
AN INTEGRATED FIREWALL
POLICY VALIDATION TOOL

A thesis submitted in partial fulfilment of

the requirements of Edinburgh Napier University

for the degree of Master of Science

in the Faculty of Engineering, Computing & Creative Industries

September 2009

By
Richard. J. Macfarlane
School of Computing

Authorship Declaration

I, Rich Macfarlane, confirm that this dissertation and the work presented in it are my
own achievement.

Where I have consulted the published work of others this is always clearly attributed;

Where I have quoted from the work of others the source is always given. With the
exception of such quotations this dissertation is entirely my own work;

I have acknowledged all main sources of help;

If my research follows on from previous work or is part of a larger collaborative re-
search project I have made clear exactly what was done by others and what I have
contributed myself;

I have read and understand the penalties associated with Academic Misconduct.

I also confirm that I have obtained informed consent from all people I have involved
in the work in this dissertation following the School’s ethical guidelines.

Signed:

Date: 07/09/2009

Matriculation no: 07017081

Data Protection Declaration

Under the 1998 Data Protection Act, The University cannot disclose your grade to an
unauthorised person. However, other students benefit from studying dissertations
that have their grades attached.

Please sign your name below one of the options below to state your preference.

The University may make this dissertation, with indicative grade, available to others.

The University may make this dissertation available to others, but the grade may not
be disclosed.

The University may not make this dissertation available to others.

Acknowledgements

My thanks goes to Professor Bill Buchanan, for acting as my supervisor for this work,
and for all the help and enthusiasm he provided.

Additional thanks goes to Robert Ludwiniak for acting as my internal supervisor for
this thesis, and to Lionel Saliou for his invaluable help in the earlier stages of the
work.

Finally, thanks goes to my family who have been a constant support throughout this
course of work.

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either
in full, or of extracts, may be made only in accordance with instructions given by
the Author and lodged in the Edinburgh Napier University Library. Details may be
obtained from the Librarian. This page must form part of any such copies made.
Further copies (by any process) of copies made in accordance with such instructions
may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this
thesis is vested in Edinburgh Napier University, subject to any prior agreement to the
contrary, and may not be made available for use by third parties without the written
permission of the University, which will prescribe the terms and conditions of any
such agreement.

Further information on the conditions under which disclosures and exploitation
may take place is available from the Head of the School of Computing.

This research has been conducted under the direction of:
Prof. William Buchanan (PhD)

as of Director of Studies,
and,

Robert Ludwiniak (MSc)
as Second Supervisor.

Contents

Abstract ix

1 Introduction 1
1.1 Context . 1

1.2 Aims and Objectives . 2

1.3 Background . 3

1.3.1 Security Policies . 3

1.3.2 Firewalls . 3

1.3.3 Packet Filtering Firewalls . 4

1.4 Thesis Structure . 5

2 Literature review 7
2.1 Introduction . 7

2.2 Security Policies . 7

2.3 Enforcing Policies . 9

2.3.1 Policy Enforcement Problems . 10

2.3.2 Policy Enforcement Solutions . 13

2.4 Firewall Policy Management Systems . 14

2.4.1 Introduction . 14

2.4.2 Factors used to Compare Systems 15

2.4.3 System Development Life Cycle (SDLC) Development Phase . . 16

2.4.4 SDLC Implementation Phase . 23

2.4.5 SDLC Operation and Maintenance Phase 27

2.5 Conclusions . 34

3 Design 36
3.1 Introduction . 36

3.2 Framework Design . 36

3.2.1 Motivation . 36

3.2.2 Policy Model . 37

3.2.3 Analysis Systems . 38

3.2.4 Configuration Deployment . 38

3.3 Firewall Policy Validation Tool Design . 38

3.3.1 Design Motivation . 38

3.3.2 Interface . 41

R.J. Macfarlane, MSc Advanced Networking, 2009 CONTENTS iv

3.3.3 Design Overview . 42

3.3.4 Lexical Analysis . 43

3.3.5 Syntactic Analysis . 44

3.3.6 Intermediate Code Generation and Optimization 48

3.3.7 Output Configuration Generation 48

3.4 Evaluation Tool Design . 49

3.5 Design Conclusions . 49

4 Implementation 51
4.1 Introduction . 51

4.2 Cisco Router IOS Parser (CRIP) Tool Implementation 52

4.2.1 Interface . 52

4.2.2 Lexical Analysis . 54

4.2.3 Syntactic Analysis . 57

4.2.4 Intermediate Code Generation and Configuration Output Im-
plementation . 61

4.3 Cisco Router IOS Parser Evaluation Engine (CRIPE) Tool Impementation 61

4.3.1 Evaluation User Interface . 62

4.4 Implementation Conclusions . 63

5 Evaluation 64
5.1 Introduction . 64

5.2 CRIP Validation Evaluation . 64

5.2.1 Hand Crafted Rules . 64

5.2.2 Synthetic Rules . 65

5.3 Performance Evaluation . 69

5.4 Evaluation Conclusions . 73

6 Conclusion 75
6.1 Aim and Objectives . 75

6.1.1 Objective 1. Investigate and review the extensive literature in
the fields of policy-based security and in particular firewall pol-
icy management . 75

6.1.2 Objective 2. Design a tool to perform the non-trivial task of
off-line firewall policy validation, based around firewall device
configurations . 77

6.1.3 Objective 3. Implement and test the system, using appropriate
tools to realise the design specifications. 78

6.1.4 Objective 4. Evaluate the performance of the prototype system,
validating its performance using experiments with realistic data
sets . 79

R.J. Macfarlane, MSc Advanced Networking, 2009 CONTENTS v

6.1.5 Objective 5. Investigate and propose a framework, which the
policy validation tool could integrate with, to support system
administrators in the management of firewall policies 81

6.2 Future Work . 81

6.2.1 eXtensible Markup Language (XML)-Based Framework 81

6.2.2 CRIP Tool . 82

References 85

Acronyms 93

A Project Management 95

B CRIP Tool Source Code 96

R.J. Macfarlane, MSc Advanced Networking, 2009 CONTENTS vi

List of Tables

5.1 Open Systems Interconnection (OSI) Layer 3, Standard Access Control
List (ACL) validation algorithm evaluation - no errors in rule sets. . . . 66

5.2 OSI Layer 4, Extended ACL validation algorithm evaluation - no errors
in rule sets. 66

5.3 OSI Layer 3, Standard ACL validation algorithm evaluation - approx.
50% errors in rule sets. 67

5.4 OSI Layer 4, Extended ACL validation algorithm evaluation - approx.
50% errors in rule sets. 68

5.5 OSI Layer 3, Standard ACL validation algorithm evaluation - 100%
errors in rule sets. 69

5.6 OSI Layer 4, Extended ACL validation algorithm evaluation - 100%
errors in rule sets. 69

5.7 Synthetic rule sets created for performance evaluations. 70

5.8 Average processing time for OSI Layer 3, Standard ACL rules no errors
in rule sets - quiet reporting. 70

5.9 Average processing time for OSI Layer 3, Standard ACL rules in rule
sets - verbose error reporting. 71

5.10 Average processing time for OSI Layer 4, Extended ACL rules in rule
sets - verbose error reporting. 73

R.J. Macfarlane, MSc Advanced Networking, 2009 LIST OF TABLES vii

List of Figures

1.1 Packet Filtering Process . 4

2.1 Network Security Policy . 8

2.2 Enforcing Security Policy . 9

2.3 System Life Cycle . 15

2.4 Cisco Security Policy Manager Graphical User Interface (GUI) [1] . . . 21

2.5 The Firewal ANalysis enGine (FANG) systems GUI showing results of
a query [2] . 24

2.6 The Lumeta system architecture [3] . 28

2.7 Firewall Policy Advisor (FPA) tool Binary Decision Diagrams (BDD)
Tree model of a filtering rule set [4] . 30

2.8 FPA tool GUI [5] . 30

2.9 Policy Inference Tool GUI [5] . 33

3.1 Network Security Policy Management Framework 39

3.2 Proposed policy validation tool integrating with existing systems. . . . 40

3.3 Validation Tool Components . 42

3.4 Validation Tool Object Model . 47

3.5 CRIPE evaluation tool - generates synthetic ACLs, and runs CRIP tool . 49

4.1 CRIP Tool Implementation . 52

4.2 CRIP Tool Command Line Interface (CLI) Interface 54

4.3 CRIP Tool ACLs Input Configuration . 60

4.4 CRIP Tool Error Output - Error Reporting 60

4.5 CRIP Tool Error Output - Verbose Error Reporting 61

4.6 CRIP Tool Error Output - Quiet Error Reporting 61

4.7 CRIPE tool GUI - Synthetic rule generation tab 62

4.8 CRIPE tool GUI - CRIP evaluation tab . 62

5.1 Average Processing Time for CRIP tool, in quiet mode. 71

5.2 Average Processing Time for CRIP tool, Standard ACLs - verbose error
reporting. 72

5.3 Average Processing Time for CRIP tool, Extended ACLs - verbose error
reporting. 73

R.J. Macfarlane, MSc Advanced Networking, 2009 LIST OF FIGURES viii

Abstract

Security policies are increasingly being implemented by organisations. Policies
are mapped to device configurations to enforce the policies. This is typically
performed manually by network administrators. The development and man-

agement of these enforcement policies is a difficult and error prone task.
This thesis describes the development and evaluation of an off-line firewall policy

parser and validation tool. This provides the system administrator with a textual
interface and the vendor specific low level languages they trust and are familiar with,
but the support of an off-line compiler tool. The tool was created using the Mi-
crosoft C#.NET language, and the Microsoft Visual Studio Integrated Development
Environment (IDE). This provided an object environment to create a flexible and ex-
tensible system, as well as simple Web and Windows prototyping facilities to create
GUI front-end applications for testing and evaluation. A CLI was provided with the
tool, for more experienced users, but it was also designed to be easily integrated into
GUI based applications for non-expert users. The evaluation of the system was per-
formed from a custom built GUI application, which can create test firewall rule sets
containing synthetic rules, to supply a variety of experimental conditions, as well as
record various performance metrics.

The validation tool was created, based around a pragmatic outlook, with regard to
the needs of the network administrator. The modularity of the design was important,
due to the fast changing nature of the network device languages being processed. An
object oriented approach was taken, for maximum changeability and extensibility,
and a flexible tool was developed, due to the possible needs of different types users.
System administrators desire, low level, CLI-based tools that they can trust, and use
easily from scripting languages. Inexperienced users may prefer a more abstract,
high level, GUI or Wizard that has an easier to learn process.

Built around these ideas, the tool was implemented, and proved to be a usable,
and complimentary addition to the many network policy-based systems currently
available. The tool has a flexible design and contains comprehensive functionality.
As opposed to some of the other tools which perform across multiple vendor lan-
guages, but do not implement a deep range of options for any of the languages. It
compliments existing systems, such as policy compliance tools, and abstract policy
analysis systems. Its validation algorithms were evaluated for both completeness,
and performance. The tool was found to correctly process large firewall policies in
just a few seconds.

A framework for a policy-based management system, with which the tool would
integrate, is also proposed. This is based around a vendor independent XML-based
repository of device configurations, which could be used to bring together existing
policy management and analysis systems.

Chapter 1
Introduction

1.1 Context

Network security is becoming increasingly complex, and to cope with this secu-
rity systems are becoming more policy-based. More organisations than every are
spending more money on security, and in particular creating security policies to base
organisational security around. The UK’s Department for Business Enterprise &
Regulatory Reform (BERR) Information Security Breaches Survey for 2008 [6], re-
ports that in the last 6 years, triple is being spent on IT Security, and double the
number of companies now having written security policies, as compared to 2002.

Network security policies are complex and have proven to be difficult and costly to
implement, test and audit [7, 8]. Where policies don’t exist, the task of reverse engi-
neering policies, from existing configurations, is also non trivial. Assistance can be
given to administrators when dealing with enforcement of security policies and in
validating, and understanding existing polices, in the form of high level modeling
and analysis languages and tools, as well as tool support for low level device config-
uration. However, there are many problems with the current approaches including,
untrusted abstract GUI based tools, vendor specific solutions, and incomplete and
non pragmatic solutions [9].

The field of firewall traffic filtering policies has been a particular focus for research,
due to the widespread use of firewalls and their particularly problematic configura-
tion. Firewall policy rule sets are ever expanding, due to the increasing number and
types of network services being used in modern networks, and are therefor becom-
ing increasingly complex to understand and maintain. The creation, management
and auditing of these policies is extremely important as they enforce the overall se-
curity policy [10, 11]. As stated by Rubin et al. [12] in the following quote:

“Configuration is a crucial task, probably the most important factor in the
security a firewall provides” – Rubin et al. [12]

The task of configuring the device policies is crucial, but it is seldom carried out
correctly. Firewall configurations, are often found not to enforce the goals of the

R.J. Macfarlane, MSc Advanced Networking, 2009 1 Introduction 1

network security policy they enforce [10]. Wool [10] found, in an extensive survey
of firewall configurations, that administrators found it extremely difficult to correctly
implement complex policies:

“Complex rule sets are apparently too difficult for administrators to man-
age effectively” – Wool [10]

Creating, testing, optimisation, and management of these firewall systems is a non-
trivial task, but is still mainly carried out manually by network administrators. There
is very little support, such as automation, for the administrator in this job [13]. Some
vendor specific tools exist but they tend to be GUI driven, and mainly aimed at non-
expert users who are not familiar with the CLI. They attempt to simplify deployment
of policies, with techniques such as wizards, and automatically generated template-
based configurations [14].

The thesis proposes a framework, to support administrators when manageing these
complex policies. The framework draws from research into the fields of network
firewall policy management [15], and usability in systems for system administrators
[9].

1.2 Aims and Objectives

The aim of this thesis is to produce a tool which can parse and validate firewall rule
sets. To implement and evaluate the tool with realistic test data. Objectives to support
the overall aim of the thesis are as follows:

1. To investigate and review the extensive literature in the field of policy-based
security and in particular firewall policy management.

2. Design a solution to the non-trivial task of off-line firewall policy validation,
based around firewall device configurations.

3. Implement and test the system, using appropriate tools to realise the design
sepecifications.

4. Evaluate the performance of the prototype system, validating its performance
using experiments with realistic data sets.

5. Investigate and propose a framework, which the policy validation tool could
integrate with, to support system administrators in the management of firewall
policies.

R.J. Macfarlane, MSc Advanced Networking, 2009 1 Introduction 2

1.3 Background

1.3.1 Security Policies

A Security Policy is a document, or group of documents, which define an organisa-
tion’s security stance. The security goals of the organisation, the assets to be secured,
the methods of securing those assets, and a plan for responses to any assets being
compromised [16, 11]. A high level information security policy should set the goals
of what the security implementation should accomplish. These goals should always
be based around the protection of the three main aspects of security: confidentiality,
integrity, and availability [17]. This relates to the protection of assets and data against
unauthorised disclosure, unauthorised modification, and to provide access to autho-
rised individuals when needed. These high level policies are enforced by security
procedures and devices, such as authentication systems and firewalls.

1.3.2 Firewalls

Firewalls are software or hardware which controls the data flowing between two
different networks [18, 19, 20, 21, 22]. They are typically deployed on the perime-
ter of an organisation’s network, where it connects to external networks such as the
Internet. Firewalls can also be placed between internal networks to enforce differ-
ent security postures of different network segments, and give a layered approach to
network security. For example, internal firewalls might be used to protect critical
network segments like server farms. Firewalls can also be deployed on mobile users
systems, outside the organisation’s network, such as staff working from home.

In buildings a firewall is a concrete wall which prevents fires from spreading from one
part of the building to another. In vehicles, a firewall is barrier between the engine
and the passenger compartment. In network security, a firewall is a barrier between
two networks, used to separate them at a trust boundary. The firewall should only
let specified ’good traffic’ between the networks.

A good analogy is a medieval castle and the guard on its gate. The walls keep certain
people in, and certain people out. The gate is the only place to move between the
outside and the inside of the castle, and the guard vets the people passing through
the gate and decides if they can enter or leave the castle.

A firewall should be the only transit point between the two networks. It’s a choke
point which all traffic must pass through. A Network firewall allows good traffic to
pass between one network and the other, and blocks bad traffic. The good and bad
traffic, in each direction, should be defined in the Network Security Policy.

R.J. Macfarlane, MSc Advanced Networking, 2009 1 Introduction 3

Figure 1.1 – Packet Filtering Process

1.3.3 Packet Filtering Firewalls

A basic type of firewall is a Packet Filtering firewall, which could be described as
a stateless filtering and routing device. Firewalls are routers, which also perform
filtering of the traffic which they route. Stateless packet filters perform their filtering
based on a set of filtering rules, known as a rule set. They compare the rules with the
information in the packet to make a decision on whether to route the packet on to its
destination or filter out the packet (drop the packet).

The firewall inspects packets as they enter an interface (inbound or outbound). Each
packet’s header information at OSI model layers 3 and 4 (Internet Protocol (IP) &
Transport Control Protocol (TCP) headers) is decapsulated, and compared with the
filtering rule set to decide if the packet can be routed or is to be dropped.

Static Packet Filtering

Packet filtering firewalls, use OSI layers 3 and 4 header information to filter the pack-
ets, and ignore the higher layers. They have one main strength, and that is they are
very fast. Because of this they are typically used as a first line of defence, such as
deployed on a boundary router or perimeter firewall. They are often used to perform
bulk filtering, the front line defence of a network which is connected to the Internet.

R.J. Macfarlane, MSc Advanced Networking, 2009 1 Introduction 4

This includes filtering such as IP Spoofing, RFC2827 and RFC1918 filtering, or miti-
gation of Reconnaissance attacks, for example ICMP traffic filtering. The higher level
OSI layer filtering would be done by other devices behind the perimeter defences.
Packet filtering firewalls are also very scalable as they work below, and are indepen-
dent of, high level protocols such as user application protocols. They are flexible,
because they work on the lower levels of the layered models, and so can provide
filtering for almost any network based protocol.

Most operating systems and routing devices have packet filtering built in. Unix
and Linux both have advanced packet filtering firewalls. Windows has a more basic
packet filtering firewall, although the new Vista version has much improved features.
Network devices which route traffic also usually have packet filtering built in, such
as ACLs on Cisco routers and firewalls.

Listing 1.1 – Cisco Extended ACL Example

access-list 110 deny ip 127.0.0.0 0.255.255.255 any log

access-list 110 permit ip any 146.1.1.0 0.0.0.255

access-list 110 deny any any log

Packet Filtering Process

The firewall searches through a list of firewall rules (a rule set) to determine what
to do with each packet. The typical actions are Pass the packet onto its destination
(i.e. route it) or Drop the packet at the firewall. Rejecting the packet, by sending
an ICMP packet back to the client, informing them that the packet was dropped,
is another common option. Also, with most firewalls, it is usually possible to Log
the action taken along with the packets information. This can then be analysed to
identify attacks or problematic traffic.

If a packet does not match any specific rule in the rule set, a default action is applied.
The packet is typically dropped on most firewalls. So we Pass what we know and
Drop what we don’t. This is what’s known as a Closed Firewall, and is an example
of a closed security stance, which is generally regarded as best practice, and is im-
plemented by default on most firewalls. An example abstract filtering rule set, for
incoming traffic, is shown in Figure 1.1. An example of a Cisco ACL packet filtering
rule set is shown in 1.1.

1.4 Thesis Structure

Chapter 2 is an exploration of recent literature in the area of network security policies
in general, and more specifically firewall, and other network traffic filtering device,

R.J. Macfarlane, MSc Advanced Networking, 2009 1 Introduction 5

policies. A taxonomy of research into systems which can aid the system administrator
in the management of these policies is also provided. The systems are categorised
by which stage in the development life cycle they operate in, the functionality of the
systems, as well as how usable and useful the proposed systems are, and includes
reviews of seminal work by important authors in the field, including Mayer, Wool,
and Ziskind, Al-Shaer and Hamed, Cuppens, Cuppens-Boulahia, and Alfaro, and
Guttman.

Chapter 3 introduces a framework which could assist the system administrator with
network security policy management. That is followed by a detailed design of one of
the framework components, namely a firewall rule set parser and validation tool. The
design of the tool has been created based on ideas, and conclusions, drawn from the
literature review in Chapter 2. Also an outline design for an evaluation application,
created to validate and assess the tool.

Chapter 4 examines the implementation of the software tool and its evaluation GUI
application, and details how they were developed.

Chapter 5 describes the evaluation of the implemented tool, in terms of performance
and completeness.

Chapter 6 includes the main conclusions of the thesis, and ideas for future work in
this area of research.

R.J. Macfarlane, MSc Advanced Networking, 2009 1 Introduction 6

Chapter 2
Literature review

2.1 Introduction

Network security should be based around security policies. From high-level natural
language, non-technical, policies created by management, down to device and ven-
dor specific policies, or configurations, written by network system administrators.
There exists a multitude of research into policy-based network systems which has
been undertaken. This chapter will give an overview of the different type of poli-
cies relating to security in networks, and a taxonomy of the research into systems
which have been proposed to support the network administrators in difficult tasks of
creating, managing and deploying these policies.

2.2 Security Policies

High level security policy documents should be written by upper management and
should be the ’what’ of security in the organisation. Without this definition of these
security goals, it is difficult to use security mechanisms effectively [11]. The imple-
mentation, or technical policies, are created from the overall high level policy. This
is the ’how’ and it is used to enforce the security policy. The term policy can be
used in the literature to describe both the high level policies as well as the low level
implemented rules. The processes of security policy creation and implementation are
shown in figure 2.1. A good definition of an overall security policy is taken from The
Site Security handbook - RFC2196 [11]:

“A security policy is a formal statement of the rules by which people who
are given access to an organization’s technology and information assets
must abide.” Fraser et al. [11].

The Site Security Handbook - RFC2196 Fraser et al. [11], is an excellent reference
for network system administrators and management level decision makers, when
creating network security polices. It contains a five step, iterative, process detailing

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 7

Figure 2.1 – Network Security Policy

the Security Policy creation and maintenance process. Note that this is an ongo-
ing process, with regular reviews and auditing of security policies and mechanisms,
providing feedback to improve the security policy. This matches two fundamental
concepts: security being an integral part of the design and systems being an ongo-
ing process - rather than simply the implementation of security products - which are
both common throughout security literature [27, 20]. The Site Security Handbook is
a good guide to creating policies, but it does not put forward a formal method of
specifying the policies.

1. Identify what you are trying to protect.

2. Determine what you are trying to protect it from.

3. Determine how likely the threats are.

4. Implement measures which will protect your assets in a cost effective manner.

5. Review the process continuously and make improvements each time a weak-
ness is found.

Industry recognised standards frameworks can be used to help create the security
policy, based on industry best practices (as shown in Figure 2.1). Currently, the
two best known frameworks are Control OBjectives for Information and Related
Technology (COBIT) and IOS 27002 Code of practice for Information Security Man-
agement (previously IOS 17799). These provide detailed industry standards in IT
security management, and audit compliance [14].

It is extremely important to involve the users in the implementation of a security
policy. Understanding of security problems by users, and giving them clear and easy

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 8

to follow rules, can be a key factor in the successful implementation of the policy
[28]. Danchev calls this the “Security Awareness program” and emphasises that
the latest technical security measures, such as firewalls and Intrusion Detection and
Prevention System (IDPS)s, can be rendered useless by careless, or badly informed,
end-users. The User’s Security Handbook [29], the companion guide to the Site
Security Handbook [11], can be used as a guide on how to educate users about the
dangers of networked systems and how to keep data and communications safe.

Although management should have a great deal of input into the high level security
policies, they may also need technical input due to the nature of the services they
describe. Ideally they should be created by an individual with the power of the
CEO of an organisation, and the technical ability of a system administrator. Typically
administrators will help create the policies and the management will make the final
decisions. Sometimes buisiness plans will trump security policy decisions [27].

2.3 Enforcing Policies

Security policies protect the confidentiality, integrity, and availability of the assets of
an organisation. To enforce this, security services should to be deployed, such as
authentication, encryption, antivirus software and firewalls. To do this the security
policy documents are used to create technical security procedures, and guidelines,
which can then be implemented in the network. Types of procedures include identifi-
cation or authentication, access control or authorization, and accountability or audit-
ing procedures. Procedures and guidelines would be created for each of the different
type of security mechanisms to be used to enforce the policy. These technical mecha-
nisms include authentication systems, firewalls, proxy servers, IDPSs, Virtual Private
Network (VPN)s, and access control systems [30]. The guidelines are best practice
suggestions for each, and the procedures are specifications for implementation of the
specific security measures. This process is shown in Figure 2.2.

Figure 2.2 – Enforcing Security Policy

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 9

Security Policies can be split into several components, which combine to achieve the
security goals of the organisation. These components are enforced by various security
mechanisms or procedures. The authentication policy could be enforced using user
names and passwords, software tokens, and VPNs. The accountability policy may
use IDPS and firewalls to enforce auditing and incident response capabilities. The
Access Control Policy, which this work focuses on, would typically use firewalls,
VPNs and authorization systems to enforce access to resources [11].

The access control part of the security policy deals with making sure that authorized
individuals can perform the tasks they are authorized to, and that others cannot. It
is typically referred to as the ’access control policy’ [30]. Access control makes sure
that requests to access a specific resource are only granted if the request agrees with
the security policy definition. In terms of networks, the most commonly used access
control mechanisms are firewalls and filtering routers [16]. Firewalls control access
to resources by filtering network traffic, only allowing access that is specified by the
security policy.

The network access control policies, defining which traffic can cross network bound-
aries, are implemented as policies on network devices which have access control
functionality, such as traffic filtering capabilities. The system administrator is typ-
ically tasked with manually creating these low level policies, or configurations. In
order to determine whether to grant an access request, access control mechanisms
uses a number of criteria. The primary criterion being the network address of the
machine from which the traffic originates. Other criteria, which can decide whether
access is granted or not, would include network service and destination of the traf-
fic Corbitt [16]. The most common technique used to by firewalls to filter traffic is
known as Packet Filtering.

Implementation of security mechanisms can be based on best practices, and sev-
eral sets of guidelines exist. The National Security Agency (NSA) and National
Institute of Standards and Technology (NIST) publish configuration guidelines for
implementing security controls. The Cisco Secure Architecture For Enterprise (SAFE)
framework provides detailed guidelines for the implementation of network security
mechanisms for various different sizes of networks and different site specific setups
[31]. A compilation of the most common policy errors are detailed by Wool in his
review of firewall configuration problems [10], and provide guidelines on what to
avoid when implementing firewall policies.

2.3.1 Policy Enforcement Problems

If the high level policies are not defined correctly, the implementation cannot provide
the security protection need by the organisation. As described by Wool in his review
of firewall configuration problems [10], and as a mojor motivation for the firewall

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 10

auditing and testing system described in the latest research by Mayer, Wool, and
Ziskind [3]:

“the protection that these firewalls provide, is only as good as the policy
they are configured to implement” – Mayer et al. [3]

The policy should be clear, concise, and easy for the administrator to follow. If a
policy is not well designed, then it will not be enforced properly and the security
goals will not be met Madigan et al. [32].

Conversely, polices are only as good as the configurations which enforce them [18,
33]. The enforcement of policies is not always an easy task. Policy management
can be difficult as policies grow and become increasingly complex [7, 5, 10]. Blakley
makes the following statement in [7].

“Policies do not scale well and their complexity quickly increases as sys-
tems grow and diverge, which makes them unmanageable” – Blakley [7]

Madigan et al. categorises violations of security policies, and shows that violations
from network issues were by far the largest type reported [32]. The author also states
that the network violations were among the most time consuming to correct. This
work was based on real security policy violations, on two university campuses, over
a two year period. This could be a direct result of policy enforcement problems,
such as policy configuration errors and anomalies. This is not surprising, as it is
generally accepted by security experts that firewalls and other traffic filtering devices
are poorly configured [10].

The configuration of a firewall is probably the most important factor in terms of the
security a firewall provides [12], but are often configured incorrectly [10]. Firewall
policies are made up of rule sets, and these rule sets are ever expanding due to new
rules continually being added and very few removed, so device access policies tend
to be large and always increasing in size [10, 34]. It follows that the management of
these policies at the network device level can be extremely complex, error-prone and
expensive as the policies expand [9]. The configurations are typically hand crafted
and bespoke for each individual system by network administrators, which can be
error prone work [15]. This is a serious problem as errors in the firewall policies
mean that the intended security policy will not be enforced.

Mapping the high level security policies to the lower level implementation can be
extremely difficult [30]. High level policies are written in a natural language, and
describe security aims in terms of entities of an organisation, such as networks, users
and resources. Enforcement policies are in terms of the points of enforcement, or
devices. Firewalls and other devices have their own vendor specific languages and
tools, which tend to be very low level. Many researchers have used the similie,

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 11

that these configuration languages are ’like programming in assembly languages’
[9]. A conceptual gap exists between the two, and administrators can find it very
difficult to map from one to the other correctly (to bridge the gap) [35, 15, 8]. GUIs
are provided by some vendors, but most require the administrator to click through
several windows, simple to understand a single rule fully [3].

Administrators are typically tasked with the creation of the low level device policies,
which implement the security policy of the organization. In terms of firewalls, these
are the firewall rule sets. The administrators will add, delete, and change the rules to
match changes to the high level security requirements. For example, when new web
servers are added to the organisation’s network, new rules would be added to the
perimeter firewalls to allow appropriate access to them from outside and inside the
organisation’s network. The complexity of the rule sets increase as they increase in
size, but also the complexity can change depending on the rules used within them.
For example, OSI layer 3 packet filtering is not as challenging to understand as OSI
layer 4 or layer 7 filtering due to less filtering fields in each filtering rule. The filtering
rules can be based on source address only or source and destination, as well as
various other traffic attributes within a rule. Wool created a classification system for
complexity of rule sets, based on the number of rules, the objects (traffic filtering
parameters) and the interfaces rules could be applied to. In [10] the following rule
set complexity measure is defined:

Rule Complexity = Number of Rules + Network Objects + Number of
Interfaces(Number of Interfaces -1) / 2 – Wool [10]

For most firewalls the ordering of the rules in a rule set are important, as in the
common ’first match’ filtering mechanism, the position of the rules in the rule set
dictate if they are matched against traffic or not. The earlier in the rule set the
higher the priority the rule has when matching against traffic [21]. Thus filtering rule
sets, that use first match semantics, are complicated to create and amend due to this
dependency on the rule ordering. As the size and complexity of the rule set increases
it becomes more difficult for the administrator to predict the impact of a rule on the
overall rule set. This makes rule sets extremely difficult to manage [10].

Effectiveness of security policies can be compromised due to poor policy manage-
ment, especially when enforcing a security policy across a range of devices around
a network [36]. Security policies can be spread over a range of different security de-
vices [37]. Packets can take multiple paths through a network, with multiple filtering
devices on each different path. An administrator needs to understand the interaction
of combinations of these devices for each traffic path [3]. The low level configura-
tions, which implement the security policy, can span heterogeneous networks, and
may be spread over many network devices. Different vendors implement different
algorithms and low level languages for configuring their devices. Thus, the scope of

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 12

the deployment in terms of devices, can also increase the difficulty of the task of pol-
icy enforcement for the system administrators [15]. If hundreds of network devices
have to be coordinated to enforce a network security policy, manual translation of the
policy into device configurations, can become extremely complex and error prone. If
multiple devices such as firewalls, from different vendors, have to be used to create
overlapping enforcement policies, in order to enforce a single global security policy,
this adds even more complexity.

2.3.2 Policy Enforcement Solutions

Overview

Abrams and Bailey [38] describes a layered approach which can be taken with secu-
rity policies. This can help the management, administrators, and users understand
the policy and its implementation, as the mapping between the high level policy and
the low level deployment is more clearly defined. Different individuals in an organ-
isation will have a different view of the security policy. At a management level, an
enterprise wide view concerning overall security objectives, such as protect the com-
pany’s assets, will be taken. This is the highest level of abstraction of the policy, and
it should be easy to understand, but does not contain guidance in how to carry out
the security requirements. To do this policies at a lower level of abstraction need to
be introduced. At the users level of abstraction, the policy is seen as rules relating to
access to resources and data, such as systems and applications [38]. The high level
policy is translated into this level of policy abstraction, providing guidance for users
[29]. This level might be defined in terms of a finite-state machines, or as access ma-
trixes [39, 30]. The lowest level of abstraction is the network implementation level,
were the security mechanisms are deployed to satisfy the higher level specifications.

The policy can be shown in three different ways: first as a high level policy described
in a natural language, secondly as formal statements to describe a model of the policy,
or thirdly as a technical implementation [30, 38]. Natural language is prone to ambi-
guities, thus the high level policy may also have ambiguities in terms of the security
requirements. If the policy is modeled in a formal language, the ambiguities can be
reduced, or even removed completely. The formal model can also be used to audit the
security procedures for compliance with the requirements, and it provides a specifi-
cation free of any specific implementation methods, such as vendor specific tools and
languages. The downside is that specialists are needed to work with such models, es-
pecially if they are mathematical models. Otherwise administrators, who implement
the security mechanisms, would have to learn such modeling techniques. A formal
model which is non mathematical, such as a more formal natural language, can be
a good compromise. The ambiguities from the high level language can be reduced,
and the modeling language would be understood by a wider range of individuals.

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 13

Tasking specialised individuals with such work, such as firewall administrators, is
preferable to asking general system administrators to carry out such tasks [20].

Samarati and de Vimercati [30] outline how the different levels of abstraction provide
the benefits of separating the requirements and design, from the implementation.
The security requirements can be dealt with, regardless of how are they are to be
implemented, and different methods of implementation can be compared against
each other for the same requirements. The formal model could also be used to prove
the security proposed is sound, and possibly even to automate the implementation of
the security mechanisms, by creating device configurations from the model definition
[40].

Various policy management systems have been proposed to help the network ad-
ministrators with the creation, management, analysis, and auditing of these complex
policies. The next section presents a taxonomy of research into these systems and
tools, along with comparisons between the different approaches. Packet filtering fire-
walls are one of the most important mechanisms used by organisations to implement
their security policies, and in the past 10 years, there has been a great deal of re-
search into the areas of firewall policy management. The taxonomy and review of
the literature is therefor focused on research into firewall policy-based systems.

2.4 Firewall Policy Management Systems

2.4.1 Introduction

Systems which can assist administrators in the creation and management of net-
work access policies, can be used in the various stages of security development and
operations. Network security should be a continual process, built around the net-
work security policy, and it should be integrated into all stages of the SDLC [27].
Many definitions exist for the SDLC, with possibly the best known being the Wa-
terfall Model, in which the development process is described by several phases in
a downward flow. The phases for general development are typically Requirements
Analysis, Design, Implementation, and Maintenance. More specifically, for security
system development, the NIST process definition is defined in special publications
800-14 [41] and 800-64 [42]. This includes security system Initiation, Development,
Implementation, Operation and Maintenance, and Disposal.

In the NIST definition the initiation phase is concerned with security planning, in-
cluding documenting the need and high level requirements for the system. The
Development phase includes the design, purchasing and creation of the system. Im-
plementation involves the testing, and subsequent installation of the system. The

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 14

Figure 2.3 – System Life Cycle

Operation phase takes place once the system is in production, and includes the mon-
itoring and auditing of the security mechanisms, and any configuration management.

The policy management systems, discussed in this section, can be categorised by
which phase of the development life cycle they operate in. A simplified security
development life cycle, showing the stages which contain the most relevant literature,
is shown in 2.3.

2.4.2 Factors used to Compare Systems

• Modeling Technique High level, abstract, languages can be used to describe
the policy model. Some systems introduce new high-level languages to de-
scribe firewall policies. These can be graphical languages, or abstract textual
languages similar to high-level programming languages. These high level lan-
guages can then be translated into the vendor specific configuration language
and be implemented on firewalls or routers. Some systems are based around
the low level vendor specific languages, which the system administrators are al-
ready familiar with. Another method is to keep the language technically similar
to the low level vendor languages, but abstract just enough to be used across
a heterogeneous network, such as a XML based language. Systems can also
be based around formal models, such as BDDs, bipartite graphs, or relational
databases.

• Top-Down or Bottom-Up - Systems can be regarded as having a bottom-up

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 15

approach if the starting point, or input to the system, is from device policy.
These systems may create an abstract policy model, analyse, or aggregate the
policy into a higher level policy, but always start with a concrete policy from a
network device. Top-down systems start from high level descriptions, spossibly
a security policy. They typically create an abstract model of a policy, which
then can be compiled into the low level technical policies and then deployed on
devices.

• Scope Some of the systems describe a single network device policy, and some
allow the description of entire network security policy which maps to policies
for multiple firewalls.

• User Interface - The systems, which have been implemented as tools, are typ-
ically split between having either a CLI, or a GUI, which is an important con-
sideration, depending on which tasks the system performs and which type of
user the system is aimed at [43].

• Administration tool design issues Issues raised in recent literature on the sub-
ject of administration and security tool design, such as flexibility, customisabil-
ity, usability, and error reporting techniques [44].

2.4.3 SDLC Development Phase

In this phase of the development life cycle, a risk assessment is carried out, which
specifies the security requirements necessary to protect an organisation’s network-
based assets. Security requirements analysis are then carried out to define what
is required to secure the network. This typically includes the creation of the high
level security policy documents. Which security mechanisms are needed can then be
planned for, and specific security controls - such as firewalls and filtering routers -
can be developed and implemented [42].

Tsoumas and Tryfonas suggests a system to automate some of the development phase
of the development life cycle [45]. Their system is top-down, and takes a a natural
language description of a policy, such as the recommendations from a risk analysis,
and creates a formal model of a security policy. This is an attempt to fill the gap
between high level policy statements, risk analysis output and standards - shown
in Figure 2.1 - and the network security policy definition. The typical approach is
to task experienced administrators, along with management input, to translate the
high level security requirements into a network security policy. Their research did
not produce a prototype system and is left as theory, but it is an interesting idea,
as potentially the system could relieve the administrators of the time consuming
and error prone policy creation task [3, 9]. The authors suggest that their system,
in conjunction with the output from a Risk Analysis tool, could produce a security

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 16

policy and recommendations for administrators concerning deployment issues. They
also suggest that a formal model could be created using a high level policy language
such as Ponder [46] or FLIP [47]. This would assist the administrators, as they would
not have to learn the high level policy language used to describe the formal policy
model. The output from this system could be generated in the syntax of an existing
formal policy language. The system, would in this way, interface with high level
policy language based systems described next.

High-level Policy Languages

Currently, there is no generally accepted high level model, which is commonly used
for policy configuration [48]. The following quotes back this up:

"The thing to note here is that there is no fixed terminology for the de-
scription of firewalls." – Fraser et al. [11]

“generic data models and high-level languages for router configuration
do not exist and are likely to remain elusive for some time“ – Caldwell
et al. [34]

Research by Guttman in 1997, which was funded by the NSA, led to a system called
Network Policy Tool (NPT). The system can define an overall access policy in a
high level policy language, and verify that packet filtering specifications, which it
generates, enforce the policy [49]. They suggest a high level access policy language
to describe which packets can get where in an organisation’s network. This is an
abstract language, above and independent of, device configuration languages. The
system deals with a global policy, covering the entire network access policy, not just
the filtering at a single network boundary. Logical ’filtering postures’, which define
packet filtering at each device, are generated by the system. The motivation for the
system was this creation of multiple filters to enforce the global access policy. The
filters do not define the configuration of firewalls, but only the logical access policy.
This assists the network administrators in delegating the filtering to various devices
around the network, to enforce the overall policy, but the administrators would have
to then manually create the device configurations.

As the system describes the relationship between devices, it needs a description of
the networks topology. This is modelled using a bipartite graph, and specified using
a policy specification language. The areas of the network are represented by nodes, as
are the filtering devices which route traffic between the areas. The (undirected) edges
between the nodes represent the interfaces of the devices connected to the different
areas. Each interface can have an associated ’filtering posture’ created, in both an

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 17

inbound and outbound directions. These postures are abstract representation of the
bi-directional packet filtering that is enforced by routing and firewall devices.

A Lisp type language is used to describe the access policy and the network topology,
and the filtering posture NPT generates. An example of the language is shown in
Listing 2.1. This consists of source and destination hosts and areas, and the traffic
which is allowed to flow between them. This system can be categorised as top-down,
as the network administrator would have to manually create the abstract access poli-
cies in the modeling language, as well as the network topology information. The
interface to the system is text based, and the administrator would have to learn the
lisp type policy specification language and become familiar with this way of model-
ing the access policy. This is not the most complex of the high level policy languages
encountered in the review of this literature, but it would still be a challenge for ad-
ministrators to learn and use.

Listing 2.1 – NPT Language Code Snippet [49]

(defined−host−s e t s ; def ine some host s e t s
(i n t e r n a l ; new name

((areas engineer ing ; two areas
f i n a n c i a l)))

Guttmans NPT system also can also audit the filters it generates, by comparing them
to the global policy specification. This verifies that the filters created, correctly imple-
ment the overall policy. This conformance checking could be useful if the administra-
tor makes changes to the filters, and wants to validate them against the overall access
control policy. However, this auditing facility could only be used in the design stage
of the SDLC, as once the filters have been implemented on devices, the validation
would no longer provide any assurance of the implemented security measures. To
use this in the operations phase, a mechanism would have to be added to reverse
engineer the high level language policy from the configured devices, before running
the auditing facility.

Later research by Guttman documents an evaluation of the NPT system, by gener-
ating filtering postures from a realistic sized network. They use a dozen filtering
devices connecting sixteen network areas and their evaluation metric consisted of
timings of the system runs. Their performance evaluation produced results which
seem usable, with runs only taking seconds. Some problems were encountered with
their system. These were mainly concerning the usability of the system. Specifically,
administrators had difficulty when creating the network and policy definitions in
the abstract language, and also when trying to translate the filtering postures into
concrete device configurations, such as Cisco router ACLs [26]. The administrators
found it hard to work with the abstract policy representations, particularly when try-
ing to create a representation of an existing network policy [26]. Another tool, the

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 18

Atomizer, was created to assist the administrators in this task [50]. It can take Cisco
ACL configurations (Cisco filtering language used on routers and firewalls) as input
and generates abstract NPT policy specifications, combining common traffic filtering
behaviors. The tool uses BDDs to model the traffic filtering policy generated from
the device configurations, and ’atomizes’ the sets of traffic within the filters together.
The output of their NPT system, is still in the difficult to use policy language, and
does not provide automatic generation of firewall rule sets.

The work of Bartal, Mayer, Nissim, and Wool started with the Firmato Firewall Man-
agement Toolkit [2] in 1999, which is another, top-down, configuration generation
system. A high level policy language is used to create a, vendor independent, global
policy, which can be compiled into individual vendor specific device configurations.
The high level policy definition language is used to manually specify the network
topology and the high level security policy. This is then translated into an entity-
relationship model which is a role based model of the access policy and its relation-
ship to the network topology.

One of the aims of the Firmato system was to separate the network topology and the
high level policy definitions, which is an improvement on the work of Guttman, as
changes to the topology does not mean that the policy has to be reworked. Other
motivations behind the system were to abstract the policy away from low level lan-
guages, enabling vendor independent management of firewall configurations, and
to automatically generate configurations, across multiple filtering devices, from the
abstract global policy.

The high level policy language used to describe the abstract policy is called Model
Definition Language (MDL) and is used to specify both the policy, and the network
topology. An example of the MDL language is shown in Listing 2.2. Again, like the
first generation system from Guttman [26], the administrator has to manually create
these definitions.

Listing 2.2 – MDL Code Snippet [2]

corp_gw =
{

I_dmz_corp : { addr=ether0 , INVIS ,
f i l e ="RULES_I_dmz_corp " }

I_corp_ in : { addr=ether1 , INVIS ,
f i l e =" RULES_I_corp_in " }

I_admin : { addr=ether2 ,
ip = 1 1 1 . 2 2 2 . 3 . 1 , f i l e ="RULES_I_admin " }

} : LMF

The language is very different from the configuration languages of firewalls, and
administrators generally find this type of language problematic to use Guttman [26].

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 19

In the testing of the Firmato system, existing firewall rules were converted into MDL
manually, but rule sets with under 50 rules were used. The authors recognised that
any more rules would have necessitated an automated mechanism for translating the
rules into MDL. The system does improve on the work by Guttman [26], solving
one of their systems main problems, in that the administrator does not now have to
translate abstract filter definitions into the low level device configurations, as this can
performed automatically. A limitation of both this system and Guttman’s is that it
models a closed firewall with only pass rules, and a single drop ’all other traffic’ rule
at the end of the rule set. This means the rule set is conflict free, but may have more
rules than necessary, and may be more difficult to understand for the administrator.
The interface provided to the administrator is textual, using text files, and no GUI was
provided. This was regarded as a surprise success of the system, and an important
feature for the users [2]. As recent research by Haber and Bailey [43] shows, this is
not so surprising. A survey carried out by the authors, found that the majority of
system administrators preferred a text based CLI, due to CLIs being more reliable,
faster, and more robust.

Around the same time, research at Cisco Systems by Hinrichs [35], produce a policy-
based management system. This can model abstract filtering device polices, and
automatically create the low level device configurations, in the form of Cisco ACLs.
The system can create filtering device policies, for multiple devices, from global pol-
icy rules, as well as performing some basic rule set analysis. The motivation for the
system is summarised in the title of their research paper ’Policy-Based Management:
Bridging the Gap’ [35]. The gap between device configurations and the high level,
natural language, security policy is difficult to bridge for system administrators, and
the research introduces a functional language to express the high level policy. This
is done in a precise way, using nested sets of conditional statements. An example
of the language, taken from [35], is shown in Listing 2.4.3. This language has to be
manually created by the system administrator, which is a drawback of the system, as
the administrator would have to learn this abstract high level language as well as the
low level device languages.

Listing 2.3 – Code Snippet of an HTTP Policy [35]

corp_gw =
{

I f S e r v i c e i s HTTP
I f Des t ina t ion i s S

I f Source i s H
S e r v i c e l e v e l i s premium
Permit

Else I f Source i s N1 or N4

I f Source i s N4

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 20

Use encrypting tunnel
Permit

The system was implementation as part of the Cisco Secure Policy Manager (CSPM)
tool [51], and its functionality has since been incorporated into the Cisco’s latest
security management tool, Cisco Security Manager [1]. The CSPM interface is a GUI
which provides the administrator with a tree view to implement both the policy and
the network topology information. The topology tree represents the enforcement
devices (firewalls and filtering routers) and the network areas between the devices.
The policy tree contains a policy structure with the individual policies, defined in
the abstract policy language. These can then be applied to the enforcement devices
in the topology tree to enforce policies between the network zones. Figure 2.4, taken
from [1],shows the interface to the CSPM tool. Note the two trees, the top represents
the policy, and the bottom the network topology. Note also that the inner security
policy has been applied to the PIX2 firewall device, which seems to be segmenting a
specific internal network from the general internal network network.

Figure 2.4 – Cisco Security Policy Manager GUI [1]

The generation of the filtering device configurations consists of four steps. Firstly, the
high level policy is applied to device and the policy is distilled into rules which are
applicable to the individual devices. The authors call this process pruning, and in-
volves a mechanism to detect if policy rules specify traffic which could pass through

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 21

each device. In this way, devices only receive rules which are needed on the device.
This is an improvement on, and in contrast with, the systems discussed previously
which either apply all rules to all devices, or perform very minimal pruning. The sec-
ond step in the process, is some simple rule set analysis. This checks that the device
has resources to carry out the policy, such as the memory available for filtering rules.
It also performs some rule set anomaly analysis, checking for conflicting, or overlap-
ping, filtering rules. An example of conflicting rules would be if the filter has the
same source and destination address and the same service, but different actions. The
administrator is warned about any analysis problems and the administrator would
have to decide on the solution, such as which of the two conflicting rules would be
used in the rule set. The next step is to generate the device filters. The tool creates an
intermediate, abstract, filter rule set for each device and stores them in a database.
This stores the semantics of the device configurations to be created, but leaves the
creation to an agent which reads the generic filter rules and creates low level rules
in the device configuration language. This means filtering devices could be inter-
changed and the fourth stage repeated to create configurations for the new devices.
Although this is a Cisco specific closed system, it could in theory be used to create
other vendor device configurations, if agents were added to do this.

The system is MS Windows based, and provides only a GUI for the network admin-
istrator. There is no support for the CLI and this means the tool, even in its latest
form, can not be scripted. This is something that is sought after by administrators, so
the tool can be combined with other tools, and provides customisation in there work
practices [44]. Small configuration changes could be time consuming to perform in
this type of system, as the high level policies would have to be studied and amended,
and the fourth stage process run again. This type of all or nothing configuration
generation my not be very useable for the system administrator [13].

Several other similar approaches, using high level policy languages and creating low
level device configurations from them, appear in the literature. Uribe and Cheung
[52] describes a similar system to Guttman’s, with the addition of modeling and con-
figuring Network Intrusion Detection System (NIDS) as well as firewalls. PRESTO
is a configuration management system for routers [53]. It is interesting, in the way
it extends the low level configuration language, creating a hybrid scripting language
rather than introducing an entirely new language. Templates, or configlets, are used
with information embedded into the low level configuration language. These are then
used at runtime to generate the low level configurations, with a database providing
the content of the templates. The Ponder policy specification language can be used to
specify the entire high level security policy, including access control policies, user au-
thorisation policies, and traffic filtering policies Damianou et al. [46]. Ponder seems
more complex than is needed to specify device filtering policies. A recently proposed
high level firewall policy modeling language, FLIP [47] can also be compiled into low

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 22

level device configurations. The scope of the FLIP system is global and can manage
firewalls across an entire network. FLIP generates conflict free rules automatically,
by performing conflict analysis as it generates the low level device configutaions.
This improves on most of the systems described, which would need to be analysed
separately for rule conflicts, although tying the functionality together like this means
less flexibility [44]. More recently, in 2008, work at the University of Seville, pro-
duced another high level policy language Abstract Firewall Policy language (AFPL)
[54]. This is again intends to fill the gap between high level network security policies
and low level firewall languages. It has been designed to be simpler than some of
the proceeding high level languages, but still provide all the functionality needed
to describe filtering policies. It can be automatically compiled into the leading ven-
dors firewall filtering languages. These high level policy languages have a common
problem, in that the administrators generally do not welcome the overheads involved
with learning and using them [9].

2.4.4 SDLC Implementation Phase

Policy Testing Systems

Testing of packet filtering rule sets was explored by Hazelhurst et al. in the late 1990’s
[55]. One of their main motivations for their system was the analysis of low level rule
sets to understand the policy they implement. This ended up being the main focus
of research, with a query-based system being developed to analyse rule sets. BDDs
were used to represent firewall and router access policies. Each rule, in the rule set,
can be converted into a boolean expression, and the boolean expressions combined
in a BDD. Queries are used to pose questions about the rules, which can then be
answered using the BDDs, which represent the rules. An example of these ’what
if’ queries might be ’which destination addresses can packets reach from a source
address and a certain port’. The user can analyse, and so test, a policy by querying
the rule set in various ways. This can be used to validate and explore the policy before
deploying the rule set onto filtering devices. The language used to specify the queries
is a functional language ’FL’, and the output is a textual representation of the query
answer. The FL query language is a low level and is difficult to use, for the system
administrator when creating the queries. This was recognised, and the system was
improved to include a GUI for easier querying of the policy [56]. The authors also
recognised that the best interface was a GUI for visualising important information
about the rule set, and for basic querying, but a textual interface was better suited
for an advanced user to develop more powerful queries [56]. The scope of the system
only extends to a single rule set, but later research expanded query-based systems to
cover entire networks, some of which are covered later in this chapter. The primary
analysis mechanism is the manual query and answer system, but a basic rule set

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 23

conflict analysis process was also developed. This automated the task of detecting
redundant rules in the rules set prior to deployment. This seems to be one of the first
systems to perform conflict analysis within rule sets and is cited by most research in
the area.

The research of Mayer, Wool, and Ziskind continued with the creation of the FANG
system [23]. This was built from earlier research into the Firmato system [2], and
FANG is actually an analysis engine which runs on top of the same Firmato policy
model. It can be used in the Implementation phase, to test a policy before it is
deployed, and could also be use in the Operations phase to audit a deployed policy.
It has functionality to build the model from existing filtering configurations, so it is
classed as a bottom-up system. It can take Cisco Router configuration files or Lucent
Firewall files as input to create the policy model. It uses a separate parser module
for each filtering device it supports. This is a good system as it support extensibility.
The system works on multiple filtering devices, and so a global policy can be tested.
A network topology has to be entered, and this is still done manually using the MDL
language, the same way as described for the Firmato system. The queries which
can be performed on the FANG system are based around a triple of source host
group (source network address range), a destination host group (destination network
address range) and a network service. Queries can be created such as (*, web_servers,
http_services) to find the answers to questions, such as ’which systems have access
to the organisations web servers’. A GUI was created to perform queries, and drop
down menus implement the query triples. An example, taken from [2], showing the
result of a query asking ’which services can get from the internal network to the
DeMilitarised Zone (DMZ) network’, is shown in figure 2.5.

Figure 2.5 – The FANG systems GUI showing results of a query [2]

A more recent, but similar query-based system, which was created for the Linux ipt-
ables firewall, is ITVal [57]. It uses Multi-way Decision Diagram (MDD)s rather then
BDDs, but operates in much the same way. Their main motivation was to provide

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 24

a simple query tool to aid in firewall configuration, so an administrator could test
a firewall configuration before depolying it. The query language is designed to be
simple and natural language based. A single iptables rule set can be read in by the
tool and a MDD model built. The queries are created in the english based query
language and return a simple textual answer, in a similar way as the FANG system
does.

The main problem with analysis systems using queries, is that they have to be created
by the administrator. The system administrator has to learn another query language,
as well as knowing which queries to perform. The onus is on the administrator to
work work out what, and when, to query.

These off-line passive testing systems have advantages over active testing systems,
such as vulnerability testing or penetration testing, as they can be performed before
policies are deployed. With active testing the policy has to be deployed before testing,
and if problems are found, the production network is vulnerable until a solution can
be deployed [23].

Policy Deployment

The Simple Network Management Protocol (SNMP) protocol [58] was developed by
the Internet Engineering Task Force (IETF) in the 1980’s as a comprehensive network
management system. It was intended to be a standard way of managing increasing
numbers of devices, across heterogeneous networks. Its functionality includes the
ability to configure managed devices remotely. It is implemented as ’agents’ on
network devices, and the configuration is modeled using Management Information
Base (MIB)s which store information on each specific device. In a workshop held by
the IETF in 2002, attended by protocol developers and network administrators, it was
found that SNMP was not being used to configure network devices as much as they
originally intended. One of the main issues raised was device manufacturers have
not implemented all the parts of the protocol needed to read and write configurations
to and from devices. As the following, from the 2003 workshop [59] on the subject,
states:

“There is too little deployment of writable MIB modules. While there are
some notable exceptions in areas, such as cable modems where writable
MIB modules are essential, it appears that router equipment is usually not
fully configurable via SNMP” – Schoenwaelder [59]

“It is usually not possible to retrieve complete device configurations via
SNMP so that they can be compared with previous configurations or
checked for consistency across devices. There is usually only incomplete

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 25

coverage of device features via the SNMP interface, and there is a lack of
differentiation between configuration data and operational state data for
many features.” – Schoenwaelder [59]

It seems network device vendors are reluctant to fully implement the SNMP agents
on their devices, thus their own proprietary languages are needed to manage the
device configurations. SNMP is widely supported by vendors, but mostly the mon-
itoring part of the protocol is implemented, rather than the configuration part [60].
This could be a good business decision for vendors, as rather than the administrator
using the same IETF protocol on any device, they have to become familiar with that
vendor’s low level device specific language, and perhaps have to take some training
courses from that vendor. For example, Cisco Operating System (OS)s have subtle
differences across their range of network products, and different certifications are
needed to manage the different devices. Investment in training administrators in a
vendor’s products can make it difficult to justify using any other vendor’s products
[34]. Vendors typically provide GUI-based products to perform some management of
the devices, but these are normally aimed at simple initial setups and inexperiences
users performing basic tasks [59]. Network administrators invariably have to use
the CLI to perform more complicated management work. In the workshop reported
in Schoenwaelder [59] the CLI was found to be the administrators favorite way of
configuring devices.

Apart from SNMP, several other systems were also discussed at the workshop in-
cluding the Common Information Model (CIM) [61], the Common Open Policy
Service (COPS) [62], and using the device CLI and Secure SHell (SSH), for con-
figuration management. It was decided that neither CIM or COPS addressed the
needs of the users, and that a new vendor independent configuration management
protocol was needed. The XML based Netconf protocol [63] was born out of the rec-
ommendations from this workshop. Netconf was designed to be a simple mechanism
through which device configurations can be managed, using an XML-based system
[64]. The entire, or partial, XML encoded configurations, of a Netconf enabled device
can be retrieved, updated, and deployed back to the device by remote management
applications. The protocols control messages are encoded in XML, as well as the data
being sent. Major network device vendors, such as Cisco and Juniper Networks, now
have XML-based agents in their latest products and are participating in Netconf stan-
dardisation [65]. Cisco Netconf configuration is detailed in [66], and Juniper in [67].
XML has many advantages over SNMP, such as XML is human readable, there are
many standard tools and libraries for parsing and processing XML, and XML-based
languages are extensible by the user [68].

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 26

2.4.5 SDLC Operation and Maintenance Phase

The operations phase of the SDLC includes configuration management of deployed
security systems. This could range from small changes to a single device, to imple-
mentation of an new security policy over the entire network. This phase also includes
monitoring and auditing of deployed systems, checking for compliance with policies
and procedures. This can be done by comparing the implemented mechanisms with
the higher level policy definitions. System Administrators can also use these auditing
systems to help with their understanding of deployed policy implementations. For
example, to create high level policies for management where none currently exist,
or during the process of making changes to device configurations. Understanding
deployed policies can be extremely challenging [69], especially if the policy is being
enforced across many devices over an entire network. Periodic testing of security
mechanisms is also recommended in this phase of the life cycle, to check the systems
for, and alert administrators to, the latest security vulnerabilities. The auditing and
testing processes can be carried out in parallel, and both aim to highlight any weak-
nesses in the current security solution, and possibly to suggest improvements. This
would then feed back into the development phase of the SDLC, as part of a continual
process, to improve the security policies and implementation [70, 14]. This contin-
ual security process is shown in Figure 2.3, and summarised nicely by the following
quote from Fraser et al. [11].

“Implement measures which will protect your assets in a cost effective manner. Re-
view the process continuously and make improvements each time a weakness is
found.” Fraser et al. [11]

Policy Auditing Systems

Some of the systems discussed previously can also be used for testing or auditing of
deployed access control policies. Such as the FANG system Mayer et al. [23]. It can
reverse engineer a model of a policy from firewall configurations. The administrator
can then query the policy, to become familiar with it before changes are made, or to
check it matches the overall security requirements.

This auditing system has been improved on, by the creation of the Lumeta Firewall
Analyser [69, 3]. This improved on the Fang system by automatically creating the
queries needed to analyse the the firewall policy model. Lumeta generates what the
authors describe as the most interesting queries, and then displays the answers to
these queries. This tries to highlight possible risks in the firewall policy, and to limit
the need for user input to the system. The authors recognised the fact that one of the
problems with their earlier system was that the administrator had to decide which
queries to ask the system, and then create the queries manually. This is described as

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 27

a major usability problem with FANG [69].

In the FANG system, the administrator has to enter the network topology descrip-
tion manually using the Firmato MDL language. Using this language was raised as
a problem by beta testers and in the new Lumeta system, the routing table is used to
create this automatically. The GUI to FANG, shown in Figure 2.5, was also replaced
as it was deemed difficult to use by testers. This has been replaced by a batch process
which performs a comprehensive simulation of traffic through the firewall policy and
reports on this. This is interesting as the administrator users found the original Fir-
mato CLI interface easy to use, and yet it was replaced with a GUI. This shows the
design was perhaps not tailored to the type of user correctly [44]. The output from
the system is now a report in the form of web pages, with the ability to drill down
into more detail if the users needs to. Using HTML to provide this type of flexible
reporting is described as an ideal mechanism for security analysis tools Jaferian et al.
[44]. The FANG system can only translate Lucent Managed Firewall, which does not
have a large market share. The Lumeta system added parser modules for CheckPoint
firewall and Cisco ACL configurations , so heterogeneous networks could be mod-
eled, and therefor the product would be useful to a wider audience. The low level
configurations are abstracted to the Lucent Managed Firewall based language used
by Firmato and FANG, and the analysis query engine uses this as input. The Lucent
Managed Firewall language was used as it is contains high level constructs and is
easy to parse. The Lumeta architecture, taken from [3], is shown in 2.6.

Figure 2.6 – The Lumeta system architecture [3]

The Lumeta system has since been developed into a commercial product, the Al-
gosec Firewall Analyser from Algorithmic Security Inc. [71], which provides multi-
vendor firewall analysis, monitoring and auditing. The Firewall Analyser system
supports the major enterprise firewall platforms: CheckPoint Firewall-1 software
firewall (which runs on various hardwares platforms), Cisco PIX, ASA and Router
firewalls, and Juniper Netscreen.

DePaul University in Chicago has contributed greatly to research in the areas of fire-
wall policy modeling and analysis. Al-Shaer and Hamed have been the main contrib-
utors, with over a dozen publications between them. Their first research into firewall
policy analysis was concerned with auditing legacy firewall policies to automatically
discover conflicts and anomalies in firewall policies. This anomaly checking can also

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 28

assist administrators when editing the deployed policies [5, 72]. The rule set conflict
detection aims to highlight possible problems in a rule set based on the order of the
rules, and the dependencies between rules due to the ordering. For example a more
general rule before a more specific rule in a rule set, would mean the more specific
rule would never be reached. The more specific rule is classified as ’shadowed’ by the
first rule if the filtering actions taken are different (pass and drop), or ’redundant’ if
the actions are the same (for example, both rules pass the packet). These are classed,
by the authors, as rule set ’anomalies’ [72].

The FPA tool was created, based around a formal model of the firewall rules and the
relationships between them. Modeling of the filtering policies is done using BDDs
and algorithms to detect anomalies in the rule set model, have been created. To prove
the concept they demonstrate a five tuple filtering syntax, which is used to describe
the filtering rules used as input to the system. This maps directly from current low
level filtering languages, such as Cisco ACLs. The format of the five tuple filtering
rule is shown in Listing 2.4. The literature only shows examples of these commonly
used filtering fields, but the authors state this could easily be extended to include
any other filtering fields from low level languages [5]. This could be extended to
include the filtering options available in modern low level filtering languages, such
as Cisco ACLs or Linux IP Tables. Note that the filters used in the examples only use
classful ranges of IP addresses, and classless ranges would need a more sophisticated
wildcard specification. Al-Shaer and Hamed define all the possible relationships
between rules, which are then proved mathematically to be the union of all possible
relations [5].

Listing 2.4 – Format of filtering rules, used as input to the FPA tool [5]

<order > <protocol ><src_ ip ><src_port ><dst_ip ><dst_port > <act ion >

The firewall rule set, and the relations within, are then modeled as a BDD. This is
then represented as a policy tree, with nodes on the tree representing filtering fields,
and branches being the values. Each path through the tree represents a rule in the
input rule set. This model was chosen, as the rule set and the anomalies can be
visualised by the users. An example of this type of tree, taken from [4], is shown in
Figure 2.7.

Algorithms to detect any anomalies within the rule set are then run, and can be
displayed to the user in the FPA tool interface. The interface provided by the system
is a GUI, which can show the policy tree, and any rule set anomalies. The interface is
shown in Figure 2.8, which is taken from [5]. The policy tree is shown in the left hand
pane, and the discovered anomalies in the right hand pane. The rule set is shown in
the bottom pane, with the conflicts highlighted. The FPA tool also allows the user to
maintain the rule set, inserting, modifying and deleting rules. As the user edits the
rules, the tool provides feedback on any conflicts that may be introduced by these

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 29

Figure 2.7 – FPA tool BDD Tree model of a filtering rule set [4]

actions.

Figure 2.8 – FPA tool GUI [5]

Although the use of system is described as analysis of legacy firewall policies, by the
authors, no automatic importing of these policies is described. The system seems
to need an administrator to manually translate the low level rule set into the five
tuple syntax. This would classify the systems top-down, however, the translation of
deployed policies is not difficult as it is a direct mapping from most firewall config-
uration languages. Fixed format configurations from devices can be easily parsed

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 30

using a scripting language, such as Perl [69].

The authors regarded this system as a step forward from the query-based analysis
systems such as FANG [23] and Lumeta [69]. The main reason for this is that it
takes much more effort to redefine deployed rules sets into the high level policy
specification languages used by these systems, rather than analysing the rule sets
directly with the FPA system [4].

The scope of the FPA system was a single device and rule set, but this was extended
to anomaly detection across multiple firewalls [36, 24]. Further research extended the
system to include other filtering devices, including Intrusion Detection System (IDS),
and VPN gateways, and the inter-device anomaly analysis, across the global policy
[73].

The FIREMAN Firewall Analysis system Yuan et al. [74] can perform analysis of
firewall filtering, detecting redundant and conflicting rules, which may point to mis-
configurations. Again, BDDs are used to model one or more firewalls. The analysis
can discover mis-configurations, similar to anomalies defined in the FPA system, as
well as detecting policy violations in the policy. The policy violations are based on
a blacklist or whitelist input by the user, as well as a general policy for all rule sets
based on the twelve common firewall configuration errors identified by Wool [10].
The model is created with a bottom-up approach, by parsing device configuration
files. An evaluation of the system was carried out, by creating artificial rule sets of
up to 800 rules. Performance evaluation was carried out based on timing metrics.
The experimental conditions used, were rule sets increasing size. The system can
analyse up to 800 rules in less than 3 seconds.

Research at AT&T labs produced a configuration auditing and management system
called EDGE Caldwell et al. [34]. It creates an abstract model of the networks rout-
ing information by reading in and processing entire device configuration files. The
network is modeled using an entity relationship model stored in a database of net-
work services described in the configuration files. Off-line analysis of the network
configuration is then provided, and reports are generated. These can be used to iden-
tify problems such as inconsistent routing configurations on devices. The adminis-
trator can decide whether to correct these highlighted problems, before the system
rewrites the configurations back out to the devices. This is an example of a pragmatic,
bottom-up, approach to modeling from network configurations. The motivation for
the system is similar to many of the firewall management systems. The configura-
tion languages used to configure these complex routing systems are difficult for the
administrator to get right. Automation provisioning of configurations is proposed as
a solution in this case, with the database model of the current network being used
to facilitate this. The interface to the system is via the EDGE web site. EDGE users

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 31

have access to their own networks data. Various network visualisations are avail-
able to help the administrator understand the policies, such as network topology
and routing information. Various web-based reports are also available on request.
This system has been successfully commercialised, and runs daily on thousands of
enterprise networks, helping administrators manage complex networks [34].

One of the main problem with systems which convert to and from vendor specific
configurations, such as the systems discussed in this section, is that the configuration
languages tend to change rapidly. For example, Ciscos ACL filtering language has
had many additional features added to it since the first version in the mid 1990s. This
means that the parser modules have to be continually reviewed, to keep them up to
date with the latest language changes [34].

“Command line interfaces often lack proper version control for the syntax and the
semantics. It is therefore time consuming and error prone to maintain programs or
scripts that interface with different versions of a command line interface.” – Schoen-
waelder [59]

More recently, as part of another configuration management system being devel-
oped by Caldwell et al., some interesting research into Cisco Router IOS parsing and
modeling was carried out at AT&T Labs. In [75], a learning system and adaptive
parser are described. The overall system will be able to process and extract informa-
tion from existing network configurations, much as described in their previous work
with the EDGE system [34], but the parser can adapt to changes in the configuration
language being parsed. The parser is automatically generated from valid configura-
tions, which are fed into the learning system. The system, if perfected, would not
need manual changes to be made whenever the configuration language version had
new features introduced. This would overcome one of the major problems with the
bottom-up approach to any type of policy modeling, especially when dealing with
rapidly changing configuration languages such as Cisco device operating systems.

Reverse Engineering Security Policies

Al-Shaer and Hamed, at DePaul University seem to have produced the first research
into the reverse engineering of natural language, high level, policies from existing
device configurations. This was as recently as 2002 [5, 76]. They aggregate network
services together, using their FPA system model as a base, and produce a basic text
based abstract policy description from a filtering rule set. They take their BDD model
of the filtering rule set, and create another BDD based on network services from
that. Services can then be aggregated together, changing it into a form which can
be presented to the user in a natural language. The interface for the tool was a GUI
showing the network services based tree and the textual representation of the policy.
Figure 2.9, taken from [5], shows the network service-based tree and the high level

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 32

policy which has been inferred.

Figure 2.9 – Policy Inference Tool GUI [5]

The creation of an abstract high level policy from low level device configurations is a
fairly new subject for research. The 2007 paper by Tongaonkar, Inamdar, and Sekar
describes a technique to extract the high level security policy from analysis of the low
level representation of a rule set [77]. Their system attempts to flatten the rule set,
by aggregating overlapping rules together, thus eliminating the dependency on the
order of the rules. This also reduces the size and complexity of the rule set, hopefully
giving the administrator a better understanding of the policy it represents. This is a
similar technique to the Al-Shaer and Hamed [5] system.

More recentlt, Bishop and Peisert [8] developed a system of reverse engineering ac-
cess control policies from Linux file system access control configurations. This doesn’t
involve firewall policies however, only user access policies from Linux password files.

Around the same time Golnabi et al. have also worked on the problem of inferring
high level policies [78], but their approach is based around an active system, and the
data mining of the device logs, and not by static analysis of the device configurations.

Policy Visualisation

Another way to analyse or validate a policy is to graphically represent the rule set in
some form. This technique has been used in several tools to some extent, for example
the FPA system Al-Shaer and Hamed uses visualisation of BDDs tree to represent the
firewall policy. This was regarded as an important design feature. The choice of a
BDD as a model was used over, faster modeling techniques for simplicity and ease of
visualisation to the user [72].

Tran et al. [79] describes a firewall packet filter visualisation tool, PolicyVis. A GUI
provides the administrator with a visualisation of packets passed or blocked by the
firewall, based on a set of specified query parameters. The administrator can enter

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 33

queries, much like the Firmato or FANG systems, and instead of textual answers, a vi-
sualisation of the filtered traffic is generated. Like the query-based systems reviewed
earlier in the Chapter, this leaves the administrator to create the queries.

Wong [9] discusses a system, to compliment the CLI, visualising the most complex
parts of the policy. Their system was based around improving the usability of net-
work administrators current systems, by complimenting them with visualisations,
but not replacing them. Their approach is different from the clean-slate approaches
taken in some of the systems reviewed in this section, such as with new high level
policy specification languages. They assume that the administrator prefers the low
level CLI based tools, they are familiar with, and attempt to give additional usablility
through visaulisation rather than replacing the CLI tools. This assumption is made,
based on research into the network administration community and the context of the
work administrators perform [43, 80].

2.5 Conclusions

This chapter explored literature in the areas of network security, security policies,
policy enforcement, and firewall policy management systems. A taxonomy of sys-
tems which aid the administrator in the management of firewall policies, was also
carried out.

It has been shown that security policies play a central and important role in net-
work security. High level policies are created with input from management, and are
typically written in a natural language. These policies then have to be mapped to
the technical policies which network devices enforce. The process of mapping these
high level policies to low level device configurations is normally performed manu-
ally by network administrators. This task is difficult and error prone as there is a
large conceptual gap between the high level policies and the configurations. The low
level firewall policies themselves are difficult to understand, reverse engineer, and
maintain due to the complexity in large rule sets, and the fact that overall policies
are sometime enforced over multiple firewalls and filtering devices. Many systems to
help with the understanding and management of these policies have been proposed
in the literature.

Much research into policy-based systems has been carried out, including high level
abstract policy languages, query-based rule set testing systems, and firewall rule set
auditing systems. High level languages, used to bridge the gap between high level
policies and low level firewall configurations have been developed, but have some
problems. A common problem with abstract policy languages is that they need spe-
cialist to configure them. The administrator typically does not want to, or have the
time to learn these new languages. Some of the languages also have limitations with

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 34

the features they support. Query-based analysis systems have been produced specif-
ically for firewall auditing, and analyse the firewall rule set by simulating network
traffic passing through the firewall, based on queries input by the user. Some have
overcome the problem of abstract language based systems, as they use models hidden
from the user, which can be created from device configurations automatically. Some
query-based systems have problems also, as they put the onus on the administrator
to create the queries, and sometimes to learn a new query language which leads to
the same problems as high level modeling languages. Other off-line auditing systems
were reviewed, including rule set anomaly detection systems, visualisation systems,
and high level policy reverse engineering systems - which are still in their infancy.

From the review, it was highlighted that off-line configuration analysis is the area
were some of these systems have become commercialised, such as automated fire-
wall configuration analysis, ans routing configuration analysis. These off-line passive
systems have advantages over active testing systems, such as vulnerability testing,
as they can be performed before policies are deployed. Another issue raised in the
research more than once, was that of which interface systems had. Network and se-
curity administrators prefer a low level, textual based CLI interface over an abstract
interface, such as a GUI for most tasks.

R.J. Macfarlane, MSc Advanced Networking, 2009 2 Literature review 35

Chapter 3
Design

3.1 Introduction

From the literature review carried out in Chapter 2 it was recognised that the almost
all of the systems are built around models of device configurations. Whether it be a
high level language model in systems such as NPT Guttman [49], or SNMP MIBs, or
using the five tuple syntax to build BDDs such as [5]. A framework is suggested in
the first section of this Chapter as a way of bringing these systems together with a
simple common modeling language, and providing a starting point for new systems
to be created.

A significant part of the framework was designed and implemented and the second
section of this Chapter focuses on this. A tool to support the network administrator
with validation of low level policy configurations was chosen as it is a critical part of
the framework and no such tool was found in the research literature reviewed. The
tool, as part of the framework, is shown in figure 3.1. The last section in the Chapter
gives a brief design overview of an application which was designed to help evaluate
the validation tool.

3.2 Framework Design

3.2.1 Motivation

Other frameworks have been suggested in literature, such as Saliou et al. [81], which
is further developed in [82]. This is an overall framework for security policies, as part
of an integrated security process for an organisation, and based around an automat-
ically generated network security policy. A top-down system is proposed, with the
administrator creating an abstract policy model using an XML-based policy language,
which can then be used to drive analysis systems, and automated low level config-
uration creation. Another overall security policy specification and implementation
frame work is described by Damianou [83]. This again covers the entire security pol-
icy, and all enforcement devices within the network, and is based around a complex

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 36

policy specification language. These both suffer from the problem, described earlier,
of the administrator tasked with creating the high level language policy specification,
which has been shown to be unpopular.

The proposed framework is focused on firewall and filtering policies, which is the
focus of this thesis, rather than the entire organisation’s security policy, but could
be possibly extended to be used for configuration management and sercurity policy
management.

3.2.2 Policy Model

A framework could use a common model, which would hopefully replace, or compli-
ment, some of the more complex models described in the literature. The XML-based
model put forward by Saliou et al. [81] seems like an obvious choice to create a mod-
eling language to describe policies. XML provides an open way of describing abstract
services which are implemented in the device configurations. XML can be self val-
idating using various built in techniques, and designed to be portable - between
platforms and over the Internet - as it is text based, human readable and designed to
be easy to use [84, 85]. Thus, XML could be used to create a simple language to store
the abstract firewall configurations in the proposed framework.

The Lumeta system [3] added parser modules for CheckPoint firewalls and Cisco
ACL configurations, so heterogeneous networks could be modeled, and so the anal-
ysis tool would be useful to a wider audience. The low level configurations are ab-
stracted to the Lucent Managed Firewall based language used by Firmato and FANG
systems [23], and their analysis query engine uses this as input. The Lucent Managed
Firewall language was chosen as it is contains simple high level constructs, and be-
cause it is easy to parse. XML also has both of these attributes. One option would be
to create a new modelling language, as suggested by Saliou et al., but another option
which could be investigated, is to use the Netconf XML schema to store the abstract
firewall configurations. It is an existing standard which is used by the major firewall
vendors, and may provide simple retrieval and deployment of configurations to and
from devices.

Most of the literature reviewed covers firewall modeling. If these systems create a
global model of firewalling and filtering from many devices, throughout a network,
the models have to have a second part, containing the network topology information
[49, 69]. The proposed model, however could model more of a networks device
configurations, including the topology information contained in the interface and
routing configuration commands. If those could be modeled as part of the XML
abstract configuration files, all the information would be available, and a separate
network topology model would not be necessary.

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 37

3.2.3 Analysis Systems

Similar to the Lumeta system [69], the system to perform analysis parses the abstract
XML device definitions, and builds an internal model suited to the type of analysis
being performed, such as a BDD. Or current systems, like Lumeta [69], or Al-Shaer’s
policy conflict analysis system [5], could interface directly to the XML model to pro-
vide the analysis needed. XML parsers would need to be added, but this a fairly
simple task.

Modules could be added as needed, or current systems such as reviewed in Chapter
2 could be added. New systems could be researched and added, such as a GUI visu-
alisation system and editor, a security best practice or standards conformity checker
module, a static analysis system, a security services simulator, a performance analysis
engine, and a high level security policy inference engine.

3.2.4 Configuration Deployment

Netconf XML descriptions are designed to be used for configuration retrieval and
deployment, so this should be simplify deployment. If a separate XML language
was used, an eXtensible Stylesheet Language Transformations (XSLT) system could
use vendor specific eXtensible Stylesheet Language (XSL) style sheets to translate the
abstract XML into low level vendor configurations [86]. This has previously been
successfully implemented in systems such as Cuppens et al. [15].

Although the system is proposed for security services, this could easily be extended
to include other services such as routing, and so model entire device configurations.
This could then be used as the basis for an extremely powerful configuration man-
agement framework, as well as configuration testing, auditing, simulation of entire
network devices and networks. An outline of the framework is shown in figure 3.1.

3.3 Firewall Policy Validation Tool Design

3.3.1 Design Motivation

Network configurations tend to be created off-line, stored centrally, and applied to
devices at a later stage. Administrators do not tend to create configurations straight
onto the network devices [34]. With firewall rule set development in particular, it is
strongly recommended to develop solutions off-line [19, 87]. This is mainly due to
firewall rule sets being complex to understand and maintain, as covered in the review
in Chapter 2. A practical problem with the CLI interface, preferred by administrators,
is raised by both Caldwell et al. [34] and Wool [10], in that it only displays a limited

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 38

Figure 3.1 – Network Security Policy Management Framework

number of configuration statements at any one time. This is another reason that
offline development and maintenance of firewall rule sets is favored.

While reviewing the research into this area, no off-line validation tools or compilers
for simple text files were found to exist, which suggests the administrator has to
deploy a rule set onto a network device to validate it for errors. Any tools that did
parse the low level configurations, presume formatted and validated output which
has come from the network devices.

The systems reviewed in section 2.4.3, which operate in the development phase of
the security SDLC, typically output firewall or filtering rule sets in a vendor specific
language for use on a specific device. These systems do not validate the configu-
ration output, and this may cause the device to reject the configurations when they
are deployed. A tool which could be run on the output from these systems, could
provide feedback to the administrator with any problems, before the configuration
was deployed to the device. The tool could be used in collaboration with systems
like the one created by Hinrichs [35].

Some of the other systems reviewed imported low level configurations, such as fire-
wall rule sets in vendor specific languages, before running offline testing or analysis
on the policies. For example, systems such as the FIREMAN analysis system Yuan
et al. [74]. A tool which could validate the syntax of the low level language could be

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 39

used prior to the import. If the tool could provide strict validation, such as the fire-
wall or filtering device OS provides, new or edited configurations could be validated
off-line, before being analysed by the auditing system. This would remove the need
for the configuration or firewall rule set to be entered into a network device, prior
to being imported into the analysis system. How the tool may integrate with these
systems is shown in figure 3.1.

Some of the systems reviewed, such as FPA system Al-Shaer and Hamed [72], have
no automatic importing of the policies, or configurations. These systems need an
administrator to manually translate the low level rule set into a high level abstract
language. When testing was done with some systems using high level languages,
administrators complained that it was harder to create the policies in the abstract
language, than using the low level vendor specific languages [26]. Some researchers
introduced modules to parse the device configurations, but if new policies have to be
created the high level language would have to be used to define them. However, this
is could be automated as an extra output from the proposed tool. An output mod-
ule could be added for any of the high level policy specification languages needed,
including the XML based language proposed for use in the new framework. The
administrators could then create the policies in the vendor low level languages that
they prefer to work with.

Figure 3.2 – Proposed policy validation tool integrating with existing systems.

Another motivation for the design of the tool was that it should be modular, so it
could integrate with other network tools if necessary. This is something that network
administrators typically require, as tasks are often automated, such as with scripting
languages [44]. Multiple tools are also often used to perform one task, therefor tools
should be combinable. This modularity and combination of tool use can be supported
with CLI interfaces, which can be easily scripted, and textual outputs in standard
formats which can be parsed and correlated [80, 88].

Another general motivation was customisation and automation of the tool. Often
administrators have to deal with unpredictable situations, such as vendor software

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 40

upgrades, or configuration changes because of a new security vulnerability. Tools
should be customisable, with the ability to add new modules easily. For example, if
the proposed tool is typically only used to validate a single configuration, it should
also be able to be automated to run over many configurations if necessary.

Another motivation relating to the reviewed research was flexibility. The tool should
be designed to be flexible in its use. It should be able to be used as a stand alone tool,
either from the CLI for network administrators to use, or as the back-end for another
system, such as an GUI-based teaching tool for less experienced users. This could
provide different user interfaces for different types of users depending on experience,
which is useful as administration tools are often used by several types of end-user
[80].

A tool is therefor proposed, which can validate a low level rule set for syntactic and
semantic errors, and give useful feedback about any errors to the administrator. The
input rule set would be in the form of a device configuration, as this is typically
how administrators prefer to create firewall and filtering policies. Figure 3.2 shows
how the tool might interface with some of the existing policy creation and analysis
systems, which were reviewed in Chapter 2.

Cisco’s ACL packet filtering and firewall policy language were chosen as the low
level language to base the tool around. Cisco currently has largest market share in
both filtering routers and firewalls, and ACLs are the preferred way to define filtering
on these devices [3].

When networking students are learning to create and edit Cisco device OS config-
urations, they tend to find it difficult due to the low level language and the single
line editing style. When creating even small ACLs this can cause configuration er-
rors. Cisco recommend off-line ACL creation to students in their course literature,
but they do not provide an off-line compilers for their low level languages. Students
must rely on simulators or the device CLI itself, which are both using single line
editors. The proposed validation tool could be used to support the teaching of these
courses, and applied ACLs in general. The students can concentrate on the firewall
semantics and use the tool to check the systax.

?

3.3.2 Interface

It is suggested, from the review of literature, that network administrators prefer the
CLI, as an interface for working with in general. It is also suggested that in particular,
for firewall configuration creation and management, the preferred method is a CLI
[9, 43]. So a simple CLI with arguments is proposed as the interface for the tool. A
simple argument line parser should be implemented to accept these arguments, and

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 41

provide help to the user. The arguments are listed below:

• -c a string which specifies the input configuration file to validate.

• -s a string which contains an ACL configuration.

• -v a boolean flag (default false) to specify verbose error description output or
simple output.

• -x a boolean flag (default false) to specify whether to produce XML abstract
configuration output.

• -q a boolean flag (default false) on whether to output the error report file or
not.

• -h –help display help to the user, then exit the tool.

A CLI will also mean the tool can be scripted, which is often useful to an administra-
tor. However, the tool should be designed to be flexible enough to be able to interface
with Web or Windows GUI applications, so it could be incorporated into systems for
less experienced users, such as networking students.

3.3.3 Design Overview

The validation tool functions much like a compiler in operation. A compiler reads in a
source code file as input, analyses the code returning any errors to the user, then once
the code is error free generates object code as output [89]. The validation tool will
read in the configuration file containing the Cisco ACLs to validate, return any errors
found to the user, and output the configuration with any optimisation of the code
necessary. In this case, the source code and object code will be the same language,
but otherwise the operation of the tool is similar to a compiler. The main task of the
tool is to make sure the source configuration is error free before it is deployed onto a
network device, or imported into one of the existing abstract modeling systems.

Figure 3.3 – Validation Tool Components

A compiler is defined as having five phases: Lexical analysis, Syntactic analysis,
Intermediate code generation, Optimisation, and Object code generation [90]. The

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 42

validation tool is designed in a similar way, with most of the functionality we are
interested in, in the first two phases. The tool should have the following components:

1. Lexical Analysis

2. Syntactic Analysis and Error Generation

3. Intermediate Cofiguration Generation and Optimisation

4. Output Configuration Generation

3.3.4 Lexical Analysis

This component of the tool breaks the source configuration into units for the syntac-
tical analysis module to process. The units are known as tokens in compiler design
teminology [90]. For maximum flexibility in the design, the module should accept a
file name if input stream is to be a file, or a string if the input stream is that string,
such as when passed as input directly from another application.

Listing 3.1 – Cisco Named ACL Example

ip access-list extended INBOUND_FROM_INTERNET

remark Block Invalid Source Addresses From Internet

deny ip 127.0.0.0 0.255.255.255 any log

deny ip 0.0.0.0 0.255.255.255 any log

deny ip 172.16.0.0 0.15.255.255 any log

permit ip any 146.1.1.0 0.0.0.255

permit tcp any host 146.1.2.10 eq http ! Access to web server

deny any any log

Taking the example ACL in Listing 3.1 some of the tokens are:

• Commands: ip access-list, remark, deny, permit

• Keywords: eq, host

• Parameters: extended, INBOUND_FROM_INTERNET, ip, tcp, any, 127.0.0.0
0.255.255.255, http

Tokenising ACLs, in Cisco’s configuration language, is fairly straightforward as all
of the commands and parameters are separated by white space. The lexical analysis
module should also perform several other tasks. Comments, which are marked by
the use of a ’!’ character as shown in the example, should be removed. The tokens
passed to the syntactic analysis module should have case converted to lower case, as
Cisco’s configuration languages are not case sensitive. Any string parameters, such
as ACL name in the example, should be maintained in the output configuration, and

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 43

in the error report output to the user. White space should be removed, as it has no
relevance in Cisco’s configuration languages.

Tokens in most compiler systems are defined using ’regular expressions’. A regular
expression is a compact notation that can describe a range of characters. This regular
expression, or ’pattern’, can then be matched against strings, which is known as
pattern matching [91]. In the context of the validation tool, regular expressions can
be used to specify a range of characters which are valid values for a particular token.

Listing 3.2 – Cisco ACL access-list (IP extended) command definition [92]

access-list access-list-number [dynamic dynamic-name [timeout minutes]] {deny | permit

} protocol source source-wildcard destination destination-wildcard [precedence

precedence] [tos tos] [log | log-input] [time-range time-range-name] [fragments]

The ’access-list’ command, shown in listing 3.2, is a part of the command defini-
tion, which is taken from the Cisco Internetwork Operating System (IOS) Command
Reference - Release 12.4 [92]. The ’protocol’ parameter can have a value of IP pro-
tocol number 0-255, or it can be one of the IP protocol keywords eigrp, gre, icmp,

igmp, ip, ipinip, nos, ospf, pim, tcp, or udp. This token can be defined as the
following regular expression:

"(̂[01]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5]|ahp|eigrp|esp|gre|icmp|igmp|ip|ipinip|nos|

ospf|pcp|pim|tcp|udp)$"

Each token to be parsed can have its valid values defined by a regular expression in
this way. Tokens can then be matched against these regular expressions to check for
valid token values. In this way conditional statements in the implemented code can
be reduced significantly. The tokens can be stored together, away from the workings
of the code itself, meaning changes can be easily made to to the token values, without
having to change any code.

3.3.5 Syntactic Analysis

The syntactic analysis module, or parser, analyses the structure of the input source
code, and the commands within the structure.

Listing 3.3 – Cisco Extended ACL Example

access-list 101 permit icmp 192.168.1.0 0.0.0.255 host 192.168.1.1 echo-reply

The parser should recognise that, in the example in listing 3.3, the ACL is of type ’ex-
tended’ and that the filtering fields ’host’ and ’192.168.1.1’ mean that the destination
range of network addresses is a single host address. The parser should recognise the

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 44

grammar of the source language, allowing it to then validate the tokens are in the
correct order, and of the correct type and value.

Most compilers deal with programming languages which are not context sensitive.
These languages can be parsed recursively and are not state, or context, dependent.
Cisco’s configuration languages are context sensitive, and commands and parameters
can mean different things depending on the context. Due to this a manual parser was
designed, rather than using a parser generation language - such as using lex & yacc
[93] which was considered - to generate the parser code. No recursion is necessary,
so only one pass through the code is needed. This may be advantageous as single
pass parsers tend to have the fastest performance [90].

To parse of the context sensitive Cisco commands, state will need to be stored about
the current context that the parser is dealing with. Different commands can be used,
depending on the state, or ’command mode’ as Cisco call it. The state for ACL com-
mands to be entered, such as ’access-list’ and ’ip access-list’ is ’global configuration
mode’. If the ’ip access-list’ command is parsed, the state changes to ’access list
configuration mode’ and commands such as ’permit’ and ’deny’ can then be parsed.
These ’permit’ and ’deny’ commands are not accepted in ’global configuration mode’.
The change in mode, or state, can be seen in the example ACL in listing 3.1.

To define the grammer of ACL configurations the Cisco documentation has been
used. The access-list commands, defined in the Cisco IOS Command Reference Re-
lease 12.4 [92], should be used as a base for the parser design. This is the OS which is
used on Cisco routers. There are five commands used to define ACLs in this version
of Cisco’s device OS:

• access-list

• ip access-list

• permit

• deny

• remark

Within these commands, 14 different type of ACL exist, with two common types used
more than any of the others. The two common types, which were defined as part of
the design, are ’Standard’ and ’Extended’ ACLs. The standard type filters only on
source-based fields of the, layer 3 OSI model, IP packet headers. The extended ACL
type can filter on headers fields from layers 3 and 4, and can filter more specific
traffic based on source and destination network addresses, and specified network
services, ports and flags. The syntax for the standard ACL, as defined by the Cisco
documentation is shown in listing 3.4.

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 45

Listing 3.4 – Cisco ACL access-list (IP standard) command definition [92]

access-list access-list-number {deny | permit} source [source-wildcard] [log]

The command is ’access-list’ and the ’access-list-number’ being in the range 100-
199, or 2000-2699 specifies that the command is a standard ACL. The filtering rule
action is specified by the keywords ’permit’ or ’deny’. The filtering fields are ’source’
network address, and ’source-wildcard’ which can specify a range of addresses, and
an optional ’log’ keyword. Each of these tokens should have a regular expressions
created to define their valid values, and the grammer of the commands, keywords
and filtering fields should be built into the appropriate code modules, for each of the
commands and ACL types. The algorithm for the standard ACL type should validate
the OSI layer 3 filtering fields described in Listing 3.4. The extended ACL algorithm
should validate the OSI layers 3 and 4 filtering fields, as specified in Listings 3.5 - 3.9.

Some discrepancies were noticed in the Cisco documentation, as the design was being
carried out. Such as the ’dscp’ filtering fields are not defined in the definition shown
in Listing 3.5, but are shown in some other on-line documentation. After checking
this on a Cisco router, it was found that these and some other missing filtering options
are missing from the latest Cisco documentation. These were added to the tool, and
as much of the validation algorithms as could be, were checked on actual devices, as
the design and implementation took place.

An object oriented approach to the design of the tool was taken. The designed objects
are responsible for the representation of their data and the validation of parsing that
data. The proposed object model is shown in 3.4 (some of the filtering field objects
are missed out for simplicity). Referring back to listing 3.4, the grammer processing
for the Standard ACL should be provided in the ’Standard ACL’ class shown in
the figure. The functionality associated with the filtering fields is provided via the
’Action’, ’Src IP Address Range’, and ’Log’ classes. This encapsulation within the
objects provides reuse and extensibility. The ’action’ class is reused as an attribute
of the ’Extended ACL’ class. Extensibility is also given, by the ability to add new
services - as new objects- with the minimum of changes to the rest of the object
model.

The model shows the ease with which the tool could be extended to deal with other
commands within the Cisco OS, or to include other platforms. The ’ACL Commands’
class deals with all commands in the OS which relate to ACLs, and their parsing and
validation. It decides on which type of commands are being parsed, and uses the
appropriate classes to process those ACLs. If a new service, such as routing, was to
be validated, a new class could be added to deal with those commands, and new
classes would be created to provide the functionality for the parameters within those
commands.

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 46

Figure 3.4 – Validation Tool Object Model

The system is designed to be flexible and extensible, as the research reviewed showed
that these type of network device languages are constantly changing [75].

Taken from the Cisco documentation, the definitions of extended ACLs, based on
the IP Protocol field, are shown in listings 3.5 - 3.9. These were used to design the
grammer of the ’Extended ACL’ class.

Listing 3.5 – Cisco extended IP ACL access-list command definition [92]

access-list access-list-number [dynamic dynamic-name [timeout minutes]] {deny | permit

} protocol source source-wildcard destination destination-wildcard [precedence

precedence] [tos tos] [log | log-input] [time-range time-range-name] [fragments]

Listing 3.6 – Cisco extended ICMP ACL access-list command definition [92]

access-list access-list-number [dynamic dynamic-name [timeout minutes]] {deny | permit

} icmp source source-wildcard destination destination-wildcard [icmp-type [icmp-

code] | icmp-message] [precedence precedence] [tos tos] [log | log-input] [time-

range time-range-name] [fragments]

Listing 3.7 – Cisco extended IGMP ACL access-list command definition [92]

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 47

access-list access-list-number [dynamic dynamic-name [timeout minutes]] {deny | permit

} igmp source source-wildcard destination destination-wildcard [igmp-type] [

precedence precedence] [tos tos] [log | log-input] [time-range time-range-name] [

fragments]

Listing 3.8 – Cisco extended TCP ACL access-list command definition [92]

access-list access-list-number [dynamic dynamic-name [timeout minutes]] {deny | permit

} tcp source source-wildcard [operator [port]] destination destination-wildcard [

operator [port]] [established] [precedence precedence] [tos tos] [log | log-input]

[time-range time-range-name] [fragments]

Listing 3.9 – Cisco extended UDP ACL access-list command definition [92]

access-list access-list-number [dynamic dynamic-name [timeout minutes]] {deny | permit

} udp source source-wildcard [operator [port]] destination destination-wildcard [

operator [port]] [precedence precedence] [tos tos] [log | log-input] [time-range

time-range-name] [fragments]

This component also should keep track of errors found in the configuration and write
these out to an error log file, or display an error report back to the command line if
the -q quiet parameter was specified. If the output is to an error log file, and the -v
verbose flag was set, then display a detailed error report, including a description of
the error, the configuration line, and the field the error was detected in highlighted
underneath - using the ’’̂ symbol. This is similar to the ACL error reporting that the
Cisco command line produces.

3.3.6 Intermediate Code Generation and Optimization

This component creates the internal representation of the configuration to be output.
In the case of ACLs this is a filtering rule set, containing a number of filter rules rep-
resenting the ACL lines. This code stage is only necessary in the validation tools case,
as the output configuration could be the same as the input configuration if no errors
are found. if some configuration optimisation was to be done it would be in this
component. The Cisco device OSs sometimes store the configurations in a slightly
different manor to how they were input through the CLI, such as changing wildcard
masks to shorthand keywords (192.168.1.1 0.0.0.0 to ’host’ 192.168.1.1). As a future
enhancement, this type of optimisation could be performed here for completeness.

3.3.7 Output Configuration Generation

The output configuration component generates the valid configuration, ready to be
deployed on a device, or imported into the framework.

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 48

3.4 Evaluation Tool Design

An evaluation tool was designed create experimental test data files for the validation
tool. Each file would contain ACL rule sets. A GUI was specified, allowing the user
to select a range of ACL rule set sizes, number of errors in each rule set, and the type
of rule set to create. The rule sets can range from 100 rules up to 2 million rules.
The rule set files would contain rules which would be created automatically by the
evaluation tool, with random valid values. The errors would be automatically created
in random parts of the rules, and could be specified as a percentage of the total rules
in a rule set. The types of ACL rules sets would be standard, extended, named, or a
random mixture of different types in a test file.

The operational process would consist of firstly creating the rules, as described above,
and then running experiments on the created files. The experiments, would consist
of the user selecting some of the automatically generated test files, and specifying a
number of runs that would take place for each file. The tool would then run the vali-
dation tool, with each specified file, a number of times, while recording performance
metricsm such as time taken to process each file. These metrics would be collected
and averaged, and an output file created for each experiment. The process is shown
in Figure 3.5.

Figure 3.5 – CRIPE evaluation tool - generates synthetic ACLs, and runs CRIP tool

3.5 Design Conclusions

An overview for a simple framework to integrate existing policy-based management
systems, with a central XML-based modeling language, is proposed. An XML-based
model would be open rather than the closed models such as the Cisco, or Algosec
systems are based on. The framework would be based on abstracting the network de-
vice configurations, into XML-based language descriptions. The XML-based Netconf
protocol could possibly be used as the language, which would provide retrieval and

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 49

deployment functionality. This type of policy description language may not be pow-
erful enough to describe entire security policies however, such as user authentication
and access control policies.

The validation tool was designed to integrate into the proposed framework, and
compliment other existing tools. It has been designed with a pragmatic outlook,
catering for the needs of the network and security administrator. The modularity
of the design is important, due to the fast changing nature of the network device
languages being processed. A flexible tool was designed, due to the possible needs
of different types of users. A low level scriptable text based interface is provided for
administrators, but the tool could interface with GUI applications for less experienced
users. The tool was designed to support the administrator, by allowing them to use
the languages and tools they prefer, and not introducing new untrusted languages or
levels of abstraction. The CLI was left as the main interface, allowing scripting of the
tool, and combination with other tools.

R.J. Macfarlane, MSc Advanced Networking, 2009 3 Design 50

Chapter 4
Implementation

4.1 Introduction

This chapter describes the implementation of the Cisco Router IOS ACL Parser and
validation tool, CRIP, from the design in chapter 3. CRIP was designed as a tool
to assist the network administrator when creating Cisco ACL policies. A prototype
system was developed, implementing the majority of the design from Section 3.3.
The resulting tool was fully tested through the CLI, as well as from custom Web and
Windows GUI-based test applications.

The second part of the chapter details the implementation of a performance evalua-
tion harness application which has been called CRIPE. The CRIPE tool can be used
to create various input files to use with the CRIP tool. The evaluation application can
also automate the process of running the CRIP tool with a number of different input
files, over a number of runs, to collect performance metric data.

To create the applications described in this chapter, several resources were used.
The IDE used was Microsoft Visual Studio 2009 - Professional Edition. The main
programming language used was Microsoft Visual C# 2008, along with the .NET
Runtime Framework - Version 3.5 SP1. Editing and working with test data was done
mostly with a Windows version of the vi editor - vim. Also some Windows versions
of unix command line utilities - find, grep, diff and tail were used. These were
extremely useful in manipulating configuration and error output files.

The use of the C# programming language, with the .NET runtime environment pro-
vides an extremely powerful object oriented platform. This provided rapid imple-
mentation of both the tool and the GUI test applications. Another major benefit
was access to many object libraries for access to functionality such as windows GUI
handling, file handling, string handling, and regular expressions.

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 51

Figure 4.1 – CRIP Tool Implementation

4.2 CRIP Tool Implementation

The tool was implemented as a C# console application, to provide a CLI interface,
but the main validation and parsing functionality was encapsulated in C# classes.
This meant the methods of the classes could be utilised directly by Windows or Web
applications, if a GUI was required.

4.2.1 Interface

The interface described in section 3.3.2 was implemented using some code to parse
the CLI arguments. A snippet of the code is shown in listing 4.1. The static Split()

method of the Regex, regular expression class, is used to split each argument into
parts. This uses the regular expression capabilities provided by .NET, from the
System.Text.RegularExpressions library. Depending on whether an argument is a
parameter or a value, the switch statement either stores the parameter, or stores the
value if the previous argument was a parameter, or stores the previous boolean pa-
rameter with the value ’true’.

Listing 4.1 – CRIP tool argument parsing code snippet, and the use of the regular ex-
pressions library

1 Using System.Text.RegularExpressions

2 ...

3 // Parse Arguments.

4 string[] sParts;

5 foreach (string arg in args)

6 {

7 // Split each cmd line arg.

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 52

8 sParts = Regex.Split(arg, @"^−{1,2}", RegexOptions.IgnoreCase);

9 switch (sParts.Length)

10 {

11 case 1:

12 // A Parameter Value.

13 if (sParam != null)

14 {

15 // Set param value.

16 if (!Params.ContainsKey(sParam))

17 Params.Add(sParam, sParts[0]);

18 sParam = null;

19 }

20 break;

21 case 2:

22 // A Parameter.

23 if (sParam != null)

24 {

25 // Previous param has no value, (bool param) set it

26 // to ’true’

27 if (!Params.ContainsKey(sParam))

28 Params.Add(sParam, "true");
29 }

30 sParam = sParts[1];

31 break;

32 }

33 }

34 // Previous param has no value, (bool params) set it

35 // to ’true’

36 if (sParam != null)

37 {

38 if (!Params.ContainsKey(sParam))

39 Params.Add(sParam, "true");
40 }

The next code snippet shows the next part of the code, were the console application
is setting the parameters for the CRIP tool, from the parsed list. It simply ignores pa-
rameters which are not implemented yet. Future development should include a help
parameter -h, as well as some additional validation to reject incorrect parameters.

Listing 4.2 – CRIP tool argument parsing code snippet

1 string configFile = "";
2 if (Params.ContainsKey("c"))
3 configFile = Params["c"];
4 else {

5 Console.WriteLine("No fi le to parse . . . ");
6 Environment.Exit(1);

7 }

8 bool bVerbose = false;

9 if (Params.ContainsKey("v"))
10 {

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 53

11 if (Params["v"] == "true")
12 bVerbose = true;

13 }

14 bool bQuiet = false;

15 if (Params.ContainsKey("q"))
16 {

17 if (Params["q"] == "true")
18 bQuiet = true;

19 }

The CRIP tool running from the CLI is shown in figure 4.2. The tool has been run
three times, with the -c argument to specify the same input configuration file. The
second time the tool is run with the -v argument for verbose error reporting, and the
third time it is passed the -q for quiet error logging. This is a similar style interface
to typical text-based tools favored by system administrators [43].

Figure 4.2 – CRIP Tool CLI Interface

4.2.2 Lexical Analysis

The lexical analysis module, implemented in the Lexer class, reads the entire con-
figuration file into an array. During initial unit testing, it was shown the array can
cope with over a million lines of configuration, so this is seemed reasonable for the
purpose of validating ACLs. The literature reviewed discusses firewalls with tens of
thousands of rules, but not millions [22, 35]. An alternative would be to read in a
buffer of a maybe a thousand lines at a time, if larger configuration files were to be
processed. The regular expressions RegEx class, Split() method, was used to split the
configuration input file, into configuration lines.

Listing 4.3 – Lexer reading input configuration file into memory code snippet

1 public Lexer(

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 54

2 string configFile // file to process.

3)

4 {

5 if (configFile == null || configFile == "")
6 throw new ArgumentException(" [CiscoConfigParser .Lexer] null or blank

parameter", "configFile");
7 try {

8 // Open input stream.

9 this.config = new StreamReader(configFile);

10 // Read in config, split into lines array.

11 // TBA: "\r\n" is DOS EOL, need to add "\n" Unix, and "\r" Mac

12 this.lines = Regex.Split(config.ReadToEnd(), @"\r\n");

13 linesLength = lines==null ? 0 : lines.Length-1;

14 linesPos = -1;

15 // Close input stream

16 config.Close();

17 }

18 }

Lexical analysis removes any whitespace, and comments from the input configuration
lines as described in design Section 3.3.4. As specified, the configuration line returned
to the Parser module is also converted to lower case. Listing 4.4 shows the regular
expressions used to match comment lines and white space lines, and the code used
to return a configuration line from the cached input configuration file.

Listing 4.4 – Lexer returning a configuration line code snippet

1 // Regex Patterns.

2 const string COMMENTLINE = @"^\s∗!.∗$";
3 const string WHITESPACELINE = @"^\s∗$";
4 ...

5 public string ReadLine()

6 {

7 string line;

8

9 if (lines.Length == 0)

10 return null; // no lines.

11 if (linesPos == linesLength)

12 return null; // end of config.

13 // return next config line.

14 while (++linesPos < linesLength)

15 {

16 line = lines[linesPos];

17 // Skip comment lines or empty lines in the input stream.

18 if (Regex.IsMatch(line, COMMENTLINE) | Regex.IsMatch(line, WHITESPACELINE

))

19 continue;

20 else {

21 // remove comments at end of line

22 line = Regex.Replace(line, @"\s!+.∗$", "");

23 // remove whitespace at end of line

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 55

24 //line = Regex.Replace(line, @"\s*$", "");

25 // Pass lowercase config line back to parser.

26 curLine = line.Trim().ToLower();

27 return curLine;

28 }

29 }

30 // no line to return

31 return null;

32 }

Parsing Tokens

The parsing of the tokens was carried out using regular expressions. The IsMatch()

static method of the RegEx class is used to match the token being parsed, against the
regular expression pattern. Listing 4.5 shows the code which parses the IP Protocol
filtering field. The IsMatch method matches the current token against the regular
expression for the protocol, returning a boolean true if there is a match. The static
method is used, as opposed to the overhead of creating an instance of a RegEx object
and using the Match() method.

Listing 4.5 – Lexer returning a configuration line code snippet

1 // protocol 0-255|named protocol

2 const string PROTOCOLS = @"^([01]?[0−9]?[0−9]|2[0−4][0−9]|25[0−5]|ahp|eigrp|
esp|gre|icmp|igmp|ip|ipinip|nos|ospf|pcp|pim|tcp|udp)$";

3 ...

4 private int ParseProtocol(string[] tokens, ref int idx)

5 {

6 idx++; // next token

7 if (idx == tokens.Length)

8 {

9 traceLog.WriteLine("\n[ParseProtocol] % Incomplete Command− Protocol
Expected");

10 errorLog.WriteLine("% Incomplete Command− Protocol Expected", lexer, "EOL
" , bVerbose);

11 return NO_TOKENS;

12 }

13 string protocol = tokens[idx];

14 //

15 // Name or number of an IP Protocol.

16 //

17 if (Regex.IsMatch(protocol, PROTOCOLS))

18 {

19 this.Protocol = protocol;

20 }

21 else

22 {

23 traceLog.WriteLine(" [ACL.ParseProtocol] % Invalid Input Detected: IP
Protocol or <0−255> expected");

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 56

24 errorLog.WriteLine("% Invalid Input Detected: IP Protocol or <0−255>
expected", lexer, protocol, bVerbose);

25 return INVALID;

26 }

27 // Valid Protocol.

28 traceLog.WriteLine(" [ACL.ParseProtocol] valid Protocol : " + protocol);

29 return SUCCESS;

30 }

4.2.3 Syntactic Analysis

The syntactic analysis is implemented mainly in the CiscoIOSACL class. It encapsulates
the functionality for dealing with Cisco ACL commands, within the Cisco IOS. The
ParseCmd() method takes a command line from the calling CiscoIOS.Parse() method
and provides the grammer analysis, for Cisco ACL commands, described in design
Section 3.3.5.

Commands and State

The code snippet shown in 4.6 shows part of the CiscoIOS class Parse() method. On
line 7 the CiscoIOSACL class, GetCmds() method, is called to return a regular expression
string pattern, which is then matched against the current input configuration line, the
’line’ variable. In this way the CiscoIOSACL module can announce which commands it
has functionality to deal with, via the regular expressions patterns shown in Listing
4.7. Other modules can be plugged in by simply adding lines to this Parse() method
to call the GetCmds() methods of the added modules. No commands are hard coded
anywhere using this type of interface. If a new class ’CiscoIOSRouting’, to provide
Cisco IOS Routing command validation, was added - such as suggested in figure 3.4
- another if statement calling CiscoIOSRouting.GetCmds() would simply be added.
In this way classes can be inserted, to add validation of other services such as routing
commands. Modules could be added to provide functionality for all services which
make up the configuration of the OS, thus providing the same functionality as the
proprietary CLI. This was inspired by a technique used for plug-in modules in the
FIRECROCODILE firewall parsing system Lehmann et al. [94].

Listing 4.6 – Cisco IOS Command Parsing code snippet - CiscoIOS.Parse() mothod

1 // Get the next line of the config.

2 while ((line = lexer.ReadLine()) != null)

3 {

4 // Parse IOS commands.

5

6 // Check if class can handle command, if so call handler to Parse cmd line.

7 if (Regex.IsMatch(line, CiscoIOSACL.GetCmds()))

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 57

8 {

9 CiscoIOSACL ACL = new CiscoIOSACL(lexer, errorLog, traceLog, bVerbose);

10 if (ACL.ParseCmd(ref cmdMode) != SUCCESS)

11 iErrors++;

12 }

13 else {

14 // Command not implemented.

15 errorLog.WriteLine("%UNKNOWNCOMMAND", lexer, bVerbose);

16 iErrors++;

17 }

18 iLinesParsed++;

19 }

Listing 4.7 – Cisco IOS Command Parsing code snippet - CiscoIOSACL.GetCmds()
method

1 // Commands class can parse.

2 const string ACCESS_LIST = @"^access−l i s t\s+";
3 const string IP_ACCESS_LIST = @"^ip access−l i s t\s+";
4 const string PERMIT = @"^permit\s+";
5 const string DENY = @" d̂eny\s+";
6 const string REMARK = @" r̂emark\s+";
7 const string COMMANDS = ACCESS_LIST+"|"+IP_ACCESS_LIST+"|"+PERMIT+"|"+DENY;
8 ...

9 public static string GetCmds()

10 {

11 return COMMANDS;

12 }

ACL Types

The processing of the grammar for the various ACL rule set types is performed
in the CiscoIOSACL class, using the ParseStdACL(), ParseExtACL(), ParseNamedACL()

methods. These methods deal with the rule set header data, such as ACL number
or name. The rules are then parsed using shared functionality, implemented in the
StdACLRule and ExtACLRule ACL modules. Named ACLs can use either function-
ality as they can contain standard or extended rules. The method implementing the
syntactic analysis for a standard rule, calls the methods to parse the appropriate fil-
tering fields: Action, IP Address, IP Wildcard Mask, and Log (defined in Listing 3.4).
The common filtering field modules are shared between the standard and extended
ACL modules. The functionality is encapsulated within the moduels, and no code
should be repeated.

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 58

Error Output Implementation

Error output is implemented in the ErrorLog class. When an error in the configuration
is detected by the parser modules, the ErrorOutput object is used to store information
about the errors. This class is then used to write the error report output file once the
parsing is complete.

Listing 4.8 – Cisco IOS error output generation code snippet - ErrorLog.WriteLine()
method

1 public void WriteLine(string errorMsg, Lexer lexer, string token, bool

bVerbose)

2 {

3 errorCnt++;

4 if (this.bQuiet)

5 return;

6 string sErrorNo = errorCnt.ToString();

7 if (bVerbose == true) {

8 errors.Add(sErrorNo + " . " + "Error at line " + lexer.inputLineNo

+ " − " + errorMsg);

9 errors.Add(lexer.inputLine);

10 if (token == "EOL")

11 errors.Add(padPointer(lexer.line, token));

12 else

13 errors.Add(padPointer(lexer.inputLine, token));

14 }

15 else {

16 errors.Add(sErrorNo + " . " + "\tError at line " + lexer.inputLineNo

+ "\t " + errorMsg

17 + " . ’ " + lexer.inputLine + " ’ ");
18 }

19 }

The PadPointer() method is used if verbose error reporting is required. It generates
a ’’̂ symbol under the position of the token in error. The output for each error is three
lines. The configuration line with the error, the line generated by PadPointer() with
a ’’̂ symbol underneath the token in error, and an error message line detailing the
problem with the token. This gives the administrator a familiar system of describing
errors within ACL rules, as this is similar to the output from Cisco filtering device
CLIs.

Listing 4.9 – Cisco IOS Error output generation code snippet - ErrorLog.PadPointer()
mothod

1 private string padPointer(string line, string token)

2 {

3 string[] tokens = Lexer.GetTokens(line);

4 line = line.ToLower();

5 string s = "^", padded = "^";
6 token.Trim();

7 try {

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 59

8 if (token != "") {

9 if (token == "EOL")
10 padded = s.PadLeft(line.Length + 2);

11 else {

12 int idx = line.IndexOf(token);

13 if (idx < 0)

14 idx = 1;

15 padded = s.PadLeft(1 + idx);

16 }

17 }

18 }

19 catch {}

20 return(padded);

21 }

Figure 4.3 – CRIP Tool ACLs Input Configuration

Figure 4.4 – CRIP Tool Error Output - Error Reporting

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 60

Figure 4.5 – CRIP Tool Error Output - Verbose Error Reporting

Figure 4.6 – CRIP Tool Error Output - Quiet Error Reporting

4.2.4 Intermediate Code Generation and Configuration Output Implementation

Two classes were implemented to store an intermediate representation of the ACL
rules once they have successfully been parsed. These are the PacketFilter and
PacketFilterRule class. The PacketFilter class contains a collection of PacketFilterRule,
implemented as a C#.NET ArrayList. The ArrayList type differs from an array in C#
as the list it contains can vary in size. An array has to redeclare the memory its
using whenever its size changes. The Arraylist can be added to or deleted from
dynamically, and encapsulates the memory reallocation process.

4.3 CRIPE Tool Impementation

An evaluation tool was developed, also with the Visual C# programming language,
running on the .NET runtime framework. The CRIPE evaluation application has a
GUI front-end which can be used to specify a range of rule set generation, testing,
and evaluation parameters can be set. It can generate a selection of configuration
files, for testing the CRIP tool. Synthetic ACLs can be generated using a random

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 61

rule generation algorithm. The rules sets can be created with a certain specified
percentage of rules containing errors for testing purposes. CRIPE can then test the
CRIP tool, by running it with the generated input files, and record metrics to evaluate
the parsing and validation performance.

4.3.1 Evaluation User Interface

The GUI interface to the CRIPE tool is shown in Figure 4.7 and Figure 4.8. The first
screen shot shows the synthetic rule generate interface, and the second shows the
automated testing mechanism.

Figure 4.7 – CRIPE tool GUI - Synthetic rule generation tab

Figure 4.8 – CRIPE tool GUI - CRIP evaluation tab

The random algorithm for generating synthetic rules borrows from the rule grammar

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 62

parsing functionality. Cisco standard and extended rules can be automatically gener-
ated, creating the appropriate commands, keywords, and parameters, and using the
algorithm to assign random values to the tokens which make up the rule. The syn-
thetic rules can also be created with errors randomly assigned to any of the tokens
within the rule.

4.4 Implementation Conclusions

This chapter has shown the successful implementation of the CRIP ACL parsing and
validation tool, as well as the CRIPE tool which provides an evaluation harness for
CRIP. A fully functional tool was developed, using the object oriented C#.NET plat-
form. This was found to have an excellent regular expression code library, which
was used extensively in both tools, although Microsoft’s on-line documentation for
this was a little disappointing. The CRIP tool has been implemented for maximum
code reuse, and extensibility, using modular development techniques. This is impor-
tant when working with languages such as for network device configuration, as they
tend to change rapidly [75]. The CRIP tool can parse and validate all the major ACL
types from the Cisco IOS, which is implemented on filtering routers and firewalls.
The CRIP tool was able to process realistic sized rule sets, and produce useful error
reporting output about problems with the rule set syntax and semantics. The CRIPE
tool can generate configuration files, for testing, which contain synthetic ACLs gen-
erated using a random algorithm. It can then automate evaluation of the CRIP tool,
by running it a configurable number of times and collecting performance metrics.

R.J. Macfarlane, MSc Advanced Networking, 2009 4 Implementation 63

Chapter 5
Evaluation

5.1 Introduction

This chapter provides an analysis of the implementation of the CRIP tool, described
in Chapter 4. A review of the results of a thorough evaluation of the tool is detailed
in Sections 5.2 and 5.3, along with discussion of any highlighted problems. The eval-
uation was carried out using the CRIPE evaluation application, described in Chapter
4, to automate the necessary experiments. The evaluation is split into two parts. First
an evaluation of the CRIP tool’s validation algorithms, for both the OSI layer 3 based
- standard ACL - algorithm, and the layer 3 and 4 based - extended ACL - algorithm.
The second part, is a performance evaluation, based around the timings of the CRIP
tool to process various types of rule sets.

5.2 CRIP Validation Evaluation

5.2.1 Hand Crafted Rules

The CRIP tool’s validation algorithms were evaluated during continual unit test-
ing with hand crafted ACL test configurations, as part of the implementation stage.
Bounds testing was carried out for all tokens being parsed, within all modules which
perform validation. An example of a test file is shown in Listing 5.1. This test con-
figuration file checks the token pattern matching, and validation algorithm, for the
icmp-type and icmp-code filtering fields (see Listing 3.6 for the ICMP extended ACL
definition, and the Cisco documentation for the filtering field valid values [92]).

Listing 5.1 – bounds testing snippet]Hand crafted rules - Cisco extended ACL - icmp-
type [icmp-code] bounds testing snippet

! icmp bounds testing

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 -1

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 256

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 0

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 255

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 64

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.10 5

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 echo

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 echohobbes

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 0 0

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 0 -1

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 0 256

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 1 1

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 8 0 log

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 echo-reply calvin

access-list 169 permit icmp 172.168.1.1 0.0.0.254 host 192.168.1.1 redirect fragments

5.2.2 Synthetic Rules

The following experiments were carried out to evaluate the CRIP tool’s parsing and
validation algorithm. The CRIPE evaluation harness was used to generate various
sizes of ACL rule sets, containing randomly generated synthetic rules. Both standard
ACL rule sets, and extended ACL rule sets were generated to evaluate the parsing
and validation algorithms for the different types of rules. The algorithm for the stan-
dard rules, validates the OSI layer 3 filtering fields, and the extended rule algorithm,
validates OSI layers 3 and 4 filtering fields. Three different types of input rule sets
were used. Rule sets with no errors in any of the rules, rule sets with approximately
50% random errors, and rule sets with 100% errors.

Error Free Rule Sets

The first experiment ran the CRIP tool, automatically from the CRIPE application
with standard ACL rules sets, containing no errors. For each of the rule sets, shown
in Table 5.1 CRIP was run 10 times, and the number of errors reported was averaged.
Listing 5.2 shows a snippet of the synthetic rules used in the experiment. The results
in the Table show, no anomalies were highlighted and the tool correctly parsed and
validated the error free rules sets.

Listing 5.2 – Synthetic Rules generated by CRIPE application - Cisco standard ACL
snippet

access-list 3 deny host 72.25.93.164

access-list 79 deny 80.133.132.6 239.202.200.89 log

access-list 1860 permit host 23.176.205.235

access-list 70 permit 108.60.250.100 202.134.179.29

access-list 1989 permit 246.88.58.74 254.62.161.218 log

access-list 1306 deny any

access-list 1781 deny host 13.150.155.26 log

access-list 54 permit any

access-list 73 deny host 17.63.186.116

access-list 1896 deny host 78.97.240.229 log

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 65

access-list 1344 permit 254.252.250.169 156.185.159.170

Table 5.1 – OSI Layer 3, Standard ACL validation algorithm evaluation - no errors in rule
sets.

Number of rules in rule set
Errors 1,000 25,000 50,000 100,000 250,000

Errors in L3 Synthetic Rules 0 0 0 0 0

Errors reported by CRIP
tool 0 0 0 0 0

A similar experiment was carried out for extended ACL rule sets, and again, the
CRIP tool correctly reported no errors for any of the rule sets. The results are shown
in Table 5.2. The Listing 5.3 shows a snippet of the layer 4, extended ACL, synthetic
rules used in the experiment.

Table 5.2 – OSI Layer 4, Extended ACL validation algorithm evaluation - no errors in
rule sets.

Number of rules
Errors 1,000 25,000 50,000 100,000 250,000

Errors in L4 Synthetic Rules 0 0 0 0 0

Errors reported by CRIP
tool 0 0 0 0 0

Listing 5.3 – Synthetic Rules generated by CRIPE application - Cisco extended ACL
snippet

access-list 109 deny 6 176.143.218.3 160.244.201.144 100.223.55.183 215.78.226.255

access-list 2452 permit tcp 5.215.49.105 164.145.202.25 any

access-list 148 permit tcp any any

access-list 2590 deny tcp any 163.152.227.197 157.194.190.3 established

access-list 168 deny 6 42.80.216.117 100.63.134.193 207.203.237.135 231.157.216.175

access-list 2660 deny 6 any 50.4.26.55 217.87.168.0 gt 26226 dscp 11

access-list 151 deny 161 255.69.83.149 166.167.170.19 host 35.109.5.171

access-list 184 deny tcp host 207.162.53.70 any lt talk tos min-monetary-cost

access-list 102 permit ip any 107.131.230.217 165.41.68.240

access-list 2509 deny udp 19.76.251.123 79.152.141.196 any

access-list 2018 permit udp 3.210.199.72 99.58.206.229 168.22.19.71 139.204.79.94 log-

input

Rule Sets With 50% Errors

The second experiment in this series, involved calling the CRIP tool standard and
extended ACL rules sets, containing approximately 50% errors. Listing 5.4 shows a
snippet of the standard ACL rules used in the experiment, some of the rules having

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 66

random errors. The results in Table 5.3 show, the tool correctly reported the errors in
the rules sets.

Table 5.3 – OSI Layer 3, Standard ACL validation algorithm evaluation - approx. 50%
errors in rule sets.

Number of rules in rule set
Errors 1,000 25,000 50,000 100,000 250,000

Errors in L3 Synthetic Rules 520 12,501 25,069 50,050 125,206

Errors reported by CRIP
tool 520 12,501 25,069 50,050 125,206

Listing 5.4 – Synthetic Rules generated by CRIPE application - Cisco standard ACLs with
50% of rules containing errors

access-list 1703 deny 97.63.75.210 55.176.96.25

access-list 57 deny host 223.44.178.243

access-list 101 deny 193.56.137.216 ! INVALID aclId

access-list 1668 permit any

access-list 60 permit 128.164.21.57

access-list 92 deny 45.208.147.134

access-list XXX permit 39.135.63.76 49.225.135.199 ! INVALID aclId

access-list 46 deny 171.63.182.215 226.209.156.1 XXX ! INVALID log

access-list 1964 XXX host 151.152.128.124 ! INVALID action

access-list 1889 deny host 7.47.45.137

access-list 1542 deny any

Listing 5.5 – CRIP tool error report - Cisco standard ACL with 50% errors

Parsed C:\Users\Rich\Src\Visual Studio\C Sharp\Project\ParserEvaluation\Configs\

AutoGenerated\Std\ACLs_25000Rules_Standard_50PercentErr.txt - 25000 lines, with

12501 errors detected.

1. Error at line 3 - % Invalid Input Detected: IP Protocol or <0-255> expected

access-list 101 deny 193.56.137.216 ! INVALID aclId

^

2. Error at line 7 - % Invalid Numbered ACL Id

access-list XXX permit 39.135.63.76 49.225.135.199 ! INVALID aclId

^

3. Error at line 8 - % Invalid Input Detected: log expected

access-list 46 deny 171.63.182.215 226.209.156.1 XXX ! INVALID log

^

4. Error at line 9 - % Invalid Input Detected: {permit|deny} expected

access-list 1964 XXX host 151.152.128.124 ! INVALID action

^

Layer 4 extended ACL filtering rule sets were also tested against the tool, and again
every error in the input configurations was detected correctly. The results are shown
in Table 5.4 and samples from the input and error report files are shown in Listings
5.6 and 5.7.

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 67

Table 5.4 – OSI Layer 4, Extended ACL validation algorithm evaluation - approx. 50%
errors in rule sets.

Number of rules
Errors 1,000 25,000 50,000 100,000 250,000

Errors in L4 Synthetic Rules 506 12,479 25,169 50,083 124,755

Errors reported by CRIP
tool 506 12,479 25,169 50,083 124,755

Listing 5.6 – Synthetic Rules generated by CRIPE application - Cisco extended ACL with
50% of rules containing errors

access-list 138 deny icmp 213.114.63.17 105.201.61.167 15.70.18.108 120.33.170.131 XXX

! INVALID log

access-list 2168 deny tcp 146.152.31.57 60.199.80.172 198.27.198.34 78.155.112.XXX !

INVALID destIP

access-list 186 permit udp host 41.17.152.166 171.15.59.211 9.74.28.204 neq XXX !

INVALID destPort

access-list 2074 deny tcp host 34.65.198.226 host 132.64.76.17 dscp 49

access-list 2257 permit 46 any any precedence 5

access-list 114 deny 6 55.91.169.220 149.142.127.77 host 90.11.65.124

access-list 141 deny 6 42.55.58.209 87.61.117.121 host 89.158.169.117

access-list 2559 permit tcp any any

access-list 193 permit 6 host 93.25.197.201 host 6.198.201.137 XXX ! INVALID log

access-list 2236 deny tcp 101.102.126.8 238.111.220.33 any

Listing 5.7 – CRIP tool error report - Cisco extended ACL with 50% errors

Parsed C:\Users\Rich\Src\Visual Studio\C Sharp\Project\ParserEvaluation\Configs\

AutoGenerated\Extd\ACLs_25000Rules_Extended_50PercentErr.txt - 25000 lines, with

12479 errors detected.

1. Error at line 1 - % Invalid Input Detected

access-list 138 deny icmp 213.114.63.17 105.201.61.167 15.70.18.108 120.33.170.131 XXX

! INVALID log

^

2. Error at line 2 - % Invalid Input Detected - Wildcard Mask

access-list 2168 deny tcp 146.152.31.57 60.199.80.172 198.27.198.34 78.155.112.XXX !

INVALID destIP

^

3. Error at line 3 - % Invalid Input Detected - Port

access-list 186 permit udp host 41.17.152.166 171.15.59.211 9.74.28.204 neq XXX !

INVALID destPort

^

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 68

Rule Sets With 100% Errors

Similar results were obtained for rule sets with every rule containing an error, and
are shown in Tables 5.5 and 5.6. This shows the tool has correctly detected over a
million and a half, randomly generated, errors in this experiment alone. This may be
partly due to the extremely thorough unit testing procedures, described in Section
5.2.1, which were carried out, in part, during the implementation. The process to
create the synthetic rules is closely based on the CRIP tool’s validation algorithms,
and token regular expression patterns. This testing should possibly be based more
on data, reverse engineered, from actual device OS if possible. this would mean a
detachment from the CRIP tool’s development process, and also from the vendor
documentation which has been shown to be incomplete.

Table 5.5 – OSI Layer 3, Standard ACL validation algorithm evaluation - 100% errors in
rule sets.

Number of rules in rule set
Errors 1,000 25,000 50,000 100,000 250,000

Errors in L3 Synthetic Rules 1,000 25,000 50,000 100,000 250,000

Errors reported by CRIP
tool 1,000 25,000 50,000 100,000 250,000

Table 5.6 – OSI Layer 4, Extended ACL validation algorithm evaluation - 100% errors in
rule sets.

Number of rules
Errors 1,000 25,000 50,000 100,000 250,000

Errors in L4 Synthetic Rules 1,000 25,000 50,000 100,000 250,000

Errors reported by CRIP
tool 1,000 25,000 50,000 100,000 250,000

5.3 Performance Evaluation

For the performance evaluation of the CRIP tool, realistic rule set sizes were used.
From the literature reviewed in Chapter 2 rule sets used in industry range seem to
range from just a few rules, up to tens of thousands of rules [10, 35]. Therefor, files
containing synthetic rules in the quantities shown in Table 5.7, were created using
the CRIPE application’s random rule generation module.

The system used for the performance evaluation experiments was an Intel Core2 Duo
T6400 2GHz processor, with 4GB of RAM, running Windows Vista Home Premium,
with the Microsoft .NET Runtime Framework - Version 3.5 SP1. The performance
metric recorded by the evaluation tool CRIPE, is the time taken to process a rule
set file. The timings were taken with a precision stopwatch, and results shown in

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 69

the following tables have been rounded to three decimal places. All unnecessary
application processes were closed on the system while experiments were taking place.

Table 5.7 – Synthetic rule sets created for performance evaluations.

Number of rules
ACL Type 1,000 25,000 50,000 100,000 250,000

Standard with
no errors Rule Set 1 Rule Set 2 Rule Set 3 Rule Set 4 Rule Set 5

Standard with
50% errors Rule Set 6 Rule Set 7 Rule Set 8 Rule Set 9 Rule Set 10

Standard with
100% errors Rule Set 11 Rule Set 12 Rule Set 13 Rule Set 14 Rule Set 15

Extended with
no errors Rule Set 16 Rule Set 17 Rule Set 18 Rule Set 19 Rule Set 20

Extended with
50% errors Rule Set 21 Rule Set 22 Rule Set 23 Rule Set 24 Rule Set 25

Extended with
100% errors Rule Set 26 Rule Set 27 Rule Set 28 Rule Set 29 Rule Set 30

Baseline Performance

Quiet error reporting mode was used as a base line, to compare other results against.
The Quiet reporting option -q, when passed to the CRIP tool, results in no output
files being produced The number of rules found to have errors is reported to the
CLI, but no error report file is created. This should, in theory, should return the best
performance results. Two different input rule set types were evaluated: Rule Sets 1-5
Standard ACLs with no errors, and Rule Sets 26-30 Extended ACLs with 100% errors.
The experimental conditions were the 5 different sizes of the rule sets with numbers
of rules ranging from 1,000 to 250,000. The time to process metric was recorded for 5

separate runs, and an average calculated.

Table 5.8 – Average processing time for OSI Layer 3, Standard ACL rules no errors in
rule sets - quiet reporting.

Number of rules
1,000 25,000 50,000 100,000 250,000

Standard ACL
No Errors 0.040 0.987 2.306 4.493 10.860

Extended ACLs
100% Errors 0.736 17.999 37.229 71.408 182.197

The results, shown in Table 5.8, show linear growth in the average time taken to
process the rule sets, as the size increases. This is shown in Figure 5.1. There is no
overhead for writing the error report to the output file in this experiment, so other
experiments carried out on this system should have increased processing times on the
standard ACL with no errors results. If the average time to process a single record

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 70

is calculated from the Standard ACL base line timings, it is on average 0.0000429

seconds. This can be used to compare other results against.

Figure 5.1 – Average Processing Time for CRIP tool, in quiet mode.

Standard vs Extended Algorithm Performance

Performance testing of the Standard ACL validation algorithm was carried out, for
verbose error logging, using data sets 1-15. This is compared against the base line
standard ACL timings discussed previously, in Table 5.9. As suspected, the base line
timings from the quiet mode experiment, are the fastest.

Table 5.9 – Average processing time for OSI Layer 3, Standard ACL rules in rule sets -
verbose error reporting.

Number of rules
1,000 25,000 50,000 100,000 250,000

Standard ACL
No Errors
Base Line 0.040 0.987 2.306 4.493 10.860

Standard ACL
No Errors 0.090 2.337 2.930 7.267 16.961

Standard ACL
50% Errors 0.539 12.825 27.708 55.929 129.287

StandardACLs
100% Errors 1.006 24.029 51.558 99.647 265.085

A direct comparison can be made between these timings and the verbose logging
with no errors and the same rule set sizes (rule sets 1-5 in row 2 of the table). The
average time to process a single record, for the standard ACLs with verbose logging

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 71

experiment, is 0.000078, 0.000532, and 0.001012, for no errors, 50% errors, and 100%
errors respectively. This is compared to the average average of 0.0000429 seconds for
the base line experiment.

The same linear growth as the base line experiment for the average time taken to
process the rule sets, as the size increases, is shown in Figure 5.2.

Figure 5.2 – Average Processing Time for CRIP tool, Standard ACLs - verbose error
reporting.

Performance testing of the Extended ACL validation algorithm, was also carried out
similarly for verbose error logging. This time data sets 16-30 are being used to eval-
uate the CRIP tools. This is again compared against the base line standard, but this
time the extended ACL timings base line. The results are shown in Table 5.10. In this
experiment a direct comparison can be made between the rule sets with 100% errors
and the 100% error base line reuslts (first and last row o fthe table). These results are
very similar, more so than the standard ACLs base line comparison.

The average time to process a single record, for the extended ACLs with verbose
logging experiment, is 0.00016312, 0.000458482, and 0.00075855, for no errors, 50%
errors, and 100% errors respectively. When compared to the standard ACL average
times to process a single rule, we notice that for rule sets with no erros the average
timing is smaller for the extended rule algorithm, whereas the average time is larger
for the rule sets with 100% errors. This difference in processing speed of the algo-
rithms can be seen clearly if the rule sets with 100% errors are compared in Figures
5.2 and 5.3 The standard algorithm takes over 500 seconds to process 500,000 ACLs,
and the extended algorithm only takes 364 seconds.

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 72

Table 5.10 – Average processing time for OSI Layer 4, Extended ACL rules in rule sets -
verbose error reporting.

Number of rules
1,000 25,000 50,000 100,000 250,000

Extended ACLs
100% Errors

Base Line 0.736 17.999 37.229 71.408 182.197

Extended ACL
No Errors 0.175 3.947 7.947 16.025 39.925

Extended ACL
50% Errors 0.484 10.847 22.210 48.337 104.868

Extended ACL
100% Errors 0.753 18.392 40.988 76.974 185.907

Figure 5.3 – Average Processing Time for CRIP tool, Extended ACLs - verbose error
reporting.

5.4 Evaluation Conclusions

This chapter provides an evaluation of the implementation of the CRIP ACL valida-
tion tool. The tool was evaluated for the completeness of its validation algorithms.
This was carried in thoroughly, using a range of different experiments for both the
OSI layer 3 standard ACLs, and for layer 3 and 4 extended ACLs. The tool was also
evaluated using a range of different experiments to record the tools performance.
The metric used to record the tools performance was an accurate timing of the length
of time taken to process a rule set.

The validation algorithm evaluation was inconclusive. The results show the tool per-
forms well against the test data used, but these synthetic ACL rule sets were created

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 73

based around the same Cisco documentation that the validation algorithms are based
on. The test data should perhaps be based more on real firewall configurations, from
on-line network devices. Or the synthetic rule creation algorithm should be based
around reverse engineering the command definitions from the actual devices. This
would mean a detachment from the development process, and also from the vendor
documentation, which has been shown to be flawed.

The performance results were all linear when the results were plotted on graphs.
This seems ideal for the performance of a tool like this, and larger rule sets than
would probably ever occur in real networks were used. Some interesting results
were highlighted when comparing the standard ACL and extended ACL validation
algorithms performances. The standard algorithm executes less lines of code, and
always validates less tokens, than the extended algorithm, due to the rules having
less filtering fields. The results showed as the rules sets got larger, the extended
algorithm consistently outperformed the standard algorithm.

The Performance from the tool was shown to be usable for realistic sized rule sets.
The slowest of the algorithms, with 100% errors in the rule sets can still validate 1,000

ACL rules in around a second.

R.J. Macfarlane, MSc Advanced Networking, 2009 5 Evaluation 74

Chapter 6
Conclusion

6.1 Aim and Objectives

The aim of this thesis is to produce a tool which can parse and validate firewall rule
sets. To implement and evaluate it with realistic test data. Objectives to support the
overall aim of the thesis are as follows:

1. Investigate and review the extensive literature in the fields of policy-based se-
curity and in particular firewall policy management.

2. Design a tool to perform the non-trivial task of off-line firewall policy valida-
tion, based around firewall device configurations.

3. Implement and test the system, using appropriate tools to realise the design
sepecifications.

4. Evaluate the performance of the prototype system, validating its performance
using experiments with realistic data sets.

5. Investigate and propose a framework, which the policy validation tool could
integrate with, to support system administrators in the management of firewall
policies.

6.1.1 Objective 1. Investigate and review the extensive literature in the fields of policy-
based security and in particular firewall policy management

The first objective was accomplished and reported on in Chapter 2. Literature was
reviewed in the areas of network security, security policies, firewall policies, and
policy modeling systems. The different types, and abstractions, of security polices
were explored through a wide range of literature. A comprehensive study of firewall
policy based systems was then undertaken, comparing these systems across various
attributes which were potentially useful in the development of the validation tool. A
novel taxonomy of these systems, was produced, and is reported on in Chapter 2.

R.J. Macfarlane, MSc Advanced Networking, 2009 6 Conclusion 75

From the research reviewed, it was recognised that security policies are the central
pillar in network security, and that security should be built around policies. High
level policies are created by management, in coordination with senior administrators,
and are normally written in a natural language. These policies are then mapped to the
low level technical policies, such as firewall policies, which network devices enforce.
The mapping of high level policies to low level device configurations is typically
performed by network administrators, and is normally a manual process. This task
is complex and error prone as there is a large conceptual gap between the high level
policies and the low level policies. Low level firewall policies are complex, even
if only containing small numbers of rules. Lots of research details the complexity
problems with ’first match’ rule sets, which depend on the ordering of the rules.
These complexities mean low level firewall policies are difficult to understand, by
simply reviewing the rules, due to the interactions between the rules. Larger rule sets,
or if rule sets are deployed on multiple firewalls and filtering devices, make for even
more complexity. Many systems have been proposed to help with the understanding
and management of these policies.

Policy-based systems can be categorised as high level abstract policy languages,
query-based rule set testing systems, and other firewall rule set auditing systems.
High level languages, are used to create an abstract layer of policy between the high
level policies and low level firewall configurations. Many high level language sys-
tems were developed before it was realised that system administrators did not favor
these abstract languages. System administrators seem to prefer to work in the lowest
possible language, and at the lowest level. The tools at this level have no layers of
abstraction and tend to be faster and more robust, so they are trusted more. This
makes a lot on sense, as administrators have to rely on these tools to work correctly
to be able to fix problems quickly. Some of these abstract policy languages actually
needed specialists to configure them. Some of the languages also have limitations
with the features they support. Many of these systems are a clean-slate approach,
using new high level languages and abstract models. These are detached from the
network management of most organisations. Also, no high level language has been
created which seems to have been used by more than a single research group. No
common language or model seems to exist for this extra layer of policy abstraction.

Other auditing tools were reviewed, including query-based analysis systems some
of which have been produced specifically for firewall auditing. They can audit the
firewall rule set by simulating network traffic passing through the firewall. The ad-
ministrator can enter queries and the system provides an answer showing which
traffic can get where. Similar problems were encountered with these systems, as
administrators testing the system had to learn the query language which was not
popular. A typical reaction to this was to add a GUI to the system, but this is not
always helpful, especially when developing tools for administrators. GUIs generally

R.J. Macfarlane, MSc Advanced Networking, 2009 6 Conclusion 76

seem to be good for less experienced users, or for visualising complex parts of data
sets, but textual CLIs seem to be preferred by administrators for most jobs.

Some systems overcame the problems of abstract language based systems and mod-
els, by hiding these from the user. The model would be created from low level device
configurations automatically. These are the types of systems which have been suc-
cessfully commercialised. Other off-line auditing systems were reviewed, including
rule set anomaly detection systems, and visualisation systems for firewall policies,
and high level policy inferencing systems. Reverse engineering a high level security
policy into a natural language which management can read, is an interesting research
area. Not very much research has been carried out in this field, probably as it tends
to be built on top of other research into policy modeling.

From the review, it was highlighted that off-line configuration analysis is the main
area were these systems have become commercialised, such as automated firewall
configuration analysis, and routing configuration analysis. These passive systems
have advantages over active testing systems, such as vulnerability testing tools or
penetration testing tools, as they can be performed before the policies are deployed.
With active testing, once a security flaw is found the network is vulnerable till a
suitable patch can be deployed.

6.1.2 Objective 2. Design a tool to perform the non-trivial task of off-line firewall policy
validation, based around firewall device configurations

This objective was met by producing a design for the CRIP tool, and this is detailed in
Chapter 3. Background research in system administration tool design, firewalls, and
firewall policy analysis systems helped accomplish this objective, as well as previous
knowledge of systems analysis and design methods.

The tool was loosely based on the structure of a typical compiler. It first performs
lexical analysis, than syntactic analysis, reporting any errors to the user.

The CRIP tool was designed generally with extensibility in mind. By adhering to
modular object oriented design techniques, there should be maximum encapsulation
of functionality, and code reuse. This is especially important when working with
network device configuration languages. These languages have a tendency to change,
as new features are added, or devices are upgraded.

The validation tool was designed to integrate into the proposed framework, and
compliment other existing tools. This is important as system administrators tend to
use tools in this way. Combining tools together to run batch jobs, and to build their
own sets of utilities using scripts.

The tool was designed to be flexible, as system administration tools tend to be used

R.J. Macfarlane, MSc Advanced Networking, 2009 6 Conclusion 77

by different types of users. A text based scriptable interface is provided for admin-
istrators, but the tool could also interface with GUI applications for less experienced
users. This allows the system administrator to use the low level vendor specific ACL
language they typically prefer, and intentionally not introducing new abstract, un-
trusted languages.

6.1.3 Objective 3. Implement and test the system, using appropriate tools to realise the
design specifications.

Objective 4 was accomplished, and is described in Chapter 4. It describes the success-
ful implementation of the Cisco Router IOS ACL Parser and validation tool, CRIP.
The tool was implemented following the design in chapter 3. A fully working tool
was created, to assist the network administrator when creating Cisco ACL policies.

The tool was developed using the object oriented C#.NET platform, which allowed a
structured approach to the coding. The .NET framework provides a large variety of
code libraries which were used during the implementation, such as the excellent reg-
ular expressions library. There was an issue with Microsoft’s documentation for this
functionality, as it was quite poor, but some other excellent resources were available
for regular expressions. An object oriented implementetion was attempted, based on
the object oriented design. This was only a partial success, due to shortcuts taken
with the prototype, as some of the class hierarchy was implemented in a single class.
The vi editor was used extensively as it has built in regular expression functionality,
which was useful for testing some patterns as they were developed. Also on-line
resources are available for this. The editor was also used for manipulation of the
automatically generated ACL configuration files. A task such as finding how many
rules with errors had actually been created would have been difficult without it. A
simple search for the ’! INVALID’ comment and then print the number of instances
in a file, is easy in vi, but other simple text editors do not have such functionality.

The CRIP tool was created with a CLI, which accepts a small number of input argu-
ments. This interface was not fully implemented. Just enough to evaluate the tool
was created. For example, the -h help function was not created, which is poor, as this
is the first thing a user would need.

The CRIP tool can successfully parse and validate the main types of rule sets used
on Cisco’s filtering devices, and firewalls. It was able to process realistic sized con-
figuration files, and can cope easily with processing very large firewall rule sets. It
produces different types of error reports to the user, depending on how much detail
is required on the validation errors found in individual rules.

The tool currently does not perform all of its lexical analysis using regular expres-
sions. In a few places where it was significantly easier to use a conditional statement,

R.J. Macfarlane, MSc Advanced Networking, 2009 6 Conclusion 78

rather than creating and testing a complex regular expression, this was done.

The resulting tool was fully tested, using a hand crafted test file for each of the
objects which contained validation processing. This was done via the tools CLI, and
also from custom Web and Windows GUI-based test applications. A basic windows
GUI was used to perform unit testing on the tool as each component was finished. A
web application was created and used to allow students at the university to use the
tool as part of Cisco ACL tutorials. This provided some feedback on small problems
with the validation algorithms, which were corrected.

The second part of the implementation was the creation of the CRIPE performance
evaluation application. The CRIPE tool was developed to create evaluation test data
to use with the CRIP tool, during its evaluation. The application can generate config-
uration files, which contain synthetic ACL rule sets, generated using a novel random
algorithm. C# was an excellent tool to create the GUI based application with. It
was extremely quick to pick up the tools needed to create basic Windows applica-
tions. A very basic web application was also created, with no previous knowledge of
ASP.NET, just using a single book chapter as reference.

The CRIPE application can then automate the process of running the CRIP tool for
evaluation purposes. It can generate a configurable set of evaluation runs of the CRIP
tool, while collecting performance metrics about the runs. It automates the process
of running the CRIP tool with a number of the different synthetic test configuration
files. An average is generated across the performance metrics recorded during the
multiple runs.

The tool has a flexible design and contains comprehensive functionality, as opposed
to some of the other tools which perform across multiple vendor languages, but do
not implement a deep range of options for any of the languages. It compliments ex-
isting systems, such as policy compliance tools, and abstract policy analysis systems.

An issue highlighted during the implementation phase, was incomplete Cisco doc-
umentation on their configuration language. Several instances of incomplete docu-
mentation was found within the small number of ACL commands that were used in
the tool. Since the tool has been implemented other non-documented functionality
has also been found. For example, the keywords for the fin, psh, syn, urg flags are
not dealt with by the tool currently, as they are not in any of Cisco’s documentation.

6.1.4 Objective 4. Evaluate the performance of the prototype system, validating its per-
formance using experiments with realistic data sets

Chapter 5 reports on Objective 4. An evaluation of the implementation of the CRIP
validation tool. The tool was evaluated in two different ways. Firstly the different
validation algorithms were evaluated using a simple, but thorough method. This was

R.J. Macfarlane, MSc Advanced Networking, 2009 6 Conclusion 79

done by using a large range of different experiments, where the CRIP tool is required
to validate both OSI layer 3 standard ACLs, and for layer 3 and 4 extended ACLs.
Secondly the performance of the tool was evaluated using realistic sized rule sets. For
both experiments, synthetic rules were created by a custom evaluation application,
which was created for this purpose.

The validation algorithm evaluation seemed a success, as the tool had a perfect record
of identifying errors in the test files. Millions of errors were correctly detected, and
none missed. The results show the tool performs well against the test data used, but
these synthetic ACL rule sets were created based around the same Cisco documen-
tation that the validation algorithms are based on. Real rule sets should be used to
get a better idea of the completeness of the algorithms. Or synthetic rules could be
generated from the device command definitions some how. Perhaps some type of
capture tool could automatically interrogate a device’s CLI and the commands and
parameters could be reverse engineered from the device. This may produce a more
accurate algorithm by which to generate the synthetic rules.

The validation algorithms have been evaluated, and seem to work well. There is
however a major drawback to these algorithms being hard coded, in isolation, inside
the tool. When Cisco change the syntax of ACLs functionality, the algorithms are
immediately out of date. A process of matching the algorithm automatically with a
copy of the appropriate Cisco OS could solve this problem, but this would require
creating such a tool.

The tool was also evaluated using a range of different experiments to record the
tools performance. The metric used to record the tools performance was an accurate
timing of the length of time taken to process a rule set.

Many performance evaluation experiments were carried out, with different types and
sizes of ACL configuration fields. The timing performance results were all linear as
the rule sets got bigger in size. Very large rule sets were used and the linear trend
continued, until the system ran out of memory when creating the storage the tool
uses. This was trying to process several million rules, and this is larger rule set than
would ever be used in a real network. The linear performance results are ideal, and
so no optimisation of the tool was deemed unnecessary.

Interesting results were highlighted when comparing the standard ACL and extended
ACL validation algorithms performances. The standard algorithm, would be ex-
pected to be the quicker to run, as it executes many less lines of code, and always
validates less tokens. This is due to the standard ACL rules being based around
only OSI layer 3 header fields, and not layer 4 fields like the extended can use. The
standard rules start off quicker to process than the extended rules, but then at larger
rules sets, the extended are significatly faster to process. The results showed as the
rules sets got larger, the extended algorithm consistently outperformed the standard

R.J. Macfarlane, MSc Advanced Networking, 2009 6 Conclusion 80

algorithm.

The Performance from the tool was shown to be usable for realistic sized rule sets.
The slowest of the algortihms, with 100% errors in the rule sets can still validate 1,000

ACL rules in around a second, or 50,000 rules in just under a minute.

6.1.5 Objective 5. Investigate and propose a framework, which the policy validation
tool could integrate with, to support system administrators in the management of
firewall policies

An overview of a simple framework to integrate existing policy-based management
systems and the CRIP tool, with a central XML-based modeling language, is pro-
posed. An XML-based model would be open rather than the closed models such as
with commercial systems such as Cisco, or Algosec are based on. The framework
would be based on abstracting the network device configurations, into XML-based
language descriptions. The XML-based Netconf protocol could possibly be used as
the language, which would provide retrieval and deployment functionality.

This type of policy description language may not be powerful enough to describe en-
tire security policies however, such as user authentication and access control policies.
Other frameworks have been suggested for this overall security policy modeling, and
a simple configuration based model may prove to be more achievable. The frame-
works proposed to encompass all security policies tend to be left as theory, and never
implemented.

6.2 Future Work

6.2.1 XML-Based Framework

There are many research ideas for the an overall policy management framework.
Firstly investigate the Netconf protocol to find out if it can be used as a way of
describing configurations abstractly. Whether or not the language it uses can be
parsed and used by other systems, such as would be necessary to create auditing
or simulation systems on top of it. Investigating the retrieval and deployment of
configurations with Netconf, such as which vendors, and on which of their platforms,
have the protocol been implemented on.

Complete device configurations could be modeled in the XML-based language, or
at least enough to be able to perform almost all configuration management on top
of the model, similar to Caldwell’s EDGE system, but using an XML database of
configuration information. If this could be realised, a full configuration management
system could be integrated with the model, as well as a network device simulator

R.J. Macfarlane, MSc Advanced Networking, 2009 6 Conclusion 81

system, and auditing systems.

6.2.2 CRIP Tool

A usability experiment, based around networking students using the tool for various
tutorials was planned, but was not carried out. This would provide valuable informa-
tion on the implementation of the tool, and its usefulness in a teaching environment.

Modules could be added to the tool to validate PIX and ASA firewall specific syntax,
and evaluations between the different algorithms used.

A module could be added, or perhaps a separate tool could be integrated, to take
valid configurations and abstract an XML-based policy specification of firewall rule
sets.

R.J. Macfarlane, MSc Advanced Networking, 2009 6 Conclusion 82

Listings

1.1 Cisco Extended ACL Example . 5

2.1 NPT Language Code Snippet [49] . 18

2.2 MDL Code Snippet [2] . 19

2.3 Code Snippet of an HTTP Policy [35] . 20

2.4 Format of filtering rules, used as input to the FPA tool [5] 29

3.1 Cisco Named ACL Example . 43

3.2 Cisco ACL access-list (IP extended) command definition [92] 44

3.3 Cisco Extended ACL Example . 44

3.4 Cisco ACL access-list (IP standard) command definition [92] 46

3.5 Cisco extended IP ACL access-list command definition [92] 47

3.6 Cisco extended ICMP ACL access-list command definition [92] 47

3.7 Cisco extended IGMP ACL access-list command definition [92] 47

3.8 Cisco extended TCP ACL access-list command definition [92] 48

3.9 Cisco extended UDP ACL access-list command definition [92] 48

4.1 CRIP tool argument parsing code snippet, and the use of the regular
expressions library . 52

4.2 CRIP tool argument parsing code snippet 53

4.3 Lexer reading input configuration file into memory code snippet 54

4.4 Lexer returning a configuration line code snippet 55

4.5 Lexer returning a configuration line code snippet 56

4.6 Cisco IOS Command Parsing code snippet - CiscoIOS.Parse() mothod . 57

4.7 Cisco IOS Command Parsing code snippet - CiscoIOSACL.GetCmds()
method . 58

R.J. Macfarlane, MSc Advanced Networking, 2009 LISTINGS 83

4.8 Cisco IOS error output generation code snippet - ErrorLog.WriteLine()
method . 59

4.9 Cisco IOS Error output generation code snippet - ErrorLog.PadPointer()
mothod . 59

5.1 Hand crafted rules - Cisco extended ACL - icmp-type [icmp-code 64

5.2 Synthetic Rules generated by CRIPE application - Cisco standard ACL
snippet . 65

5.3 Synthetic Rules generated by CRIPE application - Cisco extended ACL
snippet . 66

5.4 Synthetic Rules generated by CRIPE application - Cisco standard ACLs
with 50% of rules containing errors . 67

5.5 CRIP tool error report - Cisco standard ACL with 50% errors 67

5.6 Synthetic Rules generated by CRIPE application - Cisco extended ACL
with 50% of rules containing errors . 68

5.7 CRIP tool error report - Cisco extended ACL with 50% errors 68

B.1 CRIP tool CiscoIOS class . 96

B.2 CRIP tool CiscoIOSACL class . 100

R.J. Macfarlane, MSc Advanced Networking, 2009 LISTINGS 84

References

[1] C. System, “Cisco security manager.” [Online]. Available: http://www.cisco.
com/en/US/products/ps6498/index.html

[2] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall manage-
ment toolkit,” IEEE Symposium on Security and Privacy, vol. 0, pp. 17–31, 1999.

[3] A. Mayer, A. Wool, and E. Ziskind, “Offline firewall analysis,” International Jour-
nal of Information Security, vol. 5, no. 3, pp. 125–144, 2006.

[4] E. Al-Shaer and H. Hamed, “Modeling and management of firewall policies,”
IEEE Transactions on Network and Service Management, vol. 1-1, pp. 2–10, 2004.

[5] ——, “Design and implementation of firewall policy advisor tools,” DePaul Uni-
versity, CTI, Tech. Rep., 2002.

[6] BERR, “2008 information security breaches survey.” [Online]. Available:
http://www.berr.gov.uk/files/file45714.pdf

[7] B. Blakley, “The emperor’s old armor,” in Proceedings of the 1996 workshop on New
security paradigms. ACM Press New York, NY, USA, 1996, pp. 2–16.

[8] M. Bishop and S. Peisert, “Your security policy is what,” University of California
at Davis, Tech. Rep., 2006.

[9] T. Wong, “On the usability of firewall configuration,” in Symposium on Usable
Privacy and Security, 2008.

[10] A. Wool, “A quantitative study of firewall configuration errors,” Computer,
vol. 37, no. 6, pp. 62–67, 2004.

[11] B. Fraser, J. P. Aronson, N. Brownlee, and F. Byrum, “Site security handbook
(rfc 2196),” Sep 1997. [Online]. Available: http://www.ietf.org/rfc/rfc2196.txt?
number=2196

[12] A. D. Rubin, D. Geer, and M. J. Ranum, Web Security Sourcebook. Wiley, 1997.

[13] S. Lee, T. Wong, and Kim, “To automate or not to automate: On the complexity
of network configuration,” in IEEE International Conference on Communications
(ICC), 2008, pp. 5726 – 5731.

R.J. Macfarlane, MSc Advanced Networking, 2009 REFERENCES 85

http://www.cisco.com/en/US/products/ps6498/index.html
http://www.cisco.com/en/US/products/ps6498/index.html
http://www.berr.gov.uk/files/file45714.pdf
http://www.ietf.org/rfc/rfc2196.txt?number=2196
http://www.ietf.org/rfc/rfc2196.txt?number=2196

[14] Y. Bhaiji, CCIE Professional Development - Network Security Technologies and Solu-
tions. Cisco Press, 2008.

[15] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miege, “A formal approach
to specify and deploy a network security policy,” in Formal Aspects in Secu-
rity and Trust, ser. IFIP International Federation for Information Processing, vol.
173/2005. Springer Boston, 2004, p. 203Ű218.

[16] T. Corbitt, “Protect your computer system with a security policy,” Management
Services, vol. 46(5), pp. 20–21, 2002. [Online]. Available: http://findarticles.
com/p/articles/mi_qa5428/is_200205/ai_n21313131/pg_2?tag=artBody;col1

[17] C. P. Pfleeger, Security in Computing 4th Edition. Prentice Hall, 2006.

[18] S. Bellovin and W. Cheswick, “Network firewalls,” IEEE Communications Maga-
zine, vol. 32, no. 9, pp. 50–57, 1994.

[19] E. D. Zwicky, S. Cooper, and D. B. Chapman, Building Internet Firewalls,
Second Edition, 2nd ed. O’Reilly Media, Inc., Jun 2000. [Online]. Available:
http://oreilly.com/catalog/9781565928718/index.html

[20] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin, Firewalls and Internet Security:
Repelling the Wiley Hacker, 2nd Edition. Addison-Wesley, Feb 2003.

[21] A. Wool, Packet Filtering and Stateful Firewalls. Wiley, 2006, ch. Firewall Archi-
tectures, p. 526.

[22] C. C. Zhang, M. Winslett, and C. A. Gunter, “On the safety and efficiency of
firewall policy deployment,” Security and Privacy, IEEE Symposium on, vol. 0, pp.
33–50, 2007.

[23] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis engine,” Security
and Privacy, IEEE Symposium on, vol. 0, p. 0177, 2000.

[24] E. Al-Shaer and H. Hamed, “Taxonomy of conflicts in network security policies,”
IEEE Communications Magazine, vol. 44, no. 3, pp. 134– 141, 2006.

[25] F. Cuppens, N. Cuppens-Boulahia, and J. G. Alfaro, “Detection and removal of
firewall misconfiguration,” in Conference On Communication, Network, and Infor-
mation Security (CNIS), 2005, pp. 154–162.

[26] J. D. Guttman, “Rigorous automated network security management,” Interna-
tional Journal of Information Security, vol. 4, pp. 29–48, 2005.

[27] B. Schneier, Secrets and Lies - Digital Security in a Networked World. Wiley, 2000.

[28] D. Danchev, “Building and implementing a successful information security pol-
icy,” online at www.windowsecurity.com, 2003.

R.J. Macfarlane, MSc Advanced Networking, 2009 REFERENCES 86

http://findarticles.com/p/articles/mi_qa5428/is_200205/ai_n21313131/pg_2?tag=artBody;col1
http://findarticles.com/p/articles/mi_qa5428/is_200205/ai_n21313131/pg_2?tag=artBody;col1
http://oreilly.com/catalog/9781565928718/index.html

[29] E. Guttman, L. Leong, and G. Malkin, “Users’ security handbook (rfc 2504),” Feb
1999. [Online]. Available: http://www.ietf.org/rfc/rfc2504.txt?number=2504

[30] P. Samarati and S. C. de Vimercati, “Access control: Policies, models, and mech-
anisms,” Lecture Notes in Computer Science, vol. 2171, pp. 137–196, 2000.

[31] C. Systems, “Cisco safe,” 2009. [Online]. Available: http://www.cisco.com/en/
US/netsol/ns954/index.html

[32] E. M. Madigan, C. Petrulich, and K. Motuk, “The cost of non-compliance: when
policies fail,” in SIGUCCS ’04: Proceedings of the 32nd annual ACM SIGUCCS
conference on User services. New York, NY, USA: ACM, 2004, pp. 47–51.

[33] F. B. Schneider, “Enforceable security policies,” ACM Transactions on Information
and System Security (TISSEC), vol. 3, no. 1, pp. 30–50, 2000.

[34] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and J. Rex-
ford, “The cutting edge of ip router configuration,” in Proceedings of 2nd ACM
Workshop on Hot Topics in Networks (Hotnets-II), 2003.

[35] S. Hinrichs, “Policy-based management: Bridging the gap,” in Computer Security
Applications Conference, Annual, vol. 0. Los Alamitos, CA, USA: IEEE Computer
Society, 1999, pp. 209–218.

[36] E. Al-Shaer and H. Hamed, “Discovery of policy anomalies in distributed fire-
walls,” in Twenty-third AnnualJoint Conference of the IEEE Computer and Communi-
cations Societies, vol. 4, 2004.

[37] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith, “Implementing a dis-
tributed firewall,” in Proceedings of the 7th ACM conference on Computer and com-
munications security. ACM New York, NY, USA, 2000, pp. 190–199.

[38] M. Abrams and D. Bailey, “Abstraction and refinement of layered security pol-
icy,” in Information Security: An Integrated Collection of Essays. IEEE Computer
Society Press, 1995, pp. 126–136.

[39] R. Sandhu, “The typed access matrix model,” in 1992 IEEE Computer Society
Symposium on Research in Security and Privacy, 1992. Proceedings., 1992, pp. 122–
136.

[40] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin, C. Pham, and S. Li, “An
automated framework for validating firewall policy enforcement,” in POLICY
’07: Proceedings of the Eighth IEEE International Workshop on Policies for Distributed
Systems and Networks. Washington, DC, USA: IEEE Computer Society, 2007, pp.
151–160.

[41] NIST, “Generally accepted principles and practices for securing information
technology systems,” NIST, Tech. Rep., 1996.

R.J. Macfarlane, MSc Advanced Networking, 2009 REFERENCES 87

http://www.ietf.org/rfc/rfc2504.txt?number=2504
http://www.cisco.com/en/US/netsol/ns954/index.html
http://www.cisco.com/en/US/netsol/ns954/index.html

[42] ——, “Special publication 900-64 - security considerations in the system devel-
opment life cycle,” NIST, Tech. Rep., 2008.

[43] E. M. Haber and J. Bailey, “Design guidelines for system administration tools
developed through ethnographic field studies,” in CHIMIT ’07: Proceedings of the
2007 symposium on Computer human interaction for the management of information
technology. New York, NY, USA: ACM, 2007, p. 1.

[44] P. Jaferian, D. Botta, F. Raja, K. Hawkey, and K. Beznosov, “Guidelines for de-
signing it security management tools,” in CHiMiT ’08: Proceedings of the 2nd
ACM Symposium on Computer Human Interaction for Management of Information
Technology. New York, NY, USA: ACM, 2008, pp. 1–10.

[45] V. Tsoumas and T. Tryfonas, “From risk analysis to effective security manage-
ment: towards an automated approach,” Information Management & Computer
Security, vol. 12, pp. 91–101, 2004.

[46] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy speci-
fication language,” in Workshop on Policies for Distributed Systems and Networks,
2001.

[47] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher, “Specifications of a
high-level conflict-free firewall policy language for multi-domain networks,” in
SACMAT ’07: Proceedings of the 12th ACM symposium on Access control models and
technologies. New York, NY, USA: ACM, 2007, pp. 185–194.

[48] V. Zaliva, “Firewall policy modeling, analysis and simulation: a survey,” Source-
Forge, Tech. Rep., 2008.

[49] J. D. Guttman, “Filtering postures: local enforcement for global policies,” vol. 0.
Los Alamitos, CA, USA: IEEE Computer Society, 1997, p. 0120.

[50] ——, “Security goals: Packet trajectories and strand spaces,” Lecture Notes in
Computer Science, pp. 197–261, 2001.

[51] C. Systems, “Cisco secure policy manager.” [Online]. Avail-
able: http://www.cisco.com/en/US/products/sw/secursw/ps2133/prod_
technical_reference09186a00800a9ebc.html

[52] T. Uribe and S. Cheung, “Automatic analysis of firewall and network intrusion
detection system configurations,” Journal of Computer Security, vol. 15, no. 6, pp.
691–715, 2007.

[53] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg, S. Rao, and
W. Aiello, “Configuration management at massive scale: system design and
experience,” in 2007 USENIX Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2007, pp. 1–14.

R.J. Macfarlane, MSc Advanced Networking, 2009 REFERENCES 88

http://www.cisco.com/en/US/products/sw/secursw/ps2133/prod_technical_reference09186a00800a9ebc.html
http://www.cisco.com/en/US/products/sw/secursw/ps2133/prod_technical_reference09186a00800a9ebc.html

[54] S. Pozo, R. Ceballos, and R. M. Gasca, “Afpl, an abstract language model for
firewall acls,” in ICCSA ’08: Proceedings of the international conference on Compu-
tational Science and Its Applications, Part II. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 468–483.

[55] S. Hazelhurst, A. Fatti, and A. Henwood, “Binary decision diagram represen-
tations of firewall and router access lists,” Department of Computer Science,
University of the Witwatersrand, Tech. Rep., 1998.

[56] S. Hazelhurst, “Algorithms for analysing firewall and router access lists,” Uni-
versity of theWitwatersrand, Tech. Rep., July 1999.

[57] R. Marmorstein and P. Kearns, “A tool for automated iptables firewall analy-
sis,” in Proceedings of the annual conference on USENIX Annual Technical Conference
(ATEC). Berkeley, CA, USA: USENIX Association, 2005, pp. 44–44.

[58] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (snmp) (rfc 1157),” May 1990. [Online]. Available:
http://tools.ietf.org/html/rfc1157

[59] J. Schoenwaelder, “2002 iab network management workshop (rfc 3535),” 2003.

[60] C. Ehret, “From snmp deception to verinecŠs cisco service,” Master’s thesis,
University of Fribourg, Switzerland, 2005.

[61] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy core
information model - version 1 specification (rfc 3460),” 2001. [Online]. Available:
http://tools.ietf.org/html/rfc3460

[62] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, “The cops
(common open policy service) protocol (rfc2748),” Jan 2000. [Online]. Available:
http://tools.ietf.org/html/rfc2748

[63] A. Bierman, K. Crozier, R. Enns, T. Goddard, E. Lear, P. Shafer, S. Waldbusser,
and M. Wasserman, “Netconf configuration protocol (rfc 4741),” Dec 2006.
[Online]. Available: http://tools.ietf.org/html/rfc4741

[64] S. Halle, R. Deca, O. Cherkaoui, R. Villemaire, and D. Puche, “A formal vali-
dation model for the netconf protocol,” 15th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management (DSOM 2004), pp. 147–158, 2004.

[65] M. Choi, H. Choi, J. Hong, H. Ju, and S. POSTECH, “Xml-based configuration
management for ip network devices,” Communications Magazine, IEEE, vol. 42,
no. 7, pp. 84–91, 2004.

[66] C. Systems, “Network configuration protocol,” Jun 2009. [Online].
Available: http://www.cisco.com/en/US/docs/ios/netmgmt/configuration/
guide/nm_cns_netconf.pdf

R.J. Macfarlane, MSc Advanced Networking, 2009 REFERENCES 89

http://tools.ietf.org/html/rfc1157
http://tools.ietf.org/html/rfc3460
http://tools.ietf.org/html/rfc2748
http://tools.ietf.org/html/rfc4741
http://www.cisco.com/en/US/docs/ios/netmgmt/configuration/guide/nm_cns_netconf.pdf
http://www.cisco.com/en/US/docs/ios/netmgmt/configuration/guide/nm_cns_netconf.pdf

[67] J. Networks, “Netconf api guide,” 2008. [Online].
Available: http://www.juniper.net/techpubs/software/junos/junos91/
netconf-guide/netconf-guide.pdf

[68] G. Munz, A. Antony, F. Dressler, and G. Carle, “Using netconf for configuring
monitoring probes,” in IEEE/IFIP Network Operations & Management Symposium
(IEEE/IFIP NOMS 2006), Poster Session, Vancouver, Canada, Apr, 2006.

[69] A. Wool, “Architecting the lumeta firewall analyzer,” in Proceedings of the 10th
conference on USENIX Security Symposium, USENIX Association Berkeley, CA,
USA. USENIX Association, 2001, pp. 7–7.

[70] L. W. Wai, “Sans security life cycle,” 2001. [Online]. Avail-
able: http://www.sans.org/reading_room/whitepapers/testing/security_life_
cycle_1_diy_assessment_260?show=260.php&cat=testing

[71] Algosec, “Algosec firewall analyser,” 2009. [Online]. Available: http:
//www.algosec.com/en/products/firewall_analyzer.php

[72] E. Al-Shaer and H. Hamed, “Firewall policy advisor for anomaly discovery and
rule editing,” in Integrated Network Management, 2003, p. 17Ű30.

[73] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, “Towards global verifi-
cation and analysis of network access control configuration,” DePaul University,
Chicago, IL, USA, Tech. Rep., 2008.

[74] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra, “Fireman: A
toolkit for firewall modeling and analysis,” Security and Privacy, IEEE Symposium
on, vol. 0, pp. 199–213, 2006.

[75] D. Caldwell, S. Lee, and Y. Mandelbaum, “Learning to talk cisco ios: Inferring
the ios command language from router configuration data,” AT&T, Tech. Rep.,
2007.

[76] E. Al-Shaer and H. Hamed, “Management and translation of filtering security
policies,” in 2003 IEEE International Conference on Communications. IEEE Press,
2003.

[77] A. Tongaonkar, N. Inamdar, and R. Sekar, “Inferring higher level policies from
firewall rules,” in LISA’07: Proceedings of the 21st conference on Large Installation
System Administration Conference. Berkeley, CA, USA: USENIX Association,
2007, pp. 1–10.

[78] K. Golnabi, R. Min, L. Khan, and E. Al-Shaer, “Analysis of firewall policy rules
using data mining techniques,” in 10th IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS 2006), 2006.

R.J. Macfarlane, MSc Advanced Networking, 2009 REFERENCES 90

http://www.juniper.net/techpubs/software/junos/junos91/netconf-guide/netconf-guide.pdf
http://www.juniper.net/techpubs/software/junos/junos91/netconf-guide/netconf-guide.pdf
http://www.sans.org/reading_room/whitepapers/testing/security_life_cycle_1_diy_assessment_260?show=260.php&cat=testing
http://www.sans.org/reading_room/whitepapers/testing/security_life_cycle_1_diy_assessment_260?show=260.php&cat=testing
http://www.algosec.com/en/products/firewall_analyzer.php
http://www.algosec.com/en/products/firewall_analyzer.php

[79] T. Tran, E. Al-Shaer, and R. Boutaba, “Policyvis: firewall security policy visu-
alization and inspection,” in LISA’07: Proceedings of the 21st conference on Large
Installation System Administration Conference. Berkeley, CA, USA: USENIX As-
sociation, 2007, pp. 1–16.

[80] D. Botta, R. Werlinger, A. Gagné, K. Beznosov, L. Iverson, S. Fels, and B. Fisher,
“Towards understanding it security professionals and their tools,” in SOUPS ’07:
Proceedings of the 3rd symposium on Usable privacy and security. New York, NY,
USA: ACM, 2007, pp. 100–111.

[81] L. Saliou, W. J. Buchanan, J. Graves, and J. Munoz, “Novel framework for auto-
mated security abstraction, modelling, implementation and verification,” in 4th
European Conference on Information Warfare and Security, 2005, pp. 303–312.

[82] L. Saliou, “Network firewall dynamic performance evaluation and formalisa-
tion,” Ph.D. dissertation, Edinburgh Napier University, 2009.

[83] N. Damianou, “A policy framework for management of distributed systems,”
Ph.D. dissertation, Imperial College, 2002.

[84] W. W. W. Consortium, “Extensible markup language (xml),” 2000. [Online].
Available: http://www.w3.org/TR/2000/REC-xml-20001006#sec-origin-goals

[85] E. T. Ray, Learning XML, 2nd ed., S. St.Laurent, Ed. O’Reilly Media, Inc., Sep
2003. [Online]. Available: http://oreilly.com/catalog/9780596004200/index.
html

[86] M. Fitzgerald, Learning XSLT. O’Reilly Media, Inc., Nov 2003. [Online].
Available: http://oreilly.com/catalog/9780596003272/

[87] J. Sedayao, Cisco IOS access lists. O’Reilly Media, Inc., 2001.

[88] R. Barrett, E. Kandogan, P. Maglio, E. Haber, L. Takayama, and M. Prabaker,
“Field studies of computer system administrators: analysis of system manage-
ment tools and practices,” in Proceedings of the 2004 ACM conference on computer
supported cooperative work. ACM New York, NY, USA, 2004, pp. 388–395.

[89] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[90] T. Parsons, Introduction to compiler construction. Computer Science Press, Inc.
New York, NY, USA, 1992.

[91] J. E. F. Friedl, Mastering Regular Expressions, 2nd Edition. O’Reilly Media, Inc.,
Aug 2006. [Online]. Available: http://oreilly.com/catalog/9780596528126/

[92] C. Systems, “Cisco ios software releases 12.4 command references,” 2008.

R.J. Macfarlane, MSc Advanced Networking, 2009 REFERENCES 91

http://www.w3.org/TR/2000/REC-xml-20001006#sec-origin-goals
http://oreilly.com/catalog/9780596004200/index.html
http://oreilly.com/catalog/9780596004200/index.html
http://oreilly.com/catalog/9780596003272/
http://oreilly.com/catalog/9780596528126/

[93] J. Levine, T. Mason, and D. Brown, lex & yacc. O’Reilly Media, Inc., Oct 1992.
[Online]. Available: http://oreilly.com/catalog/9781565920002/index.html

[94] N. Lehmann, R. Schwarz, and J. Keller, “Firecrocodile: A checker for static fire-
wall configurations.”

R.J. Macfarlane, MSc Advanced Networking, 2009 REFERENCES 92

http://oreilly.com/catalog/9781565920002/index.html

Acronyms

AFPL Abstract Firewall Policy language

ACL Access Control List

BERR Department for Business Enterprise & Regulatory Reform

BDD Binary Decision Diagrams

CIM Common Information Model

COBIT Control OBjectives for Information and Related Technology

COPS Common Open Policy Service

CLI Command Line Interface

CRIP Cisco Router IOS Parser

CRIPE Cisco Router IOS Parser Evaluation Engine

CSPM Cisco Secure Policy Manager

DMZ DeMilitarised Zone

FANG Firewal ANalysis enGine

FPA Firewall Policy Advisor

GUI Graphical User Interface

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

IDS Intrusion Detection System

IDPS Intrusion Detection and Prevention System

IGMP Internet Group Management Protocol

IOS Internetwork Operating System

IETF Internet Engineering Task Force

IP Internet Protocol

MDL Model Definition Language

MDD Multi-way Decision Diagram

MIB Management Information Base

NIDS Network Intrusion Detection System

NIST National Institute of Standards and Technology

NPT Network Policy Tool

NSA National Security Agency

OS Operating System

OSI Open Systems Interconnection

SAFE Secure Architecture For Enterprise

SDLC System Development Life Cycle

SNMP Simple Network Management Protocol

SSH Secure SHell

TCP Transport Control Protocol

UDP User Datagram Protocol

VPN Virtual Private Network

XML eXtensible Markup Language

XSL eXtensible Stylesheet Language

XSLT eXtensible Stylesheet Language Transformations

Appendix A
Project Management

NAPIER UNIVERSITY

SCHOOL OF COMPUTING

PROJECT DIARY

Student: Rich Macfarlane Supervisor: Prof. Bill Buchanan
Date: 21/08/2009 Last diary date: 24/07/2009

Objectives:

• Draft copy of literature review completed.
• Experiments completed.
• Changes to literature review made.

Progress:

• Draft literature review complete.
• Experiments almost complete - problems with stress testing experiments to be

discussed.

Supervisor’s Comments:

• Changes recommended for literature review.
• Consider reasons behind stress test failure, as part of evaluation.

R.J. Macfarlane, MSc Advanced Networking, 2009 A Project Management 95

Appendix B
CRIP Tool Source Code

Listing B.1 – CRIP tool CiscoIOS class

1 //#define TRACE

2 using System;

3 using System.Diagnostics;

4 using System.Threading;

5 using System.Text.RegularExpressions;

6 using System.Collections.Specialized;

7

8 namespace CiscoConfigParser

9 {

10

11 /// <summary>

12 /// CiscoIOS - Temp Shell Class to call Modules from.

13 /// </summary>

14 public class CiscoIOS

15 {

16 // Cisco Command Modes

17 // TBA: stuct/static class for these

18 const int GLOBAL_CONFIG = 0;

19 const int SUCCESS = 0;

20

21

22 /// <summary>

23 /// Parse a Cisco IOS Configuration.

24 /// TBA:

25 /// - [-o outputFile] [-t traceLogFile]

26 /// </summary>

27 [STAThread]

28 static int Main(string[] args)

29 {

30 StringDictionary Params;

31 Params = new StringDictionary();

32 string sParam = null;

33

34 Console.WriteLine("Cisco Router IOS Parser (CRIP) . . . ");
35

36 // Parse Arguements.

37 string[] sParts;

38 foreach (string arg in args)

R.J. Macfarlane, MSc Advanced Networking, 2009 B CRIP Tool Source Code 96

39 {

40 // Split each cmd line arg.

41 sParts = Regex.Split(arg, @"^−{1,2}", RegexOptions.IgnoreCase);

42 switch (sParts.Length)

43 {

44 case 1:

45 // A Parameter Value.

46 if (sParam != null)

47 {

48 // Set param value.

49 if (!Params.ContainsKey(sParam))

50 Params.Add(sParam, sParts[0]);

51 sParam = null;

52 }

53 break;

54 case 2:

55 // A Parameter.

56 if (sParam != null)

57 {

58 // Previous param has no value, (bool params) set it

59 // to ’true’

60 if (!Params.ContainsKey(sParam))

61 Params.Add(sParam, "true");
62 }

63 sParam = sParts[1];

64 break;

65 }

66 }

67 // Previous param has no value, (bool params) set it

68 // to ’true’

69 if (sParam != null)

70 {

71 if (!Params.ContainsKey(sParam))

72 Params.Add(sParam, "true");
73 }

74

75 string configFile = "";
76 if (Params.ContainsKey("c"))
77 configFile = Params["c"];
78 else

79 {

80 Console.WriteLine("No fi le to parse . . . ");
81 Environment.Exit(1);

82 }

83 bool bVerbose = false;

84 if (Params.ContainsKey("v"))
85 {

86 if (Params["v"] == "true")
87 bVerbose = true;

88 }

89 bool bQuiet = false;

90 if (Params.ContainsKey("q"))
91 {

92 if (Params["q"] == "true")
93 bQuiet = true;

94 }

95

96 Console.WriteLine("Parsing : " + configFile);

97

98 int[] outs = new int[2];

99 try

100 {

101 outs = CiscoIOS.Parse(configFile, bVerbose, bQuiet);

102 }

103 catch (Exception e)

104 {

105 Console.WriteLine("Exception: {0} ", e.Message);

106 Environment.Exit(2);

107 }

108 Console.WriteLine("Parsed " + outs[0].ToString() + " lines , with "
109 + outs[1].ToString() + " errors reported. ");

110

111 //Console.WriteLine("\nPress Enter to Exit");

112 return (0);

113 }// end of Main()

114

115

116 /// <summary>

117 /// Parses Cisco Router IOS Commands, calling Handler Classes Parse

118 /// methods to deal with different IOS commands.

119 ///

120 /// </summary>

121 /// <returns>

122 /// 0 Success.

123 /// 1

124 /// </returns>

125 public static int[] Parse(

126 string configFile, // Input config file to be parsed.

127 bool bVerbose, // Verbose error output or not.

128 bool bQuiet // Error file written or not

129)

130 {

131 string line = ""; // Current config line.

132 int iLinesParsed = 0;

133 int iErrors = 0;

134 int cmdMode = GLOBAL_CONFIG;

135

136 // Set up Input stream.

137 Lexer lexer = new Lexer(configFile);

138 // Set up Output streams.

139 ErrorLog errorLog = new ErrorLog(bQuiet);

140 TraceLog traceLog = new TraceLog();

141 traceLog.WriteLine(" [CiscoIOS.Parse] starts ");
142

143 //

144 // Parse config file.

145 //

146 try

147 {

148 // Get the next line of the config.

149 while ((line = lexer.ReadLine()) != null)

150 {

151 // Parse IOS commands.

152

153 // Check if class can handle command, if so call handler to

Parse cmd line.

154 if (Regex.IsMatch(line, CiscoIOSACL.GetCmds()))

155 {

156 CiscoIOSACL ACL = new CiscoIOSACL(lexer, errorLog,

traceLog, bVerbose);

157 if (ACL.ParseCmd(ref cmdMode) != SUCCESS)

158 iErrors++;

159 }

160 else

161 {

162 // Command not implemented.

163 traceLog.WriteLine("\n[CiscoIOS.Main] %UNKNOWNCOMMAND: "
+ line);

164 errorLog.WriteLine("%UNKNOWNCOMMAND", lexer, bVerbose);

165 iErrors++;

166 }

167 iLinesParsed++;

168 }

169 }

170 catch (Exception e)

171 {

172 traceLog.WriteLine(" [CiscoIOS.Parse] " + e.Message);

173 throw e;

174 }

175

176 #if TRACE

177 traceLog.WriteToConsole();

178 #endif

179 //

180 // Write to output file.

181 //

182 errorLog.WriteToFile(configFile + " . errors", configFile, iLinesParsed)

;

183

184 int[] outValues = {iLinesParsed,iErrors};

185 return (outValues);

186 } // end of Parse Method

187

188 }//end of Class

189 }

Listing B.2 – CRIP tool CiscoIOSACL class

1 using System;

2 using System.IO;

3 using System.Text.RegularExpressions;

4 using System.Collections;

5

6 namespace CiscoConfigParser

7 {

8 /// <summary>

9 /// Description:

10 /// Class to parse/validate Cisco IOS Access Control List Commands.

11 /// Based on Cisco IOS v12.4

12 ///

13 /// Properties:

14 /// Public:

15 ///

16 /// Private:

17 /// lexer

18 /// errorLog

19 /// traceLog

20 ///

21 /// Methods:

22 /// Public:

23 /// ParseCmd

24 ///

25 /// Private:

26 /// ParseStdACLRule

27 /// ParseExtACL

28 /// ParseExtACLRule

29 /// ParseNamed

30 /// Notes:

31 /// TBA:

32 /// - check protocols patterns against what router does - in depth

33 /// - IP Addr/Wildcard Mask Validation improved? -Bills isMask() routine?

34 /// - Error Msgs passed back up to ACL level, or written to output file.

Not written to console window from

35 /// low level methods. Normal mode should just report an error on line n

of config. -v verbose mode could

36 /// spit out extra stuff?

37 /// - Src/Dest parser procs into one

38 /// - remark command - ACL & ACE levels

39 /// - fragments param not always available e.g. use "tcp ... eq finger"

then not available (on router)

40 /// - if we want to parse like the Cisco IOS, then we need to take at

least optional params in any order!

41 ///

42 /// Admendment History:

43 /// 1. Aug-2008 RJM Release ?.??

44 /// Created.

45 /// </summary>

46 public class CiscoIOSACL

47 {

48 private Lexer lexer; // input stream; for now a configuration

txt file.

49 private TraceLog traceLog; // output trace stream.

50 private ErrorLog errorLog; // output error stream.

51 private string line; // current line of consig.

52 private bool bVerbose; // Verbose Error logging or not.

53 private bool bQuiet; // Write to an Error logging file or not.

Quiet=true, just return total

54 // lines parsed & no. of errors.

55

56 //private static ArrayList errorList = new ArrayList();

57

58 // Output list of abstract filter rules.

59 private PacketFilter PacketFilet;

60

61 // tmp

62 private string ACLName;

63 private string DynamicACLName;

64 private string Action;

65 private string Protocol;

66 private string SourceIP;

67 private string SourceWildcard;

68 private string DestIP;

69 private string DestWildcard;

70 private bool Log;

71

72 // Cisco Command Modes

73 // TBA: stuct/static class for these

74 const int GLOBAL_CONFIG = 1;

75 const int ACL_CONFIG_STD = 11;

76 const int ACL_CONFIG_EXT = 12;

77

78 // Commands class can parse.

79 const string ACCESS_LIST = @"^access−l i s t\s+";
80 const string IP_ACCESS_LIST = @"^ip access−l i s t\s+";
81 const string PERMIT = @"^permit\s+";
82 const string DENY = @" d̂eny\s+";
83 const string REMARK = @" r̂emark\s+";
84 const string COMMANDS = ACCESS_LIST+"|"+IP_ACCESS_LIST+"|"+PERMIT+"|

"+DENY;
85

86 // Patterns to match TOKENS

87 const string WORD = @"^[a−zA−Z]+$"; //{1,5} 1 to 5 chars long

88 const string NUMBER = @"^[0−9]+$";
89 const string ALPHANUMERIC = @"^[\w.]+$";
90 const string ALPHASTART = @"^\w+.∗$";
91 // NO QUOTES?? ^’ ^"?

92 // = @"^[a-zA-Z0-9]+$";

93

94 const string IP_STD_ACL = @"^([1−9]|[1−9][0−9]|1[3−9][0−9][0−9])$"; //

IP standard numbered. 1-99 or 1300-1999.

95 const string IP_EXT_ACL = @"^(1[0−9][0−9]|2[0−6][0−9][0−9])$"; // IP

extended numbered. 100-199 or 2000-2699.

96 const string STANDARD = @" ŝtandard$";
97 const string EXTENDED = @" êxtended$";
98 //const string IP_ACL_TYPE = @"^(standard|extended)$";

99 const string IP_ACL_TYPE = STANDARD+"|"+EXTENDED;
100

101 const string ACTION = @"^(permit|deny)$";
102

103 // protocol 0-255|named protocol

104 const string PROTOCOLS = @"^([01]?[0−9]?[0−9]|2[0−4][0−9]|25[0−5]|ahp
|eigrp|esp|gre|icmp|igmp|ip|ipinip|nos|ospf|pcp|pim|tcp|udp)$";

105 //const string PROTOCOLS = @"^(ahp|eigrp|esp|gre|icmp|igmp|ip|

ipinip|nos|ospf|pcp|pim|tcp|udp)$";

106 const string ICMP = @" îcmp$";
107 const string IGMP = @" îgmp$";
108 const string TCP = @"^(tcp|6)$";
109 const string UDP = @"^(udp|17)$";
110

111 // IpAddress 0-255.0-255.0-255.0-255

112 const string IPv4ADDRESS = @"^(([01]?[0−9]?[0−9]|2[0−4][0−9]|25[0−5])
\.) {3} "

113 + @"([01]?[0−9]?[0−9]|2[0−4][0−9]|25[0−5])$"
;

114 //const string MaskCIDR = @"^([0-2]?[0-9]|3[0-2])$";

115 //const string IPv4ADDRESS = @"^([0-2]?[0-5]?[0-5]\.){3}[0-2]?[0-5]?[0-5]

$";

116

117 // ports

118 const string PORT_OPERATORS = @"^(l t|gt|eq|neq|range)$";
119 const string TCP_PORT_NAMES = @"^(bgp|chargen|cmd|daytime|discard|domain|

echo|finger|ftp|ftp−data|gopher|hostname|ident|irc|klogin|kshell|lpd|
nntp|pop2|pop3|smtp|sunrpc|syslog|tacacs|talk|telnet|time|uucp|whois|
www)$";

120 const string UDP_PORT_NAMES = @"^(biff|bootpc|bootps|discard|dnsix|domain|
echo|mobile−ip|nameserver|netbios−dgm|netbios−ns|non500−isakmp|ntp|
rip|snmp|snmptrap|sunrpc|syslog|tacacs−ds|talk|tftp|time|who|xdmcp)$"
;

121

122 const string ICMP_NAME = @"^(administratively−prohibited|alternate−
address|conversion−error|dod−host−prohibited|dod−net−prohibited|echo|
echo−reply|general−parameter−problem|host−isolated|host−precedence−
unreachable|host−redirect|host−tos−redirect|host−tos−unreachable|host
−unknown|host−unreachable|information−reply|information−request|mask−
reply|mask−request|mobile−redirect|net−redirect|net−tos−redirect|net−
tos−unreachable|net−unreachable|network−unknown|no−room−for−option|
option−missing|packet−too−big|parameter−problem|port−unreachable|
precedence−unreachable|protocol−unreachable|reassembly−timeout|
redirect|router−advertisement|router−solicitation|source−quench|
source−route−failed|time−exceeded|timestamp−reply|timestamp−request|
traceroute|ttl−exceeded|unreachable)$";

123 const string ICMP_TYPE = @"^([01]?[0−9]?[0−9]|2[0−4][0−9]|25[0−5])$";
// icmp-type 0-255

124 const string ICMP_CODE = @"^([01]?[0−9]?[0−9]|2[0−4][0−9]|25[0−5])$";
// icmp-code 0-255

125

126 // igmp-type 0-15|named

127 const string IGMP_TYPE = @"^([0−9]|1[0−5]|dvmrp|host−query|host−
report|pim|trace)$";

128

129 // Precedence 0-7|named precedence

130 const string PRECEDENCE = @"^([0−7]|crit ical|flash|flash−override|
immediate|internet|network|priority|routine)$";

131 // DSCP 0-63|named dscp

132 const string DSCP = @"^([0−5]?[0−9]|6[0−3]|default|ef|af11|af12|
af13|af21|af22|af23|af31|af32|af33|af41|af42|af43|cs1|cs2|cs3|cs4|cs5

|cs6|cs7)$";
133

134 // protocol 0-15|named tos

135 const string TOS = @"^([0−9]|1[0−5]|max−reliability|max−
throughput|min−delay|min−monetary−cost|normal)$";

136 const string LOG = @"^(log|log−input)$";
137

138 // Common Return Values for private methods

139 const int SUCCESS = 0;

140 const int NO_TOKENS = 1;

141 const int INVALID = 2;

142 const int PARSE_ERROR = 3;

143

144

145 /// <summary>

146 /// Constructor for Cisco IOS ACL Parser Class.

147 /// </summary>

148 public CiscoIOSACL(

149 Lexer lexer,

150 ErrorLog errorLog,

151 TraceLog traceLog,

152 bool bVerbose

153)

154 {

155 this.lexer = lexer;

156 this.errorLog = errorLog;

157 this.traceLog = traceLog;

158 this.line = lexer.line;

159 this.bVerbose = bVerbose;

160 }

161 /// <summary>

162 /// Returns string containing patterns of cmds this class can parse.

163 /// </summary>

164 public static string GetCmds()

165 {

166 return COMMANDS;

167 }

168

169

170 /// <summary>

171 /// Parses Cisco IOS ACL Commands - {access-list, ip access-list, permit,

deny} (Standard,Extended,Named)

172 /// Check the input is well formed, and validate to similar extent as the

Cisco IOS parser does.

173 ///

174 /// </summary>

175 /// <returns>

176 /// 1 Incomplete command params

177 /// 2 Invalid command

178 /// 3 Error in line.

179 /// </returns>

180 public int ParseCmd(

181 ref int cmdMode // Current Cisco command mode

182)

183 // prob’ want to pass in Security Policy object for the current

184 // device, so we can add PacketFilter obj’s to it.

185 {

186 int idx; // current token index

187

188 try

189 {

190 // TBA: Need to change to deal with sub-commands? Based on

191 // indent? Lexer can do all that

192 string[] tokens = Lexer.GetTokens(line);

193 idx = 0; // first token

194 //

195 // Match ACL Commands

196 //

197 if (Regex.IsMatch(line, ACCESS_LIST))

198 {

199 //

200 // Numbered acl-name.

201 //

202 idx++; // next token.

203 if (idx == tokens.Length)

204 {

205 // no more tokens

206 traceLog.WriteLine("\n[ACL.ParseCmd] − " + line);

207 traceLog.WriteLine(" [ACL.ParseCmd] % Incomplete Command−
Expecting acl−name");

208 errorLog.WriteLine("% Incomplete Command− Expecting acl−
name", lexer, "EOL", bVerbose);

209 return 1;

210 }

211 if (Regex.IsMatch(tokens[idx], IP_STD_ACL))

212 {

213 //

214 // IP Standard.

215 //

216 this.ACLName = tokens[idx];

217 traceLog.WriteLine("\n[ACL.ParseCmd] Std ACL− " + line);

218 if (this.ParseStdACLRule(tokens, idx) == SUCCESS)

219 {

220 cmdMode = GLOBAL_CONFIG;

221 // On change of ACL create new ACL,

222 // Or Create new ACL Line.

223 }

224 else

225 {

226 // Error on line.

227 return PARSE_ERROR;

228 }

229 }

230 else if (Regex.IsMatch(tokens[idx], IP_EXT_ACL))

231 {

232 //

233 // IP Extended.

234 //

235 this.ACLName = tokens[idx];

236 traceLog.WriteLine("\n[ACL.ParseCmd] Extd ACL " + line);

237 if (this.ParseExtACL(tokens, idx) == SUCCESS)

238 {

239 cmdMode = GLOBAL_CONFIG;

240 // On change of ACL create new ACL,

241 // Or Create new ACL Line.

242 }

243 else

244 {

245 // Error on line.

246 return PARSE_ERROR;

247 }

248 }

249 else

250 {

251 traceLog.WriteLine("\n[ACL.ParseCmd] % Invalid Numbered
ACL Id: " + line);

252 errorLog.WriteLine("% Invalid Numbered ACL Id ", lexer,

tokens[idx] , bVerbose);

253 return 2;

254 }

255 }

256 //else if (tokens[idx] == "ip" && tokens[++idx] == "access-

list")

257 else if (Regex.IsMatch(line, IP_ACCESS_LIST))

258 {

259 idx++; // this is "access-list"

260 //

261 // Named ACL.

262 //

263 traceLog.WriteLine("\n[ACL.ParseCmd] Named ACL− " + line);

264 if (this.ParseNamedACL(tokens, idx, ref cmdMode) == SUCCESS)

265 {

266 //

267 //traceLog.WriteLine("\n[ACL.ParseCmd] Named ACL: " + line

);

268 }

269 else if ((Regex.IsMatch(line, PERMIT) || Regex.IsMatch(line, DENY

)) && cmdMode == ACL_CONFIG_STD)

270 {

271 //

272 // IP Standard Named ACL.

273 //

274 traceLog.WriteLine("\n[ACL.ParseCmd] Named Std ACE− " + line)

;

275 if (this.ParseStdACLRule(tokens, --idx) == SUCCESS)

276 {

277 // Create new ACL Line.

278 }

279 }

280 else if ((Regex.IsMatch(line, PERMIT) || Regex.IsMatch(line, DENY

)) && cmdMode == ACL_CONFIG_EXT)

281 {

282 //

283 // IP Standard Named ACL.

284 //

285 traceLog.WriteLine("\n[ACL.ParseCmd] Named Extd ACE− " + line

);

286 if (this.ParseExtACLRule(tokens, --idx) == SUCCESS)

287 {

288 // Create new ACL Line.

289 }

290 }

291 //

292 // TBA: "access-list remark" and "remark" cmds

293 //

294 else

295 {

296 // Invalid Command/not implemented.

297 traceLog.WriteLine("\n[ACL.ParseCmd] − " + line);

298 traceLog.WriteLine(" [ACL.ParseCmd] % Invalid Input Detected")

;

299 errorLog.WriteLine("% Invalid Input Detected", lexer, bVerbose

);

300 return 2;

301 }

302 }

303 catch(Exception e)

304 {

305 traceLog.WriteLine(" [ACL.ParseCmd] " + e.Message);

306 errorLog.WriteLine(e.Message, lexer , bVerbose);

307 }

308 return SUCCESS;

309 }

310

311

312 /// <summary>

313 /// Parse an IP Extended ACL.

314 /// This method parses the header, i.e. the bit before the action:

315 /// access-list acl-name [dynamic dynamic-name [timeout timeout-mins]]

316 ///

317 /// </summary>

318 /// <param name="tokens"></param>

319 /// <param name="idx"></param>

320 /// <returns>

321 /// 0 Success.

322 /// 1 No tokens left

323 /// 2 Invalid Dynamic ACL params.

324 /// 3 Invalid Rule

325 /// </returns>

326 public int ParseExtACL(string[] tokens, int idx)

327 {

328 //

329 // Optional [dynamic dynamic-name [timeout timeout-mins]] params.

330 //

331 int ret = this.ParseDynamic(tokens, ref idx) ;

332 if (ret == NO_TOKENS)

333 {

334 traceLog.WriteLine(" [ParseExtACL] % Incomplete Command");

335 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

336 return NO_TOKENS;

337 }

338 else if (ret == 3 || ret==6)

339 {

340 // No Tokens, after consuming valid dynamic|timeout param.

341 traceLog.WriteLine(" [ParseExtACL] % Incomplete Command");

342 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

343 return NO_TOKENS;

344 }

345 else if(ret == 4 || ret == 7)

346 {

347 // Invalid dynamic-name|timeout-mins, after consuming valid

dynamic|timeout keyword.

348 return 2;

349 }

350 //

351 // Parse Extended ACL Rule.

352 //

353 if (this.ParseExtACLRule(tokens, idx) != SUCCESS)

354 {

355 return 3;

356 }

357 //

358 // Create new Abstract Packet Filtering Rule Object.

359 // Attach it to the Current Devices Security Policy object.

360 //

361 //PacketFilterRule rule = new PacketFilterRule(this.Action, this.

Protocl etc);

362 //PacketFilter.Rules.Add(rule);

363

364 return SUCCESS;

365 }

366

367

368 /// <summary>

369 /// Parse the Optional [dynamic dynamic-name [timeout timeout-mins]]

Params.

370 /// </summary>

371 /// <param name="tokens"></param>

372 /// <param name="idx"></param>

373 /// <returns>

374 /// 0 Success

375 /// 1 No Tokens

376 /// 2 Invalid dynamic param

377 /// 3 No Tokens, No dynamic-name

378 /// 4 Invalid dynamic-name value, after consuming valid dynamic

param

379 /// 5 Invalid timeout param

380 /// 6 No Tokens, No timeout-mins

381 /// 7 Invalid timeout-mins value, after consuming valid timeout

param

382 /// </returns>

383 private int ParseDynamic(string[] tokens, ref int idx)

384 {

385 //

386 // Optional [dynamic] param.

387 //

388 idx++; // next token

389 if (idx == tokens.Length)

390 {

391 return NO_TOKENS;

392 }

393 if (tokens[idx] != "dynamic")

394 {

395 idx--; // not dynamic param

396 return 2;

397 }

398 // TBA: Check dynamic ACL not defined already for this ACL. (1 at most

allowed)

399 //

400 // dynamic-name

401 //

402 idx++; // next token

403 if (idx == tokens.Length)

404 {

405 return 3; // no tokens after valid dynamic param consumed

406 }

407 if (Regex.IsMatch(tokens[idx], ALPHASTART))

408 {

409 // Valid dynamic-name.

410 traceLog.WriteLine(" [ACL.ParseDynamic] valid dynamic ACL: " +

tokens[idx]);

411 this.DynamicACLName = tokens[idx];

412 }

413 else

414 {

415 // Not a valid dynamic-name.

416 traceLog.WriteLine(" [ACL.ParseDynamic] % Invalid Input Detected −
dynamic−name: " + tokens[idx]);

417 errorLog.WriteLine("% Invalid Input Detected − dynamic−name ",
lexer, tokens[idx] , bVerbose);

418 return 4;

419 }

420

421 //

422 // Optional [timeout timeout-mins] param (timeout-value in minutes

1-9999).

423 //

424 idx++; // next token

425 if (idx == tokens.Length)

426 {

427 return NO_TOKENS;

428 }

429 if (tokens[idx] != "timeout")

430 {

431 idx--; // not timeout param

432 return 5;

433 }

434 //

435 // timeout-mins

436 //

437 idx++; // next token

438 if (idx == tokens.Length)

439 {

440 return 6; // no tokens after valid dynamic param consumed

441 }

442 if (Regex.IsMatch(tokens[idx], NUMBER) &&

443 (Int32.Parse(tokens[idx]) >=1 && Int32.Parse(tokens[idx]) <=9999)

)

444 {

445 // Valid timeout-mins.

446 traceLog.WriteLine(" [ACL.ParseDynamic] valid timeout: " + tokens[

idx]);

447 }

448 else

449 {

450 // Not a timeout-mins value.

451 traceLog.WriteLine(" [ACL.ParsePorts] % Invalid Input Detected −
timeout: " + tokens[idx]);

452 errorLog.WriteLine("% Invalid Input Detected − timeout ", lexer,

tokens[idx], bVerbose);

453 return 7;

454 }

455 // TBA: Store dynamic params?

456 return SUCCESS;

457 }

458

459

460

461 /// <summary>

462 /// Parse a Named ACL.

463 /// This method, first parses the header, then calls parseStdACLRule() or

parseExtACLRule() for each line.

464 /// ip access-list acl-type:{standard|extended} acl-name

465 ///

466 /// </summary>

467 /// <param name="tokens"></param>

468 /// <param name="idx"></param>

469 /// <returns>

470 /// 0 Success.

471 /// 1 No tokens left

472 /// 2 Invalid acl-type or acl-name, or invalid token at end of line.

473 /// </returns>

474 public int ParseNamedACL(string[] tokens, int idx, ref int cmdMode)

475 {

476 //

477 // acl-type

478 //

479 idx++; // next token

480 if (idx == tokens.Length)

481 {

482 traceLog.WriteLine(" [ACL.ParseNamedACL] % Incomplete Command−
Expecting acl−type");

483 errorLog.WriteLine("% Incomplete Command− Expecting acl−type",
lexer, "EOL", bVerbose);

484 return NO_TOKENS;

485 }

486 if (!Regex.IsMatch(tokens[idx], IP_ACL_TYPE))

487 {

488 traceLog.WriteLine(" [ACL.ParseNamedACL] % Invalid Input Detected:
" + tokens[idx]);

489 errorLog.WriteLine("% Invalid Input Detected ", lexer, tokens[idx

], bVerbose);

490 return INVALID;

491 }

492 string aclType = tokens[idx];

493

494 //

495 // acl-name

496 //

497 idx++; // next token

498 if (idx == tokens.Length)

499 {

500 traceLog.WriteLine(" [ACL.ParseNamedACL] % Incomplete Command−
Expecting acl−name");

501 errorLog.WriteLine("% Incomplete Command− Expecting acl−name",
lexer, "EOL", bVerbose);

502 return NO_TOKENS;

503 }

504 if (!Regex.IsMatch(tokens[idx], ALPHASTART)) // TBA: add numbered

acl-name checks

505 {

506 traceLog.WriteLine("\n[ACL.ParseNamedACL] % Invalid Input Detected
: acl−name: " + tokens[idx]);

507 errorLog.WriteLine("% Invalid Input Detected ",lexer ,tokens[idx]

, bVerbose);

508 return INVALID;

509 }

510 this.ACLName = tokens[idx];

511

512 //

513 // Check for invalid token at end of line.

514 //

515 if (++idx < tokens.Length)

516 {

517 traceLog.WriteLine(" [ACL.ParseNamedACL] % Invalid Input Detected:
" + tokens[idx]);

518 errorLog.WriteLine("% Invalid Input Detected ",lexer ,tokens[idx]

, bVerbose);

519 return INVALID;

520 }

521 // Valid Named ACL hdr parsed.

522 if (Regex.IsMatch(aclType, STANDARD))

523 cmdMode = ACL_CONFIG_STD;

524 else if (Regex.IsMatch(aclType, EXTENDED))

525 cmdMode = ACL_CONFIG_EXT;

526 //

527 // Create new ACL obj.

528 // Loop until end/change of acl

529 // {

530 // Parse optional Seq No.

531 // Parse each Line (Std or Extd)

532 // Create ACL Line objs

533 // }

534 //

535 return SUCCESS;

536 }

537

538

539 /// <summary>

540 /// Parse an IP Standard ACL Rule.

541 /// The Policy rule itself from the Action token onwards:

542 /// access-list acl-name action:{permit|deny} source [source-wildcard-

mask] [log]

543 ///

544 /// </summary>

545 /// <param name="tokens"></param>

546 /// <param name="idx"></param>

547 /// <returns>

548 /// 0 Success

549 /// 1 Invalid Action

550 /// 2 Invalid Src

551 /// 3 Invalid Log param

552 /// </returns>

553 private int ParseStdACLRule(string[] tokens, int idx)

554 {

555 //

556 // Action.

557 //

558 if (this.ParseAction(tokens, ref idx) != SUCCESS)

559 {

560 return 1;

561 }

562 //

563 // Source - Network, Host or Range of IP Address.

564 //

565 if (this.ParseSrc(tokens, ref idx, true) != SUCCESS)

566 {

567 return 2;

568 }

569 //

570 // Option [log] param

571 //

572 if (this.ParseLog(tokens, ref idx) == INVALID)

573 {

574 // Invalid log param.

575 traceLog.WriteLine(" [ACL.ParseStdACLRule] % Invalid Input Detected
: log expected");

576 errorLog.WriteLine("% Invalid Input Detected: log expected", lexer

, tokens[++idx] , bVerbose);

577 return 3;

578 }

579 //

580 // Valid ACL Line.

581 // Create new Abstract Packet Filtering Rule Object.

582 //PacketFilterRule rule = new PacketFilterRule(this.Action, this.

Protocl etc);

583 //PacketFilter.Rules.Add(rule);

584

585 return SUCCESS;

586 }

587

588

589 /// <summary>

590 /// Parse a an IP Extended ACL Rule.

591 /// The Policy rule itself, from the Action token onwards:

592 /// action:{permit|deny} protocol source source-wildcard destination

destination-wildcard

593 /// [precedence precedence-value | dscp dscp-value] [tos tos-value] [

log | log-input]

594 /// [time-range time-range-name] [fragments]

595 /// </summary>

596 /// <param name="tokens"></param>

597 /// <param name="idx"></param>

598 /// <returns>

599 /// 0 Success

600 /// 1 NO_TOKENS, Invalid Rule

601 /// 2 Invalid Action

602 /// 3 Invlaid Protocol

603 /// 4 Invalid Src

604 /// 5 Invalid Src Port param

605 /// 6 Invalid Dest

606 /// 7 Invalid Dest Port Params

607 /// 8 Invalid ICMP type

608 /// 9 Invalid IGMP type

609 /// 10 Invalid precedence

610 /// 11 Invalid dscp

611 /// 12 Invalid tos

612 /// 13 Invalid time-range

613 /// 14 Invalid Fragment param

614 /// 15 Invalid token at end of line

615 /// </returns>

616 private int ParseExtACLRule(string[] tokens, int idx)

617 {

618 //

619 // Action.

620 //

621 if (this.ParseAction(tokens, ref idx) != SUCCESS)

622 {

623 return 2;

624 }

625

626 //

627 // Protocol - Internet Protocol.

628 //

629 if (this.ParseProtocol(tokens, ref idx) != SUCCESS)

630 {

631 return 3;

632 }

633

634 //

635 // Source - Network, Host or Range of IP Address.

636 //

637 if (this.ParseSrc(tokens, ref idx, false) != SUCCESS)

638 {

639 return 4;

640 }

641

642 //

643 // Optional Src [operator port] params; for UPD, TCP protocols.

644 //

645 int ret = this.ParsePorts(tokens, ref idx) ;

646 if (ret == NO_TOKENS)

647 {

648 traceLog.WriteLine(" [ParseExtACLRule] % Incomplete Command");

649 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

650 return NO_TOKENS;

651 }

652 else if (ret == 3)

653 {

654 // No Tokens, after consuming valid operator.

655 traceLog.WriteLine(" [ParseExtACLRule] % Incomplete Command");

656 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

657 return NO_TOKENS;

658 }

659 else if(ret == 4)

660 {

661 return 5; // Invalid port no, after consuming valid operator.

662 }

663

664 //

665 // Destination - Network, Host or Range of IP Address.

666 //

667 if (this.ParseDest(tokens, ref idx, false) != SUCCESS)

668 {

669 return 6;

670 }

671

672 //

673 // Optional Dest [operator port] params, for UPD; TCP protocols.

674 //

675 ret = this.ParsePorts(tokens, ref idx) ;

676 if (ret == NO_TOKENS)

677 {

678 return SUCCESS; // no mand params left

679 }

680 else if (ret == 3)

681 {

682 // No Tokens, after consuming valid operator.

683 traceLog.WriteLine(" [ParseExtACLRule] % Incomplete Command");

684 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

685 return NO_TOKENS;

686 }

687 else if(ret == 4)

688 {

689 return 7; // Invalid port no, after consuming valid operator.

690 }

691

692 //

693 // Optional [established] param; for TCP protocol only.

694 //

695 if (this.ParseEstablished(tokens, ref idx) == NO_TOKENS)

696 {

697 return SUCCESS; // no mand params left

698 }

699

700 //

701 // Optional [icmp-type [icmp-code]|icmp-message] params; for ICMP

protocol only.

702 //

703 ret = this.ParseICMPType(tokens, ref idx) ;

704 if (ret == NO_TOKENS)

705 {

706 return SUCCESS; // no mand params left

707 }

708 else if (ret == 3)

709 {

710 // No Tokens, after consuming valid icmp-type.

711 traceLog.WriteLine(" [ParseExtACLRule] % Incomplete Command");

712 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

713 return NO_TOKENS;

714 }

715 else if(ret == 4)

716 {

717 return 8; // Invalid icmp-code, after consuming valid icmp-type.

718 }

719

720 //

721 // Optional [igmp-type igmp-type] params; for IGMP protocol only.

722 //

723 ret = this.ParseIGMPType(tokens, ref idx) ;

724 if (ret == NO_TOKENS)

725 {

726 return SUCCESS; // no mand params left

727 }

728 else if (ret == 3)

729 {

730 // No Tokens, after consuming valid igmp keyword.

731 traceLog.WriteLine(" [ParseExtACLRule] % Incomplete Command");

732 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

733 return NO_TOKENS;

734 }

735 else if(ret == 4)

736 {

737 return 9; // Invalid igmp-type, after consuming valid igmp keyword

.

738 }

739

740 //

741 // Optional [precedence precedence-value | dscp dscp-value] params

742 //

743 ret = this.ParsePrecedence(tokens, ref idx) ;

744 if (ret == NO_TOKENS)

745 {

746 return SUCCESS; // no mand params left

747 }

748 else if (ret == 3)

749 {

750 // No Tokens, after consuming valid precedence keyword.

751 traceLog.WriteLine(" [ParseExtACLRule] % Incomplete Command");

752 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

753 return NO_TOKENS;

754 }

755 else if(ret == 4)

756 {

757 return 10; // Invalid precedence value, after consuming valid

precedence keyword.

758 }

759 else if(ret == 2) // not precedence keyword, so check for dscp.

760 {

761 //

762 // Optional [dscp dscp-value] params

763 //

764 ret = this.ParseDSCP(tokens, ref idx) ;

765 if (ret == NO_TOKENS)

766 {

767 return SUCCESS; // no mand params left

768 }

769 else if (ret == 3)

770 {

771 // No Tokens, after consuming valid dscp keyword.

772 traceLog.WriteLine(" [ParseExtACLRule] % Incomplete Command");

773 errorLog.WriteLine("% Incomplete Command", lexer, "EOL",
bVerbose);

774 return NO_TOKENS;

775 }

776 else if(ret == 4)

777 {

778 return 11; // Invalid dscp value, after consuming valid dscp

keyword.

779 }

780 }

781

782 //

783 // Optional [tos [tos]] params

784 //

785 ret = this.ParseTos(tokens, ref idx) ;

786 if (ret == NO_TOKENS)

787 {

788 return SUCCESS; // no mand params left

789 }

790 else if (ret == 3)

791 {

792 // No Tokens, after consuming valid precedence keyword.

793 traceLog.WriteLine(" [ParseExtACLRule] % Incomplete Command");

794 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

795 return NO_TOKENS;

796 }

797 else if(ret == 4)

798 {

799 return 12; // Invalid tos value, after consuming valid precedence

keyword.

800 }

801

802 //

803 // Optional [log | log-input] param

804 //

805 if (this.ParseLog(tokens, ref idx) == NO_TOKENS)

806 {

807 return SUCCESS; // no mand params left

808 }

809

810 //

811 // Optional [timerange timerange-name] param

812 //

813 ret = this.ParseTimeRange(tokens, ref idx) ;

814 if (ret == NO_TOKENS)

815 {

816 return SUCCESS; // no mand params left

817 }

818 else if (ret == 3)

819 {

820 // No Tokens, after consuming valid time-range keyword.

821 traceLog.WriteLine(" [ParseExtACLRule] % Incomplete Command");

822 errorLog.WriteLine("% Incomplete Command", lexer, "EOL", bVerbose)

;

823 return NO_TOKENS;

824 }

825 else if(ret == 4)

826 {

827 return 13; // Invalid time-range-name, after consuming valid time-

range keyword.

828 }

829

830 //

831 // Optional [fragments] param

832 //

833 if (this.ParseFragments(tokens, ref idx) == INVALID)

834 {

835 return 14; // last param, must match or invalid

836 }

837 if (++idx < tokens.Length)

838 {

839 traceLog.WriteLine(" [ACL.ParseExtACLRule] % Invalid Input Detected
: " + tokens[idx]);

840 errorLog.WriteLine("% Incomplete Command", lexer, tokens[idx] ,

bVerbose);

841 return 15; // Invalid token at end of line.

842 }

843 //

844 // Valid ACL Line.

845 //

846 return SUCCESS;

847 }

848

849

850 /// <summary>

851 /// Parse the Action param.

852 /// </summary>

853 /// <param name="tokens"></param>

854 /// <param name="idx"></param>

855 /// <returns>

856 /// 0 Success

857 /// 1 No tokens

858 /// 2 Invalid Action

859 /// </returns>

860 private int ParseAction(string[] tokens, ref int idx)

861 {

862 int r = SUCCESS;

863 try

864 {

865 idx++; // Next token.

866 if (idx == tokens.Length)

867 {

868 //traceLog.WriteLine("[ACL.ParseAction] % Incomplete Command -

Expecting {permit|deny}");

869 //errorLog.WriteLine("% Incomplete Command - Expecting {permit

|deny}", lexer, tokens[idx] , bVerbose);

870 //return NO_TOKENS; // no more tokens

871 r = NO_TOKENS;

872 throw(new ApplicationException("% Incomplete Command−
Expecting {permit|deny} "));

873 }

874 string action = tokens[idx];

875 if (Regex.IsMatch(tokens[idx], ACTION))

876 {

877 traceLog.WriteLine(" [ACL.ParseAction] valid Action: " + action

);

878 this.Action = action;

879 }

880 else

881 {

882 //traceLog.WriteLine("[ACL.ParseAction] % Invalid Input

Detected: {permit|deny} expected");

883 //errorLog.WriteLine("% Invalid Input Detected: {permit|deny}

expected", lexer, tokens[idx] , bVerbose);

884 //return INVALID;

885 r = INVALID;

886 throw(new ApplicationException("% Invalid Input Detected: {
permit|deny} expected"));

887 }

888

889 }

890 catch(ApplicationException e)

891 {

892 if (r != SUCCESS)

893 {

894 traceLog.WriteLine(" [ACL.ParseAction] " + e.Message);

895 string sToken = r == NO_TOKENS ? "EOL" : tokens[idx];

896 errorLog.WriteLine(e.Message, lexer, sToken , bVerbose);

897 return r;

898 }

899 }

900 return SUCCESS;

901 }

902

903

904 /// <summary>

905 /// Parse the Protocol.

906 /// </summary>

907 /// <param name="tokens"></param>

908 /// <param name="idx"></param>

909 /// <returns>

910 /// 0 Success

911 /// 1 No Tokens

912 /// 2 Invalid Protocol

913 /// </returns>

914 private int ParseProtocol(string[] tokens, ref int idx)

915 {

916 idx++; // next token

917 if (idx == tokens.Length)

918 {

919 traceLog.WriteLine("\n[ParseProtocol] % Incomplete Command−
Protocol Expected");

920 errorLog.WriteLine("% Incomplete Command− Protocol Expected",
lexer, "EOL" , bVerbose);

921 return NO_TOKENS;

922 }

923 string protocol = tokens[idx];

924 //

925 // Name or number of an IP Protocol.

926 //

927 if (Regex.IsMatch(protocol, PROTOCOLS))

928 {

929 this.Protocol = protocol;

930 }

931 else

932 {

933 traceLog.WriteLine(" [ACL.ParseProtocol] % Invalid Input Detected:
IP Protocol or <0−255> expected");

934 errorLog.WriteLine("% Invalid Input Detected: IP Protocol or
<0−255> expected", lexer, protocol, bVerbose);

935 return INVALID;

936 }

937 // Valid Protocal.

938 traceLog.WriteLine(" [ACL.ParseProtocol] valid Protocol : " + protocol);

939 return SUCCESS;

940 }

941

942

943 /// <summary>

944 /// Parse the Layer 3 Source Address.

945 /// (Host, Network, or Range of IP Addresses)

946 /// </summary>

947 /// <param name="tokens"></param>

948 /// <param name="idx"></param>

949 /// <returns>

950 /// 0 Success

951 /// 1 No more tokens

952 /// 2 Invalid Src Address

953 /// 3 Invalid Src Wildcard

954 /// </returns>

955 private int ParseSrc(string[] tokens, ref int idx, bool isStdACL)

956 {

957 bool isHost = false;

958

959 idx++; // next token

960 if (idx == tokens.Length)

961 {

962 traceLog.WriteLine("\n[ParseSrc] % Incomplete Command− IP Address
Expected");

963 errorLog.WriteLine("% Incomplete Command− IP Address Expected",
lexer, "EOL", bVerbose);

964 return NO_TOKENS;

965 }

966 if (tokens[idx] == "any")

967 {

968 traceLog.WriteLine(" [ACL.ParseSrc] valid source : " + tokens[idx]);

969 // Match any address.

970 this.SourceIP = " 0 .0 .0 .0 ";
971 this.SourceWildcard = "255.255.255.255";
972 return SUCCESS;

973 }

974 else if (tokens[idx] == "host")

975 {

976 idx++; // next token

977 if (tokens.Length == idx)

978 {

979 traceLog.WriteLine("\n[ACL.ParseSrc] % Incomplete Command−
Host IP Address expected");

980 errorLog.WriteLine("% Incomplete Command− Host IP Address
expected", lexer, "EOL", bVerbose);

981 return NO_TOKENS;

982 }

983 isHost = true;

984 //

985 // TBA: Optional [Hostname] param.

986 //

987 }

988 if (Regex.IsMatch(tokens[idx], IPv4ADDRESS))

989 {

990 // TBA: extra validation for IP Addrs, host or network? (

1.0.0.1-255.255.255.254 ?)

991 // To set isHost flag or not. Can we use bills isip()

function?

992 //

993 // Lionels IP class: DOESN’T WORK (range seems to be:

2.0.0.1-255.255.255.254 !?)

994 //IPOperations v = new IPOperations();

995 //if (v.isValidIPv4(tokens[idx]))

996 //

997 traceLog.WriteLine(" [ACL.ParseSrc] valid source IP Address: " +

tokens[idx]);

998 this.SourceIP = tokens[idx];

999

1000 if (isHost)

1001 {

1002 return SUCCESS; // valid rule.

1003 }

1004 idx++; // next token

1005 if (isStdACL && tokens.Length == idx)

1006 {

1007 // No more tokens, but its a Std ACL - implies a host address.

1008 this.SourceWildcard = " 0 .0 .0 .0 ";
1009 idx--;

1010 // Valid Rule.

1011 return SUCCESS;

1012 }

1013 if (tokens.Length == idx)

1014 {

1015 traceLog.WriteLine(" [ACL.ParseSrc] % Incomplete Command−
Wildcard expected");

1016 errorLog.WriteLine("% Incomplete Command− Wildcard expected",
lexer, "EOL", bVerbose);

1017 return NO_TOKENS;

1018 }

1019 //

1020 // source-wildcard-mask; network wildcard mask.

1021 //

1022 if (Regex.IsMatch(tokens[idx], IPv4ADDRESS))

1023 {

1024 // TBA: wildcard matching? and/or validation for wildcard mask

1025 // (must be a.b.c.d; a <= b <= c <= d e.g. 0.0.7.255)?

1026 //

1027 // Could use Bills iswildcard() method?

1028 traceLog.WriteLine(" [ACL.ParseSrc] valid source Wildcard: " +

tokens[idx]);

1029 this.SourceWildcard = tokens[idx];

1030 }

1031 else

1032 {

1033 // Invalid Wildcard.

1034 if (!isStdACL)

1035 {

1036 // Mandatory Wildcard.

1037 traceLog.WriteLine(" [ACL.ParseSrc] % Invalid Input
Detected − Source Wildcard: " + tokens[idx]);

1038 errorLog.WriteLine("% Invalid Input Detected − Source
Wildcard ", lexer, tokens[idx], bVerbose);

1039 return 3;

1040 }

1041 else

1042 {

1043 // Optional Wildcard, could be another param after.

1044 idx--;

1045 }

1046 }

1047 }

1048 else

1049 {

1050 traceLog.WriteLine(" [ACL.ParseSrc] % Invalid Input Detected −
Source IP : " + tokens[idx]);

1051 errorLog.WriteLine("% Invalid Input Detected − Source IP ", lexer,

tokens[idx], bVerbose);

1052 return INVALID;

1053 }

1054 return SUCCESS;

1055 }

1056

1057

1058 /// <summary>

1059 /// Parse the Optional [operator[port]] Params.

1060 /// (Only valid for TCP and UDP filtering rules)

1061 /// </summary>

1062 /// <param name="tokens"></param>

1063 /// <param name="idx"></param>

1064 /// <returns>

1065 /// 0 Success

1066 /// 1 No Tokens

1067 /// 2 Invalid port operator

1068 /// 3 No Tokens, No Port

1069 /// 4 Invalid port

1070 /// </returns>

1071 private int ParsePorts(string[] tokens, ref int idx)

1072 {

1073 //

1074 // Optional [Port Operator].

1075 //

1076 idx++; // next token

1077 if (idx == tokens.Length)

1078 {

1079 return NO_TOKENS;

1080 }

1081 if ((Regex.IsMatch(this.Protocol, TCP) || Regex.IsMatch(this.Protocol

, UDP))

1082 && Regex.IsMatch(tokens[idx], PORT_OPERATORS))

1083 {

1084 traceLog.WriteLine(" [ACL.ParsePorts] valid Operator: " + tokens[

idx]);

1085 // TBA: Store port number operator?

1086 }

1087 else

1088 {

1089 // Not a valid port operator.

1090 idx--;

1091 return 2;

1092 }

1093 //

1094 // Port Number <0-65535>, or TCP/UPD Named Protocol. (mandatory if

Operator given]

1095 // TBA: if "range" operator, need to get 2 x portnumbers.

1096 //

1097 idx++; // next token

1098 if (idx == tokens.Length)

1099 {

1100 return 3;

1101 }

1102 if (Regex.IsMatch(tokens[idx], NUMBER) &&

1103 (Int32.Parse(tokens[idx]) >=0 && Int32.Parse(tokens[idx]) <=65535)

)

1104 {

1105 // Valid port number.

1106 traceLog.WriteLine(" [ACL.ParsePorts] valid Port Number: " + tokens

[idx]);

1107 }

1108 else if (Regex.IsMatch(this.Protocol, TCP) && Regex.IsMatch(tokens[

idx], TCP_PORT_NAMES))

1109 {

1110 // Valid TCP port name.

1111 traceLog.WriteLine(" [ACL.ParsePorts] valid TCP Port Name: " +

tokens[idx]);

1112 }

1113 else if (Regex.IsMatch(this.Protocol, UDP) && Regex.IsMatch(tokens[

idx], UDP_PORT_NAMES))

1114 {

1115 // Valid UDP port name.

1116 traceLog.WriteLine(" [ACL.ParsePorts] valid UDP Port Name: " +

tokens[idx]);

1117 }

1118 else

1119 {

1120 // Not a valid port number.

1121 traceLog.WriteLine(" [ACL.ParsePorts] % Invalid Input Detected −
Port : " + tokens[idx]);

1122 errorLog.WriteLine("% Invalid Input Detected − Port", lexer,

tokens[idx], bVerbose);

1123 return 4;

1124 }

1125 // TBA: Store port number. Maybe only if operator "eq"?

1126 // this.Port = tokens[idx];

1127 return SUCCESS;

1128 }

1129

1130

1131 /// <summary>

1132 /// Parse the Layer 3 Dest Address.

1133 /// (Host, Network, or Range of IP Addresses)

1134 /// </summary>

1135 /// <param name="tokens"></param>

1136 /// <param name="idx"></param>

1137 /// <returns>

1138 /// 0 Success

1139 /// 1 No more tokens

1140 /// 2 Invalid Address

1141 /// 3 Invalid Wildcard

1142 /// </returns>

1143 private int ParseDest(string[] tokens, ref int idx, bool isStdACL)

1144 {

1145 bool isHost = false;

1146

1147 idx++; // next token

1148 if (idx == tokens.Length)

1149 {

1150 traceLog.WriteLine("\n[ParseDest] % Incomplete Command− IP
Address Expected");

1151 errorLog.WriteLine("\n% Incomplete Command− IP Address Expected",
lexer, "EOL", bVerbose);

1152 return NO_TOKENS;

1153 }

1154 if (tokens[idx] == "any")

1155 {

1156 traceLog.WriteLine(" [ACL.ParseDest] valid source : " + tokens[idx])

;

1157 // Match any address.

1158 this.SourceIP = " 0 .0 .0 .0 ";
1159 this.SourceWildcard = "255.255.255.255";
1160 return SUCCESS;

1161 }

1162 else if (tokens[idx] == "host")

1163 {

1164 idx++; // next token

1165 if (tokens.Length == idx)

1166 {

1167 traceLog.WriteLine("\n[ACL.ParseDest] % Incomplete Command−
Host IP Address expected");

1168 errorLog.WriteLine("% Incomplete Command− Host IP Address
expected", lexer, "EOL", bVerbose);

1169 return NO_TOKENS;

1170 }

1171 isHost = true;

1172 //

1173 // TBA: Optional [Hostname] param.

1174 //

1175 }

1176 if (Regex.IsMatch(tokens[idx], IPv4ADDRESS))

1177 {

1178 // TBA: extra validation for IP Addrs, host or network? (

1.0.0.0-255.255.255.254 ?)

1179 // To set isHost flag or not. Can we use bills isip()

function?

1180 //

1181 // Lionels IP class: DOESNT WORK (range seems to be:

2.0.0.1-255.255.255.254 !?)

1182 //IPOperations v = new IPOperations();

1183 //if (! v.isValidIPv4(tokens[idx]))

1184 //{

1185 // // TEMP

1186 // traceLog.WriteLine("[ACL.ParseDest] % INVALID SOURCE IP: " +

tokens[idx]);

1187 // errorLog.WriteLine("% INVALID SOURCE IP ", lexer, tokens[idx],

bVerbose);

1188 // return 1;

1189 //}

1190 traceLog.WriteLine(" [ACL.ParseDest] valid IP Address: " + tokens[

idx]);

1191 this.SourceIP = tokens[idx];

1192 if (isHost)

1193 {

1194 this.SourceWildcard = " 0 .0 .0 .0 ";
1195 return SUCCESS; // valid rule

1196 }

1197 idx++; // next token

1198 if (tokens.Length == idx)

1199 {

1200 traceLog.WriteLine(" [ACL.ParseDest] % Incomplete Command−
Wildcard expected");

1201 errorLog.WriteLine("% Incomplete Command− Wildcard expected",
lexer, "EOL" , bVerbose);

1202 return NO_TOKENS;

1203 }

1204 //

1205 // dest-wildcard-mask; network wildcard mask.

1206 //

1207 if (Regex.IsMatch(tokens[idx], IPv4ADDRESS))

1208 {

1209 // TBA: wildcard matching? and/or validation for wildcard mask

1210 // (must be a.b.c.d; a <= b <= c <= d e.g. 0.0.7.255)??

1211 // Could use Bill iswildcard() method?

1212 traceLog.WriteLine(" [ACL.ParseDest] valid Wildcard: " + tokens

[idx]);

1213 this.SourceWildcard = tokens[idx];

1214 }

1215 else

1216 {

1217 traceLog.WriteLine(" [ACL.ParseDest] % Invalid Input Detected −
Wildcard Mask: " + tokens[idx]);

1218 errorLog.WriteLine("% Invalid Input Detected − Wildcard Mask",
lexer, tokens[idx], bVerbose);

1219 return 3;

1220 }

1221 }

1222 else

1223 {

1224 traceLog.WriteLine(" [ACL.ParseDest] % Invalid Input Detected − IP
Address: " + tokens[idx]);

1225 errorLog.WriteLine("% Invalid Input Detected − IP Address", lexer,

tokens[idx], bVerbose);

1226 return INVALID;

1227 }

1228 return SUCCESS;

1229 }

1230

1231

1232 /// <summary>

1233 /// Parse the Optional Established Param; only valid for TCP protocol rule

.

1234 /// </summary>

1235 /// <param name="tokens"></param>

1236 /// <param name="idx"></param>

1237 /// <returns>

1238 /// 0 Success

1239 /// 1 No tokens

1240 /// 2 Invalid log param

1241 /// </returns>

1242 private int ParseEstablished(string[] tokens, ref int idx)

1243 {

1244 idx++; // next token

1245 if (idx == tokens.Length)

1246 {

1247 return NO_TOKENS; // no more tokens

1248 }

1249 if (Regex.IsMatch(this.Protocol, TCP) && tokens[idx] == "established"
)

1250 {

1251 traceLog.WriteLine(" [ACL.ParseEstablished] valid established param
");

1252 this.Log = true;

1253 }

1254 else

1255 {

1256 idx--;

1257 return INVALID;

1258 }

1259 return SUCCESS;

1260 }

1261

1262

1263 /// <summary>

1264 /// Parse the Optional [icmp-type[icmp-code]|icmp-name] Params; only valid

for ICMP protocol.

1265 /// </summary>

1266 /// <param name="tokens"></param>

1267 /// <param name="idx"></param>

1268 /// <returns>

1269 /// 0 Success

1270 /// 1 No Tokens

1271 /// 2 Invalid icmp param

1272 /// 3 No Tokens, No icmp-code

1273 /// 4 Invalid icmp-code value, after consuming valid icmp-type param

1274 /// </returns>

1275 private int ParseICMPType(string[] tokens, ref int idx)

1276 {

1277 //

1278 // Optional [icmp-type|icmp-name].

1279 //

1280 idx++; // next token

1281 if (idx == tokens.Length)

1282 {

1283 return NO_TOKENS;

1284 }

1285 if (Regex.IsMatch(this.Protocol, ICMP) && Regex.IsMatch(tokens[idx],

ICMP_NAME))

1286 {

1287 // Valid icmp-name.

1288 traceLog.WriteLine(" [ACL.ParseICMPType] valid icmp−name: " +

tokens[idx]);

1289 // TBA: Store icmp-name value?

1290 return SUCCESS;

1291 }

1292 else if (Regex.IsMatch(this.Protocol, ICMP) && Regex.IsMatch(tokens[

idx], ICMP_TYPE))

1293 {

1294 // Valid icmp-type.

1295 traceLog.WriteLine(" [ACL.ParseICMPType] valid icmp−type: " +

tokens[idx]);

1296 }

1297 else

1298 {

1299 idx--; // not icmp param

1300 return 2;

1301 }

1302 //

1303 // icmp-code <0-255>; mandatory if icmp-type consumed.

1304 // TBA: validation for icmp-code (e.g. icmp-type=8 "echo" icmp-code=0.

1305 //

1306 idx++; // next token

1307 if (idx == tokens.Length)

1308 {

1309 return 3; // no tokens after valid icmp-type param consumed

1310 }

1311 if (Regex.IsMatch(tokens[idx], ICMP_CODE))

1312 {

1313 // Valid icmp-code.

1314 traceLog.WriteLine(" [ACL.ParseICMPType] valid icmp−code: " +

tokens[idx]);

1315 }

1316 else

1317 {

1318 // Not a valid icmp-code.

1319 traceLog.WriteLine(" [ACL.ParseICMPType] % Invalid Input Detected −
icmp−code: " + tokens[idx]);

1320 errorLog.WriteLine("% Invalid Input Detected − icmp−code ", lexer,

tokens[idx], bVerbose);

1321 return 4;

1322 }

1323 // TBA: Store icmp-type & icmp-code values?

1324 return SUCCESS;

1325 }

1326

1327

1328 /// <summary>

1329 /// Parse Optional [igmp-type]; for IGMP protocol only.

1330 /// </summary>

1331 /// <param name="tokens"></param>

1332 /// <param name="idx"></param>

1333 /// <returns>

1334 /// 0 Success

1335 /// 1 No Tokens

1336 /// 2 Invalid igmp-type

1337 /// </returns>

1338 private int ParseIGMPType(string[] tokens, ref int idx)

1339 {

1340 idx++; // next token

1341 if (idx == tokens.Length)

1342 {

1343 return NO_TOKENS;

1344 }

1345 if (Regex.IsMatch(this.Protocol, IGMP) && Regex.IsMatch(tokens[idx],

IGMP_TYPE))

1346 {

1347 // Valid igmp-type.

1348 traceLog.WriteLine(" [ACL.ParseIGMPType] valid igmp−type: " +

tokens[idx]);

1349 }

1350 else

1351 {

1352 idx--; // not igmp param

1353 return 2;

1354 }

1355 // TBA: Store igmp-type?

1356 return SUCCESS;

1357 }

1358

1359

1360 /// <summary>

1361 /// Parse the Optional [precedence precedence-value] Params.

1362 /// </summary>

1363 /// <param name="tokens"></param>

1364 /// <param name="idx"></param>

1365 /// <returns>

1366 /// 0 Success

1367 /// 1 No Tokens

1368 /// 2 Invalid precedence param

1369 /// 3 No Tokens, No precedence value

1370 /// 4 Invalid precedence value, after consuming valid precedence

param

1371 /// </returns>

1372 private int ParsePrecedence(string[] tokens, ref int idx)

1373 {

1374 //

1375 // Optional [precedence] keyword.

1376 //

1377 idx++; // next token

1378 if (idx == tokens.Length)

1379 {

1380 return NO_TOKENS;

1381 }

1382 if (tokens[idx] != "precedence")

1383 {

1384 idx--; // not precedence param

1385 return 2;

1386 }

1387 //

1388 // precedence-value <0-7>, or Named precedence value

1389 //

1390 idx++; // next token

1391 if (idx == tokens.Length)

1392 {

1393 return 3; // no tokens after valid precedence param consumed

1394 }

1395 if (Regex.IsMatch(tokens[idx], PRECEDENCE))

1396 {

1397 // Valid precedence number/name.

1398 traceLog.WriteLine(" [ACL.ParsePrecedence] valid Precedence Value:
" + tokens[idx]);

1399 }

1400 else

1401 {

1402 // Not a valid precedence value.

1403 traceLog.WriteLine(" [ACL.ParsePrecedence] % Invalid Input Detected
− Precedence: " + tokens[idx]);

1404 errorLog.WriteLine("% Invalid Input Detected − Precedence ", lexer

, tokens[idx], bVerbose);

1405 return 4;

1406 }

1407 // TBA: Store precedence value?

1408 return SUCCESS;

1409 }

1410

1411

1412 /// <summary>

1413 /// Parse the Optional [dscp dscp-value] Params.

1414 /// </summary>

1415 /// <param name="tokens"></param>

1416 /// <param name="idx"></param>

1417 /// <returns>

1418 /// 0 Success

1419 /// 1 No Tokens

1420 /// 2 Invalid precedence param

1421 /// 3 No Tokens, No precedence value

1422 /// 4 Invalid precedence value, after consuming valid precedence

param

1423 /// </returns>

1424 private int ParseDSCP(string[] tokens, ref int idx)

1425 {

1426 //

1427 // Optional [dscp] keyword.

1428 //

1429 idx++; // next token

1430 if (idx == tokens.Length)

1431 {

1432 return NO_TOKENS;

1433 }

1434 if (tokens[idx] != "dscp")

1435 {

1436 idx--; // not DSCP keyword

1437 return 2;

1438 }

1439 //

1440 // DSCP value <6 bits: 0-63>, or Named DSCP value.

1441 //

1442 idx++; // next token

1443 if (idx == tokens.Length)

1444 {

1445 return 3; // no tokens after valid DSCP keyword consumed

1446 }

1447 if (Regex.IsMatch(tokens[idx], DSCP))

1448 {

1449 // Valid DSCP number/name.

1450 traceLog.WriteLine(" [ACL.ParseDSCP] valid DSCP Value: " + tokens[

idx]);

1451 }

1452 else

1453 {

1454 // Not a valid precedence value.

1455 traceLog.WriteLine(" [ACL.ParseDSCP] % Invalid Input Detected −
DSCP: " + tokens[idx]);

1456 errorLog.WriteLine("% Invalid Input Detected − DSCP ", lexer,

tokens[idx], bVerbose);

1457 return 4;

1458 }

1459 // TBA: Store DSCP value?

1460 return SUCCESS;

1461 }

1462

1463

1464 /// <summary>

1465 /// Parse the Optional [tos tos-value] Params.

1466 /// </summary>

1467 /// <param name="tokens"></param>

1468 /// <param name="idx"></param>

1469 /// <returns>

1470 /// 0 Success

1471 /// 1 No Tokens

1472 /// 2 Invalid tos param

1473 /// 3 No Tokens, No tos value

1474 /// 4 Invalid tos value, after consuming valid tos param

1475 /// </returns>

1476 private int ParseTos(string[] tokens, ref int idx)

1477 {

1478 //

1479 // Optional [tos] keyword.

1480 //

1481 idx++; // next token

1482 if (idx == tokens.Length)

1483 {

1484 return NO_TOKENS;

1485 }

1486 if (tokens[idx] != "tos")

1487 {

1488 idx--; // not TOS param

1489 return 2;

1490 }

1491 //

1492 // TOS Value <0-15>, or Named TOS value

1493 //

1494 idx++; // next token

1495 if (idx == tokens.Length)

1496 {

1497 return 3; // no tokens after valid TOS keyword consumed

1498 }

1499 if (Regex.IsMatch(tokens[idx], TOS))

1500 {

1501 // Valid TOS number/name.

1502 traceLog.WriteLine(" [ACL.ParseTos] valid tos Value: " + tokens[idx

]);

1503 }

1504 else

1505 {

1506 // Not a valid tos value.

1507 traceLog.WriteLine(" [ACL.ParseTos] % Invalid Input Detected − tos :
" + tokens[idx]);

1508 errorLog.WriteLine("% Invalid Input Detected − tos ", lexer,

tokens[idx], bVerbose);

1509 return 4;

1510 }

1511 // TBA: Store tos value?

1512 return SUCCESS;

1513 }

1514

1515

1516 /// <summary>

1517 /// Parse the Optional Log Param.

1518 /// </summary>

1519 /// <param name="tokens"></param>

1520 /// <param name="idx"></param>

1521 /// <returns>

1522 /// 0 Success

1523 /// 1 No tokens

1524 /// 2 Invalid log param

1525 /// </returns>

1526 private int ParseLog(string[] tokens, ref int idx)

1527 {

1528 idx++; // next token

1529 if (idx == tokens.Length)

1530 {

1531 return NO_TOKENS; // no more tokens

1532 }

1533 if (Regex.IsMatch(tokens[idx], LOG))

1534 {

1535 traceLog.WriteLine(" [ACL.ParseLog] valid log param");

1536 this.Log = true;

1537 }

1538 else

1539 {

1540 idx--;

1541 return INVALID;

1542 }

1543 return SUCCESS;

1544 }

1545

1546

1547 /// <summary>

1548 /// Parse the Optional [time-range time-range-name] Params.

1549 /// </summary>

1550 /// <param name="tokens"></param>

1551 /// <param name="idx"></param>

1552 /// <returns>

1553 /// 0 Success

1554 /// 1 No Tokens

1555 /// 2 Invalid time-range param

1556 /// 3 No Tokens, No time-range-name

1557 /// 4 Invalid time-range-name value, after consuming valid time-

range param

1558 /// </returns>

1559 private int ParseTimeRange(string[] tokens, ref int idx)

1560 {

1561 //

1562 // Optional [time-range].

1563 //

1564 idx++; // next token

1565 if (idx == tokens.Length)

1566 {

1567 return NO_TOKENS;

1568 }

1569 if (tokens[idx] != "time−range")

1570 {

1571 idx--; // not time-range param

1572 return 2;

1573 }

1574 //

1575 // time-range-name

1576 //

1577 idx++; // next token

1578 if (idx == tokens.Length)

1579 {

1580 return 3; // no tokens after valid time-range param consumed

1581 }

1582 // TBA: should really be checking a symbol table; time-range-name

should be defined before use

1583 if (Regex.IsMatch(tokens[idx], ALPHASTART))

1584 {

1585 // Valid time-range-name.

1586 traceLog.WriteLine(" [ACL.ParseTimeRange] valid time−range: " +

tokens[idx]);

1587 }

1588 else

1589 {

1590 // Not a valid time-range-name.

1591 traceLog.WriteLine(" [ACL.ParseTimeRange] % Invalid Input Detected
− time−range: " + tokens[idx]);

1592 errorLog.WriteLine("% Invalid Input Detected − time−range ", lexer

, tokens[idx], bVerbose);

1593 return 4;

1594 }

1595 // TBA: Store time-range?

1596 return SUCCESS;

1597 }

1598

1599

1600 /// <summary>

1601 /// Parse the Optional Fragments Param.

1602 /// </summary>

1603 /// <param name="tokens"></param>

1604 /// <param name="idx"></param>

1605 /// <returns>

1606 /// 0 Success

1607 /// 1 No tokens

1608 /// 2 Invalid param

1609 /// </returns>

1610 private int ParseFragments(string[] tokens, ref int idx)

1611 {

1612 idx++; // next token

1613 if (idx == tokens.Length)

1614 {

1615 return NO_TOKENS; // no more tokens

1616 }

1617 if (tokens[idx] == "fragments")

1618 {

1619 traceLog.WriteLine(" [ACL.ParseFragments] valid fragments param");

1620 this.Log = true;

1621 }

1622 else

1623 {

1624 // Last param, so invalid even though its optional.

1625 traceLog.WriteLine(" [ACL.ParseFragments] % Invalid Input Detected:
" + tokens[idx]);

1626 errorLog.WriteLine("% Invalid Input Detected ", lexer, tokens[idx

], bVerbose);

1627 return INVALID;

1628 }

1629 return SUCCESS;

1630 }

1631

1632

1633 }

1634 }

	Abstract
	Introduction
	Context
	Aims and Objectives
	Background
	Security Policies
	Firewalls
	Packet Filtering Firewalls

	Thesis Structure

	Literature review
	Introduction
	Security Policies
	Enforcing Policies
	Policy Enforcement Problems
	Policy Enforcement Solutions

	Firewall Policy Management Systems
	Introduction
	Factors used to Compare Systems
	SDLC Development Phase
	SDLC Implementation Phase
	SDLC Operation and Maintenance Phase

	Conclusions

	Design
	Introduction
	Framework Design
	Motivation
	Policy Model
	Analysis Systems
	Configuration Deployment

	Firewall Policy Validation Tool Design
	Design Motivation
	Interface
	Design Overview
	Lexical Analysis
	Syntactic Analysis
	Intermediate Code Generation and Optimization
	Output Configuration Generation

	Evaluation Tool Design
	Design Conclusions

	Implementation
	Introduction
	CRIP Tool Implementation
	Interface
	Lexical Analysis
	Syntactic Analysis
	Intermediate Code Generation and Configuration Output Implementation

	CRIPE Tool Impementation
	Evaluation User Interface

	Implementation Conclusions

	Evaluation
	Introduction
	CRIP Validation Evaluation
	Hand Crafted Rules
	Synthetic Rules

	Performance Evaluation
	Evaluation Conclusions

	Conclusion
	Aim and Objectives
	Objective 1. Investigate and review the extensive literature in the fields of policy-based security and in particular firewall policy management
	Objective 2. Design a tool to perform the non-trivial task of off-line firewall policy validation, based around firewall device configurations
	Objective 3. Implement and test the system, using appropriate tools to realise the design specifications.
	Objective 4. Evaluate the performance of the prototype system, validating its performance using experiments with realistic data sets
	Objective 5. Investigate and propose a framework, which the policy validation tool could integrate with, to support system administrators in the management of firewall policies

	Future Work
	XML-Based Framework
	CRIP Tool

	References
	Acronyms
	Project Management
	CRIP Tool Source Code

