
Exploring Multiple Trees through DAG Representations

Martin Graham and Jessie Kennedy

Abstract—We present a Directed Acyclic Graph visualisation designed to allow interaction with a set of multiple classification
trees, specifically to find overlaps and differences between groups of trees and individual trees. The work is motivated by the
need to find a representation for multiple trees that has the space-saving property of a general graph representation and the
intuitive parent-child direction cues present in individual representation of trees. Using example taxonomic data sets, we describe
augmentations to the common barycenter DAG layout method that reveal shared sets of child nodes between common parents in
a clearer manner. Other interactions such as displaying the multiple ancestor paths of a node when it occurs in several trees, and
revealing intersecting sibling sets within the context of a single DAG representation are also discussed.

Index Terms—Multiple trees, Directed Acyclic Graph.

1 INTRODUCTION
Our previous work in Graham and Kennedy [1] compared the

utility of two differing styles of representing multiple, overlapping
classifications – namely an agglomerated graph representation of all
the classifications and a small-multiple representation of individual
classifications with coloured overlaps. Previous discussions and
testing with users and constructors of taxonomic classifications
revealed that they preferred the small-multiple style of
representation, stating that the graph representation showed too much
information at once and that the hierarchical information associated
with individual classifications was lost when drawn using the force-
based layout algorithms that we utilised for graph drawing.

Therefore, to alleviate the difficulties caused by the latter point,
we have developed a visualisation based on a DAG (Directed
Acyclic Graph) layout, formed by merging all the taxonomies of
interest into one agglomerated structure as with the general graph
visualisation, but laid out such that nodes at the same rank or layer
are drawn so the global parent-child direction is preserved.

In the following sections, we describe related work in tree and
multiple tree visualisations, followed by a discussion of how our
visualisation differs from existing systems. We then describe the
methods used to construct the DAG and the interactions that such a
representation makes possible, and user feedback from expert users,
namely a group of five taxonomists.

2 RELATED WORK – SINGLE AND MULTIPLE TREE
VISUALISATIONS

Tree visualisations have a long history before the coining of the
term ‘Information Visualization’ (IV), the classic reference being
Reingold and Tilford’s [2] work, itself only one of many pre-1990
algorithms for laying out various types of tree structure as
documented in Beebe’s bibliography [3]. However, these approaches
tended to focus exclusively on layout algorithms; what Information
Visualisation introduced was the notion of being able to interact with
the generated tree visualisations. Here we describe some of the basic
approaches to visualising single and then multiple tree visualisations.

2.1 Single Trees
Traditional single tree layouts divide into three basic categories,

based on the method used to indicate a parent-child relationship. The
first and most well-known is the node-link layout as shown in Figure
1a), developed by Reingold and Tilford [2] and also used by Plaisant

et al. [4] with parent-child relations represented by lines (links)
drawn between nodes that represent the objects in the tree. Secondly,
nested layouts, such as Johnson & Shneiderman’s TreeMaps [5] and
Wang et al. [6], convey parent-child relationships by placing child
nodes within the boundaries of their parent node, as demonstrated in
Figure 2b). Finally, there is the adjacency layout style shown in
Figure 1c), where child nodes are drawn next to their parent node.
This method, more than the node-link approach, requires the
definition of a parent-child orientation to differentiate parent-child
relations from sibling relationships and to indicate the direction of a
relationship. Usually this orientation is either top-down as in the
above figure and Sifer’s work [7] or centre-out as in Stasko and
Zhang’s radial space-filling tree [8]. All of these approaches have
been extended from their 2D projections to 3D variants, with various
degrees of success: e.g. Robertson et al.’s Cone Tree node-link
visualisation [9], Bladh et al.’s nested 3D treemaps [10], and van
Ham and van Wijk’s Beamtree [11] for adjacency methods. These
three basic layout styles are the foundation for all tree visualisations
that display internal tree structure. We do not consider adjacency
matrix representations of trees, as these are more commonly thought
of as mathematical representations than a visualisation style.

All three layout styles have associated advantages and
disadvantages and the choice of representation is dependent on the
tasks that are to be performed with the structures. Generally node-
link representations are more understandable to the lay-person and
communicate structure readily, but use up screen space rapidly.
Nested representations allow more nodes to be displayed at once but
structure is more difficult to perceive due to lacking a global child-
parent orientation. The adjacency methods strive for a halfway house
between these two styles, utilising a higher proportion of screen-
space than a node-link display, yet making structure relatively simple
to follow.

The separate styles can be combined within a visualisation of a
single tree as demonstrated by Zhao et al. [12], where portions of a
tree are drawn as either nested or node-link representations
dependent on screen space and user interaction. Another hybrid
representation is that used in Microsoft Windows Explorer, which
contains stylised links between nodes but mostly relies on
indentation and adjacency to communicate parent-child and sibling
relationships, achieving a very compact yet legible representation of
hierarchical structures. In empirical evaluation by Kobsa [13] this
layout was shown to be the objectively preferred choice when
compared to other tree visualisations, though it was recognised that
some of this performance advantage may be familiarity due to the
ubiquitous presence of Microsoft Windows.

2.2 Multiple Trees

The data sets we have studied over the past few years are formed
from multiple trees, specifically multiple overlapping taxonomies,

the overlapping condition marking these structures as distinct from
simply a collection of unrelated hierarchies. The obvious difficulties
are resolving screen space allocation and conveying the overlap
between individual trees, for which three approaches exist: division,
animation and agglomeration.

The division approach, termed small multiples by Tufte [14], sub-
divides available screen space into areas in which the individual trees
are drawn. Unsurprisingly, this approach tends to favour the more
space-efficient individual tree layout representations. Munzner’s [15]
approach is strictly speaking a node-link layout, but internal nodes
are not labelled and the allocation for individual nodes can become
so compressed that the drawn links may use all the space available
for drawing, hence moving towards the adjacency style of
representation. Our previous work [1, 16] used multiple adjacency-
layout representations, as did Chi et al. [17], whilst Wittenberg et al.
[18] used multiple nested layouts to represent their trees. Morse et al.
[19] displayed multiple windows explorer style windows to compare
and contrast several taxonomic trees. Interaction is generally
achieved through a linking metaphor – objects selected in one
representation are marked where they occur in the other tree
representations. The division approach works well for a handful of
trees but does not scale well, due to each tree receiving a
correspondingly smaller area of screen space as the size of the set
grows - the largest number of trees so far displayed with this method
is 14, demonstrated with a set of museum collections in Graham et
al. [16].

The second approach, animation, is used to display changes of
structures or viewpoint between representations of different trees, in
effect distinguishing the trees temporally rather than spatially. In
practice, animation is best used for showing gradual transitions, thus
it is suited to showing successive trees that represent evolving
change rather than radical reorganisation where a user can easily lose
track of the situation, so animation in multiple trees is mainly
reserved for showing changes in values associated with tree nodes as
in work by Ghoniem and Fekete [20] or small-scale addition and
deletion of nodes as demonstrated by Wittenburg and Sigman [21].
The number and complexity of trees which can be animated through
is not constrained by screen space but by human perceptual abilities;
animation can only show at any given moment a change between two
trees, tracking a change between multiple trees relies on a user being
able to remember the animation’s past states,

The final option, agglomeration, is the visual aggregating of
multiple tree structures so that correlating nodes in tree structures
overlay each other, giving the impression of a directed graph and
often a truer representation of the underlying data model. Edges from
the different trees can be distinguished by visual properties such as
colour, pattern or saturation. Agglomeration of multiple trees means
in practice that a node can have multiple parents to display in the
same representation, possibly one per tree, which the nested and
adjacency approaches find difficult to do, although Hong et al.’s
Zoomology system [22] features a view of two merged trees
displayed adjacency style, with differences between the trees marked
with a specific colour. Thus, agglomerative representations are
generally displayed using node-link representations as in Graham et
al [1]. Furnas and Zack’s Multitree visualisation [23] was one of the
first approaches that used this method, with multiple trees defined
over the same structure, and family tree style layouts developed from
two trees laid out in opposite directions. As screen space is
effectively re-used there is no technical upper limit to how many

trees can be displayed using this method, though perceptual
difficulties in interpreting the merged structure typical of general
graph drawing techniques such as edge crossings and nodes and edge
occlusion occur. Also, care must be taken when displaying using
general graph drawing mechanisms as often it results in no global
orientation for child-parent links even if one exists in the overall
structure.

A popular compromise between the three former approaches is to
use a 3D representation of multiple trees. These take the form of
multiple, distinct tree representations drawn in parallel planes to each
other. Relationships between the trees are shown again either by
drawing links between trees as in Dwyer and Schreiber [24] or by
using colouring as in Chi et al. [17]. The 3D approach means the
group of trees can be rotated so that they resemble a division style
approach to displaying multiple trees (one tree per section of screen
space), or turned through ninety degrees so the structures give the
impression of overlaying one another. This last feature has the
drawback though of not guaranteeing equivalent nodes in different
trees will overlay each other and can lead to a display with a high
degree of occlusion.

Finally, when the number of trees grows extremely large, the
finite screen space cannot show all the trees in detail, so some
approaches visualise the trees as atomic items, from which examples
can be viewed in detail. Hillis et al. [25] take this approach by
visualising a set of phylogenies in a scatterplot, where distances
between points relate to the degree of similarity between the
associated trees.

A A A
B C B C D B C F

E D E
D E F

F

a) b) c)

Figure 1. Three basic kinds of tree drawing - a) node-link, b)
nested, & c) adjacency

3 DISCUSSION
Historically, multiple tree visualisations in the IV literature have

favoured the small multiples approach of drawing trees separately
and using brushing and linking techniques to coordinate selections
between the tree representations. Of the six published entries for the
InfoVis 2003 contest [26] to visualise multiple trees, five used this
approach as the foundation of their visualisation with the exception
of Wernert et al. [27] who used a 3D variant. Hong et al.’s
Zoomology browser [22] also used an agglomeration technique for
an overview comparison of two trees, while animation between trees
was not used in any of the approaches, the technique being reserved
for illuminating focus+context transitions internal to trees.

Obviously the type of overall structure the multiple trees form
will have a strong bearing on the visualisation techniques that will be
required to effectively visualise the data, and multiple trees can form
a number of different structures dependent on their overlap and
relative orientation, examples of which are elaborated in McGuffin
and Schraefel’s work [28]. An unrelated forest of trees will
obviously be easily, and perhaps only, represented as separate visual
entities, whilst visually overlaying trees - an agglomeration layout -
might benefit those that share many Multitree-like sub-structures
between themselves. Trees that construct their own structure over
shared nodes are more problematic as the differing tree structures
produce significant extra edge-crossings in the agglomeration style
views. Techniques specifically developed for drawing DAGs can
however impose a global orientation for parent-child links on the
structure if the trees all have the same parent-child orientation – that
is a node closer to the root than another node in one tree will always
maintain that characteristic in another tree - though the restrictions
on node placement involves a trade-off on edge crossings as seen in
Melançon et al. [29]. Linnean taxonomic classifications have this
property, through being organised using an immutable set of ordered
ranks, though other hierarchical structures such as phylogenies are
not guaranteed to have this property, and Robertson et al.’s [30]
polyarchy structures in effect may construct trees freely from a pool
of nodes regardless of those nodes’ positioning in other trees.
Multiple taxonomic trees in particular though form a type of DAG
we have previously termed a Directed Acyclic MultiGraph (DAMG),
with the multigraph qualifier resulting from the fact that the same
relation between two nodes can occur in multiple trees, and also has

the feature that as it is composed of overlaid tree structures, it
increases in size exponentially like a tree as we traverse down the
layers.

Previously, in Graham [31], we had tried to fix the lack of a
global hierarchical layout in our earlier agglomerated graph
visualisation by experimenting with a rank-restricted layout that kept
nodes of the same rank within distinct semi-circular concentric arcs.
However this did not work well with the force-directed metaphor we
were using, as we had essentially restricted the nodes to one-
dimension of freedom within their rank rather than the two-
dimensional freedom they enjoyed in the general graph layout. Thus
many nodes were prone to becoming trapped in local minima, so
rather than clarifying the layout the edges crossings became more
prevalent, and also became more densely packed as the nodes they
emanated from were restricted to fixed areas.

So, when revisiting the idea of displaying the multiple taxonomic
trees as a unified DAG we decided to use one of the common
heuristic DAG layout methods developed by Eades and Wormald
[32], using Barth et al.’s [33] quick method for calculating the
number of edge crossings. These layout heuristics, based on
Sugiyama et al.’s early work [34], start with an initial assignment of
nodes to distinct layers (the assignment of nodes to layers is inherent
in our data as each node/taxon is set at a particular rank), and an
initial ordering of nodes is made within each layer. Then, starting
with the second topmost layer, each node in this layer finds its
immediately connected neighbours in the above layer, and calculates
the median or mean coordinate of those neighbouring nodes, the
values of which are then used to order the nodes within the current
layer. This process proceeds down the layers and at the bottom layer
the process is reversed and performed back up the set of layers.
Alternating downward and upward passes are iterated until the layout
reaches a termination condition such as the number of edge crossings
equalling zero or stabilising over the last two or more passes, or that
the number of iterations carried out has reached a given maximum.

The procedure is simple and not as effective at reducing edge-
crossings as other more sophisticated options, for instance
neighbouring nodes can be trapped in unsuitable configurations if
their mean or median values are the same, as seen in Figure 3.
Further, Marti and Laguna [35] performed empirical experiments
that have shown simple ordering heuristics such as ordering on the
median and barycentre (mean) averages compare poorly on relatively
sparse graphs to other layout approaches such as GRASP (Greedy
Randomized Adaptive Search Procedures) [36] and Tabu [37], yet
the running time of these simple heuristic methods is vastly superior
which is a prime concern in an interactive environment.

The two popular methods of ordering heuristic, the barycentre or
median differ in a number of subtle aspects. The median is regarded
as being less sensitive to extreme distributions of nodes in the layers,
whereas the mean can be skewed by one or two outliers. The
barycentre method is considered preferable for graphs with a few
nodes of large degree whilst the median heuristic deals more
successfully with nodes of smaller degree. In cases where average
values for two nodes in a layer are equal, the node with the smallest
or odd-degree can be considered as having precedence. In the median
case if the number of node values to be considered is even, options
include taking one of the median values, halving the two median
values or biasing the value towards the side where nodes are more
densely distributed as in Gansner et al. [38].

4 DESIGN

 [1.5] [2] [2]

 [1.5] [2] [2]

 [1] [1.5] [2.5]

 [1.5] [2.5] [3]

A B C

D E F

AC B

E D F

Figure 2. In the left-hand diagram, the node pairs B & C and E & F
have the same median and mean values according to the positioning
of their immediately connected neighbours. The layout of the nodes
will therefore not automatically improve to the layout seen in the right
hand side version.

Average position
of related nodes

To visually simplify the layouts we made some augmentations to
the standard DAG heuristic-based layout. Firstly, the node
positioning algorithm traverses the layers from top to bottom. If after
this first pass there are no crossings detected the layout process halts,
and either the graph is an extremely simple one or, more likely, it is a
tree. The initial ordering of the nodes within each layer is preserved

within their sibling sets, such as alphabetical or subtree size ordering.
Otherwise the layout process iterates from bottom to top and then
back down again until one of the terminating conditions is met. In
these further sweeps, the concepts of major and minor averages are
introduced. Major averages are the average positions of the nodes
when calculated using the nodes in the next adjacent layer, as per the
traditional algorithm. Minor averages are calculated using the node
positions in the previous layer, and are used to tiebreak if the major
average values are the same for any nodes. Melançon et al. [29] used
the concept of calculating averages for nodes in a layer from all their
neighbouring node positions after performing the original upwards or
downwards-only calculation to reduce the number of iterations
needed to stabilise a DAG layout, but did not differentiate between
the two types. This method can stop some simple superfluous edge
crossings at the cost of some extra calculations. It is not used in the
first sweep as we prefer to use the pre-orderings of the nodes within
the layers as a tiebreaker in case the structure being displayed is a
tree, and in that case we view preserving node orderings such as
alphabetically by name or sub-tree sizes as more important for
orientation and navigation purposes.

Secondly, standard DAG layout involves inserting dummy nodes
along edges whose source and destination nodes do not lie on
neighbouring layers, the result being to break up such an edge into a
series of segments between adjacent layers. In the context of
taxonomic trees, such edges can occur in individual trees when a
sub-rank is used inconsistently, so for example a parent-child
relationship from a tribe to a genus will extend across the sub-tribe
rank if that is used elsewhere in the taxonomy. In the context of a
merged set of taxonomic trees, such edges occur when different
ranks are used by taxonomists when constructing the taxonomies.
The most apparent case is when one taxonomy in the set uses a rank
uniquely, such as legion or grex, and thus all the other trees’ edges
that span this rank must be routed through this layer by use of
dummy nodes. This leads to a visual surfeit of line segments in the
final DAG rendering, and for any one parent node with multiple
children this results in many lines being drawn close to each other at
minimal angular resolution. To counteract this effect we analyse the
children of each parent node. Those that are discovered to share the
same set of parent taxa across the current set of taxonomies have
their individual paths to each parent replaced by one path from each
parent to the final dummy node, from where the final segments of
individual paths to the child nodes are drawn as demonstrated in
Figure 3. This reduces the number of dummy nodes generated when
computing the DAG and also reduces the visual complexity of the
final rendering, with layer-spanning edges being realised by one
intermediate layer-crossing path that encompasses the dummy nodes
followed by a number of single-segment paths to their destination
nodes instead of the same number of many poly-line paths.

This could be viewed as counter-productive as it would tend to tie
these nodes together when it could be imagined in most
circumstances that these nodes would require the freedom to move
away from each other. However, these node sets can still pull apart
from each other if for instance child node placement is radically
different, but the fact that these nodes share the same parents in the
‘higher’ layers would indicate that these nodes are closely related in
the graph structure and a layout that encourages this to be
accentuated is not as detrimental as at first glance. Indeed, we use
this notion of parent ‘sets’ to pre-order the nodes within each layer –
it is acknowledged that the heuristic placement methods for DAGs
are very susceptible to the initial node orderings and having such
related nodes gathered together in this manner makes sense.

The edge-grouping effect seen in the right-hand side of Figure 3
was pleasing enough that it encouraged us to reproduce the same
effect for simple edges between adjacent layers. This was achieved
by inserting entire layers of dummy nodes between adjacent layers.
This obviously raised the number of dummy nodes in the calculation
of the DAG layout, but was still less than those occurred by the
traditional method as dummy nodes occurred between two layers at

the rate of one per unique set of parents rather than one per every
child node.

This bunching of child node edges by the child’s shared parent
sets also led to interesting results when viewing nodes whose range
spans many trees. Under normal barycentre DAG layout the children
of such nodes would be laid out with no consideration for the trees
they each belonged to, only for the parent nodes they were classified
under in those trees. Obviously if the parent node is the same across
multiple trees the discrimination in laying out the child nodes is lost.
However, using the parent set approach the children are collected
together according to which tree or set of trees they occurred in so
patterns such as which child nodes belong to the same tree can be
observed.

5 LAYOUT
Figure 4 demonstrates a typical layout of multiple trees as a DAG

using a set of eight different hierarchical classifications of the
Apiaceae taxonomic family, the same data set we previously used in
Graham et al. [1]. This data set is not particularly large in the context
of some other taxonomic trees, but the various classifications contain
a lot of differences, as opposed to larger taxonomies which tend to
simply feature annual additions or deletions and little in the way of
structural rearrangements.

In Figure 4, each layer in the DAG is assigned to a horizontal
band in the display, with nodes represented as labelled boxes. Along
the top of each node representation lie a set of small rectangles that
are coloured according to which trees the node occurs in and whether
those trees are currently active or hidden. For instance in the centre
of Figure 4 Ammieae has been selected – the node representation has
five blue, gradient-shaded rectangles along its top edge representing
its occurrence and subsequent selection in five out of the eight

Figure 3. Merging dummy nodes for child nodes with the same
parent nodes reduces the number of paths drawn in the final
representation.

Figure 4. Screenshot of the multiple classification DAG visualisation. This features an example from a data set of eight merged taxonomic
classifications, in this instance centered on Ammieae.

classifications. There are gaps where representations for three other
classifications could appear; their absence indicating that this node
does not occur in those classifications. Similarly, the Apiaceae node
representation at the top of the figure, which is the family to which
all the nodes in the data sets belong, has eight boxes along its top
edge, revealing it is present in all eight classifications. Five are these
are coloured blue, to indicate the trees that are currently involved in
the relationships shown on screen - these match to the five
taxonomies that Ammieae occurs in - and three are coloured grey to
indicate Apiaceae occurs in these taxonomies but no relationships are
currently represented. This is useful to give an indication of where
further undisplayed relationships for a node are present.

The mouse pointer is pictured brushing the Ammieae node,
specifically on the decal representing the Bentham classification. The
descendants, ancestors of Ammieae in Bentham along with the
associated edges are thus coloured yellow.

Edge paths are drawn as curves. We use a simple algorithm to
smooth out the complex polyline paths that can result when an edge
between two nodes pass through many intervening layers via a series
of dummy nodes. We decided that an optimal solution was not to
route the edges through the dummy nodes involved in the entirely
dummy layers unless it was the dummy layer immediately above the
child nodes belonging to the edge(s) in question, otherwise the nodes
in these layers are discarded. We then aim from the source node
towards the destination node, calculating if the line can pass through
each intersecting layer in turn by moving the dummy node left or
right without encountering any ‘real’ nodes. If this can’t be done for
a particular layer we move the dummy node in that layer as far as we
can and then aim afresh for the destination node from that point. The
source, destination and dummy nodes along each edge are then
joined smoothly with a series of Catmull-Rom curves [39]. This
occasionally leads to some extraneous edge crossings or edge back-
tracking, but mostly alleviates the complex paths introduced by the
use of the extra dummy layers.

Multiedges, which occur when a direct relationship between two
nodes occurs in multiple trees, are drawn with a line thickness
proportional to the number of individual relations they represent, a
visual cue common to other aggregated tree and graph
representations such as Wattenberg’s multivariate graphs [40]. In
Figure 4, several thicker blue edges can be seen curving out from
beneath the centre of Ammieae towards nodes and groups of nodes in
the bottom layer, indicating relationships that are sustained over
several classifications.

Finally, rather than drawing individual lines to nodes that share
the same set of parents in the display, a translucent triangle is drawn
that uses a shared dummy node as it’s apex and the leftmost and
rightmost occurrences of child nodes in a set as its other corners. The
lowest layer of Figure 4 shows several such groups, indicating node
groups that have common parents across the selected trees. The
edges of these triangles are allocated a thickness using the same
manner as for multiedges; the figure shows that a triangle enclosing
the furthest right-hand nodes has a thicker edge than neighbouring
groups, indicating that group of nodes are direct descendants of
Ammieae in more than one taxonomy. In the middle of the bottom
layer, there’s an overlap between a blue and a yellow triangle where
Euammineae in Bentham’s classification has claimed ownership of a
group of nodes that belonged directly to Ammieae in other
classifications. In Figure 4 in particular most of the different groups
result from Bentham’s classification having sub-tribes as
intermediate nodes and from nodes occurring inconsistently in the
five instances of Ammieae. On an intermediate layer in the current
display, triangles can sometimes include nodes that aren’t members
of that particular set, but brushing over the appropriate parent taxa
will confirm whether it is a continuous range.

The visualisation is implemented in Java 1.6 using the Swing
libraries.

Figure 5. Diagrams showing examples of how three basic tasks on
a given node are performed.

F

DC E

BA
Example of 4 ancestry paths from node F – FCA,
FDA, FEA and FEB. The FE relationship occurs
in two places so is drawn as a thicker edge, and
the FDA path is highlighted.

F

H IG

LKJ M N

Example of the children of node F over 4 trees –
FG(JK), FH(KLM), FH(KLM) and FI(MN). The
H(KLM) group is constant for two trees and is thus
marked with a thicker outline. The children FG(JK)
are highlighted.

F Q RPO

C D E
Siblings of node F over 4 classifications –
C(OPF), D(FQ), E(FQ) and E(FQR). Thicker lines
show where nodes belong to the same parent for
two or more classificiations. Node Q shares 3
parents with Node F.

6 INTERACTION
We decided to implement three basic operations that taxonomists

had previously said would be useful to visualise in the context of
multiple taxonomies, namely finding the parent taxa of a named
taxon, finding the children of a named taxon and finding the siblings
of a taxon across multiple trees. Figure 5 gives a diagrammatic
example of each of these tasks, centred around the selection of one
node.

The simplest operation possible is to trace the multiple ancestries
of a node in the many trees. Here the number of ancestors is a
multiple of the number of trees and the number of ranks above the
node in question in those trees, as each child node has strictly one
parent node per tree - as opposed to family trees where ancestors is
an exponential function of the number of past generations that are
considered. In the example of Daucus in Figure 6 it can be deduced
that the thicker paths from Daucus going to Caucalideae and
Daucineae represent the fact that these nodes are the parent of
Daucus in more than one of the taxonomies under investigation. In
this particular example, by tracing these ancestries further up the
DAG it can be seen that any agreement between the taxonomies
beyond the fact they both reside in the Apiaceae family ends there,
with the ancestries via Caucalideae and Daucineae subsequently
routing via differently named sub-families or straight to the family

Figure 6. Screenshot of Daucus’ ancestries with one tree path shown
in yellow. Thicker lines represent multiedges where the same
relationship occurs in multiple classifications

Figure 7. The child taxa of Smyrniae across four classifications are divided into 5 groups dependent on which combination of the four
taxonomies their relationship to Smyrniae occurs in.

Apiaceae that encompasses these example data sets. The example is
currently brushing the Koso-Poljansky classification and thus the
path from Daucus up to Apiaceae for that classification is
highlighted in yellow. For multiple ancestries, the overall effect of
the layout is that of a small-scale Sankey diagram, larger versions of
which are detailed in Riehmann et al. [41], with the sum of edge
widths heading into any higher node equal to the number that leave it
to travel further up the DAG towards the root.

The reciprocal operation to discovering the ancestry of a node,
which is finding all the children of a given node across multiple
trees, reveals the different structures that underlie that node where it
occurs across multiple taxonomies. This is shown for Smyrniae in
Figure 7, where its child nodes have been broken into five groups,
with membership of a group dependent on which combination of the
four ‘versions’ of Smyrnieae each child node belongs to. In the
figure, the Berchtold & Presl taxonomy has been brushed

highlighting the children of Smyrniae in that classification with a
yellow hue. The blue-coloured membership decals along the top
edge of the child nodes give clues as to why they have been grouped
together. The left-hand highlighted group, from “Aethus…” to
“Tordyl…” have one blue decal in the same position, indicating they
are members of Smyrniae only for this taxonomy. The furthest right
group of three highlighted child nodes, from “Physo…” to
“Smyrn…” have the same blue colouring pattern as each other,
indicating they are members of Smyrniae in this classification and
also share the same membership pattern in several other
classifications of Smyrniae. Finally “Cachr…”, immediately to the
left of the three previous nodes, has a different colouring pattern,
indicating that while it is present in Berchtold & Presl’s
classification of Smyrniae and it is present in other’s definitions of
the same node, no other child node shares exactly that pattern of
inclusion. Brushing the different classifications in the Smyrniae node

Figure 8. Siler’s siblings across six classifications are lined up and grouped along the genus rank according to the parents they share with Siler.
Brushing the parent nodes reveals Siler to have only one sibling in common across any of the taxonomies it occurs in, Aethusa, which in the
layout lies immediately to Siler’s left.

will reveal exactly what those patterns of inclusion are.
Again, multiedges are represented using lines of proportional

thickness to the number of edges they represent, so the regularity
with which child nodes or sets of child nodes appear under the same
parent nodes can be viewed. In contrast, a node that has radically
different contents in different trees will have a plethora of single-
thickness links and more nodes underneath it. For large graphs the
number of children can be overwhelming

Both the children and parent graphing operations can be carried
out on a single tree basis by pressing the mouse when over one of the
tree decals drawn in the top half of a node. The mouse tooltip will
signal when it is over one of these areas and a subsequent mouse
press will draw the ancestors and/or children of the node for that tree
only. This allows queries to be made internally of a single tree rather
than the whole tree set.

The final ‘one-click’ operation is the ability to find all the
siblings of a node across a set of taxonomies, that is: all the other
nodes it has shared at least one immediate parent node with, and thus
been a sibling of those nodes at some time. Upon choosing this
option and selecting a node, the sibling set is drawn across the
bottom of the screen, and above it are placed the node’s parents with
the appropriate links drawn between the parent and sibling layers.

As an example, Figure 8 shows two comparative screenshots of
the result of selecting to view Siler’s siblings. The siblings, and Siler
itself, are laid out across the bottom of the screen, with its different
parents in the set of active taxonomies positioned in the layers above.
In the top screenshot, one particular parent node, Oenanthinae, has
been brushed and thus its child nodes and relationships have been
coloured yellow, revealing the nodes Siler was grouped with in
Bentham’s 1867 classification – comprising of one group at the far
left of the row and Aethusa positioned immediately to the left of
Siler. Similarly, the lower screenshot shows Smyrniae being brushed,
Siler’s parent in Berchtold & Presl’s taxonomy. Here the children are
revealed to be a group immediately to the right of Siler and also
Aethusa again. Thus, the only sibling Siler has in common between
these two taxonomies is Aethusa. Again this operation can be
restricted to a single tree, which is simply equivalent to selecting to
reveal its parent node’s children in that tree.

The interface allows any combination of these three operations to
be performed on a node. Finding the ancestries and the children of a
node is useful for middle ranking nodes - leaf nodes obviously have
no children to display. Sibling information is often best displayed by
itself as it often forms a separate question to that of discovering a
node’s ancestors or descendants. Furthermore, an ‘accumulate’ mode
can be selected which incorporates the results of new selections into
the structure currently visible on-screen. This is necessary in large
graphs where drawing the entire set of trees would both be unwieldy
in terms of time to calculate the layout, and in interaction, as
individual node representations would shrink to sub-pixel sizes.
Rather, we calculate a maximum number of nodes to be drawn at any
one level, beyond which a cut-off applies to their visibility, and the
accumulate option enables drill-down operations into tree sets that
form deep, large DAGs.

Both the individual trees and ranks that form the DAG can be
hidden and then re-displayed at command. Hiding ranks is often
useful when only one or two trees in a set use a particular rank, as
this then allows comparison of taxonomies based only on common
ranks. It also helps to clarify the DAG representation by removing
sparsely populated ranks from the display. Similarly, trees can be
added or removed, which is useful for when either comparisons of
structures of tree subsets is needed, or when viewing the structure of
an individual tree is required. In the latter situation, a graph can be
drawn composed of just one tree, and then by making more trees
visible in the overall graph, nodes that are subsequently selected in
this single tree can have their relations to other trees visualised.

Upon a new selection a standard IV animation technique is used
to fade out old nodes, move nodes present in both graph views
between their old and new positions, and then fade in newly
introduced nodes. Animation is extremely useful when we change

the section of the graph we are viewing, as the heuristic algorithms
for laying out DAGs sometimes produce radical changes in node
positions even if only relatively small changes are made. Pre-
ordering nodes in their layers by the same metric each time keeps the
layout as stable as can be expected with these heuristics, but the
animation makes any changes clear to the user, communicating not
only changes in viewpoint but in the local structure they are viewing.

Brushing a node by moving the mouse cursor over it highlights
the node plus its associated edges and paths both up and down the
DAG. By moving over the top of the node, where the tree visibility
information is displayed, edges can be highlighted on a per-tree basis
by moving over the corresponding tree decal.

Initial selections or selections of nodes not present in the current
display can be made through a list of nodes, itself divided into
columns by tree, on the right-hand side of the display. This can be
hidden using a split-pane control to maximise the display area for the
DAG visualisation.

7 USER FEEDBACK
Informal usability testing has been carried out with five

taxonomists, following Nielsen’s [42] discount usability
methodology of getting real users to attempt representative tasks
with the application. This revealed various issues with the
visualisation and the tasks they wanted to accomplish, examples
including the ability to sort the classifications chronologically as well
as alphabetically to quickly find first use of a name within a set of
classifications, and a simple ‘back button’ method to return to a
previous layout was strongly urged. Various minor problems with
the general interface were also picked up, such as the tree inclusion
decals in the node being hard to separate when they merged together
in a long row, this for instance was rectified with a gradient shading
as seen in the previous figures.

8 CONCLUSION
We have presented a DAG-based visualisation of overlapping

multiple classifications. This visualisation differs from other IV
systems designed to explore multiple classifications in that it merges
the trees into a unified structure whilst preserving a global parent-
child orientation of the nodes, which is essential for navigation and
interpretation of taxonomic trees with their strict assignment of
nodes to ordinal ranks.

This method of overlaying classifications allows nodes to be seen
in the context of multiple trees, without the shrinking space problems
of the small multiple design.

ACKNOWLEDGEMENTS
We would like to thank the taxonomists at the Royal Botanical
Garden Edinburgh (RBGE) for their time and invaluable feedback.
This work was supported by a Engineering and Physical Sciences
Research Council (EPSRC) grant.

REFERENCES
[1] M. Graham, J. B. Kennedy, and C. Hand, "A Comparison of Set-Based

and Graph-Based Visualisations of Overlapping Classification
Hierarchies," In, V. D. Gesù, S. Levialdi, and L. Tarantino, editors,
Proc. ACM AVI (Palermo, Italy, May 23-26, 2000), pages 41-50. ACM
Press.

[2] E. M. Reingold and J. S. Tilford, "Tidier drawing of trees," IEEE
Transactions on Software Engineering, vol. 7, no. 2, pp. 223-228,
March 1981.

[3] N. H. F. Beebe, "A Bibliography of Tree Drawing Algorithms." Salt
Lake City: Department of Mathematics, University of Utah, 2006, pp.
22.

[4] C. Plaisant, J. Grosjean, and B. B. Bederson, "SpaceTree: Supporting
Exploration in Large Node Link Tree, Design Evolution and Empirical

Evaluation," In Proc. IEEE InfoVis (Boston, Massachusetts, USA,
October 28-29, 2002), pages 57-64. IEEE Computer Society.

[5] B. Johnson and B. Shneiderman, "Treemaps: A Space-Filling approach
to the visualization of hierarchical information structures," In Proc.
IEEE Visualization (San Diego, California, USA, Oct 22-25, 1991),
pages 284-291. IEEE Computer Society Press.

[6] W. Wang, H. Wang, G. Dai, and H. Wang, "Visualization of Large
Hierarchical Data by Circle Packing," In Proc. ACM CHI (Montréal,
Québec, Canada, April 22-28, 2006), pages 517-520. ACM Press.

[7] M. Sifer, "Filter co-ordinations for exploring multi-dimensional data,"
Journal of Visual Languages and Computing, vol. 17, no. 2, pp. 107-
125, 2006.

[8] J. Stasko and E. Zhang, "Focus+Context Display and Navigation
Techniques for Enhancing Radial, Space-Filling Hierarchy
Visualizations," In Proc. IEEE InfoVis (Salt Lake City, Utah, USA,
October 9-10, 2000), pages 57-65. IEEE Computer Society Press.

[9] G. G. Robertson, J. D. Mackinlay, and S. K. Card, "Cone Trees:
Animated 3D Visualizations of Hierarchical Information," In Proc.
ACM CHI: Human Factors in Computing Systems (New Orleans,
Louisiana, USA, April 27 - May 2, 1991), pages 189-194. ACM Press.

[10] T. Bladh, D. A. Carr, and J. Scholl, "Extending Tree-Maps to Three
Dimensions: A Comparative Study," In, M. Masoodian, S. Jones, and B.
Rogers, editors, Proc. 6th Asia-Pacific Conference on Computer-
Human Interaction (Rotorua, New Zealand, June 29 - July 2, 2004),
pages 50-59. Springer-Verlag.

[11] F. van Ham and J. J. van Wijk, "Beamtrees: Compact Visualization of
Large Hierarchies," In Proc. IEEE InfoVis (Boston, Massachussets,
USA, October 28-29, 2002), pages 93-100. IEEE Computer Society
Press.

[12] S. Zhao, M. J. McGuffin, and M. H. Chignell, "Elastic Hierarchies:
Combining Treemaps and Node-Link Diagrams," In Proc. IEEE InfoVis
(Minneapolis, Minnesota, USA, October 23-25, 2005), pages 57-64.
IEEE Computer Society Press.

[13] A. Kobsa, "User Experiments with Tree Visualization Systems," In
Proc. IEEE InfoVis (Austin, Texas, USA, September 10-12, 2004),
pages 9-16. IEEE Computer Society Press.

[14] E. R. Tufte, The Visual Display of Quantitative Information. Cheshire,
Connecticut: Graphics Press, 1983.

[15] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou,
"TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with
Guaranteed Visibility," ACM Transactions on Graphics, vol. 22, no. 3,
pp. 453-462, July 2003.

[16] M. Graham, J. Kennedy, and L. Downey, "Visual Comparison and
Exploration of Natural History Collections," In, A. Celentano and P.
Mussio, editors, Proc. Advanced Visual Interfaces (AVI) (Venice, Italy,
May 23-26, 2006), pages 310-313. ACM Press.

[17] E. H. Chi, J. Pitkow, J. Mackinlay, P. Pirolli, R. Gossweiler, and S. K.
Card, "Visualizing the Evolution of Web Ecologies," In Proc. ACM
CHI (Los Angeles, California, USA, April 18-23, 1998), pages 400-407.
ACM Press.

[18] K. Wittenburg, D. Das, W. Hill, and L. Stead, "Group Asynchronous
Browsing on the World Wide Web," In Proc. Fourth International
World Wide Web Conference (Boston, Massachusetts, USA, December
11-14, 1995), pages 51-62.

[19] D. R. Morse, N. Ytow, and D. M. Roberts, "Comparison of multiple
taxonomic hierarchies using TaxoNote," In Proc. IEEE InfoVis Poster
Compendium (Seattle, Washington, USA, 19-21 October, 2003), pages
126-127. IEEE Computer Society Press.

[20] M. Ghoniem and J.-D. Fekete, "Animating Treemaps," In Proc. 18th
HCIL Symposium - Workshop on Treemap Implementations and
Applications (University of Maryland, College Park, Maryland, USA,
May 31, 2001).

[21] K. Wittenburg and E. Sigman, "Visual Focusing and Transition
Techniques in a Treeviewer for Web Information Access," In Proc.
Visual Languages (Capri, Italy, September 23-26, 1997), pages 20-27.
IEEE Computer Society Press.

[22] J. Y. Hong, J. D'Andries, M. Richman, and M. Westfall, "Zoomology:
Comparing Two Large Hierarchical Trees," In Proc. IEEE InfoVis

Poster Compendium (Seattle, Washington, USA, 19-21 October, 2003),
pages 120-121. IEEE Computer Society Press.

[23] G. W. Furnas and J. Zacks, "Multitrees: Enriching and Reusing
Hierarchical Structure," In Proc. ACM CHI (Boston, Massachusetts,
USA, April 24-28, 1994), pages 330-336. ACM Press.

[24] T. Dwyer and F. Schreiber, "Optimal Leaf Ordering for Two and a Half
Dimensional Phylogenetic Tree Visualisation," In, N. Churcher and C.
Churcher, editors, Proc. Australasian Symposium on Information
Visualisation (Dunedin, New Zealand, January 23-24, 2004), pages 109-
115. Australian Computer Society.

[25] D. M. Hillis, T. A. Heath, and K. St. John, "Analysis and Visualization
of Tree Space," Systematic Biology, vol. 54, no. 3, pp. 471-482, 2005.

[26] Information Visualization Benchmarks Repository, "InfoVis 2003
Contest - Visualization and PairWise Comparison of Trees,"
http://www.cs.umd.edu/hcil/InfovisRepository/contest-2003/, Last
accessed March 28, 2007.

[27] E. A. Wernert, D. K. Berry, J. N. Huffman, and C. A. Stewart, "Tree3D
- A System for Temporal and Comparative Analysis of Phylogenetic
Trees," In Proc. IEEE InfoVis Poster Compendium (Seattle,
Washington, USA, October 19-21, 2003), pages 114-115. IEEE
Computer Society Press.

[28] M. McGuffin and M. C. Schraefel, "A Comparison of Hyperstructures:
Zzstructures, mSpaces, and Polyarchies," In Proc. ACM Hypertext
(Santa Cruz, California, USA, August 9-13, 2004), pages 153-162.
ACM Press.

[29] G. Melançon and I. Herman, "DAG Drawing from an Information
Visualization Perspective," In, R. van Liere and W. de Leeuw, editors,
Proc. Eurographics/IEEE TCVG Symposium on Visualization (VisSym)
(Amsterdam, The Netherlands, May 29-31, 2000), pages 3-12. Springer-
Verlag.

[30] G. Robertson, K. Cameron, M. Czerwinski, and D. Robbins, "Animated
visualization of multiple intersecting hierarchies," Information
Visualization, vol. 1, no. 1, pp. 50-65, March 2002.

[31] M. Graham, "Visualising Multiple Overlapping Classification
Hierarchies," PhD Dissertation, School of Computing, Napier
University, Edinburgh, UK, 2001.

[32] P. Eades and N. C. Wormald, "Edge crossings in drawings of bipartite
graphs," Algorithmica, vol. 11, no. 4, pp. 379-403, 1994.

[33] W. Barth, P. Mutzel, and M. Jünger, "Simple and Efficient Bilayer
Cross Counting," Journal of Graph Algorithms and Applications, vol. 8,
no. 2, pp. 179-194, 2004.

[34] K. Sugiyama, S. Tagawa, and M. Toda, "Methods for visual
understanding of hierarchical systems," IEEE Transactions on Systems,
Man and Cybernetics, vol. 11, no. 2, pp. 109-125, 1981.

[35] R. Martí and M. Laguna, "Heuristics and meta-heuristics for 2-layer
straight line crossing minimization," Discrete Applied Mathematics, vol.
127, no. 3, pp. 665-678, May 1 2003.

[36] T. A. Feo and M. G. C. Resende, "Greedy randomized adaptive search
procedures," Journal of Global Optimization, vol. 6, no. 2, pp. 109-133,
March 1995.

[37] F. Glover and F. Laguna, Tabu Search. Norwell, Massachusetts, USA:
Kluwer Academic Publishers, 1997.

[38] E. R. Gansner, S. C. North, and K. P. Vo, "DAG— A Program that
Draws Directed Graphs," Software, Practice and Experience, vol. 18,
no. 11, pp. 1047-1062, November 1988.

[39] E. Catmull and R. Rom, "A class of local interpolating splines," -
Computer Aided Geometric Design, R. E. Barnhill and R. F. Riesenfeld,
eds., New York: Academic Press, pp. 317-326, 1974.

[40] M. Wattenberg, "Visual Exploration of Multivariate Graphs," In Proc.
ACM CHI (Montréal, Québec, Canada, April 22-28, 2006), pages 811-
819. ACM Press.

[41] P. Riehmann, M. Hanfler, and B. Froehlich, "Interactive Sankey
Diagrams," In Proc. IEEE Symposium on Information Visualization
(Minneapolis, Minnesota, USA, October 23-25, 2005), pages 233-240.
IEEE Computer Society Press.

[42] J. Nielsen, "Guerrila HCI: Using Discount Usability Engineering to
Penetrate the Intimidation Barrier," - Cost-Justifying Usability, 1st ed,
R. G. Bias and D. J. Mayhew, eds.: Academic Press Professional, pp.
245-272, Chapter 11, 1994.

	2 Related work – single and multiple tree visualisations
	2.1 Single Trees
	2.2 Multiple Trees
	3 Discussion
	4 Design
	5 Layout
	6 Interaction
	7 User feedback
	8 Conclusion

