
Dynamic Response Simulation for a

Non-linear System

D. E. Roberts ∗

Centre for Mathematics and Statistics,Napier University,10 Colinton

Road,Edinburgh,EH10 5DT

N. C. Hay

School of Engineering,Napier University,10 Colinton Road,Edinburgh,EH10 5DT

Abstract

Laboratory simulation testing has for many years contributed significantly to the

durability and quality of motor vehicles. Most sophisticated test rigs use an iterative

algorithm that generates the input drive files that reproduce service environments

under laboratory conditions. Essentially the algorithm solves a non-linear, multi-

ple channel dynamic system. In this paper, the non-linear problem is recast as a

system of algebraic equations. This mathematical framework allows the application

of alternative but well understood solution techniques. Using mathematical simula-

tions, conclusions are drawn concerning the choice of iteration gain in the current

algorithm and the better performance of alternative numerical solution procedures.

Key words: Laboratory simulation testing, dynamic system, spectral analysis,

random signal, Duffing’s equation, non-linear algebraic equations, numerical

solution, Broyden’s method, MATLAB.

PACS:

Preprint submitted to Elsevier Science 24 May 2006

1 Introduction

In laboratory simulation testing, a structure is mounted in a test rig and is

excited in such a way that the service environment, as represented by a set

of responses from transducers, is reproduced. It is believed that, when these

responses are replicated, the complex stress field within the structure that

occurs in service is also reproduced. The test rig and the test structure form

a non-linear dynamic system and the problem to be solved is to determine

the input to this unknown multiple channel non-linear system. The technol-

ogy that achieves this was developed in the 1970’s — see e.g.[1] — following

the introduction of the hydraulic servo-valve, the construction of algorithms

for quickly processing random data in terms of Fourier Transforms, and of

course the development of more powerful computers. The technology is well

summarised by Dodds and Plummer [2]. Generally, the procedure is that the

system is treated as linear and measured using spectral analysis. An inverse

system is then defined before an iterative algorithm determines the required

drive files. Work to improve the performance of the iteration algorithm has

been carried on over the years by, among others, Raath [3] who has developed

a time domain version of the algorithm as an alternative to the usual fre-

quency domain implementation, and also by de Cuyper et al [4] who examine

improvements in the identification of the non-linear system.

The work presented here reports on the realisation that the problem may

be recast mathematically as a system of non-linear algebraic equations. The

∗ Corresponding author.
Email addresses: d.roberts@napier.ac.uk (D. E. Roberts),

n.hay@napier.ac.uk (N. C. Hay).

2

conventional iteration algorithm is in fact an example of more general compu-

tational techniques for solving such systems. In the paper, these more general

methods are introduced, and an application of them is then demonstrated in

simulations using a single degree of freedom non-linear mathematical model

for the system, the Duffing equation. The new viewpoint involves both time

and frequency domain considerations. Note that, for this paper, the single de-

gree of freedom system employed differs from the multiple channel physical

laboratory simulation test system. Cost of equipment and control of parame-

ters were considerations, but also using a single channel meant that the work

could concentrate on the non-linearity rather than interaction between chan-

nels. The latter will be studied at a later date.

Before introducing the new approach, the current algorithm is applied to the

chosen simulation model, demonstrating the method and its characteristics in

the face of various degrees of severity of non-linearity. The situation is then

studied mathematically and it is shown how discretisation leads to a system

of non-linear equations. After presenting some general methods for solving

systems of non-linear equations, the current algorithm is then shown to be a

particular case. Finally, the feasibility of the more general approach is explored

by comparing the success of the results of alternative solution methods.

2 Current Algorithm

The current algorithm for achieving drive signals exists in several commercial

software programs. For a description, the reader is referred to Dodds et al [2].

The procedure may be summarised as follows:

3

• Measurements of the response of the system are made during normal op-

eration or specified operating conditions. These measurements are edited to

provide a target response. In this paper, the target response is generated by

exciting the system with band-limited white noise.

• The frequency response of the test rig and specimen is measured using spec-

tral analysis.

• The validity of the frequency response measurement and the test rig design

is then established using multiple and partial coherence functions e.g. Bendat

et al [5].

• An inverse frequency response function is computed and, from this, an initial

drive file is derived using the target response.

• The drive file excites the system and produces a response, which is compared

with the target response. The difference is then used to create a new drive file

and the process continues as an iteration until an acceptable level of error is

achieved.

The excitation data used for measuring the system consist of bandlimited

white noise, represented by the components of a vector x := (x0, x1, . . . , xN−1).

The system response is sampled, yielding another vector y := (y0, y1, . . . , yN−1),

where, for signals of period T, yi := y(ti) with ti := iT/N for i =

0, 1, . . . , N − 1. In the system measurement, spectral analysis uses the Dis-

crete Fourier Transform of these signals, for which the kth components are

denoted by Xk and Yk, respectively, for k = 0, 1, . . . , N − 1, represented by

the transform pairs:

x ↔ X y ↔ Y (1)

The frequency response is based on the Cross Spectral Density estimate of the

4

input and output signals as given by Bendat et al [5], p138,

Syx(ωk) := lim
T→∞

1

T
〈Y ∗

k Xk〉. (2)

where T is the period of duration of the signals and ωk is the kth discrete

frequency, and 〈· · ·〉 denotes an expectation value. The auto power spectral

estimates Sxx(ωk), Syy(ωk) are defined in a similar manner and the frequency

response function is then given by

Hk :=
Syx(ωk)

Sxx(ωk)
. (3)

In the simulations to be presented here, a target response signal yD is de-

termined by exciting the system using a sequence xD of random numbers

generated as bandlimited white noise. The iteration process is described more

mathematically in Figure 1. The fraction of the drive signal increment p(n)

which is fed back is stipulated by the iteration gain λn, a positive scalar quan-

tity not greater than unity, which is chosen manually. In practice, the full

drive signal is not normally used in determining the first drive file since the

approximations in the estimate of the model may lead to the system being

damaged. Similarly, the gain during the iteration is generally less than one to

ensure convergence of the iteration and is again chosen manually.

3 Example of Current Iteration

The behaviour of the current algorithm is illustrated using a model of the Duff-

ing equation constructed in MATLAB/Simulink. The system being simulated

represents a mechanical single degree of freedom, damped spring-mass system

5

Measure H

?Initial drive

X
(1)
k := λ0H

−1
k Y D

k

x(1) ↔ X(1)

n := 0
?

n = n + 1

Run system

?

ey(n) := yD − y(n)

ey(n) ↔ EY(n)

-
If error small

enough STOP

?

P
(n)
k := H−1

k EY
(n)
k

p(n) ↔ P(n)

?

x(n+1) := x(n) + λnp
(n)¾

6
-

Fig. 1. Current iteration algorithm — setting x(0) := 0.

comprised of a mass m, a viscous damper with coefficient c, and a non-linear

spring. The stiffness of the spring increases with amplitude as described by

a linear stiffness coefficient k, and a non-linear factor kk′. Such systems are

usually described in terms of natural frequency 1
2π

√
k
m

Hz and damping ratio

c
2
√

km
. The equation of the system being simulated is :

m
d2y(t)

dt2
+ c

dy(t)

dt
+ ky(t)[1 + k′y(t)2] = kx(t) (4)

6

subject to the initial conditions y(0) = ẏ(0) = 0. The mass is taken to be

100kg, the damping ratio ζ = 0.1 and the natural frequency is normalised to

unity. The right-hand side is chosen so that the input and output signals have

similar magnitudes.

When identifying the physical system, the normal practice is to use a large

number of averages to improve the expectation value of equation(3) and achieve

a smooth frequency response function. Here, a small number of averages are

taken, but the function is smoothed using a least squares fit. Numerical exper-

iments suggest that the least squares fitting is as good as employing a large

number of averages.

Figure ?? illustrates the magnitude of the measured frequency response func-

tion — averaged over ten records — and a smoothed version obtained from

a least squares fit to produce a rational function which has as numerator a

linear polynomial and as denominator a quadratic polynomial in frequency. In

addition, the frequency response function corresponding to the linear part of

equation(4) is also shown for comparison.

In these estimates, randomised drive signals with similar standard deviation

to the desired drive input were used and the corresponding responses were

determined. The drive signal, xD, is generated as a band-limited random time

series of N = 1024 points, over a frame length T = 102.4s.

A sequence of experiments is conducted with the non-linear coefficient, k′,

taking values from 0.15 to 0.45 in steps of 0.05. For a given value, the corre-

sponding response yD is computed by solving equation(4), using Simulink in

MATLAB. Parts of these signals are shown in Figure 3.

7

Fig. 2. Frequency response functions for k′ = 0.2

0 5 10 15
−3

−2

−1

0

1

2

3

4

de
sire

d d
rive

0 5 10 15
−3

−2

−1

0

1

2

3

time in seconds

de
sire

d r
esp

on
se

Fig. 3. Part of drive and response signals against time for k′ = 0.2

The iteration algorithm is applied with λn = 0.5, n = 0, 1, . . ., to produce

a sequence of response vectors y(n), n = 0, 1, . . . which converge to yD. The

results are summarised in Figure 9. The algorithm stops if the fractional Eu-

clidean norm of the error vector

ey(n) := yD − y(n) (5)

i.e.

|ey(n)|/|yD| (6)

8

falls below 5%. The error in the response achieved is shown in Figure 4 as a

function of time.

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time in seconds

No
rm

 of
 re

sp
on

se
 er

ror
 ve

cto
r

Fig. 4. Response error against time using the current algorithm, for k′ = 0.2.

In practice, when the iterations fail to converge, the operator is free to adjust

the iteration gain. For example, at the higher non-linearity of k′ = 0.25, the

gain would be reduced and the iteration restarted, at the expense of slowing

the convergence.

4 System of Algebraic Equations

In this section the problem is restated in terms of a system of algebraic equa-

tions. This opens up the possibility of applying well known numerical tech-

niques for solving such systems. In addition, it is shown how the conventional

approach appears as a particular case. One such computational strategy is

applied to the simulation introduced in the previous section.

The point of view proposed in this paper is to note that the sampled response

9

vector y is a function of the input signal x as symbolised in Figure 5:

y = f(x) (7)

or, in component form:

y0 = f0(x0, x1, . . . , xN−1)

y1 = f1(x0, x1, . . . , xN−1)

...

yN−1 = fN−1(x0, x1, . . . , xN−1)

(8)

f- -x y

Fig. 5. Discretised System

To illustrate this, the model problem of the previous section is considered.

Equation(4) is discretised to produce a system of equations, thus providing

explicit information about the vector valued function f and the corresponding

Jacobian.

First of all, consider the linear system obtained by setting k′ = 0 in equation(4).

The response is related to the input by a convolution in the time domain:

y = h ∗ x (9)

where the discretised impulse response h := (h0, h1, . . . , hN−1), is the in-

verse Discrete Fourier Transform of the frequency response function, H :=

10

(H0, H1, . . . , HN−1), i.e.

h ↔ H (10)

This convolution may be written as a matrix product:

y = Chx (11)

in which the N ×N circulant matrix Ch has (i, j) component hi−j

Ch =

h0 hN−1 hN−2 . . . h1

h1 h0 hN−1 . . . h2

...

hN−1 hN−2 hN−3 . . . h0

(12)

The ith component of the vector equation(11) yields the approximate value of

the response y(t) at t = ti. Equation(11) may be rewritten:

x = [Ch]
−1y (13)

which may be regarded as a discretisation of equation(4) with k′ = 0.

This process is extended to approximate the whole of the left hand side of

equation(4) at t = ti for non-zero k′:

[mÿ + cẏ + ky(1 + k′y2)]t=ti ≈ k[Cy]i + kk′y3
i (14)

for some appropriate circulant matrix C, such that the nth component of the

DFT of the vector [Cy] is given by 1
k
(−ωn

2m + jωnc + k)Yn.

11

The discretisation of equation(4), after division by k, may now be expressed

as a vector equation:

x = Cy + g(y) = f−1(y) (15)

where [g(y)]i := k′y3
i , thus yielding an explicit form for the function inverse

of f in equation(7).

The mathematical problem may be stated as follows: given a vector yD =

(yD
0 , yD

1 , . . . , yD
N−1) and a particular function f , determine a vector x, such

that

f(x)− yD = 0. (16)

This is a system of non-linear algebraic equations for which the solution is

readily seen to be f−1(yD). In practice, the explicit form of f is not known,

but for a given vector x, the value of y = f(x) may be obtained by “running

the system”.

4.1 Iterative Solutions

This type of problem is common, and there are well-known computational

techniques for solving equation(16). For a survey of practical algorithms which

may be used to solve systems of non-linear algebraic equations the reader is

referred to a review by Martinez [6]. All the methods considered are itera-

tive. Starting from some initial approximation x(0), a sequence of iterates,

x(0)x(1),x(2) . . ., is generated which converge, ideally, to the desired solution.

In order to understand these techniques, a brief account of Newton’s method

12

for systems of non-linear equations is given. This algorithm follows from the

Taylor expansion in several variables of f(x) about the current approximation

x(n),

y = f(x) = f(x(n)) + [Jf (x
(n))](x− x(n)) + O(|x− x(n)|2) (17)

where Jf (x) denotes the Jacobian matrix of order N×N for the vector-valued

function f(x) in equation(7)

[Jf (x)]i,j :=
∂yi

∂xj

for i, j = 0, 1, . . . , N − 1 (18)

the partial derivatives being evaluated at x. In the context of matrix algebra,

vectors are considered as column matrices.

The Jacobian for the model problem may be constructed from equation(15)

Jf−1(y) :=
[
∂xi

∂yj

]
= C + g′(y) (19)

where

[g′(y)]i := 3k′y2
i (20)

The dependence of the Jacobian on y and, therefore, on x is clear. We note

that

[Jf (x)]−1 = Jf−1(y) (21)

where x and y are related by equation(15).

For the linear system (9), it may be seen, from its definition, that the Jacobian

13

is given by

Jf (x) = Ch (22)

i.e. a constant matrix.

For the general non-linear system, if xD is a solution to equation(16), then,

setting y = yD in (17),

yD − y(n) = [Jf (x
(n))](xD − x(n)) + O(|xD − x(n)|2) (23)

where y(n) = f(x(n)) Ignoring the error term in equation(23) leads to the

following iteration scheme:

x(n+1) := x(n) + [Jf (x
(n))]−1ey(n) (24)

provided the Jacobian is non-singular at x(n). This is Newton’s method which

is locally quadratically convergent — see e.g. [6]. It may be rewritten as

x(n+1) := x(n) + p(n) (25)

where

p(n) := [Jf (x
(n))]−1ey(n) (26)

However, since f is not known explicitly, the Jacobian matrix cannot be con-

structed. Hence, “quasi-Newton” methods are considered which generalise

equation(24) to

x(n+1) := x(n) + [Bn]−1y(n) (27)

14

in which the matrix Bn plays the role of Jf (x
(n)). This may be recast as

equation(25), where

p(n) := [Bn]−1ey(n) (28)

The idea is that, starting from some initial estimate of the Jacobian, B0, this

is then updated using a simple formula. A very common approach is based on

a version of the secant method and was suggested by Broyden [7], in which the

updated inverse matrix [Bn+1]
−1 may be expressed in terms of [Bn]−1, thus

enabling a computationally efficient implementation of (27), provided we can

readily compute B−1
0 :

[Bn+1]
−1 := [Bn]−1 − (δx(n) + [Bn]−1δey(n))

[δx(n)]T [Bn]−1

[δx(n)]T [Bn]−1[δey(n)]
. (29)

where δx(n) := x(n+1) − x(n), and δey(n) := ey(n+1) − ey(n).

4.2 Alternative Iteration Schemes

There are many variations of the basic iteration (27) — for other, similar,

approaches see Martinez [6]. One possibility, which is relevant to our interests,

is to keep Bn constant at some value B0. The conventional approach discussed

earlier — which treats the system as if it were linear — fits into this scheme

Bn := Ch n = 0, 1, 2, . . . (30)

in which the matrix Ch is based on the vector h, the impulse response as in

equation(12). This impulse response corresponds to the measured frequency

response function.

15

Another possibility consists of using Ch as an initial approximation to the

Jacobian in the non-linear system.

B0 := Ch (31)

and then using equation(29) to produce the updates for (28). It may be noted

here, that, for example, in the computation of x in equation(11), the Fast

Fourier Transform may be employed i.e. there is NO matrix multiplication

performed. Indeed, all matrix multiplications are avoided by implementing

the algorithm described in [8]. This algorithm is a memory efficient approach

which only requires scalar products of vectors to be computed.

However, these techniques are only locally convergent. That is, the initial

approximations to the solution and the Jacobian must be good enough for

convergence to follow. Even Newton’s method may fail to converge for cases

where there is a unique solution.

5 Improving Global Convergence

It was noted earlier, that, in the current algorithm, the iteration gain is reduced

if the iterations diverge. In fact, a search can be conducted to determine a

suitable iteration gain. In an attempt to achieve global convergence the basic

iteration (25) is modified to allow a variable step in the search direction :

x(n+1) := x(n) + λnp
(n) (32)

where λn , for n = 0, 1, . . . are real numbers lying between 0 and 1. The general

iteration process is shown in Figure 6. The values of λn may be constant, or,

16

depending on the situation, the operator may vary them e.g. some circum-

stances may warrant a moderate step reduction (λ ≈ 0.5), while others may

require larger reductions (λ ¿ 0.5). The value of λ yielding the minimum error

may be estimated using a backward line search. To do this a merit function is

defined as follows:

φ(λ) :=
||ey(x + λp)||

||yD|| (33)

or, to avoid a square root, a common choice is:

ψ(λ) :=
1

2
[φ(λ)]2 =

1

2

[ey]T [ey]

[yD]T [yD]
(34)

where x is the estimated drive at the last iteration,and p is the current search

direction. The vector ey is the error in the response to the input x + λp.

The idea behind a backward line search is to model the merit function using

a polynomial — typically a quadratic or a cubic. Quadratic interpolation is

employed in this paper.

In the simulations presented later, the merit function of equation(33) is used

to start off the process, i.e. to compute λ0, and hence x(0). A search is made

for a value of λ that minimises the merit function. As an illustration of the

behaviour of the error, φ is plotted as a function of λ for k′ = 0.30 in Figure 7.

The alternative merit function, equation(34) is employed during the iteration.

Again, for illustration, Figure 8 is a plot of ψ as a function of λ for the case

of k′ = 0.3 in the fourth iteration of Broyden’s method. For a full explanation

of these and other search algorithms the reader is referred to Dennis et al[9],

17

Measure H

H ↔ h

B0 := Ch

?
Initial drive

x(1) := λ0B0
−1yD

n := 0

?
n = n + 1

Run system

?

ey(n) := yD − y(n)

Compute update Bn
−1

-
If error small

enough STOP

?

p(n) ↔ B−1
n ey(n)

?

x(n+1) := x(n) + λnp
(n)¾

6
-

Fig. 6. Scheme for alternative iteration algorithms — setting x(0) := 0.

Scales [10] and Numerical Recipes [11].

Whichever merit function is adopted, the price to be paid is that of “running

the system” more often within a given iteration. The effect on the convergence

behaviour will be demonstrated in Section 6.

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Value of λ

φ(λ
)

Fig. 7. Behaviour of φ as a function of λ for k′ = .3 at the start

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Value of λ

ψ(λ
)

Fig. 8. Behaviour of ψ as a function of λ for k′ = .3 on the fourth iteration using

Broyden’s method

6 Comparison of Alternative Iteration Schemes

The alternative methods of iteration are now examined. The validity of the

mathematical methods is established and their performance is compared. There

are alternative choices for parameters and so, in the simulations presented

here, each one uses the same Duffing model, the same desired solution and

19

the same starting point. The same seven levels of non-linearity are chosen for

each alternative iteration method, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 and 0.45.

In each case, the iteration is stopped when the response is within 5% of the

target response, or after a specified number of iterations.

For reasons of clarity of presentation, only four cases are plotted. However, all

cases are represented in the tables.

The first method to be tested is the basic conventional algorithm as shown in

Figure 9.

0 5 10 15 20 25 30 35

10
1

10
2

Number of system runs

%
Re

sp
on

se
 er

ror

Fig. 9. Progress of conventional iteration for various levels of non linearity and an

iteration gain of 0.5

The graphs figure shows that the conventional algorithm fails to converge at

levels of non-linearity 0.25 and greater. In industrial practice, the engineer

would reduce the iteration gain at the expense of running the system more

often and also would examine the spectral densities in which troublesome

frequencies may be detected.

Figure 10 and Table 1 demonstrate the validity of manually reducing the

20

0 5 10 15 20 25 30 35

10
1

10
2

Number of system runs

%
Re

sp
on

se
 er

ror

Fig. 10. Progress of conventional iteration for various levels of non linearity and an

iteration gain of 0.2

iteration gain to 0.2. Convergence is achieved, for all bar the most non-linear

case, at the expense of a slower rate of convergence. The choice of iteration

gain is generally left to the experience of the operators of industrial systems.

An early conclusion of considering the algorithm in the context of solving a

system of algebraic equations, was that an appropriate iteration gain might be

computed from the progress of the iteration, using a search for an appropriate

iteration gain. This has been implemented and the results are presented in

Figure 11 and Table 2. The divergent behaviour of Figures 9 and 10 are elim-

inated, although manually choosing a small iteration gain initially performs

better. However, even at a reduced gain, the convergence of the iteration stag-

nates for k′ = 0.25 and 0.45, with a response error of about 11% after 35

iterations (about 100 system runs). The same behaviour is also observed for

k′ = 0.30 as indicated in Table 2.

The above results used the conventional algorithm, and the conventional al-

gorithm with search. These use a constant approximation to the Jacobian.

21

0 5 10 15 20 25 30 35

10
1

10
2

Number of system runs

%
Re

sp
on

se
 er

ror

Fig. 11. Progress of iteration for various levels of non linearity - conventional algo-

rithm with search

The effect of updating the approximation, using Broyden’s method, is now

considered. Figure 12 illustrates the results of this approach without a search.

The method works well for low levels of non-linearity where it produces faster

0 5 10 15 20 25 30 35

10
1

10
2

Number of system runs

%
Re

sp
on

se
 er

ror

Fig. 12. Progress of iteration for various levels of non linearity - Broyden’s method

with an iteration gain of 0.5

convergence. There is also convergence for levels of non linearity that failed

to converge using conventional iteration. At higher levels of non-linearity, the

22

method still fails to converge.

0 5 10 15 20 25 30 35

10
1

10
2

Number of system runs

%
Re

sp
on

se
 er

ror

Fig. 13. Progress of iteration for various levels of non linearity - Broyden’s method

with an iteration gain of 0.2

The progress of Broyden’s method improves when the iteration gain is re-

duced, Figure 13, but has no great advantage over the conventional method

as measured by the number of runs required to achieve a tolerance of 5%.

However, it was noted that, as the number of runs were increased the error

dropped faster for the updated technique — as indicated in Table 1.

The last of the sets of simulations presents, in Figure 14, Broyden’s method

with a search. The method is successful in achieving convergence at all the

levels of non-linearity that were considered but at the expense of running the

system more often.

Table 2 compares the results for the conventional algorithm(constant Jacobian

approximation) and Broyden’s method(updated Jacobian approximation) us-

ing backward line searches for all the cases of non-linearity. It indicates that

the Broyden update has an advantage over the use of a constant approxima-

23

Non-linear coefficient Percentage error

k′ Constant Jacobian Broyden’s update

0.15 0.8 .03

0.20 0.8 .04

0.25 1.2 .15

0.30 1.8 .37

0.35 2.0 .83

0.40 2.8 3.6

0.45 — 7.4

Table 1

Table of percentage error in the response for various levels of non-linearity, for 35

runs, with λ = 0.2.

tion to the Jacobian, by showing a faster convergence, and also by achieving

convergence when the conventional algorithm fails.

The performance of search routines depends on chosen parameters and this

requires further study. For example, the work presented does not use restarts,

nor does it consider the effect of the many different forms of line search. In

addition, there are many other types of update — including updating the

frequency response function itself — for others see e.g. Martinez [6]. Other

approaches take advantage of the particular structure of the Jacobian. The

aim of this work is to indicate that the particular point of view presented can

be advantageous, and that recourse can be made to an arsenal of tried and

tested techniques.

24

0 5 10 15 20 25 30 35

10
1

10
2

Number of system runs

%
 R

es
po

ns
e

er
ro

r

Fig. 14. Progress of iteration for various levels of non linearity - Broyden’s method

with search. For k′ = 0.15 the iterations are shown by ‘+’, for k′ = 0.25 by a

dash-dot line , for k′ = 0.35 by ‘∗’ , and for k′ = 0.45 as a dashed line.

7 Conclusions

A new mathematical framework for the derivation of drive files for laboratory

simulation test systems is demonstrated. The conventional algorithm is shown

to be part of a broad mathematical area for which established mathematical

techniques are available. This approach can achieve convergence in systems

that do not readily converge with the conventional algorithm. It has also been

shown that there is potential for improving the convergence of the latter using

a backward line search.

Thus, this paper reports on a beginning, not a completion, of an investigation.

The authors regard the work as the opening up of an area for further research.

Consideration will be given to other solution techniques and the sensitivity of

these to measurement errors. Systems with multiple channels, physical systems

25

Non-linear coefficient Number of system runs (iterations)

k′ Constant Jacobian Broyden’s update

0.15 34 (10) 26 (6)

0.20 47 (15) 33 (9)

0.25 — (35) 31 (9)

0.30 — (35) 38 (11)

0.35 52 (16) 38 (11)

0.40 64 (20) 44 (13)

0.45 — (35) 57 (17)

Table 2

Table of number of system runs to achieve an error of 5%, for various levels of non-

linearity, using a search. The number of iterations for each method is in brackets.

— indicates that convergence was not achieved after 35 iterations.

and alternative models of non-linear behaviour will also be investigated.

References

[1] B.W.Cryer, P.E.Nawrocki and R.A.Lund, A road simulation system for heavy

duty vehicles, Society of Automotive Engineers, 1976 SAE 760361.

[2] C.J.Dodds and A.R.Plummer, Laboratory Road Simulation for Full Vehicle

Testing - A Review, Symposium of International Automotive Technology,

January 2001, Pune, India, SAE 2001-01-0047

[3] A.D.Raath and C.C.Van Waveren, Time domain approach to load

26

reconstruction for durability testing, Engineering Failure Analysis, 5 (1998)

113-119.

[4] J.De Cuyper, D.Coppens, C.Liefooghe and J.Debille, Advanced System

Identification methods for improved Service Load Simulation on Multi Axial

Test rigs, European Journal Mech. & Env. Eng. M 44 (1999) 27 –39 ISSN

0035-3612.

[5] J.S.Bendat and A.G.Piersol, Random Data Analysis and Measurement

Procedures, Wiley Interscience, Third Edition, ISBN 0-471-31733-0, 2000

[6] J.M.Martinez, Practical quasi-Newton methods for solving nonlinear systems,

Journal of Computational and Applied Mathematics, 124 (2000) 97 –121.

[7] C.G.Broyden, A class of methods for solving nonlinear simultaneous equations,

Math. Comp. 19 (1965) 577 – 593.

[8] C.T.Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM

Philadelphia, PA, 1995.

[9] J.E.Dennis Jr. and R.B. Schnabel, Numerical Methods for Unconstrained

Optimization and Non-linear Equations, Prentice-Hall, Eaglewood Cliffs, NJ,

1983.

[10] L.E.Scales, Introduction to Non-linear Optimization, MacMillan, 1985.

[11] W.H.Press, S.A.Teukolsky, W.T.Vetterling and B.P.Flannery, Numerical

Recipes, Cambridge University Press, 1992.

27

