantic associations that are defined independently

of objects. In the case of OMS, the distinction between associations (binary collections) and

aggregations (references embedded in objects) captures limited semantics of relationships. In the

case of Albano, associations and aggregations are both defined as collections, and constraints

enforce some of the possible semantics of relationships (e.g. constancy, dependency). Other

models take a different approach and extend existing object-oriented models with specific

structures that play the role of relationships (GraphDB [Gtiting '94], SORAC [Doherty '93],

ADAM [Diaz '90], DSM [Shah '89]). These models do not provide semantic relationships,

however, their relationships may in some circumstances carry constraints that could enforce such

semantics (SORAC designs relationships specifically for constraints) or behaviour that may offer

other semantics (DSM proposes the propagation of operations that forms of aggregations may

require, ADAM propose attribute inheritance). It would therefore be possible to describe

composite objects using several of these approaches. However, complete semantic description is

not possible with most of them, therefore only very limited semantics would be available. Note

that only OMS captures aggregations as references supports the concept of encapSUlation. Others,

because they represent all relationships as independent objects and do not provide specific

mechanisms to emulate encapSUlation, fail to provide any means to support this impOltant facility.

6. Population-based classifications: population-based classifications, such as taxonomy, are

classifications in which classes are objects that have their own importance and are involved in

separate processes. As the proposed models are able to define any kind of graph, it is possible to

capture graphs in which the classifying elements are not designed specifically to be part of a

classification. The nodes in the classifications can therefore be any kind of object that can be

manipulated on its own, irrespective of a classification.

51/196

3. Classifications and existing database systems

7. ROles: roles allow objects such as specimens in taxonomy to change their behaviour or be treated

in different ways by the system depending on the contents of the database. ADAM is the only

documented approach that offers roles. Roles in ADAM are derived from the presence of

relationships in which objects are involved. These relationships may carry attributes when these

attributes could not belong to anyone object involved in the relationship. These relationship

attributes can be inherited by the objects targeted by the relationship and become new attributes of

the object. For example, two objects representing people may become involved in a wedding

relationship. The date and location of the wedding clearly are properties of the relationship, not of

anyone of the objects involved. Therefore these attributes would be defined on the wedding

relationship. However, these attributes may of interest to the objects involved in the relationship,

therefore may inherit them. This role mechanism is of particular interest for taxonomy

classifications, as this situation happens to specimens that become taxonomic types: the fact that a

specimen is involved in a taxonomic type relationship makes it a type specimen, and the behaviour

of the system and other objects toward it change.

8. Rules/constraints: constraints and rules are useful to enforce working practices (e.g. the ICBN).

Many proposed models support constraints. DSM only supports cardinality constraints. SORAC is

a model specifically built to support constraints as relationships in order to avoid many well

known problems of constraints in object-oriented systems (e.g. duplication of constraints in all

participants of a relationship, violation of encapsulation). Constraints in SORAC are expressed

using the programming language, therefore can capture any constraint more or less

straightforwardly (the programming language is computationally complete). OMS and Albano

offer the most extensive specific constraint mechanisms among extended object-oriented models.

They support for example constraints that enforce type relationships (e.g. totality of inheritance),

and cardinality. Albano goes further and describes constraints such as dependency and constancy

that are of clear use for semantic relationships. However, these approaches do not support

deductive rules. This may prove a problem for the automatic derivation of taxon names for

example.

9. Recursive behaviour: recursive behaviour is required to manipulate recursive data strctures such

as classifications. Many of the reviewed models do not support any query language. Among those

which do, two approaches to query languages exist in extended object-oriented systems: graph

based languages (GraphDB) and set-based/relational languages (OMS, Albano). The majority of

the models presented here support some kind of recursion. This recursion can be simple through

transitive closure or regular expressions (OMS provides the transitive closure on relations), or

more complex through the definition of graph traversals (GraphDB provides a graph oriented

language that allows graph rewriting and searches, e.g. shortest path between two nodes). Albano's

model does not support any form of recursion.

10. Integration with existing system: integration with an existing system allows existing applications

to continue working and provides the basis for a widespread use of the package that contains the

new features. As the development of ADAM has shown, it is possible to extend an existing object

oriented model with relationships. This extension is useful when an existing taxonomic database is

52/196

3. Classifications and existing database systems

to be extended with more powerful classification mechanisms. GraphDB has also shown that query

languages can be extended in order to support fully graph oriented query languages.

11. Generic classifications: generic classifications are necessary to support certain kinds of

classifications (e.g. non is-a and non is-of) and support unforeseen types of classifications. By

defining different kinds of relationships and using them to capture classifications, it is possible to

define classifications that are not is-a or is-of classifications. This can be done by creating new

kinds of relationships, with their semantics, and linking objects together. However, for the models

that do not support semantic relationships, is-of classifications are impossible.

12. Orthogonality of classification and classified information: orthogonality allows independence

of information and classifications, which supports more naturally the multiple classification of

information (e.g. taxonomic information). As any number of different kinds of relationships can be

defined in some extended object-oriented systems (e.g. Albano), it is possible to clearly distinguish

between the classifications and other entities in the system. Combined with semantic relationships,

it is possible to extract composite objects from the classifications unambiguously.

This section has shown that by combining aspects of object-oriented models and graph models,

extended object-oriented models attain a higher level of features of interest for the creation of mUltiple

classification mechanisms. They all allow the description of explicit graphs, and some support the

definition of more complex graph such as weighted graphs (e.g. GraphDB). Combined with the ability

to extend relationships, they can represent orthogonal classifications. In addition, few models propose a

simple level of relationship semantics that may allow the distinction of classification and classified

information. In addition, some provide recursivity through graph exploration (GraphDB) or transitive

closure (OMS). However, the models presented all have limitations that should be overcome in order to

build an extensive classification mechanism: semantics of relationships should be extended in order to

support more nuances that are necessary in modelling and programming; support for multiple

conCUlTent classifications should be provided and integrated with the query language in order to

provide generic ways to represent and query such classifications.

3.2.5 Conclusion

This chapter has presented in overview four of the most common database models: relational, object

oriented, graph-based (and semi-structured), and extended object-oriented. Each of them was compared

with the list of classification requirements presented in section 2.4. This has lead to the following

conclusions:

The relational model is too simple to support complex application domains. In particular,

classifications, that require both complex objects and recursive behaviour, prove very difficult to

capture. In addition, graphs are not inherently supported by the relational model and the

implementation of such a mechanism would require the implementation of most of the knowledge

in the user application, which makes reuse and genericity very difficult.

53/196

3. Classifications and existing database systems

The object-oriented model has the advantage of being able to capture complex information in a

more efficient manner. In addition, the view mechanisms are well developed and may offer a

solution to the multiple classifications problem: using views, it is possible to describe concurrent

subsets of the instance graph, each of which can represent a single classification. In addition, roles

have been investigated and viable solutions have been proposed, even though they require a

specific underlying programming environment. However, most object-oriented query languages do

not support recursivity and none of them supports the manipulation of classifications as a whole.

This may limit the ability of a user application to support adequate functionality. In addition, the

query language proposed does not deal with multiple simultaneous views. This limits the possible

comparisons in the system.

Graph-based models support inherently the graph/tree aspect of classifications. They also offer

query languages that allow the specification of recursion (for semi-structured data). View

mechanisms have been investigated and solutions exist, even though they are less complex and

powerful than object-oriented views. Constraints and rules are supported by a few models, which

allows the implementation of classifications where validity can be checked and information

derived. Graph models seem good candidates for classification systems. However, roles have not

been investigated in these models and this may be a problem. In addition, the semantic level is

insufficient to fully support complex objects and classifications, as only very few models support

semantic relationships and none supports explicitly aggregation relationships with all their

semantics.

Extended object-oriented models borrow features from both graph-based and object-oriented

models. Through the definition of relationships between objects, they can define graphs of

arbitrmy complexity. Their quely languages also offer a degree of recursive behaviour that is

supported by transitive closure or graph operators (one model, GraphDB, supports graphs as

entities). Roles have also been investigated by one model that supports the definition of roles and

attribute inheritance. In addition, these models support some constraints that could be useful for

the definition of semantic relationships. On the other hand, these models are limited in their

support for the semantics of relationships. They also lack the ability to define views or any

mechanism that allows the definition of concurrent classifications.

As was shown, two approaches seem to be promising: graph-based models and extended-oriented

models. These two kinds of models offer different advantages that could be useful for the

representation and manipUlation of classifications. However, it was also shown that none of these

approaches offers full support for all the requirements of classifications in general and taxonomic

classifications in particular. They would both need extension in order to become appropriate

classification systems. These two approaches are tested in chapter 4.

541196

3. Classifications and existing database systems

3.3 Conclusion

Classifications have been studied in the context of biological data for some time. Some conceptual

classification mechanisms have been described, but they always expose a biased view of biological

classifications where definitive immutable classifications exist. It was shown in chapter 2 that this view

is unreasonable as biological classifications, in particular taxonomic classifications, are dynamic

knowledge representations that change with opinions and time. Therefore the classifications

mechanisms presented do not support classification work properly.

Many database models and query languages have been proposed in the literature. Many of these models

had specific use (e.g. financial operations for the relational model), but have been applied to new

disciplines as these became computerised. Some of these models (relational, object-oriented, graph

based) have been applied to managing biological classifications. However, this chapter has shown that

their support for the required features of classifications is insufficient. They all either lack modelling

power and/or querying power.

More recent and powerful models have also been proposed (e.g. semi-structured and extended object

oriented models). These models also have also been designed for specific use (e.g. support for dynamic

and unstructured data for semi-structured models). However, as some are more powerful in their ability

to capture complex data (e.g. extended object-oriented models), they offer higher levels of support for

biological classification mechanisms (e.g. explicit and semantic relationships).

Section 3.2 has presented two models that offer interesting features for the SUppOlt of biological

classifications: graph-based models, that inherently support the description of graphs and in some cases

recursivity, and extended object-oriented models, whose ability to capture complex data may be of use

for the description of multiple concurrent classifications. The second type of model, that subsumes the

first, has been used as the basis for the building of a suitable model for plant taxonomy and is presented

in chapters 4, 5 and 6.

55/196

4. Prometheus/ODMG

4 Prometheus/ODMG

As was shown in section 2, taxonomic data is inherently hierarchical. It is therefore a straightforward

and sensible choice to build a system that would SUppOlt taxonomic work on a model that inherently

supports such structures. A prototype was built for this thesis in order to test the feasibility of

supporting multiple classifications mechanisms on a graph-based model [Raguenaud '00]. That

prototype showed that a graph-based approach, although intuitive, didn't provide all the mechanisms

required to support taxonomic data and working practices. This chapter presents the model developed

for the second prototype built for this thesis, an object-oriented database system. The approach chosen

is that of introduction of first-class relationships in ODMG.

As was presented in section 2.4, a classification database needs to satisfy specific requirements. The

new model therefore needs to offer the ability to describe trees/graphs (including weighted graphs),

direction of relationships (i.e. graph arcs), composite objects, recursion, rules, multiple classifications,

traceability, and roles.

In designing the model, the following additional criteria, which overlap with requirements in section

2.4, were considered especially important:

The integration should be as generic as possible. Building a model on a particular object

oriented implementation model would restrict its ability to be used. Therefore the integration

is made in a simple object-oriented environment common to the majority of object based

database systems. ODMG has been chosen for that role because it is a (de facto) standard.

The integration should be implemented on a commercially available database in order to

make its application directly useful to others.

The integration should be able to reuse existing data so as to extend an existing system with

new features without loss of data or heavy treatment of existing datasets. One important

aspect of the system built is its ability to be integrated with existing data without requiring

many changes before becoming useful.

The integration should not require the participation of existing objects and so avoids rewriting

of existing data. Since existing data is to be reused, these data are not expected to be able to

provide any level of service for this system.

There is debate in the database community about what is to be embedded in the database system, and

what should be stored in user applications. Some argue that the database system should be as simple as

possible and most of the knowledge stored in the user application. This way the system is easier to

design and more generic. Others argue that as much knowledge should be pushed downward in order to

offer more abstract and complex operations, and free the user application of most of the generic work,

however complex. This work is based on the decision that, in order to offer a system that offers features

that make the development of applications easier, more information should be pushed into the database

56/196

4. Prometheus/ODMG

system. This way, it is possible to design and optimise the operations once and for all. It is also possible

to enforce consistency in a more generic and natural way.

Existing systems such as GraphDB [Giiting '94], SORAC [Doherty '93], and Albano [Albano '91] offer

partial integration of an object-oriented environment with graph mechanisms and structures (e.g.

GraphDB which does not support object-oriented semantics of relationships and offers a graph based

query language, and SORAC that lack the definition of a query language) or use models tailored for the

integration (e.g. Albano's collection based model [Albano '91]).

Prometheus provides an expressive environment by extending an object-oriented model with

relationships whose semantics are clearly defined and by proposing a suitable query language. The

graph mechanisms that are added improve the ability to model object-oriented systems by offering a

more direct mapping from object modelling to object implementation. The resulting environment

provides the user with multiple viewpoints in which the graph extensions can be ignored to work in a

standard object-oriented environment, object-oriented features can be left aside to work in a graph

environment, or both environments can be used at the same time in a smoothly more expressive

integrated system.

Although the intention is to create a database with more expressive relationships, it is not to create a

UML database. Such a database would be based on (mostly binary) relationships constituted of tree

parts: the relationship itself, and both relationship ends. These relationship ends would contain all the

information necessary for the interpretation of the relationship. For example, a relationship end can be

of type association or aggregation; it supports multiplicity; it defines the behaviour of the relationship

with attributes such as navigability or visibility. However, using such a definition, as has been done in

non-database systems such as cOlOr [Barbier '01] would complicate the definition of relationships and

above all make their querying far more complex than necessary. For example, since relationships in the

cOlOr sense could be queried as normal objects because they may contain information or can

participate in a query, the ends of the relationship would have to be expressed in each occurrence of the

relationship. Relationships would therefore become complex path expressions themselves and augment

the difficulty to express queries. In addition, the ability to use relationship ends instead of predefined

relationships allows the definition of many configurations that are not meaningful. For example, with

relationship ends, it is possible to express that a relationship has an aggregation end as both relationship

ends, thereby implying that the whole-part relationship so defined is a whole-part relationship in both

directions. Clearly, if an object is part of another, the other cannot be pmt of the first one. It is easy to

restrict the definitions to what is meaningful in order to simplify the model. The attributes that can be

defined on relationship ends are also unnecessarily duplicated in each end. For example, the

changeability attribute is defined in both ends of a relationship, although non-changeability of one end

implies non-changeability of the whole relationship, therefore of both ends. For these reasons,

relationships have been defined as single entities with no replaceable parts or no optional parts

(relationship ends), with a single set of attributes valid for the whole relationship.

57/196

4. Prometheus/ODMG

This chapter contains the following sections: first, the notation used for the object-oriented model in the

thesis is presented. Then the model itself and the relationships are defined with reference to ODMG,

and instance synonyms, a peculiarity of the model motivated by taxonomic working practices, are

introduced. A database example illustrating how the concepts presented here are used to build an

application is given. Finally, a few remarks on the model and its workings are noted and the chapter

concludes.

4.1 Notation

In this thesis, the following notation has been adopted for object-oriented class diagrams in the

Prometheus sense:

A class is represented by a box. The upper part of the box contains the class name, and the lower part a

list of atomic attributes (Figure 9). Although these attributes should be independent objects targeted by

relationships in Prometheus, they are shown as part of a class to simplify diagrams, except when the

aggregation relationship that references them has specific semantics. This is consistent withe definition

of atomic attributes in Prometheus for compatibility reasons (see section 4.8). Note that types are not

represented as they are part of the class definition and are nameless. This does not mean that types

cannot be shared among classes.

Class
AtomicAttributes

Figure 9: Diagram of a class

Relationships in Prometheus are represented by diamond shape boxes that contain the name of the

relationship class and occasionally a list of atomic attributes (Figure 10). The incoming arc may start

with a diamond touching the source class of the relationship if the relationship represents an

aggregation. Cardinality is shown on each end of the arcs composing the relationship. The incoming

and outgoing arcs always start at one corner of the diamond box. Relationships can reference other

classes to become n-ary relationships. The link between the relationship and these classes is

represented as a dotted arrow to show that it has different semantics than other relationships. These

dotted arrows never start at one corner or the diamond box.

581196

4. Prometheus/ODMG

I--X--~

y

Figure 10: Diagram of a relationship class

Inheritance is represented by thick black arrows between classes or relationship classes that are

involved in the inheritance relationship (Figure 11). The targeted class is the super-class. Note that

when relationship classes are involved in an inheritance relationship, all classes should show the

targeted classes, as through co-variance, these may be different between the super-class and its sub

classes.

[~ ~
0

y

Figure 11: Diagram of inheritance

Exclusivity is shown by crossing incoming relationship arcs with a curved line (Figure 12). Exclusivity

may appear between distinct relationship classes, or on a single relationship class, in which case it

shows exclusivity among instances of a single class only.

[-X---,

y

Figure 12: Diagram of exclusivity

59/196

4. Prometheus/ODMG

Sharability is represented by a curved line crossing outgoing relationship arcs (Figure 13).

,- -x- -1

y

Figure 13: Diagram of sharability

4.2 The basic object-oriented model (ODMG)

In this section the model that was used to define the relationship extensions is described. More formal

definitions can be found in [Alagic '99]. A built-in class is provided by ODMG: Object. That class can

be used wherever a class is expected therefore can be seen as the root of all inheritance hierarchies. The

interface and precise definition of this class is ignored in this document, as it is not necessary to

understand the work described.

In ODMG, classes are defined as collections of methods and attributes. A method is defined by the type

of objects it returns and the pairs (type, name) of its arguments:

Given a database schema S, a method called m is defined by: C m (C1 r1, ... , Cn rn), C

is a class in S, i.e. C E S, C is the type returned by the method, m is the method

name, rn, 1 :::; i :::; ni, are the name of method arguments and Cn are argument types.

For example: int add (int number, int increment) is a method that adds the argument "increment" of

type int to the argument "number" of type int and returns a value of type int.

In a similar manner, attributes are described as pairs (type, name):

Given a database schema S, an attribute called a is defined by: (C, a), a is any valid

attribute identifier, C E S (as ODMG does not distinguishes types and classes,

classes are sub-types of types according to the ODMG meta-model).

For example: (String, name) represents an attribute called "name" of type String.

In addition, according to the ODMG meta-model, classes also contain references to their super-classes

or super-interfaces, therefore they should be made explicit in class definitions. A class can therefore be

defined as a name associated with three collections: an attribute collection, a method collection, a

superclasslsuperinterface collection. A class can be temporarily defined as follows:

60/196

4. Prometheus/ODMG

Given a database schema S, C := ((Ca, a)i, (Cm m (C1 r1, ... , Cn rn»j, Pz),) /\ S := S u

{C}

o ~ i ~ ni {(Ca, a)i E C /\ (Ca)i E S } /\ 0 ~ j ~ nj {Cm m (C1 r1, ... , Rn Rn)j E C /\ (Cm)j E S

/\ (Cn)j E S} /\ 0 ~ Z ~ nZ{Pz E S /\ Pz =s; Object /\ C =s; Pz /\ Object E Pz}

C =s; Pz , ~

\::/ (Ca, a) E pz ~ (Ca, a) E C

/\ \::/ (Cm m (C1 r1, ... , Rn Rn) E pz ~ (Cm m (C1 r1, ... , Rn Rn) E C.

For example: Person«int, age), (String, name), int ageO, {Object}) is a class representing people that

contains two attributes, age and name, a method without argument returning the age of the object, and

is a sub-class of Object, the super-class of all classes in ODMG (ODMG has a unique inheritance root).

The concept of constraints needs to be introduced, as these will be necessary for the expression of the

semantics of relationships (section 4.3). A constraint is composed of an activation event, a condition of

applicability, and a constraint (possibly an action). For simplicity, events are selected from a list of

possible events (that can be primitive or composite, depending on the underlying system), and

conditions and actions are seen as simple text strings (in reality they could be expressions from the

constraint language or queries). Because Prometheus should be kept in the spirit of ODMG, and

because ODMG does not describe constraints precisely, constraints are described as objects that are

subclasses of a generic Constraint class, itself a subclass of Object. The structure of constraints is

defined as follows (the String class is a built-in type in ODMG and Prometheus): a constraint is a class

that contains at least three attributes: an event attribute that describes the event (simple or composite) to

which the constraint will react, a condition of applicability attribute that will contain the condition

under which the constraint makes sense, a condition attribute that contains the actual constraint to

enforce, and possibly an action to take when the constraint is violated. The structure of constraints is

therefore as follows (the String class is a built-in type in ODMG and Prometheus): The existence of a

set of event descriptions E = { ... }, atomic or composite, that can be system dependent is assumed.

Given a database schema S, constraint := ((E, m1)i, (Cnd1, m2), (Cnd2, m3), (Act, m4),

Pz) /\ S := S u {constraint} /\ C := C u {constraint}

Constraint =s; Object /\ Cnd1, Cnd2 =s; String /\ Act =s; String /\ 0 ~ Z ~ nz {Pz E S /\

constraint =s; Pz /\ Object E Pz}

m1i, m2, m3, and m4 represent the names of the attributes that represent the activation

events Ei 1 ~ i ~ ni, the condition of applicability (Cnd1), the constraint (Cnd2), and the

action (Act) of the rule respectively.

For example: ((OnTransactionAbort, m 1), 0, (String, m2), (String, m4), {Object}) represents a

constraint fired when a transaction is aborted, and that does not have a condition of applicability.

Thereafter, creating a new constraint type is equivalent to sub-classing the Constraint class. The

Constraint class also provides the interface necessary for its manipulation by the system and user

applications. Constraints are attached to the classes on which they are defined because it simplifies

understanding of the schema and keeps the application in an object-oriented and encapsulated form.

For example, if a class Patt has a constraint that its Price must be between 10 and 10000, it is sensible

611196

4. Prometheus/ODMG

to attach the constraint to that class instead of storing it elsewhere in the system. However, constraints

that involve many objects are captured on the relationships that link these objects. Note also that the

fact that constraints are generally defined on classes does not imply that they cannot be stored

elsewhere in the system at runtime for optimisation purposes and cannot be created as independent

objects.

In ODMG, classes may have extents. Extents are collections of instances, therefore they must be of

type Collection or one of its subclasses (sets for example). ODMG does not specify how extents should

be managed (by classes or as independent entities). The implementation of extents is left to the

underlying database manager. Extents are therefore ignored from this definition of classes, but can still

be managed by classes. An ODMG class in Prometheus is therefore defined as a set of attributes, a set

of methods, and a set of constraints:

Given a database schema S, Class := «Ca, a)j, (Cm m (C1 r1, ... , Cn rn»k, XI, Pz) /\ S :=

S u {Class} 1\ C := C u {Class}

Class::; Object 1\ 1 ;<;; j ;<;; na {Ca E S} 1\ 1 ;<;; I ;<;; nx {Xj ::; Constraint} 1\ 1 ;<;; k ;<;; nm {(Cm m

(C1 r1, ... , Cn rn»k E Class 1\ (Cm)k E S 1\ (Cn)k E S} 1\ 0 ;<;; z;<;; nz {Pz E S /\ Class::; Pz 1\

Object E Pz}

For example: Person((int, age), (String, name), int ageO, {Object}) is a class representing people that

contains two attributes, age and name, and a method without argument returning the age of the person.

Interfaces can also be defined as restricted classes with no state, or classes can be declared as a special

type of interface with attributes (as in ODMG), or interfaces can be defined in a similar way to classes.

In this thesis, no particular attention is given to interfaces, as they do not allow the complete definition

of relationships (relationships require state). Therefore only classes are studied from this point forward.

4.3 Relationships

Relationship objects can now be defined by extending the model presented in the previous section.

As with constraints, changes to the ODMG model must be avoided, therefore relationship classes must

be subclasses of the Object class. The skeleton of relationship classes is as follows: it contains as for

any class a set of attributes, but some of these attributes are built-in. These attributes are necessary to

locate the source and destination classes of the relationship class, its built-in attributes, and its

constraints. A relationship class is therefore defined as: an origin attribute, a destination attribute, a set

of user methods, and a set of user attributes. Thereafter, all relationship classes are subclasses of this

Relationship class. The system can then identify them and treat them as necessary, without

modification to ODMG. A relationship class is therefore defined as follows:

Given a database schema S, Relationship := «Co, origin), (Cd, destination), (Cm m (C1

r1, ... , Cn rn»k, (Cab, A)b, (Caj. A)j, Xi, Pz), S := S u {Relationship}, C := C u

{Relationship}

62/196

4. Prometheus/ODMG

o ::; z ::; nz {Pz E S /\ Relationship::; Pz /\ Class E Pz} /\ 1 ::; i ::; nx {Xi::; Constraint} /\ 1

::; k ::; nm {(Cm m (C1 r1, ... , Cn rn))k E Relationship /\ (Cm)k E S /\ (Cn)k E S } /\ 1 ::; b ::; nb

{(Cab, A)b E Relationship /\ (Cab)b ::; Boolean} /\ 1 ::; j ::; nj {(Caj, A)i E Relationship /\

(Caj)j ::; Boolean}.

(Cab, A)b represents a set of nb built-in Boolean attributes whose signification follows in

subsequent sections, and (Caj, A)j represents a set of nj user attributes with type (Caj)j

respectively. Co and Cd are origin and destination attributes respectively

For example: worksFor((Person, origin), (Company, destination), 0, (Boolean, LifetimeDependent),

(Float, salary), 0, {Object}) represents a relationship class relating Person objects to Company objects,

without methods, with a built-in attribute "LifetimeDependent", an attribute salary of type Float, and

no constraint.

There are two kinds of relationships in Prometheus: aggregations and associations. Each kind of

relationship is subject to limitations on the classes that can be used as its source or destination.

Restrictions need to be applied on the classes that can be the source or the target of a relationship class.

Indeed, since atomic node classes represent simple concepts, they cannot be the source of a relationship

class (an atomic class does not have outgoing edges). Moreover, they cannot be the destination of an

association, since an atomic class cannot make sense if it is not part of a larger concept (e.g. there

cannot be associations to numbers, whereas numbers can be part of the representation of a Person

concept, for example). This definition of aggregation is more general than some data modellers define

it. The purpose of this general definition is to provide a system that allows the elimination of references

as relationships. In Prometheus, all relationships should have semantics that make their meaning and

behaviour clear. For example, if a Person object is created and a height of I.80m is assigned to it, it

should be clear whether this value can be changed during the life of the Person object. In OODBs that

only support references to represent relationships, the semantics of the relationship must be

implemented through methods, which makes them harder to check and understand. In Prometheus, the

height attribute could be referenced through an aggregation relationship that could implement the

changeable/non-changeable behaviour. Note however that this is not compulsory, and if no semantics

are necessary, object references defined in types are possible.

Relationship classes are subdivided into 2 categories: single and multi-valued relationships. These

relationships allow the definition of 1: 1 and M:N relationships (1:N are a subtype of M:N) between

classes. ODMG describes one-to-one (1:1), one-to-many (1:N), and many-to-many (M:N)

relationships, but one-to-many relationships are a special case of many-to-many relationship.

Furthermore, both these categories are divided into two further categories that support the semantics of

association relationships and aggregation relationships. They are defined as subclasses of the

relationship class defined earlier. In this way, it is easy to treat relationships as first class objects in the

database and therefore benefit from object-oriented features (e.g. inheritance). Sub-classes of the basic

relationship class are therefore created to handle some nuances:

63/196

4. Prometheus/ODMG

SARC: Single Association Relationship Class (whose instances constitute the set SARI, Single

Association Relationship Instances).

SGRC: Single aGgregation Relationship Class (whose instances constitute the set SGRl, Single

aGgregation Relationship Instances).

MARC: Multiple Association Relationship Class (whose instances constitute the set MARl,

MultipleAssociation Relationship Instances).

MGRC: Multiple aGgregation Relationship Class (whose instances constitute the set MGRI,

Multiple aGgregation Relationship Instances).

ODMG, as it does not describe any semantics for relationships, does not make these distinctions in

semantics. But it is necessary to introduce them in order to provide a means to extend the definition of

relationship to a sensible and usable level. The way these subclasses are implemented depends on the

underlying database system. The description of attributes and constraints can be acquired in subclasses

of the basic relationship classes. For example, a subclass of Aggregation, Composition, can be created

and it can acquire the lifetime dependency and non-sharing behaviours.

Figure 14 shows the basic taxonomy of classes in Prometheus.

\

~gregation 11_Relation~hip Association_M-N_Relationship

Figure 14: Meta model

Although only binary relationships are defined (as in other models such as GraphDB, OMS), they can

be treated as n-ary relationships (as in Albano [Albano '91]) as they can carry attributes and these

attributes can reference other objects. In this way, relationships link n objects. In fact, because the

semantics of ODMG should not be changed, with regard to structure, there is no difference between

relationship ends and other attributes. It is therefore easy to create n-ary relationships. This is one of the

strengths of this approach. However, relationships always have a preferred source and destination (an

orientation), and traversal direction that might be interpreted by the query engine and the database

programming interface. This choice is motivated by the fact that many relationships are inherently

orientated (e.g. an aggregation clearly goes from the whole to the part). Orientation in relationships

simplifies their understanding, as they are usually thought of in one sense (e.g. the classical worksJor

64/196

4. Prometheus/ODMG

relationship in the Company-Employee example), and also supports the propagation of operations (e.g.

deletion of objects that imply the deletion of dependent objects). See section 4.4 for more details.

Co-variance is important in this model as it allows the refinement of classes in subclasses. Co-variance

means that methods/attributes can be redefined and their signature changed to more specific types. This

is particularly useful when sub-classing relationships represents refinement of the relationship. Contra

variance is the opposite of co-variance; it means while the type of classes is specialised, the type of

embedded attributes or method arguments is generalised [Meyer '97]. Many object-oriented models do

not support this behaviour and rely on code to control the accepted types for a method or an attribute.

However, this approach is confusing, as it is necessary to find the corresponding code and read it to

understand the model. It is also problematic because it breaks the definition of the semantics of the

model into two parts, the actual model and the code written in classes. This makes the model harder to

define and even harder to read, understand, and maintain. However, it is necessary to be able to

integrate these extensions with ODMG. Inheritance defined in ODMG only supports a no-variant

redefinition of methods/attributes, i.e. when methods/attributes are redefined, their signature must

remain exactly the same. Some models SUppOlt an alternative approaches to redefinition: co-variance,

contra-variance. Since Prometheus uses co-variance and since the ODMG model should not be changed

in principle, this feature must therefore be emulated instead of inherently supported by the model, e.g.

using additional constraints or code.

As can be seen, the definition of the structure of relationships only provides their basic structure. For

example, there is no means to describe that a relationship has a cardinality of 1:2 or that it can be

traversed in only one direction. These properties are managed by special attributes defined on the

relationship or by constraints. The next two sections present these properties and constraints.

4.4 Semantics

In the literature, two main kinds of relationships are defined: aggregations and associations. Depending

on the semantics given to these relationships and the approach chosen by a particular user, their names

may vary (e.g. composition in UML [OMG '99] is an aggregation for which a lifetime dependency

relationship is defined between the whole and its parts), but they can still be classified into these two

categories (e.g. a composition is a form of aggregation). In this section, the different semantics given to

these relationships are reviewed and then the properties inherent to each of them extracted. Secondly,

their implementation in Prometheus is described as four basic features: attributes, constraints, attribute

inheritance, and collections.

65/196

~

4. Prometheus/ODMG

4.4.1 Aggregations

Aggregation relationships have been given very different semantics over time. These semantics vary

from simple fuzzy aggregations (e.g. [Rumbaugh '91]) to complex semantics ([Odell'94b]). Within this

range, many contradictory semantics have been given (e.g. [Odell'94b] vs. [Henderson-Sellers '97]).

Odell [Odell '94b] classifies aggregation relationships into six distinct categories depending on their

context and their usage: component-integral object composition (parts bear a functional or structural

relationships with the whole), material-object composition (similar to component-object composition

but with an invariant behaviour), portion-object composition (the parts are of the same nature as the

whole), place-area composition (similar to portion-object composition with invariability), member

bunch composition (no functional or structural relationship exists between the parts and the whole),

member-partnership composition (similar to member-bunch composition with invariability). From this

classification it can be seen that aggregation relationships have the following properties:

configurational (functional or structural relationship between the whole and the parts), homeomeric

(parts have the same nature as the whole), and invariant. Table 1 shows how the different relationships

identified can be described with these properties:

Configurational Homeomeric Invariant
Component-integral object Yes No No
Material-object Yes No Yes
Portion-object Yes Yes No
Place-area Yes Yes Yes
Member-bunch No No No
Member-partnership No No Yes

Table 1: Odell's relationships

This classification is debatable, as shown in [Henderson-Sellers '97]. Henderson-Sellers shows that the

description of some of the categories is subject to interpretation. He therefore adds a feature-activity

category, and changes the place-area to configurational/homeomeric/invariant and the portion-object

category to non-configurational/homeomeric (invariance is undecided). This leads to the classification

presented in Table 2.

Configuration Homeomeric Invariance
Component-integral object Yes No No
Material-object Yes No Yes
Place-area Yes No Yes
Fea tu re-a ctivi ty Yes No Yes
Portion-object No Yes No (or yes)
Member-bunch No No No
Mem ber-partnership No No Yes

Table 2: Henderson-Sellers' relationships

66/196

4. Prometheus/ODMG

However, it can be seen that some properties highlighted by Odell and Henderson-Sellers are only

manageable on the user's side because they are purely abstract nuances. A computer cannot guess the

functional or structural relationships between objects, as this information is not represented in the

system. Likewise, the homeomeric aspect of some of the relationships is hard to manage, as there is not

necessarily a relationship between objects of the same nature in the real world (e.g. Odell cites the

example of a slice of bread as a part of a loaf of bread, two objects that could be distinct and

independent in a computer representation). These properties can therefore be set aside because they are

unreliable.

Some data modellers [Henderson-Sellers '97] insist that composite objects (the objects that play the role

of whole) must exhibit at least one emergent property, i.e. a property that cannot be derived from the

values of the aggregate objects. In addition, composite objects must exhibit at least one dependent

property, i.e. a property that can be derived from the values of the aggregate objects. This object can be

related to the dominant class in OMT [Rumbaugh '94], although the dominant object has no clear

restriction on its properties. This property of composite objects is too great a restriction to be applicable

in object models. Indeed, because computer models are simplifications of real world models, all

properties of the actors of a composition are not necessarily represented and therefore emergent

properties may be ignored in the model. For example, a boat is a composition of parts and clearly the

boat has dependent properties (it floats as a consequence of having a hull), and it has emergent

properties (e.g. it can carry passengers). However, these properties might exist in the mind of the

modeller, but may not be represented in the system.

Bock and Odell also argue [Bock '98], extending Henderson-Sellers' ideas [Henderson-Sellers '97], that

it is impOltant that relationships are represented by first-class objects, as relationships can sometimes

themselves be part of the composite object. Indeed, when two PaIts of a composite object are involved

in a relationship that is vital to the working of the whole object, the relationship itself can become itself

a part of the composition (a car is more than a collection of parts, and some parts must be related in

very specific ways, e.g. the powers relationship that exists between an engine and the wheels of a car).

Composite objects are also said to offer several services [Bock '94]: instantiation of parts (a composite

object might only make sense with its parts), propagation of operations (when a composite object is

modified or deleted, its parts might be affected), maintenance of connections between PaIts (when a

PaIt is removed from the whole), and enforcement of invariant compositions. These services can be

seen as providing lifetime dependency, propagation of operations, and invariance.

Similarly, Pirotte [Pirotte '97] presents an implementation of a semantic model that focuses on the

representation of relationships. It proposes, as previously introduced models, exclusiveness/sharing

(both at a local and global level, i.e. within a composite or among composites), and

dependence/independence. An interesting addition to common semantics is the ability to represent

partially the semantics defined by Henderson-Sellers [Henderson-Sellers '97] and others. Their model

offers three types of aggregation relationships: part relationship, PaIt association, and part recursion.

671196

4. Prometheus/ODMG

Part relationship represents the aggregation other authors have described. Part association represents

the association to objects which all share the same class. Part recursion, a special case of part

association, represents the homeomeric relationship. These specialised relationships can be combined

with transitivity in order to provide attribute derivation (as in ADAM [Diaz '90] to a certain extent).

Kolp [Kolp '97] proposes a model where different kinds of relationships (generic, aggregation,

aggregated, derived, materialization) are first-class objects. These relationships support a set of

propelties (cardinality, dependency, and exclusiveness) that constitute their semantics. Although this

model supports relationships and their semantics, the set of properties a relationship can exhibit is

fixed, as it is part of the type of relationships. It is therefore impossible to extend them beyond the

predefined propelties (e.g. how can encapsulation be described?).

A different approach is taken by Blaha [Blaha '93]. Indeed, the author insists on the importance of

different properties of the aggregation relationship: it should be transitive (in order to support the

transitive closure), antisymetric (i.e. directed), and cardinality plays a central role. According to the

author, two kinds of aggregation relationships exist: physical aggregation and catalogue aggregation.

The main difference between these two aggregations is that catalogue aggregations are a higher-level

description of a system, whereas the physical aggregation is the physical more precise description of

the reality of the system. He implies that physical models are trees, whereas catalogue models are

directed acyclic graphs (nodes may have multiple parents). As a tree restrict the number of parents of a

node to one, it is necessary to be able to SUppOit sharability/exclusivity.

Other models propose a simpler view of the semantics of relationships: OMT has a less rigorous

definition of the semantics of relationships. Only two kinds of aggregations exist: aggregations and

compositions. Compositions are distinguished from aggregation by the fact that they imply non-sharing

of the part objects. However, It can be argued that a room is composed of walls and doors, and that

these can be shared between adjacent rooms. The distinction is not so simple. In UML, aggregation and

composition (as a "strong aggregation") are defmed. The distinction is made on the basis of

invariability and lifetime dependency: a composition is invariant and implies destruction of parts when

the whole is destroyed. UML, as OMT, seems to be more implementation oriented than other

descriptions of the semantics of relationships, probably because of its programming language

background. UML only insists on the very few properties that can be easily checked by a computer

(invariance) and does not discuss abstract semantics (e.g. homeomeric).

Aggregation relationships should therefore be first-class concepts, should provide means to support

lifetime dependency, invariance (or changeability), sharability, and propagation of operations, and

should support the definition of attributes. It was also said that cardinality is a central problem since the

usage of an aggregation relationship for different purposes requires different strict cardinalities. These

properties and behaviours can be used in conjunction or disjunction in order to create richer semantics

and provide relationships that implement various behaviours. For example, lifetime dependency and

681196

4. Prometheus/ODMG

invariance can be selected to form a composite object that can only make sense with its parts (or parts

that can only make sense with a whole), and which cannot change during its life.

4.4.2 Associations

In comparison to aggregations, associations are given little semantics and have been less studied. This

is due to the fact that associations are more general relationships, thereby bearing less precise meaning.

Note however that some modelling methods offer the same semantics for aggregations and associations

(e.g. UML). Although this can be sensible for some properties (e.g. invariant) it seems harder to justify

for others (e.g. lifetime dependency, sharing).

One point that can be noted is that that all methods agree on the fact that aggregations are special cases

of associations. But in parallel, associations are said to be inherently bi-directional, and aggregations

uni-directional [Motschnig '99] (anti-symmetric and oriented). In addition, in OMT second generation

[Rumbaugh '95] relationships may have an arrow next to their name to indicate how they should be

read. This shows that although they can be traversed in two directions (as associations are defined as

bi-directional), they must be read in one direction, therefore are directed. This shows that what is

usually referred to as direction is in fact made of two distinct concepts: directionality of the relationship

itself, and directionality of the operations (or attributes) and of the relationship traversal. These

concepts can be called orientation (where the relationships goes from and to, how it should be read, and

how the operations can be propagated) and navigation (how the relationship can be traversed).

4.4.3 Built-in attributes

The previous sections have reviewed existing analysis of semantic relationships. These analyses have

highlighted many aspects of relationship semantics but have proved contradictory: for example Odell

and Henderson-Sellers interpret similar concepts differently. However, it can be noted that these

concepts use the same basic properties such as invariance or lifetime dependency. It also appears that

some of the concepts used to describe semantics are not actual properties of the relationship, but

instead are properties of the objects involved in the relationship. For example, Odell's portion-object

composition where the parts are of the same nature as the whole is not a property of the relationship

between the part and the whole, but rather meta-information about these objects. In addition, abstract

nuances such as the homeomeric aspect of some relationships are unreliable and impossible to capture

[Pirotte '97]. However, as in the model presented by Pirotte [Pirotte '97], it is possible to define

subclasses of relationship classes that contain the homeomeric concept for example. However, unlike

[Pirotte '97], this does not provide additional information to the database system (transitivity is inherent

in Prometheus, as recursing down aggregation hierarchies is a feature of the query language, see

section 5.1.1.3). It is therefore more useful to concentrate on basic behavioural properties of

relationships and let the user gather them in order to create meaningful semantics.

69/196

4. Prometheus/ODMG

Following this analysis of relationships a set of properties is selected:

navigation

lifetime dependency

changeability

privacy

cardinality

exclusivity

sharability

encapsulation.

Properties are managed by two distinct processes: built-in attributes and constraints. These properties

represent behaviours of relationships that are omitted by ODMG and similar models and most of the

extended object-oriented models that support relationships (e.g. OMS [Norrie '93], GraphDB [GUting

'94], SORAC [Dohelty '93]), but include the semantics described in [Bertino '98]. They participate in

the definition of a relationship as well as its point of origin and its destination.

Navigation. Defining relationships as objects makes them equivalent to references with inverses, i.e.

they can inherently be traversed in both directions. As was explained in section 4.4.2, orientation and

navigation must be distinguished. Relationships have a preferred orientation (easier for understanding

and for specifying propagation of operations), but can be traversed in either direction (navigation).

However, it is sometimes necessary to restrict the allowed traversal of a pmticular relationship. For

example, in ODMG, references without an inverse can only be traversed in one direction and are

therefore relationships with only one direction of traversal. An attribute has therefore been defined,

nm1igation, which describes the direction a relationship can be traversed. This attribute is then taken

into account when objects request to follow a particular relationship in which they are involved

(equivalent to following a reference in classical object-oriented programming languages); in this case

the query language will only traverse the relationship if allowed.

Lifetime dependency. The lifotime dependency attribute is only applicable in the context of an

aggregation relationship. The implication of lifetime dependency is that when the object that is the

whole is destroyed, its parts are also destroyed (the concept of the destruction of objects is system

dependent and might imply garbage collecting). Lifetime dependency does not imply non-sharing of

objects. Objects can be used by two composite objects and still be shared. For example, the same part

might be part of two composite objects (e.g. a door between two rooms). Pmticular to this model, two

kinds of lifetime dependencies are distinguished: a strong one and a weaker version. The weak version

states that whenever the whole part of the relationship is deleted, its subparts must also be deleted. On

the contrary, strong lifetime dependency states that whenever a part is deleted, the whole, and therefore

all the other parts must be deleted. A car without a body part is not a car. Strong lifetime dependency is

usually used along with non-sharing (see this concept in section 4.4.4). Indeed, if sharing is allowed, a

70/196

4. Prometheus/ODMG

pmt might be used in many part-whole relationships. Strong lifetime dependency would imply that

deleting the pmt would delete the whole part of the relationship, in this case all whole objects using the

pmt object. This behaviour may be required, but is not necessarily implied. In order to make sure that

no unexpected behaviour occurs, non-sharing is useful.

Changeability. Other properties restricting or clarifying the status of a relationship commonly used in

UML and other modelling methods are necessary. For example, changeability that describes if a

particular relationship can be modified once it has been created. The changeable attribute specifies that

once a relationship has been created, it cannot be changed. For example, it could be decided that when

a customer buys a part, it cannot be returned and the relationship exists forever. Note that changeability

is independent from slibstituability [Motschnig '99]. Slibstituability means that one object targeted by a

relationship can be swapped for another without changing the relationship. Therefore if substituability

is allowed, a relationship that is marked as non-changeable can target many different objects in its

lifetime. In Prometheus, sllbsitllability is not allowed, as a relationship is defined by the objects it

targets. Therefore, if a relationship must target an object different from the one it has been created with,

it must be deleted and another relationship must be created in its place.

Privacy is not an attribute whose existence is motivated by object modelling. On the contrary, it is

motivated by object-oriented programming languages. It is generally ignored by semantic models (e.g.

[Dfaz '90], [Pirotte '97], [Kolp '97], [Shah '89], etc.). All object-oriented programming languages

propose a mechanism that allows the distinction between private and public parts of an object. In many

programming languages (e.g. Java [Sun '95] and c++ [Stroustrup '91]), a qualifier is used when each

attribute is defined in order to specify whether it can be publicly accessed or not. ODMG uses

interfaces to specify the public interface of an object and classes to specify the private interface of an

object. Note that because of the definition of interfaces in ODMG, it means that methods can be public,

but attributes are always private. In Prometheus, as explicit relationships are used for all relationships,

unlike other approaches (e.g. OMS), attributes become objects external to their owner. In order to

provide public/private specification of attributes, a privacy attribute is defined. This attribute can take

several values (e.g. public, private, protected). When an object requests to follow a relationship from a

given object, the system checks the privacy attribute of the relationship, and only allows the operation

to be carried out if access rights are not violated. It is true that this approach has its limitations: in a

database that manages extents, it is always possible to reach an object, whether it has been used as a

private member or not. But this is not a consequence of the model described here, it is a consequence of

extents.

Other properties can also be defined (e.g. visibility that is an extension of privacy), and while not

currently described in Prometheus, the framework exists to do so.

711196

4. Prometheus/ODMG

4.4.4 Constraints

Some properties of relationships cannot be expressed simply using an attribute. For example sharability

is a complex concept that necessitates the consideration of all relationships defined in the database in

order to make sure that none refers to a particular object. Therefore, in addition to these user-defmed

constraints (whose detailed mechanism is explained in section 5.2), relationships in Prometheus contain

a set of constraints that are used to augment their modelling ability and maintain more integrity

depending on the meaning the user has given to them, i.e. what kind of relationships they are. In this

section, the following built-in constraints are described: cardinality, exclusivity, sharability, and

encapsulation.

Cardinality. There is often the need for precise cardinalities. These cardinalities are managed by

constraints on relationship classes. These constraints check the number of relationships in the database

obeying certain criteria. For example, for a I:N relationship, there should be no other relationship of

the same class as the one under study that has the same destination. More precise constraints can be

expressed in a similar way (e.g. 1 :6), except that instead of checking the non-existence of relationships,

the number of relationship instances would be counted. Cardinality is also useful to offer support for

optional/mandatory properties [Iivari '92]. Indeed, a cardinality of 0,1 specifies that a property is

optional, whereas a cardinality of 1 (or more) specifies that a property must exist for the referenced

object to be valid.

The general constraints are defined as follows and more specific constraints are derived from them:

1:N relationship r E MARl u MGRI: 'j 0 E NI such that dest(r) = 0 -; -.3 r' E RI /\ r *
r', such that class(r') = class(r) /\ dest(r') = 0

N:1 relationship r E MARl u MGRI: 'j 0 E NI such that origin(r) = 0 -; -.3 r' E RI /\ r *
r', such that class(r') = class(r) /\ origin(r') = 0

M:N relationships do not require any constraint.

Exclusivity. An important type of constraint on relationships is the exclusivity constraint (xor constraint

in UML; or constraint in OMT). It can be said that the existence of one relationship implies the non

existence of another. Exclusivity means that there can exist only one of n relationships starting from

one object. In the example in Figure 20, new subclasses of the LinkToType relationship can be added.

Indeed, it was said in section 2 that taxonomists use different kinds of taxonomic types that mean

different things (e.g. lectotype, isotype, holotype). It was also said that the existence of one kind of type

for a name (e.g. holotype) implies the non existence of another (e.g. lectotype). This situation is

illustrated in Figure 15.

The followinf is an example of exclusivity between relationships of class R and relationships of class

R'. Both share the same class as origin (R and R' may be identical in order to create an exclusivity rule

at instance level):

'j r E R /\ 'j r' E R' /\ r' * r -; origin(r') * origin(r)

721196

4. Prometheus/ODMG

Typedefinition

Name
TheValidity

calculatedFullN ameN 0

Author

Figure 15: Exclusivity

Sharability. It is a property used mainly by aggregation relationships, although not restricted to them.

In aggregations, non-sharing is often necessary, in particular when composition is represented (e.g.

UML's composition). Sharability means that an object (e.g. a part) could only be referred to by only

one other (e.g. a composite). In the example Figure 20, a different implementation of herbaria can be

considered. Instead of representing herbaria as a string in the Specimen class, they could be

independent objects that contain Specimen objects. (Figure 16). Then it can be said that each Specimen

object belongs to only one herbarium. Indeed, it can only be in one place at a time.

The following is an example of an exclusivity constraint between a relationship r of class R and a

relationship r' of class R'. Rand R' may be identical in order to create a sharability rule at instance

level:

V r' E R' /\ r' "* r -+ destination(r') "* destination(r)

Herbarium

Soecimen
barCode

collectionNum
ber

latitude
longitude

Note

Figure 16: Sharability

Note that the previously defined privacy attribute does not imply non-sharability. Privacy only implies

that it is not possible for external objects to know that a private object is referred to by an object via a

relationship. This does not mean that the private object cannot be shared with other objects, privately or

publicly.

Encapsulation. Encapsulation restricts the possible use of the patt object of an aggregation relationship.

For example, it can be defined that an aggregate object cannot be referred to by an association, as it

would violate the encapsulation of parts, but can be referred to by an aggregation if sharability is

allowed. Encapsulation is not the same as privacy. Indeed, privacy states that no object can find out the

73/196

4. Prometheus/ODMG

objects targeted by a private relationship, whereas encapsulation states that those objects can or cannot

be shared through specific relationships.

Example of encapsulation constraint on relationship r E MARl u MGRl:

V 0 E NI such that dest(r) = 0 ~ -,3 r' E MARl u SARI, such that dest(r') = 0

By using the method described here, any of the relationships described in sections 4.4.1 and 4.4.2 can

be created by grouping basic properties, given that unmanageable properties have been ignored (e.g.

homeomeric).

4.4.5 Attribute inheritance

Attribute inheritance has been suggested as a property of aggregation relationships (Henderson-Sellers

[Henderson-Sellers '97], Pirotte [Pirotte '97]) and implemented to a certain extent in ADAM [Diaz '90].

Attribute inheritance simply means that whole objects involved in a part-whole relationship inherit part

of their properties (attributes and behaviour) from their parts. For example a boat, which is an

aggregation of a hull and other parts, floats because it is composed of a hull and the hull floats. The

"floats" attribute on the Hull object is therefore inherited by the Boat object through the isComposedOf

relationship (Figure 17).

Boat
floats .. , -

isComposedOf

'" --- ~~
~~~ 

Hull 

////floats 
~ 

Figure 17: attribute inheritance in aggregation relationship 

ADAM does not restrict attribute inheritance to aggregation relationships and allows any object to 

inherit attribute from any relationship they are involved in. The particularity of ADAM is that attributes 

are inherited from the relationship object, not from the objects involved in the relationship. For 

example, a Person object can inherit a salary attribute from the relationship that links it to a Company 

object (Figure 18). 

Person worksFor Company 
salary 

I ~ 

',,-________ salary 

Figure 18: Attribute inheritance in ADAM 

Attribute inheritance in the case of aggregation relationships can be restricted to certain kinds of 

aggregations. For example, in Odell's list of aggregation relationships (Table 1), member-bunch object 

composition and member-partnership object composition relationships can clearly not support attribute 

inheritance, as they do not convey any kind of structural or functional relationship between the part and 

741196 



4. Prometheus/ODMG 

the whole (they are simply membership relationships). On the contrary, although this is not a necessary 

feature (except for Henderson-Sellers), other kinds of aggregation relationships can imply attribute 

inheritance (e.g. component-integral object composition, material-object composition, portion-object 

composition, and place-area composition which all imply a structural of functional relationship 

between part and whole, therefore possibly an influence of one on the other). This distinction was 

overlooked by Pirotte [Pirotte '97]. 

4.4.6 Collections 

Relationships in general can be seen as simple collections. For example, creating a I:N relationships 

between objects of class A and objects of class B implies that objects of class A can contain a certain 

number of objects of class B, or more generally that objects of class A are related to a certain number 

of objects of class B (collections do not imply membership). 

However, these collections are very simple and do not account for all possible types of collections. For 

example, in ODMG collections can be bags (no order, duplicates), sets (no order, no duplicates), lists 

(order, duplicates), and arrays (order, duplicates). Just implementing collections as relationships would 

lose semantics, and that is one thing Prometheus endeavoured to avoid. These semantics are usually 

ignored by semantic relationship models, but ordering of relationships is described in UML. However, 

the need to prohibit the duplication of objects in collection relationships is never discussed. 

As was said in sections 4.4.3 and 4.4.4, relationships in Prometheus can implement behaviours via 

attributes and constraints. These behaviours are not restricted to the semantics of relationships such as 

lifetime dependency or sharability. Attributes and constraints can be used to simulate the behaviour of 

various collections: 

Bag: 

Bags imply no specific order and no interdiction of duplicates in the collection. This kind of collection 

is naturally managed by complex-cardinality relationships in Prometheus. 

Set: 

Sets imply no specific order, but prohibit the presence of duplicates in the collection. A constraint can 

be devised to enforce this as follows: 

This restriction can be enforced by implementing the following uniqueness constraint on the collection 

relationship R: 

\;j r E R /\ \;j r' E R /\ r oF r', such that origin(r) = origin(r') ~ dest(r) oF dest(r') 

Note that this holds because there can be only one relationship class with a given name staIting from a 

given node class. 

75/196 



4. Prometheus/ODMG 

List: 

Lists do not imply prohibition of duplication, but require order. Unlike uniqueness, order cannot be 

implemented through constraints. Instead, attributes can be used. Ordered relationships therefore 

implement an order attribute of type Integer that allows the software to describe the position in the list 

of each relationship. Then sOlting is possible on these relationships and ordered retrieval of objects 

suppOlted by the system. 

Array: 

Arrays are similar to lists in their semantics, therefore array relationships also implement the order 

attribute. 

In addition, this approach has the advantage of clarifying the meaning of the collections that are 

represented. For example, in ODMG complex cardinality relationships are captured by collections and 

inverse references. Without reading the code that manages these collections, it is impossible to know 

what semantics they have or should have. On the contrary, in Prometheus, if the relationship that is 

used to capture the collections is an aggregation, then there is a part-of meaning to it. If it is an 

association; then it only shows that there exists a relation between the objects involved, but no part-of 

semantics. The representation of collections through collection objects loses this information, which 

makes it hard to implement certain behaviours. 

4.4.7 Compatibility 

All combinations of the attributes and constraints defined cannot always be applied simultaneously. For 

example, exclusivity and sharability cannot refer to the same pair of relationships. Table 3 shows these 

possible combinations of attributes. The system can make sure that basic properties are not used in an 

inconsistent way. 

Travers. Lifetime dep. Chang. Privacy Cardinal. Exclusiv. Shar. Encap. 

Navigation v' v' v' v' v' v' v' 

Lifetime v' )C v' v' v' v' v' 

dependendy 

Changeability v' )C v' v' v' v' v' 

Pl'ivacy v' v' v' v' v' v' v' 

Cal"dinality v' v' v' v' v' v' v' 

Exclusivity v' v' v' v' v' )C v' 

Sharability v' v' v' v' v' )C v' 

Encapsulation v' v' v' v' v' v' v' 

Table 3: Allowed combinations of behaviours 

761196 



4. Prometheus/ODMG 

4.5 Instance synonyms 

A feature implemented in Prometheus that is not directly motivated by classification mechanisms in 

general is instance synonyms. Instance synonyms are structures that declare two things equivalent 

(nodes in the graph model, objects in the object-oriented model). Equivalence means that although 

these things are physically different in the database, they refer to the same real-world entity. But for 

many reasons, not design reasons rather historical and usage reasons, many forms of this real-world 

entity exist in the database. For example, misspelling may generate many copies of the same real-world 

entity. As these database entities are used in applications, it is not easy (or even sensible) to replace 

them by a single "right" entity. This could be for example because the different entities represent 

physical things that must be recorded, even though they are wrong (wrongly published names in 

taxonomy are in that situation). This situation is especially likely when various independent data 

sources are merged. Therefore, all copies of the real-world entity must be kept. However, if these 

different entities are simply kept in the database, it is hard (if not impossible) to query them and 

retrieve as much information as possible about them. As they are different, they are considered as 

distinct and unrelated entities by the query engine and only the explicitly specified entities are 

considered in the query evaluation. It is nevertheless possible to want to consider all existing forms of 

an entity in a single quely. Enumerating these entities explicitly in a quely may be complicated and is 

not generic (the user would have to know each of these entities). Therefore Prometheus provides 

instance synonyms. 

Instance synonyms allow the definition of groups of objects that are not necessarily related by any 

available information (information in databases represent the application domain, not the real world, 

therefore information may be fragmentary and incomplete). Once a synonymy group is defined, it is 

possible to specify in queries that it must be taken into account. In that case, when the query engine 

encounters an object, it looks up the instance synonym groups the object belongs to, and instead of 

using the object in the query evaluation (e.g. path expression), it uses all members of the groups. In this 

way, it is possible to gather as much information as possible. 

As an example, let us consider the schema presented in Figure 20. The database may contain two 

objects of type Author, one whose surname is Raguenaud and one whose misspelled surname is 

Ragenaud. These two objects have distinct OIDs, therefore are distinct objects. But for a human user, it 

seems possible that these objects refer to the same real-world entity. As these two objects come from 

different data sources (for example a staff list and a conference attendees' list), they are used in 

different applications and it is necessary to keep them separate (as they have been used for example in 

reimbursements). The first object, as it is the name that appears on the paper published at the 

conference is related to Publication objects. The second however, as it is a misspelled name, does not 

have pUblications, but has instead been used in conference arrangements in a separate application. If 

the two data sources are merged (e.g. in a financial database), inconsistencies may arise. For example, 

77/196 



4. Prometheus/ODMG 

Ragenaud has paid author fees for the conference, but does not appear as the author of a paper in the 

proceedings. Raguenaud appears as an author, but has not been to the conference. To overcome this 

problem the two instances may be joined by an instance synonym object and later used in queries (see 

section 5. l. 1.1). 

The definition of instance synonyms is not automatic. In some cases this could be automated by using 

secondary attributes to find similarities between objects, but this may not work in the general case. In 

Prometheus instance synonyms are created by users using their understanding of the data. Thereafter, 

they are managed automatically by the system. 

Instance synonyms are noted as follows: 

11 '" b, 11 and 12 are instance synonyms 

This is not a role problem, as roles are not taken into account in queries. All reviewed role proposals in 

chapter 3 ignore the query aspect of roles and restrict their use to object structures. 

4.6 Classifications 

As discussed in chapter 3, the classification mechanisms proposed as suitable for managing biological 

classifications were shown to be unsuitable for representing the full complexity of taxonomic 

classifications. A new mechanism has therefore been devised for this work, which is described in this 

section. First, the teclmique for representing classifications is explained. This mechanism allows the 

representation of single and multiple overlapping classifications. Then it is shown how the 

representation of multiple classifications does not impair the ability of the system to retain single points 

of views. 

4.6.1 Relationships as classifiers 

An important feature of taxonomic data is that the objects should be independent from their 

classification. It would make no sense to design specimens for example so that they can be classified: 

specimens are simply specimens and should not be aware of their classification status (especially since 

they might not always appear in a classification). Mixing the description of real world objects with 

their ability to be classified would also increase their complexity and reduce reuse and maintainability. 

This independence of relationships between objects is already used to represent associations, as they 

should not be pali of the object's types (e.g. [Norrie '93]). This feature is therefore essential to this new 

approach. 

Two additional requirements are identified: the ability to store information in relationships, and the 

ability to describe the semantics of the relationships. The ability to store information in the 

78/196 



4. Prometheus/ODMG 

relationships is necessary to describe the classifications, especially in the case where classification 

information is meaningful and may affect the classified objects. The ability to describe the semantics of 

relationships (e.g. aggregation vs. association, sharing vs. non-sharing) is necessary to be able to 

distinguish what the classifying and classified entities are (identified as a set of aggregated objects), 

and what the classifications are (distinct from the definition, or type, of the objects classified). This is 

in particular necessary and true for non part-of classifications. Indeed, all classifications are not based 

on the physical decomposition of things. Some are more generally the relationship between classes or 

objects (they then become ontologies). Odell also declares that classification inclusion is not a member

bunch relationship. That relationship would imply spatial, temporal, or social connection, whereas the 

"classification relationship is based on the idea that a common concept applies to [the categorised 

objects]" [Odell '94b). These classifications are not created using aggregation relationships, but more 

general association relationships. The distinction can further be enforced by creating a generic 

classification relationship of which all relationships used in classifications are a subclass. This way, 

even when classifications are patt-of classifications, it is possible to distinguish the classification 

relationships from the relationships that participate in the definition of objects (e.g. node objects in a 

classification). 

This new approach is to use relationships with the equivalent of weights (in weighted graphs). The first 

step toward a solution is the definition of a model that allows the description of graphs. Such systems 

exist: they are graph-based databases (e.g. Telos, ConceptBase, Progres, Hyperlog). However, these 

graphs are simple graphs that consist of nodes and edges (especially in the case of Hyperlog where 

attributes cannot be defined on edges). They do not support the definition of overlapping graphs that 

need to be unambiguously identified, as they do not support the definition of semantics for 

relationships. 

The approach described here uses classes/objects as nodes, and relationship classes/relationship objects 

as edges in an OODB as they are more expressive. As the work is carried out in an object-oriented 

environment, these weights are not limited to simple integer values: they can be of any type defined in 

the system (including other edges). The definition of weights on relationships allows the description of 

the distinct trees with their overlaps. 

Relationships effectively act as classifiers (or classifying mechanism). The action of creating such a 

relationship between two objects implies that these objects are classified. Furthermore, these 

relationships are the only objects in the system that are aware of the classifications and they contain all 

the necessary information to distinguish them from each other. 

Figure 19 shows how the use of relationships as classifiers allows the description of mUltiple 

overlapping classifications. Each of these classifications represents a specific opinion, i.e. the context 

in which the specimens are classified. Figure 19 shows three distinct classifications: a dashed line 

classification, a thin line classification, and a thick line classification. In taxonomy, these distinct 

79/196 



4. Prometheus/ODMG 

classifications would have been published by distinct authors and the publication information would 

replace the type of arrow in this example. The leaf nodes in these classifications could be for example 

books or specimens. The other nodes can be book subjects or taxa that are used to classify the leaf 

nodes. It can be seen in the diagram that the classifications have elements in common: node 3 appears 

in the thin line classification and in the dashed line classification; node 4 appears in all three 

classifications. On the contrary, node 5 only appears in the thick line classification. Likewise, the leaf 

nodes can appear in one classification (node a), in two classifications (node b), or in all three (node e). 

Figure 19: Multiple classification example 

4.6.2 Classifying in context 

This new approach allows the generic classification of entities by context. By "context", one can 

understand "anything that uniquely identifies a view". In plant taxonomy, this can be a taxonomist, a 

publication, or a combination of both. For example, one taxonomist's view on the world is a context 

and in that context a set of specimens is classified in a celiain way. Concurrently, another taxonomist's 

view of the world represents another context where the same specimens (or any other set of specimens) 

are classified differently. The overall graph that is stored in the database represents a view of taxonomy 

out of context, or within all contexts concurrently. This view, although it is the most complete because 

it contains all existing information, does not suit taxonomy work, as taxonomists tend to work in one 

particular context or in relation to a limited set of contexts for comparison purposes. By representing 

classification information on the hierarchies that constitute that graph, Prometheus captures single 

contexts that can be extracted as necessary. 

Because the distinct hierarchies created in different contexts overlap (in terms of specimens and 

names), the representation of all contexts in a single graph makes possible the comparison of 

classifications defined in different contexts and provides the ability to switch between contexts in order 

to gain knowledge. Indeed, by following relationships with specific values (e.g. publication 

information), it is possible to follow a path of a specific graph. But by switching between these values, 

it is possible to compare and navigate within and amongst classifications. For example in Figure 19, it 

is possible to compare nodes 3 and 4 and thereby to realise that they have some leaf nodes in common. 

801196 



4. Prometheus/ODMG 

This can give new insight into the data (e.g. in plant taxonomy when two groups partially contain the 

same specimens, they are partial synonyms). It is also possible to contrast the different meanings of 

node 4 according to the different classifications: it contains nodes d and e in the thin line classification, 

nodes e, f, and g in the dashed line classification, and nodes b, c, and e in the thick line classification. 

4.7 Example 

Now that the basic structures of the model have been described, a sample schema can be defined and 

used in subsequent sections to support examples (Figure 20). As was said in the previous sections, the 

Prometheus model supports both "normal" or node classes, and relationship classes. These relationship 

classes are used to represent any relationship that may exist between objects, complex or atomic, in the 

system. Their advantage is that they allow the representation of graph structures without designing the 

objects that are part ofthe graphs (nodes and leaves) so that they can be part of that graph. 

theAbbreviation 

authors 
O .. n 

O .. n 

Author 

theAuthor 

collector 

givenNames I O .. n 

theCircAuthor 

collectionNum 
ber 

latitude 
longitude 

Note 

O .. n 

.. theDate 

r theCircPublication 
I 

Publication 
thePublication 

thePage 

Figure 20: Sample schema 

The diagram voluntarily uses most possible semantics. 

Name 
TheValidity 

calculatedFullNameNo 
Author 

........... 

theBinomial 
theName 

O .. n ~ 
theDate 

theEpithet 

nextRank 

"'previousRank 

81/196 



4. Prometheus/ODMG 

The important sections of the schema in Figure 20 are the following: 

The hierarchy of names (or NT in Figure 6) is constituted of the Name, Specimen, and 

TypeDefinition classes, along with the LinkToType relationship class. Each Name may have 

many taxonomic types that it targets through a LinkToType relationship. Taxonomic types 

can be either Specimens or other Names. Note that inheritance and polymorphism are used in 

order to provide genericity. 

All the objects essential to the defmition of a Name from a taxonomic point of view are related 

to that name via aggregation relationships. This makes possible the automatic handling or 

extraction of Name concepts and clearly delimits its borders. 

The classification hierarchies are constituted of the Name, Specimen, and Circumscription 

classes, along with the the Circumscription relationship class. The relationship class starts 

from a Name and targets the other Names or the Specimens that have been placed in it. Each 

theCircumscription relationship is parameterised by its "context", i.e. the Publication in which 

it appears and the Author that created it. Therefore, a single Name object (or any kind of 

object in other application domains) may have many circumscriptions, represented by a set of 

theCircumscription relationships, that can be distinguished using their context, i.e. a 

Publication and an Author in Figure 20. 

Note that this approach is different from the approach described in section 2.3. This is due to two 

important ideas: 

The approach presented here represents the end-result of the process of classifying. Indeed, 

instead of representing how taxonomists work and supporting all the processes necessary (e.g. 

dynamic naming of taxa), it represents the data as it is when names have been derived and 

applied to classification groups (CTs). This allows better performance, as there is no need to 

recalculate the names each time one is required. 

The approach presented in section 2.3 is very specific to plant taxonomy, as the ability to 

create such classifications relies on the fact that the classified entities can be divided into two 

parts: a classification part (CT) and a naming part (NT). The classification part can be 

duplicated in order to represent single classifications. On the other hand, the naming part, 

which must be unique, is removed from the classification so that there is never any overlap 

between two classifications of the same concepts. This approach is not generic and is likely to 

be inappropriate in most domains necessitating classifications. 

The approach described in section 2.3 is clearly limiting: if the entities to be classified cannot be 

divided into a classification part and a unique naming patt, it is not possible to classify them. For this 

work, another approach has been chosen. In the current approach, classifications can classify any 

entity, whether they can be divided into classification and naming parts or not. Therefore, the 

classifications have elements in common and overlap at many levels (nodes or leaves), as was shown in 

Figure 19. 

82/196 



4. Prometheus/ODMG 

4.8 Notes on this model 

This section discusses the following questions: 

If relationships are offered and can replace references, why have references been defined in 

the model? 

If relationships behave like simple collections, why have collections been included in the 

model? 

How can attribute inheritance be handled? 

4.8.1 The reference problem 

It was shown that the Prometheus model proposes simultaneously classical references and explicit 

relationships. Some database models proposed in the literature (e.g. OMS) that support relationships 

take this approach and have limited the use of relationships to associations, thereby requiring that 

references (i.e. all that is not an explicit relationship) are aggregations (as they are part of the type of 

objects). However, it was said earlier that relationships should have semantics whenever possible so 

that implementation of design models is straightforward and verifiable, and relationships are always 

unambiguous. Representing aggregations as references does not support the definition of clear 

semantics for these aggregations. These models are therefore unsuitable in their representation of 

design models (for lack of expressiveness or simplistic features) and force the user to change their 

semantics in order to allow their implementation. 

References are however provided by Prometheus for the following reasons: 

All object-oriented database models propose references as a main feature and it would be hard 

to lose the habit of managing applications without them. Indeed, even modelling methods 

(e.g. UML) that should not be implementation dependent propose structures that represent 

references (e.g. complex attributes in classes). 

References are defined in these models and removing them from the models would change 

their semantics, something that should be avoided. 

Atomic objects are rarely targeted by aggregation relationships and some modellers do not 

support the idea of aggregating atomic objects. Instead, they are defined in the type of the 

objects that they are attributes of. 

The support for references alongside relationships is necessary for a compatibility problem: 

many application schemas exist and it would be a waste of time to force user to redesign them 

in order to use this new database model. One of the goals of Prometheus was to be integrated 

smoothly into an existing database model. 

Instead of changing years' long programming habits and because Prometheus has been described to be 

compatible with an existing object-oriented model, it continues to provide references in types. These 

references should however be used within guidelines: no object should be targeted by a reference if it is 

83/196 



4. Prometheus/ODMG 

not an atomic object (e.g. text string, integer). References to Atomic values can be made through both 

explicit relationships (when semantics are necessary, e.g. non-changeability) and object references 

(when the type-based approach is chosen and when there is no need for specific semantics). In addition, 

Prometheus treats references like aggregations whose semantics are undefined (no lifetime dependency 

for example). Therefore, as will be explained in section 5.1.1, the operations provided by Prometheus 

that work on aggregations include references. Eventually, references should be abandoned because they 

are imprecise and ambiguous. 

4.8.2 Collections 

ODMG describes collections as a basic feature offered to database implementers. However, 

relationship-based models such as GraphDB or ConceptBase do not offer these collections. The lack of 

this feature can be understood because relationships that have complex cardinalities (e.g. 1 :N, M:N) 

behave as simple collections. In Prometheus, collections are offered through relationships that can 

implement the behaviour of different collections via constraints (section 4.4.6). Their relationships not 

only implement the behaviour of colIections, but can clarify the semantics of these collections, which 

ODMG, as with most other object-oriented database models, do not. 

However, once again, the existence of a large amount of programs built with collections and the fact 

that ODMG explicitly describes collections makes it hard to ignore them as independent objects. 

Therefore, as for references, collections are offered in Prometheus as a backward compatibility feature, 

but their use is discouraged. Later, as Prometheus itself makes no use of colIections to support its 

model and the features of that model, collections could be removed from the Prometheus model and 

only relationships left, without loss of semantics or flexibility. 

Note that collections may still exist at the system level. For example in order to manage collections of 

instances as class extents, as query collection results, or as inheritance class lists that are not part of the 

mUltiple classification mechanism in Prometheus. 

4.8.3 Attribute inheritance 

Attribute inheritance (see section 4.4.5) is a feature that can improve object modelling (more 

information is captured in the model, therefore more checks can be performed and more exact 

information captured), support automatic inference of properties (a boat floats because it has a hull), 

and provide a mechanism for role acquisition (a person object inherits a salary from a relationship with 

a company, making it an employee object). 

However, practical considerations must not be ignored. Attribute inheritance requires a fully dynamic 

programming or design environment. It requires for example, that an object could acquire attributes at 

84/196 



4. Prometheus/ODMG 

runtime because of the relationships it is involved in. This requirement imposes important restrictions 

on the languages that can be used to implement the models. Indeed, very few languages offer that 

degree of flexibility. Most systems requiring dynamic attribute redefinition (e.g. [Kuno '95b], [Gottlob 

'96]) have been implemented in Smalltalk and the features they use (modification of the message 

sending mechanism) are not available in most other programming languages. 

Therefore, although its importance is noted, attribute inheritance would not be implemented in 

Prometheus if it didn't not use Smalltalk or Lisp as its programming language. 

4.9 Conclusion 

This work was motivated by the necessity to develop a database system to support the working 

practices of botanical taxonomists, an application where the storage and manipulation of complex 

overlapping graph structures is central. This chapter has shown how support for multiple overlapping 

classifications can be achieved. The proposed method is the provision of first-class relationships that 

capture all classification information and fulfil the requirements expressed in section 2.4. 

Relationships have been integrated to an ODMG-based object-oriented model. This chapter has argued 

that the proper representation of relationships in a database environment is important for many reasons. 

It allows differentiation in the semantics of relationships (e.g. aggregation vs. association), saves the 

user maintaining pointers with inverse pointers, offers the ability to embed information in relationships, 

supports the definition of constraints, and supports the definition of complex classifications. Most 

object-oriented database systems do not support relationships, and a few of them support them 

partially. A new model has therefore been defined and described. 

It could be argued that designing and developing a new database and query language was unnecessary 

and that existing systems could have sufficed. For example a standard OODB could have been used to 

build a one-off taxonomic database application where the necessary data structures were defined and 

methods written on these data structures for manipulation. However, in taking this approach where the 

semantics of the application was entirely hard-wired into the application code: 

• The system would have been hard to develop because of the complexity of the concepts 

• It would have meant mixing the semantics of the structures and the semantics of the user domain, 

thereby preventing the reuse of the generic concepts. 

• The final system would have been inflexible and would not have been able to cope easily with 

changes or unanticipated uses without the requirement for further code to be developed. 

• It would have been hard to validate the implementation against the design as the mapping from 

object model to implementation is not direct and the implementation of some concepts in code 

could possibly be scattered over many classes or modules. 

• It would have ruled out the possibility of query optimisation. 

85/196 



4. Prometheus/ODMG 

• It would have put the burden on the application developer, as the concepts would need to be 

implemented more than once. 

Another approach that could have been taken would have been to extend the database model artificially 

using standard classes with user defined semantics. For example, relationships could have been 

replaced by normal objects that could capture additional attributes. However, it would have been harder 

to write queries in a query language that does not handle relationships, and some would have been 

impossible. The query language would have had to be emulated using methods on objects, possibly 

calIed from the main query language. For example, recursion would have had to be managed by 

methods on the objects that are to be recursively used. This would have once again created a very 

specialised environment which would be hard to maintain, evolve, and use. 

As discussed earlier, some database systems provide similar support for relationships, however they do 

not offer all the structures and mechanisms needed. Table 4 compares the features specifically offered 

by the Prometheus model to the other systems. 

ODMG SORAC OMS GraphDB ADAM AG091 POOM 
Relationships as x ./ ./ ./ ./ ./ ./ 
first-class objects 
Single association x x ./ x ./ ./ ./ 
Multiple association x x ./ x ./ ./ ./ 
Single aggregation x x ./ x ./ ./ ./ 
Multiple x x ./ x ./ ./ ./ 
aggregation 
Attributes on x x ./ x ./ ./ ./ 
relationships 
Subclassing of x x in part ./ ./ ./ ./ 
relationships 
Constraints on x ./ in part x ./ ./ ./ 
relationshi~ __ 

- _ .... _- - - .... - - - . - - - -

Table 4: Comparative table 

By providing relationships as first-class objects and representing their meaning (that can be extended 

by the user), Prometheus offers an implementation environment which better reflects the modelling 

constructs used in designing complex applications. Implementation is facilitated by the more direct 

mapping between an object model and the implemented models. 

Prometheus was designed to be simple, but provides a framework that can be easily extended to capture 

most possible nuances of the concepts offered. For example, containers (collections) do not represent 

all collection types available in ODMG (e.g. sets, bags, and arrays). But as containers are represented 

as objects, they can easily be subtyped and refmed in order to support the definition of all collections. 

Prometheus does not capture alI the possible semantics attached to relationships. However it provides a 

framework in which relationships can be extended or refined (through inheritance) in order to capture 

86/196 

i 

I 



4. Prometheus/ODMG 

more specific meaning. Since relationships are based on the standard representation of objects (but are 

treated as special objects), they support behaviour. 

This chapter has also explained that relationships can be used to represent multiple overlapping 

classifications in a generic way. Relationships can indeed capture classification information 

independently of the classified objects, which allows the integration of the mechanism with existing 

databases/database models, and the ability to represent classifications where the classified objects are 

not designed to be classified. This section has also shown that this approach allows the clear distinction 

between classifications and classified objects through the combination of semantic relationships and 

classification relationships. 

The achievements of the extended object-oriented can be compared with the taxonomic requirements 

expressed in section 2.4. 

1. Tree/graph structure: the ability to use objects and relationships as first-class 

objects makes the representation of hierarchies (or graphs) a straightforward operation. 

Relationships represent edges and non relationship objects represent nodes. The representation 

of edges by first-class objects allows the storage of complex graphs (e.g. weighted graphs). 

2. Directed graphs: the relationships defined in Prometheus are directed, i.e. they 

always have a preferred direction, even when they represent n-ary relationships. 

3. Multiple classifications: multiple classification of entities is supported by the 

description of the classification information (e.g. publication, author) in relationships created 

between the classified elements. The selection of relationships with specific values provides a 

means to extract specific trees/graphs from the overall database graph. Each of these graphs 

represents a classification in taxonomy. 

4. Traceability: traceability is supported in the same way multiple classifications are 

supported: classifying relationships can contain the reasons for particular classifications, e.g. 

character description information or the history of taxa as in HlCLAS. 

5. Composite objects: Prometheus supports semantically rich relationships that allow 

the description of composite objects, whatever the semantics of these relationships are. The 

semantics can be parameterised of redefined to fit the user's needs. Composite objects are also 

well integrated with the query language that can treat then and extract them as a single entity. 

6. Population-based classifications: through the definition of classifications using 

relationships, it is possible to define classifications that involve objects that have not been 

designed to be classified. Prometheus therefore provides a generic way to define 

classifications. These classifications are population based classifications instead of category 

based classifications. 

7. Roles: roles can be acquired through the involvement of objects in particular 

relationships. For example, a specimen involved in a taxonomic type relationship becomes a 

type specimen. If necessary, the objects that acquire roles can acquire information through the 

87/196 



4. Prometheus/ODMG 

encapsulation of these relationships via methods (in a similar way to ADAM [Dfaz '90], but 

not via the migration of attributes from relationships to objects). 

10. Integration with existing system: as classifications can be represented by 

relationships, and since Prometheus supports the definition of first-class relationships, the 

integration of classification mechanisms in Prometheus is straightforward. In addition, the 

integration of a relationship mechanism in an existing database system allows the 

representation and manipulation of trees/graphs in a system that did not previously provide 

this facility. It would be for example possible to integrate Prometheus with a taxonomic 

database that does not support multiple classifications in order to add that feature. 

11. Generic classifications: through the specialisation of the relationships used to 

describe classifications, any kind of classification can be defined, including non is-a or is-of 

classifications. Specific relationships can be used to represent special types of classifications. 

Ifnecessary, it is also possible to capture is-of classifications. 

12. Orthogonality of classification and classified information: because Prometheus 

supports the definition of composite objects, it is possible to make a clear distinction between 

the classification information and the classified objects. Indeed, classified objects would be 

represented as composite objects, whereas classifications would be represented by another 

kind of relationships. In addition, as was shown in section 4.6, all classification relationships 

can be created as a subclass of a specific generic classification relationship so that even in the 

cases classifications are part-of relationships, it is always possible to distinguish classification 

relationships from other relationships. 

88/196 



5. Queries and rules 

5 Queries and rules 

As well as a new database model, multiple overlapping classifications in general and plant taxonomy in 

particular require an adequate query language and rules/constraints. The query language must allow the 

full exploitation of the constructs provided by the database model and provide operators that support 

the processes involved in the type of applications tackled by this work. The rules/constraints provide a 

means to enforce working practices and ensure that the data is correct. This chapter is therefore divided 

into two parts: the description of the query language, then the description of rules/constraints. 

5.1 Queries 

This section presents the query language offered by Prometheus. It is based on OQL (as the model is 

based on ODMG) and is extended with several operators that make working with explicit relationships 

and classifications possible. 

Two aspects of the query language must be presented: the syntax and the semantics of the language. 

The next section describes these aspects. Then comments are made regarding several aspects of the 

query language. 

5.1.1 Syntax and semantics 

Because this document presents a model that extends classical object-oriented models with explicit 

relationships, it is necessary to extend the query language so that it can manage these relationships 

(POOL). The basis that has been chosen for extension is OQL. This choice is motivated by the fact that 

it is a well-defined language, that it is a standard, and because the system proposed has an ODMG 

implementation. 

The query language is based on a subset of OQL (mostly select queries) with extensions to manipUlate 

relationships and structures such as graphs defined using them. This document only shows the 

differences and improvements brought to OQL. First, this document shows how the differences in the 

model affect the query language, then it defmes the new operators required for manipulating 

relationships, and finally it describes how graph manipulations are supported. 

5.1.1.1 Model 

Collections: 

Navigation of attributes in OQL is performed using the dot notation. In OQL, the dot operator can be 

applied only to individual objects. Although ODMG has typed collections, which would allow their use 

891196 



5. Queries and rules 

in collections, they cannot be used in selections and path expressions. This makes the expression of 

some queries harder. It has been shown (e.g. [Barclay '94]) that collection traversal is a practical feature 

in object-oriented query languages. This collection traversal has been implemented in Prometheus. 

For example: 

(Q1) select p from Publication p where p.authors.surname 

" Raguenaud" 

Here authors is a collection of Author objects defined in the class Publication (instead of a 

relationship). The query simply traverses the collection by considering each member in turn and 

continuing the evaluation of the query from there. 

At each step of query evaluation: 

Given an object 0 E Object, op(o.collection) := V x E o.collection ~ op(x), i.e. when 

an operator (e.g. the dot operator) is applied to a collection belonging to an object 0, 

the operator is applied to all elements of that collection. 

Note however, that this collection traversal only affects models that have not been implemented 

according to the guidelines expressed in section 4.8. Indeed, as Prometheus offers relationships with 

constraints that emulate the behaviour of collections, object-oriented collections should be a rare 

feature of Prometheus schemas. Collection relationships, as they are relationships, can be traversed 

naturally in path expressions. The traversal of object-oriented collections is in part offered to harmonise 

the creation of path expressions. 

In the case of bindings where no support for parameterised polymorphism is offered (e.g. Java), using 

collections in path expressions could be incorrect from a type point of view. Indeed, the only type a 

collection may contain in Java is Object. Therefore, only messages that the Object interface or class can 

understand can be sent to objects contained in the collection. For these bindings, another operator that 

is defined (downcast operator, later described) can be used in conjunction with smart collections. 

Instance synonyms: 

The keyword "using instance synonyms" can be used in POOL queries to specify that all instance 

synonyms must be evaluated in queries. (Q2) shows such a query. It returns all publications published 

by Ragenaud (which is a misspelled name). Without the using instance synonyms keyword, 

no publication would be returned. But with the keyword, the query engine selects all Author objects 

that belong in the same groups as Raguenaud (the real author of the publication) and uses them in the 

evaluation of the query. Therefore, Ragenaud is seen as the author of the publication and a satisfactory 

answer is returned. 

(Q2) select * from Publication p where p.authors.surname 

"Ragenaud" using instance synonyms 

90/196 



5. Queries and rules 

At each step of query evaluation: 

V op, if 01 ;:; 024
, op(01) ~ op(02), i.e. at each object encountered during query 

evaluation, if using instance synonyms is specified, all operators applied to an object 

01 are applied to all its synonyms. 

Note that the use of instance synonyms may have a significant impact on query evaluation. Indeed, they 

add objects to the search space, therefore slow down the query evaluation. They also require access to 

additional objects (the instance synonym structures and the synonyms themselves), therefore consume 

more processor time and increase the number of disk accesses, and makes optimisation harder. 

5.1.1.2 Relationships 

Relationship objects: 

As relationships are classes, they can be used in queries as any other class (selection, projection, and 

from clause). Therefore, if attributes of a relationship object are to be queried, a relationship class name 

in a query can be followed by attributes of the relationship or attributes of the class that is targeted by 

the relationship. When a class A is related to a class B by a relationship R and x is an attribute name, 

the interpretation of the path A.R.x is: if x is defined in R, then A.R.x refers to the attribute x of R. If x 

is not defined on R, A.R.x refers to the attribute x of B. However, relationship classes contain the 

predefined attributes origin and destination, which can be used to specify that A.R.x refers to x in B, 

which is noted A.R.destination.x. In essence, the dot operator acts as an implicit join. 

The dot operator in POOL differs from the dot operator in OQL and the ODMG model. Two cases 

must be distinguished: I argument and 2 arguments. 

First, the situation where there is only one argument is presented. This case is divided into two possible 

situations: the argument can be a property defined on the object under study, or it can be the name of a 

class. If the argument is the name of a method defined on the object under study: 

Given an object 0 which is the current object and m the name of a property defined on 

class(o) (or inherited by class(o», o.m := Om, Om of type em, where em is the type 

returned by the property (attribute or method) m. 

If the argument is a relationship class name: 

Given an object 0 which is the current object in query evaluation and a relationship 

class rc from the relationship class set Re, o.rc = X := {3 r I class(r) = rc /\ rc E RC} /\ 

(r.origin = 0 v r.destination = 0) ~ X := X u {r}. 

Second, the situation where there are at least two arguments is presented. Once again, two cases must 

be distinguished: the case where the first argument is a method name of the object under study, and the 

case where the first argument is a relationship class name. 

4;:; was presented in section 4.5 and means that the two objects are equivalent. 

911196 



5. Queries and rules 

When the first argument is a method name: 

Given an object 0 which is the current object and two properties names m1 and m2, 

0.m1.m2 := (0.m1).m2. In other words, the problem is simplified to the first case 

proposed above. 

When the first argument is a relationship class name: 

Given an object 0 which is the current object, a relationship class rc from Re, and m a 

method name or attribute name: o.rc = X := {3 r I class(r) = rc A rc E RC} A (r.origin = 

o v r.destination = 0) ~ X := X u {r}. 

Then if the second argument, m is an attribute of the relationship object returned by the evaluation of 

the first dot operation, then dot operator is applied with one argument to the relationship object. 

V x E X, x.m := Om, Om of type em, where em is the type returned by the property 

(attribute or method) m. 

Otherwise, it is assumed that an implicit traversal of relationship was specified, and the relationship as 

required is traversed and the second argument is applied to the object targeted by the relationship: 

V x E X A x.origin = Z1 Ax.destination = Z2 ~ x.m := Z1.m u Z2.m. 

Aggregate objects: 

In Prometheus, the projection clause is extended so that it can explicitly request composite objects to be 

returned, i.e. an object and all the objects it contains through an aggregation relationship. Shallow and 

deep aggregates are expressible, i.e. it is possible to extract not only one level of aggregation, but to the 

terminal components of a complex object. The concept is similar to the one of deep and shallow 

equality in some object-oriented databases [Khoshafian '86]. For example, POOL can extract a Name 

and its components easily: 

(Q3) select shallow aggregate n from Name n 

The result of such a quely is a Name object along with its subparts as designated by aggregation 

relationships to the first level only (e.g. Publication, Author, Type). 

The aggregate operator returns collections of objects that pmticipate in the definition of the composite 

object o. The result of a query involving the aggregate operator is therefore a collection of collections. 

The deep aggregate operator is similarly defined by recursive application of the aggregate operator on 

itself until no more results are found. Note that the type of the collection containing each of the 

aggregate objects is Object. This is due to the fact that the type of the objects that are potentially 

returned by the operator is unknown. 

The formal definition of aggregate is as follows: 

Given an object 0, aggregate(o) = X := V R :s; Aggregation A V r ERA r.origin = 0 ~ X 

:= X u {r.destination} 

A V m E class(o) ~ X := X u O.m. 

92/196 



5. Queries and rules 

The use of the aggregate operator is compatible with clauses such as order by. As the result is a 

collection of collections, this operator can be applied to collections, providing that they support 

ordering (for example by extending an Ordered interface). Distinct remains applicable, as it is 

applicable to collections (on the basis of identifiers for object type collections, on the basis of their 

content for literal collections). Group by does not apply because collections cannot be grouped 

according to a particular criterion; this is not particular to Prometheus. Prometheus in itself does not 

change the typing of such queries. 

Note that as was explained in section 4.8.1, references are included in the result of the extraction of an 

aggregate object, as references are seen as simple aggregation in Prometheus. 

Selective downcast operator: 

OQL provides a cast operator which allows the restriction of the type of an object to one of its 

subclasses. However, it can only perform this modification if the type of the returned object is known 

in advance and conforms to the type specified. When a schema contains a recursive structures (e.g. 

pmi-explosion schemas), a composite pattern [Gamma '94], or more generally, when inheritance is used 

in the schema, this cast operator may be inadequate. In the taxonomic schema of Figure 20, this 

situation appears in the taxonomic type hierarchy and in classification hierarchies. 

The subclass of the composite class or superclass is chosen and only use instances of this class in the 

query using the downcast operator noted by square brackets after an attribute. The downcast operator 

does not generate errors when instances of another type are encountered; they are simply ignored, 

distinguishing it from the traditional cast operator. For example: 

(Q4) select n from Name n where 

n. theCircumscription [Specimen] .barCode = "E000001" 

This query finds Name objects that contain Specimens whose bar code is EOOOOOI and is type safe. It 

shows how it is possible to query a link (reference, container, and relationship) and select the returned 

type. 

The definition of the selective downcast operator is as follows: 

Given a current object 0, [](o, 8) := if class(o) = 8 ~ [](o, 8) = x. 

It is possible to express an equivalent of these queries in OQL with queries such as: 

(Q5) select n from Name n, Specimen s where s.barCode = "E000001" 

and s in n.theCircumscription 

However, this notation breaks path expressions and when the schema makes heavy use of inheritance, 

queries become hard to understand. In addition, it requires that theCircumscription be implemented as a 

collection instead of a relationship. 

93/196 



5. Queries and rules 

Although this problem occurs often in the composite pattern (for which this solution was designed), it 

is a general problem when subclasses are chosen in path expressions. It also occurs when path 

expressions can be recursive. In this situation, it is impossible to specify recursive statements involving 

a join, as it would mean transforming the whole selection into a recursive statement. The problem also 

occurs in bindings where parameterised polymorphism does not exist (e.g. the Java binding). In that 

situation, all objects in a collection are of type Object, which leads to the inability to query collections 

accurately. For example, the following query is not possible in OQL if theCircumscription is a 

collection: 

(Q6) select n from Name n, p.theCircumscription a where a.barCode 

"E000001" 

The variable a is of class Object in Java because n.theCircumscription is of type collection, therefore 

the attribute is not defined in its type. In Prometheus, the following statement is valid and equivalent to 

(Q5): 

(Q7) select n from name n, n. theCircumscription [Specimen) a where 

a.barCode "E000001" 

Note that this operator is not dependent on parameterised polymorphism. Indeed, it was designed to 

simplify queries that need to control inheritance, not to force casts that might then fail. Therefore, 

although it behaves in a similar way to cast operators, it does not raise exceptions or report errors when 

it encounters objects that are not of the expected type. As explained above, in this case these objects are 

discarded. Therefore, although it can be used to make queries possible in such environments (e.g. Java), 

it does not act as a real cast operator. In fact, a static cast operator would be impossible in Java because 

there would be no type information on the colIection on which to base the type checking of path 

expressions involving the collection. However, it provides the necessary type cast when the type of the 

collection is consistently maintained. 

5.1.1.3 Graphs 

Orientation and navigation: 

It is sometimes useful to be able to specify the direction relationships should be traversed. If no 

direction is specified, traversal of relationships is bi-directional. However, if the direction of the 

relationship is important, this can be specified using the keywords "origin" or "destination". The 

direction that can be taken is moderated by the definition of the relationship, i.e. a relationship can only 

be traversed from origin to destination if the traversal propeliy of the relationship alIows it. Note that 

the use of "origin" and "destination" is only necessary on recursive relationships in order to choose the 

direction of navigation. In unambiguous cases the navigation is automatically chosen by the system. 

For example, it can be necessary to find all the Names that contain another Name called "graveolens" 

at the next level: 

(Q8) select n from Name n where 

n. theCircumscription. destination [Name) .theEpithet.theName 

" graveolens" 

94/196 



5. Queries and rules 

Conversely, Names that are contained in circumscriptions of Name "Apium" can be found: 

(Q9) select n from Name n where 

n.theCircumscription.origin.theEpithet.theName "Apium" 

In OQL, relationships are represented by references to objects with their inverses. It is therefore 

inherent in OQL to be able to choose how to traverse relationships. 

Transitive closure: 

When objects form graphs (a graph of parts where component parts are shared for example), it is 

sometimes desirable to be able to simply specify the repetition of segments of paths; which requires 

support for transitive closure. OQL is unable to represent recursive queries. POOL supports operators 

which allow the building of simple regular expressions over path segments. It also allows the 

expression of recursion. The operators supported are: 7 for optionality, + for one of more repetitions, 

and * for zero or more repetitions. 

"7", which specifies an optional path 

? := 01.a1 ..... ai.(aj ..... ak)?al ..... am = a, i>O, j>j, k>j, I>k, m>l, 01 is an instance, ax E 

Relationship, x < m 

B 01.a1 ..... ai.al ..... am = a 

1\ 01.a1 ..... ai.aj. '" .ak.al ... , .am = a 

"+", which specifies the repetition of a path strictly once or more 

+ := 01.a1 ..... ai.(aj ..... ak)+.al ..... am = a, i>O, j>j, k>j, I>k, m>l, 01 is an instance, ax E 

Relationship, x < m 

B 01.a1 ..... ai.aj ... , .ak.al ..... am = a 

1\ 01.a1 ..... ai.aj. '" .ak.(aj. '" .ak)+ .al ..... am = a 

"*", which specifies the repetition of a path between 0 and n times. 

* := 01.a1 ..... ai.(aj ..... ak)*.al ..... am = a, i>O, j>j, k>j, I>k, m>l, 01 is an instance, ax E 

Relationship, x < m 

B 01.a1 ..... ai.al ..... am = a 

1\ 01.a1 ... , .ai.aj ..... ak.al ..... am = a 

1\ 01.a1 ..... ai.aj ..... ak-{aj ..... ak)*.al ..... am = a 

For example, to find the components that contain graveolens at any level: 

(QI0) select n from Name n where 

n. (theCircumscription.destination)*.Name = "graveolens" 

Here a relationship is repeated a number of times and the direction of traversal is specified. More 

complex patterns can be defined in a similar way. By omitting "destination" or "origin", both 

descendants and ancestors are retrieved (if the schema permits it from a navigation point ofview). 

951196 



5. Queries and rules 

Extracting subgraphs: 

An important feature of Prometheus is the extraction of complete sub-graphs, which can later be used 

as complex objects, either to be displayed to a user, or to be transformed into views. However, because 

mUltiple logical graphs might satisfy the search criterion, many subgraphs can be extracted at once. For 

example, complex parts might be of interest and the graphs they form extracted. This is achieved by the 

follow clause in POOL, which explicitly states that all members of the returned set must be related 

through a specified relationship class. 

follow returns a collection of graphs formed by extracting subgraphs from the result of the query 

where elements of each sub graph are related by the specified relationship. As follow acts as a filter 

on the result of the query, the relationship to be followed must be specified in the select clause. 

Because the data is not restricted to trees and allows the sharing of objects (e.g. in overlapping graphs), 

it is possible for elements to appear in more than one sub graph isolated by a follow clause. Such a 

query can be expressed in POOL as follows: 

(Qll) select n, bag<n.theCircumscription> from Name n follow 

theCircumscription 

This result would consist of many collections, one for each graph that is identified by a "context". 

More formally: 

c is a collection, follow(c) := {C;} 1\ V r1 E C;, r2 E C; 1\ r1, r2 E Relationship 1\ context(r1) 

= context(r2). 

POOL first extracts all instances of the class supplied as an argument. Then it looks in already 

extracted sub-graphs to find whether the origin of the relationship in hand is already defined in one of 

them. If so, the relationship and its destination are added to the subgraph and other sub graphs extracted 

are considered. If the origin of the relationship is not defined in sub-graphs already extracted, a new 

one is created and the relationship, its origin and its destination are added to it, then evaluation 

continues for other subgraphs. The result of the evaluation of the follow clause is a collection of 

collections where each of the contained collections holds a connected graph (objects and relationships, 

therefore the nested collections contain instances of type Object). Relationships are also traversed in a 

consistent way. Because of the representation of logical graphs, relationships are only traversed if they 

have the same type value. Therefore, when a relationship is traversed, POOL records the attribute 

values of that relationship, and thereafter only traverses relationships without attributes or those with 

the same values. 

Follow is similar in its behaviour to the group by operator in OQL in that it groups objects in a 

certain way and it changes the type of the structure returned by the query. It is an operator that is 

applied to the results of a query. Note that in order to function, follow needs to flatten the collection 

it receives as an argument. 

96/196 



5. Queries and rules 

Integrity of graphs in path expression evaluations 

The representation of distinct graphs or hierarchies in Prometheus depends on the use of relationships 

that contain enough information to represent the scope of these hierarchies. When they are to be 

queried, it is often necessary to make sure that the evaluation of queries does not violate the limits of 

hierarchies, i.e. it is necessary to make sure that the paths that are to be traversed do not switch between 

hierarchies5
. This is easily ensured by comparing the value of relationships at each step of the 

evaluation of queries. When a path is traversed, the next relationship encountered is only traversed if its 

type value is consistent with the previously traversed relationships. This is declared using the in 

context clause (formerly called xlink in some papers) without argument. For example: 

(Q12) select n from Name n where 

n. (theCircumscription.destination)*.theEpithet.theName 

"graveolens" in context 

This query will find Name objects that contain the Name "graveolens" as in (QlO), but stay within the 

scope of one classification once it has traversed one of the theCircumscription relationships. For 

example it might traverse the theCircumscription relationship depending on its Publication and only 

continue to follow parts of the component created on that date. in context can be used with 

follow in order to extract sub-graphs defined by attributes on a relationship. In which case, follow 

returns sub graphs identified by values of attributes on relationships and no longer only by connection 

between objects. 

Recursive joins and contexts 

Recursivity was introduced in OQL as explained above. This recursive notation allows the repetitive 

traversal of paths or patterns. Since these patterns are likely to involve relationships, which are defined 

in the model as objects containing attributes, it must be possible to select the relationships that are to be 

traversed according to their attribute values (selective retrieval). In OQL queries, this is achieved by 

join statements in the selection clause. These joins result in tuples that can then be filtered through the 

projection. However, OQL, and indeed all other object-oriented query languages do not support a 

conjunction of explicit relationships with attributes and recursive behaviour. This conjunction makes 

the declaration of recursive traversal of relationships problematic. In the case of relationships, implicit 

joins already exist because traversing a relationship from an object to another is equivalent to creating 

two joins that find the relationship that links two objects. As these joins can be implicit, they are not 

shown to the user. Therefore, their presence in recursive statements is not a problem. However, when 

the joins are to be explicitly defined by the user, problems arise. The difficulty is to describe a join in 

structures that are recursive, thereby prohibiting the usual join notation. Using a classical join notation 

in recursive queries would break the sense of path in the queries, as they would have to be divided in 

many paths joined by a statement. Example: 

(Q13) select c.origin from Name n, theCircimscription c where 

n.theEpithet.theName = "graveolens" and c.destination = n 

971196 



5. Queries and rules 

This OQL query finds the Name objects that contain another Name called "graveolens" at the next 

level. As is shown, there is no longer the feeling of defining a path. In addition, it is impossible to 

represent a recursive statement by the definition of a recursive join. The solution adopted was to 

externalise the definition of recursive joins that involve relationships. If these joins are not defined as 

other joins, it is clearly possible to express them. The solution has two steps. First, aliases are 

introduced inside path expressions. These aliases, (as all other aliases/variables defined in OQL) are 

declared in the from clause of the query and used as attributes of objects. Example: 

(Q14) select n from Name n, theCircumscription c where 

n. (c.destination[Name])*.theEpithet.theName "graveolens" 

This POOL query finds all Names having a sub-Name called "graveolens" at any depth as in (Q9), but 

the relationship theCirumscription is replaced by an alias (c in the example). This introduction of aliases 

in path expressions brings the problem of precedence in the evaluation of all statements in the selection 

clause. Indeed, a case exists where a part of the path expression can only be evaluated after another 

path expression has been evaluated, but that second path expression might also be dependent on the 

evaluation of the first one. This problem is similar to the precedence problem injoins. 

The second step is the definition of the join criterion outside the selection clause. This is achieved by 

using the in context clause with a selection clause as argument. It selects the relationships that are 

to be considered for the rest of the evaluation of the query. In essence, this is the creation of a transient 

view on the overall database graph that then serves as the basis for the evaluation of the query. This 

also solves the precedence problem since in context selection clauses are evaluated first (and only 

once), and are kept independent from other path expressions by the syntactic checker. Example: 

(Q15) select n from Name n, theCircumscription c where 

p. (c.destination[Name])*.theEpithet.theName "graveolens" in 

context where c.theCircAuthor.surname = "Linnaeus" 

This query finds all Names that contain another Name called "graveolens" at any depth as in (QIl), but 

only according to the relationship definition that is declared in the in context clause, i.e. that was 

published by Linnaeus. In fact, in context behaves as a selection in this case which describes that 

that the variable c is defined in a celiain way in the context that is used (e.g. the author is Linnaeus). 

The functioning of in context differs from other selections in two ways: firstly it selects 

relationships (hence its fonner name of xlink) and secondly the result of that selection can be used as 

variables in path expressions. Therefore this is the preferred notation for the selection of relationships. 

Another notation could have been to include the selection of relationships in the selection pati of the 

main query as shown in (Q 16). However, the use of variables in path expression in this context would 

be confusing and against OQL's understanding of variables. 

5 This feature is inherent in the semantics of the botanical taxonomy for which Prometheus is designed. 

981196 



5. Queries and rules 

(Q16) select n from Name n, theCircumscription c where 

p. (c.destination[Name])*.theEpithet.theName "graveolens" and 

c.theCircAuthor.surname = "Linnaeus" 

The advantages of this notation is that is keeps the feeling of path which simplifies the comprehension 

and writing of queries, it allows the definition of recursive explicit joins, and it makes a clear difference 

between joins that concern normal objects and joins that concern relationships. 

5.1.2 Notes on POOL 

Five aspects of the query language proposed are discussed here: the limitation to select queries, the 

object creation/conservation approach, method calls, type checking, and set comparisons/sub-queries. 

5.1.2.1 Select only queries 

As it is apparent in previous sections, only "select" queries are supported in the current implementation 

of POOL. This restriction is due to the following facts: 

The focus of this work is on modelling of classification and taxonomic data and its retrieval. 

The implementation of update and delete operators was therefore not a priority. 

Select queries are an important part of the queries run on a database system, and it was felt 

that this aspect of the quelY language was a large enough area to experiment with new 

operators and new database structures. 

These queries are sufficient to answer all the most common needs of taxonomists (see section 7.1). In 

addition, as OQL is a read-only query language where updates can only be performed through object 

method calls, strictly OQL-based query languages could not provide update operators. This may restrict 

however the ability of the query language to provide a powerful interface to the database, as any 

modification of that database can only be performed if they have been implemented on objects. 

As was shown in [Giiting '94], restructuring query language operators may be of interest to graph-based 

operations, for example for the creation of new circuits. OQL-based query languages may therefore be 

more restrictive than other approaches regarding the possibility of extensions to the query language. 

5.1.2.2 Object conservation 

As can be seen in section 5.1.1, POOL is an object preserving query language. The choice of this 

approach was motivated firstly by the fact that OQL until version 1.2 was an object preserving query 

language that only returned existing objects or set of objects or tuples. Later versions of OQL can 

99/196 



5. Queries and rules 

create instances of existing classes only. For this first prototype, the object conservation approach was 

chosen for simplicity. 

Secondly, the creation of new objects brings many problems regarding class creation and integration, 

and object identity management [Kifer '92] [Kuno '95a] [Mitchell '91]. As one of the requirements of 

this work was its integration into an existing database system, the creation of new objects would have 

required the modification of the OlD management mechanism in the underlying database. Although in 

theory possible, this was judged impractical. 

5.1.2.3 Methods 

It is sometimes important to be able to call methods in queries. For example in taxonomy, the name of 

a taxon is calculated on the fly in a function using the specimens (and type specimens) that are included 

in it. Whenever the name of the taxon is required, it can be computed by recursively selecting the 

specimens that were placed in it, then finding out what is the earliest name that applies to that set of 

specimens. However, in the current implementation of POOL, methods calls are not allowed. Although 

this is a restriction, two things should be noted; 

Method calls can be extremely expensive. For example, the method call described above 

would take a very long time because many graph traversals would have to be performed, 

many specimens extracted, and many comparison of names executed. In that case, it was 

found more reasonable to materialise the name attribute and re-compute it when necessary. 

Although method calls are not implemented, there is nothing in POOL that makes it 

impossible. The addition of method calls would be fairly straightforward. 

5.1.2.4 POOL and type checking 

As POOL is based on OQL, it is a strongly typed query language. In other words, before the query is 

evaluated, its syntax and its type correctness are checked and badly typed queries are rejected. This 

allows query optimisation [Grumbach '99] and can be performed automatically [Riedel '97] and 

formally [Alagic '99]. 

However, type checking in POOL is an option that can be disabled if necessary. When this is the case, 

no type checking is performed and the query is evaluated naively by following references and 

relationships are described in the query, regardless of whether these paths are correct. If a path is not 

correct, no exception is raised and the evaluation continues. 

This feature is particularly useful in the context of semi-structured data. As the structure of the data is 

not always known or can be incomplete in these systems, type checking in queries is hard, if not 

impossible. Although Prometheus is currently implemented on top of an object-oriented database, 

future or alternative implementations could be built in other environments, e.g. graph-based or semi-

1001196 



5. Queries and rules 

structured models. By allowing POOL to ignore type, it is provided it with the ability to be pOlted to 

new, very different systems. 

5.1.2.5 Set comparisons/sub-queries (in) 

OQL does not define the use of the in keyword in the SQL sense. Such an operator is defined, but only 

applies to variables and path expressions, not on sub-queries (according to BNF). 

POOL provides such a feature, but restricts it to specific contexts. In order to use in, the sub-query 

must return aIDs or values only, i.e. it cannot select multiple fields or structures and must only select 

objects. The semantics of the operator is then a comparison of aIDs only (type is not taken into 

account, as two identical aIDs necessarily mean that the two references point to the same object). 

This operator is useful for two reasons: it allows easy and intuitive specification of membership and 

non-membership (e.g. a specimen should appear in one classification but not in another one), and it 

allows the manipulation of graphs as entities (e.g. graphs can be extracted with sub-queries and 

compared via the result of the sub-queries, without the creation of specific structures as in [Giiting 

'94]). 

5.2 Rules/Constraints 

In previous chapters, constraints have been described in an abstract manner, without presenting 

specifically how they are implemented. This section describes the Prometheus implementation of such 

constraints, and more generally of rules in Prometheus. 

As was explained in section 4.4.4, the Prometheus model relies on constraints to capture more 

semantics in relationships. The list of constraints presented in previous sections is not limiting but 

rather only shows some of the basic built-in constraints offered in Prometheus. They have been chosen 

because they are common and of general use. However, since the semantics of relationships may vary 

(e.g. UML's taxonomy of aggregations [OMG '99] compared to Odell's [Odell '94b]), they are not 

definitive and can be changed in Prometheus to suit the user's needs. As can be seen, the constraints 

must necessarily satisfy many roles: invariants, pre-conditions, and post-conditions. In addition, 

reaction to other events (e.g. committing of transactions, deletion of objects) may be of interest and are 

provided as well. 

It has been presented that the types of constraints required for plant taxonomy are both intra- and 

interobject constraints. Intraobject constraints provide the ability to specify that the state of an object 

must obey certain rules. For example, in a database representing people, the Elderly class will have a 

constraint on the possible values of the age of the people represented by that class. Interobject 

constraints ensure that a particular object is in the right place in the database relative to other objects. 

1011196 



5. Queries and rules 

For example, in the case of relationships, an encapsulation constraint would check that all relationships 

that target the object that is targeted by the relationship are of type aggregation (and not association). It 

is therefore necessary to embed constraints both in objects (intraobject) and in relationships 

(interobject). 

In the next sections, Prometheus' constraints are presented, then their execution strategy is explained. 

5.2.1 Rules in Prometheus 

Constraints are a special case of rules. Rules are traditionally defined as triples: they have an event part 

(E), that describes which events trigger the evaluation of the rule, a condition part (C), that checks 

whether an action must be taken, and an action part (A), that is the action to be taken in order to repair 

a problem. These rules are therefore referred to as ECA rules. Constraints can then be referred to as EC 

rules, since they have no action part (or a default transaction abortion). In Prometheus, the accent is put 

on constraints because the implementation of the ICBN is paramount to the ability to offer consistent 

structures and to derive information such as names from the available data. Since the ICBN only 

describes valid configurations of concepts, and not how to fix inconsistencies, rules can only report 

problems, not take action. 

However, taxonomy constraints are context dependent, i.e. they need to check their own applicability. 

For example, a taxon at rank ]Genus, Species]6 should be placed into another taxon at rank [Genus, 

Species[. Therefore taxa must have a rule that supports this constraint. This rule has obviously three 

parts: an event, a condition of applicability (is this taxon at rank ]Genus, Species]?), and a condition (is 

this taxon placed into another taxon at rank [Genus, Species[?). In Prometheus; constraints therefore 

have an event patt (E), a condition of applicability for the constraint (C), and a condition (C) that is the 

actual constraint. These rules can be referred to as ECC rules. 

The object-oriented approach has been chosen to manage rules in Prometheus (e.g. as in ADAM [Diaz 

'91 D. Instead of describing rules in external files or as lists of textual facts, Prometheus SUppOltS the 

definition of rules as objects. This approach has many advantages: 

It provides a unifOlm representation of schemas and rules. 

It allows the manipulation of rules as objects at runtime. 

It allows the manipulation of rules by other rules. 

It allows the description of rules that benefit from the computationally complete language 

offered by the system, as methods can be overridden and added. 

6 This concise notation represents ranges. A square bracket that opens to the outside of the range means that the 
element next to it is not included in the range. A square bracket that is closed toward the range means that the 
value next to it is included in the range. For example, [2,5[ represents all values between 2 and 5, including 2, but 
excluding 5. ]Genus, Species] means all ranks between Genus and Species, including Species but excluding 
Genus. 

102/196 



5. Queries and rules 

These rules can be embedded inside other objects and described at class level (as in Ode [Gehani '91]). 

If a rule is declared in a "normal" object, then it is an intraobject rule. If it is declared in a relationship 

object, it is an interobject rule. The definition of constraints inside objects has the advantage of 

providing a better readability of the schema, as alI the information relating to a particular class is 

defined in that class. But because relationships are also defined as objects, they can carry interobject 

rules and avoid breaking encapsulation (e.g. SORAC [Doherty '93]). Note that although rules are 

embedded in objects, they can be extracted by the system if necessary and optimised independently 

from their owning objects. 

5.2.1.1 Event 

Rules in Prometheus can react to 6 events. Three of these events are related to the life of objects, and 

three to the life of the database. The events that are object-dependent are: OnCreate, OnChange, and 

OnDelete. These events are generated automaticalIy by the database and rules can be attached to them. 

The three events that are dependent on the database state are OnTransactionBegin, 

OnTransactionCommit, and OnTransactionAbort. The choice of granularity is limited both by what is 

practical in commercial databases and what is necessmy to support the type of applications to be 

managed (plant taxonomy). For example, events related to the occurrence of exceptions, based on time, 

or on external factors have not been defined. Exceptions are to be managed in the database application 

or by objects as they are executed since exceptions are results of their actions. Time is not a significant 

factor in taxonomy, and only velY specialised applications require time awareness (temporal 

databases). Events outside the database are not important either, as plant taxonomy is a closed world 

that does not interact with the real world directly. 

Events in Prometheus are only primitive events: they are the occurrence of a simple event in the 

database. Unlike systems like Ode [Gehani '91] or Jasmine [Ishikawa '93], Prometheus does not 

support fully the definition of composite events or user-defined events. The event pmt of the rule in 

Prometheus is captured by the class the rules belong to. For example, a rule that reacts to the creation 

of objects wiIl be of class PrometheusOnCreateRule or one of its subclasses. A rule that reacts to the 

abortion of transactions will be of class PrometheusOnTransacrionAbortRule or one of its subclasses. 

This does not leave liberty of migrating rules between their possible roles, but it would create too many 

problems to transform a rule into another and it would not be justified by the application domain. 

Although Prometheus does not support composite events, since it is a full-featured object-oriented 

database, the system itself is constituted of objects that can be reached and queried. Therefore rules are 

represented by objects with a particular structure and a particular behaviour. In fact, they inherit from 

generic rule classes that implement the basic behaviour and structure for rules supported by 

Prometheus. Therefore, defining a rule that responds to the OnChange event is represented by 

subclassing the PrometheusOnChangeRule and extending its behaviour if necessary. It is then possible 

to create rules that respond to many distinct events by subclassing one or more basic rules. For 

example, in order to create a rule that responds to the OnChange and the TransactionCommit rules (but 

103/196 



5. Queries and rules 

not necessarily their conjunction), one can subclass the PrometheusOnChangeRule and the 

PrometheusOnTransactionCommitRule. This is equivalent to a composite event of the following form: 

OnChange or OnTransactionCommit. Other combinations of events such as and or not are not 

supported, therefore Prometheus does not claim to support fully composite rules. The implementation 

of more complex composite events was not undertaken for many reasons. Firstly, it was not necessary 

to satisfy the requirements on the application domain, and secondly they raise important efficiency and 

semantic problems [Paton '99]. 

The granUlarity of the event (whether it concerns all elements of a set, e.g. all instances of a class, or 

single objects) is not managed in the event part of the rule. This is managed by the rule itself, as can be 

seen in section 5.2.1.2. 

The detection of events is problematic in Prometheus as queries can be complex, involve many objects 

and classes (path expressions, see section 5.2.1.2), and may be recursive (see section 5.2.3). Therefore, 

the association of a rule to an event on an object does not guarantee that all rules that may be affected 

by this event are detected. For example in taxonomy, an impOliant rule is that a taxon placed at rank 

]Genus, Species] should be placed in another taxon at rank [Genus, Species[. Clearly, this constraint 

applies to taxa, therefore in Prometheus would be attached to taxa objects. However, events directly 

affecting taxa objects (creation/modification/deletion) are not the only events that should trigger the 

evaluation of the constraint. For example, the modification of the rank hierarchy, may invalidate this 

rule, as an object's rank may become above Genus. Constraints (ECC rules) are therefore declared with 

a list of entities that may have an effect on the validity of the constraint. These classes or objects are the 

entities that are monitored in the database that will trigger the evaluation of rules when they are subject 

to celiain events. In essence, the rule attached to a particular class or object not only monitors that class 

or object, but a series of other classes. This allows a better use of the resources by minimising the 

opportunities when to evaluate rules. 

In addition, as in Ode, rules can be declared as once rules or perpetual rules. Once rules are executed 

only once, then are deactivated for the object that contains them. These rules are rarely supported in 

databases and only Ode provides suppOli for them. However, they are important in order to support a 

certain category of rules: pre-conditions and post-conditions related to object creation. Indeed, a pre

condition associated to the creation of an object (e.g. for a composite object the creation of its parts), 

must be executed only once in the life of the object. Therefore, once it has been executed, it is 

deactivated and no longer requires consideration by the rule manager. This reduces the number of rules 

to be inspected when events are triggered. 

In Prometheus, there are no CA (Condition-Action) rules. All rules must be triggered by an event. Even 

though a rule can monitor the root (or the roots) of all inheritance hierarchies, therefore react to an 

event affecting any class, it has to be linked to a particular event (e.g. OnCreate). Although this choice 

is limiting in some aspects (some database systems choose to support CA rules, e.g. NAOS [Collet '94], 

1041196 



5. Queries and rules 

Sentinel [Chakravarthy '94]), it has proven sufficient for Prometheus' needs and was thought too 

expensive to implement. Prometheus however provides EA (Event-Action) rules, as when the condition 

is omitted, the action is evaluated after the event occurred. 

5.2.1.2 Condition/Condition of applicability 

The condition part of ECC constraints checks whether the conditions are appropriate to the evaluation 

of the action part of the rule. Constraints depend on configurations of objects in the database. Since 

these conditions are dynamic (e.g. the levels in the Ranks hierarchy), they cannot be resolved at 

compile time and must be checked each time a rule is triggered. This condition is referred to as 

condition of applicability. The condition of applicability is distinct from the constraint (section 5.2.1.3), 

as violation of the condition of applicability does not lead to a violation of the whole rule and action 

from the database manager (e.g. abortion of the transaction). It would not be possible either to combine 

condition of applicability and constraint, as violation of condition of applicability would lead to 

violation of constraint (e.g. rank = "Familiy" and name like "%eae", would be violated if the rank is 

not Family, although it means that if the rank is not Family then the constraint does not apply). 

Conditions must represent boolean expressions. If the expression resolves to false, then the condition is 

considered not activated or violated. Conditions are queries or PCL (Prometheus Constraint Language) 

declarations. This section focuses on query constraints, PCL constraints are studied in section 5.2.3. 

Figure 21 shows an example of such a condition. This condition specifies that the rule only applies to 

People objects that have children. A later action/condition could be that they are eligible for child 

benefits. 

exist(select * from People p, p.children c where count(c) >0) 

Figure 21: Example of constraint condition 

Conditions specify the granularity of rules. Indeed, by default rules are defined for a class, therefore 

apply to all instances of the class. This is the consequence of defining constraints at design time in 

types/classes. However, at runtime, it is sometimes necessary to specify constraints on specific objects. 

For example, a particular object might gain access conditions at runtime and become accessible only 

for a set of other objects (e.g. private parts of a composite object). Or in taxonomy, a publication that 

does not follow the rules of the ICBN can imply that some elements of a classification need to respond 

to different rules than their siblings. Although the defmition of granularity as part of the condition is 

not common, it is simple and yet powerful, as any kind of granularity can be described (e.g. a subset of 

the instances of a class, instances that obey a set of properties, an arbitrary list of instances, or single 

instances). 

105/196 



5. Queries and rules 

Because all constraints do not have a condition of applicability (they are absolute), the condition patt of 

a rule can be ignored. In that case, instead of checking the condition, the rule manager executes the 

second condition (the proper constraint, EC rule) or the action (EA rule). 

5.2.1.3 Action/Condition/Constraint 

The action part of rules is called the action, or the second condition or constraint in Prometheus. It 

represents the action to be taken if the condition resolves to true (ECA rule), or the actual configuration 

that must not be violated (ECC rule or constraint). Rules are of two forms: rules that have no side effect 

on the state of the database (rules that only check the state of the database and allow an operation to 

take place or not), and rules that change the state of the database. Rules without side effects are 

constraints, whereas rules with side effects are active rules. Most of the rules in Prometheus are 

constraints. For constraints without side effects, the action part is another condition instead of an 

action. This is useful when constraints can only be evaluated in certain contexts and whose purpose is 

the enforcement of integrity. In this case, the condition of the constraint tests whether the constraint can 

be evaluated (whether the context is right), and the action part of the constraint performs the actual 

evaluation of the constraint if the condition was successful. 

Constraints without side effects are limited in their expressive power to operations that cannot change 

the state of the database. For example, DELETE and INSERT operations are banned. This is due to the 

fact that integrity constraints such as invariants should not change the state of the database, but rather 

ensure that the database is in an acceptable state and repOlt violations of these valid states. Most of 

Prometheus' rules are rules without side effects. 

Rules with side effects enable the system to react to pmticular situations and take the proper actions to 

fix problems or carry particular actions. In Prometheus, all rules that involve modification of the state 

of the database, directly through the definition of the rule or indirectly through execution of code, are 

considered rules with side effects. These rules are managed like rules instead of calls to methods 

because Prometheus is implementation independent and the mechanisms for creating and deleting 

objects are different in different implementation environments (e.g. there is no real destructor in Java, 

even the finalization method is invoked too late in the process of destruction of an object). Rules with 

side effects are useful for example for the propagation of operations. In the case of lifetime 

dependency, the deletion ofpmts when the whole is destroyed can be managed by rules attached to the 

composite relationships. In this case, the direction of relationships is impOltant. 

It is important to note that rules with side effects introduce impOltant conflicts. Indeed, since the 

execution of a rule can change the objects present in the database, it can invalidate another already 

triggered rule (that will not fmd the objects it requires). Rules with side effects therefore introduce the 

concept of priority. Each rule should be defined relative to all others so that when many rules with side 

effects are triggered, they are evaluated in a sensible order. These rules also introduce the need for 

database state history, as rules may have access to different states of the database when they are 

106/196 



5. Queries and rules 

executed. For example, it can be stated that rules are always executed in the context in which they have 

been triggered, knowing that this state may be out of date once other rules have been evaluated. In 

addition, since rules with side-effect can manipulate other rules (they are objects), the execution of 

rules introduces an important degree of unpredictability. It is indeed impossible to guess what the result 

of the execution of a set of rules might be without actually executing them. This approach introduces a 

great complexity in the definition of constraints (for example the need to know and understand all the 

constraints in a given system at once) and as Prometheus makes little use of such rules, it was not felt 

during the development that such complex mechanisms were needed. Prometheus only implements a 

naIve approach to the evaluation of these constraints: they are evaluated in the same order they were 

fired. 

5.2.1.4 Types of rules 

Constraints (rules without side effect) can be of different kinds: invariant, pre-condition, and post

condition. It was shown in section 4.4 that invariability is an important feature of semantically rich 

relationships. It was also said in section 4.2 that pre-conditions are necessary to the life of a database 

model (e.g. ensuring that a class name does not already exist when a new class is created). These 

different kinds of constraints are described here. In addition, a special kind of rule, relationship rules, is 

discussed in this section. 

5.2.1.4.1 Invariants 

As was said in section 4.4, invariance is a central feature of semantically rich relationships. This is in 

fact the one feature that can be automatically checked in many modelling approaches (e.g. Odell, 

Henderson-Sellers). 

Invariants are always called when an object is created, changed, or deleted, whether it is the object 

containing the invariant itself or an object that has been declared as having an influence on the 

constraint (in the list of monitored classes). In Jasmine, invariants would be composite object created 

from two primitive events (OnCreate and OnChange). An invariant is the following combination of 

primitive events: On Create 01' OnChange. 

5.2.1.4.2 Pre-conditions 

In Prometheus, rules can also be explicitly triggered by the user. These rules are then not attached to a 

particular object but are independent rules that are directly sent to the rule scheduler by an action of the 

user. The rules declared as pre- or post-conditions must first be immediately checked. Since they need 

to check that the database or a particular object are in a consistent state before or after the execution of 

a method, they need to be evaluated as soon as the need appears. 

107/196 



5. Queries and rules 

The execution of pre-conditions must be triggered by the user by writing a call to the appropriate 

method at the beginning of a method code. This includes the constructor of objects. They are therefore 

not automatically managed by the system. 

For example, in the case of multi-valued relationships, checking the number of relationships in one 

object before adding a new one may be important. If the cardinality is for example 5, before adding a 

new relationship the system must ensure that the cardinality is not already 5. If it is, then the new 

relationship cannot be added and an exception is raised. 

5.2.1.4.3 Post-conditions 

Post-conditions are executed at the end of a section of code. As with pre-conditions, they must be 

immediately checked, as any problem with a piece of code must be detected as soon as possible to 

avoid a knock on effect on other parts of the system. They can be called by the user in the application 

code at the end of a method. 

In the above example, check that it is one more, after the relationship has been created, the system can 

check that the cardinality has been increased by one. 

Pre- and post- conditions allow programming by contract [Meyer '97]. 

5.2.1.4.4 Relationship rules 

These rules are necessary for two reasons: they refer to the way two objects are related more than to the 

objects themselves; they require breaking encapsulation. SORAC showed that such rules are in fact 

relationships rules instead of object rules that can be implemented with the monitor construct. 

The creation of relationship rules has the advantage of not requiring any normal object in the system to 

violate the encapSUlation of others and at the same time being aware of all the objects involved in the 

rule as they are targeted by the relationship. It can be argued that such rules, although they avoid 

breaking the encapsulation for non relationship objects, requires the relationships to break 

encapsulation of these objects. This is true only if relationships are seen as normal objects. However, 

they are special objects that are treated differently than other objects. It is therefore acceptable to allow 

them to violate encapsulation, as it is acceptable to allow a query language to violate encapSUlation 

[Cluet '98]. 

A typical example of such rules are rules that govern the relative salaries of employees in a company. It 

can be decided that employees should always earn less than their manager. The schema representing 

108/196 



5. Queries and rules 

this situation would have two classes, Employee and Manager, and a relationship between them for 

example called Works_For. Embedding the salary rule in either object would require that object to 

know the internal state of the other. Embedding the rule in both objects would require both objects to 

break encapsulation and in addition would become harder to maintain. In fact, the salary rule is not a 

rule that belongs to either objects, but belong to the relationship between these objects. It is the fact that 

an employee works for a manager that makes the check on salaries necessary. Similarly in taxonomy, 

the rank of names requires that some names be placed below others at specific ranks. Embedding the 

rule in names would require these names to break the encapsulation of others. In addition, once again, it 

is the fact that these names are related that makes the rule necessary. Therefore creating a relationship 

rule allows the representation of the rule where it belongs. 

5.2.2 Execution strategy 

The execution strategy of rules is composed of two parts: the scheduling, or the way rules are executed, 

and the error handling, or the way the system reacts when constraints are violated. The next two 

sections present these two phases. 

5.2.2.1 Scheduling 

Constraints must intuitively be triggered when an object to which they are attached is 

created/modified/deleted. But in addition, the rules need to be re-evaluated when changes occur 

elsewhere in the database that could affect the validity of stored rules. For example, when a Rank 

object is changed, all queries depending on the value of a rank or its place in the rank hierarchy (Le. 

most taxonomic queries) are potentially affected. Therefore, rules also contain a list of all types on 

which they are dependent and that will trigger their re-evaluation. This list can be provided by the user 

or automatically generated by the system. When an instance of these types is created, deleted, or 

modified, the rule manager searches all the rules to find out which ones are dependent on this kind of 

object and triggers their evaluation. Constraints are re-evaluated when any instance of a type is 

created/modified/deleted because it is very hard (if not impossible) to tell which instance might be 

reached by which query before actually executing the query. In term of performance, this implies that 

many queries are evaluated unnecessarily, but it is hard to avoid. 

Furthermore, it is necessary to define different kinds of rule execution strategies: immediate effect 

constraints, and deferred effect constraints. These two modes of evaluation refer to the timing between 

the triggering ofa rule (the E part) and the evaluation of the condition (first C part). In Prometheus, this 

is the only controllable timing. Other systems also propose timing between condition (C) and action 

(A) or even the execution of rules in separate transactions. 

Immediate effect constraints are constraints that are evaluated at the time they are triggered and can 

immediately invalidate the transaction or the attempted operation (e.g. hard constraints in Ode). These 

109/196 



5. Queries and rules 

constraints are often necessary in order to check the internal state of a concept (i.e. its aggregation 

relationships) because they define the meaning of the concept. They are also useful for controlling 

situations that cannot occur, even temporarily. For example, in taxonomy, a rank Species can never be 

the (direct or indirect) parent of a rank Genus. 

Deferred effect constraints are only evaluated, as the current transaction is to be committed. These 

constraints are the equivalent of relationship rules in SORAe or soft constraints in Ode. This 

distinction is necessary because of the sequential aspect of database manipulations. Indeed, complex 

structures may be the subject of a constraint that needs to check the entire structure instead of each 

element of the structure. For example, let us imagine a database where a Person node must be linked to 

another Person node with a spouse arc, and the spouse node linked back to the first node with a similar 

edge (spouse is a bi-directional relationship). If an integrity constraint checks that the two spouse 

relationships are always opposite, during the update of arcs, the integrity rule may be violated. 

However, this may be only a temporary situation and the state of the database may be correct at the end 

of the transaction. The system therefore needs to wait until all changes are made before the validity of 

such constraints is checked. 

The system uses a constraint manager that stores the triggered constraints in a queue when they are 

fired by an action in the database. When an event that might trigger constraints occurs in the database, 

the constraint manager is called and finds out what are the constraints attached to the triggering object. 

In a first phase, only immediate effect constraints are evaluated. There is no defined order in which 

constraints are tested. Only the order in which they were described and then triggered is followed. 

Unlike constraints, rules may change the state of the system while they are evaluated. They may 

therefore affect the way the rule scheduler behaves and how the evaluated rules behave. For example, it 

is possible to imagine a rule whose action is to change other rules because that rule means that the 

system has switched to another mode that invalidates rules. That rule can therefore delete all rules at 

runtime, and the scheduler would not evaluate the other rules. As was said earlier, these rules with side 

effect introduce many problems (priority, ordering, parallelism, access to state, termination), which are 

not managed by Prometheus. 

If all immediate constraints have been successful when the transaction is to be committed, the 

constraint manager executes all pending constraints not already evaluated. 

In addition to the traditional event triggered mechanism described above, Prometheus supports the 

user-activation of constraints. At any time, the user can decide to simulate the occurrence of an event 

for a specific rule. This is particularly useful for example to manage pre- and post-conditions. Indeed, a 

pre- or post-condition is a rule that can be triggered by the user when the execution of the application 

enters or leave a specific section (or indeed at any time). In that case, the user can force the execution 

of a constraint, whatever the activation event that was described for that rule was. The rest of the 

110/196 



5. Queries and rules 

evaluation of the rule is as for any rule. Note however that only immediate rules make sense in this 

case, as a pre or post-condition that would be evaluated at the end of a transaction would not secure a 

specific section of the code. 

If a rule is triggered by many events in the course of a transaction, it will be evaluated for each of the 

activations as it is queued by the scheduler at each occurrence. Unlike some other systems (e.g. Ode), 

Prometheus does not restrict the number of times a rule is executed, be it an immediate or a deferred 

rule, i. e. the transition granularity in Prometheus is 1: 1. 

The execution of rules is either sequential or parallel, either immediately after the firing of the rules or 

at commit time in the transaction for deferred rules. The choice of execution is left to the user and has 

great implications on the result of the evaluation of a set of rules. For example, if rules with side-effects 

are used, the state in which subsequent rules are executed may be different from the state in which the 

event occurred. For example, if a rule A monitors changes in the state of an object a and might result in 

the deletion of the object a, and rule B also monitors the object a, what is the meaning of rule B if it is 

executed after rule A? The object that it monitors no longer exists. On the contrary in parallel 

evaluation the implications of rules upon others is more limited, but more unpredictable as it depends 

on the time spent by the queries relatively. For example, if the same rules A and B are fired at the same 

time by the parallel scheduler, if A finished before the end of the execution of B, then the state of the 

database might have changed between the start of the execution ofB and its ending. 

It should be noted that, as Prometheus is a fully object-oriented database, rules are represented by 

objects. Therefore, it is conceivable that some rules change the way other rules are defined or the way 

the rule scheduler behaves. For example, the rule A above might change the content of rule B if certain 

conditions occur. For example, the fact that A is executed might imply that B becomes meaningless, 

therefore A might change B so that it does nothing. Likewise, if rule A is triggered, it might switch the 

mode of operation of the rule scheduler from sequential to parallel, or vice-versa. These actions are 

possible because the content of queries is based on the query language, therefore rules, as with any 

query, are able to break encapsulation. Although no direct use for these features has been found in 

taxonomy, they are provided inherently by the system. 

5.2.2.2 Error handling 

When an error is detected, an exception is raised. Unlike many other systems (e.g. SAMOS [Gatziu 

'91], Sentinel [Chakravarthy '94], NAOS [Collet '94], ADAM [Diaz '91]), Prometheus does not 

implicitly abort the transaction. The firing of an exception allows the user to choose how to deal with 

the problem. When an exception is raised, the user is able to know what went wrong and decide on the 

actions to take, which include aborting the transaction. 

In addition, interaction with users is sometimes necessary, as only they might have the answer to a 

given problem. This is especially the case in taxonomy where taxonomists are free to make arbitrary 

111/196 



5. Queries and rules 

choices in certain situations, or the publication of erroneous data implies a legal violation of a set of 

rules. The interaction with the user is an important feature of Prometheus' rules. When a rule that can 

be ignored happens (once again the ability to be ignored is inherited from a specific rule type in 

Prometheus, PrometheuslnteractiveRule), an automatic user interaction mechanism is fired (e.g. 

graphical, textual, network-based, dialog with another application), and the evaluation of other rules 

stops until a reply has been received. If the user chooses to ignore the violation of the constraint, the 

execution of scheduled rules carries on, whereas if the user does not wish to ignore the rule an 

exception is raised and the user application can take appropriate action. 

5.2.3 pel 

In Prometheus, as with many relational (e.g. Progres, Ariel, SQL-3) and object-oriented (e.g. NAOS, 

Chimera) systems, conditions and actions in rules are represented by queries. This has many 

advantages: it allows the rule mechanism to benefit from query optimisations; it provides a powerful 

way to write rules as the query language can be very complex (including calls to object methods or 

external mechanisms); it does not require the implementation of additional mechanisms to implement 

the rule system. However, the definition of conditions and actions as queries is not necessarily 

straightforward. Indeed, queries are not object centric (they are global), therefore object-centric rules 

are harder to describe. Figure 22 shows such a constraint. This constraint specifies that a Person object 

whose OlD is #OID must have a positive value as its age attribute. 

exist(select * from People p where p.age > 0 and p = #OID) 

Figure 22: Object-centric constraint 

This type of constraint requires knowing the OlD of the targeted object and to centre the constraint on 

that object. In most cases, this is impossible, as the OlD of an object is not known at the time its class is 

defined or when the rule is described. There is therefore need for a specialised language that can then 

be automatically mapped to the query language. In Prometheus this language is called PCL and it is 

based on OCL [OMG '99]. 

The main reason why PCL is based on OCL is that, as an abstract database model that captures more 

semantics and offers a simpler environment by providing higher level concepts has been defined, the 

constraint language has been designed from an abstract point of view. This has the advantage of being 

simple and allowing formalisation, therefore it is understandable by specialised people as well as 

database designers. The other advantage ofOCL is that constraints may consist of two parts: a first part 

that defines the context in which the constraint is applicable, and a second that represents the constraint 

itself, exactly as Prometheus' ECC rules (Figure 23). 

Self. age > 21 implies self.registered_for_elections 

1121196 



5. Queries and rules 

Figure 23: PCL example #1 

peL is built on a subset of OeL. It borrows its form and part of its syntax from OeL, the rest being 

inspired from POOL. In the current implementation, peL only covers a fraction of oeL. More 

specifically, it covers the general syntax and the portions that are close to OQL. In later versions, a 

complete implementation of OeL will be provided. 

Although the type hierarchy is not clearly defined in OeL documents, it is assumed here that it is 

compatible with the type system of Prometheus or any implementation of Prometheus (e.g. ODMG). 

5.2.3.1 Deficiencies of OCL 

oeL is not based on a query language. Therefore, it does not define very powerful path expressions. 

However, these path expressions are essential to taxonomic constraints. In particular, recursive path 

expressions are often used to represent certain rules (e.g. ensuring the right placement of a taxon in a 

hierarchy of taxa according to their ranks). 

5.2.3.2 Extensions to OCL 

In Prometheus, OeL has been merged with the query language in order to offer more powerful 

constraints (peL). For example, peL can describe constraints that involve recursive path expressions, 

as shown in Figure 24. Figure 24 implements the constraint "if a name (taxon) is placed at rank 

Species, it must be placed in another taxon at rank [Genus, Species[". Selfrepresents the object itself, 

as in OeL. 

5.2.3.3 

Self.rank.name = "Species" implies 

Self.theCircumscription.origin.theRank.previous*.name = "Genus" and 

Self.theCircumscription.origin.theRank.next+.name = "Species" 

Figure 24: PCL example #2 

Translation 

As was explained in section 5.2.1, rules in Prometheus are queries. However, the description of such 

queries is not always straightforward or even possible (e.g. knowing OIDs at design time), which is 

why peL has been described. Therefore the rules described with peL must be translated into POOL. 

This translation is straightforward at runtime because all the necessary information is available. For 

example, the peL constraint shown in Figure 24 would be translated in POOL as shown in Figure 25 

(the event part of the rule is not shown, as it is not related to the translation into POOL). 

Condition: exist(select * from Name n where n.oid = #010 and n.theRank.theName = 
"Genus") 

1131196 



5. Queries and rules 

Constraint: exist(select * from Name n where n.oid = #OID and 

n.theCircumscription.origin.theRank.previous*.theName = "Genus" and 

n.theCircumscription.origin.theRank.next+.theName = "Species" 

Figure 25: Translation of peL into a Prometheus rule 

5.3 Conclusion 

This chapter has introduced the query language and the rule/constraint mechanism provided by 

Prometheus. 

The introduction of relationships as first-class objects in the object model (chapter 4) requires that the 

query language deals with these new structures in a manner that provides to user applications the full 

benefit of these new structures. This chapter has therefore presented several operators designed to deal 

with relationships: 

The dot operator has been extended to deal with relationships in OQL. Relationships are 

manipulated as transparently as possible when ambiguity can be avoided. The traversal of a 

relationship occurs in the same way the traversal of a reference in OQL occurs: the name of 

the relationship is simply given. However, in some cases, ambiguity may arise. For example, 

relationships may have attributes that may be accessed by the user. The dot operator therefore 

also allows access to these attributes. 

A selective downcast operator has been introduced to deal with casting that does not raise 

exceptions if an object of unwanted type is encountered. This has been necessary to cope with 

the recursive structure of graphs. The selective downcast operator allows the selection of 

specific sub-classes in queries. 

As relationships are oriented but may support two-way navigation (section 4.4), navigation 

has been introduced in OQL. In order to make the differences in the model as invisible as 

possible, this navigation occurs by the specification of the source or destination attributes of 

relationships. 

As Prometheus supports the definition of semantic relationships through behaviour flags and 

constraints, it is important that the query language deals with these semantic them. 

Prometheus offers operators that are able to work on aggregations, for example for the 

extraction of composite objects in one single query. 

Prometheus also deals with classifications specifically. It is able to traverse weighted graphs 

consistently, i.e. it only follows relationships exhibiting a specific context, so that when graph 

traversal occurs, the query evaluation is bound to specific classifications. It also provide an 

operator that make both recursive joins and selection of context possible. 

The query language satisfies the following generic requirement expressed in section 2.4. 

1141196 



5. Queries and rules 

9. Recursive behaviour: the query language provided by Prometheus supports the definition of 

recursive queries through regular path expressions, therefore is able to assist in the extraction of 

specimens contained by hierarchies of taxa. 

Table 5 compares the features added to OQL by Prometheus to the query languages offered by the 

systems that provide explicit relationships. 

ODMGI SORAC OMS GraphDB ADAM AG091 POOM/ 
OQL POOL 

Traversing l< N/A .;' N/A N/A .;' .;' 

collections 
Selective downcast l< N/A in part l< N/A l< .;' 

Relationships in l< N/A .;' .;' N/A .;' .;' 

query language 
Aggregate objects l< N/A in part l< N/A l< .;' 

in query language 
Bi-directionality in part N/A .;' .;' N/A .;' .;' 

Transitive closure l< N/A .;' .;' N/A l< .;' 

Extraction of l< N/A l< .;' N/A l< .;' 

_logical subgrap~_ 

Table 5: Query languages comparative table 

The support for rules and constraints in Prometheus is necessary for the enforcement of working 

practices (e.g. the ICBN). They have therefore been defined in the proposed system. 

These rules and constraints are object-oriented, i.e. they are defined as objects and may be related to 

classes, therefore they are well integrated in the overall model. There are two reason for this choice: 

ODMG does not specify constraints, therefore defining new structures to capture rules and constraints 

would have led to significant changes to the standard. The implementation of rules and constraints as 

objects is very flexible and powerful, allowing for example the modification of lUles by other rules or 

the creation of inheritance hierarchies of rules that support reuse. 

The rules and constraints are generic in that they are specified by a language derived from OCL and 

they are mapped to the query language. The rules therefore benefit from the full power of the query 

language (e.g. graph-specific operators). 

However, they are specific in the way they are represented: constraints are able to check their condition 

of applicability, which is necessary in the case where classifications are dynamic and the levels of the 

classification is represented by outside objects (ranks in plant taxonomy). They are also specific in that 

in order to accommodate the fact that taxonomist users ultimately make the decisions, even if the data 

is not correct (see chapter 2), rules that may be violated can be defined as interactive rules, in which 

case they will interact with the user to find out whether they are ignored by the user or not. 

1151196 



5. Queries and rules 

Their execution model, although simpler than some others in that it does not support the definition of 

all possible composite events, is powerful enough to support the definition and evaluation of all 

taxonomic rules. Simple composition of events is however possible through inheritance which permits 

the creation of more expressive event detection. 

An advantage of these rules/constraints in that provision of explicit relationships with constraint/rules 

allows an easier way to check if the implemented model conforms to the object model: it provides a 

rapid application development environment where concepts (e.g. relationships) and constraints are not 

scattered, thereby making them easier to maintain [Doherty '93]. 

The constraints as defined in Prometheus satisfy the following requirement expressed in section 2.4. 

8. Rules/constraints: Prometheus SUppOlts the definition of rules. These rules, as they 

are objects, can be changed at runtime, therefore deal with exceptions as they happen in 

taxonomy as the result of errors. 

116/196 



6. Architecture and implementation 

6 Architecture and implementation 

The prototype is a framework that provides a set of predefined classes that can be used by user 

applications, or extended or specialised in order to suit specific user needs. For example, the use of 

Prometheus in conjunction with a specific modelling method such as UML or OMT may require the 

definition of relationships with special semantics. The framework allows the selection of these 

semantics from a list of available semantics to suit any use. Additional semantics can also be added if 

needed. 

The prototype was built on top of an existing commercial object-oriented database system: POET 

[POET '01] and using Java [Sun '95] as a programming language. This was in accordance to the 

requirements expressed in section 2.4, in particular the integration of the prototype with existing 

systems to allow reuse of existing schemas and data. 

This chapter provides implementation-related information about Prometheus and offers more precise 

information about some of its features (e.g. implementation of relationship semantics) and how these 

features can be used by user applications. Note that only a high-level view is presented, Prometheus 

consisting of 543 classes and 89686 lines of code, too many details would impair clarity. 

First, this chapter presents Prometheus' high-level structure. Then the usage of the mechanisms offered 

by the prototype is shown. 

6.1 Architecture of the OODa 

The OODB structure is a layered architecture. The fact that the underlying database system needs to be 

accessible to user applications that use Prometheus requires that Prometheus sits as a package on top of 

the existing system and only provides additional features. The fact that the system is complex and calls 

to various levels of the system are performed by several other levels make it suitable to use a layered 

architecture approach. Therefore, that approach has been chosen. The overall structure of the system is 

presented in Figure 26. 

However, it can be noted that the Event layer is in contact with all the other layers instead of being 

accessible through lower layers. This is due to the fact that Prometheus is an active database therefore 

events are required at several layers (e.g. for indexes and for firing rules). Other layers do not call 

services offered by the Event layer, instead the Event layer notifies of events through an Observer 

design pattern. 

1171196 



6. Architecture and implementation 

Prometheus HTTP 
Server 

Prometheus Rules 

Prometheus Query Language 

Prometheus Index Layer 

Prometheus Views Layer 

Prometheus Object Layer 
Prometheus 
Event Layer -

POET 

Figure 26: Prometheus architecture 

6.1.1 Event layer 

The lowest layer of the system above the underlying database system is the Event Layer. This event 

layer simply collects events from the system (e.g. creation or deletion of objects) and broadcasts these 

events to the components of the system that have manifested an interest in specific events (this is based 

on a observer design pattern where objects register the events they monitor to a central object, 

POETShadow, that then manages broadcasts to the rule and the index layer), as shown in Figure 27. 

PromelheusMonilorBroker 

I PromelheusMonilor 

t== ~J;~~ 
PromelheuslndexManager --~~---

PromelheusRuleScheduler 

Figure 27: Event layer 

The implementation ofthis layer was not straightforward, as POET, the underlying database chosen for 

the project, does not implement a full-featured event mechanism in the version available at the time of 

the project. Therefore, POET was de-compiled and two classes (transaction class and bookkeper class, 

on the left hand side of Figure 27) replaced by classes that notify events. To do so, Prometheus uses the 

fact that Java searches classes in the classpath in the order the directories appear. It is therefore possible 

to write a class that implements the required interface and place it before the original class. When Java 

tries to find it, it chooses the first it finds. 

118/196 

l~ 



6. Architecture and implementation 

6.1.2 Object layer 

The object layer, that sits on top of the event layer and POET, provides the basic functionality of the 

objects available in Prometheus: relationships. In this layer, relationship objects are defined, as well as 

their basic behaviour (e.g. the relationship equality that only compares attributes of relationships, 

ignoring their source and destination), available constraints as interfaces (e.g. sharing, exclusivity), and 

mechanisms (deletion propagation of composition). These relationships can be extended by the user in 

order to capture specific semantics such as the relationships between the matter of which the whole is 

made and the matter its parts are made of in a pmt-of relationship (section 4.4.1). Figure 28 shows the 

Prometheus meta model. 

// \" 

It..L j ~-. 
3 7 ',~ 

. ~~2;~,",""":;:C'A":',",=~;:::' "'lW<'"' 

,7 

r..~~~~~~~-, ... ~~·2=~~~~~""~~~~~~==~~~ E,o""' .. ""O~."~'--,J.':J:' ''''''MWbp<oA, ... ',IJonOMTo''''''Il"" db¥"%""",'A:_tio"""n,ToM'''IlW< II' M'~MWbp<oA''''''tionM'n'To'''''lW<1 ~Agg<'9'lJonllnk I 
---------------------

p.!,elat.lWtip!eAgglegationManyToManyUnk MetaAggregationManyToQneUnx 

Figure 28: Prometheus object meta model 

Opening the database requires performing consistency tests because POET is unable to create and 

delete a single object in one transaction. This feature is however necessary in the case of temporary 

objects (e.g. graph reorganisation). 

6.1.3 Views layer 

Views are filtering views, as for example those of [Zhuge '98]. Views are filters, and unlike for 

example Multivew, no restructuring is possible. This would not have been justified by the application 

domain and would not have been practical in Java (restructuring requires a purpose built programming 

language or a dynamic programming language such as Smalltalk). In addition, views are not duplicates 

of base objects as in [Zhuge '98], therefore updates in views are propagated to base objects and to all 

existing views. This can cause inconsistency problems in the context of several view mechanisms (e.g. 

Multiview), but for Prometheus, changing an object present in a view or adding objects only extends 

1191196 



6. Architecture and implementation 

the view (the filter) via extension. Normally, views are created via a set of queries, i.e. their intension. 

No view re-computation or maintenance is provided at this stage of the work. 

Views can be selected at any time and become a virtual database on which the system works, thereby 

limiting the amount of data available to the user, making work easier. For this purpose, Extents take 

into account active views when they present objects to other parts of Prometheus (Figure 29). If a view 

is active, either as a default view or via user selection, an extent will hide objects that do not belong to 

that view. In order to maintain consistency, when a view is modified, all extents that have manifested 

an interest in the view are notified and they must be recomputed. 

PrOmelheusCachedQuery 

PromelheusView 

0." 

PromelheusViewManager 

Figure 29: View layer 

6.1.4 Index layer 

The index layer has been implemented above the view layer because it uses the filters offered by the 

view layer to restrict available data and the search space for indexes. This configuration may seem 

unusual, as generally views are a high level feature that use indexes instead of the reverse. But as 

Prometheus' views are limited to filtering views, they do not need high level services, therefore can be 

pushed down into the lower implementation layers. In the current implementation of Prometheus, two 

kinds of indexes exist: relationship indexes, that associate relationships with node objects (it is possible 

to search on origin or destination objects), and object indexes that index node objects according to their 

attributes. These indexes are updated when the user performs actions on objects present in the database 

via the event layer. 

Indexes are maintained through events. When an event is fired, e.g. object creation, the index manager 

intercepts the event and decides whether to update the indexes or not. If this is necessary, the 

information found in the event object and in the entity that fired the event are sufficient to update 

indexes. This approach has the significant advantage of being completely transparent to the user. 

Indeed, no additional code is necessary in user applications to maintain indexes and no changes to 

1201196 



6. Architecture and implementation 

existing applications are required. The disadvantage of this approach is that events are necessary to 

manage indexes, therefore the overhead generated by event detection and propagation cannot be 

avoided. 

6.1.5 Query layer 

The query language developed for Prometheus is based on OQL. It implements a subset of the standard 

(mostly select queries) plus many features specific to classifications and object-oriented modelling. In 

the current implementation, it is an independent interpreter, i.e. it does not use the built-in query 

language provided by the underlying database system. The reasons for this choice are: 

The OQL implementation offered by POET is very limited and most queries would require heavy 

rewrite and many features would have to be implemented in the interpreter. For this reason, a gain in 

perfonnance was unlikely. 

The OQL implementation provided by POET only queries on disk indexes, i.e. it is impossible to query 

on objects that have not been already committed to the database. This is a serious limitation for an 

active system. Using that query engine would have meant verifying the results of the query with the 

information available in memory (e.g. objects in different states), which would have been extremely 

difficult and inefficient. 

These problems are specific to POET, therefore it is conceivable that in a future implementation 

Prometheus may use the underlying query language to evaluate queries more efficiently. 

Several features have been implemented to support more efficient query evaluation: specific execution 

modes, indexes, and optimisations. 

6.1.5.1 Execution 

Queries can be executed in different modes that can be selected by the user: sequentially (all selections 

are made independently of others) or concurrent (selections are grouped to reduce the search space). 

They can also be indexed by relating path expression and result set in order to make the later execution 

of the same rule faster. And they can be optimised in various ways. Note however that Prometheus 

does not support a full algebra that would allow more optimisation or domain driven rewrites. 

Prometheus proposes two modes of execution: sequential and parallel. These modes are selected by the 

user or the user application and apply to all queries executed during the period of time the selection is 

active. 

1211196 



6. Architecture and implementation 

The sequential mode takes each operation described in the query (e.g. the selections, the join, and the 

projection) and executes them sequentially. For example, a query that describes two selections and a 

join will first be interpreted as a sequence of two selections, then a join. However this execution 

strategy does not benefit from the ability of certain languages and environment to mn parallel tasks. 

Another mode, parallel, has therefore been implemented. 

In the concurrent mode, the selections can be evaluated in parallel, i.e. each selection is mn 

independently from the others in a different context (thread in Java). The joins and the projection 

however are executed sequentially, as they need the results from the previous phases to work (e.g. a 

join needs the results of selection before it can be evaluated). This execution strategy has the advantage 

using the resources of the system in a more efficient way (e.g. by using I/O time when the processor is 

free to execute code), but its drawback is that the selections must be independent, therefore they do not 

allow the use of certain optimisations (section 6.1.5.3). 

6.1.5.2 Indexing 

When a query is run, it can be indexed by the system. Indexing means that the selection parts of a query 

can be stored along with the results of their evaluation and can be later recalled when the same query is 

executed again. This mechanism makes sense as the same or similar queries are often run many times. 

This type of index makes sense particularly in the context of a system that supports rules, as the same 

rules will be executed often (e.g. cardinality of relationships). See section 5.2 for more information 

about rules. The improvement provided by this indexing is dramatic, as the execution of a query two or 

more times takes little time over the execution of the query once (only the time to search a simple index 

is required). In addition, because only the selection part of the query is indexed, similar queries benefit 

from the indexing of each other's selections. 

Indexing also implies checking and invalidation, i.e. if some objects are changed in the system, they 

might invalidate the indexed query, and the re-evaluation of the query would be different after their 

change. The system therefore records in the index the classes of objects that have been traversed during 

the execution of the query. The kinds of entities kept in the indexes is limited to classes as indexing 

specific objects would not guarantee that their monitoring would be sufficient. For example, the 

addition of a new object in the database, therefore an object that cannot be part of any index, might 

affect the result of the execution of a query that looks for objects of that type having certain properties. 

6.1.5.3 Optimisations 

The current implementation of Prometheus offers only one velY simple execution optimisation but 

others can be implemented: when two selections are related in a specific way, the system can combine 

the execution of the two selections in order to restrict the search space. For example, if the user 

searches for Person objects whose age is 25 and live in Scotland, the two selections are clearly related 

1221196 



6. Architecture and implementation 

and Person objects that is not part of any of the two selections will not appear in the result of the query. 

In that case, Prometheus executes one selection, then restricts the execution of the other to objects that 

were returned by the first. Therefore, in this example, only Person objects whose age is over 25 will be 

candidates for the selection of Person objects living in Scotland. 

This optimisation mechanism is not compatible with the concurrent execution of selections, as it 

implies that one selection is executed once the result of the other is known. Therefore when this 

optimisation is selected, the execution of queries always becomes sequential. It is not fully compatible 

with the indexing of selections, as only the selections that are evaluated independently from others can 

be indexed and reused in the evaluation of other queries. Otherwise, only the first selection is indexed. 

Other optimisations are left as future work. 

6.1.6 Rules layer 

Rules also make use of the event layer. As events are triggered by actions in the database, they are 

propagated to the rules layer. When the rules layer receives an event, it searches for all rule managers 

that monitor this event. A rule manager is an object that is associated to persistent objects and that 

stores and manages their rules (Figure 30). If a rule monitor monitors the triggered event, it fires the 

execution of the appropriate rule by sending it to the rule scheduler. Depending on the type ofthe rule, 

the rule scheduler either evaluates the rule as soon as it is received from a rule manager, or stores it in a 

queue for later evaluation (e.g. deferred rules that must be evaluated at the end of a transaction). The 

rule scheduler also receives events from the event layer and may take actions if necessary. This is for 

example the case for transaction events that represent important points in time for the evaluation of 

rules. In addition, rules can be called explicitly by the user (user triggered rules in section 5.2.1) and 

sent to the rule scheduler without rule manager. 

1231196 



6. Architecture and implementation 

PrometheusOnChangeRule 

" PrometheusOnDeleteRule l' 
I 

PrometheusOnTransactionAbortRule 

PrometheusOnCreateRule 

c=!":0metheusOnTransactionCommitRule 

I 

PrometheusOn T ransactionBeginRule 

Prometheus Monitor PrometheusMonitorBroker 

0,,' 

Prometheus Rule Scheduler 

0.: 

PrometheuslmmediateExecution d 
-----~-----~ 

L\ 

PrometheusDifferredRule 

! I PrometheusDifferredExecution I 

1=-- _____ -------

Figure 30: Rule layer 

Figure 31 shows a simplified view of the rule execution mechanism. When an object is 

created/modified/deleted, an event is generated. That event is sent to the rule manager which firstly 

searches for the active registered rules that react to the notified event, and secondly checks whether the 

selected rules are attached or monitor the object or the type of the object that triggered the event. If 

rules that satisfy these constraints are found, they are sent to the scheduler. The scheduler then chooses 

to execute the condition part of the rule immediately, or stores the rule in a queue. If rules need to be 

evaluated immediately, the scheduler executes the condition of the rule by calling the POOL 

interpreter, possibly after having translated the condition from PCL to POOL (see section 5.2.3). If the 

rule resolves to true, then the action (or constraint) part of the rule must be evaluated. The scheduler 

then sends the action part of the rule to the POOL interpreter, once again possibly after translating it 

from PCL. When the event triggered is the end of transaction signal, the scheduler evaluates all the 

rules that have been stored for differed evaluations. 

As described in section 5.2.1.1, rules in Prometheus are attached, either explicitly or implicitly (by 

analysis of the rule) to classes in order to facilitate event detection. In the current implementation of 

Prometheus, these entities can only be classes (in most cases these can be inferred automatically). This 

is motivated by two reasons. The first is that the purpose of the rules is in part the support for 

relationships and their semantics. Because the constraints associated with relationships are orientated 

towards the verification of configurations (e.g. sharing of objects, placement in hierarchies), the entities 

that need to be monitored are usually classes (e.g. relationships in general or a particular kind of 

relationships). The second motivation is practical: it is hard, when one has no access to the database 

source code to add the triggering of events dependent on attributes (e.g. change of a particular attribute 

in an object) or references (the creation of a reference to an object as in Jasmine). As Prometheus 

should be integrated as smoothly as possible in an existing system, this was not an option. 

124/196 



6. Architecture and implementation 

trigge 

Event 

.. ~ 

rs event 

.Ji 

Object or 
transaction 

- - - -~--
sends event 
notification Rule 

rt:spUlh.., LV U.l'-' 

type of even.! I 
finds rules that 

d to th 

.. manager 1 
checks that sends activated 

the r rules to scheduler 

mo . ors the executes 
ource of the condition or 

event 
~ 

ction ofrul 
Scheduler .. ... .. 

red to 
~r to 

p : rule 
and starts the cycle again 

Rule pool 

[peL 
rewriter] 

Figure 31: Rule system architecture 

6.1.7 HTTP Server 

J 

transforms 
rules into 
queries .. POOL .. 

interpreter 

On top of the database, a generic web server is provided with Prometheus. Generic means that it does 

not only work on top of a taxonomic database. It is designed to be as independent as possible from the 

underlying database system, but offers an interface to any database system. In addition, it provides 

means to query and display general classifications. The server has been used as a demo for Prometheus 

available online to anyone. 

In order to make the development easier, the server implements a servlet architecture where new 

servlets can be added to the system as long as they implement a specific servlet interface. 

6.2 Usage 

Two kinds of objects are made available to user applications: objects, which are objects in the usual 

object-oriented sense, and relationships, which are a peculiarity of Prometheus. 

6.2.1 Objects 

The definition of objects in the context of Prometheus does not require any changes compared to the 

definition of objects in other database applications. This was an important constraint on the prototype 

due to the fact that taxonomic databases (and more generally classification databases) already exist and 

the prototype should reuse that existing data. This also avoids disturbing the inheritance hierarchy that 

125/196 



6. Architecture and implementation 

may be specified at the user application design time to include Prometheus services (especially for 

single inheritance languages). 

However, as Prometheus proposes rules/constraints as a basic feature of the model (unlike ODMG, see 

section 4.2), rules/constraints must be provided by the prototype. They can be added easily to any 

object as shown in Figure 32. 

II Locally defined rule. The rule specifies that name of rank 

II Species should be placed into a name of rank Genus. The rule 

II is attached to the object "thisU (i.e. the one that makes 

II the call), No class to monitor is specified (the choice will 

II be made by Prometheus automatically), and the rule is 

II permanent. The call create an evaluator of PCL rules and 

II send to it the rule in PCL and its arguments, and a rule 

II creator object (for an immediate rule in the example) 

theRules.add(new PCL( ("self.theRank.name=\USpecies\U implies 

self.Placement.origin.theRank.name=\uGenus\UU, this, "U 

false)) .translateToRule(new PrometheusImmediateRuleCreator()); 

Figure 32: PCL rule creation 

Alternatively, a less user-friendly definition can be given by providing a POOL query instead of a PCL 

constraint. Figure 33 shows a constraint equivalent to the one presented in Figure 32 but using queries 

instead of the PCL to POOL translation. The constraint created is permanent (last argument in the call), 

with a condition that checks that the name is a Species-level name, and ensures that it is placed in a 

Genus-level name. 

theRules.add(new PrometheusImmediateRule("The taxon is a Species

level taxon therefore must be placed into a Genus-level taxon", 

"select n from Name n where n = this and n.theRank.name 

\USpecies\U", true, " select n from Name n where n = this and 

n.Placement.origin.theRank.name = \uGenus\U", true, "", false)); 

Figure 33: Constraint with queries 

Note that, as in SAMOS [Gatziu '91], if the rule is not attached to any object, it becomes a general rule 

and will be evaluated each time an event is fired. This is less efficient than attaching the rule to an 

object because in that latter case the rule is only evaluated when the object that generated the event is 

the rule to which it is attached or is an instance of the classes to be monitored. 

126/196 



6. Architecture and implementation 

6.2.2 Relationships 

Relationships are defined as sub-classes of one of the predefined relationships provided by Prometheus 

(section 4.3, Figure 14). These relationships provide the basic behaviours found in object-oriented 

modelling and implementation, e.g. aggregation relationships with customisable behaviour. 

A relationship object is divided into five patts: the definition of the super-classes, the selection of 

behaviour flags, the declaration of l1lIes/constraints, the definition of attributes, and the definition of 

methods. Apart from the selection of behaviour flags and the description of l1lIes/constraints, the 

declaration of relationship classes resembles that of any other class. To make the creation of 

relationship objects easier, a skeleton is provided (Figure 34). The example shows how to specify a 

relationship that contains no specific l1lles (but the l1lles defined in the MetaLink parent class are 

inherited), navigable in both directions, not lifetime dependent (weak or strong), changeable, and not 

private. As was said in section 4.4, other semantics are available, but must be implemented as 

constraints. These constraints, exclusivity, sharability, cardinality, encapsulation are available as 

templates, but must be customised to suit the user application. For example, exclusivity must refer to 

specific classes (the other classes with which the relationship is exclusive), therefore cannot be 

generically provided by the prototype. 

public abstract class Relationship extends MetaLink { 

public static String getName() 

return "Prometheus.Model.Relationship"; 

public void setRules() { 

super. setRules () ; 

// Additional rules/constraints can be added here 

II Used for loading objects. Do not call! 

protected Relationship () 

protected Relationship (Object anOrigin, Object aDestination) 

super (anOrigin, aDestination); 

II These are inherited from MetaLink and select behaviour 

navigableFromDestination = true; 

navigableFromOrigin = true; 

lifeTimeDependent = false; 

strongLifeTimeDependent = false; 

127/196 



6. Architecture and implementation 

changeable = true; 

private = false; 

public static Collection getOriginSuchAs(Object anObject) 

return getMetaOriginSuchAs(anObject, getName()); 

public static Collection getDestinationSuchAs(Object anObject) 

return getMetaDestinationSuchAs(anObject, getName()); 

Figure 34: Relationship template 

The super-class of all relationship objects, called MetaLink, also provides mechanisms that manage 

some of the behaviours specified by the behaviour flags. For example, dependency requires that when 

an object playing the role of a whole is deleted, its parts are also deleted. Similarly, when parts 

involved in a strong dependency relationship are deleted (section 4.4.3), the object acting as the whole 

must be deleted. This behaviour is selected by the user and managed automatically by the MetaLink 

objects. 

6.3 Conclusion 

Prometheus has been designed to be integrated with existing database models already containing data 

(requirement lOin section 2.4). Therefore not only its model was designed to integrate smoothly with 

the object-oriented database standard model (ODMG, section 4.3), but its prototype implementation 

has been written to transparently provide services to user applications without requiring rewriting of 

existing code or reorganisation of existing schemas, i.e. it is non-intrusive. 

This goal led to the development of a structure that leaves the management of most of the new features 

to the new structures provided by Prometheus: relationships. Relationships specify and manage the 

behaviours presented in section 4.4, freeing the user from this burden and avoiding the involvement of 

user objects is such behaviours, which would have led to a harder to maintain approach. 

The customisation of the semantics given to relationships, necessary to support fully user applications 

and modelling methods, is done through the selection of predefined flags and the declaration of 

constraints (whose function is explained in section 4.4) during the definition of relationship classes. If 

128/196 



6. Architecture and implementation 

one of the predefined relationships is sub-classed (e.g. single-valued aggregation), the semantics of the 

user relationships will be inherited from the predefined parent class. 

For the first time, classification applications in general and taxonomic applications in particular can 

benefit from a system providing a means to represent multiple overlapping independent classifications, 

and manage them in user applications and in the query language. As chapter 7 will show, the 

improvements offered by Prometheus support fully taxonomists' needs and their absence would make 

the development of such applications harder and more costly. 

129/196 



7. Evaluation 

7 Evaluation 

This section evaluates the perfonnance of the system built during this work. Two aspects are 

considered: taxonomic performance, i.e. how well the system answers the taxonomic problem, and 

database performance. The evaluation of the way the system handles the taxonomic problem is very 

important, as this is the first prototype that properly tackles the multiple classification problem. This 

evaluation should show whether the chosen approach was suitable. Performance has not been an issue 

during the development of the prototype, but it is impOltant to know how it behaves and why. This 

would form the basis for an extension of the prototype and its refmement. 

7.1 Taxonomic evaluation 

It is necessary to study the taxonomic merits of the system built. This evaluation is made against a strict 

benchmark according to a protocol that is defined here. Typical problems generated by taxonomist 

work are considered and the solutions proposed by the system are explained. The complexity of this 

solution (both from a user and a system point of view) is evaluated. As there is no accepted benchmark 

for taxonomic work, a revision has been undertaken and completed with Prometheus to measure its 

success. This protocol includes 4 sections: the ability of the system to represent multiple classifications 

and their relationships, the ability to represent historical classifications, the ability to SUppOlt taxonomic 

working practices, and the what-if scenarios. All these features are necessary in a taxonomic revision. 

7.1.1 Support for multiple classifications 

As was presented in section 2.4, one of the most important requirements of a taxonomic system that 

lets taxonomists work freely and accurately is the ability to represent multiple concurrent 

classifications without forcing the user to choose one as the "accepted" one. 

Multiple classifications in Prometheus are represented as trees (but Prometheus itself is not limited to 

trees and could accommodate graphs) where the nodes represent the information that is classified and 

the arcs (directed edges) represent the classification and the classification information. 

As the arcs are independent from the nodes (they are not part of the nodes' type, as pointers would be), 

the classifications can be created independently from the objects that are classified. It could even be 

possible to reuse an existing taxonomic database system that does not handle multiple classifications 

and introduce classification arcs from the Prometheus package in order to extend the system 

(integration requirement from section 2.4). This allows the representation of multiple classifications, as 

nodes can be shared between an arbitrary number of classifications by the addition of new 

classification relationships pointing to or pointing from specific nodes. This also allows the 

130/196 



7. Evaluation 

representation of classifications where the classifying objects (taxa in taxonomy) are independent 

objects that are important in themselves (their information can be published) and are not designed 

specifically to be classified or classify. 

In fact, Prometheus allows the generic classification of entities by context. By "context", one can 

understand "anything that uniquely identifies a view". In plant taxonomy, this can be a taxonomist, a 

publication, or a combination of both. For example, one taxonomist's view on the world is a context 

and in that context a set of specimens is classified in a certain way. Concurrently, another taxonomist's 

view of the world represents another context where the same specimens (or any other set of specimens) 

are classified differently. The overall graph that is stored in the database represents a view of taxonomy 

out of context, or within all contexts concurrently. This view, although it is the most complete because 

it contains all existing information, does not suit taxonomic work, as taxonomists tend to work in one 

particular context or in relation to a limited set of contexts at once for comparison purposes (see section 

2). By representing classification information on the hierarchies that constitute that graph, Prometheus 

captures single contexts that can be extracted as necessary (see section 5.1.l.3). Because the distinct 

hierarchies created in different contexts overlap (in terms of specimens and names), the representation 

of all contexts in a single graph makes possible the comparison of classifications defined in different 

contexts and provides the ability to switch between contexts in order to gain knowledge. 

Prometheus therefore inherently supports multiple classifications and their complexity and overlap can 

be arbitrary. 

7.1.2 Historical classifications 

Historical classifications are classifications published in the past, possibly when the rules of taxonomy 

were different. Although the system is related to the taxonomic model presented in section 2.3 and uses 

it as its motivation, it is not directly dependent on it. For example, the taxonomic model stresses that 

the only piece of information that is objectively present in classifications is the set of specimens put 

together in the various taxa that compose the classifications. Other information, for example the taxa, is 

not reliable because these are never clearly described (as anything but a set of specimens [Pullan '00)). 

This taxonomic model is therefore only able to represent historical classification if either specimen and 

type information is available, or if a later taxonomist elects new types (lectotypes) in order to make the 

classification compliant with the more recent working practices [Greuter '94] and the new model of 

taxonomy. 

However, some taxonomist groups insist that this approach is not practical, as this implies the handling 

of more information than taxonomists are used to. It implies having access to taxonomic type 

description, and generally it requires that when publications have been published, all appropriate 

information relating to specimens has been published. As an experiment, taxonomists have used this 

system to create a revision of the Globba group. This has shown that although it was necessary to 

1311196 



7. Evaluation 

record more information than taxonomists are used to, the amount was still manageable [Newman '00]. 

However, it is true that the necessity to have access to all specimens and type descriptions related to a 

particular classification is not always practical. In particular, as the rules of taxonomic practices have 

changed over time, this information was not published before 1753. Even in later published 

classifications, the whole set of specimens (non-typical specimens) was not always published. 

Therefore the representation of historical classifications is problematic in the taxonomic model of 

section 2.3. 

Some taxonomists argue that although not always true, it is often possible to have a reasonably good 

idea of what a taxonomist intended in a specific classification without access to (unavailable) specimen 

information. It is especially true if type specimens are emphasised and are said to represent the whole 

group of specimens placed into a taxon, irrespective of its circumscription. Therefore, they argue, it is 

possible to adopt a taxonomist's definition of taxa, without objective specimen information, and reuse it 

in a revision of the group or of a parent of the group. This approach is less reliable than the purely 

specimen approach proposed in [Pullan '00], but is thought to be a reasonable and practical approach by 

some taxonomists. 

As the work presented here is independent from, although used for, the taxonomic model proposed in 

[Pullan '00], it is able to represent historical classifications in a more efficient way. Historical 

classifications can be represented as current classifications when type information, and possibly the 

whole specimen information, is available to the taxonomist. In this case, taxa are defmed as sets of 

specimens and hierarchies of taxa form classifications. These classifications are as objective as possible 

and reliable. 

When specimen information is not available, the database model allows the representation of 

classifications based purely on taxa or type specimens. Because the system allows the creation of 

overlapping classifications, it provides the means to share data between these classifications. This data 

can be taxa that have not been described by the specimens they contain, but only by the other taxa they 

contain. Because the system is able to classify entities with mechanisms that are independent from 

them (relationships), existing taxa can be reused in new classifications if the taxonomist is confident 

about his or her understanding of other taxonomists' concepts. 

The system lets the user choose names (ascribed names) and places these names directly into 

classifications. When a taxonomist desires to reuse the definition of another taxon, the system can 

simply create new classification relationships that lead to that taxon with new classification information 

(e.g. author and publication). This allows the description of multiple overlapping classifications 

without specimen representation. 

In order to make decisions clearer in the situation when specimens are not represented, mechanisms 

such as those presented in the HICLAS system (see section 2.2) can be implemented in a 

132/196 



7. Evaluation 

straightforward manner. These mechanisms would allow the user to describe the actions that lead to the 

creation of new groups when specimen information is not available (therefore these actions cannot be 

inferred automatically). For example, the 8 operations defined by HICLAS to represent the life cycle of 

taxa (e.g. splitting of a taxon, demotion or promotion) could be represented as new relationships and 

they could be explicitly created by the user in order to explain his or her actions to other taxonomists 

(e.g. "this taxon has been divided into these two taxa"). HICLAS allows only the creation of such 

relationships, without any explanation from the user. However, it is sometimes important to explain 

one's actions in order to make things clearer to others. For example, the reason for splitting a taxon 

may be important and could be a consequence of a particular insight in the relationship between 

specimens. Because the model also supports the definition of attributes on relationships, these 

relationships could contain explanations in addition to simply the description of the action. 

This approach to modelling taxonomy was not possible before Prometheus. Indeed, all existing 

taxonomic databases take one single view of taxonomy and cannot be applied to an alternative view 

(e.g. Pandora could not be modified to support a specimen based view of taxonomy as it was designed 

to handle taxon-based classifications only). Prometheus on the other hand can support all ways of 

working without modifications. 

7.1.3 Support for working practices 

The support for working practices involves three aspects of the database: the query mechanism that 

allows the taxonomists to explore and retrieve information from the database; the rule/constraint 

mechanism that allows the system to enforce the ICBN; and the ability of the system to work in 

different contexts (distinct classifications) as well as in the out of context view of taxonomy (all 

classifications and their relationships). This section therefore discusses these three aspects. 

7.1.3.1 Typical taxonomic queries 

Prometheus supports typical taxonomic queries through the features added to OQL in POOL. The 

addition of these mechanisms allows answering queries that would have been impossible with OQL 

only. 

For example, using the schema presented in Figure 20, Prometheus allows the retrieval of whole 

classifications. What is the classification created by Linnaeus and published in "Flora Europea"? 

In OQL: 

(Q1) Select t.origin, t, t.destination from theCircumscription t 

where t.theCircPublication.thePublication = "Flora Europea" and 

t.theCircAuthor.surname = "Linnaeus" 

This query extracts all relationships and all nodes involved in the definition of Linnaeus' classification 

published in "Flora Europea". The selection is performed on the basis of relationships and their 

133/196 



7. Evaluation 

attributes (a specific context is selected). The resulting collection contains these objects arranged in 

triples representing atomic portions (two nodes and an arc) of the classification. 

Most importantly, Prometheus makes it possible to compare two plant groups in one query, which, 

unlike specifically written code and canned queries, allows the dynamic construction of queries through 

a user interface. For example: what specimens appear in the circumscription of Apium according to 

Linnaeus and also in the circumscription of Heliosciadium according to Watson? 

Note that the two groups selected do not contain specimens directly, but rather contain other groups 

that may contain specimens (e.g. Species) or that may contain other groups that contain specimens (e.g. 

Sections). 

(Q2) Select s from Specimen s where s in (select 

tl.destination[Specimen] from theCircumscription tl where 

tl.theCircAuthor.surname = "Linnaeus" and 

tl. (theCircumscription.origin)*.theEpithet.theName = "Apium" in 

context) and s in (select t2.destination[Specimen] from 

theCircumscription t2 where t2.theCircAuthor.surname = "Watson" 

and t2. (theCircumscription.origin)*.theEpithet.theName 

"Heliosciadium" in context) 

The in context operator is used here in order to keep the traversal of the graph of objects in the 

same classification as the first traversed relationship. Each of the sub-queries selects a relationship used 

for building classifications according to its attributes (here author name), the in context clause 

then ensures that only similar relationships are considered during evaluation, and all specimens targeted 

by such relationships are extracted. Note also the use of the selective downcast operator to restrict the 

type of selected objects to Specimen instead of Circumscription, as the typing of the schema would 

force. 

A more complete evaluation of typical queries can be found in appendix ILL 

7.1.3.2 Constraints and the ICBN 

The implementation of the ICBN is an essential feature of a taxonomic database. This is also an 

essential feature of many other domains that require that the data entered in the database be correct. 

Section 5.2 showed what rules Prometheus offers. These rules can be attached to any object in the 

system. They can implement the rules of the ICBN as this section shows. In order to prove the ability 

of Prometheus to implement the ICBN, several typical rules covering a large range of different rules is 

used. These rules are divided into two categories: object rules and relationship rules. As will be shown, 

these two categories are very different and are the consequences of different points of view. 

134/196 



7. Evaluation 

7.1.3.2.1 Object rules 

Object lUles are lUles that are encountered in most active systems. They are attached or refer to normal 

objects in the database and ensure their validity or enforce specific behaviour relative to these objects. 

One typical such lUle in the ICBN is a rule that governs the way names can be created. For example, 

according to their rank, names must have different endings: a Family name must end with "-eae", a 

Tribe name must end with "-ae", and a genus name cannot end with "-virus". These rules can be 

enforced by creating a rule similar to the one shown in Figure 35. This rule states that if the rank of a 

name is Family, then the name must end with "-eae". 

Self.theRank.theName = "Family" implies Self.theEpithet.name like "%eae" 

Figure 35: Family name rule 

Similarly, a name at rank Genus could be monitored by a rule such as shown Figure 36. 

Self.theRank.theName = "Genus" implies Self.theEpithet.name not like "%virus" 

Figure 36: Genus name rule 

To these rules will be associated a set of class names whose instances will trigger the re-evaluation of 

the rule. The system can automatically derive these class names and they would be this (the object that 

contains the rule), theRank (in case the rank relationship is changed), and Rank (in case the rank 

hierarchy is changed). In addition, because they can never be violated, they would be created as 

immediate effect and non-interactive rules (see section 5.2). They can either be implemented as pre

conditions in a method if the only way to change the value of the name is via that method, or as an 

invariant. 

Another kind of rule is rules that allow user intervention. As was said earlier, taxonomists have a great 

degree of liberty in their work. In addition, the existence of historical classifications that followed 

different rules and the presence of mistakes sometimes make the enforcement of the ICBN impossible. 

For example, since 1753, all names to be published must be published with at least a type. But before 

that date, there was no obligation of doing so, and many classifications and publications of names do 

not contain any type. However, the current botanical code insists that all names must have a type, 

therefore the rule shown in Figure 37 can be devised. That rule makes sure that when a name exists, a 

LinkToType relationship (or one of its subclasses) starting from it must exist. This rule would be 

created as deferred (it only needs to be enforced at the end of the transaction as the type cannot be 

created exactly at the same time as the name). 

Exists(Self. LinkToType) 

Figure 37: Type existence rule 

However, since old publications or mistakes are made, some names may exist without a type. Although 

in this case the taxonomist that uses the name should elect a lectotype (see section 2.1), a name without 

1351196 



7. Evaluation 

type may exist in the database for a period of time if it not used by any new classification. Taking into 

account the date of publication of the name would not necessarily solve the problem as not only 

historical but also wrongly published new classifications should be handled. Therefore the rule should 

be created as an interactive rule, in which case when the system realises that it has been violated, an 

interactive session with the user is set up to ensure that he or she understands that this violates the 

ICBN and should not occur for new names correctly published, but that it is acceptable for historical 

publications or wrongly published names. 

As was explained in section 2.1, taxonomists can choose to use an arbitrary hierarchy of ranks by 

ignoring some of them or by deciding to work only between two specific ranks. Therefore the 

representation of the rank hierarchy would not ensure that the order of the ranks is not violated. This 

order can be implemented as rules on Rank objects. For example, the ICBN states that the Species rank 

should always appear below a rank that is described as Genus or one of its sub-ranks until Species 

excluded (Species cannot be placed into Species). Thus rule is shown in Figure 38. 

Self.name = "Species" implies Self.previous+.name = "Genus" 

Figure 38: Species rank rule 

This rule only ensures that Species is always placed below Genus, but does not enforce the rank 

hierarchy between Species and Genus. The definition of similar rules for other ranks ensures that, for 

example, the Series rank must always be placed below a Section rank. Figure 39 shows such a 

constraint. All the rules necessary to maintain a valid rank hierarchy can be enumerated in that way. 

Self.name = "Series" implies Self.previous+.name = "Section" 

Figure 39: Series rank rule 

In the example in Figure 39, the regular operator + is used because the rank Series is not necessarily 

directly below a rank Section. The rank Subsection can be inserted between them. 

7.1.3.2.2 Relationship rules 

Other types of rules exist in Prometheus. Instead of being attached to objects, they are attached to 

relationships (see section 5.2.l.4.4). 

Such a rule is used to enforce the placement of names according to the hierarchy of ranks. For example, 

a name at rank ]Genus, Species] should always and necessarily be placed below another name ofrank 

[Genus, Species[. Such a rule would clearly be immediate effect (it can never be violated) and without 

user interaction, and would be implemented as shown in Figure 40. This rule, attached to the Placement 

relationship class, would be evaluated each time a Placement instance is created or modified, as well as 

each time a theRank, and a Rank object are created or changed. 

136/196 



7. Evaluation 

Self.origin.theRank.previous+.name = "Genus" and Self.origin.theRank.next*.name = 
"Species" implies Self.destination.theRank.previous*.name = "Genus" and 

Self.destination.theRank.next+.name = "Species" 

Figure 40: Placement rule 

This rule can be specialised in order to be more specific. For example, each rank may be taken into 

account and the possible combinations of that name with other names can be expressed individually by 

distinct rules. This approach has not be chosen in Prometheus as first this requires that the rank 

hierarchy is known and never changes (and section 2.1 showed that taxonomists have the libe11y to use 

any ranks they want in certain limits and even create theirs) and second this approach would be 

extremely expensive in terms of the number of rules to be evaluated each time certain events occur in 

the system (this number could be as large as 276 given the rank hierarchy shown in Figure 1). 

Similar rules can be described for the theCircumscription relationship that also requires that groups at 

certain ranks be placed into other groups at specific ranks. As the theCircumscription hierarchy does 

not necessarily follow the Placement hierarchy (e.g. a Species name can be the type of a Genus name, 

but the classification may use additional ranks between Species and Genus such as Series or Section), 

theCircumscription relationships need their own rules. These rules however are the same as the 

Placement rules. 

7.1.3.3 Querying by context 

As was said in section 5.1.1.3 it is sometimes necessary to work within a specific context. This context 

can be selected automatically by the system in some cases. For example when a classification is 

encountered, the traversal of graphs or hierarchies should always remain in that classification and never 

switch to others. It is also sometimes necessary to specify explicitly a context of interest in the queries. 

This is done using the extended in context operator (see section 5.1.1.3). 

The in context operator can be used in order to express recursive joins, i.e. automatic selection of 

some relationships via a join in recursive expressions. The in context operator can also be used in 

order to select a pm1icular context, e.g. a classification publication or the author of a classification, and 

perform all the queries in that context. For example (Q3) shows how all the names in a particular 

classification that contain directly or indirectly a specific specimen (identified by X) can be extracted: 

(Q3) Select * from Name n, theCircumscription t where 

n. (t.destination[Name))*.t.destination[Specimen) = "X" in 

context where t.theCircAuthor.surname = "Linnaeus" 

In essence, this query contains two different selections: one that selects Name objects (the main 

selection) and one that selects the relationships of type theCircumscription that must be followed. 

137/196 



7. Evaluation 

This notation has the advantage of acting as a ftIter on the main part of the query. Indeed, the query 

written without the in context selection would return all the names of all the classifications that 

contain the specimen identified by X. By adding the in context selection, only one or several well 

defined classifications are considered. It also has the advantage of being able to be carried from query 

to query if the system works in specific contexts. 

7.1.4 What-if scenarios 

As Prometheus is the only taxonomic database that represents specimens and implements the rules of 

taxonomy (the ICBN), it is the only system that supports what-if scenarios. What-if scenarios are tests a 

taxonomist can make in order to check the consequences of his or her actions. For example, a 

taxonomist might choose to move a specimen from one taxon to another because it is not clear where 

that specimen should go, and desire to know what would be the consequences of this change on the 

way groups are named. This can also allow a taxonomist to compare existing classifications and 

discover why many versions exist. Because Prometheus supports the definition of arbitrary 

classifications, the representation of specimens, and the implementation of the ICBN, it is able to 

recalculate the repmtition of names in new situations, thereby allowing a taxonomist to experiment 

with the available information in a way that would not be possible otherwise. 

When a taxonomist chooses this approach, he or she can copy an existing classification (possibly one 

of his or her own) and edit several taxa in order to test the consequences of these changes. The 

necessity of copying an existing classification is motivated by the fact that once a classification has 

been published, it should never be changed. Therefore taxonomists can only work on ongoing 

classifications that must be their own. Once the groups have been redefmed, Prometheus can rearrange 

classifications accordingly (by managing classification relationships) and apply the rules of the ICBN 

on this new configuration of specimens and taxa. When the new names have been calculated, they can 

be shown to the user that can decide to perform more changes, reverse to the previous configuration, or 

adopt the new configuration as the definitive version of the classification. 

For example in the classification sample given in Figure 3, if a taxonomist was not quite sure where the 

specimen "C. von Linnaeus #Herb.Cliff. 107 Apium 1 BM" should go, he or she might decide to see 

what would happen if it was moved to Taxon 2. In that case, the application of the ICBN would imply 

that Taxon 1 should be named Apium L., as the oldest type specimen it contains would be the newly 

added specimen, that was used as the type of Apium graveolens L., itself the type of Apium L., and 

Taxon 2 would become Apium graveolens L., as the newly added specimen is the type of that Species 

and the Species name was published before any other known group. Before the specimen was moved, 

Taxon 1 was named Heliosciadium W.DJ.Koch and Taxon 2 was named Heliosciadium repens 

(Jacq.)Raguenaud. This what-if scenario might help to understand for example why Heliosciadium and 

its species do not exist in a particular classification whereas they existed in another. 

138/196 



7. Evaluation 

Note however that this approach can only be supported when Prometheus is used with full type 

specimen information. If it is used in a taxon-based fashion, automatic naming of groups is not 

available, as the data is insufficient. 

7.1.5 Conclusion 

Taxonomic evaluation of the prototype shows that Prometheus is able to represent current and new 

classifications as well as older, less complete classifications. These older classifications can be 

captured by linking taxa via relationships when specimen information is not available. This also shows 

that if a view of taxonomy unlike the one chosen for this project is favoured, Prometheus remains a 

suitable taxonomic database system. 

The taxonomic evaluation has also shown that the prototype copes well with the requirements of 

taxonomic work. Typical queries have been shown to be at least equivalent to OQL queries, and often 

to be able to answer queries impossible in OQL. These queries are classification specific queries that 

taxonomists often use to explore or compare alternative classifications. Without them a taxonomic 

system could not SUppOlt taxonomic work properly. 

The taxonomic evaluation also shows that the rules defined in Prometheus are appropriate to taxonomic 

work. They allow the implementation of the ICBN to enforce working practices. 

Finally, the ability to play what-if scenarios allows taxonomists to discover and explore alternative 

classifications when it is not clear where specific specimens should be classified. This may in addition 

provide means to achieve better understanding of existing classifications as it allows the recreation of 

such classifications by trial and error until the way they were built is understood. 

7.2 Database performance evaluation 

The performance of the database needs to be addressed. This performance is considered relative to the 

technology involved in the implementation of the ideas developed in this thesis. For example, Java was 

chosen as an implementation language in order to increase the pOltability of the system and one 

consequence of that choice is a slower system. For the same purpose, the system has been implemented 

independently of any specific database system, hence losing the benefit from various facilities offered 

by a specific database. The only restriction for an underlying database system is transparent object 

persistence and transaction management, which are offered by most commercial and research object

oriented database systems. 

Precise performance evaluation is a difficult problem in the case of Prometheus. Because it was built 

on top of an existing commercial database, its performance is linked to the performance of the 

139/196 



7. Evaluation 

underlying system, i.e. performance(Prometheus) = f(performance(underlying DB)). Furthermore, the 

mechanisms that are to be tested need to be equivalent. Since Prometheus provides mechanisms that no 

other database offers (especially commercial databases), some features cannot be tested against known 

systems (e.g. recursivity, graph traversal, handling of semantic relationships). Therefore, when 

possible, two possible approaches are tested in Prometheus (e.g. graph traversal) and their results 

compared. 

This section is laid out as follows: first the test protocol is explained and the test results given. Then 

they are analysed and the causes of overhead or performance relative to the underlying database system 

are explained. 

7.2.1 Performance testing 

The testing of the system requires the definition of a test protocol. This protocol is explained and 

justified here. The results are then discussed and the causes of the various aspects of the results are 

shown. 

Note that the purpose of this performance test is not to show how good or how fast Prometheus is 

compared to other databases. Performance issues have been ignored for most of the project as 

modelling was felt to be a much more important aspect of the taxonomic problem. This performance 

test should be seen as an indicator of the performance overhead generated by the additional features 

offered by the system, and it provides a basis for the analysis of the internal workings of the database 

system. As the purpose of this benchmark is therefore the evaluation of the cost of the features offered 

by Prometheus, the testing of the system is managed relative to the underlying database system. This 

makes sense as, as was said earlier, the performance of Prometheus is dependent on the performance of 

the underlying persistent system (e.g. for object loading, reference resolution, persistence mechanism, 

and transaction management). By testing the new features against the underlying database system, the 

added features can be evaluated independently from any consideration of transaction management, 

persistence performance, index performance, object clustering, I/O timing, and other system dependant 

performance issues. In addition, as other database systems are not available at the time of this 

benchmark and as the hardware set-up used for this work is different from the one used by the other 

published benchmarks, their results are not considered here. 

This section is divided as follows: first a schema for the tests is defined. This schema is inspired from 

the 007 Benchmark schema but restricted to the sections that are relevant to this work. Then the 

features tested and the algorithms are presented. Several notes and restrictions are then noted. Finally 

the results of the test are given. A complete description of the schemas used in this benchmark can be 

found in Appendix II. 

1401196 



7. Evaluation 

7.2.1.1 From 007 

The choice of the features to be tested in this small benchmark is inspired from the 007 Benchmark 

[Carey '93] because of its similarity to the type of schema typical of Prometheus applications. 

However, the purpose of this evaluation is not the complete evaluation of all performance aspects of an 

OODB. As Prometheus has been developed with a specific kind of application in mind, namely 

classification applications and classification databases (of which plant taxonomy is a special case), 

most of the 007 tests are irrelevant and would only test the underlying database system (e.g. object 

cache). A set of features has therefore been extracted from the 007 Benchmark in order to test 

specifically some of the features that Prometheus provides. 

Several sections of the 007 Benchmark are of patticular interest to this work. A subset of the schema 

describes an Assembly hierarchy where graphs which are constituted of nodes (ComplexAssembly) and 

leaves (BaseAssembly) can be described. Figure 41 shows a subset of the 007 schema. As can be seen, 

it is very similar to the taxonomic schema used as an application example of Prometheus, where 

ComplexAssembly would be replaced by Name and BaseAssembly by Specimen (see Figure 20). In 

addition, each of these objects contains references to other objects in the system, as Name and 

Specimen do in the taxonomic schema. A notable difference is that Assembly parts are not shared 

between ComplexAssembly parts, as the cardinality of the SubAssemblies relationship is 1 from 

Assembly to ComplexAssembly, whereas classifications in the taxonomic schema allow overlap, i.e. 

sharing of nodes between classifications. However, provision is given in the 007 Benchmark to test 

shared and unshared components as components can be private or not, but this feature is not tested in 

the 007 Benchmark. By using this section of the 007 Benchmark, it is possible to test the 

classification mechanism used in this work. 

n 

n 

n n 

n n 

Figure 41: 007 partial schema 1 

141/196 



7. Evaluation 

Another part of the 007 schema of interest is the AtomicPart section. An AtomicPart is connected to 

other AtomicParts via a Connection object that serves as a relationship to which values are attached. 

Figure 42 shows the 007 schema. This subset of the 007 schema looks similar to the way 

classification relationships are implemented in the taxonomic schema. Indeed, they have attributes that 

allow the system to distinguish single classifications. However, a noticeable difference is the fact that 

these attributes are simple atomic values that are embedded in the Connection object type (integers). In 

the case of taxonomy, these attributes are references (even explicit relationships) to other types. It is 

therefore expected that access to these Connection objects would be more expensive than simply doing 

so if these attributes were atomic values. Using this section of the 007 Benchmark would allow 

comparing the use of relationships as first-class objects in the system. 

AtomicPart 

~[-;p~-l 

n length 

Figure 42: 007 partial schema 2 

These two sections of the 007 Benchmark have therefore been implemented in POET (Prometheus' 

underlying database system). In Prometheus, wherever references are used, they have been replaced by 

explicit relationships without rules (no rule is described in the 007 Benchmark). 

7.2.1.2 What is tested 

The following operations are tested against the two databases. They are divided into three groups: 

program tests, quely tests, and structural modifications. Program tests measure the basic performance 

of the system, e.g. raw object access time. Query tests measure the performance of the query engine. 

Structural modifications indicate the time necessary for handling operations on objects such as creation 

and deletion. 

7.2.1.2.1 Raw performance 

Finding and resolving a specific object 

The time necessary to find a specific object is a good indicator of the efficiency of object access in the 

database. This object access time underlines all other performance tests, as it has to be done many 

times in queries (e.g. path expression evaluation) or in the life of an application. Two kinds of objects 

are retrieved in the case of Prometheus: "normal" objects and relationship objects. The distinction is 

necessary because relationship objects are indexed (see section 6.1.5.2) and subject to more treatments 

(e.g. constraints and rule triggering) than native objects. Only testing accessing "normal" objects would 

not produce different results in the two systems, as accessing a "normal" object in Prometheus is 

simply left to POET. 

142/196 



7. Evaluation 

This object retrieval can be performed at two very different points in time: at the beginning of a clean 

transaction or inside an existing transaction. The difference is that the database cache may influence the 

performance of the system. Therefore retrieving objects that already exist in memory will show the 

difference between cold and hot object retrieval. These two approaches are tested here. In the case of a 

new clean transaction, it must be ensured that the objects retrieved from the database are not already 

loaded in memory or in the database cache because they are indexed and a previous access to the index 

has triggered their loading or resolution. In the second case, it must be ensured that the object to be 

retrieved is already in memory. A set of objects containing that object is therefore loaded into memory, 

and the object searched and resolved. 

Note that the resolution mechanism is important in this test. Indeed, if accessed objects are entirely 

resolved, then the size of the object is important in the measurement. Therefore the "normal" objects 

that are accessed in POET should be sensibly the same size as "normal" and relationship objects in 

Prometheus. This would avoid distorting results by including I/O timings in the results. Relationship 

objects in Prometheus contain references to at least two objects (their source and destination) plus a set 

of boolean values that capture their semantics. Therefore the objects that are accessed during this test in 

the two systems should have the same structure. In the 007 Benchmark, no object has exactly this 

structure. It can be seen in the 007 schema (Figure 42) that the Connection objects, that serves the 

purpose of a relationship, contains references to a source and a destination (both AtomicPart objects) 

and two attributes, type and length. It can easily be extended to contain several more attributes that 

represent some of the properties of Prometheus relationships as shown in Figure 43. 

Retrieve a "normal" object 

(Tl) In a clean transaction 

(T2) In an existing transaction 

Retrieve a relationship object 

(T3) 

(T4) 

In a clean transaction 

In an existing transaction 

Traversing a chain of pointers vs. traversing a chain of relationships 

Prometheus offers relationships as first-class objects. This has many advantages, but it may have a 

negative impact on the overall system performance, as more information must be retrieved in order to 

traverse a graph of objects (relationships are themselves objects). Therefore one of the tests borrowed 

from 007 is the traversal speed test. This test is performed on references (pointers) in POET and on 

relationship objects in Prometheus. The results of this test will not simply show that traversing 

relationships is equivalent to traversing "fake" relationship objects (as used in 007, e.g. the 

Connection object). Indeed, with relationship objects are associated a set of indexes and caches that 

hopefully increases relationship traversing performance. This test will therefore not show the raw 

traversal speed, but, compared with POET results and compared to object access results, it will show 

143/196 



7. Evaluation 

the advantages of using the relationship indexes. 007 operations T1 and T6 are run to test this traversal 

time. 007 T1 tests the raw traversal speed by traversing the Assembly hierarchy: "as each base 

assembly is visited, visit each of its referenced unshared composite parts. As each composite part is 

visited, perform a depth first search on its graph of atomic parts. Return the count of the number of 

atomic parts visited when done". The 007 T2 operation tests the sparse traversal speed: "Traverse the 

assembly hierarchy. As each base assembly is visited, visit each of its references unshared composite 

parts. As each composite part is visited, visit the root atomic part. Return a count of the number of 

atomic parts visited when done". 

(T5) As each base assembly is visited, visit each of its referenced 

unshared composite parts. As each composite part is visited, 

perform a depth first search on its graph of atomic parts. Return 

the count of the number of atomic parts visited when done 

(T6) Traverse the assembly hierarchy. As each base assembly is 

visited, visit each of its referenced unshared composite parts. As 

each composite part is visited, visit the root atomic part. Return 

a count of the number of atomic parts visited when done 

007 also tests the update time of objects. Updates are interesting, because as relationship objects are 

indexed, the creation or modification of these objects may have consequences on the performance of 

the system. In addition, objects in Prometheus trigger the evaluation of rules when they are created, 

modified, or deleted, which may have a performance hit (even when there is no rule to be evaluated). 

Therefore comparing the update or creation time between "normal" objects in POET and "normal" and 

relationship objects in Prometheus, this performance overhead can be calculated. 007 proposes 

operation 007 T2 for this purpose: "Repeat traversal 007 TI, but update objects during the traversal. 

There are three types of update patterns in this traversal. In each, a single update to an atomic part 

consists ofswapping its (x, y) attributes. The three types of updates are: 

A Update one atomic part per composite part. 

E Update eve,y atomic part as it is encountered 

C Update each atomic part in a composite part four times" 

As rule evaluation is triggered when the source or destination objects of relationships are changed, 

these updates will test the rule triggering mechanism in Prometheus. In order to test the update time of 

relationship objects, another test must be performed: instead of updating atomic palis, the Connection 

relationship is updated (to non-changeable for example, see section 4.4.3). Therefore the 007 T2 

operation is extended with: 

D Update each Connection relationship as it is encollntered 

144/196 



7. Evaluation 

Repeat traversal 007 Tl, but update objects during the traversal. There are three types of update 

patterns in this traversal. In each, a single update to an atomic pmt consists of swapping its (x, y) 

attributes. The three types of updates are: 

(T7 ) A Update one atomic part per composite part. 

(TB) B Update every atomic part as it is encountered 

(T9) C Update each atomic part in a composite part four times 

(TID) D Update each Connection relationship as it is encountered 

7.2.1.2.2 Queries 

Retrieving an object via queries 

Q 1 of 007 calculates the time necessary to create 10 Part objects with random ids and retrieve them. 

This query is of interest for the benchmark because this will show the difference in performance 

between POET's query engine and Prometheus' on very simple queries. These two engines are 

radically different in design and features, and this may have an effect on their performance, and these 

differences should appear on these simple queries. 

(Ql) create 10 Part objects with random ids and retrieve them 

Note that the creation of objects is not possible in POET's OQL nor Prometheus' OQL. These two 

languages focus on selection queries and do not support update queries. Therefore the creation part will 

be written as a program whereas the selection part of the query will be written as a query. 

Q 1 is run in three ways: cold, warm, and hot. The cold run requires running the retrieval of the created 

objects just after the database has been opened and in a new transaction. The warm run requires a 

transaction where many objects have been loaded, some of which are useful for the query. The hot run 

implies running the retrieval twice in a row and only measuring the time necessary to run the second 

time (the time necessary for the first run is tested by the cold run). 

Scan of a collection 

Q2, Q3, and Q7 of 007 test the ability to scan collections and perform aggregate functions on these 

collections (e.g. average, percentile). These queries are not possible as they are defined in 007 in 

POET and Prometheus because these two implementations of OQL do not support aggregate functions. 

Only 007 Q7 can be executed as it is defined (scan of an entire collection). However, the testing of 

scan speed is interesting, as, combined with the retrieval of objects, it shows how collections and 

indexes are handled in the two systems. Indeed, looking for a particular object with a given attribute 

value can be performed in two ways: by scanning the entire collection (extent) to which the object is 

likely to belong, or searching for the attribute value in an index. Combining 007 Ql and 007 Q7 will 

allow measuring by difference the time spent to load the object to be found and will show how object 

searching is implemented. 

1451196 



7. Evaluation 

(Q2) Scan the extent of the class AtomicParts 

Recursive exploration of the graph 

It was argued in several sections that the recursive exploration of a graph of objects is central to the 

working of taxonomy. For example, finding specimens that occur at the lowest levels of a classification 

is necessary in order to derive names for the various groups that constitute the classification, and to 

compare these groups. Operation T5 can therefore also be executed as a query in Prometheus using a 

recursive exploration the object graph in the projection clause. This is therefore tested, even though it 

cannot be compared to POET's OQL. The results however, can be compared to the execution time of 

hand-written programs performing the same task. 

(Q3) As each base assembly is visited, visit each of its referenced 

unshared composite parts. As each composite part is visited, 

perform a depth first search on its graph of atomic parts. Return 

the count of the number of atomic parts visited when done 

7.2.1.2.3 Structural modifications 

007 proposes to test two structural modifications: the insertion of a new object and the deletion of an 

existing object. 

Firstly, it is possible to test object insertion. In Prometheus, "normal" objects and relationships are 

created differently. Relationship objects are indexed objects, therefore creating one requires the 

inseltion in memory and persistent indexes, and firing of IUle events. Therefore, by running the 007 

operation that consists of creating several new objects and their parts, it is possible to compare the time 

necessary to create "normal" objects and indexed objects (relationships) in a real world situation. 

(Sl) Create five new composite parts, which includes creating a 

number of new atomic parts and insert them into the database by 

installing references to these composite parts into 10 randomly 

chosen base assembly objects. 

Secondly, 007 tests the time necessary to delete the created objects (including their parts). This can be 

done in two ways in Prometheus: by manually traversing the graph of objects and deleting them one by 

one; it can also be done by selecting the lifetime dependency behaviour on the relationships so that the 

system takes care of the deletion of parts. The first approach is chosen because it is common to both 

systems. It is unlikely that the other approach would generate different timings, as the algorithm would 

be very similar. 

146/196 



7. Evaluation 

These deletions in the case of Prometheus include two semantically different deletions: the deletion of 

"normal" non-indexed objects, and the deletion of relationships that are indexed. The ratio of "normal" 

to indexed deletions in Prometheus allows the evaluation of the time necessary to delete indexed 

relationships. Deleting a "normal" object in Prometheus takes the same time as in POET, as this is in 

both cases a POET action. The time difference between the two systems therefore indicates the 

overhead of deleting relationship objects. 

(S2) Delete the five newly created composite parts (and all of their 

associated atomic parts objects). 

7.2.1.3 Notes 

Cold vs. hot 

The 007 Benchmark makes a clear distinction between "cold" and "hot" runs. A cold run is the 

execution of an operation or query with all caches emptied so that all accessed objects are resolved as 

necessary from the database during the running of the operations. 007 tests these two aspects of the 

runs separately in order to test both object access performance and caching performance. In the case of 

Prometheus however, this distinction is not easy to make for two reasons. Firstly, the database cache is 

database-wide in POET (it is created when the database is opened and discarded when the database is 

closed) and is not accessible from Prometheus. This means that much care can be taken to run the tests 

before the cache is used, but no control over its behaviour (e.g. disabling) is possible. Secondly, 

Prometheus uses indexes to speed up relationship access. This index is loaded at start-up and is used to 

perform a series of consistency tests when the database is opened. This means that normally, as soon as 

Prometheus is started, many objects are likely to reside in the memory cache. This option can be 

disabled and therefore more control over the content of the cache is possible. It has been switched off 

for the benchmark but it is not disabled in normal operations, as consistency checking is important. 

Type mismatch 

As Prometheus and POET use a Java interface, the types of the objects defined in the 007 Benchmark 

have been adapted to fit Java's types. For example, int4 has been replaced by int that takes up 4 bytes 

in Java. 

Likewise, some types are different in the C++-like 007 design and in Java. For example, char in C++ 

is represented by one byte (as the ASCII code is 7 or 8 bits based). In Java, a char is represented by 2 

bytes as the encoding mechanism used is UNICODE. 

These changes may affect the results and make any comparison with the actual results of a standard 

007 benchmark impossible or at least questionable. However, this is not an impediment for the 

benchmark described here, as the focus is on the comparison between POET and Prometheus, both 

using the same type system. 

147/196 



7. Evaluation 

Semantic differences 

The 007 Benchmark uses different kinds of collections in order to maintain sets of objects and 

multiple references (and inverse references). These collections are sets and bags. In the POET 

implementation of the benchmark, the same semantics have been used. However, as Prometheus offers 

relationships as first-class constructs, multiple references and inverse references do not need to be 

handled by the user. Relationships with the correct cardinality constraints (see section 4.4.4) can be 

implemented and the cardinality can be managed by the system automatically. The limitation of this 

approach is that these relationships are the equivalent of a bag of objects (duplicates allowed, no order), 

therefore some semantics may be lost if they are not managed by the application. 

Active system 

Active rules in Prometheus have been disabled for this benchmark. As was shown in section 5.2, 

constraints are an essential feature of Prometheus. They are used to implement the ICBN and provide 

security to taxonomists that are not allowed to make detectable mistakes (e.g. placing a Genus group 

into a Species group). However, it is not possible to find a typical constraint that could be used in this 

benchmark. Some constraints are very simple (e.g. checking the ending of a name), and others are very 

complex (e.g. checking the placement of a circumscription). Therefore including some of these rules in 

the benchmark would be at best unfair for Prometheus if they are badly chosen, and at worst would 

confuse the results of the tests (e.g. testing the time necessary to create an object might trigger 

hundreds of rules, and what was to be actually measured disappears in the processes associated with it). 

Therefore, although events are detected and messages are sent through the system to signal actions in 

the system that might trigger rules (which consumes resources), no rule evaluation takes place. This 

makes sense, as what this benchmark endeavours to test is the relative performance between the 

underlying database system (POET) and Prometheus, not the raw performance of Prometheus. 

Moreover, rules in Prometheus are mapped to queries through PCL (section 5.2.3.3), therefore their 

performance is a direct function of queries' performance (with the additional cost of event detection 

and rule scheduling). 

Indexing 

The 007 Benchmark makes use of indexing techniques in the definition of the benchmark classes. 

These indexes are defined on attributes of classes and will provide a faster access to the instances of the 

classes if they are used (and judiciously chosen). However, this feature is not available in POET and 

only partially available in Prometheus. In order to proceed to a fair test, no indexes have been defined 

on user classes. 

Disk cache 

Disk caching is not taken into account during these tests. It is managed by the system (as an 

undistinguished part of the operating system in Windows NT that the test computer runs) and as a user 

application, neither database has access to it. This disk cache may advantage smaller databases that 

might be loaded entirely in the disk cache during the execution of the test. 

148/196 



7. Evaluation 

7.2.1.4 Benchmark schema 

The schema used for the benchmark is shown in Figure 43. It is a simplified version of the 007 

Benchmark with a few minor corrections in order to make the tests more precise (e.g. the extension of 

the Connection object). All cardinalities and graph connectivity remain as in 007. The two schemas 

used for this test are available in Appendix II. 

Module 

n 

AtomicPart 

n 

weakLifetime 
dependency 

navigationTo 
Destination 

navigation 
FromSource 

strongLifetime 
dependency 

Figure 43: Benchmark schema 

Composite 
Pati 

n 

n 

Note that except where explicitly stated, all tests are cold tests, i.e. the database cache was empty at the 

beginning of the test and a new fresh transaction is opened in order to run the test. This choice is 

motivated by the fact that control over the database cache is impossible in POET. For each test, the 

007 small database with connectivity 3,6, and 9 has been used. 

7.2.2 Analysis 

The detailed results of the benchmark can be found in appendix Il.2.3. These results show that 

Prometheus imposes a constant increase in cost for most of the operations (e.g. test (T5) in Figure 44). 

This proves that Prometheus is as scalable as the underlying database system for these operations. 

Notable exceptions are the addition and deletion of objects (Figure 45 and Figure 46). Prometheus's 

cost increases faster than the same operation in the underlying database, i.e. Prometheus is less scalable 

than the underlying database. 

149/196 



7. Evaluation 

Small database T5 

----------------------

:[~~---.----. 
f'~l 

10000 --------------~~~=---~~--~ .-----------
~1 

O~!----------~--------__ ----------~ 
~ Sman 3 SmallS Smart 9 

Figure 44: Constant increase in cost (T5) 

Small database 51 

80000 

-~ 
/-

/// 

... /"/ 
,/---

1= /// i [-+-POET 
07 i -·.--Prometheus 

;:: 
30000 

20000 

10000 

01 
Small 3 Small 6 Small 9 

Figure 45: Non-constant increase in cost (SI) 

Small database 52 

700000 --

600000 / 
/ 500000 

/ ! 400::00 
// /.-+-POET ;1 . --Jt--Prometheus £ 3OOCXX) 

/ 
/ 

200000 
/.// 

/ 
/ . 

100000 

Sman3 Small 6 Small 9 

Figure 46: Non-constant increase in cost (S2) 

This non-constant increase in cost is mainly due to how the rule layer is implemented and how it 

interacts with POET, and how indexes are managed and interact with POET. 

7.2.2.1 Rule layer 

The addition or deletion of objects in Prometheus generates events that allow Prometheus to enforce 

constraints and fire rules. When an event is detected in POET, Prometheus is notified via the 

150/196 



7. Evaluation 

POETShadow object (see section 6.1.1). That object then notifies other parts of Prometheus that have 

registered an interest in specific events, e.g. rule monitors, and index manager. 

Because Prometheus is implemented as a package independent from the underlying database, this 

notification requires that some notified objects are loaded from disk or, if they already exist in memory, 

that they are checked for locks. This happens to objects that are persistent only (PrometheusMonitor 

and PrometheusIndexManager in Figure 27). The loading or checking of these objects may in turn 

generate events that trigger event notification within Prometheus. This could not be disabled, as 

Prometheus' view of rules is that they must be able to do whatever is necessary to react to events, 

including modifying themselves or Prometheus, and all objects in Prometheus are rule/constraint 

capable (section 4.2), including Prometheus itself. 

The interaction with POET is unfortunate at this point because POET uses an expensive mechanism to 

check that objects are not shared by several transactions in several running applications. This 

mechanism involves disk accesses that are very slow (compared to memory-only object access) to 

check flags attached to objects in the database. It is therefore logical that the notification of events that 

may generate new events leads to a non-constant increase in cost. If n objects are loaded or checked 

when an object is created or deleted, then the cost is n. If m objects are created or deleted during a 

transaction, then the cost is m*n, which is n times more expensive than POET alone (which is not an 

active system). This trend can clearly be seen in Figure 45 and Figure 46 where the more objects are 

present in the system, the more events are fired and the more rules are triggered. This cascade of events 

explains in part the fast increase in cost of inserting and deleting objects. 

In order to improve this mechanism, techniques to eliminate unnecessary event propagation must be 

devised. At the moment examination of the objects that trigger events is performed by the monitors 

themselves, which allows a good independence of the rule management system from the event 

management system. However, this is expensive because monitors need to be resolved each time an 

event is fired. It would be possible to keep track of which objects monitors are interested in outside the 

definition of monitors (Le. in the event layer, e.g. in POETShadow) so that they do not need to be 

resolved to check whether they are interested in the object that triggered an event they monitor. This 

would be more efficient, but would make event layer and rule layer tightly coupled. 

7.2.2.2 Indexes 

Prometheus uses indexes to speed up access to object attributes that are represented as explicit 

relationships (section 6.1.4). These indexes use several hash tables to provide many ways to efficiently 

access objects and relationships. 

When an object is created or deleted, its slot in the index must be found (to be inserted or removed 

respectively). The comparison of object hashes requires that the objects are available in memory 

therefore reading an object's hash code involves loading it from the disk or importing it in the current 

151/196 



7. Evaluation 

transaction. In both cases, this implies checking (the object's locking status) or loading information (the 

object data) from disk. In addition, loading an object from disk generates an event that must be dealt 

with by the event manager (see section 7.2.2.1). As indexes are a central part of Prometheus, the cost of 

managing them is amplified by the number of times they are accessed by other components of the 

system. 

One possible approach to solve this problem would be the introduction of representative objects that 

are transient only. These objects would hold enough information to allow the indexes to work without 

requiring accessing persistent objects directly. This approach was not considered during the building 

of the prototype because it introduces the possibility to lose data: if the system is terminated 

unexpectedly instead of being shut down properly, the changes made to indexes are lost and indexes 

become inconsistent. Additional mechanisms to ensure the validity of these indexes would need to be 

developed. 

7.2.3 Conclusion 

The performance comparison between POET and Prometheus has shown that performance should be 

one of the next research areas regarding this prototype. Most operations are more expensive with 

Prometheus than with POET, but many of them (e.g. graph traversal) are only constantly more 

expensive, i.e. the scalability of the two systems is similar. 

However, the tests have also shown that creating and deleting objects in Prometheus is more expensive 

than updating objects in POET. This is due to the fact that Prometheus manages indexes and is an 

active system. Creating or deleting objects require the update of indexes and as Prometheus is 

implemented as a package on top of POET, these updates necessitate the loading of indexes and update 

of additional index objects. In addition, all operations on objects fire events that are managed by the 

rule manager. Although the evaluation of events was switched off during the tests, the firing of events 

was still active because it participate in the normal workings of Prometheus (e.g. to signal the necessity 

of index updates). 

This performance problem became apparent toward the end of the testing period by taxonomists. When 

the number of classifications and their sizes increase, the speed of the system became an issue. 

7.3 Conclusion 

This section has presented an evaluation of the system built during this thesis according to two 

important criteria: its ability to support taxonomic work (and more generally classification work), and 

an analysis of its performance. 

152/196 



7. Evaluation 

This section has shown that the implementation of the Prometheus model and query language allow the 

system to suppOli taxonomic work. Prometheus inherently supports the definition of multiple 

overlapping classifications, but not at the price of the loss of individual classifications (description of 

contexts and querying in context). Prometheus also provides support for the typical queries taxonomists 

require to extract knowledge from the database (query language POOL) and for the enforcement of the 

ICBN (constraints or active rules). In addition, Prometheus is not tied to a particular view of taxonomy 

and could be used as the basis for different taxonomic philosophies (e.g. taxon based taxonomy as 

opposed to the current specimen based taxonomy). 

The database performance has shown that on simple tasks (e.g. loading objects from the database), 

Prometheus performs relatively well on some operations. However, the most important drawback is 

that Prometheus manages events and indexes that are expensive to maintain (e.g. (SI)). These costs are 

due in part to the choices made at the beginning of the project (underlying database technology, 

development language, implementation approach as a package, non participation of existing objects to 

the classification process). Most of these choices were unavoidable, as they are the consequences of a 

study of the requirements of a taxonomic environment (section 2.4). Approaches to solve these 

problems have been identified but need more work. 

The prototype is therefore very usable and offers clear advantages for taxonomists and the support for 

their working practices both from the point of view of application development and power, and from 

the point of view of expressible conceptual queries. But the scalability of the system will become the 

main issue when large classifications are created and compared. 

Further work includes the exploration of new and extensive indexing techniques, and the port of the 

system to a more powerful underlying database system. 

153/196 



8. Conclusion and discussion 

8 Conclusion and discussion 

This research work was concerned with the provision of an approach to manipulating multiple 

overlapping classifications. It was motivated by plant taxonomy (chapter 2) which generates such 

overlapping classifications and requires handling of complex processes (e.g. naming, section 2.1.2), 

and which acted as a demonstration application example of the proposed techniques (e.g. section 7.1). 

The thesis first analysed taxonomy and its requirements (section 2.1) in order to extract the necessary 

features for a suitable taxonomic database system (section 2.4). Then it was shown that most existing 

database models fail to some extent to support all the features a taxonomic system needs (section 3.2), 

but also that some provide interesting mechanisms that could be mixed to create a suitable taxonomic 

database system. A model providing relationships was then proposed and implemented (chapter 4), 

along with its query language and rule management system (chapter 5), and finally tested against 

typical taxonomic processes (section 7.1) and against the underlying persistent system (section 7.2). 

This chapter discusses this work and it then explores further work and new application domains for the 

proposed techniques. 

8.1 Discussion 

Several aspects of this thesis are discussed here. They follow the development of the document: 

classifications, model, query language, and rules. 

8.1.1 Classifications 

The creation of a database system to support taxonomic work requires the ability to handle multiple 

overlapping classifications (section 2.1.3). Each of these classifications represents a taxonomist's 

opinion or the refinement of an existing classification because of new information (e.g. new 

technology, new collections). These peculiar classifications have not been tackled in the literature. 

Classification mechanisms found are either schema-level classifications (materialization, class 

hierarchies) or too simplistic to support overlap without loss of information (power types). The 

properties of taxonomy, the application domain chosen for this work, make these approaches unsuitable 

as the number of classifying entities is very large (see section 1.1). 

These classifications can overlap at all levels, leaves or nodes (specimens or taxa in taxonomy), 

without ever losing the sense of which classification/classifications is/are currently studied. They are 

supported in Prometheus by a new approach to classifications: the relationships between 

classified/classifying entities are the only objects that manage classifications (section 4.6). These 

relationships can contain information that allows the distinction between distinct classifications, even if 

1541196 



8. Conclusion and discussion 

they overlap or are virtually identical. Other classification mechanisms would not have allowed the 

distinction between classifications because the classification information is either embedded in 

classified objects (materialisation where the meta-class acts as the classifications status, section 3.1.1) 

or relationships between classified objects is one to many without information (power types). 

In effect, the relationships represent both the classifications and their context (the information that 

allows the distinction between two distinct classifications, e.g. author and publication in taxonomy). 

This approach allows not only the description of overlapping classifications, but also the definition of 

classifications where the classified objects are independent of their classification status. This is useful 

for example for extending existing models, or when classified and classifying objects should be 

independent from the classification process. Other approaches such as materialization would not allow 

such classifications to be defined because the classified objects manage classifications. 

8.1.2 Model 

The need for support of classification information led to the description of a new database model that 

emphasises relationships as well as objects (chapter 4). This approach to implementation has been 

suggested by many language experts and data modellers (e.g. Rumbaugh in DSM [Shah '89], Consens 

[Consens '94b]) and satisfies the requirements identified in section 2.4. Relationships are also an 

integral part of data modelling and have been used for a long time to design systems (e.g. OMT, Booch, 

UML). They are less common in programming languages/databases because they are often influenced 

by traditional programming languages, themselves influenced by hardware implementation. 

Unlike other model proposals (e.g. OMS), Prometheus provides the means to describe both 

aggregations and associations with their full semantics independently of the objects that participate in 

the relationships. The representation of aggregations as references would not allow the description of 

exact semantics (relationships do not exist per se), or would impose the description of such semantics 

on the objects that participate in the relationship (as in [Bertino '98]). SORAC showed that this 

approach is not suitable for at least some semantics and that explicit relationships are a better 

mechanism [Doherty '93]. However, unlike OMS or Albano's approach, Prometheus does not allow the 

description of inheritance as a relationship on which constraints can be placed. This is due to the 

ODMG approach to the problem. 

The implementation of explicit relationships described earlier requires the definition of semantics, 

which has been overlooked by some database proposals (e.g. GraphDB). For example, if relationships 

are represented as entities external to objects, some means must be provided to represent privacy. This 

point has been ignored by semantic relationships analysis (e.g. [Pirotte '97], [Kolp '97]). The list of 

basic semantics to be offered to user applications was selected from an analysis of existing semantics 

specifications (e.g. Rumbaugh, Henderson-Sellers, Bock, Odell). These specifications are sometimes 

155/196 



8. Conclusion and discussion 

contradictory, therefore it was not possible to take one specification and use it as the basis for the 

model. These semantics are therefore not new, but an analysis was performed in order to extract the 

simplest constituents of all specifications and provide them to the user. This way, it is possible to select 

several basic building blocks in order to work with one of these specifications or create new ones. 

The model proposed has been implemented over an ODMG compliant model. ODMG has been poorly 

designed regarding semantics of relationships. Even the use of the term "relationship" in ODMG is 

confusing as it refers to references with inverse references, not actual objects, and not to semantics. 

Very few attempts have been made to make ODMG a more expressive model. A notable attempt by 

Bertino [Bertino '98] proposes the definition of constraints/flags on objects in the way Orion did in 

order to enforce semantics. For this thesis, another approach has been chosen: the definition of explicit 

semantic relationships. These relationships can capture their own behaviour and constraints, and free 

objects participating in the relationship from supporting that behaviour (as in SORAC). As a side 

effect, it makes the definition of semantic relationships simpler as behaviour is defined in only one 

place (instead of in every object participating in the relationship) and it allows reuse of existing 

semantics by instantiation/sub-classing of relationship classes (similar constraints do not need to be 

implemented in a large number of classes). Implementation could be made faster through the use of this 

technique. 

These relationships are therefore used both for the representation of classifications and for the 

representation of the semantics of data. For classification information, contexts are captured by 

attributes on classification relationships. For semantic information, constraints and built-in attributes 

are used. This distinction allows the unambiguous description of the classifications and the objects 

classified, a feature that non-semantic models could not support fully. 

8.1.3 Query language 

As the model has been built on top of an ODMG compliant model, the query language chosen as the 

basis for the system is OQL. However, OQL has several limitations that must be overcome in order to 

support classification manipulation. 

Recursivity is one extension provided for OQL in Prometheus. Recursivity, in particular through 

regular expressions, is not a new concept. A few object-oriented/semi-structured query languages 

propose such an approach (e.g. Kifer [Kifer '92], GraphDB, OMS, and others). However, the 

introduction of regular expressions in an object-oriented language brings new problems, especially 

problems related to typing/sub-classing (e.g. in the case of the common composite design pattern). 

Therefore an operator handling these features elegantly has been devised: the selective downcast 

operator (section 5.1.1.2). This operator is not found anywhere else, and unlike other downcast 

operators (e.g. OQL's), it selects objects of specific type instead of enforcing down casting (and raising 

exceptions). 

156/196 



8. Conclusion and discussion 

As the query language designed for this work manipulates classifications, a mechanism to handle them 

as single entities needed to be devised. GraphDB offers such a mechanism by providing path classes 

that contain data describing a path and being used in queries. This approach has the disadvantage of 

requiring the creation of new meta-types (path classes and their specific behaviour, which would mean 

more changes to the ODMG standard), and the extension of the query engine to manipulate them. 

Another approach has been proposed in this thesis: instead of creating new meta-types, the query 

language has been extended with an operator borrowed from SQL (the SQL in operator). That operator 

allows the nesting of queries therefore the extraction of classifications in sub-queries and their 

manipulation in outer queries (this operator was described in section 5.1.2.5). 

The exploration of classifications also requires the ability to do two selections at a time: selection of 

objects and selection of paths through overlapping classifications. The mechanism proposed in this 

work is the declaration of two selection clauses in queries that go through classifications: the classical 

selection of objects from the classifications (where clause), and the additional selection of path 

relationships in an external selection (the in context clause). That external selection acts as a filter and 

allows the description of recursive selections (section 5.1.1.3). Existing object-oriented query 

languages can only support this feature by defining the multiple selections in the unique selection 

clause. This leads to the loss of path expressions (as they are replaced by multiple joins), which makes 

queries harder to write and read (see section 5.1.1.3). 

8.1.4 Rules 

ODMG evokes constraints, but never defmes their structure and behaviour. The approach chosen in this 

work is therefore not in conflict with the ODMG standard. Constraints are objects that can be attached 

to other objects. 

Prometheus' constraints/rules are ECC (or ECCA if an action is necessary) instead of the classical ECA 

rules (e.g. NAOS [Collet '94], SAMOS [Gatziu '91]). The majority of the rules handled by the system 

are context-dependant rules. They therefore need to check that they are applicable in the context in 

which they are activated. This applicability is captured by the first condition of the rule, which stops 

the evaluation of the rule without error if it is violated. The second condition is the condition of 

activation of the action part of the rule, or the constraint not to be violated. Violation of the second 

constraint requires action (e.g. abortion of the transaction). 

Unlike most other rule mechanisms, Prometheus' rules can be user-triggered as well as system

triggered. User triggering of rules allows the implementation of assertions that support programming by 

contract [Meyer '97] and a safer design of applications. System triggering allows the enforcement of 

constraints and the execution of rules as can be found in many object-oriented databases (e.g. O2 

[Collet '94], ADAM [Dfaz '91]). 

1571196 



8. Conclusion and discussion 

The activation and scheduling mechanisms are not particularly new in Prometheus. Unlike Ode 

[Gehani '9\] or Jasmine [Ishikawa '93], Prometheus does not support the definition of composite 

events, although alternatives (OR) are supported through multiple inheritance of rules. Prometheus 

does not support complex execution models with conflict detection or selection of the database state in 

which rules are evaluated. Prometheus only proposes immediate and deferred constraints that work in a 

similar way to hard and soft constraints in Ode. 

A peculiarity of Prometheus over other rules mechanisms is that it does not necessarily abort 

transactions in which a constraint has been violated. Constraint violation raises exceptions that can be 

handled by other parts of user applications. Constraints can also be interactive, i.e. the user is prompted 

for an action (section 5.2.2.2). This is motivated by the fact that taxonomy may contain a lot of errors 

or changes in the botanical code over time, and may require authorised constraint violations that only 

taxonomists may decide. 

8.2 Other application domains 

The principles described here could be generalised and applied to new domains. Classifications are not 

useful only to taxonomists. The model and the query language are not limited to taxonomy, but are 

suitable for a wider range of applications. The particular group of applications that Prometheus tackles 

are applications that require the definition of multiple classifications, either simultaneously or over 

time, and require the ability to compare them. For example, a library information system can make use 

of such a system, as the same books may be classified differently depending on the point of view of the 

user (e.g. a book can appear both in English writings and fiction), or the categories may overlap and be 

shared between different views. The applications that would benefit most from the model presented 

here are applications that require working within contexts. For example, the overlapping classifications 

could also be used to solve the problem of context in ontologies [Priss '01]. Relationships would hold 

information describing the context in which concepts are defined. This would allow the navigation of 

the database according to contexts as it currently allows the navigation within chosen classifications 

(which details are also called contexts, section 4.6.2). Other science domains use classifications to 

order knowledge (e.g. protein research, genetic research, genome research). These classifications may 

conflict and therefore require an approach as the one proposed in Prometheus to represent all 

knowledge without forcing users into making decision or choosing a favourite view of the world. 

Other features offered by Prometheus could be of interest specifically to the database community. For 

example, instance synonyms would be a suitable mechanism to integrate data from redundant or 

overlapping independent sources. These data sources may describe the same information under 

different forms or to different degrees of exactitude and completeness. As instance synonyms allow the 

grouping of several instances into one conceptual entity that captures the real world entity described, 

they could group all these representations extracted from these data sources and simplify knowledge 

158/196 



8. Conclusion and discussion 

without losing information (e.g. errors may be of interest). In addition, their integration with the query 

language makes them powerful not only for capturing data, but also for its retrieval. This way, 

grouping representations into one entity would simulate querying on all data sources simultaneously, 

making it possible to optimise the querying. 

8.3 Further work 

As discussed in the evaluation section, Prometheus suffers from a performance problem. Although 

performance was not the focus of attention during this work, it becomes an important issue when users 

interact with the system. The reasons for this performance problem have been explained in section 

7.2.2 and some of them can be resolved. For example, the addition of more indexes, especially on node 

and transient objects, could improve greatly the overall performance of the system. A less naive 

evaluation of queries, based for example on a set oriented algebra, can also improve the performance of 

the system. For example, the representation of knowledge about the data stored can help (e.g. the 

consideration of cardinalities in order to evaluate queries in a bottom-up fashion instead of the current 

top-down approach). Specific efficient graph-traversing techniques could be investigated or created. 

Therefore, future work includes the integration of such techniques in order to provide a more efficient 

system. 

However, some of the limitations of Prometheus are not easily solvable. For example, the package 

approach will always mean that some information is out of reach of Prometheus and that accessing 

objects means instantiating and resolving them. As long as this approach is favoured, Prometheus will 

suffer performance problems. Whether this is an acceptable price for increased portability is debatable. 

If portability is not an issue, reducing the independence of Prometheus vis-a.-vis its underlying storage 

system could be considered and would likely provide significant performance improvements. 

In addition, a distributed version of Prometheus could be an interesting development for taxonomists in 

particular, and many other types of users in general. As was said in section 2.1, taxonomists work 

generally on small parts of the plant knowledge available to them because they are only interested in 

information relating to a single plant group. Furthermore, they tend to work in their area of expertise 

and are not so concerned with others. The consequence of such patterns of work is isolated database 

systems, each of them containing detailed information relating to a very limited number of plant 

groups. This situation is acceptable for most taxonomists. But as the general public (e.g. for 

conservation or protection purposes) and other areas of biology take interest in the output from 

taxonomy (e.g. pharmaceutical research centres in order to name their specimens or access information 

about plant groups), larger information repositories are necessary. The building of centralised 

repositories have their disadvantages: they are expensive because they must support more important 

usage loads; they need to be available at all times; and there is the risk that they are not up-to-date, as 

celiain categories of users (e.g. taxonomists) need to update the information they are responsible for on 

a regular basis. Instead of a central approach, it would therefore be more sensible to adopt a distributed 

159/196 



8. Conclusion and discussion 

approach where taxonomists make (part of) their information available to others and a mechanism 

allows searches, retrieval, and sharing of information over the network of databases. This approach 

would also provide a way to improve scalability of the system, as each independent database would 

manage relatively small amounts of data. 

However, these local repositories may be unreliable, as they would run on personal computers or small 

servers. Therefore the distribution of Prometheus would require the investigation of techniques 

allowing working in such an environment (e.g. duplication, network caching). Currently, Prometheus 

does not support the management of distributed sources of information, but the implementation of such 

mechanisms could be part of its further development. Another problem generated by distributed 

repositories is the overlap that exists between distinct classifications: taxonomists proceed to revisions 

of existing groups or work in parallel on similar plant groups. Therefore the distribution of Prometheus 

would also require the investigation of integration techniques that would allow connection of 

information between independent databases and would avoid the unnecessary duplication of 

information across data sources. 

Currently, Prometheus only records the result of taxonomic work: the classifications are what 

taxonomists produce once they have studied and ordered plant specimens or plant groups. Another 

further area of investigation is the recording of the reasons why classifications are created, i.e. what the 

criteria were that resulted in the decisions made by taxonomists during the classification process. These 

decisions usually involve examination of specimens, therefore the characters these specimens exhibit. 

This information would provide new insights in the data generated by other taxonomists, as it would be 

possible to understand what they mean when they describe a group, and follow their reasoning. This is 

the focus of a new research project in which features offered by Prometheus are used. 

160/196 



9. References 

9 References 

[Abiteboul '98] S. Abiteboul, 1. Mc Hugh, M. Rys, V. Vassalos and J. Wiener, Incremental 

maintenance for materialized views over semistructured data, VLDB'98, Proceedings of 24rd 

International Conference on Very Large Data Bases, New York City, New York, USA, pp 38-49,1998 

[Abiteboul '96] S. Abiteboul, D. Quass, 1. McHugh, J. Widom and 1.L. Wiener, The Lorel QuelY 

Language for Semistructured Data, International Journal on Digital Libraries, 1 (1), pp 68-88, 1996 

[Abiteboul '95] S. Abiteboul and C. Souza dos Santos, IQL(2) : A Model 'with Ubiquitous Objects, 

Database Programming Languages (DBPL-5), Proceedings of the Fifth International Workshop on 

Database Programming Languages, Gubbio, Umbria, Italy, pp 10, 1995 

[Abiteboul '97] Serge Abiteboul, Quelying semi-structured data, Proceedings of the International 

Conference on Database Theory, Delphi, Greece, pp 1-18, 1997 

[Alagic '99] Suad Alagic, Type-Checking OQL Queries In the ODMG Type Systems, ACM 

Transactions on Database Systems, 24 (3), pp 319-360, 1999 

[Albano '91] Antonio Albano, Giorgio Ghelli and Renzo Orsini, A Relationship Mechanism for a 

Strongly Typed Object-Oriented Database Programming Language, Proceedings of the seventeenth 

international conference on very large data bases, Barcelona, Spain, pp 565-575, 1991 

[Amann '92] Bernd Amann and Michel Scholl, Gram: A Graph Data Mode! and Query Language, 

INRIA, Le Chesnay, France, Verso report number 046 (ECHT), 1992 

[Arocena '98] Gustavo O. Arocena and Alberto O. Mendelzon, WebOQL: Restructuring Documents, 

Databases, and Webs, Proceedings of the Fourteenth International Conference on Data Engineering, 

Orlando, Florida, USA, pp 24-33, 1998 

[Ashish '97112] Naveen Ashish and Craig A. Knoblock, Wrapper Generation for Semi-structured 

Internet Sources, SIGMOD Record, 26 (4), pp 8-15,1997112 

[Atkinson '90] Malcolm P. Atkinson, Fran<;ois Bancilhon, David 1. DeWitt, Klaus R. Dittrich, David 

Maier and Stanley B. Zdonik, The Object-Oriented Database System Manifesto, Proceedings of the 

First International Conference on Deductive and Object-Oriented Databases (DOOD'89), Kyoto 

research Park, Kyoto, Japan, pp 223-240, 1990 

[Baneljee '87] 1. Banerjee, H. Chou, 1. Garza, W. Kim, D. Woelk and N. Ballou, Data model issues for 

object-oriented applications, ACM Transactions on Office Information Systems, 5 (1), pp pp 3-26, 

1987 

[Barbier '01] Franck Barbier and Brian Henderson-Sellers, The whole-part relationship in object 

modelling: a definition in cOlOr, Information & Software Technology, 43 (1), pp 19-39,2001 

[Barclay '94] P. J Barclay and J. B. Kennedy, A Conceptual Language for Quelying Object Oriented 

Data, British National Conference On Databases, BNCOD-12, Guildford, UK, pp 187-204, 1994 

[Barsalou '91] T. Barsalou, A. M. Keller, N. Siambela and G. Wiederhold, Updating relational 

Databases through Object-Based Views, Proceedings of the 1991 ACM SIGMOD International 

Conference on Management of Data, Denver, Colorado, pp 248-257, 1991 

1611196 



9. References 

[Bellahsene '97] Zohra Bellahsene, Updating Virtual Complex Objects, 00lS'97, 1997 International 

Conference on Object Oriented Information Systems, Brisbane, Australia, pp 422-432, 1997 

[Bellahsene '96] Zohra Bellahsene, View Mechanism for Schema Evolution in Object-Oriented DBMS, 

14th British National Conferenc on Databases, BNCOD 14, Edinburgh, Scotland, pp 18-35, 1996 

[Berendsohn '97] W. Berendsohn, A taxonomic information model for botanical databases: the IOPI 

model, Taxon, 46, pp 283-309, 1997 

[Berendsohn '99] W. G. Berendsohn, A. Anagnostopoulos, G. agedorn, 1. Jakupovic, P. L. Nimis, B. 

Valdes, A. GUntsch, R. 1. Pankhurst and R. 1. White, A comprehensive reference model for biological 

collections and surveys, Taxon, 48, pp 511-562, 1999 

[Bertino '98] Elisa Bertino and Giovanna Guerrini, Extending the ODMG Object Model with 

Composite Objects, Thirteenth International Conference on Object-Oriented Programming: Systems, 

Languages, and Applications, Vancouver, Canada, pp 259-270, 1998 

[Bertino '93] Elisa Bertino and Lorenzo Martino, Object-Oriented Database Systems, Concepts and 

Architectures, Addison-Wesley, I.S.B.N. 0-201-62439-7, 1993 

[Blaha '93] Michael Blaha, Aggregation of parts of parts of parts, Journal of Object-Oriented 

Programming, 6 (5), pp 14-22, 1993 

[Bock '94] Conrad Bock and James Ode I, A foundation for composition, Journal of Object-Oriented 

Programming, 7 (6), pp 10-14, 1994 

[Bock '98] Conrad Bock and James Odell, A More Complete Model of Relations and their 

Implementation: Aggregation, Journal of Oject-Oriented Programming, 11 (5), pp 68-70, 1998 

[Borgida '88] Alexander Borgida, Modeling Class Hierarchies with Contradictions, Proc. ACM 

SIGMOD '88 Conference, Chicago, USA, pp 434--443, 1988 

[Borgida '89] Alexander Borgida, Type systems for quelying class hierarchies with non

strictinheritance, Proc. ACM PODS Conference, Philadelphia, USA, pp 394--400, 1989 

[Bowker '99] Geoffrey C. Bowker and Susan Leigh Star, Sorting things out, classification and its 

consequences, Massachusetts Institute of Technology, I.S.B.N. 0-262-02461-6, 1999 

[Brady '97] Declan Brady and John Murphy, Relational Vs Object-Oriented Database Systems, Dublin 

City University, Dublin, CA-1497, 1997 

[Bretl '89] Robeli Bretl, David Maier, Allen Otis, Jason Penney, Bruce Schuchart, Jacob Stein, E. 

Harold Williams and Monty Williams, The Gemstone Data Management System, in Object-Oriented 

Concepts, Databases, and Applications, pp 283-308, ACM Press, 1989 

[Buneman '96] Peter Buneman, Susan Davidson, Gerd Hillebrand and Dan Suciu, A quely language 

and optimization techniques for unstructured data, Proceedings of ACM-SIGMOD International 

Conference on Management of Data, Montreal, Canada, pp 505-516, 1996 

[Buneman '95] Peter Buneman, Susan Davidson and Dan Suciu, Programming Constructs for 

Unstructured Data, DBPL-5 Proceedings of the Workshop on Database Programming Languages, 

Gubbio, Umbria, Italy, pp 12, 1995 

[Bussche '92] 1. Van den Bussche, D. Van Gucht, M. Andries and M. Gyssens, On the completeness of 

object-creating quely languages, Proceedings 33rd Symposium on Foundations of Computer Science, 

IEEE Computer Society Press, Pittsburgh, Pennsylvania, USA, pp 372--379, 1992 

1621196 



9. References 

[Calvanese '99] Diego Calvanese, Giuseppe De Giacomo and Maurizio Lenzerini, Queries and 

Constraints on Semi-Structured Data, Proc. of the 11th Int. Conf. on Advanced Information Systems 

Engineering (CAiSE'99), Heidelberg, Germany, pp 434-438, 1999 

[Cannan '92] S. J. Cannan and G. A. M. Otten, SQL - The Standard Handbook, McGraw-Hill, 1992 

[Carey '93] Michael J. Carey, David J. DeWitt and Jeffrey F. Naughton, The 007 Benchmark, 1993 

ACM SIGMOD International Conference on Management of Data, Washington, D.C., pp 12-21, 1993 

[Catarci '95] T. Catarci and L. Tarantino, A Hypergraph-based Frameworkfor Visual Interaction with 

Databases, Journal of Visual Languages and Computing, 6 (2), pp 135-166, 1995 

[Cattell '97] R. G. G. Cattell, Douglas Barry, Dirk Bartels, Mark Berler, Jeff Eastman, Sophie 

Gamerman, David Jordan, Adam Springer, Henry Strickland and Drew Wade, The Object Database 

Standard: ODMG 2.0, Morgan Kaufmann Publishers, Inc., I.S.B.N. 1-55860-463-4, 1997 

[Chakravarthy '94] S. Chakravarthy, V. Krishnaprasad, E. Anwar and S.-K. Kim, Composite Events for 

Active Databases: Semantics, Contexts and Detection, 20th International Conference on Very Large 

Data Bases, Santiago, Chile, pp 606-617, 1994 

[Chawathe '94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. 

Ullman and J. Widom, The TSIMMIS Project: Integration of Heterogeneous Information Sources, 

Proceedings oflPSJ Conference, Tokyo, Japan, pp 7-18, 1994 

[Christophides '96] Vassilis Christophides, Sophie Cluet and Guido Moerkotte, Evaluating Queries 

with Generalized Path ExpreSSions, Proceedings of the 1996 ACM SIGMOD International Conference 

on Management of Data, Montreal, Quebec, Canada, pp 413-422, 1996 

[Cluet '98] Sophie Cluet, Designing OQL: Allowing Objects to be Queried, Information Systems, 23, 

pp 279-305, 1998 

[Codd '70] E. F. Codd, A Relational Model of Data for Large Shared Data Banks, Communications of 

the ACM (CACM), 13 (6), pp 377-387, 1970 

[Collet '94] C. Collet, T. Coupaye and T.Svensen, NAOS: Efficient and modular reactive capabilities in 

an Object-Oriented Database System, 20th International Conference on Very Large Data Bases, 

Santiago, Chile, pp 132-143, 1994 

[Consens '94a] Mariano P. Consens, Creating and Filtering Structural Data Visualizations using 

Hygraph Patterns, Ph.D. thesis, Department of Computer Science, University of Toronto, Toronto, 

1994a 

[Consens '94b] Mariano P. Consens, Alberto O. Mendelzon and Arthur G. Ryman, Looking at the 

Relations Among Sofnllare Objects, November 10, 1994, 1994b 

[Crestana-Taube '96] V. Crestana-Taube and E. A. Rundensteiner, Schema Removal Issues for 

Transparent Schema Evolution, Sixth International Workshop on Research Issues on Data Engineering, 

Interoperability of Non traditional Database Systems, RIDE'96 , IEEE, New Orleans, Louisiana, pp 

138-147,1996 

[Darwen '95] H. Darwen and C. 1. Date, The Third Manifesto, SIGMOD Record 24, 24 (I), pp 39-49, 

1995 

[Delobel '95] C. Delobel, C. Souza dos Santos and D. Tallot, Object View of Relations, INRIA, 

Rocquencourt, France, Verso report number 072 (INFORSID 95), February 1995, 1995 

1631196 



9. References 

[Def31och '92] S. Def31och, T. Harder, F.-J. Leick, N.M. Mattos, C. Laasch, C. Rich, M. Scholl and H.-J. 

Schek, COCOON and FRISYS - a comparison -, 1992 

[Diaz '90] Oscar Diaz and Peter M. D. Gray, Semantic-rich User-defined Relationship as a Main 

Constructor in Object Oriented Database, Object-Oriented Databases: Analysis, Design & 

Construction (DS-4), Proceedings of the IFIP TC2/WG 2.6 Working Conference on Object-Oriented 

Databases: Analysis, Design & Construction, Windermere, UK, pp 207-224, 1990 

[Diaz '91] Oscar Diaz, Normal Paton and Peter Gray, Rule Management in Object-Oriented Databases: 

A Uniform Approach, 17th International Conference on Very Large Data Bases, Barcelona, Spain, pp 

317-326,1991 

[Doherty '93] Michael Doherty, Joan Peckham and Victor Fay Wolfe, Implementing Relationships and 

Constraints in an Object-Oriented Database Using a Monitor Construct, in Rules in Database Systems, 

pp 347-363, Springer-Verlag, 1993 

[Fahl '97] Gustav Fahl and Tore Risch, Quel)) processing over object views of relational data, VLDB 

Journal, 6 (4), pp 261-281, 1997 

[Fernandez '97a] Mary F. Fernandez, Lucian Popa and Dan Suciu, A Structure-Based Approach to 

Quel)'ing Semi-Structured Data, Database Programming Languages, 6th International Workshop, 

DBPL-6, Estes Park, Colorado, USA, pp 136-159, 1997a 

[Fernandez '97b] Mary Fernandez, Dana Florescu, Alon Levy and Dan Suciu, A Quel)' Language for a 

Web-Site Management System, SIGMOD Record, 26 (3), pp 4-11, 1997b 

[Fernandez '99] Mary Fernandez, Dana Florescu, Alon Levy and Dan Suciu, Verifj)ing Integrity 

Constraints on Web Sites, IJCAI-99, the Sixteenth International Joint Conference on Artificial 

Intelligence, Stockholm, Sweden, pp 614-619, 1999 

[Filer '94] D. L. Filer, Botanical Research and Herbarium Management System. A pocket introduction 

and demonstration guide, Oxford Forestry Institute, Oxford, 1994, 1994 

[Fishman '89] D. H. Fishman, J. Annevelink, D. Beech, E. Chow, T. Connors, J.W. Davis, W. Hasan, 

C. G. Hoch, W. Kent, W. Lwichner, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. Rish, M. C. Shan and 

W. K. Wilkinson, Overview of the Iris DBMS, in Object-Oriented Concepts, Databases, and 

Applications, pp 219-250, ACM Press, 1989 

[Fong '97] Joseph Fong, Converting Relational to Object-Orented Databases, ACM SIGMOD, (26), pp 

53-58, 1997 

[Gamma '94] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, 

Elements of Reusable Object-Oriented Software, Addison-Wesley Publishing Company, I.S.B.N. 0-

201-63361-2, 1994 

[Gatziu '91] Stella Gatziu, Andreas Geppert and Klaus R. Dittrich, Integrating Active Concepts into an 

Object-Oriented Database System, Proc. 3. IntI. Workshop on Database Programming Languages 

(DBPL), Nafplion, Greece, pp 399-415, 1991 

[Gehani '91] N. Gehani and H. V. Jagadish, Ode as an Active Database: Constraints and Triggers, 

Proceedings of Conference on Very Large Databases, Barcelona, Spain, pp 327-336, 1991 

[Gem is '93] M. Gemis, J. Paredaens, I. Thyssens and J. Van den Bussche, GOOD, A graph-Oriented 

Database System, Proceedings of SIGMOD, SIGMOD Record, 22 (2), pp 505--510, 1993 

164/196 



9. References 

[Goldman '97] Roy Goldman and Jennifer Widom, DataGuides: Enabling Quel)) Formulation and 

Optimization in Semistructured Databases, VLDB'97, Proceedings of 23th International Conference on 

Very Large Data Bases, Athens, Greece, pp 436-445, 1997 

[Gottlob '96] Georg Gottlob, Michael Schrefl and Brigitte Rock, Extending Object-Oriented Systems 

with Roles, ACM Transactions on Infornlation Systems, 14 (3), pp 268-296, 1996 

[Greuter '94] W. Greuter, F. R. Barrie, H. M. Burdet, W. G. Chaloner, V. Demoulin, D. L. 

Hawksworth, P. M. J0rgensen, D. H. Nicolson, P. C. Silva, P. Trehane and J. McNe, International code 

of botanical nomenclature (Tokyo Code), Koeltz Scientific Books, LS.B.N. 3-87429-367-X, 1994 

[Grumbach '99] Stephane Grumbach, Philippe Rigaux and Luc Segoufin, Notes on QuelY Evaluation 

and Optimization, INRIA, Verso report number 172, Le Chesnay, France, 1999 

[Giiting '94] RalfHartmut Guting, GraphDB: Modeling and Quelying Graphs in Databases, Proc 20th 

Int. Conf. on Very Large Databases, Santiago, Chile, pp 297-308, 1994 

[Henderson-Sellers '97] B. Henderson-Sellers, OPEN Relationships - Compositions and Containments, 

Journal of Object-Oriented Programming, 10 (7), pp 51-55, 1997 

[Hohenstein '96] Uwe Hohenstein and Volkmar Plesser, Semantic Enrichment: A First Step to provide 

Database Interoperability, Workshop Foderierte Datenbanken, Magdeburg, Germany, pp 3-17, 1996 

[Hori '95] Nobuo Hori, Masatoshi Yoshikawa and Shunsuke Uemura, ASKA: An Object-Oriented Data 

Model with Multiple Hierarchies and Multiple Object-Perspectives, 6th Int. Conf. and Workshop on 

Database and Expert Systems Applications (DEXA'95) - Workshop Proceedings, London, UK, pp 142-

151,1995 

[Iivari '92] 1. Iivari, Relationships, aggregations and complex objects, in Information Modelling and 

Knowledge Bases, pp 141-159, lOS Press, 1992 

[Irani '93] B.B. Irani, Implementation of the TIGUKAT Object Model, University of Alberta, 

Edmonton, TR93-10, June 1993, 1993 

[Ishikawa '93] Hiroshi Ishikawa, Fumio Suzuki, Fumihiko Kozakura, Akifumi Makinouchi, Mika 

Miyagishima, Yoshio Izumida, Masaaki Aoshima and Yasuo Yamane, The Model, Language, and 

Implementation of an Object-Oriented Multimedia Knmvledge Base Management System, ACM 

Transactions on Database Systems, 180), pp 1-50, 1993 

[Jarke '95] M. Jarke, R. Gallersdorfer, M.A. Jeusfeld, M. Staudt and S. Eherer, ConceptBase - a 

deductive object base for meta data management., Journal of Intelligent Information Systems. Special 

Issue on Advances in Deductive Object-Oriented Databases, 4 (2), pp 167-192, 1995 

[Jarke '93] M. Jarke and M. Staudt, An application perspective to deductive object bases, ACM

SIGMOD Workshop on Combining Declarative and Object-Oriented Databases, Washington D.C., pp 

17-30,1993 

[Joseph '91] John Joseph, Satish Thatte, Craig Thompson and David Wells, Object-Oriented 

Databases: Design and Implementation, Proceedings of the IEEE, 79 (1), pp 42-64, 1991 

[Keller '94] Arthur M. Keller, Penguin: Objects for Programs, Relationsfor Persistence, 1994 

[Keller '93] Arthur M. Keller, Richard Jensen and Shailesh Agarwal, Persistence Software: Bridging 

Object-Oriented Programming and Relational Databases, SIGMOD, (May 1993), 1993 

165/196 



9. References 

[Khoshafian '86] Setrag N. Khoshafian and George P. Copeland, Object Identity, Conference on 

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA'86), Portland, 

Oregon, pp 406-416, 1986 

[Kifer '92] Michael Kifer, Won Kim and Yehoshua Sagiv, Quelying Object-Oriented Databases, 

Proceedings of the 1992 ACM SIGMOD International Conference on Management of Data, San Diego, 

California, pp 393-402, 1992 

[Kim '89] Won Kim, Nat Ballou, Hong-Tai Chou, Jorge G. Garza and Darell Woelk, Features of the 

ORlON Object-Oriented Database System, in Obje-Oriented Concepts, Databases, and Applications, 

pp 251-282, ACM Press, 1989 

[Kim '87] Won Kim, Jay Banerjee, Hong-Tai Chou, Jorge F. Garza and Darell Woelk, Composite 

Object Support in an Object-Oriented Database System, Object-Oriented Programming Systems, 

Languages and Applications (OOPSLA'97), Orlando, Florida, USA, pp 118-125, 1987 

[Kim '95] Won Kim and William Kelley, On View Support in Object-Oriented Database Systems, in 

Modern database systems: The Object Model, Interoperability, and Beyond, pp 108-129, Addison

Wesley Publishing Company, 1995 

[Kolp '97] Manuel Kolp, A Metaobject Protocol for Reifying Semantig Relationships into Reflexive 

Systems, 4th doctoral Consortium of the 9th Conference on Advanced Information Systems 

Engineering (CAise'97), Barcelona, Spain, pp 89-100, 1997 

[Koymen '93] Kemal Koymen and Qujun Cai, SQL *: a recursive SQL, Information Systems, 18 (2), pp 

121-128,1993 

[Kuno '95a] H. A. Kuno and E. A. Rundensteiner, Materialized Object-Oriented Views in MultiView, 

Fifth International Workshop on Research Issues on Data Engineering: Distributed Object Management 

(RIDE-DOM'95), IEEE, 1995, Taipei, Taiwan, Taipei, Taiwan, pp 78-85, 1995a 

[Kuno '95b] H. Kuno, Y.G. Ra and E. A. Rundensteiner, The Object-Slicing Technique: A Flexible 

Object Representation and Its Evaluation, Electrical Engineering and Computer Science Dept., 

University of Michigan, Ann Arbor, CSE-TR-241-95, April 1995, 1995b 

[Kuno '98] Harumi A. Kuno and Elke A. Rundensteiner, Incremental Maintenance of Materialized 

Object-Oriented Views in MultiView: Strategies and Pelformance Evaluation, Knowledge and Data 

Engineering, 10 (5), pp 768-792, 1998 

[Leung '93] Throdore W. Leung, Gail Mitchell, Bharathi Subramanian, Bennet Vance, Scott L. 

Vandenberg and Stanley B. Zdonik, The Aqua Data Model and Algebra, Brown University, 

Providence, Rhode Island, CS-93-09, 1993 

[Maier '90] David Maier and Jacob Stein, Development and Implementation of an Object-Oriented 

DBMS, in Readings in object-oriented database systems, pp 167-185, 1990 

[McHugh '97] 1. McHugh, S. Abiteboul, R. Goldman, D. Quass and 1. Widom, Lore: A Database 

Management System for Semistructured Data, SIGMOD Record, 26 (3), pp 54-66, 1997 

[Mendelzon '97] Alberto O. Mendelzon, George A. Mihaila and Tova Milo, QueJying the World Wide 

Web, lnt. 1. on Digital Libraries, 1 (1), pp 54-67, 1997 

[Mendelzon '98] Alberto O. Mendelzon and Tova Milo, Formal Models of Web Queries, Information 

Systems, 23 (8), pp 615-637, 1998 

166/196 



9. References 

[Meyer '97] Bertrand Meyer, Object-Oriented Software Constl'llction, Prentice Hall, l.S.B.N. 0-13-

629155-4, 1997 

[Mitchell '93] Gail Anne Mitchell, Extensible QuelY Processing in an Object-Oriented Database, 

thesis, Department of computer science, Brown University, Providence, Rhode Island, 1993 

[Mitchell '91] Gail Mitchell, Stanley B. Zdonik and Umeshwar Dayal, Object-Oriented QuelY 

Optimization: What's the Problem?, Brown University, Providence, Rhode Island, CS-91-41, June 

1991, 1991 

[Motschnig '99] Renate Motschnig and Jens Kaasb0ll, Part-Whole elationship Categories and their 

Application in Object-Oriented Analysis, IEEE Transactions on Knowledge and Data Engineering, 11 

(5), pp 779-797, 1999 

[MUnch '98] Manfred MUnch, Andy SchUrr and Andreas Winter, Integrity Constraints in the Multi

paradigm Language PROGRES, Declarative Systems and Software Engineering Group, University of 

Southampton, UK, Technical report DSSE-TR-98-2, Febmary 13 1998, 1998 

[Mylopoulos '90] John Mylopoulos, Alex Borgida, Matthias Jarke and Manolis Koubarakis, Telos: 

Representing Knowledge About Information Systems, ACM Transactions on Information Systems, 8 

(4), pp 325-362, 1990 

[Nestorov '97] S. Nestorov, 1. Ullman, J. Wiener and S. Chawathe, Representative Objects: Concise 

Representations of Semistructured, Hierarchial Data, Proceedings of the 13th International Conference 

on Data Engineering (ICDE'97), Birmingham, U.K., pp 79-90, 1997 

[Nestorov '97/12] Svetlozar Nestorov, Serge Abiteboul and Rajeev Motwani, Inferring Structure in 

Semistructured Data, SIGMOD Record, 26 (4), pp 39-43,1997112 

[Newman '00] Mark Newman, Martin Pullan and Mark Watson, Using Prometheus to produce a 

taxonomic revision, Royal Botanic Garden, Edinburgh, Technical report Prometheus #10, 2000 

[Norrie '95] M. C. Norrie, Distinguishing Typing and Classification in Object Data Models, in 

Information Modelling and Knowledge Bases VI, lOS, 1995 

[Norrie '92] Moira C. Norrie, A collectionl11odel for data management in object-oriented systems, PhD 

thesis, Department of computing science, University of Glasgow, Glasgow, 1992 

[Norrie '93] Moira C. Norrie, An Extended Entity-Relationship Approach to Data Management in 

Object-Oriented Systems, Entity-Relationship Approach - ER'93, 12th International Conference on the 

Entity-Relationship Approach, Arlington, Texas, USA, pp 390-401, 1993 

[02 '92] 02, Building an object-oriented database system, the sto/y of 02, Morgan Kaufmann 

publishers, San Mateo, California, l.S.B.N. 1-55860-169-4, 1992 

[Odell'94a] J. Odell, Power types, Journal of Object-Oriented Programming, 7 (2), pp 8-12, 1994a 

[Odell'94b] James Odell, Six different kinds of composition, Journal of Object-Oriented Programming, 

6 (8), pp 10-15, 1994b 

[OMG '99] OMG, The OMG Unified Modeling Language Specification, Rational, 

http://www.omg.org/uml, Version 1.3, 1999 

[Oracle '01] Oracle, Oracle, http:///www.oracle.col11. 2001 

[Ozsu '95] M. T. Ozsu, R. J. Peters, D Szafrom, B. Irani, A. Lipka and A. Munoz, TIGUKAT: A 

Uniform Behavioral Objectbase Management System, VLDB Journal, 4 (3), pp 445-492, 1995 

167/196 



9. References 

[Pankhurst '93] R. 1. Pankhurst, Taxonomic Databases: The PANDORA System, Advances in computer 

methods for systematic biology: Articificial Intelligence, databases, computer vision, Baltimore, USA, 

pp 229-240, 1993 

[Papakonstantinou '95] Yannis Papakonstantinou, Hector Garcia-Molina and Jennifer Wid om, Object 

Exchange Across Heterogeneous Information Sources, Proceedings of the Eleventh International 

Conference on Data Engineering, Taipei, Taiwan, pp 251-260, 1995 

[Paredaens '93] 1. Paredaens, P. Peelman and L. Tanca, Merging Graph Based and Rule Based 

Computation, Workshop in Computing, Rules in Database Systems, Edinburgh, UK, pp 212-233,1993 

[Paton '99] Norman W. Paton and Oscar Diaz, Active Database Systems, ACM Computing Surveys, 31 

(1), pp 63-103,1999 

[Peters '93a] R. 1. Peters, A. Lipka, M. T. Ozsu, D. Szafrom, B. Irani and A. Munoz, TIGUKAT Object 

Management System: Initial Design and Current Directions, Proceedings of CASCON'93, Toronto, 

Canada, pp 595-611, 1993a 

[Peters '93b] Randal 1. Peters, Anna Lipka, M. Tamer Ozsu and Duane Szafron, The QuelY Model and 

Query Language ofTIGUKAT, University of Alberta, Edmonton, TR 93-01, January 1993, 1993b 

[Pirotte '94] Alain Pirotte, Esteban Zimanyi, David Massart and Tatiana Yakusheva, Materialization: a 

powerfull and ubiquitous abstraction pattern, Very Lage Data Bases (VLDB'94), Santiago, Chile, pp 

630-641, 1994 

[Pirotte '97] M. Kolp and A. Pirotte, An aggregation model and its C++ implementation, 4th Int. Conf. 

on Object-Oriented Information Systems, OOIS'97, Brisbane, Australia, pp 211-224, 1997 

[POET '01] POET, POET Object-Oriented Database, http://www.poet.com. 2001 

[Poulovassilis '98] A. Poulovassilis and S. Hild, Hyperlog: a graph-based system for database 

browsing, querying and update, To appear in IEEE Knowledge and Data Engineering, 1998 

[Priss '01] Uta Priss, Ontologies and Context, 12th Midwest Artificial Intelligence and Cognitive 

Science Conference, Miami University, Oxford, OH, USA, pp 12-13,2001 

[Pullan '00] Martin R. Pullan, Mark F. Watson, Jessie B. Kennedy, Cedric Raguenaud and Roger 

Hymn, The Prometheus Taxonomic Model: a practical approach to representing multiple taxonomies, 

Taxon, 49 (1), pp 55-75, 2000 

[Quass '95] DaHan Quass, Anand Rajaraman, Yehoshua Sagiv, Jeffrey D. Ullman and Jennifer Widom, 

Quelying Semistructured Heterogeneous Information, Deductive and Object-Oriented Databases, 

Fomth International Conference, DOOD'95, Singapore, pp 319-344, 1995 

[Raguenaud '01] Cedric Raguenaud, Support for classification mechanisms in existing database 

models, School of Computing, Napier University, Edinburgh, Technical report 2001 

[Raguenaud '00] Cedric Raguenaud, Jessie Kennedy and Peter J. Barclay, A database system for 

supporting taxonomic work, School of Computing, Napier University, Edinburgh, Scotland, Technical 

Report Prometheus #5, 2000 

[Ramanathan '97] Shekar Ramanathan, Extraction of Object-Oriented Structures from Existing 

Relational Databases, SIGMOD Record, 26 (1), pp 59-64, 1997 

1681196 



9. References 

[Richardson '91] Joel Richardson and Peter Schwarz, Aspects: Extending Objects to Support Multiple, 

Independent Roles, 1991 ACM SIGMOD International Conference on Management of Data, Denver, 

Colorado, USA, pp 298-307, 1991 

[Riedel '97] Holger Riedel and Marc H. Scholl, A Formalization of ODMG Queries, Database 

Semantics DS-7, Leysin, Switzerland, 1997 

[Rodgers '97] P. J. Rodgers and P. J. H. King, A graph rewriting visual language for database 

programming, Journal ofVirual Languages & Computing, 8 (5/6), pp 641-674, 1997 

[Rousset '97] Marie-Christine Rousset, VerifYing the Web: a Position Statement, Proceedings of the 4th 

European Symposium on the Validation and Verification of Knowledge Based Systems (EUROV A V-

97), Leuven, Belgium, pp 95-103,1997 

[Rumbaugh '94] James Rumbaugh, Building boxes: Composite objects, Journal of Object-Oriented 

Programming, 7 (7), pp 12-22, 1994 

[Rumbaugh '88] James Rumbaugh, Controlling Propagation of Operations using Attributes of 

Relations, Object-Oriented Programming Systems, Languages and Applications (OOPSLA'88), San 

Diego, California, USA, pp 285-296, 1988 

[Rumbaugh '95] James Rumbaugh, OMT: The object model, Journal of Object-Oriented Programming, 

7 (8), pp 21-27, 1995 

[Rumbaugh '91] James Rumbaugh, Michael Blaha, William Premerlani, Federick Eddy and William 

Lorensen, Object-Oriented Modelling and Design, Prentice Hall International Editions, 1991 

[Rundensteiner '94] E. A. Rundensteiner, A Classification Algorithm For Supporting Object-Oriented 

Views, Proceedings of the Third International Conference on Information and Knowledge Management 

(CIKM'94), Gaithersburg, Maryland, pp 18 - 25, 1994 

[Rundensteiner '92a] Elke A. Rundensteiner, MultiView: A Methodology for Supporting Multiple View 

in Object-Oriented Databases, 18th International Conference on Very Large Data Bases, Vancouver, 

Canada, pp 187-198, 1992a 

[Rundensteiner '92b] Elke A. Rundensteiner and Lubomir Bic, Automatic View Schema Generation in 

Object-Oriented Databases, Department of Information and Computer Science, University of 

California, Irvine, 92-15, 01/92, 1992b 

[Saarenmaa '95] H. Saarenmaa, S. Leppajarvi, J. Pelttunen and J. Saarikko, Object- oriented taxonomic 

biodiversity databases on the World Wide Web, Internet Applications and Electronic Information 

Resources in Forestry and Environmental Sciences, Workshop at the European Forest Institute, EFI 

Proceedings 3, Joensuu, Finland, pp 121-128, 1995 

[Santos '94] Cassio Souza dos Santos, Serge Abiteboul and Claude Delobel, Virtual Schemas and 

Bases, Advances in Database Technology - EDBT'94. 4th International Conference on Extending 

Database Technology, Cambridge, United Kingdom, pp 81-94,1994 

[Schek '91] M.E. Scholl and H.-J. Schek, Supporting Views in Object-Oriented Databases, IEEE 

Database Engineering Bulletin, Special Issue on Foundations of Object-Oriented Database Systems, 14 

(2), pp 43-47, 1991 

[Scholl '93] M.H. Scholl, C. Laasch, C. Rich, M. Tresch and H.-J. Schek, The COCOON Object Model, 

ETH Zurich, Dept. of Computer Science, Zurich, 193, December 1992, 1993 

169/196 



9. References 

[Schurr '98] Andy Schurr, Andreas J. Winter and Albert Zundorf, PROGRES: Language and 

Environment, in Handbook on Graph Grammars: Applications, 1998 

[Shah '89] Ashwin V. Shah, James E. Rumbaugh, Jung H. Hamel and Renee A. Borsari, DSM' An 

Object-Relationship Modelling Language, Conference on Object-Oriented Programming: Systems, 

Languages, and Applications (OOPSLA'89), New Orleans, Louisiana, pp 191-202, 1989 

[Stein '89] Lynn Andrea Stein and Stanley B. Zdonik, Clovers: The Dynamic Behavior of Types and 

Instances, Brown University, Providence, USA, CS-89-42, 1989 

[Stonebraker '90] M. Stonebraker, A. Jhingran, 1. Goh and S. Potamianos, On rules, procedures, 

caching and views in database systems, ACM SIGMOD International Conference on Management of 

Data, Atlantic City, NJ, USA, pp 259-270, 1990 

[Straube '90] Dave D. Straube and M. Tamer Ozsu, Queries and quely processing in object-oriented 

database systems, ACM Transactions on Information Systems, 8 (4), pp 387-430, 1990 

[Stroustrup '91] Bjarne Stroustrup, The C++ Programming Language, Addison Wesley, I.S.B.N. 0-

201-53992-6,1991 

[Suciu '96] Dan Suciu, QuelY Decomposition and View Maintenance for Query Languages for 

Unstructured Data, VLDB'96, Proceedings of 22th International Conference on Very Large Data 

Bases, Mumbai (Bombay), India, pp 227-238, 1996 

[Sun '95] Sun, "The Java Programming Language (white paper), Sun MicroSystems Inc, 1995 

[Tompa '89] Frank WM. Tompa, A data model for flexible hypertext database systems, ACM 

Transactions on Information Systems, 7 (1), pp 85-100, 1989 

[Vermeer '95] Mark W. W. Vermeer and Peter M. G. Apers, Object-Oriented Views of Relational 

Databases Incorporating Behaviour, Database Systems for Advanced Applications '95, Proceedings of 

the 4th International Conference on Database Systems for Advanced Applications (DASFAA), 

Singapore, pp 26-35, 1995 

[Walter '93] K. S. Walter and M. 1. O'Neil, BG-BASE: Software for botanical gardens and arboreta, 

The Public Garden, 34, pp 21-22, 1993 

[Watters '90] Carolyn Watters and Michael A. Shepherd, A Transient Hypergraph-Based Model for 

Data Access, ACM Transactions on Information Systems, 8 (2), pp 77-102, 1990 

[Webster '01] Webster, Webster Online Dictionmy, http://www.webster.com/. 2001 

[Weiser '89] Stephen P. Weiser and Frederick H. Lochovsky, OZ+: An Object-Oriented Database 

System, in Object-Oriented Concepts, Databases, and Applications, pp 309-337, ACM Press, 1989 

[White '93] R. 1. White, R. Allkin and P. K. Winfield, Systematic Databases: The BAOBAB Design and 

the ALICE system, Advances in computer methods for systematic biology: Artificial Intelligence, 

databases, computer vision, 1993 

[Wieringa '94] R. Wieringa, W. de Jonge and P. Spruit, Roles and dynamic subclasses: a modal logic 

approach, Proceedings of the European Conference on Object-Oriented Programming, Bologna, Italy, 

pp 32-59, 1994 

[Wong '97] Raymond K. Wong, H. Lewis Chau and Frederick H. Lochovsky, A Data Model and 

Semantics of Objects with Dynamic Roles, Proceedings of the Thirteenth International Conference on 

Data Engineering, Birmingham u.K., pp 402-411, 1997 

170/196 



9. References 

[Wood '90] P. T. Wood, Graph Views and Recursive QuelY Languages, BNCOD 8, University of 

York, UK, pp 124-141, 1990 

[Zhong '96] Yang Zhong, Sunwon Jung, Sakti Pramanik and John H. Beaman, Data model and 

comparison and quely methods for interacting classifications in a taxonomic database, Taxon, 45, pp 

223-241, 1996 

[Zhuge '98] Yue Zhuge and Hector Garcia-Molina, Graph Structured Views and Their Incremental 

Maintenance, Proceedings of the Fourteenth International Conference on Data Engineering, Orlando, 

Florida, USA, pp 116-125, 1998 

1711196 



Appendix I. BNF 

Appendix I BNF 

This section shows the BNF of two of the languages supported by Prometheus: the query language 

(POOL, known internally as PQL, Prometheus Query Language), and PCL (Prometheus Constraint 

Language). 

1.1 PQL BNF 

PQLProgram := "select" SelectDefinition "from" From Definition ("where" WhereDefinition)? 

(XLinkDefinition)* ("follow" FollowDefinition)? ("order by" MemberList)? I CountQuery I 
ExistsDefmition 

CountQuery := CountDefinition (Sign WhereValue)? 

SelectDefinition := CountDefmition I (Distinct)? (Using Synonyms)? (StarSelectField I 
DotSelectFieldWithAggregate ("," DotSelectFieldWithAggregate )*) 

Distinct := "distinct" 

CountDefinition := "count" "(" (StarSelectField I PQLProgram) ")" 

ExistsDefinition := "exists" "(" PQLProgramO ")" 

StarSeIectFieId := "*,, 

DotSeIectFieIdWithAggregate := DotSelectFieldWithAggregateShallow I 
DotSelectFieldWithAggregateDeep I DotSelectField 

DotSeIectFieIdWithAggregateShalIow := "shallow aggregate" DotSelectField 

DotSeIectFieIdWithAggregateDeep := "deep aggregate" DotSelectField 

DotSeIectFieId:= SelectField ("." SelectField)* 

SeIectFieId := <IDENTIFIER> "[" <IDENTIFIER> "]" I <IDENTIFIER> 

FromDefinition := FromTypeOrVariable ("," FromTypeOrVariable)* 

FromTypeOrVariabIe := DotFromType ("as")? (From Variable)? I FromVariable "in" DotFromType 

DotFromType := FromType ("." FromType)* 

FromType:= <IDENTIFIER> "[" <IDENTIFIER> "]" I <IDENTIFIER> 

FromVariabIe:= <IDENTIFIER> 

WhereDefinition := "(" WhereDefinition ")" (AndOrComparison)* (Using Synonyms)? I Comparison 

(AndOrComparison)* (UsingSynonyms)? 

UsingSynonyms := "using instance synonyms" 

AndOrComparison := "or" OrWhereExpression I "and" AndWhereExpression 

OrWhereExpression := WhereDefinition 

AndWhereExpression := WhereDefinition 

Comparison := DotWhereField (In "(" PQLProgram ")" I Notln "(" PQLProgram ")" I Sign 

WhereValue) I CountDefinition Sign WhereValue 1"(" PQLProgram ")" Sign WhereValue 

DotWhereFieId := WhereField ("." WhereFieldWithModifier)* 

WhereFieId := <IDENTIFIER> "[" <IDENTIFIER> "]" I <IDENTIFIER> 

1721196 



Appendix I. BNF 

WherePathField := <IDENTIFIER> "[" <IDENTIFIER> "]" I <IDENTIFIER> 

WhereFieldWithModifier := WherePathField (WhereFieldPlusModifier I WhereFieldStarModifier I 

WhereFieldQuestionModifier) I WhereField I "(" WherePathField ("," WherePathField)* ")" 

(WhereFieldPlusModifier I WhereFieldStarModifier I WhereFieldQuestionModifier) 

WhereFieldPlusModifier := "+" 

WhereFieldStarModifier := "*" 

WhereFieldQuestionModifier := "?" 

Sign := <SIGN> 

In:= "in" 

NotIn := "not in" 

WhereValue := Where String I WhereNumber I WhereBoolean I WhereDate I WhereReference 

WhereString:= <STRING_LITERAL> 

WhereNumber := <NUMBER LITERAL> 

WhereBoolean := <BOOLEAN LITERAL> 

WhereDate := <DATE LITERAL> 

WhereReference := <REFERENCE> 

MemberList := OrderType "," OrderAttribute ("asc" I"desc")? (OrderType "," OrderAttribute ("asc" I 

"desc")?)* 

OrderType := <IDENTIFIER> 

OrderAttribute := <IDENTIFIER> 

FollowDefinition := FollowVariable 

FollowVariable := <IDENTIFIER> 

XLinkDefinition := ("in context" I "xlink") ("where" WhereDefinition)? 

< IDENTIFIER: <LETTER> «LETTER>I<DlGIT»* > I < REFERENCE: IPtRef(" 

<STRING_LITERAL> ")" > I < #LETTER: [ "a"_"z", "A"-"Z", "\uOOaO"-"\uOOff'] > I < #DIGIT: [ "0"-

"9"] > 

< NUMBER_LITERAL: (["0"-"9"])+ 1(["0"-"9"])+ (["e l ,IE"]) (["+","_"])? (["0"-"9"])+ 1(["0"-

"9"])+"," (["0"-"9"])* ([lel ,IE"]) (["+","_"])? (["0"-"9"])+ 1"," (["0"-"9"])* ([lel,IE"]) (["+","_"])? 

(["0"-"9"])+ > 

< BOOLEAN_LITERAL: "true" I"false" > 

< DATE_LITERAL: 

"\'"' <NUMBER LITERAL> "/" <NUMBER LITERAL> "/" <NUMBER LITERAL> "\"" > - - -

< STRING LITERAL: 

"\"11 

( (~["\"", "\\", "\n", "\1'"]) 

)* 

11\1111 > 

<SIGN: "=" I "!=" 111 <=" I H>=" 1"<" I ">" 111==" 1"<>"> 

1731196 



Appendix I. BNF 

1.2 peL BNF 

PCLProgram := WhereDefinition (ImpliesDefinition)? 

ImpliesDefinition := "implies" WhereDefinition 

WhereDefinition := "(" WhereDefinition ")" (AndOrComparison)* I Comparison 

(AndOrComparison)* I Not 

AndOrComparison := "or" OrWhereExpression I II and II AndWhereExpression 

OrWhereExpression := WhereDefinition 

AndWhereExpression := WhereDefinition 

Comparison := DotWhereField Sign (WhereValue I SelfWhereDotNoModifier) 

Not := "not" "(" WhereDefinition ")" 

DotWhereField := ClassWhereDot I SelfWhereDot 

ClassWhereDot:= ClassName ("." WhereFieldWithModifier)* 

SeltWhereDot := Self (". II WhereFieldWithModifier)* 

SeltWhereDotNoModifier:= Self ("." WhereField)* 

Self := II Self" 

ClassName:= <IDENTIFIER> 

WhereField := <IDENTIFIER> "[" <IDENTIFIER> "]" I <IDENTIFIER> 

WherePathField := <IDENTIFIER> "[" <IDENTIFIER> "]" I <IDENTIFIER> 

WhereFieldWithModifier :=WherePathField (WhereFieldPlusModifier I WhereFieldStarModifier I 

WhereFieldQuestionModifier) I WhereField I "(" WherePathField (". II WherePathField)* ")" 

(WhereFieldPlusModifier I WhereFieldStarModifier I WhereFieldQuestionModifier) 

WhereFieldPlusModifier := "+" 

WhereFieldStarModifier :="*" 

WhereFieldQuestionModifier := "?" 

Sign: = <SIGN> 

WhereValue:= WhereString I WhereNumber I WhereBoolean I WhereDate I WhereReference 

WhereString:= <STRING_LITERAL> 

WhereNumber:= <NUMBER LITERAL> 

WhereBoolean := <BOOLEAN LITERAL> 

WhereDate := <DATE LITERAL> 

WhereReference := <REFERENCE> 

< IDENTIFIER: <LETTER> «LETTER>I<DIGIT»* > 

< REFERENCE: "PtRef(" <STRING_LITERAL> ")" > 

< #LETTER: [ "a"_"z", "A"-"Z" ] > 

< #DIGIT: [ "0"-"9"] > 

< NUMBER_LITERAL: (["0"-"9"])+ 

1(["0"-"9"])+ (["e","E"]) (["+","_"])? (["0"-"9"])+ 

1(["0"-"9"])+"." (["0"-"9"])* (["e","E"]) (["+","_"])? (["0"-"9"])+ 

1"." (["0"-"9"])* (["e","E"]) (["+","_"])? (["0"-"9"])+ > 

174/196 



Appendix 1. BNF 

< BOOLEAN_LITERAL: "true" 

1 "false" > 

< DATE LITERAL: 

"\'''' <NUMBER_LITERAL> "/" <NUMBER_LITERAL> "/" <NUMBER_LITERAL> "\"" > 

< STRING_LITERAL: 

"\"" 

(~["\'''', "\\" , "\n", "\1''']) 

1 ("\\" 

( [lin", "t", "b", "r", "f', 11\\", Itll!, "\""] 

1 ["0"-"7"] ( ["0"-"7"] )? 

1 ["0"-"3"] ["0"-"7"] ["0"-"7"] 

) 

) 

)* 

"\"" > 

<SIGN: "=" 1 "!=" 1 "<=" 1 ">=" 1"<" 1 ">" 1 "==" 1 "<>"> 

As can be seen, peL is a subset of PQL. This is due to the fact that peL needs to implement path 

expression in order to check the validity of chains of objects starting from the object implementing the 

rule. As the constraint language is implemented on top of the database, it needs to implement the 

features necessary to manipulate the structures offered by the model. The best way to do so is to adapt 

(restrict) the existing query language. 

When peL rules are defined, they are automatically translated into PQL queries. These PQL queries 

are thereafter evaluated with the peL rules are fired. 

175/196 



Appendix II. Benchmark 

Appendix II Benchmark 

This section presents the benchmark results of section 7. The typical taxonomic queries, the POET 

(standard object-oriented) schema, the Prometheus schema, and the 007-inspired benchmark results 

are presented. 

11.1 Typical taxonomic queries 

A working taxonomist needs access to specific kinds of information. These requests, used often during 

the process of a revision can be proposed as canned queries. Some of these queries are straightforward 

and any database system would be able to answer them, given that they store the appropriate 

information. Here, POOL queries are compared to standard OQL queries. Although OQL is not the 

most advanced query language, it is a standard, and most commercial database systems adhere to it or 

to one of its subsets. The comparison will show the advantages in terms of expressiveness and ease of 

use ofPOOM/POOL against ODMG/OQL. 

Note that when relationship objects have been used in the schema, they are assumed to be pointers in 

OQL queries for simplification. A vertical line in the margin identifies these queries. Using relationship 

objects in OQL would require many joins and would complicate reading and comparison of queries. 

Example of typical queries: 

Who published a specific name? 

For example: find the taxonomist that published the name Apium. 

In standard OQL: 

(Ql) Select a from Name n, n.thePublication.theAuthor a where 

n.theEpithet.theName = "Apium" 

In POOL: 

(Q2) Select n.thePublication.theAuthor from Name n where 

n.theEpithet.theName = "Apium" 

or 

(Q3) Select a from Name n, n.thePublication.theAuthor a where 

n.theEpithet.theName = "Apium" 

Note that in Prometheus the direction of traversal is only required if there may be an 

ambiguity. The three relationships used in this query, thePublication, theEpithet, and 

theAuthor are not recursive relationships, therefore cannot be traversed in the wrong direction. 

What names have been published by a specific taxonomist? 

176/196 



Appendix II. Benchmark 

For example: find the names that Linnaeus published 

In standard OQL: 

(Q4) Select * from Name n where 

n.thePublication.theAuthor.surname 

In POOL: 

(Q5) Select * from Name n where 

n. thePublication.theAuthor. surname 

What is the taxonomic type of a name? 

For example: find the type of Apium. 

In standard OQL: 

"Linnaeus" 

"Linnaeus" 

(Q6) Select n.LinkToType from Name n where 

n.theEpithet.theName = "Apium" 

In POOL: 

(Q7) Select n.LinkToType from Name n where 

n.theEpithet.theName = "Apium" 

What specimens have been determined to a specific name? 

For example: what specimens have been determined to Apium graveolens? 

In standard OQL: 

(Q8) Select n.LinkToDetlnv from Name n where 

n.theEpithet.theName = "Apium graveolens" 

Note that LinkToDetInv is the inverse reference of the LinkToDet reference. This query 

therefore assumes that inverse references have been managed by the system (e.g. relationships 

inODMG). 

In POOL: 

(Q9) Select n.LinkToDet.origin from Name n where 

n.theEpithet.theName = "Apium graveolens" 

Note that this query takes into account the fact that relationships in Prometheus can be 

traversed in all directions, as long as the traversal is not prohibited by the traversal flag (see 

section 4.4.3). The "origin" keyword in the query specifies that the traversal of the relationship 

must be performed from destination to source. This query shows that the availability of 

relationships as first-class concepts provides easier navigation and does not require manual 

management of inverse references. This query can also be written from the point of view of 

specimens: 

177/196 



Appendix II. Benchmark 

(QI0) Select s from Specimen s where 

s.LinkToDet.theEpithet.theName = "Apium graveolens" 

Here, the keyword "destination" is not necessary, as the relationship is not recursive. 

As can be seen in the previous example, POOL is very close to OQL. This allows an easy port from an 

existing ODMG compliant database to Prometheus. 

Other queries are less straightforward. These queries involve either the recursive exploration of a 

classification or many classifications, or the extraction of specific classifications (or classifications 

given a context). The examples given next cannot be computed in other existing taxonomic databases. 

For example: 

What is a specific taxonomist's view/classification? 

For example: what is the classification created by Linnaeus and published in "Flora Europea"? 

In OQL: 

As ODMG and OQL do not manage classifications, this query cannot be simply expressed in 

the context of graphs. OQL could only extract nodes that appear in a classification. However, 

if the taxonomic model shown in section 2.3 were implemented as it is in an ODMG database, 

the following query would extract named classifications: 

(Qll) Select ct, ct.CalculatedName from CT ct where 

ct.thePublication.thePublication = "Flora Europea" and 

ct.theAuthor.surname = "Linnaeus" 

This query returns tuples containing CTs (classification elements), and NTs (names). It can be 

seen that this approach has the disadvantage of not returning Specimen objects, as they are not 

CTs. 

In POOL: 

(Q12) Select t.origin, t, t.destination from theCircumscription 

t where t.theCircPublication.thePublication = "Flora 

Europea" and t.theCircAuthor.surname = "Linnaeus" 

This quely extracts all relationships and all nodes involved in the definition of Linnaeus' 

classification published in "Flora Europea". The selection is performed on the basis of 

relationships and their attributes (a specific context is selected). The resulting collection 

contains these objects arranged in triples representing atomic portions (two nodes and an arc) 

of the classification. 

What are the specimens defined in the system that are not used in a particular classification? 

For example: what are the specimens that do not appear in the classification created by 

Linnaeus and published in "Flora Europea"? 

178/196 



Appendix II. Benchmark 

In OQL: 

ODMG/OQL, as most object-oriented models/query languages, do not manage classifications, 

especially overlapping classifications. This type of query is not expressible in such an 

environment. However, on a POOM-like schema, the OQL query would be: 

(Q13) select distinct sl from theCircumscription t, Specimen 

sl, Specimen s2 where sl=t.destination and 

t.theCicPublication.thePublication = "Flora Europea" and 

t.theCircAuthor.surname = "Linnaeus" and s2 != sl 

In POOL: 

(Q14) Select * from Specimen s not in (Select 

t.destination[Specimen) from theCircumscription t where 

t.theCicPublication.thePublication = "Flora Europea" and 

t.theCircAuthor.surname = "Linnaeus") 

Note that the selective downcast operator has been used to select only specimens in the sub

query. 

What specimens appear in the circumscription of a name in a specific classification, and also 

in the circumscription of another in another classification? 

For example: what specimens appear in the circumscription of Apium according to Linnaeus 

and also in the circumscription of Heliosciadium according to Watson? 

Note that the two groups selected do not contain specimens directly, but rather contain other 

groups that may contain specimens (e.g. Species) or that may contain other groups that contain 

specimens (e.g. Sections). 

In OQL: 

As this query is recursive and as OQL does not support recursion, it cannot be expressed. 

In POOL: 

(Q15) Select s from Specimen s where s in (select 

t1.destination[Specimen) from theCircumscription t1 where 

t1.theCircAuthor.surname = "Linnaeus" and 

t1. (theCircumscription.origin)*.theEpithet.theName = "Apium" 

in context) and s in (select t2.destination[Specimen] from 

theCircumscription t2 where t2.theCircAuthor.surname = 

"Watson" and 

t2. (theCircumscription.origin)*.theEpithet.theName 

"Heliosciadium" in context) 

179/196 



Appendix II. Benchmark 

The in context operator is used here in order to keep the traversal of the graph of objects 

in the same classification as the first traversed relationship. Note also the use of the selective 

downcast operator to select objects whose type is Circumscription to only Specimen. 

What specimens appear in the circumscription of a name in a specific classification, but not in 

the circumscription of another in another classification? 

For example: what specimens appear in the circumscription of Apium according to Linnaeus 

but not in the circumscription of Heliosciadium according to Watson? 

In POOL: 

This query is similar to (Q15). 

(Q16) Select s from Specimen s where s in (select 

tl.destination[Specirnen) from theCircumscription tl where 

tl.theCircAuthor.surname = "Linnaeus" and 

tl. (theCircumscription.origin)*.theEpithet.theName = "Apium" 

in context) and s not in (select t2.destination[Specirnen) 

from theCircumscription t2 where t2.theCircAuthor.surname 

"Watson" and 

t2. (theCircumscription.origin)*.theEpithet.theName 

"Heliosciadium" in context) 

What are the synonyms based on types of a specific group in a specific classification? 

For example: which names at rank Genus are synonyms of Apium (also at rank Genus) 

according to Linnaeus, based on the occurrence of taxonomic types? 

In OQL: 

Absence of recursion in OQL prevents this kind of query. 

In POOL: 

(Q17) Select * from Name n where 

n. (LinkToType[Narne))*.LinkToType[Specimen) in (select 

tl.destination[Specimen) from theCircumscription tl where 

tl.theCircAuthor.surname = "Linnaeus" and 

tl. (theCircumscription.origin)*.theEpithettheName= "Apium" 

in context) and n.theRank.theName = "Genus" 

The extensive use of the selective downcast operator simplifies the query and allows recursive 

querying on subtypes. Without that operator, the query would have been more complex, as 

shown in query (Q16). In effect, POOL extracts all specimens that belong to a specific 

classification (sub-query) and then recurses down the type hierarchy until Specimen objects 

are found (repetition of traversal of Name types until Specimen types are found), and only 

retains those that appear in the sub-query classification. 

1801196 



Appendix II. Benchmark 

What are the synonyms based on specimens to a specific group in a specific classification? 

For example: which names at rank Genus are synonyms of Apium (also at rank Genus) 

according to Linnaeus based on specimens? 

In OQL: 

Absence of recursion in OQL forbids this kind of query. 

In POOL: 

(Q18) Select * from Name n where 

n. (theCircumscription[Name])*.theCircumscrition[Specimen] in 

(select tl.destination[Specimen] from theCircumscription tl 

where tl.theCircAuthor.surname = "Linnaeus" and 

tl. (theCircumscription.origin)*.theEpithettheName= "Apium" 

in context) and n.theRank.theName = "Genus" in context 

The in context operator is used on the main query because it is essential to stay in one 

specific classification once it has been entered. It would not make sense to switch between 

classifications at any time. 

181/196 



Appendix II. Benchmark 

11.2 Performance test 

11.2.1 POET schema 

The following schema (Figure 47) has been implemented in POET to serve as a reference point 

benchmark. 

I MOdUI;; module 
assemblies 

\ sUbAssem'CL.*s~1 AsSemb'J 

O.~* //1 
/ l ~ 

superAssemblY \ \ I / \ _ , 
c / I BaseAssembly 

! 
DesignObj 

&bid: int 
&bbuildDate : int 
~type : charD 

0 .. * \ o*"U,s, edlnPriv 
usedlnShar\ .. , 

\ 

com po nent\har 

'" componentsPriv 

L 
AtomicPart 

&bx: int rootPart 
&by: int 
~docld: int 

, ____ ,------.J from 

to 

0 .. * /0 .. * 

partOf 

to 0 .. * 

Connection 

&btype : charD 
0 .. * I ~Iength : int 

Figure 47: POET benchmark schema 

parts 

0 .. * 

Note on this schema: the semantics of relationships have not been represented. For example, 

componentsPriv should be an aggregation relationship with non-sharing behaviour. However, as 

these semantics are not expressible in POET, as in most object-oriented databases, they are 

implemented as pointers and it is left to the implementation code to maintain consistency. 

182/196 



Appendix II. Benchmark 

11.2.2 Prometheus Schema 

The following schema (Figure 48) has been implemented using Prometheus' features in order to test 

the performance of the system. 

x: lilt 
y: int 

docId: int n 

Figure 48: Prometheus benchmark schema 

'l'iv 

n 

183/196 



Appendix II. Benchmark 

11.2.3 Results 

Tests T1 & T2 

These two tests show the time necessary to load an object in the case of a new empty transaction with 

empty object cache (cold) and in the case of an existing transaction (hot). The graphs show that the 

time necessary to load an atomic part from the database is less expensive with Prometheus than with 

POET, whether the database is hot or cold. This surprising result (Prometheus uses POET, therefore 

should not be faster) can be explained in part by the fact that objects in Prometheus are generally more 

numerous (relationships are explicitly represented), but smaller than in POET (see II.2.4.4). 

Small database T1 Small database T2 

900 900 

800 800 ~I --'=======:<:===~-l 
700 wi--------------------------~ 

roo 

i soo . 
E400 
;:: +-----------------------------------ll::;~~~ 

I : t= _____________________ ~ -+-POET 

~ 400 ~_ ~Prometheus 
300 

200 :t=-----
'00 

o I 
100 t-------:c----

SmaU 3 SmallS Small 9 Small 3 SmallS Small 9 

The comparison T1 versus T2 also shows that the object cache provided by POET is not efficient and 

does not reduces the cost of performing the operation. In fact, as POET is a multi-user database system, 

each time an object is resolved (which includes each time its attributes are accessed), POET verifies the 

locking of these objects therefore goes to the database file and reads this information. 

Tests T3 & T4 

Tests T3 and T4 allow the comparison between the cost of loading "normal" objects and the cost of 

loading relationship objects. The graphs show that loading a relationship is constantly slower (about 50 

ms) than loading a "normal" object (also with Prometheus). This is in part due to the size of objects and 

the existence of indexes for relationship objects. 

Small database T1 vs T3 r-=-- Small database T2 vs T4 ----------1 
, 

, '20 j __ , 

140 -- ------ ------ ~d '''' ~-~---------- -~----------------- --I I' 

120 L--_.--±' =====-.= __ = __ =0<_ 

lOOt -----~ I 

ao .J
1 

Fe"m'th'"' T41 
00 \ -tJ- Prometheus 12 

, . 

thous 13 ': ~- .-- --- -.--- J ~;::thou' Tl 
60 j_ 

40 -f---------------- "'1 -~ I 

20 +------ --j 20 1 ~ 

I 
Small 3 Small 6 SmaD 9 ) I Small 3 Small 6 Small 9 ~ 

1841196 



Appendix II. Benchmark 

Test T5 

Test T5 explores two hierarchies of objects: the assembly hierarchy and the parts hierarchy. It shows 

the cost of traversing simple graphs (assembly hierarchy) and complex graphs (the highly connected 

part hierarchy). The graph shows that because Prometheus uses relationship objects instead of 

references, the traversal of hierarchies is constantly more expensive than in POET. 

Small database T5 

3(X)(X) T-........ . . .................. , 

25000 1 -. ____ .-a 

----.~---.-
2IXlOO I •. __ ~ 

f15000L F' -+-POET 
10000 - ...... P,om,1I,,,,, 

--------~----==:;=~="---
5000 +_1----------

Small 3 SmaH6 Small 9 

Test T6 

Like T5, T6 performs a graph traversal. However, instead of traversing both the assembly and the parts 

graphs, it only traverses the assembly hierarchy and retrieves the root part of the last base assembly 

object. The test shows how expensive the traversal of the complex pmt graph is (over 30% of the whole 

task in the case of Prometheus) and it shows that traversing relationships adds a constant cost to the 

operation. 

Small database T6 

10000 

1~j ~========4=========~--~; 

1XOOj ________ . 

!'::t------------~ ~-PO-ET-~ ...•..• Prometheus 

0000 ~~==========+=========~ 

~+-I--------------~ 

XOOj j 

Small 3 Sma" 6 Small 9 

Test T7 

In addition to a graph traversal as in T5, T7 performs updates on the objects it encounters (one update 

per composite part). This shows the cost of updating many objects. Once again, the graph shows that 

Prometheus is constantly more expensive. 

185/196 



Appendix II. Benchmark 

Small database T7 

300<XJ 1 --~~-~ 

1 
25000 +-- ______ ~---_-----~ _,. 
20000 +-1 ___________ _ 

I-+-POET 
1:£>00 +----- ~rometheus 

10000 , -=--==-===-----5000 ----J 
Small 3 Small 6 Sma" 9 

Test T8 

Test T8 performs the same operations than T7, but instead of updating one atomic part per composite 

part, every atomic part encountered is updated. The graph shows that the price of updating a large 

number of atomic parts is not noticeably more expensive than updating only one atomic part per 

composite part. 

Small database TS 

30000 
25000 1 ............ ! 

g 20000 c ..... --- ---.... -------------. : 
• 15000 ---' E ! ~ ! 10000 - . - -~! -+- POET ~,_________ 11 ,,--

5000 +-1 ~~~--- --~--~-

Small 3 

Test T9 

Test T9 goes further than T8 and updates every encountered atomic part four times. The graph shows 

that the cost of four updates to the same object is not more expensive than a single update. This is due 

to the fact that objects are only committed once at the end of the transaction. 

Small database T9 

30000 1 ._--_ ..... . ........... _._-. 

25000 tl ___________ _ 

20000 +--- .... _---- ____ u--------- .. - -- 1 

15000 I ! I-+- POET 

, -.w- Prometheus 

10000 I ==- .----
5000 1 ----i 

Small 3 Small 6 Small 9 

1861196 



Appendix II. Benchmark 

Note that tests T5 to T9 show a parallel increase in the cost of traversal and updates between POET and 

Prometheus. This shows a similar ability to scale for access and updates. 

Test TlO 

TIO compares the cost of updating a "fake" relationship object in POET (an object used as a 

relationship) and a relationship object in Prometheus. The graph shows that updating relationships in 

Prometheus is more expensive than "relationship" objects in POET and that the costs increase 

generated by updating relationships goes up faster than the cost of updating "fake" relationships. This 

may prove a problem when Prometheus needs to scale up. 

Small database no 

4~r---------------------------

!~ ///0/-/1 
~ = ,,/ --1 ~ POET-------C 

____ Prometheus 

1~1 ~ 
10000 ===---=---=--
~ +-1-------

Sma!l3 SmaH6 Small 9 

Test Ql 

The purpose of Q 1 is to compare the speed of retrieval of an atomic part from the database. The graph 

shows that Prometheus is significantly slower than POET for the evaluation of simple path expressions 

(the traversal of a single attribute). The cost of the operation is nearly constant across the tests in both 

Prometheus and POET because the number of connections has no influence on Prometheus' resolution 

of objects and POET does not resolve objects while it evaluates queries (see II.2.4.6). 

Small database Q1 cold I 
leroxJ 

160000 " .. -
'- -.--.--.-.. -.~ .. -~---...... 

140000 

1= 

:[1OCXXXJ ! l--POET 
~8C(X)) ...... ~Prometheus 

60000 

40000 

= 

SmaU3 SmallS S"",,9 

Note that with POET (unlike Prometheus), it is necessary to commit the transaction in which objects 

have been created before they can be queried. 

1871196 



Appendix II. Benchmark 

r
--' Small database Q1 wann 

l00:xxJ 

l00:xxJ 

1~ 

laxxxJ 

! 1CXXXX) --+- POET I 

1 oo::ro 1-.• -- prometha16i ... 
oo:xxJ 

~l------------------------~ 

axxxJ I o-----j 

Sma!t3 SmallS Sma/I 9 

The warm run shows that POET is not affected by the objects present in the Transaction (POET does 

not query on transient objects). Prometheus is only slightly affected by those objects, as the results are 

only a few seconds slower than a cold run. 

Qt hot 

25000 

axxxJ 

_'5000 

i I r;-POE~ 
~ 
" .0000 

_____ Prometheus 

5000 

Small 3 Small 6 Sma!l9 

The hot run shows the advantages of the built-in Prometheus indexes. As a query is run the path that 

was traversed and the objects contained in that path are indexed, which allows a faster later traversal of 

the same path (possible as part of a different query). 

Test Q2 

Test Q2 measures the time necessary to scan the atomic parts collection (extent). Combined with Ql, 

Q2 shows the cost of exploring a very simple path expression independently of the time necessary to 

scan a collection. It can be seen that Prometheus is slower than POET for a query, but faster for 

scanning a collection. Combined with TI, it can be deduced that this is partly because of the size of 

objects in Prometheus is generally smaller than in POET (see results of test TI and section II.2.4.4). 

The fact that the cost of object resolution increases in a linear manner with POET whereas it is constant 

in Prometheus can be explained by the fact that when the atomic parts are resolved, the number of 

connections the parts are involved in has an impact on the cost of the operation in POET (in POET 

close objects are resolved as well). 

1881196 



Appendix II. Benchmark 

Small database 02 

40000 ,= .. ~ 
I""'" =J ;: 15000 I.-.-POET d 
~_ .•.... ____ 1 __ ···Promelheus 

-~. 1:--· I 

SmaU3 SmallS Sma!19 

Test Q3 

Test Q3 shows the difference in cost between writing a purpose driven recursive program with POET 

and a generic recursive query with Prometheus. The test shows that what is gained in simplicity for 

expressing queries (the POET program can be expressed with only one Prometheus query) is lost in 

performance, as processing queries recursively makes it harder to exploit specific features in the data 

(e.g. the 007 data is highly connected in the area where test Q3 is made, which makes evaluation of 

recursive queries inefficient). 

Small database Q3 ~ -l 
120000 .,~~~-~---~-------. -- - ----, 

100000 I ~ -------... - ---.- .-.: , 

! ~ --------------- -+-~ 

80000

1 
~ 40000 t----------------! -· .. ·-Prometheus 

~rl--------------~ 

SmaU3 Small 6 Small 9 

Note that although the graph does not show it clearly because of the difference in scale between POET 

and Prometheus results, the increase in time from one test to the next is the same (about 10%). 

Test Sl 

Test S 1 shows the cost of creating a large number of objects, including a significant part of 

relationships. It can be seen that Prometheus is much slower to create these objects than POET and the 

cost increases faster than similar operations in POET. This is because Prometheus uses relationships 

objects, therefore not only manages a larger number of objects, but these objects are more expensive to 

manage (see results of test TlO). 

189/196 



Appendix II. Benchmark 

Small database 51 

80000 

70000 
~,,/j 

// 
80000 

/",--// 

50000 

"",;""",,-

--
I~ 40000 .~ 

r ______ Prometheus 

30000 

200()() 

10000 

01 
SmaU3 SmallS Small 9 

Test S2 

Test S2 allows the comparison of the cost of creating objects to the cost of deleting objects. The graph 

shows that deleting an object is less expensive than creating one in POET, whereas it is much more 

expensive to delete an object than create it in Prometheus. This is partially due to the fact that events 

are detected and fired when objects are deleted. This is also due to the fact that Prometheus has to 

maintain indexes that need to be updated after deletion. As Prometheus' indexes are objects, updating 

an index requires fetching additional objects and updating them. This adds to the cost of deletion. 

Small database 52 

700000 ....... ---.~.--

600000 

500000 -,L-----
// 

]: 400000 
/ 

/ ~~ 
~3(XXOO / 

/. ! l····-prometheus / 

/ 
/ 

/ 
200()()0 ----------/ .-
100000 

Small 3 SmallS Small 9 

11.2.4 Analysis 

11.2.4.1 The package problem 

As a design choice in this system, the ability to port the mechanisms provided to new underlying 

database models was selected. This means that whatever mechanisms are implemented, they need to 

function as a user application, not as a pmt of the database. This has two major consequences: the non

availability of indexes that are handled by the underlying database system and are specific to such 

systems, and the necessity to instantiate any object that is accessed at any time. This can be seen in 

tests such as (Ql), where the absence of object indexes and the necessity to resolve every traversed 

object handicaps Prometheus versus POET. 

1901196 



Appendix II. Benchmark 

The availability of system indexes to user applications is a consequence of the design of the underlying 

database system. Some databases provide access to these indexes and others (as it is the case of the 

database system chosen for this project) do not. The inability to access indexes implies that it is not 

possible for user applications (Prometheus is one, as it is simply a package added to a given system) to 

gain access to fast means of fmding specific objects in the system. This means that two approaches can 

be considered: the implementation of surrogate indexes by the user application and the necessity to 

perform a full access (including object and pointer resolutions) each time an object is handled. The first 

solution is only applicable if the underlying system provides extent event notification, i.e. only if it is 

possible to know that an object has been created, changed, or deleted so that the system can take the 

necessary action to maintain indexes. In addition, as they are additional (redundant) indexes, they apply 

an overhead to all system operations, as possibly two distinct, but equivalent indexes, may be 

maintained concurrently by two pmis of the system. The second approach has the inconvenience of 

forcing the system to load fully and to resolve pointers of objects that are accessed, even though they 

might not be really interesting for the current task. For example, a query that searches for a specific 

object with a specific attribute value would have to load all the objects that might be of interest in order 

to find only one (i.e. a full scan of a class' instances in order to find only one instance). 

The necessity to instantiate all objects accessed by the system is an important drawback of the package 

approach. As object resolution and pointer resolution is an expensive task, especially for large objects, 

the system should try to perform them as little as possible. However, being a package independent of 

the underlying database implies that any object access passes through the underlying system and fully 

resolves the accessed objects. This overhead is especially important in queries, where optimisations can 

reduce the search space (e.g. by evaluating queries in reverse because it is known that targeted sets of 

objects are smaller than targeting sets). If looking for a single object in a collection (e.g. extent) implies 

a complete scan of the collection and the instantiation of all the objects contained therein, the query 

will be extremely expensive compared to the equivalent query without instantiation. 

Furthermore, multi-user access implies checking regularly in the database the locking status of the 

objects accessed. Indeed, when an object is accessed during a read-only transaction, it can be accessed 

by many other systems that access it in read only too. Therefore, even when objects stay in memory 

after the end of a transaction (as may happen as some other objects might reference them between 

transactions), accesses to the database are necessary occasionally, which slows down access to objects. 

Likewise, between two transactions in a single application, objects may have been changed by another 

application, therefore need to be checked. 

Prometheus is a package implemented on top of an existing object-oriented database. As that database 

does not give access to its internal indexes (they only exist in the innermost parts of the system), 

Prometheus needs to instantiate all accessed objects at a given moment. This implies slow querying. 

1911196 



Appendix II. Benchmark 

Integrating Prometheus more deeply in an existing database system may provide a better approach from 

the performance point of view. This would allow access to indexing structures, it would avoid the 

necessity to instantiate all the objects that are handled, and it would allow the implementation of more 

efficient indexes (that do not need to manipulate persistent objects managed by the system itself). 

11.2.4.2 Indexing 

The indexing technique used in order to speed up query evaluation has an overhead on the functioning 

of the system. Indeed, it requires that each time an object that might invalidate the result of a query is 

changed, created, or deleted, the index of that query should be discarded and fully re-evaluated the next 

time it is requested by the user. (Sl), (S2), (T7), (T8), and (T9) show this phenomenon: the creation 

and deletion of relationships require the indexing or de-indexing of relationships, and possibly 

invalidation of query indexes. The update of "normal" objects in Prometheus also requires more 

resources than in POET due to changes made to indexes (e.g. path indexes). 

The independence of classified objects from the classification also has an impact on the performance of 

the system. An argued (but debatable) advantage of object-oriented systems over relational systems is 

their ability to follow pointers economically. Indeed, following a pointer only implies resolving OIDs 

and possibly loading objects from disk to memory. Although this is expensive when large portions of 

instances of a single class are accessed (the whole class is not necessarily loaded in memory as a page 

or a table might be in relational systems), this is economical in some circumstances, for example 

compared to relational joins. In Prometheus however, as first-class relationships are supported, 

traversing a graph of objects is not a straightforward traversal of a series of pointers. The economical 

cost of traversing pointers versus joins is true in the case of Prometheus. Traversing a relationship 

implies at least one join (to find the relationships that start in the right object) and pointer following (to 

go to the next object via the destination attribute of the relationship). One could argue that this 

overhead could be avoided by maintaining reverse pointers in objects that are targeted by relationships, 

but this option is not allowed by one of the requirements of the system: classified objects (therefore 

targeted objects) should not be designed in order to be classified, i.e. if these objects do not maintain 

reverse pointers it is not possible to modify them. 

A naive evaluation of this process would imply two scans of (possibly) large extents (the starting object 

class' extent and the relationship class' extent) and one pointer following. In Prometheus, an index has 

been created in order to avoid unnecessary scans of relationship extents (see 6.1.5.2). The advantage of 

these indexes is pmiially shown in (Q2) where reverse references are managed via indexes in 

Prometheus, whereas they are managed as duplicate references in POET: in Prometheus, the resolution 

of "normal" objects does not involve the resolution of connected objects/relationships. However, 

looking up a hash table is more expensive that simply following a pointer. It also depends on the 

implementation of the stored structures and their scalability. This can be seen in (T5) where the cost of 

traversal is higher than traversing references. 

192/196 



Appendix II. Benchmark 

11.2.4.3 Active system 

The implementation of active rules and constraints in Prometheus also participates in the performance 

overhead of the system. Indeed, active system implies event detection, execution of rules, and actions 

taken as a consequence of the execution of these rules. Active database systems are notoriously slower 

than non-active systems. In Prometheus, tests (SI) and (S2) show the cost of these features compared to 

the cost of simply creating and deleting objects in POET (note that although rule evaluation has been 

switched off, event notification is still activated as it is fundamental to Prometheus' working). 

The modification of an object in Prometheus results in the system detecting the event, then checking 

whether it is associated with any rule. The search for the rules can be optimised by clustering rules that 

depend on the same events together. However, searching for these rules generates a non-negligible load 

on the system that would not exist if it were a passive system. When the necessary rules have been 

found, Prometheus needs to evaluate the event part of the rule in order to check whether the action (or 

constraint in Prometheus) part of the rule should be executed. Then the action/constraint part of the rule 

can be executed or stored in the rule scheduler for later execution, depending on the type of the rule 

(see section 5.2.2). 

When this process occurs each time an object is created, modified, or deleted, the load becomes 

significant. Other database systems that have been turned into an active system have encountered the 

same problem (e.g. Adam). 

II.2.4.4 The philosophy 

Prometheus manages relationships explicitly in order to offer a better modelling ability and more 

features. As was explained in section 4.8.l, all relationships should be represented by explicit 

relationships with Prometheus. For this benchmark, all relationships have been implemented in this 

way. The consequence is that complex "large" objects are broken down into smaller objects (as in a 

graph-based database), some representing relationships, others representing attributes references via 

relationships. Therefore, in a Prometheus database, the objects are likely to be a lot smaller than their 

equivalent in other systems. The cost of loading such objects therefore also goes down, as if the task is 

not interested in attributes, they are not loaded as part of the necessary object/reference resolution. See 

tasks (Tl) and (T2) for example. 

However, when the objects that are referenced by the object of interest are to be loaded, the cost of 

resolving the web of objects is higher than resolving a few references because this requires loading far 

more objects than in the case of common databases. Indeed, as well as the object of interest and its 

attribute objects, relationships linking them need to be loaded and resolved in order to be able to make 

the connection. (T5) shows that these external relationships increase the cost of traversing graphs of 

objects, as additional objects must be resolved during the traversal. 

1931196 



Appendix II. Benchmark 

11.2.4.5 Programming language 

The programming language chosen for this project is Java. This language has the advantage of not 

requiring recompilation to run on new systems. As taxonomists use many different platforms (PC, Mac, 

Sun) and different OS (Windows, Mac OS, SunOS, Linux), this was thought a good choice. 

However, this language brings its own problems. The main problem that has arisen during the project is 

its speed. The speed at which Java runs depends on many design choices: it is interpreted, therefore the 

executed code is not native machine code and needs to be translated first (on the fly or not, depending 

on the use of runtime compiling technology); it supports garbage collecting, which simplifies 

development but increases object creation time (therefore instantiation time of persistent objects) and 

deletion time. There are Java compilers but they were not used in this project to facilitate debugging. 

The underlying database query language and persistent mechanism are implemented in C++. It is well 

known that C++ performs better than Java (at the price of less straightforward portability). POET only 

provides a Java API that manages transactions and forwards all other calls to the C++ kernel. 

Comparing Prometheus to POET implies taking into account these differences and limitations. This 

difference explains pmily the performance difference between Prometheus and POET when queries are 

run (Ql), but is hard to quantify precisely as it is part of a larger process (query evaluation, which 

implies additional object instantiation on Prometheus). 

11.2.4.6 Transient vs. Persistent querying 

It appears that object resolution in POET (the underlying database) is an extremely expensive process, 

especially when performed on large objects. POET overcomes this problem in queries by only 

performing queries on persistent indexes, i.e. on data that has been committed to the database. This 

provides a means to access fast efficient search structures (persistent indexes) and avoids object 

instantiation and object resolution. This can be seen in test (Q 1) warm, where Prometheus does not 

only searches on disk, but also searches in memory for transient objects (or for the latest version of 

objects, which POET would ignore). 

Although querying on persistent indexes is a sensible approach in some rare cases, on most cases this 

limits the ability to perform transient queries and therefore the ability to implement a constraint/rule 

mechanism. Indeed, rules should be evaluated when they need to be evaluated (after an event), i.e. they 

might need to be evaluated before the end of the transaction, therefore on the transient state of the 

database, not on its persistent state. Prometheus' queries do not take this approach and transient objects 

can be queried as well as persistent objects. This choice imposes an important overhead on 

Prometheus' query engine: efficient persistent indexes are useless in most queries, and object resolution 

slows down the speed at which objects can be traversed. 

1941196 



Appendix II. Benchmark 

In addition, this transient querying requires access to the list of objects that have been modified and to 

their state at various stages of the transaction (e.g. the latest state or the state at the time a rule has been 

triggered). Not all database systems provide access to this information and the underlying database 

used in this project does not. In order to have access to these structures, a technique that can be called 

"class hijacking" has been devised. It exploits a security weakness in Java: Java reads classes in the 

order they are found in the class path, therefore if a class with the same type as another is found first in 

the classpath, it will be used instead of the other. A new transaction class has been created with the 

same interface and behaviour as the underlying database's transaction classes, but with the ability to 

provide to user applications information about the state of objects in the transaction. 

However, this technique has its own performance drawback: when transient objects are queried, their 

appropriate state must be found. This implies a scan of all objects that have been modified in the 

transaction and the selection of the state of the appropriate object. This search, performed on all objects 

that reside in memory, which is very expensive, especially in long transactions where an important 

number of objects are accessed and modified and especially because the list of modified objects is not 

ordered (this list is managed by the underlying database). The solution could be the creation of 

transient indexes that manage objects in transactions. 

II.2.4.7 Recursive querying 

Recursive querying is an essential feature of a system designed to support taxonomic work. Indeed, in 

the view of taxonomy that Prometheus SUppOlts (but to which it is not limited), specimens are the most 

important part of a classification and the only objective piece of information available to taxonomists 

that are not the authors of a specific classification. Most of the processes involved in the taxonomic 

processes that must be suppOlted by the system imply a recursive exploration of the classifications: the 

derivation of names, the comparison of classification or branches of classifications, and the extraction 

of synonymy information. (Q3) shows the price of these features. 

The kind of recursive querying that Prometheus supports includes the exploration of (possibly cyclic) 

graphs of unknown depth. When the depth of the graphs is not known, it is hard to optimise the query 

evaluation (more specifically the evaluation of the recursive part of the query), as the objects that must 

be traversed is unknown. In addition, Prometheus does not provide many optimisation features (see 

section 6.1.5). 

In Prometheus, recursive queries are evaluated using recursive calls to an evaluation function. This has 

the advantage of fitting well with the way recursive queries must be treated, but it has the disadvantage 

of requiring the intensive use of the stack. Indeed, each time a relationship or a reference is followed in 

a recursive statement, the state of the system is stored on the stack to allow returning to that point in 

case of unsuccessful evaluation and exploration of an alternative path. This use of the stack is 

expensive memory-wise (many objects must be copied on the stack) and performance-wise (many 

objects must be copied, therefore the garbage collector is used intensively). 

195/196 



Appendix II. Benchmark 

This evaluation combined with the package approach to the implementation of the system and the 

transient programming necessary to support an active system means that many objects must be 

instantiated and resolved unnecessarily (in case of unsuccessful evaluation of a path), which is time 

consuming. 

Additional index could be used in order to avoid recursivity in the evaluation of queries. For example, 

indexes of paths could be devised so that when a query requires the repeated traversal of a relationship 

from a node, all nodes reachable from the stating node could be found immediately, without the costly 

exploration of the graph. In effect, this index would "flatten" the graph into a set of indexed paths. 

196/196 


	247479_0001
	247479_0002
	247479_0003
	247479_0004
	247479_0005
	247479_0006
	247479_0007
	247479_0008
	247479_0009
	247479_0010
	247479_0011
	247479_0012
	247479_0013
	247479_0014
	247479_0015
	247479_0016
	247479_0017
	247479_0018
	247479_0019
	247479_0020
	247479_0021
	247479_0022
	247479_0023
	247479_0024
	247479_0025
	247479_0026
	247479_0027
	247479_0028
	247479_0029
	247479_0030
	247479_0031
	247479_0032
	247479_0033
	247479_0034
	247479_0035
	247479_0036
	247479_0037
	247479_0038
	247479_0039
	247479_0040
	247479_0041
	247479_0042
	247479_0043
	247479_0044
	247479_0045
	247479_0046
	247479_0047
	247479_0048
	247479_0049
	247479_0050
	247479_0051
	247479_0052
	247479_0053
	247479_0054
	247479_0055
	247479_0056
	247479_0057
	247479_0058
	247479_0059
	247479_0060
	247479_0061
	247479_0062
	247479_0063
	247479_0064
	247479_0065
	247479_0066
	247479_0067
	247479_0068
	247479_0069
	247479_0070
	247479_0071
	247479_0072
	247479_0073
	247479_0074
	247479_0075
	247479_0076
	247479_0077
	247479_0078
	247479_0079
	247479_0080
	247479_0081
	247479_0082
	247479_0083
	247479_0084
	247479_0085
	247479_0086
	247479_0087
	247479_0088
	247479_0089
	247479_0090
	247479_0091
	247479_0092
	247479_0093
	247479_0094
	247479_0095
	247479_0096
	247479_0097
	247479_0098
	247479_0099
	247479_0100
	247479_0101
	247479_0102
	247479_0103
	247479_0104
	247479_0105
	247479_0106
	247479_0107
	247479_0108
	247479_0109
	247479_0110
	247479_0111
	247479_0112
	247479_0113
	247479_0114
	247479_0115
	247479_0116
	247479_0117
	247479_0118
	247479_0119
	247479_0120
	247479_0121
	247479_0122
	247479_0123
	247479_0124
	247479_0125
	247479_0126
	247479_0127
	247479_0128
	247479_0129
	247479_0130
	247479_0131
	247479_0132
	247479_0133
	247479_0134
	247479_0135
	247479_0136
	247479_0137
	247479_0138
	247479_0139
	247479_0140
	247479_0141
	247479_0142
	247479_0143
	247479_0144
	247479_0145
	247479_0146
	247479_0147
	247479_0148
	247479_0149
	247479_0150
	247479_0151
	247479_0152
	247479_0153
	247479_0154
	247479_0155
	247479_0156
	247479_0157
	247479_0158
	247479_0159
	247479_0160
	247479_0161
	247479_0162
	247479_0163
	247479_0164
	247479_0165
	247479_0166
	247479_0167
	247479_0168
	247479_0169
	247479_0170
	247479_0171
	247479_0172
	247479_0173
	247479_0174
	247479_0175
	247479_0176
	247479_0177
	247479_0178
	247479_0179
	247479_0180
	247479_0181
	247479_0182
	247479_0183
	247479_0184
	247479_0185
	247479_0186
	247479_0187
	247479_0188
	247479_0189
	247479_0190
	247479_0191
	247479_0192
	247479_0193
	247479_0194
	247479_0195



