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Abstract—We present a Directed Acyclic Graph visualisation designed to allow interaction with a set of multiple classification 
trees, specifically to find overlaps and differences between groups of trees and individual trees. The work is motivated by the 
need to find a representation for multiple trees that has the space-saving property of a general graph representation and the 
intuitive parent-child direction cues present in individual representation of trees. Using example taxonomic data sets, we describe 
augmentations to the common barycenter DAG layout method that reveal shared sets of child nodes between common parents in 
a clearer manner. Other interactions such as displaying the multiple ancestor paths of a node when it occurs in several trees, and 
revealing intersecting sibling sets within the context of a single DAG representation are also discussed.  

Index Terms—Multiple trees, Directed Acyclic Graph. 

 

1 INTRODUCTION 
Our previous work in Graham and Kennedy [1] compared the 

utility of two differing styles of representing multiple, overlapping 
classifications – namely an agglomerated graph representation of all 
the classifications and a small-multiple representation of individual 
classifications with coloured overlaps. Previous discussions and 
testing with users and constructors of taxonomic classifications 
revealed that they preferred the small-multiple style of 
representation, stating that the graph representation showed too much 
information at once and that the hierarchical information associated 
with individual classifications was lost when drawn using the force-
based layout algorithms that we utilised for graph drawing.  

Therefore, to alleviate the difficulties caused by the latter point, 
we have developed a visualisation based on a DAG (Directed 
Acyclic Graph) layout, formed by merging all the taxonomies of 
interest into one agglomerated structure as with the general graph 
visualisation, but laid out such that nodes at the same rank or layer 
are drawn so the global parent-child direction is preserved. 

In the following sections, we describe related work in tree and 
multiple tree visualisations, followed by a discussion of how our 
visualisation differs from existing systems. We then describe the 
methods used to construct the DAG and the interactions that such a 
representation makes possible, and user feedback from expert users, 
namely a group of five taxonomists. 

2 RELATED WORK – SINGLE AND MULTIPLE TREE 
VISUALISATIONS 

Tree visualisations have a long history before the coining of the 
term ‘Information Visualization’ (IV), the classic reference being 
Reingold and Tilford’s [2] work, itself only one of many pre-1990 
algorithms for laying out various types of tree structure as 
documented in Beebe’s bibliography [3]. However, these approaches 
tended to focus exclusively on layout algorithms; what Information 
Visualisation introduced was the notion of being able to interact with 
the generated tree visualisations. Here we describe some of the basic 
approaches to visualising single and then multiple tree visualisations. 

2.1 Single Trees 
Traditional single tree layouts divide into three basic categories, 

based on the method used to indicate a parent-child relationship. The 
first and most well-known is the node-link layout as shown in Figure 
1a), developed by Reingold and Tilford [2] and also used by Plaisant 

et al. [4] with parent-child relations represented by lines (links) 
drawn between nodes that represent the objects in the tree. Secondly, 
nested layouts, such as Johnson & Shneiderman’s TreeMaps [5] and 
Wang et al. [6], convey parent-child relationships by placing child 
nodes within the boundaries of their parent node, as demonstrated in 
Figure 2b). Finally, there is the adjacency layout style shown in 
Figure 1c), where child nodes are drawn next to their parent node. 
This method, more than the node-link approach, requires the 
definition of a parent-child orientation to differentiate parent-child 
relations from sibling relationships and to indicate the direction of a 
relationship. Usually this orientation is either top-down as in the 
above figure and Sifer’s work [7] or centre-out as in Stasko and 
Zhang’s radial space-filling tree [8]. All of these approaches have 
been extended from their 2D projections to 3D variants, with various 
degrees of success: e.g. Robertson et al.’s Cone Tree node-link 
visualisation [9], Bladh et al.’s nested 3D treemaps [10], and van 
Ham and van Wijk’s Beamtree [11] for adjacency methods. These 
three basic layout styles are the foundation for all tree visualisations 
that display internal tree structure. We do not consider adjacency 
matrix representations of trees, as these are more commonly thought 
of as mathematical representations than a visualisation style. 

All three layout styles have associated advantages and 
disadvantages and the choice of representation is dependent on the 
tasks that are to be performed with the structures. Generally node-
link representations are more understandable to the lay-person and 
communicate structure readily, but use up screen space rapidly. 
Nested representations allow more nodes to be displayed at once but 
structure is more difficult to perceive due to lacking a global child-
parent orientation. The adjacency methods strive for a halfway house 
between these two styles, utilising a higher proportion of screen-
space than a node-link display, yet making structure relatively simple 
to follow. 

The separate styles can be combined within a visualisation of a 
single tree as demonstrated by Zhao et al. [12], where portions of a 
tree are drawn as either nested or node-link representations 
dependent on screen space and user interaction. Another hybrid 
representation is that used in Microsoft Windows Explorer, which 
contains stylised links between nodes but mostly relies on 
indentation and adjacency to communicate parent-child and sibling 
relationships, achieving a very compact yet legible representation of 
hierarchical structures. In empirical evaluation by Kobsa [13] this 
layout was shown to be the objectively preferred choice when 
compared to other tree visualisations, though it was recognised that 
some of this performance advantage may be familiarity due to the 
ubiquitous presence of  Microsoft Windows. 

2.2 Multiple Trees 

 

The data sets we have studied over the past few years are formed 
from multiple trees, specifically multiple overlapping taxonomies, 

 



the overlapping condition marking these structures as distinct from 
simply a collection of unrelated hierarchies. The obvious difficulties 
are resolving screen space allocation and conveying the overlap 
between individual trees, for which three approaches exist: division, 
animation and agglomeration.  

The division approach, termed small multiples by Tufte [14], sub-
divides available screen space into areas in which the individual trees 
are drawn. Unsurprisingly, this approach tends to favour the more 
space-efficient individual tree layout representations. Munzner’s [15] 
approach is strictly speaking a node-link layout, but internal nodes 
are not labelled and the allocation for individual nodes can become 
so compressed that the drawn links may use all the space available 
for drawing, hence moving towards the adjacency style of 
representation. Our previous work [1, 16] used multiple adjacency-
layout representations, as did Chi et al. [17], whilst Wittenberg et al. 
[18] used multiple nested layouts to represent their trees. Morse et al. 
[19] displayed multiple windows explorer style windows to compare 
and contrast several taxonomic trees. Interaction is generally 
achieved through a linking metaphor – objects selected in one 
representation are marked where they occur in the other tree 
representations. The division approach works well for a handful of 
trees but does not scale well, due to each tree receiving a 
correspondingly smaller area of screen space as the size of the set 
grows - the largest number of trees so far displayed with this method 
is 14, demonstrated with a set of museum collections in Graham et 
al. [16]. 

The second approach, animation, is used to display changes of 
structures or viewpoint between representations of different trees, in 
effect distinguishing the trees temporally rather than spatially. In 
practice, animation is best used for showing gradual transitions, thus 
it is suited to showing successive trees that represent evolving 
change rather than radical reorganisation where a user can easily lose 
track of the situation, so animation in multiple trees is mainly 
reserved for showing changes in values associated with tree nodes as 
in work by Ghoniem and Fekete [20] or small-scale addition and 
deletion of nodes as demonstrated by Wittenburg and Sigman [21]. 
The number and complexity of trees which can be animated through 
is not constrained by screen space but by human perceptual abilities; 
animation can only show at any given moment a change between two 
trees, tracking a change between multiple trees relies on a user being 
able to remember the animation’s past states, 

The final option, agglomeration, is the visual aggregating of 
multiple tree structures so that correlating nodes in tree structures 
overlay each other, giving the impression of a directed graph and 
often a truer representation of the underlying data model. Edges from 
the different trees can be distinguished by visual properties such as 
colour, pattern or saturation. Agglomeration of multiple trees means 
in practice that a node can have multiple parents to display in the 
same representation, possibly one per tree, which the nested and 
adjacency approaches find difficult to do, although Hong et al.’s 
Zoomology system [22] features a view of two merged trees 
displayed adjacency style, with differences between the trees marked 
with a specific colour. Thus, agglomerative representations are 
generally displayed using node-link representations as in Graham et 
al [1]. Furnas and Zack’s Multitree visualisation [23] was one of the 
first approaches that used this method, with multiple trees defined 
over the same structure, and family tree style layouts developed from 
two trees laid out in opposite directions.  As screen space is 
effectively re-used there is no technical upper limit to how many 

trees can be displayed using this method, though perceptual 
difficulties in interpreting the merged structure typical of general 
graph drawing techniques such as edge crossings and nodes and edge 
occlusion occur. Also, care must be taken when displaying using 
general graph drawing mechanisms as often it results in no global 
orientation for child-parent links even if one exists in the overall 
structure. 

A popular compromise between the three former approaches is to 
use a 3D representation of multiple trees. These take the form of 
multiple, distinct tree representations drawn in parallel planes to each 
other. Relationships between the trees are shown again either by 
drawing links between trees as in Dwyer and Schreiber [24] or by 
using colouring as in Chi et al. [17]. The 3D approach means the 
group of trees can be rotated so that they resemble a division style 
approach to displaying multiple trees (one tree per section of screen 
space), or turned through ninety degrees so the structures give the 
impression of overlaying one another. This last feature has the 
drawback though of not guaranteeing equivalent nodes in different 
trees will overlay each other and can lead to a display with a high 
degree of occlusion. 

Finally, when the number of trees grows extremely large, the 
finite screen space cannot show all the trees in detail, so some 
approaches visualise the trees as atomic items, from which examples 
can be viewed in detail. Hillis et al. [25] take this approach by 
visualising a set of phylogenies in a scatterplot, where distances 
between points relate to the degree of similarity between the 
associated trees. 
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Figure 1. Three basic kinds of tree drawing - a) node-link, b) 
nested, & c) adjacency 

3 DISCUSSION 
Historically, multiple tree visualisations in the IV literature have 

favoured the small multiples approach of drawing trees separately 
and using brushing and linking techniques to coordinate selections 
between the tree representations. Of the six published entries for the 
InfoVis 2003 contest [26] to visualise multiple trees, five used this 
approach as the foundation of their visualisation with the exception 
of Wernert et al. [27] who used a 3D variant. Hong et al.’s 
Zoomology browser [22] also used an agglomeration technique for 
an overview comparison of two trees, while animation between trees 
was not used in any of the approaches, the technique being reserved 
for illuminating focus+context transitions internal to trees. 

Obviously the type of overall structure the multiple trees form 
will have a strong bearing on the visualisation techniques that will be 
required to effectively visualise the data, and multiple trees can form 
a number of different structures dependent on their overlap and 
relative orientation, examples of which are elaborated in McGuffin 
and Schraefel’s work [28]. An unrelated forest of trees will 
obviously be easily, and perhaps only, represented as separate visual 
entities, whilst visually overlaying trees - an agglomeration layout - 
might benefit those that share many Multitree-like sub-structures 
between themselves. Trees that construct their own structure over 
shared nodes are more problematic as the differing tree structures 
produce significant extra edge-crossings in the agglomeration style 
views. Techniques specifically developed for drawing DAGs can 
however impose a global orientation for parent-child links on the 
structure if the trees all have the same parent-child orientation – that 
is a node closer to the root than another node in one tree will always 
maintain that characteristic in another tree - though the restrictions 
on node placement involves a trade-off on edge crossings as seen in 
Melançon et al. [29]. Linnean taxonomic classifications have this 
property, through being organised using an immutable set of ordered 
ranks, though other hierarchical structures such as phylogenies are 
not guaranteed to have this property, and Robertson et al.’s [30] 
polyarchy structures in effect may construct trees freely from a pool 
of nodes regardless of those nodes’ positioning in other trees. 
Multiple taxonomic trees in particular though form a type of DAG 
we have previously termed a Directed Acyclic MultiGraph (DAMG), 
with the multigraph qualifier resulting from the fact that the same 
relation between two nodes can occur in multiple trees, and also has 



the feature that as it is composed of overlaid tree structures, it 
increases in size exponentially like a tree as we traverse down the 
layers. 

Previously, in Graham [31], we had tried to fix the lack of a 
global hierarchical layout in our earlier agglomerated graph 
visualisation by experimenting with a rank-restricted layout that kept 
nodes of the same rank within distinct semi-circular concentric arcs. 
However this did not work well with the force-directed metaphor we 
were using, as we had essentially restricted the nodes to one-
dimension of freedom within their rank rather than the two-
dimensional freedom they enjoyed in the general graph layout. Thus 
many nodes were prone to becoming trapped in local minima, so 
rather than clarifying the layout the edges crossings became more 
prevalent, and also became more densely packed as the nodes they 
emanated from were restricted to fixed areas. 

So, when revisiting the idea of displaying the multiple taxonomic 
trees as a unified DAG we decided to use one of the common 
heuristic DAG layout methods developed by Eades and Wormald 
[32], using Barth et al.’s [33] quick method for calculating the 
number of edge crossings. These layout heuristics, based on 
Sugiyama et al.’s early work [34], start with an initial assignment of 
nodes to distinct layers (the assignment of nodes to layers is inherent 
in our data as each node/taxon is set at a particular rank), and an 
initial ordering of nodes is made within each layer. Then, starting 
with the second topmost layer, each node in this layer finds its 
immediately connected neighbours in the above layer, and calculates 
the median or mean coordinate of those neighbouring nodes, the 
values of which are then used to order the nodes within the current 
layer. This process proceeds down the layers and at the bottom layer 
the process is reversed and performed back up the set of layers. 
Alternating downward and upward passes are iterated until the layout 
reaches a termination condition such as the number of edge crossings 
equalling zero or stabilising over the last two or more passes, or that 
the number of iterations carried out has reached a given maximum. 

The procedure is simple and not as effective at reducing edge-
crossings as other more sophisticated options, for instance 
neighbouring nodes can be trapped in unsuitable configurations if 
their mean or median values are the same, as seen in Figure 3. 
Further, Marti and Laguna [35] performed empirical experiments 
that have shown simple ordering heuristics such as ordering on the 
median and barycentre (mean) averages compare poorly on relatively 
sparse graphs to other layout approaches such as GRASP (Greedy 
Randomized Adaptive Search Procedures) [36] and Tabu [37], yet 
the running time of these simple heuristic methods is vastly superior 
which is a prime concern in an interactive environment. 

The two popular methods of ordering heuristic, the barycentre or 
median differ in a number of subtle aspects. The median is regarded 
as being less sensitive to extreme distributions of nodes in the layers, 
whereas the mean can be skewed by one or two outliers. The 
barycentre method is considered preferable for graphs with a few 
nodes of large degree whilst the median heuristic deals more 
successfully with nodes of smaller degree. In cases where average 
values for two nodes in a layer are equal, the node with the smallest 
or odd-degree can be considered as having precedence. In the median 
case if the number of node values to be considered is even, options 
include taking one of the median values, halving the two median 
values or biasing the value towards the side where nodes are more 
densely distributed as in Gansner et al. [38]. 

4 DESIGN 
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Figure 2. In the left-hand diagram, the node pairs B & C and E & F 
have the same median and mean values according to the positioning 
of their immediately connected neighbours. The layout of the nodes 
will therefore not automatically improve to the layout seen in the right 
hand side version. 

Average position 
of related nodes 

To visually simplify the layouts we made some augmentations to 
the standard DAG heuristic-based layout. Firstly, the node 
positioning algorithm traverses the layers from top to bottom. If after 
this first pass there are no crossings detected the layout process halts, 
and either the graph is an extremely simple one or, more likely, it is a 
tree. The initial ordering of the nodes within each layer is preserved 

within their sibling sets, such as alphabetical or subtree size ordering. 
Otherwise the layout process iterates from bottom to top and then 
back down again until one of the terminating conditions is met. In 
these further sweeps, the concepts of major and minor averages are 
introduced. Major averages are the average positions of the nodes 
when calculated using the nodes in the next adjacent layer, as per the 
traditional algorithm. Minor averages are calculated using the node 
positions in the previous layer, and are used to tiebreak if the major 
average values are the same for any nodes. Melançon et al. [29] used 
the concept of calculating averages for nodes in a layer from all their 
neighbouring node positions after performing the original upwards or 
downwards-only calculation to reduce the number of iterations 
needed to stabilise a DAG layout, but did not differentiate between 
the two types. This method can stop some simple superfluous edge 
crossings at the cost of some extra calculations. It is not used in the 
first sweep as we prefer to use the pre-orderings of the nodes within 
the layers as a tiebreaker in case the structure being displayed is a 
tree, and in that case we view preserving node orderings such as 
alphabetically by name or sub-tree sizes as more important for 
orientation and navigation purposes. 

Secondly, standard DAG layout involves inserting dummy nodes 
along edges whose source and destination nodes do not lie on 
neighbouring layers, the result being to break up such an edge into a 
series of segments between adjacent layers. In the context of 
taxonomic trees, such edges can occur in individual trees when a 
sub-rank is used inconsistently, so for example a parent-child 
relationship from a tribe to a genus will extend across the sub-tribe 
rank if that is used elsewhere in the taxonomy. In the context of a 
merged set of taxonomic trees, such edges occur when different 
ranks are used by taxonomists when constructing the taxonomies. 
The most apparent case is when one taxonomy in the set uses a rank 
uniquely, such as legion or grex, and thus all the other trees’ edges 
that span this rank must be routed through this layer by use of 
dummy nodes. This leads to a visual surfeit of line segments in the 
final DAG rendering, and for any one parent node with multiple 
children this results in many lines being drawn close to each other at 
minimal angular resolution. To counteract this effect we analyse the 
children of each parent node. Those that are discovered to share the 
same set of parent taxa across the current set of taxonomies have 
their individual paths to each parent replaced by one path from each 
parent to the final dummy node, from where the final segments of 
individual paths to the child nodes are drawn as demonstrated in 
Figure 3. This reduces the number of dummy nodes generated when 
computing the DAG and also reduces the visual complexity of the 
final rendering, with layer-spanning edges being realised by one 
intermediate layer-crossing path that encompasses the dummy nodes 
followed by a number of single-segment paths to their destination 
nodes instead of the same number of many poly-line paths. 



This could be viewed as counter-productive as it would tend to tie 
these nodes together when it could be imagined in most 
circumstances that these nodes would require the freedom to move 
away from each other. However, these node sets can still pull apart 
from each other if for instance child node placement is radically 
different, but the fact that these nodes share the same parents in the 
‘higher’ layers would indicate that these nodes are closely related in 
the graph structure and a layout that encourages this to be 
accentuated is not as detrimental as at first glance. Indeed, we use 
this notion of parent ‘sets’ to pre-order the nodes within each layer – 
it is acknowledged that the heuristic placement methods for DAGs 
are very susceptible to the initial node orderings and having such 
related nodes gathered together in this manner makes sense. 

The edge-grouping effect seen in the right-hand side of Figure 3 
was pleasing enough that it encouraged us to reproduce the same 
effect for simple edges between adjacent layers. This was achieved 
by inserting entire layers of dummy nodes between adjacent layers. 
This obviously raised the number of dummy nodes in the calculation 
of the DAG layout, but was still less than those occurred by the 
traditional method as dummy nodes occurred between two layers at 

the rate of one per unique set of parents rather than one per every 
child node. 

This bunching of child node edges by the child’s shared parent 
sets also led to interesting results when viewing nodes whose range 
spans many trees. Under normal barycentre DAG layout the children 
of such nodes would be laid out with no consideration for the trees 
they each belonged to, only for the parent nodes they were classified 
under in those trees. Obviously if the parent node is the same across 
multiple trees the discrimination in laying out the child nodes is lost. 
However, using the parent set approach the children are collected 
together according to which tree or set of trees they occurred in so 
patterns such as which child nodes belong to the same tree can be 
observed.  

5 LAYOUT 
Figure 4 demonstrates a typical layout of multiple trees as a DAG 

using a set of eight different hierarchical classifications of the 
Apiaceae taxonomic family, the same data set we previously used in 
Graham et al. [1]. This data set is not particularly large in the context 
of some other taxonomic trees, but the various classifications contain 
a lot of differences, as opposed to larger taxonomies which tend to 
simply feature annual additions or deletions and little in the way of 
structural rearrangements. 

In Figure 4, each layer in the DAG is assigned to a horizontal 
band in the display, with nodes represented as labelled boxes. Along 
the top of each node representation lie a set of small rectangles that 
are coloured according to which trees the node occurs in and whether 
those trees are currently active or hidden. For instance in the centre 
of Figure 4 Ammieae has been selected – the node representation has 
five blue, gradient-shaded rectangles along its top edge representing 
its occurrence and subsequent selection in five out of the eight 

Figure 3. Merging dummy nodes for child nodes with the same 
parent nodes reduces the number of paths drawn in the final 
representation. 

Figure 4. Screenshot of the multiple classification DAG visualisation. This features an example from a data set of eight merged taxonomic 
classifications, in this instance centered on Ammieae. 



classifications. There are gaps where representations for three other 
classifications could appear; their absence indicating that this node 
does not occur in those classifications. Similarly, the Apiaceae node 
representation at the top of the figure, which is the family to which 
all the nodes in the data sets belong, has eight boxes along its top 
edge, revealing it is present in all eight classifications. Five are these 
are coloured blue, to indicate the trees that are currently involved in 
the relationships shown on screen - these match to the five 
taxonomies that Ammieae occurs in - and three are coloured grey to 
indicate Apiaceae occurs in these taxonomies but no relationships are 
currently represented. This is useful to give an indication of where 
further undisplayed relationships for a node are present. 

The mouse pointer is pictured brushing the Ammieae node, 
specifically on the decal representing the Bentham classification. The 
descendants, ancestors of Ammieae in Bentham along with the 
associated edges are thus coloured yellow. 

Edge paths are drawn as curves. We use a simple algorithm to 
smooth out the complex polyline paths that can result when an edge 
between two nodes pass through many intervening layers via a series 
of dummy nodes. We decided that an optimal solution was not to 
route the edges through the dummy nodes involved in the entirely 
dummy layers unless it was the dummy layer immediately above the 
child nodes belonging to the edge(s) in question, otherwise the nodes 
in these layers are discarded. We then aim from the source node 
towards the destination node, calculating if the line can pass through 
each intersecting layer in turn by moving the dummy node left or 
right without encountering any ‘real’ nodes. If this can’t be done for 
a particular layer we move the dummy node in that layer as far as we 
can and then aim afresh for the destination node from that point. The 
source, destination and dummy nodes along each edge are then 
joined smoothly with a series of Catmull-Rom curves [39]. This 
occasionally leads to some extraneous edge crossings or edge back-
tracking, but mostly alleviates the complex paths introduced by the 
use of the extra dummy layers. 

Multiedges, which occur when a direct relationship between two 
nodes occurs in multiple trees, are drawn with a line thickness 
proportional to the number of individual relations they represent, a 
visual cue common to other aggregated tree and graph 
representations such as Wattenberg’s multivariate graphs [40]. In 
Figure 4, several thicker blue edges can be seen curving out from 
beneath the centre of Ammieae towards nodes and groups of nodes in 
the bottom layer, indicating relationships that are sustained over 
several classifications. 

Finally, rather than drawing individual lines to nodes that share 
the same set of parents in the display, a translucent triangle is drawn 
that uses a shared dummy node as it’s apex and the leftmost and 
rightmost occurrences of child nodes in a set as its other corners. The 
lowest layer of Figure 4 shows several such groups, indicating node 
groups that have common parents across the selected trees. The 
edges of these triangles are allocated a thickness using the same 
manner as for multiedges; the figure shows that a triangle enclosing 
the furthest right-hand nodes has a thicker edge than neighbouring 
groups, indicating that group of nodes are direct descendants of 
Ammieae in more than one taxonomy. In the middle of the bottom 
layer, there’s an overlap between a blue and a yellow triangle where 
Euammineae in Bentham’s classification has claimed ownership of a 
group of nodes that belonged directly to Ammieae in other 
classifications. In Figure 4 in particular most of the different groups 
result from Bentham’s classification having sub-tribes as 
intermediate nodes and from nodes occurring inconsistently in the 
five instances of Ammieae. On an intermediate layer in the current 
display, triangles can sometimes include nodes that aren’t members 
of that particular set, but brushing over the appropriate parent taxa 
will confirm whether it is a continuous range. 

The visualisation is implemented in Java 1.6 using the Swing 
libraries. 

Figure 5. Diagrams showing examples of how three basic tasks on 
a given node are performed. 
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Example of 4 ancestry paths from node F – FCA, 
FDA, FEA and FEB. The FE relationship occurs 
in two places so is drawn as a thicker edge, and 
the FDA path is highlighted. 
 

F

H IG

LKJ M N

Example of the children of node F over 4 trees – 
FG(JK), FH(KLM), FH(KLM) and FI(MN). The 
H(KLM) group is constant for two trees and is thus 
marked with a thicker outline. The children FG(JK) 
are highlighted. 

F Q RPO

C D E
Siblings of node F over 4 classifications – 
C(OPF), D(FQ), E(FQ) and E(FQR). Thicker lines 
show where nodes belong to the same parent for 
two or more classificiations. Node Q shares 3 
parents with Node F.  

6 INTERACTION 
We decided to implement three basic operations that taxonomists 

had previously said would be useful to visualise in the context of 
multiple taxonomies, namely finding the parent taxa of a named 
taxon, finding the children of a named taxon and finding the siblings 
of a taxon across multiple trees. Figure 5 gives a diagrammatic 
example of each of these tasks, centred around the selection of one 
node. 

The simplest operation possible is to trace the multiple ancestries 
of a node in the many trees. Here the number of ancestors is a 
multiple of the number of trees and the number of ranks above the 
node in question in those trees, as each child node has strictly one 
parent node per tree - as opposed to family trees where ancestors is 
an exponential function of the number of past generations that are 
considered. In the example of Daucus in Figure 6 it can be deduced 
that the thicker paths from Daucus going to Caucalideae and 
Daucineae represent the fact that these nodes are the parent of 
Daucus in more than one of the taxonomies under investigation. In 
this particular example, by tracing these ancestries further up the 
DAG it can be seen that any agreement between the taxonomies 
beyond the fact they both reside in the Apiaceae family ends there, 
with the ancestries via Caucalideae and Daucineae subsequently 
routing via differently named sub-families or straight to the family 

Figure 6. Screenshot of Daucus’ ancestries with one tree path shown 
in yellow. Thicker lines represent multiedges where the same 
relationship occurs in multiple classifications 



Figure 7. The child taxa of Smyrniae across four classifications are divided into 5 groups dependent on which combination of the four 
taxonomies their relationship to Smyrniae occurs in. 

Apiaceae that encompasses these example data sets. The example is 
currently brushing the Koso-Poljansky classification and thus the 
path from Daucus up to Apiaceae for that classification is 
highlighted in yellow. For multiple ancestries, the overall effect of 
the layout is that of a small-scale Sankey diagram, larger versions of 
which are detailed in Riehmann et al. [41], with the sum of edge 
widths heading into any higher node equal to the number that leave it 
to travel further up the DAG towards the root.  

The reciprocal operation to discovering the ancestry of a node, 
which is finding all the children of a given node across multiple 
trees, reveals the different structures that underlie that node where it 
occurs across multiple taxonomies. This is shown for Smyrniae in 
Figure 7, where its child nodes have been broken into five groups, 
with membership of a group dependent on which combination of the 
four ‘versions’ of Smyrnieae each child node belongs to. In the 
figure, the Berchtold & Presl taxonomy has been brushed 

highlighting the children of Smyrniae in that classification with a 
yellow hue. The blue-coloured membership decals along the top 
edge of the child nodes give clues as to why they have been grouped 
together. The left-hand highlighted group, from “Aethus…” to 
“Tordyl…” have one blue decal in the same position, indicating they 
are members of Smyrniae only for this taxonomy. The furthest right 
group of three highlighted child nodes, from “Physo…” to 
“Smyrn…” have the same blue colouring pattern as each other, 
indicating they are members of Smyrniae in this classification and 
also share the same membership pattern in several other 
classifications of Smyrniae. Finally “Cachr…”, immediately to the 
left of the three previous nodes, has a different colouring pattern, 
indicating that while it is present in Berchtold & Presl’s 
classification of Smyrniae and it is present in other’s definitions of 
the same node, no other child node shares exactly that pattern of 
inclusion. Brushing the different classifications in the Smyrniae node 

Figure 8. Siler’s siblings across six classifications are lined up and grouped along the genus rank according to the parents they share with Siler. 
Brushing the parent nodes reveals Siler to have only one sibling in common across any of the taxonomies it occurs in, Aethusa, which in the 
layout lies immediately to Siler’s left. 



will reveal exactly what those patterns of inclusion are. 
Again, multiedges are represented using lines of proportional 

thickness to the number of edges they represent, so the regularity 
with which child nodes or sets of child nodes appear under the same 
parent nodes can be viewed. In contrast, a node that has radically 
different contents in different trees will have a plethora of single-
thickness links and more nodes underneath it. For large graphs the 
number of children can be overwhelming 

Both the children and parent graphing operations can be carried 
out on a single tree basis by pressing the mouse when over one of the 
tree decals drawn in the top half of a node. The mouse tooltip will 
signal when it is over one of these areas and a subsequent mouse 
press will draw the ancestors and/or children of the node for that tree 
only. This allows queries to be made internally of a single tree rather 
than the whole tree set. 

The final ‘one-click’ operation is the ability to find all the 
siblings of a node across a set of taxonomies, that is: all the other 
nodes it has shared at least one immediate parent node with, and thus 
been a sibling of those nodes at some time. Upon choosing this 
option and selecting a node, the sibling set is drawn across the 
bottom of the screen, and above it are placed the node’s parents with 
the appropriate links drawn between the parent and sibling layers. 

As an example, Figure 8 shows two comparative screenshots of 
the result of selecting to view Siler’s siblings. The siblings, and Siler 
itself, are laid out across the bottom of the screen, with its different 
parents in the set of active taxonomies positioned in the layers above. 
In the top screenshot, one particular parent node, Oenanthinae, has 
been brushed and thus its child nodes and relationships have been 
coloured yellow, revealing the nodes Siler was grouped with in 
Bentham’s 1867 classification – comprising of one group at the far 
left of the row and Aethusa positioned immediately to the left of 
Siler. Similarly, the lower screenshot shows Smyrniae being brushed, 
Siler’s parent in Berchtold & Presl’s taxonomy. Here the children are 
revealed to be a group immediately to the right of Siler and also 
Aethusa again. Thus, the only sibling Siler has in common between 
these two taxonomies is Aethusa. Again this operation can be 
restricted to a single tree, which is simply equivalent to selecting to 
reveal its parent node’s children in that tree.  

The interface allows any combination of these three operations to 
be performed on a node. Finding the ancestries and the children of a 
node is useful for middle ranking nodes - leaf nodes obviously have 
no children to display. Sibling information is often best displayed by 
itself as it often forms a separate question to that of discovering a 
node’s ancestors or descendants. Furthermore, an ‘accumulate’ mode 
can be selected which incorporates the results of new selections into 
the structure currently visible on-screen. This is necessary in large 
graphs where drawing the entire set of trees would both be unwieldy 
in terms of time to calculate the layout, and in interaction, as 
individual node representations would shrink to sub-pixel sizes. 
Rather, we calculate a maximum number of nodes to be drawn at any 
one level, beyond which a cut-off applies to their visibility, and the 
accumulate option enables drill-down operations into tree sets that 
form deep, large DAGs. 

Both the individual trees and ranks that form the DAG can be 
hidden and then re-displayed at command. Hiding ranks is often 
useful when only one or two trees in a set use a particular rank, as 
this then allows comparison of taxonomies based only on common 
ranks. It also helps to clarify the DAG representation by removing 
sparsely populated ranks from the display. Similarly, trees can be 
added or removed, which is useful for when either comparisons of 
structures of tree subsets is needed, or when viewing the structure of 
an individual tree is required. In the latter situation, a graph can be 
drawn composed of just one tree, and then by making more trees 
visible in the overall graph, nodes that are subsequently selected in 
this single tree can have their relations to other trees visualised. 

Upon a new selection a standard IV animation technique is used 
to fade out old nodes, move nodes present in both graph views 
between their old and new positions, and then fade in newly 
introduced nodes. Animation is extremely useful when we change 

the section of the graph we are viewing, as the heuristic algorithms 
for laying out DAGs sometimes produce radical changes in node 
positions even if only relatively small changes are made. Pre-
ordering nodes in their layers by the same metric each time keeps the 
layout as stable as can be expected with these heuristics, but the 
animation makes any changes clear to the user, communicating not 
only changes in viewpoint but in the local structure they are viewing. 

Brushing a node by moving the mouse cursor over it highlights 
the node plus its associated edges and paths both up and down the 
DAG. By moving over the top of the node, where the tree visibility 
information is displayed, edges can be highlighted on a per-tree basis 
by moving over the corresponding tree decal. 

Initial selections or selections of nodes not present in the current 
display can be made through a list of nodes, itself divided into 
columns by tree, on the right-hand side of the display. This can be 
hidden using a split-pane control to maximise the display area for the 
DAG visualisation. 

7 USER FEEDBACK 
Informal usability testing has been carried out with five 

taxonomists, following Nielsen’s [42] discount usability 
methodology of getting real users to attempt representative tasks 
with the application. This revealed various issues with the 
visualisation and the tasks they wanted to accomplish, examples 
including the ability to sort the classifications chronologically as well 
as alphabetically to quickly find first use of a name within a set of 
classifications, and a simple ‘back button’ method to return to a 
previous layout was strongly urged. Various minor problems with 
the general interface were also picked up, such as the tree inclusion 
decals in the node being hard to separate when they merged together 
in a long row, this for instance was rectified with a gradient shading 
as seen in the previous figures. 

8 CONCLUSION 
We have presented a DAG-based visualisation of overlapping 

multiple classifications. This visualisation differs from other IV 
systems designed to explore multiple classifications in that it merges 
the trees into a unified structure whilst preserving a global parent-
child orientation of the nodes, which is essential for navigation and 
interpretation of taxonomic trees with their strict assignment of 
nodes to ordinal ranks. 

This method of overlaying classifications allows nodes to be seen 
in the context of multiple trees, without the shrinking space problems 
of the small multiple design.  
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