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Abstract: 
Microarrays technologies are a relatively new development that allow 
biologists to monitor the activity of thousands of genes (normally around 
8,000) in parallel across multiple stages of a biological process. While this 
new perspective on biological functioning is recognised as having the 
potential to have a significant impact on the diagnosis, treatment, and 
prevention of diseases, it is only through effective analysis of the data 
produced that biologists can begin to unlock this potential. A significant 
obstacle to achieving effective analysis of microarray time-course is the 
combined scale and complexity of the data. This inevitably makes it difficult to 
reveal certain significant patterns in the data. In particular it is less dominant 
patterns and, specifically, patterns that occur over smaller intervals of an 
experiment’s overall time-frame that are more difficult to find. While existing 
techniques are capable of finding either unexpected patterns of activity over 
the majority of an experiment’s time frame or expected patterns of activity 
over smaller intervals of the time frame, there are no techniques, or 
combination of techniques, that are suitable for finding unsuspected patterns 
of activity over smaller intervals. In order to overcome this limitation we have 
developed the Time-series Explorer, which specifically supports biologists in 
their attempts to reveal these types of pattern by allowing them to control an 
animated interval scatter-plot view of their data. This paper discusses aspects 
of the technique that make such an animated overview viable and describes 
the results of a user evaluation assessing the practical utility of the technique 
within the wider context of microarray time-series analysis as a whole. 
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Introduction 

The development of microarray technologies [1; 2] has revolutionized 
biological and biomedical research, specifically in the area of gene expression 
analysis. Gene expression is a key indicator of a gene’s activity and where 
previous technologies only allowed biologists to monitor the activity of a few 
genes at a time, microarray experiments allow them to monitor the activity of 
thousands of genes in parallel across multiple conditions or [3], more 
commonly, across multiple stages of a biological process [4; 5; 6] to generate 
microarray time-course data. Figure 1 shows an expression against time plot 
of microarray time-course with the range of values at each time point defining 
a grey area and the time-series of a single gene highlighted.  
 

 
 
This new perspective on biological functioning has a number of advantages. 
Most significantly, the ability to monitor large number of genes in parallel 
allows biologists to investigate biological processes without the necessity of 
prior information indicating that any particular gene or group of genes are 
involved. Moreover, subject to proper analysis, the data produced by 
microarray experiments has the potential to reveal the existence and 
relationships between biological phenomena that combine to realise biological 
processes regardless of whether the existence of such phenomena are 
suspected or not. In effect, where previous technologies allowed biologists to 
test limited hypotheses involving a few genes at a time, microarrays provide 
biologists with data from which they can not only test hypotheses but also 
form new hypotheses as patterns in the data reveal previously unknown or 
unsuspected phenomena [7]. To fully exploit this potential biologists require 
analysis techniques that allow them to make unexpected discoveries and gain 
insights from their data. In order to meet these requirements, analysis 
techniques must support exploratory analysis of the data and overcome 
problems associated with its massive scale and complexity.  
 
At present there are a limited range of techniques that are capable of 
revealing previously unsuspected patterns from microarray data. These 
techniques largely rely on procedures developed for the analysis of 

 
Figure 1 Microarray time-course data.  



multidimensional data and process the data to form clusters (groups) of genes 
based on the relative similarity of recorded expression (characteristic 
examples are  [8, 9, 10]). Time-series data, of the type that is produced by 
microarray time-course experiments, can be conceptualised as a specialized 
subset of multidimensional data [11] with the distinguishing characteristic that 
dimensions (time-points) are ordered. Clustering techniques do not account 
for this aspect of the data and, as a consequence, are ill-suited to revealing 
certain significant patterns in the data [12]. Specifically, clustering tends to 
miss out patterns that occur exclusively over smaller intervals of an 
experiment’s time frame.  
 
An example of a significant pattern that would not be revealed by clustering is 
illustrated in Figure 2. Here a rise then a fall in expression found over a 
particular interval could suggest that a group of genes are related to a 
particular biological process and that that process is associated with the 
experimental conditions. In this case, if the data were clustered, any different 
patterns of expression before or after the interval would cause the related 
genes to be assigned to different groupings with the significance of their 
common activity over the relevant time period lost. 
 

 
 
Visual queries are commonly used to supplement existing clustering 
techniques in order to find certain patterns that exist over intervals. These 
allow the user to specify a required pattern of expression over a limited 
interval of the time-course This can be an acceptable range of values over a 
given interval [13] (top of Figure 3), a change in values between time points 
[13, 14] (middle of Figure 3) or a profile that the expression of genes must 
adhere to [14] (bottom of Figure 3). As type of querying involves the 
specification of a limited time-interval and it is particularly appropriate for 
analysis which might involve the detection of less dominant patterns 
characterized by trends in activity over such intervals. These techniques do 
not, however, allow biologists to reveal these type patterns if they are not 
already suspected. This is due to limitations in the overview provided (which is 
unable to reveal anything other than the range of values at individual time 
points) and means that if a biologist has no knowledge of a process’s timing 
or the genes that participate in the process then they are required to execute 

 
Figure 2 A significant pattern occurring exclusively over an interval (P).  



multiple speculative queries before patterns that relate that process to the 
experimental conditions can be revealed.   
 

 
 
Our research to date has primarily focused on supporting the discovery of 
temporal patterns in microarray time-course and, specifically, the type of 
patterns that cannot be revealed using existing techniques. This has included 
the development of a technique that allows biologists to relate scatter-plot 
representations of time-course intervals to a traditional graph view in order to 
distinguish the time-series of individual genes and groupings of genes from 
the background [15]. This was followed by the development of a technique 
that allows biologists to query the activity of genes over intervals by selecting 
gene representations in an interval scatter-plot view [16]. In this paper we 
describe the Time-series Explorer, which builds on our previous work to 
facilitate the discovery of unsuspected patterns of temporal activity by 
allowing users to animate through scatter-plot representations of successive 
time-course intervals. This includes a discussion of the various display 
techniques used and describes the user interaction processes required to find 
the patterns of interest. The results of a user evaluation, which aimed at 
determining how the technique would be used in the exploration and analysis 
of real experimental data sets is discussed and we assess the Time-series 
Explorer’s advantages over other existing techniques.   
 
Time-series Explorer  
 
A summary of the Time-series Explorer is presented in Figure 4. The 
technique uses two coordinated views of the data: a graph and a scatter-plot. 
The graph view overlays value versus time representations of the recorded 
activity of all genes and allows the user to specify an interval (p in Figure 4). 
The scatter-plot summarizes the data within the selected interval by 
representing each gene as a single point with its translation along the Y-axis 

 
Figure 3 Visual queries (LHS query and RHS query results): an acceptable range of 
values over a given interval (top), an acceptable change in values between time points 
(middle) and a profile that the expression of genes must adhere to (bottom).  



corresponding to its activity over the selected interval and its translation along 
the X-axis corresponding to its change-in-activity from the start to the end of 
the interval. As the graph view controls are manipulated and the selected 
interval is adjusted, the position of genes in the scatter-plot are recalculated to 
adjust for the change in temporal context. Repeated adjustments of the 
selected interval (where the start and end times of the selected interval are 
incremented independently or in parallel) cause the position of genes in the 
scatter-plot to be shifted with the resulting animation allowing the user to 
perceive patterns of gene activity over time. 
 

 
Figure 5 illustrates specifically how the positions of gene representations in 
the scatter-plot are calculated by describing how the activity of a single gene 
over an arbitrary interval (P) is used to generate its axes coordinates. Here, 
the Y-axis translation of a gene summarizes its average activity over all time 
points of the selected interval. This average is calculated as the area under 
the gene’s rescaled time-series enclosed by the bounds of the selected 
interval divided by the number of time points enclosed. This ensures that as 
the interval selection is shifted by increments less that the space between two 
adjacent time-points, the Y-axes translation of a gene can be recalculated so 
that that gene’s representation in the scatter-plot moves gradually along the 
Y-axis. The translation of a gene representation along the X-axis is calculated 
as its activity at the end of the selected interval divided by its activity at the 
start to give a measure of the relative change in activity. In this case when the 
interval is shifted by small increments, values are recalculated using linear 
interpolation so that gene representations shift gradually along the X-axis as 
well as the Y-axis. 
 

 
 
Figure 4 Summary of the Time-Series Explorer.  

 
Figure 5 Attributes of a gene’s time-series over an interval (P) used to determine the 
gene’s scatter-plot coordinates. 



 
Other scatter-plot layouts considered for the Time-series Explorer were a 
multi-dimensional anchor layout [15] and a plot of the activity at the start of the 
selected interval against the activity at the end. While both of these layouts 
produced interesting results with smaller scale time-course data including the 
recorded expression of around 200 genes, neither could cope satisfactorily 
with larger scale data. The layout algorithm of the multi-dimensional approach 
was too complex to allow for a satisfactory animation frame rate and tended to 
overlay genes with diverse patterns of activity when larger intervals were 
selected. When the plot of the activity at the start time-point against the 
activity at the end time-point was animated with larger numbers of genes, 
more complex patterns of activity were difficult to perceive due to difficulties in 
associating the same genes with multiple trends in activity as the animated 
paths of genes with outlying activity tended to cross dense clusters of inactive 
genes.  
 
Design Rationale 
 
The design of the Time-series Explorer is based on two primary assumptions. 
The first of these is that an animated representation of the microarray time-
course data will be able to reveal more of its detail and, therefore, more of the 
less dominant patterns of the type that are not already revealed by existing 
techniques. The second assumption is that, as the data is temporal, it is 
appropriate to present such an animation across time so that the user will be 
able to relate the visualisation to the data with changes over time in the data 
represented as changes over time in the visualisation.  As a quantity of the 
patterns our users wishes to find are less dominant and not determined by 
any pre-knowledge of the data, it was undesirable to irrevocably filter any 
genes from the data-set to be visualised. This made it necessary to make the 
representation of genes in an animation of the data compact. As the most 
compact distinct visual entities are single-points and these combine to form a 
scatter-plot, a scatter-plot type display was chosen to represent interval gene 
activity in the Time-series Explorer visualisation. 
 
The potential disadvantages in using such an animated scatter-plot to analyse 
this type of data are: 

1) The increased delay in seeing the data as it is animated. 
2) The transient nature of pattern perception. 
3) The inability to compare data at multiple time points simultaneously. 
4) The large degree of variation in recorded expression for genes 

between time points which could make it difficult to track genes 
between frames.  

5) The time taken to become familiar with a new alternative view of the 
data.  

 
These are accounted for in a number of different ways.  
 
Firstly, to reduce the delay in seeing the data as it is animated, the user is 
given tight control over the direction and pace of the animation so that they 
can animate slowly over intervals where interesting patterns appear and 



quickly over the remainder of the time course. In this regard the Time-series 
Explorer can be though of as a kind of genomic video cassette player where 
the user can play, fast forward, rewind, slow motion, pause and stop the 
animation of gene activity to examine, and re-examine, the more interesting 
intervals of the data.  
 
Tight control over the direction and pace of the animation also makes the 
second listed potential disadvantage of our animated display, the transient 
nature of pattern perception, somewhat less of a problem. If the animation 
played at a fixed rate from start to finish then it would be possible for the user 
to first see a pattern then, waiting for the animation to finish and viewing other 
patterns in the data, forget what they saw. With a high level of control over the 
animation, as soon as a pattern is seen the animation can be stopped, 
rewound and the pattern can be viewed again or the user can select and store 
the relevant genes’ names for further reference.   
 
The third potential disadvantage of an animated time-course scatter-plot is the 
inability to compare data at multiple time points simultaneously. While a 
comparison of all time-points simultaneously (for the activity of all genes) 
would be impossible for the biologist to digest, there are certain situations 
where it is of particular value to compare a smaller number of time-points. 
Specifically, these are situations where recorded activity at a smaller number 
of adjacent time points define a pattern which occurs over a limited interval of 
the experiment’s time frame. To better facilitate the finding of such patterns 
we have designed the Time-series Explorer so that each frame of the 
animation represents an interval of the time-course rather than an 
instantaneous time-point. While the interval selection cannot comprehensively 
summarise the information contained in an interval containing any more than 
two time-points it is assumed that comparisons between multiples of two time 
points when such a view is animated is enough for biologists to initially 
perceive the majority of interesting patterns. Once such an animation is 
stopped, the relevant genes can be selected based on their activity over the 
selected interval and comparisons with other time points can be made either 
by further animations or, if there is a sufficiently small number of selected 
genes, the linked expression versus time graph view.  
 
Next, the course granularity of the data is potentially problematic in that the 
expression of genes can vary dramatically between time points. This means 
that if an animated scatter-plot of the data were only to include frames relating 
to intervals starting and ending at time-points at which expression is recorded, 
the single point representations of genes would shift dramatically between 
frames and it would be impossible to track genes between time points to 
identify patterns of activity over more than two time points. To account for this 
potential pitfall, the expression of genes is interpolated between the time 
points in the data and the interval selection is incremented by quantities 
independent of the space between time-points for which expression is 
recorded. This allows for an animation where the motion of gene 
representations is smooth and they can be tracked by the user to reveal more 
sophisticated patterns . To prevent the user inferring undue significance from 
interpolated values, the start and end of the interval selection automatically 



move to the nearest time-points for which expression is recorded when the 
user is not adjusting the interval selection. In effect the interval selection scale 
is only continuous when the selected interval is in motion, so that genes can 
be tracked to discern more complex patterns of activity, and discrete when the 
selected interval is fixed for the user to interact with the static scatter-plot by 
making selections and forming queries. 
 
The fifth and final potential weakness of an animated time-course scatter-plot 
is the time taken to familiarise with a new alternative view of the data. While 
biologists are generally familiar with scatter-plot representations of their data, 
two specific aspects of the Time-series Explorers design reduce the time they 
take to become familiar with its own particular scatter-plot layout. Firstly, the 
activity Y-axis of the scatter-plot is placed parallel to the expression axis of a 
coordinated graph view. These axes can be thought of representing 
complimentary notions of high or low activity. The graph representation is 
already familiar to the biologists and the parallel coordination of high/low axes 
encourages familiarity in the scatter-plot by association. As the points in the 
scatter-plot move at the same time as the time selected interval overlay on the 
graph view, the user will associate the scatter-plot with the selected interval 
and familiarise themselves with the Y-axis of the scatter-plot layout. The 
change-in-activity X-axis layout also becomes apparent when the time-interval 
is moved forward. Here genes with rising activity over time have their 
representations rise in the scatter-plot and are shifted to the right. Genes with 
falling activity over time have their representations fall in the scatter-plot and 
are shifted to the left. The association is simple – right rising, left falling.  
 
Rescaling and Distortion 
 
In order for the technique to provide an animated overview of the data from 
which previously unsuspected patterns of temporal activity can be revealed, it 
is necessary to ensure that a biologist can not only relate quickly between 
successive frames of an animated view but also interpret individual frames to 
quickly detect the most relevant information. This means that the most 
relevant aspects of the data must be predominant with the spread of data 
representations appropriate to communicate the extent of outliers and 
realistically portray general trends. 
 
In order to effectively communicate biological activity from microarray data it is 
necessary to account for the fact that any changes in a gene’s expression are 
proportional to its current level of expression and that the activity of a gene is 
indicated by relative changes in expression (either between time-points or 
from some base level) rather than absolute values. While relative changes 
can be derived from absolute values, the fact that changes in expression are 
proportional to expression levels causes the data to have log-normal skewed 
distribution with a large number of low values and a small number of high 
outliers. As low values with low changes may hold valuable biological 
information it is necessary to adjust the spread of the data in any visual 
representation so that the significance of these features is appropriately 
communicated.  
 



The majority of existing techniques (for example [8; 9; 10; 13; 14; 17]) account 
for this characteristic by rescaling the data using a log-transform [18; 19]. This 
makes relative changes comparable across genes and the distribution of 
values close to normal distribution [18].  Eq. (1) describes the transform as it 
is applied to each gene’s time-series where V is the original time-series of a 
gene, LS is the rescaled time-series and base(V) is a derived base value (for 
example, the mean value of expression for that gene or the expression of the 
gene in a control experiment).  
 

))(/)((log)( 2 VbasetVtLS ←  
(1) 

 
The disadvantage of this form of rescaling is that as v(t) tends to zero LS(t) 
tends to negative infinity. This means that the rescaled data cannot be 
completely displayed using a regular finite scale, such as the axes of a graph 
or scatter-plot as required by the Time-series explorer, without 
overemphasizing small changes in very small values. 
 
As an alternative to logarithmic rescaling we use a more basic linear rescaling 
and distort the axes onto which the values are represented. While linear 
rescaling makes values comparable across time-series, distortion improves 
their distribution in the display and represses the dominance of large outlying 
values. Eq. (2) describes the linear rescaling as it is applied to each gene’s 
time-series with V the original time-series of a gene, median(V) the median of 
all values for that gene  and  MS the rescaled time-series. 
 

)(/)()( VmediantVtMS ←  
(2) 

 
The median [20] of a time-series can be considered as a statistical measure 
of what can be considered as a normal value accounting for a skewed 
distribution of values (this being the primary advantage of using median 
rescaling over other popular transformations such as z-scores and mean 
rescaling that would not account for this aspect of the data). Each value in the 
rescaled time-series of a gene is equal to the proportion of its corresponding 
value in the original time-series to the median of all its values. This means 
that, in the rescaled time-series, anything below 1 is below normal activity and 
anything above 1 is above normal activity.   
 
Eq. (3) describes the distortion applied to the graph view Y-axis for rescaled 
values. Here V is a value, Ydisp the position for plotting the value on the axis 
and C1, C2 and C3 are derived so that the maximum and minimum values are 
at the top and bottom of the allowed display space with V=1 (the normal 
value) at its mid-point. 
 

3212 )1(log CCCVYdisp +×+×←  
(3) 

 



An advantage of combining linear rescaling and logarithmic distortion in this 
manner is that when two values for a gene are divided to calculate the relative 
change in value between time-points the factors used to rescale the data 
(both being the gene’s median value) cancel out. This means that the 
rescaled data can be used to calculate values for the X-axes of the scatter-
plot which is used to display relative change. The log transform distortion 
simply improves the distribution of the values in the display and does not 
impact on any further calculations. This means that it can be adjusted 
(specifically by adding one to the argument of the logarithm) to prevent small 
values dominating the display. 
 
In the Time-series explorer scatter-plot each gene is represented as a single 
point with its translation along the Y-axis corresponding to its activity over the 
selected interval and its translation along the X-axis corresponding to its 
change in activity from the first time point to the second. As the distribution 
and range of values along the Y-axis of the scatter-plot is roughly equivalent 
to the distribution of values in the rescaled data, in order to make the 
distribution normal it is appropriate to use the same transform as that used for 
the Y-axis of the graph view (3). While the distribution of values along the X-
axis is also similar to the distribution of values in the rescaled data, the same 
transform cannot be used. This is because when V1 tends to zero Xdisp will 
tend to infinity and logarithmic transforms cannot translate values tending to 
infinity onto a finite range. Instead, an alternative distortion transform was 
constructed using the hyperbolic tangent function. This function is similar to 
the logarithmic function with the notable exception that as a number tends to 
infinity its hyperbolic tangent tends to one. The transform as applied is 
described in Eq. (4) where X is the derived value of change in expression over 
the selected interval, Xdisp is the position for plotting on the axis and C1, C2 
and C3 are derived so that the value for no change (X=1) is in the centre of 
the display space and the values for biologically significant halving or doubling 
of expression (X=0.5 and X=2) are one and three quarters along the display 
space.  
 

321 )1( CCCXTanHXdisp +×+×←  
(4) 

 
The resultant spread of data in the scatter-plot view is illustrated in figure 6. It 
can be seen that from this representation that it is possible to perceive the 
activity of genes with outlying high, low, falling and rising activity over the 
selected interval. If the data were not rescaled or distorted, the majority of 
gene representations would cluster around the bottom left hand side of the 
plot and it would be impossible to interpret anything other than the activity of a 
few genes with high outlying activity over the selected interval. 
 



 
 
Colour mapping 
 
While rescaling and distortion improve the spread of the data in an interval 
scatter-plot view allowing for better detection of outlying patterns of temporal 
activity, the sheer volume of gene representations creates a general grey 
mass of gene representations in the centre of the scatter-plot that makes it 
impossible to perceive the majority of more general trends (Figure 6). While a 
transparency composite [21; 22] would allow a user to more accurately 
perceive general trends by indicating the relative density of overlaid gene 
representations, it would also make it harder to distinguish outliers from the 
background as smaller numbers of overlaid elements are represented with 
their colour closer to that of the background. As an alternative, we have 
developed a colour mapping composite that communicates the density of 
genes through a colour -scale where outliers are significantly different in colour 
from the background and, therefore, easy to distinguish from the background. 
 
Our colour composite is similar to a standard transparency composite in that 
each pixel of the display has an alpha value that is increased by the alpha 
value of overlaid elements. The essential difference in our approach is that 
alpha values are translated into a colour scale rather than used to combine 
the colours of overlaid elements. The scale used (described in Figure 7a) 
ranges from dark-blue, for small numbers of overlaid genes, through blue, 
cyan and green to yellow for larger numbers of overlaid gene representations. 
This attempts to utilize as much of the visible spectrum as possible without 
using reds or greys, which are more appropriately used to represent 

 
Figure 6 The spread of data in the distorted scatter-plot view. 



highlighted and deselected genes. The ordering of colours is such that light 
colours represent a high density of genes and dark colours represent a low 
density of genes. This ensures that dark colours surround light colours, which 
would be otherwise hard to distinguish from the background. Colour-coded 
graph and scatter-plot views are shown in Figures 7b and 7c.  
 
 

 
Interaction 
 
The interaction mechanisms of the Time-series Explorer are best described 
with reference to a screen-shot of its interface (Figure 7d). This contains five 
main panels with which the user can interact in order to manipulate the 
representations of their data. These are the toolbar, graph view, scatter-plot, 
gene list and grouping panel.  
 
The toolbar (i. in Figure 7d) contains 17 buttons in five groups with various 
different functions such as animating the scatter-plot view, changing the 
selection mode on the scatter-plot and viewing details for a selection (see 
Table 1). 
 
Table 1 Functionality of the Time-series Explorer toolbar. 
Group Name Action 

Play Animates the scatter-plot by increasing the start and end times of the 
selected interval at regular intervals of time. 

Pause Pauses the animation. 

Animation 

Stop Stops the animation. 

Select all Selects all genes. Selection 
 

Select none Deselects all genes. 

Freehand selection When selected allows the user to select genes by dragging a 
freehand shape around their representations in the scatter-plot. 

Box selection When selected allows the user to select genes by dragging a box 
around their representations in the scatter-plot. 

Zoom tool When selected left clicking on the scatter-plot zooms in, right clicking 
zooms out and double right clicking zooms out fully. 

Labelling tool When selected moving the mouse over gene representations in the 
scatter-plot causes them to be labelled and have their expression 
patterns highlighted (over the entire time-course) in the graph view. 

Scatter-plot tools 
 

Excentric labelling tool Similar function to that of the labelling tool (above) with the exception 
that all gene representations within the bounds of a circle are 
labelled. Right clicking increases the size of the circle and left-clicking 
decreases its size.  

Replace selection 
mode 

Successive selections replace the previous selection. Selection mode 
 

Refine selection mode Successive selections refine the previous selection (equivalent to 
combining the two results using a logical AND operation). 



 
 
Figure 7 a) The colour mapping used for the Time-series Explorer with the percentage of 
each hue corresponding to the number of overlaid points or crossing lines, b) the scale applied to 
the scatter-plot view, c) the scale applied to the graph view and d) a screen-shot of the Time-
series Explorer interface (i. toolbar, ii. graph view, iii. scatter-plot, iv. selected gene list and v. 
grouping panel). 
   



Add-to selection mode Successive selections add to the previous selection (equivalent to 
combining the two results using a logical OR operation). 

Selected gene details Activates a pop-up window with details-on-demand for the selected 
genes including a cross-reference with other groupings and a list of 
the genes selected with reference to groupings. 

Details 
 

Labelled gene details Activates a pop-up window with details-on-demand for the labelled 
genes including a list of the groupings to which the gene belongs and 
it’s original recorded expression values. 

Find gene Activates a pop-up window that allows the user to find a gene by 
typing its name.  

Miscellaneous 
 

Undo Undoes the previous selection. 

 
 
The graph view (ii. in Figure 7d) allows users to adjust the selected interval to 
focus [23] in on a specific interval or animate the interval scatter-plot to reveal 
general trends and outliers across the time-course. The interaction 
mechanism of the graph view is essentially identical to that of a multi-range 
dynamic query slider [24] utilizing the internal slider space for a visual 
representation of data in a manner similar to that of data-visualization sliders 
[25]. Dragging the edges of a vertical bar overlaid onto the view to represent 
the selected interval allows the user to adjust its start and end times 
independently. Dragging the centre of the bar changes the start and end times 
with the duration remaining constant to shift the selected interval. During this 
interaction if the selected interval is shifted in the positive direction from earlier 
to later time-points changes across time in the animated scatter-plot convey 
changes across time in the data.  
 
During an animation across time, which can be initiated either by interacting 
with the graph view or using the play button in the toolbar for an animation 
with a regular frame rate, genes with outlying high, low, rising or falling 
interval activity remain on the periphery of the scatter-plot and move smoothly 
in a predictable anticlockwise rotation around the axes origin. This effect is 
best explained by relating the axes of the scatter-plot to cardinal points of a 
compass (Figure 8). Genes with low expression have rising before high 
expression moving from south to east to north and genes with high expression 
have falling before low expression moving from north to west to south. The 
rescaling of the gene expression (described above) ensures that genes with 
outlying interval activity kept to the periphery of the scatter-plot and persistent 
outlying (high, low, rising or falling) interval activity will move gene 
representations around the axes origin crossing points of the compass 
somewhere in the sequential order of south, east, north, west, south…. (i.e. 
anticlockwise) for as long as their interval activity is distinct from that of the 
other genes. Conversely, if the animation of scatter-plot is reversed by shifting 
the selected interval backwards gene representations will move clockwise. 
Whichever the direction of animation, this uniformity of rotational direction will 
make it easier to interpret more complex patterns of activity. This is because 
with uniformity of rotational direction the representations of genes are less 
likely to have crossing paths and more likely to remain distinct during the 
animation which, in turn, reduces the ambiguity in relating the representation 
of genes from one selected interval to another and allows genes to be tracked 



across time with multiple trends in activity related to the same genes or gene 
groupings.  

 
 
To complement the benefits of uniform rotational, direction tight control of 
selected interval manipulation using the graph view gives users control over 
the pace of the animation. This allows them to slow down as interesting 
features become apparent, reverse the animation when they want to look at 
something again and stop the animation, when appropriate, to focus in on an 
interesting interval and investigate patterns occurring over that interval in 
more detail by interacting with the scatter-plot view.  
 
Once the user ceases interacting with the graph view there are a number of 
different options for interacting with the scatter-plot (iii. in Figure 7d). The 
majority of these interactions employ standard brushing and linking [23] 
information visualisation operations. If the labelling tool is activated from the 
interface toolbar, moving the mouse over gene representations in the scatter-
plot view causes them to be labelled and have their activity over the entire 
time-course highlighted in the graph view. The functioning of the excentric 
labelling tool (adapted from [26]) is similar to that of the labelling tool with the 
exception that all gene representations within the bounds of a visible circle are 
labelled and highlighted. The additional information revealed by labelling and 
the subsequent coordination between scatter-plot and graph views allows the 
user to rapidly perform a more informed assessment of a pattern’s 
significance.  If the user is interested in a smaller number of genes or wishes 
to investigate a sample of selected genes in more detail, double-clicking on 
gene representations in the scatter-plot allows them to view a pop-up details-
on-demand [11] window describing the un-scaled recorded intensities for the 
subject gene and a summary of the groupings to which the gene belongs. 
This, again, will lead to a more informed assessment of a pattern’s 
significance.   

 
 

Figure 8 General movement of gene representations as the scatter-plot is animated 
forward through time: genes rotate anticlockwise through low ?  rising ?  high ?  falling ?  
low  



 
As an alternative to labelling, when the freehand or box selection tools in the 
toolbar are activated genes can be selected. With the box selection tool, 
genes are selected by clicking and dragging to draw a box round their 
representations in the scatter-plot. The freehand selection tool allows the user 
to select genes by clicking and dragging a freeform shape around their 
representations. In either case, the representations of un-selected genes are 
greyed out in both the graph and scatter-plot views allowing users to focus in 
on selections which are colour -coded, labelled, animated and selected again 
(using logical AND or OR rules) independent of the un-selected data. This 
allows the user to find groupings within groupings and combine selections to 
uncover or investigate more complex patterns in the data. 
 
The operation of the grouping panel (v. in Figure 7d) is similar to that of the 
Microsoft Windows file explorer tree-pane. Imported groupings are stored 
within folders that correspond to grouping categories. Clicking on folders 
causes their contents to be expanded or collapsed and clicking on a grouping 
name causes the genes which belong to that grouping to be selected. Buttons 
on the grouping panel mini-toolbar allow new grouping categories to be 
added, grouping categories to be deleted, stored groupings to be deleted or 
new groupings to be generated from the genes that are currently selected.  
 
Evaluation 
 
The aim of our user evaluation was to assess the practical utility of the Time-
series Explorer within the wider context of microarray time-series analysis as 
a whole. In particular we wanted to assess the extent to which Time-series 
Explorer could be considered as a specialised microarray time-course 
exploration tool which complements and adds to the functionality of existing 
clustering techniques. To do this we needed to discover if the technique was 
capable of overcoming the limitations of existing techniques to reveal 
previously unsuspected patterns of temporal activity and, to a lesser degree, 
assess its ability to uncover certain suspected patterns of temporal activity in 
order to highlight the areas where it may be advantageous for a biologist to  
use the Time-series Explorer in preference to other more established 
techniques.  
 
To achieve the objectives of our analysis we did not require to evaluate the 
technique exhaustively with regard to patterns that are found with other tools 
(for a more comprehensive evaluation of microarray data analysis tools see 
[27]) but rather assess the potential advantages of this technique over the 
other techniques considered and find the areas where the functionality of the 
techniques overlapped. This reflects the fact that the technique was 
specifically developed to support the analysis of time-course and an 
assessment of its ability to analyse other types of microarray data would be 
irrelevant. Given the current preference of biologists’ to switch between 
different techniques for the analysis of their data and the limitations of existing 
techniques, we believe this to be an appropriate tack for our evaluation 
especially since any replication of the core functionality of existing techniques 
would not necessarily promote the use of a new technique as users of 



microarray analysis software will inevitably have an ingrained preference for 
more familiar techniques and applications. 
 
With reference to the objectives stated, the questions that we posed in our 
evaluation were: 

1) Is the Time-series Explorer capable of allowing the biologist to find 
previously unsuspected patterns of temporal activity? 

2) Which of the patterns found can be revealed using other existing 
techniques, or combinations thereof, and what are the patterns that 
can only be found using the Time-series Explorer? 

3) Of the patterns that can be found using other techniques what are 
the advantages, if any, of using the Time-series Explorer? 

4) Are the patterns that can be found by the Time-series Explorer of 
sufficient significance to justify its use? 

 
In order to answer some of these questions it was necessary for participants 
in our evaluation to make discoveries and find unexpected patterns. As these 
patterns are, by their very nature, more difficult to find, it was necessary to 
minimise any factors that could detract from the natural processes of 
exploration that would lead to their discovery. It was, therefore, inappropriate 
to restrict the participants by instructing them to follow pre-defined tasks or 
operate in an alien environment while trying to find these patterns. Instead, 
the main active session of our evaluation procedure was to be relatively 
informal. Operating in their normal workspace the users were encouraged to 
operate the tool in a manner that was appropriate to their own working 
objectives with minimal disruption. 
 
The evaluation proceeded in three stages. The first of these was a training 
session involving a short tutorial guiding the users through the basic 
functionality of the technique and allowing them to become familiar with its 
interaction mechanisms and data representations. This was followed by a 
session where the users were asked to explore their data in order to find new 
patterns as per their normal working procedures. Lasting approximately one 
hour, interactions were recorded and users were encouraged to think-aloud 
so that patterns revealed could be identified for further analysis in the third 
and final stage of the evaluation where they where asked to compare the 
results obtained using the Time-series Explorer with those obtained using 
other techniques. 
 
In order to present a coherent case study, the results presented in this paper 
describe the final run of our evaluation which involved an experienced 
biologist (who was independent from the development of the technique) 
analyzing familiar data from experiments that he himself had designed. While 
the need for experienced biologists analysing their own data during this run of 
the evaluation severely limited our pool of potential participants (and this final 
run of our evaluation procedure was to involve only one biologist), it has been 
shown that domain experts are significantly more motivated to find patterns in 
data of this type [27]. Moreover, it is only specific domain experts that are 
capable of assessing the relevant biological significance of the patterns found 
in microarray data or indeed finding any number of patterns with any 



substantial biological significance. This became clear after a few preliminary 
evaluation sessions with biologists working on data from unfamiliar 
experiments and domain novices. While these sessions were able to provide 
feedback on the Time-series Explorer tool’s usability, they told us relatively 
little about its core functionality. The biologist participating in the final stage of 
our evaluation also had extensive experience of analyzing their data using a 
range of established software tools such as Time-Searcher [13], Hierarchical 
Clustering Explorer [14] and GeneSpring [17]. As these tools implement a 
range of existing clustering and visual query techniques and have been 
evaluated as being most effective at revealing patterns from microarray time-
course data [27], this qualified the biologist to properly assess the relative 
advantages, and disadvantages, of using the Time-series Explorer as an 
alternative.  
 
This data under analysis in the evaluation recorded the expression of around 
8,500 genes over 17 time points belonging to 4 successive stages of mouse 
development: virgin (days 10 and 12), pregnancy (days 1, 2, 3, 8.5, 12.5, 14.5 
and 17.5), lactation (days 1, 3 and 7) and involution (days 1, 2, 3, 4 and 20) 
[4].  

 
The first two patterns found by the biologist in our case study involved genes 
with a high level of activity at the early stages of lactation and genes with 
activity rising at the start and falling at the end of lactation. While these two 
patterns where found using queries formulated using pre-knowledge of the 
data and could to a large extent already be found using visual query type 
techniques, the biologist expressed a preference for the Time-series Explorer 
method to find these patterns due to the fact that they where able to 
distinguish the activity patterns of individual genes from the background 
according to aspects of their activity over the selected interval. This additional 
functionality prompted them to adjust their original query to select what they 
felt to be natural groupings of genes rather than groupings defined by some 
arbitrary cut off. While visual queries can also be incrementally adjusted and a 
user could find natural groupings by observing the number of genes that fall in 
or out of the results after each increment, the user indicated that the Time-
series Explorer method required less interaction and the visual indicators 
where more natural. 
 
The next pattern found was a combination of general trends in activity for all 
genes over the entire time-course. Here the biologist selected an interval fixed 
at its minimum value (an interval constrained by two time-points for which 
expression is recorded) and shifted it across the entire time frame of the 
experiment to animate the scatter-plot view.  Selected frames of this 
animation are illustrated in Figure 9.  At various stages of the animation the 
spread of gene representations in the scatter-plot became horizontally 
elongated. This occurred primarily during transitions between stages of 
development (i.e. virgin to pregnancy, pregnancy to lactation and lactation to 
involution) and indicated large numbers of genes with significant changes in 
their level of expression (top of Figure 9). The majority of these trends were 
unsurprising to the biologist as they reflected changes in the essential 
functioning of cells within the sample that would largely be detected by the 



observing the general expression patterns of groupings formed by clustering. 
Somewhat more interesting were the more subtle trends, such as the 
increased number of genes with changes in activity during pregnancy in 
relation to lactation (bottom of Figure 9). It was later determined, by re-
examining the results of clustering already applied to the data (SOM and 
hierarchical clustering) and predicting the likely results of other forms of 
clustering based on the biologist’s knowledge of clustering algorithms in 
general, that it would be unlikely for these particular trends to be revealed by 
established clustering techniques.  
 
The final, and most significant, pattern found in the evaluation was 
discovered, in part, when investigating general trends across the entire time-
period. As the scatter-plot animated through days 1 to 3 of the pregnancy 
stage (an interval for which there are three time-points for which expression is 
recorded) an outlying group of gene representations showed significant rising 
then falling expression. To investigate this further the relevant interval was 
animated again, then stopped so that the outlying genes could be labelled by 
moving the mouse over their representations in the scatter-plot. This revealed 
the majority of the genes also shared low expression over the remainder of 
the time-course. Next the genes were selected and cross-referenced with pre-
defined gene classifications. Significantly the selection was found to contain a 
high proportion of Keratin associated genes. Figure 10 illustrates this pattern 
showing selected frames of the initial animation from interval P1 to P2 through 
to interval P2 to P3, the labelled scatter-plot at P1 to P2 and the effect of 
labelling in the coordinated graph view where the genes are highlighted. 
 



 
Figure 9 Selected frames of an animation across the entire time-course (time proceeding 
left to right with stages of development indicated using a Gantt chart): Horizontally elongated 
scatter-plots indicate large numbers of genes with significant changes in their level of expression. 
This occurs primarily during transitions between stages of development (top) although more 
subtle trends, such as the increased number of genes with changes in activity during pregnancy 
in relation to lactation (bottom), can also be interpreted from the animation.  

 
Figure 10 An unexpected pattern of temporal activity: a) Animating the scatter-plot reveals 
a group of outlying genes with rising then falling activity over a small interval of the time-course, 
b) moving the mouse over the gene representations in the scatter-plot view allows them to be 
labelled and c) have their expression patterns over the entire time-course highlighted in the 
graph view. 
 



 
 
The final stage of the evaluation was a follow up meeting where the biologist 
was asked to assess the degree of relevant biological significance to which 
each of the patterns revealed could be attributed and identify the extent to 
which the patterns could be uncovered using other techniques. These results 
were combined to produce a summary (Table 2) describing the specific areas 
and extent to which the utility of the technique contributes to the support of 
microarray time-course analysis. Here the patterns in the data were 
categorized, described as suspected or unsuspected, rated from one to five 
according to the extent to which existing techniques are already capable of 
uncovering them and assigned a measure of biological significance. Here a 
suspected pattern is defined as one for which the biologist has had some pre-
knowledge of the genes which contribute to the pattern or the interval of time 
over which significant changes in activity relating to the pattern occur prior to 
its discovery. As the suspected/unsuspected nature of a pattern is in many 
cases integral to the investigation or discovery of that pattern, all other fields 
of the table relate to patterns in their listed suspected or unsuspected form. 
The ratings that describe the extent to which existing techniques are already 
capable of uncovering patterns are based on previous analysis of the data 
using the techniques indicated and, where appropriate, supplementary 
analysis involving the listed techniques. When the subject was unsure of 
whether or not a pattern could be found using another technique we re-
applied that technique to try and assess whether or not the pattern could 
indeed be found using that technique. The ratings are; 0 (the pattern 
absolutely cannot be found using this technique), 1 (the pattern will be found 
but the results will be less satisfactory), 2 (the pattern can be found but with 
significant difficulty) and 3 (the pattern can be found without any problem). 
The measures of biological significance indicated are: high (biological 
significance relevant to the specific objectives of the experiment), medium 
(biologically significant but not relevant) or low (not significant).  
 
Table 2 Results of the user evaluation 

Can be found using 
alternative technique (0 - 
3) 

Patterns found using the 
Time-series Explorer 

Type  Suspected 

Clustering Visual 
queries 

Significance 

Genes associated with Milk 
Proteins with very high 
expression from L1 to L3. 

Outliers over an 
interval. 

a 0 2.5 Medium 

309 genes belonging to various 
interesting groupings with 
expression rising at L1 and 
falling L7. 

General trend 
over an interval. 

a 1 2 High 

Large changes in gene activity 
during known trans itional 
phases. 

General trends 
over the entire 
time-course. 

a 3 0 Medium 

Increased number of genes with 
changes in activity during 
pregnancy in relation to lactation. 

General trends 
over the entire 
time-course. 

r 0 0 Medium 

Keratin associated genes with 
expression rising sharply at P2 
and falling sharply at P3. 

Outliers over an 
interval. 

r 0 0 High 



 
 
 
 
The main outcome of our user evaluation was to verify that the Time-series 
Explorer is uniquely capable of revealing certain previously unsuspected 
patterns of temporal activity and that the patterns found were of sufficient 
relevant biological significance to encourage a biologist to use the technique 
in the analysis of their data (positively answering questions 1, 2 and 4 posed 
by our evaluation). Moreover, the technique also proved capable of revealing 
suspected patterns of temporal activity and the evaluation uncovered 
significant advantages in using the Time-series Explorer over other more 
established techniques (positively answering questions 3 and 4). Specifically, 
when the technique was used to uncover general trends occurring over limited 
periods of the time-course the user had the advantage (over clustering 
techniques that would also allow biologists to find such patterns) of being able 
to quickly identify inte resting sub-groupings, when identifying suspected 
outliers over smaller intervals the technique offered the biologists the ability to 
perceive distinct groupings of outliers and when looking for general trends 
across the entire time-course the biologists found it easier to assess more 
subtle patterns of general activity.  
 
Conclusion  
 
We have developed a novel technique for the analysis of microarray time-
course data. This technique specifically focuses on allowing biologists to 
reveal previously unsuspected patterns of gene activity over smaller intervals 
of an experiments time frame by allowing them to control an animated interval 
scatter-plot view of their data. This alternative representation of the data is 
supported by the combination of multiple new, and existing, information 
visualisation techniques. Most notably we have introduced a unique 
combination of linear rescaling, distortions and colour coding to improve the 
display of data in our linked graph and scatter-plot views. This ensures that 
the animation is smooth and that biologists can perceive outlying patterns and 
general trends of temporal activity. An evaluation, involving biologists working 
with real data, tested the extent of the tools desired functionality and 
assessed the technique’s practical utility within the wider  context of 
microarray time-series analysis as a whole. This proved the technique not 
only capable of revealing previously unsuspected temporal patterns but also, 
in certain cases, more appropriate for finding previously suspected patterns 
and patterns that occurred over the majority of the time-frame.  
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