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Abstract 

 

This thesis describes the development of technical guidance on timber facade design. 

The study involved a state-of-the-art review; an exposure trial of external cladding 

made from Sitka spruce (Picea sitchensis) and the production of construction details 

and associated information. It was undertaken because timber is an increasingly 

common cladding material in the UK, being used on low-rise residential buildings and 

for medium-rise and non-domestic buildings. The risks have, therefore, increased but 

this is not reflected in published guidance. Sitka spruce was used due to its 

availability in the UK and its similarity to Norway spruce (P. abies) which is widely 

used for cladding in Scandinavia. 

 

The exposure trial indicated that the moisture content range in timber facades is wider 

than accepted. The minimum moisture content of around 10% appears to be similar 

for all types of timber cladding and all species. The maximum appears to vary 

between species according to their fibre saturation point and is influenced by 

construction detailing and workmanship. A preliminary model of these interactions is 

proposed. 

 

From a theoretical standpoint, the moisture conditions observed in the trial mean that 

the (commonly quoted) mean moisture content is all but irrelevant. The mode is a 

more representative statistic as in most cases the data are skewed towards the fibre 

saturation point for the species concerned. Most detailing combinations had a 

moisture content near to the fibre saturation point throughout the winter. Sitka spruce 

is, therefore, only suitable as external cladding in the UK if preservative treated. 

 

Around 40 construction details were produced. They integrate, for the first time, all of 

the performance requirements applicable to low- and medium-rise timber facades in 

the UK. The work’s key benefit is that the guidance arising from this study 

rationalises and improves facade design. Further research is, however, needed to 

validate the moisture content model and extend it to other timber species. 
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Chapter 1 

Introduction 

 

 

During most of the 20th century timber facades in the UK were mainly restricted to low-

rise and often low-status construction, such as social housing, occasional rural 

dwellings, and agricultural and forestry buildings. This has now changed. During the 

past 15 years timber facades have become increasingly common on mainstream 

housing, larger buildings and for demanding non-domestic applications such as schools, 

visitor centres and the like. The burgeoning interest in timber as a facade material has 

several implications. This thesis addresses three: 

 

• the associated risks, such as fire spread, have increased; 

• the underlying science and technology lag behind architectural practice;  

• there is a growing interest in UK grown timber, but supply is fragmented. 

 

1.1 Background 
 

In 2001 the Scottish Executive commissioned the author to lead on the development of 

a policy discussion document titled Timber Cladding in Scotland [1]. Although little 

more than a well illustrated literature review, the publication attracted a lot of interest 

and is credited with being a key influence in the development of timber facades in the 

UK. One architectural practice, for example, commented [2]: 
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‘… more and more of the design we are now doing with Dualchas is moving away 
from the white render (sic) slate building to using timber and tin. This was made 
easier for us when the Scottish Executive brought out a publication called Timber 
Cladding in Scotland, which demonstrates the history of timber-clad buildings in 
Scotland… (and) promotes the use of well detailed timber buildings. Our 
immediate response was to send a copy to our local planner …’  

 

The publication highlighted a number of issues and opportunities, of which the potential 

for using UK grown spruce as external cladding was particularly noteworthy. This led 

to the author being commissioned to raise the funding for, and then establish, a research 

project to address this topic and its wider context. In its final form the project spanned 

Scotland, western Norway, the Faroe Islands and Iceland; the title was External Timber 

Cladding in Maritime Conditions (ETC) [3]. Two thirds of the project budget, of almost 

one million euro, came from the European Union’s Northern Periphery Programme [4] 

with the remainder from government and industry. The research tasks were put out to 

tender under the supervision of a project steering group comprising the national co-

funders.  

 

In 2003 the author joined Edinburgh Napier University’s newly established Centre for 

Timber Engineering and secured a £125,000 contract from the project to run an 

exposure trial of timber cladding and, based on this, produce a manual for facade design 

and construction. Funding was also available to publish the manual (see Appendix 1). 

Other research contractors included BRE, the Norwegian Building Research Institute 

(NBRI) and Forest Research. 

 

 

1.2 Defining the gap 
 

During the past decade, facade engineering has emerged as a specialism; it can be 

defined as: ‘the art of resolving aesthetic, environmental and structural issues to 

achieve the enclosure of habitable space’ [5]. Unfortunately, facade engineers have 

tended to ignore timber in favour of more conventional engineering materials like 

concrete, steel and glass. Timber exteriors are mostly designed by architects and timber 

specialists working outwith the discipline of facade engineering. This split is 

understandable given that timber facades were until recently mostly restricted to low 

rise, and often low-status, buildings. Nonetheless, it has resulted in two parallel 
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specialisms: external timber cladding design is concerned with facades made 

predominantly of wood, whilst facade engineering focuses on building envelopes of 

other materials. Consequently, the main performance standard for facades in the UK [6] 

largely ignores timber, whilst the guidance on timber cladding [4] [7] only covers a 

limited range of topics. Nowadays, timber is being used on all types of facades and so 

this separation is unworkable. A new approach is needed. 

 

Facades made of timber are more complex to design and construct than those of 

equivalent size made of other materials such as metal or masonry. Yet, when compared 

to these other materials, the technical information on timber facades is very limited. 

Timber facades have received surprisingly little serious research attention, with the 

result that much of what is published is, at best, incomplete and at worst wrong. It is, 

therefore, not a surprise that timber cladding has, for several years, been TRADA 

Technology’s most common continuing professional development request as well as 

being a frequent source of technical enquiries and expert witness contracts.  

 

This author has had a similar experience, with enquiries and consultancy contracts 

spanning eight themes: 

 

1. Fungal decay and insect attack. Most publications on timber facade technology 

review durability issues from their own national perspective without acknowledging 

that other approaches are possible. Timber’s resistance to fungal decay is often 

presented as an intrinsic characteristic of the material whereas it is in reality an 

extrinsic phenomenon. It is, particularly in out-of-ground-contact conditions, 

affected by the standard of design, construction and maintenance as well as the 

ambient climate. Thus, for example, although wood scientists in Norway discuss the 

service life of timber cladding largely in terms of design-for-durability and 

maintenance, their equivalents in the UK tend to focus on decay resistance whilst 

virtually ignoring environmental control mechanisms. The relevant British Standard 

[8] is similarly restricted. It states that the service life of low durability timber in 

out-of-ground-contact conditions is around 15 years in the UK (i.e. it implies that 

decay resistance is an intrinsic material attribute) but fails to acknowledge that low 

durability timber can, in some circumstances, have a longer service life due to 

extrinsic factors such as design and maintenance. 
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2. Weathering. The recent fashion for uncoated timber cladding is resulting in a 

growing number of disputes where the facade has not weathered as expected. 

Surface coatings are one way of addressing this problem but they too have their 

problems as manufacturers and suppliers tend to overstate their effectiveness. Two 

current challenges are the growing use of so called ‘ecological paints’ in external 

conditions, and the trend towards using surface coatings as a way of preventing 

flame retardants being leached out. The relevant European Standard [9], and 

guidance documents supporting the UK’s building regulations [10 11 12], all fail to 

acknowledge leaching risks with exterior flame retardants.  

 

3. Dimensional change. The most widely referenced publications on timber facades in 

the UK [7] [13] [14] underestimate the dimensional change that occurs in external 

timber or give incorrect guidance on how it is accommodated. This leads to frequent 

– and expensive – cladding failures. The problem is partly due to the guidance 

mainly focusing on the movement that occurs in indoor conditions where the 

moisture content of timber is only fluctuating within a narrow part of its 

hygroscopic region; bulk wetting is usually ignored. 

 

4. Corrosion. Although the corrosion of metals by wood is well understood, this 

knowledge is not readily available with the result that much of the industry guidance 

on timber cladding is incomplete or incorrect on this subject. This is a growing 

problem as the corrosion risks are tending to increase due to the recent introduction 

of relatively corrosive cladding products such as those made from Accoya™, or 

impregnated with alternatives to chromated-copper-arsenate (CCA) wood 

preservatives. 

 

5. Structural robustness. Structural engineers have recently been made responsible 

for certifying that timber cladding complies with Scottish Building Regulations; this 

is highlighting that some timber cladding on medium-rise buildings is not robust. 

This problem is compounded by a lack of knowledge regarding the moisture content 

conditions within the facade assembly; this has implications for the strength and 

stiffness of cladding support battens and the withdrawal capacity of fixings. 

 

6. Fire safety. The fire performance of timber facades is not fully understood. This is 

being addressed in several countries, including Scotland, and new knowledge is 

- 
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emerging. However, several issues remain unresolved or are widely misunderstood. 

Those of most relevance to this thesis concern cavity barrier design, the 

combustibility requirements for cladding near to boundaries between dwellings, 

eaves detailing, open jointed cladding and the service life of flame retardants in 

external conditions. All of these topics affect, or are affected by, the moisture 

conditions in timber facades.  

 

7. Noise. In terraced and other multi-occupancy dwellings, the facade is subject to 

acoustic performance requirements wherever the external building envelope meets a 

separating wall or floor. Although the design of these junctions is well understood 

on masonry clad facades there is less knowledge of how acoustic separation is 

achieved in timber clad buildings. One risk is that detailing taken from masonry 

facades results in water entrapment when used with timber cladding. 

 

8. Grading. Several sets of grading rules exist to guide timber selection for external 

cladding; the most commonly used in the UK is given in BS 1186-3 [14]. The 

criteria are typically derived from those for internal joinery (e.g. knot size and 

frequency) and do not adequately address durability and other fitness-for-purpose 

issues relevant to external cladding. In any case the grades are often ignored. 

 

So long as timber facades were uncommon in the UK, this lack of reliable technical 

knowledge was of little importance. The UK market for timber cladding has, however, 

grown by at least 10 % per annum for over a decade and now encompasses medium-rise 

and non-domestic buildings as well as low-rise housing (see Chapter 3). The associated 

risks have, therefore, increased and so improved knowledge is urgently needed.  

 

This problem is exacerbated by the move from prescriptive to performance-based 

standards and regulations. Many norms now give performance criteria for building 

components but no indication of how these can be delivered. In theory this role should 

be filled by industry codes of practice, but, although these have been published for most 

facade materials, none has been issued for timber. This omission may be understandable 

in view of the confused state of some current building regulation guidance on this topic. 

 

Timber facades have to meet three main performance requirements in building 

regulations: life safety, noise reduction and durability. The building regulation guidance 
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for timber facades in the UK has prioritised the life safety issues related to fire whilst 

giving less consideration to noise or durability. Indeed, the guidance contains a 

recurrent conflict between these requirements, with the result that moisture related 

issues are often overlooked. 

 

The resultant gap can be summarised as follows:  

 

• There is insufficient knowledge of the moisture conditions in timber facades; 

 

• There is a lack of integration between research into the life safety, acoustics and 

durability of timber facades; 

 

• There is a lack of adequate, integrated and practice-oriented technical guidance. 

 

This gap appears to be causing a growing number of cladding failures. It may result in 

designers abandoning timber in favour of more predictable facade materials. 

 

1.3 Objectives and scope of this PhD 
 

The gap outlined above is a particular challenge for designers and manufacturers who 

want to use UK grown timber as external cladding. The UK does not produce enough 

relatively durable timber to support a major increase in supply, especially now that 

much UK larch seems likely to be decimated by the Phytophthora ramorum epidemic 

spreading from southwest England [15]. Accordingly, lower durability timbers, such as 

spruce (Picea spp), appear to be the main option for growth, but it is unclear how they 

should be used. In most of Scandinavia, Norway spruce (Picea abies) is the main 

external cladding timber (Figure 1.1); it is used without preservative treatment, except 

for a narrow coastal zone in western Norway and on the Faroe Islands. Scandinavians 

argue that the timber is suitable for this application due to its refractory nature (i.e. pits 

in the cell wall close during initial drying, thereby acting to limit the depth of 

subsequent preservative impregnation). Sitka spruce (P. sitchensis) is an equally 

refractory species. If this characteristic is also useful for limiting water uptake in 

external cladding then could one of the timber’s main limitations be turned into a 

benefit? 
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Figure 1.1 Late 19th century timber cladding in Trondheim, Norway. Similar facades 

are found in most towns in western Norway; they were constructed using untreated 

European whitewood and redwood (Picea abies and Pinus sylvestris) These facades 

illustrate that durability class 3 to 5 timber in combination with elaborate detailing can 

achieve a long service life providing it is designed for durability and regularly 

maintained. Key measures include metal flashings on all horizontal projections, the 

avoidance of water traps, an opaque surface coating with fungicidal protection and the 

rapid replacement of any component that fails. 
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Not all timber facade designers and suppliers are interested in UK timber. However, 

they do all need improved technical guidance. The objectives of this thesis are, 

therefore, to:  

 

1. Investigate the extent to which UK grown Sitka spruce can be used as a facade 

material; 

 

2. Generalise these results to provide new knowledge of the moisture conditions in 

timber cladding and their implications for construction detailing; 

 

3. Help reconcile the conflicting performance requirements in the guidance to building 

regulations and thereby lay the foundation for a UK code of practice for external 

timber cladding. 

 

Although focused on external timber cladding, the thesis is applicable all timber on the 

outside of buildings in the UK, this includes siding, rainscreen cladding, shingles and 

similar roof coverings, and large-section timbers such as log buildings and exposed 

structural frames. Many of the findings are also transferable to other temperate oceanic 

climates such as: western Norway, Ireland, the Faroe Islands, coastal British Columbia, 

southern Chile, the Falklands, and southern parts of Tasmania and New Zealand.  

 

1.4 Research questions 
 
The research questions are deliberately practice-oriented. They have four themes: 

 

1. What performance requirements are relevant to timber facades? How do 

different types and designs of timber facade perform against these requirements? Do 

these characteristics differ from those of other facade materials?  

 

2. How wet does it get? What is known about moisture conditions in timber facades? 

What is the intensity and duration of wetting when Sitka spruce is used on a facade? 

What interaction of factors influences this? Can these data be generalised?  

 

3. What implications does this have? Can Sitka spruce be used as external cladding 

in the UK without preservative treatment? What effects will the predicted moisture 
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conditions have upon performance? How are these effects controlled? How can 

these controls be integrated with design for fire safety and noise reduction? 

 

4. What does this mean for facade design and construction? What evidence-based 

construction details can be currently developed?  

 

 

1.5 Thesis structure 
 

Chapter 2: reviews current knowledge of moisture conditions in facades of buildings in 

temperate oceanic climates. 

 

Chapter 3: outlines the market context for this research. It considers the market size 

and key drivers, the move to performance-based design and investigates workmanship 

standards. 

 

Chapter 4: defines the performance requirements relevant to timber facades in the UK. 

 

Chapter 5: discusses the nature and behaviour of timber as a facade material.  

 

Chapter 6: reports on an exposure trial to investigate the interaction of factors 

influencing moisture conditions in external timber cladding.  

 

Chapter 7: synthesises the findings of previous chapters to produce outline 

specifications and a decision support tool to guide timber facade design. 

 

Chapter 8: develops a suite of construction details for timber cladding on low- and 

medium-rise buildings in the UK.  

 

Chapter 9: gives the conclusions and recommendations for further work. 

 

Appendix 1: gives details of publications derived from this thesis.  

 

Appendix 2: gives examples of common cladding defects. 
 

Appendix 3: includes a compact disc of the exposure site data.  
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1.6 Contribution to knowledge 
 

Cross-disciplinary in nature, and practical in intent, the thesis is original in the sense 

that it:  

 

1. Undertakes the first-large scale exposure trial of the construction detailing factors 

affecting moisture conditions in external timber cladding; 

 

2. Develops a preliminary predictive model of moisture conditions in external timber 

cladding; 

 

3. Synthesises these results with existing knowledge of the fire safety and acoustic 

performance of timber facades; 

 

4. Uses this synthesis to inform the development of evidence-based construction 

details for timber clad facades that reconcile their conflicting performance 

requirements; 

 

5. Provides much of the technical background from which a UK code of practice for 

external timber cladding can be drafted. 
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Chapter 2 

Moisture 

 

 

A web search on ‘leaky condo’ in early 2010 revealed over 140,000 pages, many by 

angry North Americans looking for someone to sue. A condominium – condo for short 

– is an American term for a flat in an apartment block, and the leaks in question are in 

the external walls of condos; they have been appearing since the mid 1980s, in and 

around Vancouver and Seattle, both west coast cities with temperate coastal climates. 

The leaks were most common with acrylic render (termed stucco in North America), 

but also appeared in plastic, metal, masonry and timber-clad buildings [1].  

 

The leaky condo debacle stimulated extensive research in Canada and elsewhere, 

highlighting a number of contributory factors, with poor moisture management within 

the building envelope appearing as a common theme. As a result, much attention has 

been focused upon the outer layers of the building envelope, particularly the moisture 

conditions in the cladding and cavity [2]. The key question being how should facades 

be designed to minimise the risks of moisture related degradation? 
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2.1 Cool-temperate oceanic and island climates 

 

This thesis is most applicable to the four regions of the world sharing a cool-temperate 

oceanic and island climate (Figure 2.1). Although the exact boundaries vary depending 

upon the indicators used to define it, this climatic zone is usually taken to comprise:  

 

• the north west coastal fringe of Europe from Brittany up to the Lofoten Islands,  

• the Pacific Northwest from the Olympic peninsula up to southern Alaska;  

• Southern Chile and the Falkland Islands;  

• Tasmania, southern Victoria and southern New Zealand.  

 

In this zone, cool summers and relatively mild winters are the norm, rainfall occurs in 

every month, and the weather is changeable and windy. None of these characteristics is  

unique to the zone but, taken together, they create a distinct set of conditions found 

nowhere else.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The cool-temperate oceanic and island climate zone 
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The climatic characteristics of relevance to this thesis are [3]: 

 

• West coasts around 40° to 70° latitude; this zone is subject to regular storm 

fronts moving east along the paths of the circumpolar jet steams. 

 

• Oceanic climates; the ocean has a warming effect on all four areas. The North 

Atlantic Current (gulf stream) has a particular impact as it pushes the temperate 

oceanic zone further north in Europe than would otherwise be the case. There is 

also a marked contrast with continental climates further inland. 

 

• Relatively high precipitation; annual precipitation on the west coasts of these 

regions reaches over 2400 mm in many areas and up to 7000 mm in a few. Rainfall 

occurs throughout the year, but peaks in winter. It declines away from the coast.  

 

• Wind-driven rain ; the combination of wind and rain is termed wind-driven rain 

(WDR). The zone is exposed to frequent WDR during much of the year. 

 

This zone does not exactly correspond to any published climate classification. The 

author would, however, argue that it is a justifiable category because it reflects an 

absolute division in timber facade technology. Timber facades in these four areas are 

dominated by the effects of moisture related degradation whereas those in adjacent 

areas are not. A survey of historic log buildings in British Columbia [4], for example, 

highlighted that they occurred in dry interior of the province east of the Bridge River 

and were absent in coastal conditions – this can be explained by log walls having a 

poor resistance to moisture. Similarly, leaky condos occurred near the coast but were 

absent in the dry interior. 

 

 

2.2 Boundary layer climates 

 

Building envelopes are a type of boundary layer climate. All such climates are 

dominated by energy and mass transfer processes operating on timescales of less than 

one day and driven by diurnal solar radiation. These fluxes also vary over an annual 

cycle and are influenced by storms. The effects become smaller and of shorter duration 

the closer one gets to the earth’s surface [5].   
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2.2.1 Wind 

 

The atmosphere below 2 km is characterised by mixing and convection, and by 

frictional drag as the fluid atmosphere moves across the rigid earth. The bottom 10 to 

50 m of the atmosphere experience intense small-scale turbulence, wind speeds 

decrease still further and many effects only last a few seconds. Closer still, there is a 

laminar boundary layer a few millimetres thick creating a buffer between the surface 

and the freer fluid motion above. Meteorologists model wind flow in the boundary 

layer over a large level surface using a logarithmic law [5]: 
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where U(y) is mean windspeed at height y, u*ABL is friction velocity, κ the Von 

Karman constant (0.42) and yo is a variable reflecting upwind surface roughness. 

Surface roughness is often categorised using the Davenport-Wieringa classification 

(Table 2.1) although this is necessarily approximate and is only valid if the surface is 

uniform for at least 10 km upwind.  

 

Table 2.1 The Davenport-Wieringa terrain roughness classification [5] 

 yo  (m) Landscape description 

1 0.0002 

Sea 

Open sea or lake, featureless land surface with a free fetch of several 

kilometres (e.g. tidal flat, desert) 

2 0.005 

Smooth 

Featureless land surface with little vegetation (e.g. beach, fallow 

open country) 

3 0.03  

Open 

Level country with low vegetation and few obstructions (e.g. grazing 

land without windbreaks, moorland, airfield runways) 

4 0.10 

Roughly open 

Cultivated land and open country with occasional obstacles (e.g. 

farmland with low hedges and single rows of trees) 

5 0.25 

Rough 

Recently developed cultivated landscape with high crops and 

scattered obstacles (e.g. dense shelterbelts, vineyards) 

6 0.50 

Very rough 

Old cultivated landscape with many large obstructions separated by 

open space (e.g. farms, orchards, young forests) 

7 1.0  

Closed 

Landscape totally covered with similar sized obstacles (e.g. mature 

forests, homogeneous villages and towns) 

8 ≥ 2.0  

Chaotic 

Centres of large towns with a mix of low- and high-rise buildings, 

also irregular mature forests with clearings. 
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When a moving air mass encounters an impermeable flat roofed building set normal to 

the airflow, it is deflected over the top, around the sides and down the front. This 

creates high pressures over the windward side of the building particularly around the 

upper middle part of the wall where the wind is almost stopped (Figure 2.2). Pressure 

decreases from this point outwards. Accelerating flow near the edges of the wall can 

create suction particularly at sharp corners where the air flow can become separated 

from the building’s surface. The sides, roof and lee face of a building thus experience 

the most pronounced suction effects. Other building shapes and orientations create 

variations on this pattern. Engineers have tended to calculate wind loads on buildings 

using a power law [5]:  
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where )(yU  is a reference wind speed at height refU and Ρα  is a power law exponent 

expressing terrain roughness. Whilst equation 2.1 has a physical background and 

theoretical derivation, equation 2.2 is empirical; the exponent being derived from 

measurement. The log-law and power-law do not exactly coincide.  The calculation of 

wind loads on buildings is described in the relevant norms. 

 

Figure 2.2 Wind tunnel 

simulation of airflow 

around a building. 

(image courtesy of 

BRE [5]) 
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2.2.2 Wind-driven rain  

 

In addition to causing structural loads, wind drives rain into the building envelope 

affecting water penetration and weathering. Raindrop deposition on a facade is greatest 

at the upper and outer edges. Contrary to most people’s perception, WDR variation in 

the UK is not simply north-south but instead increases from southeast to northwest [6]. 

Areas such as Cornwall, the Lake District or western Scotland experience much higher 

WDR loads than London, Newcastle or Inverness.  

 

Discussions are ongoing to develop a European WDR index, although progress has 

stalled due to a lack of methodological consensus. The first wind-driven rain map was 

produced in Norway [7], and this is in the process of being updated [8]. A wind-driven 

rain index has also been published for the UK [9]; it uses two calculation methods. The 

spell index expresses total WDR load during a continuous storm event and is, in effect, 

a measure of the likelihood of rain penetration through masonry. The average annual 

index represents short duration WDR events and is effectively a measure of the 

moisture content of masonry.  

 

Because a Europe-wide WDR map was not available, the ETC project commissioned 

Sellers and Hale [10] to make a preliminary comparison between Scotland, Norway, 

the Faroes and Iceland. Their conclusions were [10 (p18)]: 

 

Iceland has both the lowest wind speeds and the least precipitation of the four 
countries, and therefore the lowest values of WDR (generally below 1 m2 s-1, 
except in the south in the winter months).  The Faroe Islands had low WDR (less 
than 1 m2 s-1) for the three stations which recorded both precipitation and wind 
speed.  However, these values may exceed 2 m2 s-1 in inland areas where the 
precipitation is higher… In Norway… WDR, varies greatly across the country, 
with low values in the north and east, and high values in the south-west, 
especially in the mountainous coastal area around Bergen.  Scotland experiences 
higher wind speeds than Norway, but the peak precipitation is similar, occurring 
on the west coast…  WDR values in both Scotland and Norway diminish greatly 
away from the west coasts. 

 

The authors developed WDR maps of Britain (Figure 2.3) calculated from long-term 

meteorological records as the product of mean monthly wind speed (ms-1) and total 

monthly precipitation (m). Their method is similar to the UK annual index described 

above, except that WDR is calculated monthly. This was done to enable the index to 

be integrated with monthly temperature. The principal degradation mechanism in 
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timber is fungal decay and it is known that this ceases if the timber is frozen and it is 

suppressed below around 5 ºC. Therefore, the risk of timber degradation due to 

moisture may be partly offset by the effect of low winter temperatures. The approach 

appeared promising and so monthly WDR and temperature graphs were produced for 

several sites in Scotland, Norway, the Faroes and Iceland (Figures 2.4 and 2.5 give 

some examples). If the 5 ºC threshold is valid then these figures suggest that WDR is 

of most concern in the Scottish Highlands between April and October.  

Figure 2.3 Seasonal wind-driven rain (m2  s-1) for Britain  

(after Sellers and Hale [10]) 

March June 

September December 
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Figure 2.4 Annual variation 

in WDR (solid line) and 

temperature (dashed line) 

for three sites going west to 

east across the Scottish 

Highlands.  

 

1:  57º 19' N, 5º 19' W 

2:  57º 36' N, 4º 50' W 

3:  58º 25' N, 4º 3' W 

 

(After Sellers and Hale 

[10]) 

Figure 2.5 Annual variation 

in WDR (solid line) and 

temperature (dashed line) 

for four sites in Norway. 

The dotted lines show likely 

variation in the data.   

 

1:   60º 23' N, 5º 20' E 

2:  69º 28' N, 25º 30' E 

3:   59º 56' N, 10º 43' E 

4:  63º 25' N, 10º 26' E 

 

(After Sellers and Hale 

[10]) 

1 Killinan 

2 Garve 

3 Strathy 

1 Bergen 

2 Karasjok 

3 Oslo 

4 Trondheim 
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2.2.3 Predicting WDR on walls 

 

The UK index in BS 8104 [9] has been used in BRE Digest 262 [11] to define WDR 

exposure zones for different types of masonry wall construction (Figure 2.6).  It also 

includes masonry cladding onto a timber-framed structure. However, because the 

method originated with masonry-based construction it is likely that it would need 

recalibration before it could be applied to cladding or insulation made from timber.  

 

Canadian research following the leaky-condo episode provides an alternative 

approach. A survey of building envelope failures in coastal British Columbia [12] 

found a correlation between the frequency of moisture related problems and eaves 

width (Figure 2.7). The main guidance document produced in response to the failures 

[2] proposed a nomograph (Figure 2.8) which used this correlation in combination 

with a simplified version of the Davenport-Wieringa classification. The overhang ratio 

is calculated from the horizontal width of the eaves (or other projection) and its height 

above the lowest timber component on the facade. As with BR 262, the Canadian 

guidance gives recommendations for which types of cladding are suitable in each 

exposure category. This includes timber-based cladding. The Canadian guidance 

appears to be an advance on BR 262 although three issues remain unresolved: 

 

• Evidence; the guidance cautions that some of the wall assemblies it discusses 

have not been fully tested.  

 

• Correlation or causation; the relationship in Figure 2.7 may not be due to 

causation. This author has observed that many of the timber-clad buildings in 

British Columbia with large eaves date from the early 20th century and appear to 

be well built in contrast to the condos dating from the 1980s and 90s which have 

poor workmanship standards. This suggests that workmanship may be a co-factor.  

 

• Limitations of the classifications; as already outlined, terrain roughness 

classifications only give general information on wind flow; they cannot model 

local effects such as wind channelling between buildings. 
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Figure 2.6 WDR exposure zones for masonry walls in BR 262 (map courtesy of 

BRE [11]) 

Locations of the two exposure 

sites in Chapter 6 
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Figure 2.7 Relationship between eaves width and occurrence of building envelope 

failures (after CMHC [2]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Canadian exposure categories for timber facades (figure courtesy of 

CMHC [2]) 
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2.2.4 Heat and mass flow  

 

The interaction between external building envelopes and the atmospheric boundary 

layer is mostly confined to the flow of energy or matter due to molecular exchange. 

Interestingly, the same basic flow relationship is found in many different materials and 

it applies irrespective of whether one is concerned with gaseous or liquid flow, 

moisture diffusion, thermal or electrical conductivity. Heat, for example, will flow 

from areas of high to low temperature, the flow rate being proportional to the 

temperature difference and the rate of molecular collisions. In its most general form 

this flux-gradient relationship is expressed as [5]: 

 

              ×               (2.3) 

 

where flux is the rate of flow per unit cross-sectional area; gradient is the pressure 

difference per unit length causing the flow; and transfer ability is a constant dependent 

upon the type of flow involved, for example, diffusion, permeability or conductivity. 

This relationship was arrived at independently for different types of flow. Thus, 

thermal conductivity is modelled using Fourier’s law, diffusion by Fick’s first law, and 

permeability (fluid flow through porous media) by Darcy’s law. They all express the 

same general relationship, although their exact forms vary depending upon the material 

and transport process involved.  In the case of liquid flow, Darcy’s law is expressed 

[13] as: 

 

  
PPA

QLP
k

∆
=                 (2.4) 

 

where k  is permeability, Q is the flow rate, P∆ is the pressure differential, A is the 

cross sectional area of the specimen and L is the specimen length in the direction of 

flow. 

 

Heat and mass transfer through the building envelope can occur from the atmosphere 

inwards and outwards from an air mass within the building. In cool-temperate oceanic 

and island climates the most important consideration is usually moisture infiltration 

(e.g. water entrapment and leaks) due to wind and rain. These risks are expressed – and 

managed – in different ways to moisture exfiltration. 

Flux of 
an entity 

Ability to 
transfer 

Gradient of the 
relevant property = 
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2.3 Moisture infiltration into the building envelope  

 

Moisture can be driven into a building envelope either through openings between 

components, through components themselves or by a combination of these.  

 

 

2.3.1 Moisture penetration  

 

Discussion of moisture flow into building envelopes tends to be conditioned by the 

type of envelope material involved. Brookes [14] is typical when describing the forces 

acting to drive rainwater through cladding (Figure 2.9), but, in common with most 

other authors, discussion is based solely upon technical guidance published by the 

sheet metal industry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 The forces acting to drive water through an opening (After: Brookes [14]) 
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Whilst the processes outlined in Figure 2.9 apply to all types of facade material, they 

fail to acknowledge the importance of flow through porous materials and are, 

therefore, of limited relevance to timber. Control of rain water penetration into timber 

facades has to take account of moisture flow through the material itself as well as 

through joints. 

 

 

2.3.2 Controlling rainwater penetration 

 

Straube and Burnett [15] offer a more comprehensive discussion. They characterised 

the means by which moisture penetration into building envelopes from external 

sources can be controlled. They note that rain deposited on a wall or roof can either be: 

• Drained; carried down the exterior surface by gravity; 

• Stored;  absorbed by capillarity or held by surface tension (pooling can also occur);  

• Transmitted; be carried further into the building envelope by any of several 

mechanisms including pressure differences, splashing, bulk flow or diffusion. 

On this basis they group building envelopes into three broad categories (Figure 2.10): 

 

• Moisture storage; the oldest strategy is to ensure the building envelope has 

sufficient storage mass to absorb all water not drained by the outer surface. 

Examples include solid masonry or log walls. Their performance depends on several 

factors including the ratio of storage capacity to rainwater load, the material’s 

resistance to moisture related degradation, and the use of eaves and weathering 

courses to deflect rainwater away from the wall. 

 

• Face sealed; the availability of so-called ‘modern’ materials and processing 

methods (e.g. rolled sheet metal, plastics, plate glass and water resistant adhesives) 

has stimulated interest in building envelopes where all rainwater is stopped by a 

watertight layer near the outer face. Acrylic render on rigid insulation is a 

contemporary instance, although structural glazing is probably the best example.  

 

• Screened and drained; in this approach it is assumed that some rainwater will 

always penetrate the outer surface – the screen – and this has to be removed by 

drainage and ventilation before it can damage or penetrate deeper into the wall.  
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Some building envelopes use a hybrid approach. Modern turf roofs, for example, 

combine a large moisture storage capacity with a plastic water-tight layer. This thesis 

is mainly concerned with the screened and drained approach. This offers a 

considerable degree of redundancy to cope with poor workmanship, whereas the face 

sealed approach is less robust. Where workmanship is poor, face sealed envelopes are 

vulnerable to moisture penetration: a leaky-condo-in-waiting as it were. 

In the massive wall approach 

most rainwater drains down the 

outer surface but some 

penetrates the wall where it has 

to be stored (without damage to 

the wall) until it can move back 

to the exterior. 

 

 

 

In the face sealed approach a 

watertight outer layer is used to 

stop rainwater penetrating the 

wall. 

 

 

 

 

In the screened and drained 

approach any rainwater that 

gets through the outer layer is 

allowed to drain and evaporate 

away before it can cause 

damage or penetrate deeper 

into the wall. 

Figure 2.10 Rain control strategies for building envelopes (After: Straube and 

Burnett [15]) 
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2.3.3 Types of screened and drained building envelopes 

 

Although the idea of a screen for the rain has been around for centuries, the scientific 

basis of this form of construction was first investigated in Norway and Canada from 

the late 1940s onwards [16] [17]; much literature has since accumulated although most 

of it is only focused on screening mechanisms relevant to non-porous materials. There 

are, broadly speaking, three types of screened and drained wall: 

 

• Siding; the longest established type involves fixing cladding directly to the 

structural frame or other substrate. A similar approach is used where roof shingles 

are fixed to sarking boards without an intervening cavity. Any moisture penetrating 

the cladding is removed by evaporation to the building’s interior. The approach was 

common on timber-clad housing in the UK until the mid-20th century and is still 

used on non-insulated buildings. Siding remains in use for housing in warm 

climates, but does not work where drying to the interior is prevented by insulation. 

 

• Rainscreen; if cladding is prevented from drying to the interior, then a more 

complex layered construction is required. The cladding is separated from the 

substrate by a drained and, in some cases, ventilated cavity that enables drying and 

provides a capillarity break stopping water from migrating deeper into the wall. As a 

further precaution, the rear face of cavity is made of a moisture resistant material. 

The cavity has to be at least 6 mm wide as this is twice the distance that can be 

spanned by a water droplet. In practice, the cavity is usually at least 10 mm wide to 

allow for constructional and dimensional tolerances and other factors. 

 

• Pressure equalised rainscreen; of the joint leakage forces illustrated in Figure 2.9, 

pressure differences between the two sides of the cladding are often the most 

important. In recognition of this, rainscreen cladding designs have been developed 

that attempt to reduce the pressure difference. They involve compartmentalised 

cavities in combination with sheltered joint drainage and ventilation routes sized to 

suit the cavity volume, and a rigid air barrier to the rear of the cavity.  

 

Formulae have been developed [18] purporting to allow the effective vent size for 

pressure equalisation to be calculated. However, these can be questioned because even 

the most advanced systems, such as metal and glass curtain walls, achieve less than 
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25% pressure equalisation during field tests. Straube [19] attributes this poor 

performance to the near impossibility of balancing the pressure differences occurring 

during short duration gusts; while he observed that pressure moderation of over 90% 

can occur under constant wind conditions, none of the designs tested performed 

satisfactorily during gusts of a few seconds. He further noted that water will permeate 

porous walls even when perfect pressure equalisation is achieved. These walls require 

full provision for cavity drying irrespective of joint design or cavity compartmentation.  

 

Pressure equalised rainscreens are therefore mainly of value where the cladding is non-

porous and the cavity can be divided into relatively small compartments. Straube 

recommends the compartment size be no more than 1 m2. This is only practical with 

folded sheet materials, castings and mouldings. In practice, therefore, rainscreen 

cladding is the only viable approach for timber facades over insulated walls. Figure 

2.11 illustrates the components of a typical timber rainscreen in the UK. The wall 

build-up or terminology may differ slightly in other areas. In Scandinavia, for 

example, the sheathing board may be replaced with moisture resistant plasterboard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Cladding 

2. Support battens and cavity 

3. Breather membrane 

4. Sheathing board 

5. Timber frame 

6. Insulation 

7. Plasterboard 

 
 
A. Drainage 
 
B. Ventilation 
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Figure 2.11 Components of a typical timber–

clad rainscreen wall in the UK 
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2.4 Moisture exfiltration through the building envelope 

 

At any given temperature, air can hold a specific amount of moisture as water vapour; 

the warmer the air the more water vapour it can hold. When a given air volume carries 

the maximum possible amount of water at a given temperature, it is described as being 

saturated. For any combination of air moisture and volume there will be a 

corresponding temperature at which the air becomes saturated to the point that that a 

drop in temperature could result in condensation. This temperature is termed the dew 

point. Condensation that occurs within the wall fabric is known as interstitial 

condensation; it can cause considerable problems if left uncontrolled [20].  

 

 

2.4.1 Controlling interstitial condensation 

 

Vapour pressure describes the partial pressure exerted by water vapour molecules in 

the air. In cool-temperate oceanic and island climates the vapour pressure inside a 

building is usually higher than that outside. This tends to drive moisture outwards 

through the building envelope. In these circumstances the risk of interstitial 

condensation can be minimised using one or more of the following techniques [21]: 

• achieving low vapour pressure inside the building  by, for example, room ventilation 

or minimising moisture emissions;  

• using materials with a low vapour transmissibility near the warm side of the wall;  

• using materials of high vapour transmissibility near the colder side of the wall;  

• using materials with a low thermal conductivity on the colder side of the wall.     

 

 

2.4.2 Approaches in the UK  

 

The most common approach in the UK involves ensuring that the wall surface in 

contact with the exterior air is at least five times more permeable to water vapour than 

the layer at or near the inner face of the wall. A normal timber-framed wall has a 

relatively impermeable structural sheathing layer such as oriented strand board (OSB) 

at the rear face of the cavity and so this needs to have a continuous vapour control 

layer (VCL) near the inner leaf of the wall to maintain the 5:1 permeability ratio. The 
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masonry cladding is ignored for the purpose of this calculation as it is the permeability 

of the layer behind the cavity that is at issue. The VCL is normally formed of foil-

backed plasterboard or 125 µm (500 gauge) polythene.  

 

This is not the only viable wall build-up and if, for example, the sheathing board is 

moved to near the inside face of the wall, then the layer facing onto the external cavity 

can be a relatively permeable material such as softboard insulation. In this case a thick 

sheathing board, such as 15 mm OSB, can act as a sufficient vapour check to maintain 

the 5:1 ratio and so there may not be a requirement for a VCL near the inner leaf of the 

wall. This type of timber frame wall build-up is known as a reverse wall and is 

becoming increasingly common. It is sometimes, misleadingly, called a breathing wall; 

in reality this term has little meaning and is best avoided. Not all sheathing boards will 

offer sufficient air tightness to act as a vapour check, in which case a VCL will still be 

required.  

 

 

2.5 Cavity drainage and ventilation 

 

In a rainscreen wall, rainwater penetrating the cladding and water vapour diffusing 

outwards through the wall will normally both be deposited in the cavity from where 

they must be able to escape. Cavity drying is, therefore, a crucial component of 

rainscreen cladding design. 

 

 

2.5.1 Vented or ventilated? 

 

All cavities exposed to rainwater penetration need to be drained to the exterior, many 

are also detailed to ensure air movement to promote evaporative drying. The 

requirements for cavity ventilation vary between the UK’s building regulations, with 

those in Scotland and Northern Ireland being slightly more demanding. These 

differences only apply to masonry construction, however. Where timber or timber-

based materials are used for any part of the cladding, support assembly or structural 

frame, then all of the UK’s building regulation guidance documents recommend that 

the cavity should be ‘ventilated’ as opposed to ‘vented’. These two terms are defined 

in BS 5250 [21]: 
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• Vented cavity; openings to the outside air placed so as to allow a limited, but not 

necessarily through, movement of air;  

 

• Ventilated cavity; openings to the outside air placed so as to promote through 

movement of air.  

 

The minimum requirement for a ventilated cavity is given in BS EN ISO 6946 [22]. It 

defines a slightly ventilated cavity as one where the gap for through ventilation is 

greater than 500 mm2 per m length (i.e. equivalent to a 5 mm unobstructed gap). 

 

It is known that the thermal resistance of a ventilated cavity is lower than if the cavity 

is unventilated or vented. This can impact on the overall heat transfer coefficient (U-

value) of the wall. The U-value describes the rate of heat transfer through an element 

of construction, over a given area, under standard conditions. It is the inverse of 

thermal resistance. These effects are not fully understood, however. For example, BS 

EN ISO 6946 makes highly simplified assumptions about the effective thermal 

resistance of cavities depending on their ventilation conditions. It states that the 

thermal resistance of slightly ventilated cavities is halved relative to those with no 

through ventilation and that the thermal benefits of low-transmissibility breather 

membranes are eliminated by cavity ventilation. These assumptions have not been 

validated by measurements in occupied buildings. Indeed, there is surprisingly little 

data available about the ventilation conditions in the external wall cavities of actual 

houses [23].  

 

 

2.5.2 Research into cavity moisture conditions 

 

Some Scandinavian and North American research suggests that wet timber-clad walls 

dry faster when ventilated, whereas ventilation has little benefit if the walls are dry. A 

study by the Norwegian Building Research Institute, undertaken as part of the ETC 

project, looked at the effects of omitting the gap and two cavity ventilation gaps: 4 mm 

and 23 mm. The study [24] found that providing a 4 mm air gap was ensured, 

increasing the gap to 23 mm had no additional effect. This gap size is 20% smaller 

than the 5 mm minimum given in BS EN ISO 6946. The study also found that, in the 

absence of rain impacting on the wall, the moisture content of ventilated timber 
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cladding was determined largely by the relative humidity of the surrounding air, 

whereas during rain events the moisture content can rise above the hygroscopic region 

(i.e. the moisture content is determined by a surface film of water and not by relative 

humidity).  

 

In a brick-clad timber-framed wall, the cavity between the cladding and sheathing is 

usually about 50 mm deep whereas, in the case of timber cladding, the cavity depth 

varies according to the type of support assembly. Horizontal timber cladding is usually 

supported on simple vertical battens around 20 mm deep, whilst vertical cladding is 

usually fixed to 50 mm deep horizontal battens supported on thinner vertical counter- 

battens; the full cavity depth in this latter case is often around 70 mm. Although the 

cavity extends over the full height and width of the wall, documents supporting the 

UK’s building regulations require that fire barriers be fitted to interrupt the cavity at 

specified locations. 

 

Sanders [23] used a range of hygrothermal software programs to model the risks of 

interstitial condensation and the drying of conventional timber-framed walls in UK 

conditions. Other wall build-ups such as the reverse wall were not investigated. The 

research found that when cavity ventilation was increased from zero up to a maximum 

(a level beyond which there is no further change):  

 

• If the VCL is absent, ventilating the cavity will not reduce the risk of severe 

interstitial condensation.  

 

• If the VCL is incomplete, cavity ventilation behind brick cladding reduces the 

amount of condensation, but makes little difference if the cladding is timber.  

 

• If the VCL is complete, there will be no interstitial condensation whether the 

cavity is ventilated or not.  

 

• Wet sheathing boards behind brick cladding will dry faster if the cavity is 

ventilated; cavity ventilation does not have this effect behind timber cladding. 
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• If there is no wetting of the wall by rain, the moisture content of cladding is mainly 

determined by relative humidity; ventilating the cavity has little effect in these 

conditions.  

 

• Cladding that has been wetted by rainfall will dry faster if the cavity is ventilated 

although the difference is not great.  

 

The study concluded that, with timber-framed and -clad walls, ventilation at the base 

alone will be adequate in areas not exposed to high levels of driving rain, but that 

ventilators should be provided at the top and bottom in highly exposed areas. What 

constitutes a ‘high’ level was left undefined, however. The only published definition of 

relevance is that in BR 262 (see Figure 2.6) although, as already indicated, this may 

not be fully applicable to timber facades. 

 

 

2.6 Moisture conditions in timber rainscreens 

 

Few studies have been published in the UK giving long-term in situ data on moisture 

conditions in external timber cladding. Even where moisture contents are stated, there 

has been little attempt to explore how they fluctuate over time or the factors that drive 

these changes. It is therefore difficult to accurately predict the moisture take-up and 

loss that will occur when a particular timber species is used as external cladding in 

specific climate conditions. As a result, the associated moisture effects such as fungal 

decay or dimensional change are similarly poorly-defined. 

 

Accurate in situ moisture content measurement has become increasingly feasible since 

suitable data-loggers became available in the mid- 1980s. Before this, moisture content 

was usually recorded in the form of single measurements made with hand-held 

moisture meters or through gravimetric testing. Many of the published moisture 

contents for timber cladding are, therefore, likely to be derived from short-term 

measurements unrepresentative of the full range of in-service conditions. Typical 

estimates are maximum moisture contents of around 22% on north facing facades 

during the winter, down to a minimum of around 10% when exposed to summer sun. 

The average moisture content for timber cladding is often quoted [25] as being around 

16%. 
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2.7 Summary 

 

This study is relevant to the four regions of the world sharing a cool-temperate oceanic 

and island climate. Timber facades in these four areas are dominated by the effects of 

moisture related deterioration whereas those in adjacent areas are not. Wind and wind-

driven rain are key factors. Western Scotland experiences more intense WDR than 

most of western Norway.  

 

The control of moisture in building envelopes needs to consider flow from internal and 

external sources. The latter is usually the main concern with timber facades in areas 

exposed to WDR. Most discussions of the moisture performance of facades fail to 

consider timber related issues. 

 

In areas subject to WDR, timber facades are best designed as a rainscreen with a 

drained and ventilated cavity behind the cladding. Little research has been done into 

moisture conditions in timber cladding or ventilated cavities. 

 

Datalogged exposure trails of timber cladding are needed, these should examine 

interactions between key variables. 
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Chapter 3 

Market 

 

 

The leaky condo debacle discussed earlier is an extreme example. Nonetheless, it 

highlights what can happen when a rapidly growing sector of the building industry 

embraces new or untested technology accompanied by inadequate training and technical 

support. Could a similar problem be developing with timber facades in the UK? The 

similarities are certainly striking and include: 

 

• A construction sector emerging from nowhere in little more than a decade;  

• Knowledge gaps in the underlying science and engineering;  

• Rapid technical change with a consequent lag in test development; 

• Technology being transferred into the UK with no check on its suitability; 

• Questionable standards of detailing and workmanship;  

• Inadequate technical guidance and regulation; 

• A growing number of technical enquiries and expert witness cases; 

• A complex supply chain; 

• Industry inaction and complacency. 

 

This chapter addresses each of these points in turn. It combines a review of existing 

knowledge with two pieces of new research: an assessment of the rapidly growing 

market for timber facades in the UK and a survey of detailing and workmanship 

standards.  In doing so it sets out the context within which subsequent chapters develop. 
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3.1 A rapidly growing market  

 

The UK market for timber facades is frequently underestimated, poorly understood and 

perceived as conflicting with the marketing strategy of the timber frame industry. All of 

these issues appear to be related to the sector’s rapid growth. 

 

 

3.1.1 Market research 

 

There is no accurate research published on the UK market for timber cladding. During 

the past decade, MBD were the only market research company that attempted to 

quantify the UK cladding sector. Their 2005 study [1] states that UK timber cladding 

sales during 2004 amounted to only 203,000 m2. This figure has been widely quoted 

even though timber cladding suppliers regard it as a considerable underestimate The 

company have recently updated their research [2]; but the replacement study appears to 

be similarly inaccurate.  

 

Fortunately, it is straightforward to produce a broad market estimate based on imports. 

Canada Wood UK [3] keeps records of the quantity of western red cedar (Thuja plicata) 

imported by the UK each year. In 2004 the volume was 36,550 m3; of which the 

organisation believes 60 to 80% (22,000 to 29,000 m3) was used as external cladding. 

After making allowance for machining losses and other wastage, this represents an area 

of at least 630,000 to 840,000 m2 of cladding. 

 

Discussions with suppliers suggest that imported western red cedar’s UK market share 

was approximately 50% during 2004; in which case the total area of timber cladding 

sold in the UK can be estimated at 1.2 to 1.6 million m2. The other main timbers being 

sold as cladding were also imported and included: Siberian larch (Larix sibirica, 

Douglas fir (Pseudotsuga menziesii), and ThermoWood™ (thermally modified Pinus 

sylvestris and Picea abies). Preservative treatment is virtually unknown for the cladding 

itself but is used for support battens. 

 

Suppliers estimate that the UK timber cladding market grew by around 10% per annum 

from 2004 to 2007 at which point it was worth approximately £30 million [4]. It has 

since decreased due to the construction downturn during 2008-11. Current figures are 
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difficult to estimate due to market volatility; a few large suppliers have been 

bankrupted, whilst others report continued growth. 

 

Although the market is dominated by imports, there are sawmills throughout the UK 

that supply local timber. The most common UK grown cladding timber is larch (L. 

decidua, L. kaempferi, and their hybrid Larix x eurolepis). Others include European oak 

(Quercus robur and Q. petraea), sweet chestnut (Castanea sativa), and western red 

cedar plus several lower durability timbers such as UK grown Douglas fir. Demand 

exceeds supply, although there are reservations over the quality and availability of UK 

timber. This will intensify if, as seems likely, the Phytophhtora ramorum epidemic [5] 

affecting Japanese larch (L. kaempferi) in southwest England and Wales spreads 

throughout the UK and to all larch species. 

 
The UK market for timber cladding can be split into several sectors. The most obvious 

division is between low-rise housing (its most common use) and larger, often non-

domestic, applications. Low-rise housing divides, in turn, into private housing and 

buildings owned by registered social landlords. Similarly, the non-domestic sector falls 

into several distinct groups such as educational buildings, visitor centres, offices, etc. 

The facade height and location are also important, as the types of cladding that can be 

used are more restricted on walls above 18 m and near property boundaries. The use of 

timber facades on medium-rise and non-domestic timber facades appears to be growing, 

although no figures are currently available. 

 

 

3.1.2 Performance benefits of timber facades 

 

Part of the growth in popularity of timber facades is down to architectural fashion and 

this will certainly change. Timber facades do, however, offer a number of tangible 

performance benefits that should ensure their popularity even when fashion moves on. 

Sustainability is probably the most important perceived benefit although this is often 

difficult to quantify. The arguments for timber can be summarised as [6]: 

 

• Low environmental impact: timber is renewable; it is available from certifiably 

legal and sustainable sources; and at the end of its service life timber can often be 

recycled or used as fuel.  
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• Low embodied energy: timber consumes less energy to produce than masonry; and 

can sometimes be locally sourced. 

 

• Low carbon: using timber, that much of the carbon consumed during the tree’s 

growth is locked into the fabric of the building, carbon is also stored in forest soil. 

 

The issue of local sourcing is, however, complex. Localness is not accepted by the UK 

government or European Union as evidencing sustainability. This is because a localness 

criterion could be used as a restrictive practice, thereby increasing costs and cutting 

across foreign aid policies to support emerging economies [7]. The topic is discussed 

further in a publication by this author for Forestry Commission Scotland [8]. 

  

While sustainability can apply to all types of timber construction, timber facades bring 

some further gains. Timber is most often used as cladding onto a timber structural 

frame, in which case the main performance benefits are:  

 

• Few problems due to mixing construction materials. When the structure and 

cladding are both made from timber the problems of differential movement are 

reduced [9]. Substituting masonry cladding with timber can also help minimise risks 

of condensation build-up within the wall, this benefit has mainly been documented 

by building conservation specialists [10]. 

 

• Cost reductions. The use of timber cladding means the ‘wet trades’ of bricklaying 

and plastering can be avoided as a joiner can erect and line out the walls. Material 

costs may also be reduced. The savings are typically 1 to 2 % although they have 

been considerably higher on some projects [11]. 

 

• Suitability for off-site prefabrication.  Because timber cladding is relatively thin 

and lightweight, it is well suited to off-site prefabrication as part of a modern 

methods of construction approach. This is of growing importance due to several 

factors including health and safety, cost and declining workmanship standards. 

 

Cladding masonry or massive timber walls brings other advantages. Although these 

walls have thermal mass to buffer diurnal temperature fluctuations they can be poorly 

insulated. Adding external insulation cuts energy demand without disrupting internal 
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finishes. The insulation can then be clad with timber to keep it dry; this approach is long 

established with log buildings in Scandinavia and is increasingly being used in Finland 

and Germany as part of the refurbishment of concrete facades on medium-rise housing. 

It is uncommon in the UK at present. 

 

 

3.1.3 Relationship with timber-frame construction 

 

There is much confusion over what constitutes a timber building. In the UK the term 

timber frame describes a construction system where all vertical and lateral loads are 

transferred to the foundations through a structural framework of small section timber 

studs sheathed with a wood-based sheet material such as OSB. The framework is then 

clad with a largely non-structural skin, which can be made of several materials 

including masonry, rendered mesh or timber. In principle, each of these cladding 

materials is interchangeable. Timber frame construction is permitted up to seven storeys 

in the UK. Confusingly, the timber frame system is known as light frame construction 

in North America where the term timber frame is reserved for the large section timber 

structures referred to as post and beam in Europe. In most countries timber-framed 

buildings are also timber-clad. The UK is unusual in this respect because the popularity 

of timber construction is not so readily apparent: timber frame suppliers have tended to 

clad their houses in masonry-based materials and thus allow people to pretend that they 

live in a stone house. The conceit is so good that many people do not realise that it is a 

timber structural frame that holds up their roof.  

 

The market share of timber-framed construction has grown throughout Britain in recent 

years. During 2009 about 75% of low-rise housing in Scotland was built using a timber-

framed structure. The corresponding figure for England and Wales [12] stood at around 

19%. For comparison, the average market share for timber-framed construction 

throughout the developed world was around 70%.  

 

Many sections of the timber frame industry appear to be resistant to cladding their 

buildings with timber. This may be due to a perceived conflict with their marketing 

strategy. The difference in timber frame’s market share between Scotland and the rest of 

Britain is often attributed to a 1983 World in Action television programme, which 

highlighted technical problems with the timber-framed homes then being built in the 
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UK. The programme was broadcast in England and Wales but not in Scotland. In the 

wake of the programme, much of the UK timber frame industry appears to have adopted 

a marketing strategy whereby the timber component of their buildings is not mentioned. 

As timber facades make further inroads into the timber frame sector then this marketing 

strategy may have to change. 

 

3.2 Incomplete scientific and engineering knowledge 

 

There surprisingly little consensus as to how the performance of timber facades should 

be defined or evidenced. The main engineering-based review of external cladding 

technology in the UK is a standard [13] published by the Centre for Window and 

Cladding Technology (CWCT). Most other technical publications in this field tend to 

base their conceptual framework upon this norm. CWCT mainly consider the 

performance issues affecting the so called traditional facade materials such as 

aluminium, glass and concrete. Accordingly, degradation of timber by moisture is 

virtually ignored; so too is corrosion due to organic acids, the wind resistance of a 

facade assembly made of boards and battens, and several other topics of central 

importance to timber facades.   

 

Some of these topics are poorly understood even within the wood science community. 

The most obvious gaps are moisture conditions in external cladding, service life in 

fluctuating moisture conditions and leaching of flame retardants. This thesis mainly 

addresses the first of these gaps.  

 

 

3.3 Rapid technical change 

 

Timber facade technology is undergoing a period of rapid technical change driven by 

several underlying factors. In recent years changes in European legislation have resulted 

in the virtual withdrawal of CCA-based wood preservatives and solvent-based surface 

coatings. This in turn has stimulated growth in demand for what are termed wood 

modified timbers (these comprise timber products that have been chemically or 

thermally modified to improve their performance without the negative effects associated 

with traditional approaches such as wood preservation). European consumers are also 
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influential, particularly in the growing demand for translucent surface coatings and so-

called ‘ecological’ paints.  

 

These changes are driving availability of many new products and technological systems: 

architects are embracing these with little awareness that the technology may not be 

transferable. Current examples include: 

 

• Some types of German cavity barrier should only be used as part of a formal fire 

safety engineering approach, yet enquiries received by this author indicate they are 

being used on timber cladding contracts in the UK without any such precautions.  

 

• Non-preservative treated shingles are being used in the UK even though it is known 

that most of these products will fail in less than 20 years in our mild and damp 

climate. 

 

• German face sealed cladding is being promoted in the UK without any test data on 

how it performs in a wet climate. The products are made of an acrylic render onto a 

substrate of rigid insulation board. The lack of a cavity means that there is no 

redundancy to cope with poor detailing and workmanship or impact damage in use. 

 

 

3.4 Inadequate technical guidance and regulation 

 
Statutory guidance supporting building regulations is slow to respond to changes in 

construction practice. This is unavoidable, as the guidance has to be based on published 

research, which can take time to prepare. The guidance then has to go through a lengthy 

drafting and consultation process before approval and publication.  For example, current 

fire regulation guidance for cladding in the UK [14 15 16] was mainly written for 

masonry based cladding and is not always appropriate for timber facades. This guidance 

assumes that the cladding material is both inorganic and non-biogenic and is, therefore, 

of uniform composition, non-combustible and little affected by moisture (See Chapter 5 

for a more detailed discussion of this topic). The associated test procedures [17] [18] 

thus ignore the possibility of the cladding burning through, whilst the detailing guidance 

creates water traps when used for timber cladding. Similarly, the current guidance for 

- 
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acoustic insulation of separating walls and floor junctions [19] only mentions masonry 

cladding.  

 

 

3.5 Poor standards of design and workmanship 

 

It is often asserted that the standard of detailing and workmanship is poor but this is 

rarely quantified. The completion of Scotland’s first Housing Expo [20] in August 2010 

provided an unusual opportunity to survey the quality of detailing and construction of 

timber cladding on a selection of modern housing. Of the 51 dwellings in the Expo, 41 

have wholly or partially timber clad facades, three had timber clad roofs, and one 

employed exposed structural timber. The buildings were designed by 26 different 

architectural practices and were erected by six firms of contractors. Most dwellings in 

the Expo were detached or semi-detached, there were three blocks of flats. Most of the 

cladding timber was heartwood of Siberian larch (Larix sibirica) or locally grown 

European larch (L. decidua). 

 

 

3.5.1 Method 

 

All timber clad walls and roofs were surveyed. The defects were listed and recorded 

photographically. The detailing or construction was defined as defective if it did not 

comply with either current best practice guidance [21 22 23], or the details being 

developed for this thesis. Each defect was only listed once per dwelling no matter how 

many times it occurred. That said, infrequent occurrences (e.g. a single over-driven nail) 

were ignored unless the consequences of failure were serious (e.g. poor cavity barriers). 

Appendix 2 gives examples of the defects that were recorded. 

 

 

3.5.2 Results 

 

Every timber building envelope on the site had some defects. There were an average of 

seven types of defect per dwelling. The minimum was three and the maximum ten. 

Table 3.1 ranks each defect by frequency of occurrence.  

- 
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Table 3.1 Frequency of occurrence of each type of timber facade defect 

Defect Number of 

dwellings 

affected 

% of 

dwellings 

affected 

Poor window installation 

Butt jointed boards   

Silicone in joints 

Nails driven too deep 

Watertraps or splashzones at ducts or meter boxes 

Inadequate splashzones at access ramp to door 

Poor insect or vermin mesh installation 

Inadequate splashzones generally 

Boards nailed together 

No eaves ventilation 

Decking creates splashzone 

Poor horizontal cavity barrier 

DPC used behind timber cladding  

Poor fixing details 

No endgrain gaps at corners 

Poor differential movement allowance 

Poorly installed plywood cladding 

Sapwood not graded out 

Ferrous fixings in timber 

Poor vertical cavity barrier 

Exposed structural frame with water traps 

41 

25 

21 

21 

19 

16 

16 

9 

9 

9 

8 

8 

8 

5 

4 

4 

4 

3 

3 

3 

1 

100 

61 

51 

51 

46 

39 

39 

22 

22 

22 

19 

19 

19 

12 

9.8 

9.8 

9.8 

7.3 

7.3 

7.3 

2.4 

 

 
3.5.3 Discussion 

 

Only 41 dwellings were surveyed and all were part of one rapidly erected development 

resulting from a design competition. The sample is, therefore, of limited size and open 

to several uncertainties or sources of bias, including: 

 

• The competition may have selected for defect prone designs 

• The speed of erection may have produced an unusually high number of defects  

• Contractors in Highland Scotland may be unusually poorly skilled 
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• The same contractors worked on several dwellings and so faults were repeated 

• Most cladding could only be inspected from the outside and at ground level 

• Flats were under represented and non-domestic buildings were missing 

• The long-term impact of the defects was unquantifiable 

 

The last point is particularly important. Although there is a broad consensus as to what 

constitutes a defect, the consequences can vary from minor to catastrophic. If a few 

boards fail, for example, they can easily be replaced, but if exposed structural timber 

starts to rot the costs can be considerable. Wang et al. [24] note that there has been little 

attempt to quantify the relative importance of different types of detailing problem on 

timber facades or elsewhere in exterior out-of-ground-contact conditions. They state 

that such information would be valuable. Accordingly, no attempt has been made at this 

stage to rank the defects by their severity, this topic is addressed in Chapter 5. 

 

Although the survey is far from definitive, it does highlight the problems that occur. 

These should not be taken to mean that the quality of design and workmanship at the 

Expo was particularly poor; instead it is likely that the standard observed is the norm 

throughout the Scottish Highlands and beyond. 

 

 

3.6 Enquiries and expert witness cases 

 

Staff at TRADA Technology state that timber cladding is their most common 

continuing professional development request, and also a frequent source of enquiries 

and expert witness contracts. Enquiries and consultancy contracts at Edinburgh Napier 

University follow a similar trend. The technical questions span several areas: fungal 

decay, weathering, dimensional change, corrosion, structural robustness, fire safety, 

detailing, and grading. The most common expert witness contracts concern weathering, 

dimensional change and robustness. Scotland currently generates one or two contracts 

per annum, suggesting that the UK has ten to 20. Their consequences vary. Some 

involve little more than the cost of the expert witness report and some minor remedial 

action. Others can bankrupt the main contractor and joinery subcontractor. 
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3.7 Complex supply chain 

 

The supply chain for timber-based facades is more complex than that for other facade 

materials. Although much of this is due to the material itself, non-material 

considerations also arise, including: 

 
• Terminology; people in the supply chain can be confused by timber’s complexity – 

such as the difference between hardwoods and softwoods – and the timber industry 

does little to overcome this. Scientists, for example, use different terminology to 

timber suppliers who, in turn, describe wood products and processing in a way that 

their customers find confusing. Redwood, for example, is a trade term that refers to 

different species depending upon whether the timber originates in Europe or North 

America. Moreover, European Redwood, (Pinus sylvestris) is known as Scots pine 

if grown in the UK. European Standard BS EN 13556 [25] brings some order to this 

confusion by allocating standard names to the timbers commonly used in Europe.  

 

• Availability ; species availability changes and new timbers are continuously being 

brought to market, particularly from South America. This can be challenging as 

authoritative information on their timber properties takes a while to be published. 

Suppliers often exploit this lag by making performance claims that cannot be 

evidenced. The current promotion of Siberian larch (L. sibirica) and eastern white 

cedar (Thuja occidentalis) as especially durable cladding timbers are cases in point. 

 

• Variability ; cladding timbers are sold with a wide variety of grading, moisture 

contents and dimensions. This is compounded by the published standardised 

specifications for timber cladding [26] [27] which omit essential information or 

make inaccurate statements. The grading rules in BS EN 15146, for example, are so 

poorly drafted as to be unusable. 

 

Although just about acceptable in the growing construction market in the decade up to 

2008, this complexity is a considerable disincentive for customers and may become an 

increasing problem as the recession continues.  
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3.8 Industry inaction and complacency 

 

In 2002 Davies et al.[22] highlighted the growing need for a timber cladding association 

in the UK. Little has changed in the intervening years. Several meetings have been held 

and the Timber Decking Association (TDA) [28] has attempted, so far with little 

success, to expand into the gap. The main barriers are that the sector is still relatively 

small and fragmented when compared to those of other facade materials, such as 

concrete or profiled steel, and much newer than long established industries such as lead. 

Consequently, there is no single stakeholder who can fund a timber cladding association 

and insufficient incentive for a group of companies to jointly support such a venture. 

Thus the TDA is funded by the wood preservation industry, which has little commercial 

incentive to promote timber cladding, as it is rarely preservative treated. In any case, 

many timber cladding suppliers are not aware of the scale of technical challenges they 

face; nor do they have the time or technical capacity to address these problems 

themselves.  

 

The net result of all of this is that every other major cladding material has an industry 

group and code of practice whilst timber – which is technically more complex than the 

others – does not. This urgently needs to change. 

 

 

3.9 Summary 
 

The science and engineering of timber facades is not fully understood. Moreover, the 

UK’s burgeoning interest in timber facades is not adequately reflected in published 

market research, nor in technical guidance and training. It is, therefore, little surprise 

that an industry has emerged in the UK over the past decade that is designing and 

building timber facades of sometimes questionable quality. This needs to be addressed 

through improved technical knowledge and guidance before the number of timber 

cladding failures becomes such that the market is damaged. Such information cannot be 

developed in isolation, however, as it has to be compliant with other performance 

requirements particularly those for fire safety and acoustics. A formal code of practice 

is needed, therefore, needed. 



 51 

References 
 

1  Market & Business Development (2005). The UK cladding market 

development. Manchester, UK: MBD. 

2  Market & Business Development (2010). UK external wall cladding market 

research report. Manchester, UK: MBD.  

3  Canada Wood UK website: <http://www.canadawooduk.org/>. [Accessed 1 July 

2010.] 

4  Confidential memo: UK Timber Decking Association. (n.d., n.l.) 

5  [Online archive] <http://www.forestry.gov.uk/pramorum> [Accessed 4 April 

2011]. 

6  Read, D.J., Freer-Smith, P.H., Morison, J.I.L., Hanley, N., West, C.C. and 

Snowdon, P. eds. (2009). Combating climate change – a role for UK forests. An 

assessment of the potential of the UK’s trees and woodlands to mitigate and 

adapt to climate change. Edinburgh: The Stationery Office. 

7  Central Point of Expertise on Timber (CPET) website: 

<http://www.cpet.org.uk/> [Accessed 13 December 2010] 

8  Davies, I. (2010). Sustainable construction timber, 2nd edition. Edinburgh: 

arcamedia. 

9  Grantham, R. and Enjily, V., (2003). Multi-storey timber frame buildings, a 

design guide. BR 454. Watford, UK: BRE Bookshop. 

10   Palfreyman, J. and Low, G. (2002). Studies of the domestic dry rot fungus 

Serpula Lacrymans with reference to the management of decay in buildings 

Edinburgh: Historic Scotland. 

11  TRADA Technology (2001). Timber frame construction, 3rd edition. High 

Wycombe, UK: TRADA Technology. 

12  UK Timber Frame Association. Market update 2009 Available: 

<http://www.uktfa.com/#facts-figures/4538892503> [Accessed 2 July 2010.] 

13  Centre for Window and Cladding Technology (2005). Standard for systemised 

building envelopes. Bath, UK: University of Bath. 

14  The Building (Scotland) Regulations (2004). Domestic Handbook, May 2009. 

Section 0.8.1. Scottish Building Standards. Livingston. UK, 2009. 



 52 

 
15  The Building Regulations (2000). Approved Document B. Fire Safety. Vol.1 – 

Dwellinghouses. 2006. Department for Communities and Local Government. 

London, 2006. 

16  The Building Regulations (Northern Ireland) (2000). Technical booklet E: 2005 

- Fire safety. Department of Finance and Personnel. Belfast, 2005. 

17  BS 476-20:1987. Fire tests on building materials and structures. Method for 

determination of the fire resistance of elements of construction (general 

principles). London: British Standards Institution, 1987. 

18  BS 476-22:1987. Fire tests on building materials and structures. Methods for 

determination of the fire resistance of non-loadbearing elements of construction. 

London: British Standards Institution, 1987. 

19  Robust Standard Details. Website: 

<http://www.robustdetails.com/index.php?id=12521> [Accessed 8 November 

2010] 

20  Scotland’s Housing Expo. Website: <http://www.scotlandshousingexpo.com> 

[Accessed 28 September 2010].  

21  Hislop, P. (2007). External timber cladding. 2nd edition. High Wycombe, UK: 

TRADA Technology. 

22  Davies, I., Walker, B. and  Pendlebury, J. (2002). Timber cladding in Scotland. 

Edinburgh: ARCA Publications. 

23  Edvardsen, K.I. and Torjussen, L. (1997). Håndbok 45 – Trehus. [Handbook 45 

– wooden house. In Norwegian] Oslo: Norges Byggforskningsinstitutt. 

24  Wang, C.H., Leicester, R.H. and Nguyen, M.N. (2008). Manual No 4: Decay 

above ground. Highett, Victoria, Australia: Forest and Wood Products Australia. 

25  BS EN 13556:2003. Round and sawn timber. Nomenclature of timbers used in 

Europe. London: BSI, 2003. 

26  National Building Specification. (2006). H21 Timber weatherboarding. 

Newcastle upon Tyne: RIBA Enterprises. 

27  BS EN 15146:2006. Solid softwood panelling and cladding – Machined profiles 

without tongue and groove. London: BSI, 2007. 



 53 

 
28  Timber Decking Association. Website: <http://www.tda.org.uk> [Accessed 08 

November 2010]. 



 54 

 

 

Chapter 4 

Performance 

 

 

Designers generally have three questions about the performance of timber facades:  

 

• What performance requirements are relevant?  

• How can these criteria be met?  

• How is compliance evidenced?  

 

Answering these questions is surprisingly difficult. This can be illustrated by comparing 

the European normative framework for structural engineering with those for other 

aspects of building performance. The requirements for structural engineering are set out 

in a suite of European standards known as Eurocodes. These norms have been subject to 

a lengthy and well resourced development process with the result that they are now 

accepted and are in the process of replacing national standards. The norms for non-

structural building components are not as well developed. Even fire safety – which has 

as many life safety concerns as structural engineering – is still far from having an 

agreed suite of European standards. The standard for classifying reaction to fire 

performance [1], for example, is widely criticised [2], whilst the fire tests for cladding 

and cavity barriers are still being drafted. There is even less progress in areas, such as 

the material characteristics of timber cladding, which do not directly affect life safety. 

Sectoral interests, or even the views of particular individuals, can hijack the process. It 

is thus no surprise that the performance guidance for timber facades is in a mess. 
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4.1 British and European standards for timber cladding 

 

BS 1186-3 [3] is the most widely used British standard for timber cladding. It covers a 

number of topics including timber durability, movement, grading and board profiles. 

However, the standard encompasses both internal and external cladding: seperate 

microclimates with different performance issues (e.g. movement and corrosion). 

Consequently, the standard has a number of errors. The recommended board profiles, 

for example, only suit indoor use as they cannot accommodate much movement. 

Similarly, the grading rules only describe those features relevant to internal trim; they 

give little guidance on how to ensure that timber is fit-for-purpose as external cladding. 

 

National standards such as BS 1186-3 usually use prescriptive (do this, do that) type 

language which is now seen as stifling innovation and as a barrier to trade. Therefore, 

the European Union is in the process of introducing pan-European standards giving 

harmonised performance-based guidance.  

 

The performance characteristics currently considered applicable to timber facade 

products are given in European Standards BS EN 13986 [4] and BS EN 14915 [5], the 

former covers cladding made from board products such as plywood, whilst the latter 

applies to solid timber. Associated standards [6] 7 [8] give timber grading rules and 

other criteria for specific types of board profile. The guidance in key European norms 

for reaction to fire [1], wood durability [9] [10] and preservation [11] 12 [13] are also 

highlighted. In practice, however, these norms are ignored in most of Europe because 

they are biased, poorly drafted and often irrelevant [14] 15 [16]. Two examples will 

suffice:  

 

• Softwood grading; the softwood grades in BS EN 15146 [6] give specific rules for 

maritime pine (Pinus pinaster) but lump all other softwood timber species together. 

Maritime pine is mainly produced in southern France and is rarely used for external 

cladding, whereas timbers such as western red cedar (Thuja plicata) and larch (Larix 

spp.) are used for this purpose in large quantities throughout Europe. It is ludicrous to 

issue combined grades for popular but dissimilar cladding timbers while 

differentiating a minority species only of interest in part of one country. Could the 

fact that the committee responsible for drafting this standard was chaired by a French 

organisation have had something to do with it? Surely not? This author discusses 

- 

- 

- 
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some of these issues in a national commentary [17] on BS EN 975 [18] prepared for 

the Forestry Commission. 

 

• Irrelevance; European standards for cladding repeat the error in BS 1186-3 whereby 

internal and external uses are combined. The norms give performance criteria for 

material characteristics (e.g. permeability and thermal conductivity) that, as discussed 

in Chapter 2, are irrelevant to rainscreen cladding, whilst omitting the leach resistance 

of flame retardants (Table 4.1). It is thus possible to have timber cladding CE marked 

as being fit for purpose even though its stated reaction to fire performance will leach 

out in less than a decade. The corrosion of fasteners by damp timber is also omitted 

as is any discussion of board profiles to accommodate movement. Table 4.2 gives a 

more complete list of the material characteristics relevant to timber facades. These are 

discussed further in subsequent chapters.  

 

Because the European standards for timber cladding give little useful guidance – and 

much that is wrong – the relevant performance criteria have to be developed from other 

sources, beginning with the applicable building regulations. 

 

 

4.2 Building regulations  

 

The oldest known building regulation comes from the Babylonian Code of Hammurabi 

[19] a clause from which states:  

 

If a builder has built a house for a man, and has not made his work sound, and the 
house he built has fallen, and caused the death of its owner, that builder shall be 
put to death. 

 
Although in hindsight extreme, this clause nonetheless anticipates many of the ideas 

underlying a performance-based approach. It is based on user need, is independent of 

the materials used, and gives a defined and measurable outcome. The regulations in 

many countries are becoming performance-based. This means that designers now have 

unprecedented technical freedom. At the same time the requirements they need to meet 

are becoming ever more complex. Although the regulations are mandatory, many are 

now accompanied by statutory guidance documents giving recommendations on how 

the requirements can be met. Designers can either follow these recommendations or 

develop their own solutions based on established science and engineering.
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Table 4.1 Technical characteristics for CE Marking of timber cladding  

Guidance in EN 14915 

Characteristic Determination 

Application to the UK 

Reaction to fire Many cladding products can 

be classified without further 

testing to Euroclass D-s2, d2. 

Other products, or those 

requiring higher 

classifications, will need 

testing to BS EN 13501-1 

Some of the product assemblies listed do 

not employ rainscreen principles (and so 

are only suited for internal uses or where 

the wall is non-insulated). Some others 

require the rear face of the cavity to be 

non-combustible (Euroclass  A2-s1, d0); 

this assembly is rarely used in the UK. 

Pentachlorophenol 

(PCP) content 

If PCP based materials are 

used (e.g. some anti sap-stain 

treatments) the product shall 

be tested to national 

requirements. Where the value 

exceeds 5 x 10-6, this should 

be declared. 

UK requirements are given on the Health 

and Safety Executive website. 

Water vapour 

permeability 

If water vapour permeability 

is required, characteristic 

values are given for various 

densities of timber; 

interpolation is possible. 

In the UK, external timber cladding is 

normally designed as a ventilated 

rainscreen, in which case BS 5250 states 

that the cavity should be regarded as 

being equivalent to the outside air: 

vapour permeability is thus irrelevant.  

Thermal 

conductivity 

Thermal conductivity need 

only be determined where it is 

relevant. 

The thermal conductivity of timber 

cladding is irrelevant in the UK for the 

reason discussed under water vapour 

permeability. 

Natural durability If the timber species is listed 

in BS EN 350-2, its natural 

durability shall be as given 

therein. Otherwise it shall be 

tested to BS EN 350-1. 

UK guidance is the same as that given in 

BS EN 14915. 

Preservative 

treatment 

Products shall be defined in 

accordance with:  

BS EN 335-1 (use classes);  

BS EN 599-2 (preservative); 

BS EN 351-1 (preservative 

penetration & retention). 

The Wood Protection Association gives 

standard specifications that are intended 

to be suitable for preservative treating 

most timber products to UK 

requirements. Cladding is described in 

specification C6. 
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Table 4.2 Timber characteristics for cladding 

Characteristic Comment 

Density (1) Dense timbers (> 550 kg/m3) are preferred where vandalism is a concern 

Natural durability (2) Classes 1, 2 or 3 are recommended 

Tangential shrinkage(3) Should be considered if unseasoned timber is to be used 

Movement class(4) A low or medium movement class is recommended 

Treatability(5) If preservatives or flame retardants are used, timber should be treatable 

Workability(6)  Machining and nailing characteristics must suit the cladding profile. 

pH(7) All damp timber is corrosive although the rate varies between species 

Reaction to fire(8) Low density timbers (< 400 kg/m3) have a low reaction to fire class 

Joinery grades(9) Some cladding profiles require relatively knot free timber 

Moisture content The moisture content at the time of handover should be stated 

Weathering The appearance of different timbers varies when exposed out of doors 

Fibre saturation point(10) Defined as the moisture content at which free water leaves the cell cavity 

Notes: 

1) Mean density (kg/m3) at a moisture content of 12%  

2)  Resistance to fungal decay as classified in BS EN 350-1 

3) From green (freshly felled) to 12% moisture content 

4) Dimensional change when dry timber is subject to fluctuations in atmospheric moisture.  

5) Resistance to preservative treatment (4 = extremely difficult to treat) 

6) Some timbers are prone to splitting and should be predrilled if fixing within 150 mm of board ends. 

Timber with a density over 550 kg/m3 should always be predrilled. 

7) Ferrous metals are at risk of corrosion by damp wood if the pH is less than 4.0, timber impregnated 

with copper based wood preservatives are also corrosive. 

8) Timbers with densities below 400 kg/m3 have a poor reaction to fire classification 

9) The joinery grades are those in BS 1186-3 

10) The fibre saturation point is important as it affects the maximum moisture content that cladding 

achieves in service 
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It is sometimes claimed that national building regulations are becoming – or should 

become – the same throughout Europe. This is not the case, as each country will 

continue to set its own requirements in response to local conditions such as climate, 

building practices or social conditions. The European Construction Products Directive 

(CPD) [20] and its associated harmonised standards do not impose specific performance 

requirements but merely set out a framework for performance specification and a 

common methodology for testing and verification. The CPD gives six essential 

requirements that buildings have to fulfil to be safe and fit for purpose. These are 

supported by a further requirement for durability. 

 

The UK does not have a single set of building regulations. Instead, England and Wales 

are covered by one set of regulations [21] whilst Scotland and Northern Ireland each 

have their own [22] [23], as do the offshore Crown Protectorates of the Isle of Man 

[24], and the Bailiwicks of Jersey [25] and Guernsey [26]. (Building regulation may be 

devolved to the Welsh Assembly in the near future). There are important differences 

between these regulations as they have been and are developed in response to local 

conditions; those in Scotland and the Isle of Man tend to be more onerous than 

elsewhere the UK. The regulations in Scotland respond to the harsh climate (especially 

wind), and to social conditions (e.g. the high incidence of arson in parts of Glasgow), 

while those on the Isle of Man reflect a limited fire fighting capacity on the island.  

 

The main building regulation criteria for timber facades in the UK are outlined in Table 

4.3 and discussed further in subsequent chapters. The guidance documents supporting 

Scottish building regulations differ from those in the rest of the UK in that they accept 

component replacement as an alternative to inherent degradation resistance. The 

relevant clause [22] (section 0.8.1) states: 

 

Materials, fittings and components used in the construction of buildings should be 
suitable for their purpose, correctly used or applied, and sufficiently durable, taking 
account of normal maintenance practices, to meet the requirements of these 
regulations. For example, external timber cladding for low-rise buildings that is 
readily accessible and replaceable need not be as durable as that which is to be used 
at a higher level on medium-rise buildings. 
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Table 4.3 Building regulation criteria for cladding in the UK [21 – 23] 

Criteria Recommended solutions cover  

be capable of safely sustaining all static, imposed and wind 

loads and transmitting them to the building’s support structure  

be securely fixed to and supported by the building’s structure 

accommodate, where necessary, differential movement of the 

cladding and building’s support structure 

Structure 

Cladding must: 

 

be of durable materials; the design life of fixings and supports 

being not less than that of the cladding 

to nearby but non-adjoining buildings 

on external surfaces 

Fire spread   

Fire spread on the 

facade should be 

limited:  
in cavities 

Health and safety  

Health and safety to 

be ensured: 

during construction, maintenance, and demolition 

Noise. 

Building envelopes 

must protect against: 

noise from adjoining buildings (noise from non-adjoining 

buildings and other external sources is controlled via the 

planning system and not through building regulations) 

ground moisture 

precipitation and spray 

moisture from inside the building 

moisture from the roof 

wood destroying organisms 

Durability and 

workmanship 

Protect against  

degradation from: 

corrosion 

 

4.3 Service life 

 

Whilst a performance-based approach to building design and regulation brings many 

benefits, it is complex and can be difficult to achieve in practice. A key challenge is 

predicting how building products will behave over time: a challenge that is of particular 

relevance to timber facade design.  
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4.3.1 Predictive models 
 

Because the essential requirements in the CPD include a durability criterion, the service 

life of all building products being sold in the EU will eventually need to be assessed. To 

achieve this, predictive models are needed that allow performance to be stated in terms 

of failure within a specified period. Failure can be defined [27] as: ‘an unacceptable 

difference between expected and observed performance.’ The minimum requirement for 

service life models is that they should be able to evaluate degradation over time taking 

account of any variability that occurs [28]. Although these methods originated in 

structural analysis [29] [30] they are beginning to be used to predict fungal decay and 

other failure modes affecting service life [31] [32]. The probability of component failure 

Pf is estimated using expressions such as:  

 

Pf = Ars(Rmean/Smean)
-n         (4.1)

      

where Rmean and Smean are the mean values of R (resistance to failure) and S (the load). 

Ars describes the coefficients of variation due to variability in materials, environments 

and measurement [31]. 

 

International Standard ISO 15686-2 [32] gives a checklist for service life prediction that 

employs similar principles: 

 
ESL = RSL * f(A,B,C,D,E,F,G)      (4.2)

  
 
where: 
 
 

ESL = estimated service life 

RSL = reference service life (i.e. known service life of a similar product) 

A = Component quality (e.g. natural durability, preservative treatment) 

B = Design level (e.g. design for durability) 

C = Workmanship (e.g. water traps) 

D = Indoor environment (e.g. temperature, condensation) 

E = Outdoor environment (e.g. climate, shadowing, wind driven rain) 

F = In-use conditions (e.g. wear, impacts) 

G = Maintenance (e.g. repair, repainting) 
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In practice, the factors in equation 4.2 tend to be subjective, and even where they can be 

quantified the data are usually lacking. The quality of components (A) probably 

constitutes the greatest challenge for the performance-based design of wood products in 

construction. The factors for design (B) and workmanship (C) are usually more 

predictable. The outdoor environment (E) is, to some extent, material neutral although 

the influence of moisture on wood-based materials needs special attention [33]. 

 

The estimated service life depends upon a product’s use and service conditions. Thus, 

while optimum durability is always needed, this does not mean that maximum 

resistance to degradation is essential in all cases: it just has to be fit for the purpose 

intended. Service life prediction is reviewed in Hovde and Moser [33] and its 

application to timber is evaluated by European COST E37 network [34]. The final 

report concluded that service life prediction for timber products must deal with four 

issues: characterisation of materials and components, characterisation of the 

environment, knowledge of biodegradation mechanisms and use of reliable test 

methods. Other studies [35] 36 37 38 39 40 41 4243 [44] have addressed these issues, of which recent work at 

CSIRO  [37] - [44] is the most comprehensive. This Australian work quantified the 

effect of maintenance in such a way that it can be included within predictive models. It 

used factors similar to equation 4.1 to describe the conditions applicable to a particular 

type of component. For each component type and location, degradation is assumed to 

proceed at a uniform rate subject to a lag effect to take account of maintenance. 

Australia was the first country to propose a performance based-standard for timber 

durability [45].  

 

4.3.2 Service life of timber facades 
 

So, how long should a building component such as timber cladding last?  Guidance on 

this is given in several documents [46] [47]. Table 4.4 is typical; it gives the criteria 

used in preparing European technical approvals and standards [46]. In this thesis it is 

assumed that Table 4.4 applies to timber facades. The ‘normal’ category refers to 

buildings such as houses and offices, whilst ‘long’ applies to monumental buildings and 

the like. Accordingly, where timber is used to clad a normal building it should have a 

service life of 25 years assuming the owner is then prepared to repair or replace the 

cladding ‘with some effort’. If this assumption is not appropriate then all materials and 

products should be designed for a 50 year service life. Alternatively, particular 

- 
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components could be designed to be easily replaceable should the need arise.  

 

Table 4.4 Working life assumptions in EOTA Guidance Document [46] 

Working life of construction products to be assumed in European 

technical approvals and standards (years) 

Assumed working life of 

construction works 

(years) Category 

Category Years Repairable or easily 

replaceable 

Repairable or 

replaceable with 

some effort 

Not repairable or 

replaceable easily or 

with some effort 

Short 10 10 10 10 

Medium 25 10 25 25 

Normal 50 10 25 50 

Long 100 10 25 100 

 

 

4.4 The need for performance guidance on timber facades 

 

Although performance-based design brings more freedom than a prescriptive approach, 

it also puts increasing responsibility on the designer. Whilst this is true of all building 

design, work with timber, especially in emerging areas such as facade engineering, is 

particularly affected. This raises a question: as British and European standards become 

performance-based – and therefore solution independent – where can guidance be found 

on how components are put together? In normal circumstances this information is to be 

found in codes of practice [48]. Although UK codes of practice are already published 

for most types of cladding, nothing has been issued specifically for timber. A few topics 

are covered in BS 5534 [49], which covers all types of slate, tile and shingle cladding 

on both walls and roofs but more information is needed. In view of the burgeoning 

interest in timber facades in the UK, this gap needs to be filled as soon as possible. This 

thesis is intended to inform progress in this area since any discussion of the topic has to 

be founded upon an understanding of the distinctive nature and behaviour of timber as a 

facade material. 
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4.5 Summary 

 

The performance-based approach to building design and regulation is becoming 

increasingly common. In Europe it is incorporated into the Construction Products 

Directive, which sets six essential requirements for construction products. The 

requirements are, in turn, incorporated into mandatory technical specifications for 

products; these include a suite of norms covering external timber cladding. The timber 

cladding norms are currently ignored, while this is not in itself illegal, it does create a 

gap as compliance with the CPD still has to be evidenced. The service life of timber 

facades are difficult to predict. The main problem being a lack of long term in-service 

data to inform the models. Service life targets for timber facades exist although little 

useful guidance is published on how these can be achieved. A UK code of practice for 

timber cladding is urgently needed. 
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Chapter 5 

Timber  

 

 

 

Many architects and engineers go through their education, or even their career, without 

engaging with timber in any detail. Most textbooks on engineering materials are equally 

silent on this subject. Although performance-based design is supposed to be material-

independent, designers who are only versed in the so called ‘traditional’ construction 

materials sometimes give insufficient consideration to the properties of timber.  

 

Timber is a distinctive facade material as it is both organic (composed of carbon based 

compounds with at least one C-H bond) and biogenic (derived from living organisms). 

Most facade materials are inorganic and non-biogenic (Table 1). Particles will move 

within and between the groups listed in Table 1 driven by the interplay of two 

thermodynamic quantities, entropy change (∆S) and enthalpy change (∆H). Entropy is 

the measure of energy dispersal, in effect the degree of molecular disorder. Enthalpy is 

a measure of heat flow at constant pressure. The type of particle movement depends 

upon whether entropy and enthalpy work in concert or are opposed (Table 2). Types 1 

and 3 are important in this chapter. Type 1 are oxidation reactions (they involve electron 

loss), whereas Type 3 are reduction reactions (they involve electron gain). The two are 

always coupled as oxidation-reduction (redox) reactions where electrons are cycled 
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between reactants. Redox reactions include the photosynthesis and combustion (or 

decay) of timber and the smelting and rusting of iron. 

 

Organic compounds hold large amounts of energy in their chemical bonds, are 

thermodynamically unstable and, given the right conditions (see Table 2), revert to a 

more stable form, releasing energy during the process. They tend to have low melting 

and boiling points, high combustibility, low solubility in water, poor electrically 

conductivity and covalent bonding. Inorganic materials, by contrast, are more 

thermodynamically stable. They usually have a high melting and boiling point, are 

difficult to ignite, highly soluble in water, electrical conductive and their bonds are 

often ionic [1].  

 

Biogenic materials can be categorised depending upon whether they originate, directly 

or indirectly, from living organisms or from other sources. Those coming directly from 

life processes (e.g. wood, leather) tend to be non-uniform whereas the others (e.g. oil, 

plastic) are more uniform. Organic-biogenic materials share a further characteristic: 

moisture sensitivity.  

 

Timber, therefore, has three defining characteristics as a facade material:  

 

• sensitivity to moisture; 

• combustibility; 

• non-uniform composition.  

 

None of these characteristics is a barrier to using timber externally – far from it. The 

differences between wood and other mainstream construction materials do, however, 

tend to be manifested through two different approaches to facade design (Table 3). Most 

published accounts of rainwater penetration through cladding, for example, focus on 

leakage through the joints between impermeable sheet materials but fail to consider 

moisture flow through the cladding itself; this can be a significant route for moisture 

penetration though timber facades. Similarly, most discussions of facade corrosion 

address atmospheric and galvanic mechanisms but omit the effect of organic acids.  
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Where no references are provided in this chapter, the text is based on a few key 

publications namely: Dinwoodie [2]; Drysdale [3]; Eaton and Hale [4]; Skarr [5]; Siau 

[6]; Tsoumis [7], and Zabel and Morrell [8]. 

 

Table 5.1 Organic and inorganic compounds, biogenic and non-biogenic materials 

(After: Railsback, [9]) 

Biogenic Materials 

 

Compounds 
Directly  

biogenic  

Transformed 
biogenic  

Non-biogenic  

Organic  
compounds 

(C-H 
bonds) 

Most living tissue 
(e.g. carbohydrates 

fats proteins)  

 

and their remains 
(e.g. wood, leather, 
cotton, paper, food) 

Fossilised biogenic 
materials  

(e.g. coal, oil)  

 

and their derivatives 
(e.g. petrol, natural 
gas, plastics, paint) 

Methane in or from 
the mantle. 

 

Carbon bearing amino 
acids and other 
molecules in 
meteorites 

C
ar

bo
n 

ba
se

d Teeth and bones of 
calcium 

 

Tests, shells or 
skeletons of calcite 

(e.g. brachiopod 
shells, Paleozoic 

coral) 

 

Tests, shells or 
skeletons of 

aragonite (e.g. 
mollusc shells, 
modern corals) 

Atmospheric carbon 
dioxide and 

bicarbonate in water 
from combustion of 
organic remains or 

fossil fuels 

 

Charcoal and soot 

 

Calcited aragonite  

 

Limestone, marble 

Lime, cement 

Atmospheric carbon 
dioxide and 

bicarbonate in water 
from weathering of 
rocks or combustion 

of non-biogenic 
organic materials 

 

Calcite in sandstones 
and limestones 

 

Diamond and graphite 

Inorganic 

compounds 

(no C-H 
bonds) 

N
o 

ca
rb

on
 

Skeletons or tests 
of opalline silica 

(e.g. tests of 
diatoms, skeletons 
of many sponges) 

 

Phosphatic shells 
or skeletons 

Sedimentary chert 

 

Phosphorite 
sediments 

Silicates in igneous 
and metamorphic 

rocks. Most silicates 
in sandstones 

 

Most other minerals 
(e.g. iron ore) and 
their derivates (e.g. 

iron) 
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Table 5.2 Spontaneity of a chemical or biological process (After Kolz et al. [ 10]) 

Type Enthalpy 
change in a 
system 

∆H°sys 

Entropy 
change in a 
system 

∆S°sys 

Spontaneity Examples 

1 Exothermic 

∆H°sys < 0 

Less order 

∆S°sys > 0 

Spontaneous under all 
conditions 

∆S°univ  > 0 

Oxidation processes 
such as combustion, 
fungal decay, corrosion 
or weathering of stone 

2 Exothermic 

∆H°sys < 0 

More order 

∆S°sys < 0 

Depends on relative 
magnitudes of ∆H and 
∆S. Most favourable 
at lower temperatures. 

Ammonia formation 

3 Endothermic 

∆H°sys > 0 

Less order 

∆S°sys > 0 

Depends on relative 
magnitudes of ∆H and 
∆S. Most favourable 
at higher 
temperatures. 

Reduction  processes 
such as iron smelting or 
photosynthesis 

4 Endothermic 

∆H°sys > 0 

More order 

∆S°sys < 0 

Not spontaneous 
under any conditions 

 ∆S°univ  < 0 
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Table 5.3 Material issues affecting facade design in temperate climates 

Degradation 

type 

Timber facades  Non-timber facades 

Moisture 

infiltration 

Through both joints and the 

material. 

Mainly through joints, leakage 

through porous materials (e.g. 

brick) can occur. 

Biodeterioation Fungal decay and insect attack in 

damp timber. 

Little affected by biodeterioation. 

Weathering Photo-degradation followed by 

fungal staining. Splitting and 

erosion also occur. Flame 

retardants and preservatives can 

leach out. 

Stone is mainly affected by 

oxidation and erosion. Fungal 

and pollution staining can occur. 

Plastics are photo-degraded. 

Dimensional 

change 

Mainly wetting/drying induced 

swelling/shrinkage. 

Mainly thermal 

expansion/contraction. 

Corrosion Embedded corrosion by organic 

acids predominates. Other 

corrosion mechanisms occur in 

some circumstances. 

Atmospheric and galvanic 

corrosion predominate. Other 

corrosion mechanisms occur in 

some circumstances. 

Loss of 

robustness 

Most mechanical properties 

reduce as dry timber gains 

moisture. 

Little affected by moisture. 

Frost Non-problematic. Problematic with sedimentary 

rock. 

Fire Structural fire performance is time 

dependent. Good structural 

performance in fully-developed 

fires due to development of 

insulating char layer. Surface 

flame spread problematic.  

Structural fire performance is 

temperature dependent. Metals 

and plastics soften or melt in 

fully-developed fires; concretes 

spall. Surface flame spread less 

problematic (except for plastics). 
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5.1 Non-uniformity 

 

The non-uniformity of timber is manifested in two ways; it is heterogeneous (i.e. 

composed of different materials) and anisotropic (i.e. its properties vary in different 

directions). Both affect its performance as a facade material. 

 

5.1.1 Heterogeneity  
 

The heterogeneity of timber is manifested in several ways, of which the differences 

between sapwood and heartwood, and the presence of knots, are generally the most 

important from a facade designer’s perspective. 

 

5.1.1.1 Heartwood and sapwood 
 

In a growing tree the sapwood contains living cells and is used for moving and storing 

metabolic compounds. As the tree increases in girth the inner sapwood progressively 

converts to heartwood. This zone does not contain living cells; its role is to provide 

structural support. These different roles mean that the heartwood and sapwood usually 

have very different material properties. Heartwood is often distinguishable from 

sapwood by its darker colour. 

 

In the living tree, sapwood is more resistant to degradation by wood-destroying 

organisms (biodeterioration) than the heartwood: this is mainly due to its moisture 

content being too high to permit fungal attack. Heartwood, being drier, is at risk of 

biodeterioration and many tree species combat this by depositing toxic substances in 

their heartwood as a defence mechanism. After a tree has died and its moisture content 

starts to drop, the relative biodeterioration resistance of heartwood and sapwood 

reverses because the latter does not usually contain these toxic extractives and so has 

little natural resistance to wood-destroying organisms. Some tree species, such as birch, 

are relatively short-lived and so do not need to have heartwood that is resistant to 

biodeterioration. By contrast, other species such as European oak (Quercus spp.) and 

many tropical hardwoods are very long-lived or are exposed to particularly aggressive 

wood-destroying organisms and so require their heartwood to be resistant – this is 

termed natural durability.  These differences in the ecological strategy of different tree 
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species largely explain the variation in biodeterioration resistance between species [11] 

[12]. 

 

The properties of the heartwood may also vary to some extent. In many species the 

inner heartwood around the pith tends to have inferior timber properties compared with 

the outer mature heartwood. This zone is termed juvenile wood and is generally 

assumed to comprise the inner 10 - 15 growth rings (Figure 5.1) forming a continuous 

core up the full height of the stem. Juvenile wood tends to be weaker and less 

dimensionally stable than mature heartwood and may also have a lower resistance to 

wood-destroying organisms. Much of the variation in material properties occurring 

within a timber species is attributable to inter-tree differences in the ratio of juvenile 

wood to mature heartwood. This can be due to several factors including age and growth 

conditions [13]. These issues are discussed further in a study, led by this author, for the 

Forestry Commission [14]. 

 

 

 

Figure 5.1 A butt log of European larch showing a change in colour and working 

properties at around the 15th growth ring 

 

5.1.1.2 Knots and other features 
 
Wood usually contains knots and other deviations from a regular pattern of growth 

rings. Their occurrence depends upon growth conditions and genetic factors. Knots are 

Sapwood 

Mature 
heartwood 

Juvenile 
wood 
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the remains of side branches that become enclosed in the tree bole as it increased in 

girth. If the branch was alive when enclosed it is termed a live (or intergrown) knot, 

whereas if the branch had ceased to be alive the resultant knot is known as a dead (or 

non-intergrown) knot. Dead knots can loosen and fall out; they may also contain areas 

degraded by fungal decay. Knots do not directly affect the decay resistance of timber 

but they may create water traps thereby indirectly reducing its service life. Knots and 

other grain deviations do, however, affect other timber characteristics of importance for 

external cladding; the most important being strength and stiffness, stability, machining 

and nailing. Appearance is also affected and so very knotty timber tends to be rejected 

for many cladding applications. Much of the popularity of Siberian larch (Larix 

sibirica) and imported western red cedar (Thuga plicata) is attributable to these timbers 

being sourced from old-growth forests where the wood is largely knot free. If knots or 

other defects are present, a few cladding suppliers grade them out or offer a choice of 

appearance grades. Some cladding suppliers are beginning to go further by cutting out 

defects (defect cutting) and then finger-jointing the sections of clear timber back 

together. 

 

 

5.1.2 Anisotropy 

 

It is possible to distinguish three directional axes within a piece of timber (Figure 5.2). 

The radial axis describes a section from the centre of a log outwards in a radial 

direction. The tangential axis describes a section tangential to the growth rings. The 

transverse axis follows a cross-section across a log, perpendicular to its length. It is also 

useful to refer to the longitudinal direction along the length of the log. Timber behaves 

differently in each of these directions. Although this anisotropy can seem quite abstract 

it becomes particularly important when dimensional change due to moisture is 

considered and it also affects other characteristics such as decay resistance and 

structural robustness. 
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Figure 5.2 Sketch of a block of wood showing (A) transverse, (B) radial, and (C) 

tangential surfaces, along with (D) the longitudinal direction. 

 

 

5.2 The cell wall  

 

Wood, like all living organisms, is made up of cells. The living cell consists of an outer 

wall that encloses a cavity (the lumen) containing various structures concerned with the 

organism’s metabolism. Much of timber’s lack of uniformity is due to the structure and 

composition of the cell wall and to cell orientation.  

 

5.2.1 Cell wall composition 
 
The chemical composition of timber from all wood species is similar; in the oven dry 

(OD) condition it comprises 49% to 50 % carbon, 6% hydrogen, and 44% to 45% 

oxygen. There is also a small mineral component, termed ash, usually comprising 

calcium, potassium and magnesium. The ash content is generally between 0.2% and 1% 

of the OD weight of wood [15].   

A 

B
C D 
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The cell wall comprises three main polymeric components: cellulose forms the skeleton, 

hemicelluloses the matrix and lignin acts to bind the other components together, thereby 

giving rigidity to the cell wall. In addition, wood contains extractives (substances 

extraneous to the wood structure which can be extracted using solvents). The relative 

proportions of these components vary between hardwoods and softwoods and as a result 

of the analytical procedure used. Typical values (on a dry mass basis) are: 

 

• Cellulose: 40% to 47% in both hardwoods and softwoods, 

• Hemicelluloses: 20% in softwoods, 25% to 35% in hardwoods,  

• Lignin: 25% to 35% in softwoods, 17% to 35% in hardwoods 

• Extractives: temperate species 1% to 10% but up to 20% in tropical hardwoods 

 

The cell wall is made up of a number of layers (Figures 5.4 and 5.5). Of these, the S2 

layer is the thickest comprising around 80% of the cell wall thickness in softwoods 

whilst the corresponding figure in hardwoods can be around 50%. It contains 30 to 50 

lamellae, each around 60 to 70 µm in thickness.  

 

The nature and composition of the cell wall components are as follows: 

 

• Cellulose; occurs as long filaments formed from glucose (C6H12O6), the number of 

units (degree of polymerisation) varies but is typically around 2000 to 10,000. The 

empirical formula for cellulose is (C6H12O4)n where n is the degree of 

polymerisation. Glucose occurs in either of two forms depending upon the position 

of the –OH groups. Starch is formed from α-glucose, whilst β-glucose is the main 

wall building component of timber. In β-glucose the molecules are able to align 

themselves into chain-like bundles termed microfibrils. When the microfibrils are 

evenly ordered they are termed crystalline cellulose, whilst areas of uneven ordering 

are known as amorphous cellulose. About half of the cellulose is crystalline. 

Amorphous cellulose is hygroscopic whilst crystalline is not. This means that the 

microfibrils have different moisture properties depending upon how they are 

ordered. When water permeates between the chains in the S2 layer it forces them 

apart, causing transverse swelling. There is little dimensional change in the 

longitudinal direction.   
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• Hemicelluloses; the hemicelluloses are also carbohydrates but are formed from 

different sugar units to cellulose. Hemicelluloses have similar hygroscopicity to 

amorphous cellulose, indeed this property seems to be related to the amount of 

hemicelluloses present in the wood. High density wood appears to be correlated 

with a low amount of hemicelluloses; so too is wood with thin cell walls. 

 

• Lignin ; chemically dissimilar to the other two structural components of wood, 

lignin consists of large amorphous molecules formed from complex phenolic 

polymers. It gives stiffness to the cell wall. Lignin is less hygroscopic than 

amorphous cellulose and the hemicelluloses.     

 

• Extractives; these compounds vary considerably between wood species. They 

include: starches, resins, fats, salts and tannins. Some extractives such as the 

starches are associated with the tree’s metabolism, whilst others are toxic to wood 

destroying organisms and function to protect the heartwood from biodeterioation. 

 

The relative proportions of cellulose, the hemicelluloses and lignin varies across the cell 

wall. A typical distribution for hardwood species is given in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Relative distribution of cellulose, hemicelluloses and lignin in the cell wall 

of a hardwood. M: middle lamella, P: primary wall, S1 to S3: layers of the secondary 

wall.  (after: Faln, A. [15]) 
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S3 
S2      Secondary  
S1      wall 

Primary  
wall 

Figure 5.4 (Above) Diagram of the cell wall 

structure in wood. The various layers are 

illustrated including the S2 which has the 

microfibrils running almost vertically. 

 

Figure 5.5 (Left) This sequence of scanning 

electron microscope images shows a transverse 

section of European larch being progressively 

magnified from ×100 to ×10,000. The white 

rectangles show the area that is enlarged in the 

next image. The top image in the sequence 

shows the boundary between low density 

earlywood and high density latewood across 

one growth ring. This transition is visible with 

the naked eye. In the bottom two images the 

thick S2 layer can be seen. The sample was 

prepared by dehydration followed by splutter-

deposition of a conductive coating of gold 

particles. 

 

Middle 
lamella 
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5.2.2 Wood density 
 

Density is defined as the mass per unit volume of a specimen. From a construction 

viewpoint it is one of the most significant characteristics of timber as it affects strength, 

stiffness and most other mechanical properties. The density of timber depends upon the 

amount of substance present and also the presence of moisture and extractives. If the 

extractives content is high these substances have to be removed before density is 

determined. Moisture in timber increases the mass of the sample and causes it to swell. 

Therefore, both mass and volume must be measured at the same gravimetric moisture 

content. These parameters are usually determined at an oven-dry moisture content 

(effectively zero). In Europe, density is frequently quoted at a moisture content of 12% 

as this level is commonly encountered in use. The density of timber varies both between 

species and within a species. The density of the cell wall is, however, similar at about 

1500 kg m-3. It therefore follows that wood density is determined by the ratio between 

the amount of cell wall (nearly constant) and lumen (variable). 

 

 

5.2.3 Natural durability 

 

Timber species can be classified according to the natural durability of their heartwood. 

BS EN 350-1 [16] defines natural durability as: ‘The inherent resistance of wood to 

attack by wood-destroying organisms’ and gives durability classifications for each of 

the main types of wood-destroying organism. These classifications do not describe 

intrinsic material properties. Instead they are extrinsic and can only give a relative 

ranking based on the particular conditions of the test; timber species can have slightly 

different durability rankings depending upon the test conditions. Consequently, the 

service life of timber of a particular durability class will tend to vary according to the 

exposure conditions [17] 18 [19]. Table 5.4 gives the European classification of natural 

durability against fungal decay given in BS EN 350-1 and is based on BS EN 252 [20]. 

This classification is based upon decay resistance in ground contact conditions. All 

sapwood of all species is assigned to the lowest natural durability classification. 

Sapwood should be removed wherever a timber is being used for its inherent 

biodeterioation resistance. Biodeterioation is not inevitable, however, as in most cases it 

depends on the moisture content of the timber. All timber – even sapwood – can last for 

centuries if it is kept dry. 

- 
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Table 5.4 European classification of natural durability against fungal decay [16] 

Durability 

class 

Description Results of field tests 

expressed as x* 

1 Very durable x > 5.0 

2 Durable 3.0 <  x  ≤  5.0 

3 Moderately durable 2.0 <  x  ≤  3.0 

4 Slightly durable 1.2 <  x  ≤  2.0 

5 Not durable x ≤ 1.2 

 

* x value =  

 

 

 

 

5.3 Moisture sensitivity 

 
Facades are constantly exposed to fluctuating moisture conditions and so the 

relationship between wood and water tends to dominate much of timber facade design. 

It is only a slight overstatement to say that much of timber facade design is about the 

management – and sometimes even the celebration – of moisture effects (Figure 5.6). 

Most failures in timber facades, and timber buildings generally, are caused by water: 

either the timber was installed at the wrong moisture content for its intended use, or it 

became wetter in service than was allowed for in the design. 
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Figure 5.6 Celebration of moisture effects: the location and detailing of this timber clad 

building in Dublin has created a wide variation in microclimate conditions and 

correspondingly wide range of weathering effects. This was done in full knowledge of 

the likely consequences – it was an aesthetic decision. The timber was European oak 

(Quercus spp.). 
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5.3.1 Moisture content 

 

The moisture content of a piece of timber is defined as the mass of moisture in the 

sample expressed as a percentage of its mass when fully dry. It can be measured in 

several ways of which the most accurate is the oven-dry (or gravimetric) method. To do 

this the wood sample in question is weighed, fully dried, and then weighed again. If this 

is done using standardised procedures [21], the moisture content (w) can be calculated 

as: 

0
0100×

−
=

o

og

p

pp
w         (5.1) 

where pg is the timber sample’s initial mass and po is its mass after oven drying. The 

oven dry method is impractical for rapid measurements on site and so electric moisture 

meters are often used instead; these are normally hand-held although automatic data-

loggers for connection to permanent installations are also available. These meters do not 

measure moisture content directly but instead use some electrical property that varies 

according to the mass of water in the timber. At moisture contents between 6% and 

25%, a measurement accuracy of ± 2% can be achieved using these meters [22] 

providing the procedure follows standard practices [23] [24]. This is sufficient for most 

building science purposes. The meters become less accurate outside this range.  

 

 

5.3.2 Fibre saturation point 

 

When freshly felled, the moisture content of timber can, depending upon species and 

other factors, vary from below 30% to over 200%. In this condition, timber is described 

as being green or unseasoned. Timber holds liquid water in two forms: free and bound. 

Free water is present in the cavities between and within the cells whilst bound water is 

chemically bonded into the cell wall. Green timber contains both free and bound water. 

As this timber is dried, the free water is removed first until a condition is reached where 

all water has gone from the cavities but the cell walls remain saturated. This is termed 

the fibre saturation point (FSP). Further drying involves removal of bound water from 

the cell wall. The term fibre saturation point is somewhat confusing because it implies a 

specific moisture content whereas in reality the FSP is a more of a zone of moisture 

content in which liquid water finally disappears from the surface of the cell wall. This 

occurs in most timbers at approximately 28% ≤ FSP ≤ 32%. although in a few species 
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the FSP can be as low as 19% or up to around 40%. Moreover, the FSP is not an exact 

concept and so varies slightly depending upon how it is defined and measured. 

Nonetheless, the key point is that most timber properties are stable at high moisture 

contents but they tend to change as the moisture content drops below FSP. Beyond this 

point, for example, timber starts to shrink and its strength increases. The FSP can 

usefully be thought of as a narrow zone of moisture contents below which timber 

properties start to change.  

 

5.3.3 Equilibrium moisture content 
 

In addition to free and bound water, timber also contains water vapour and this becomes 

important below the FSP. Timber is hygroscopic – it will absorb atmospheric moisture 

if it is drier than the surrounding environment and will give up moisture when wetter – 

and so for any combination of vapour pressure and atmospheric temperature there is, in 

principle, a corresponding moisture content below the FSP at which there is no inward 

or outward diffusion of water vapour from the cell wall. This is known as the 

equilibrium moisture content (EMC). A stable EMC is rarely achieved in practice 

because most timber inside buildings is exposed to some degree of climate fluctuation.  

Nonetheless, an approximate value can be predicted. Timber in a centrally heated room, 

for example, may attain an EMC of 9% to 13% in European conditions.  

 

5.3.4 Sorption  
 

The graph relating the EMC of wood to its ambient relative humidity at a constant 

temperature is known as a sorption isotherm (Figure 5.7). The isotherm obtained when 

wood is losing moisture (desorption) does not coincide with that for moisture gain  

(adsorption). This hysteretic lag effect occurs in many materials. It means that the 

equilibrium moisture content of wood is influenced by temperature, relative humidity 

and by its immediate history. At any given temperature there are three main sorption 

isotherms for wood: 

 

• The initial desorption isotherm as the wood dries from a green condition 

• The absorption isotherm as the wood takes up moisture after drying 

• The secondary desorption isotherm as the wood redries. 
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The initial desorption isotherm is everywhere wetter at points between zero and its peak 

moisture content, whereas the absorption isotherm is always the driest (boundary 

conditions excepted). These isotherms are the border equilibrium conditions. Most 

wood in service fluctuates between these curves, creating what is known as an 

intermediate isotherm; this occurs when sorption is reversed, the transition between 

curves is smooth. Sorption is affected by both chemical and physical factors. 

 

 

 

 

 

 

Figure 5.7 Schematic diagrams of the sorption isotherms for wood: (1) initial 

desorption isotherm, (2) absorption isotherm, (3) secondary desorption isotherm, (4) 

intermediate isotherm (After: Siau [6]). 

 

The physical and chemical basis of sorption in wood was reviewed by Salmén [25] who 

suggests that water sorbed by wood polymers is bound onto their polar groups, namely, 

the hydroxyls (-OH), the carboxyls (-COOH), and sulfonic acid (…S(=O2)-OH). Most 

sorbed water is bound onto the –OH groups in the amorphous regions of the cellulose 

fibres and by hemicelluloses in the microfibrils. Unlike the crystalline areas, amorphous 

cellulose has free absorption sites available and so the amount of sorbed water is 

determined by the fibre’s chemical composition. Physical adsorption is similar to 

condensation although the heat of adsorption is higher than the heat of condensation. By 

contrast the heat of adsorption for chemical adsorption tends to be larger and is similar 

to a chemical reaction. Physical sorption is thus readily reversible whereas chemical 

adsorption is not. Adsorption equilibrium occurs when the number of molecules 

arriving on a surface is balanced by the number leaving. Ahlgren [26] reviewed the 
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types of physical sorption isotherm found in a range of materials (Figure 5.8).  Type 2 is 

applicable to timber and most other porous materials.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 The five types of adsorption isotherm (after: Ahlgren [26]) 

 

The moisture fixation mechanisms in wood vary in response to the RH. At relative 

humidities below around 10% it is assumed that water molecules are adsorbed as a 

single layer. The mechanism appears to be some kind of chemisorption with the result 

that the bound water is difficult to remove. As the relative humidity increases to up to 

about RH 30% to 50 % moisture fixation changes to multilayer adsorption; this occurs 

at a wood moisture content of 6% to 15%. As the moisture content approaches 20% the 

adsorbed water molecules tend to cluster and are drawn into the timber by capillary 

suction. Osmotic binding may occur at RH values near 100%. The sorption isotherm is 

only defined for RH values up to 98% as it is impossible in practice to measure at 

higher values. The zone in which the sorption isotherm is valid is known as the 

hygroscopic region and sorbed water at an equilibrium moisture content with the 

surrounding temperature and RH (below 98%) is termed hygroscopic moisture.  

 

The concept of an equilibrium moisture content is only partly applicable to timber that 

is used externally because the component is exposed to periods of precipitation. If the 

timber surface is coated with a film of rainwater, this is equivalent to an RH of 100% 

placing the timber outwith its hygroscopic region. The upper moisture content of 

external timber is therefore likely to be influenced by the degree of wetting due to 
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sustained contact with liquid water and by the FSP of the species concerned. As already 

indicated the moisture content at fibre saturation varies between species.  

 

The minimum moisture content attained by external timber is easier to predict. 

Although the moisture content at FSP varies between species; this is not the case at low 

moisture contents. Tests at TNO  [27] indicated that all wood species attain an EMC of  

around 5% at 20% RH, and 11% at 60% RH. The authors argue that this relatively 

constant relationship corresponds to the so-called Langmuir type of sorption [28] 

characteristic of many porous materials. At RH values above 60% the sorption isotherm 

varies between species (Figure 5.9) this is believed to be due to differences in the 

encrustation of the cell wall with extractives. Tropical hardwoods tend to have fibres 

heavily encrusted with phenolic compounds resulting in a low FSP and high natural 

durability. As the RH on a hot summer day in the UK is often in the region of 50% to 

60% this would mean that the minimum EMC for external timber is 9% to 12% 

assuming the dry period lasts long enough for equilibrium to occur. 

 

Sorption in wood is discussed through the techniques of classical thermodynamics, 

although the wood-water system is not fully reversible. The process of water vapour 

absorption is exothermic due to the heat of sorption being released. Conversely, water 

desorption is endothermic as energy is required to drive the process. Sorbed water in the 

cell wall is thus analogous to the frozen phase of water because it has a lower enthalpy 

than liquid water.  

 

 

 

 

 
 

 

 

 

 

0 20 40 60 80 100 

30 
 

25 
 

20 
 

15 
 

10 
 

5 
 

0 

E
qu

ili
br

iu
m

 m
oi

st
ur

e 
co

nt
en

t (
%

) 

Relative humidity (%) 

98 Figure 5.9 Adsorption isotherms 

for wood. The path for 0% - 60% 

RH is constant for all timber 

species (subject to normal 

variance) and is believed to be due 

to the mono- and bimolecular 

bound water. The path from 60% - 

98% RH is due to poly-molecular 

adsorption. The curvature varies 

depending upon the degree of cell 

wall encrustation [27]. 
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5.4 Fungal decay and insect attack 
 

Although timber can last for centuries in dry conditions, it is at risk of degradation from 

a range of organisms if it becomes wet for extended periods. Wood-destroying fungi 

and insects are the main threats in the UK. Fortunately these risks are manageable with 

suitable materials, design, construction and maintenance. For virtually all timber 

species, there is no risk of fungal decay if timber is dried to, and then maintained at, a 

moisture content below 22%. The risk of insect attack in the UK is also relatively minor 

at these low moisture contents. 

 

 

5.4.1 Fungal decay 
 

Wood-destroying fungi have several physiological requirements, all of which must be 

satisfied for colonisation to occur:  

 

• A digestible substrate: unable to photosynthesise carbon themselves, fungi need a 

digestible carbon-based substrate. Wood-destroying fungi can readily assimilate 

some carbon sources, such as soluble sugars, and produce enzymes that break down 

the structural components of timber (cellulose, hemicelluloses and lignin) into 

carbon. Fungi also require minerals and other substances, particularly nitrogen. 

 

• Temperature: fungal decay rates increase with temperature until some metabolic 

reaction becomes limiting. Although a few fungal species can tolerate temperatures 

below 0 °C or above 50 °C, most have growth limits between 5 °C  to 45 °C and an 

optimum of 15 °C  to 35 °C. Fungi become dormant below their minimum threshold 

temperature and are killed if high temperatures are sustained. 

 

• Moisture and oxygen availability: the optimum moisture content for most fungi is 

40% to 80%. Moisture affects decay fungi both at low availability, where it limits 

enzyme activity, and at high levels, where lack of oxygen is a factor when more than 

80% of the void volume of timber is water-filled. Decay cannot start until the timber 

moisture content is high enough for a film of water to form on the cell wall; fungi 

are thus unable to grow in wood with a moisture content below the FSP. Dry rot 

(Serpula lacramens) is believed to be capable of moving moisture from damp to dry 

conditions but is not found in external timber in the UK due its intolerance of wind 
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and desiccation. At the upper threshold, fungi need oxygen for respiration and so are 

unable to grow in saturated timber. As the moisture content of wood increases above 

the FSP, water replaces air in the cell voids. The void volume varies inversely with 

density and so the upper moisture limit for decay is lower in high density species. 

 

• Acidity or alkalinity (pH): the optimum pH for fungal decay is generally between 

3 and 6. Most timber species have a pH within this range. 

 

• Absence of inhibitory substances: many timbers contain extractives that inhibit 

fungal decay. Product manufacturers can also introduce inhibitors as a means of 

timber preservation. These substances delay the onset of decay but, providing other 

physiological conditions are met, it will still occur eventually. 

 

Of these requirements, moisture, temperature and oxygen availability are principally 

environmental and their interaction can be used to describe a decay threshold diagram 

as shown in Figure 5.10 [29]. In principle, fungal decay in wood can be controlled by 

creating conditions outside these environmental parameters: conditions that are too hot, 

cold, wet or dry for the organism involved. Practical application of this technique 

includes timber being stored in ponds to prevent decay, or the elimination of a dry rot 

outbreak by heating the whole fabric of the affected building. Moisture content is 

usually the easiest parameter to control.  

 

The lower moisture content threshold was first proposed by Cartwright and Findley [30] 

who concluded that the practical moisture content limit to prevent decay was in the 

region of 22%. This value includes virtually all timber species and allows for 

inaccuracies in moisture measurement. They further advised that a safety margin should 

be applied, resulting in the now widely accepted moisture content threshold of 20%, 

below which it is assumed that timber is immune from fungal decay. At 20 °C most 

softwood timbers attain this moisture content when the relative humidity is above 85%.  

 

Whilst the 20% rule is a useful approximation, the duration of wetting is also important. 

Short periods at or above the FSP cannot support fungal decay; spores can germinate in 

a few minutes, but if the moisture content then falls below the FSP, the organism will be 

destroyed or become dormant. For an attack to be sustained, the timber has to be damp 

for an extended period. One frequently cited study [31] has put the threshold as being at 
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least three days per month, with the decay rate increasing as the damp period is 

extended. The practical implication of this is that the intensity of rainfall tends to be less 

important than its duration. Regular wetting of timber is generally a greater problem 

than short intense storms. The speed of drying thus becomes significant and the ratio 

between wetting and drying times is therefore an indicator of decay risk. The time factor 

is dependent upon temperature as colonisation can occur more rapidly at 15 °C  to 35 °C 

(the decay optimum) than at lower temperatures. Most decay fungi cannot colonise 

timber below 5 °C no matter what the moisture content. Although environmental control 

should be the first line of defence against fungal attack, such measures are not always 

suitable. Additional wood protection is needed in such cases and the options are 

discussed in chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.10 Idealised environmental parameters for fungal decay in wood (after: 

Tronstad [29], Raynor and Boddy [12]) 
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Wood-destroying fungi are classified into three groups [32] (Table 5.5), each of which 

has a slightly different environmental requirement or characteristic biodeterioation. 

Brown rot and white rot are the most common causes of wood decay, with soft rot 

generally only occurring in situations where the other types are inhibited by, for 

example, preservative-treated timber or low temperatures. Not all fungi that colonise 

wood will cause decay: some will simply stain the timber without breaking it down. 

Stain fungi are considered below under weathering. 

 

Table 5.5 Types of wood destroying fungi (after Schwarze et al. [32])  

Brown rot 

Host Mostly softwoods  

Degradation Cellulose and hemicelluloses 

Consistency Fragile, powdery brown, with cubic cracking 

Strength Drastic reduction in bending & impact strength 

Examples Dry rot serpula lacyrmans (internal timber only in the UK) 

Wet rots: Coniophora puteana & C. marmorata (hardwoods & 

softwoods, often confused with dry rot) Dacrymyces stillatus 

(hardwoods & softwoods, common on external joinery) 

White rot 

 Simultaneous rot Selective delignification 

Host Mostly hardwoods Hardwoods and softwoods 

Degradation Cellulose, lignin and 

hemicelluloses 

Lignin and hemicelluloses are 

attacked first, then cellulose 

Consistency Brittle fracture Ductile fracture 

Strength Great reduction in impact 

bending strength 

Slight increase in impact bending 

strength 

Examples Phellinus contiguous (hardwoods & softwoods, common on 

external joinery) 

Soft rot 

Host Hardwoods and softwoods 

Degradation Cellulose, hemicelluloses & lignin 

Consistency Brittle fracture 

Strength Between brown and white rot, high stiffness, brittle fracture. 
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Ecologists use the concept of an ecological strategy to describe how species inhabit 

their environment and interact with other organisms. A key descriptor is r-K selection. 

An r-selected strategy involves an ephemeral life form, whilst in a K-selected strategy 

the individuals are longer lived. In fungi, the adoption of either strategy is related to the 

interaction of three environmental determinants: stress, competition and disturbance. 

Environmental stress limits biomass production for most organisms in the community. 

The incidence of competitor organisms can reduce resource availability. Disturbance 

can make new resources available for exploitation by either destroying resident biomass 

or enriching the habitat. Fungi have three primary behaviour strategies in response to 

these determinants (Figure 5.11) [33] 34 35 36 [37]: 

 

• Ruderal, ephemeral, often only capable of using easily assimilated resources, rapid 

and sometimes total commitment to reproduction; 

• Combative, long-lived, capable of defending resources, possibly rapid growth and 

spore germination, slow or intermittent reproduction, good enzymatic competence; 

• Stress tolerant, persistent where stress conditions are maintained, but subject to 

replacement if stress is alleviated, good enzymatic competence. 

 

Although these strategies, and their combinations, allow behaviour at a particular time 

to be characterised, they cannot be used more widely. This is because behaviour may 

change in different circumstances or during the organism’s life cycle. In any case the 

descriptions are only relative and so organisms may be characterised differently in 

different habitats [12].  
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Figure 5.11 Primary and secondary 

strategies of fungi due to the relative 

importance of competition, stress and 

disturbance. Primary: C, combative; S, 

stress-tolerant; R, ruderal. Secondary: C-

R, combative ruderal; S-R, Stress-tolerant 

ruderal; S-C, stress-tolerant combative. 

After: Grime 1977 [33] and Cooke and 

Raynor [37]. 
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5.4.2 Insect attack 

 

Timber can be colonised by larvae of several beetle species. The problem is acute in 

warm climates and absent in very northern or southern locations. The species capable of 

colonising external cladding in the UK are given in Table 5.6. Others such as pin-hole 

borers (Platypodidae spp. Scolytidae spp. and Lymexylidae spp.), forest longhorn 

beetles (Cerambycidae spp.) and wood wasps (Urocerus gigas) occur in logs but cannot 

colonise dry timber. Identification guidance is given in Bravey et al. The common 

furniture beetle (Anobium punctatum) is the main threat in the UK as it is the only 

locally-occurring insect that regularly attacks timber below the FSP. Both softwoods 

and hardwoods can be affected, although not all species are susceptible. Damage is 

normally restricted to sapwood, but heartwood can be colonised if rot is present. In the 

wild, A. punctatum is a forest-floor species and so the optimum moisture content for the 

larvae is 18% to 30%; similar to the conditions in a fallen branch. The larvae can 

survive at moisture contents down to 12%, although the colony will tend to die out.  

 

Table 5.6 Insects commonly or infrequently seen in external cladding in the UK [38] 

Type of timber Insect species 

Hardwoods Softwoods 

Comments 

Main insect species that can infest external cladding in service in the UK 

Woodworm 

Anobium punctatum 

 

���� 

 

���� 

Sapwood only, unless rot is present in which 

case heartwood as well. MC over 18% but can 

survive for a period down to 12%. 

Insect species that occasionally infest external cladding in the UK 

Lyctus powderpost beetles 

Lyctus brunneus &  L. linearis 

 

���� 
 Restricted to sapwood of ring porous 

hardwoods (e.g. oak). Thus not seen in 

cladding unless sapwood is present.  

Leafcutter bees (Magachile 

spp.) and solitary wasps 

(Carbro spp.) 

 

���� 

 

���� 

Decayed exterior wood including fencing, 

windows and cladding. Rare 

Sawfly 

Ametastegia glabrata 

  

���� 

Sapwood and heartwood of external timber. 

Can infest durable timber and preservative 

treated timber. Rare. 

Insect species that cannot infest cladding in the UK but which may already be present in the timber when it 

is felled or imported – will die out 

Jewel beetles, family 

Buprestidae several species 

  

���� 

North American timbers particularly western 

red cedar. Larvae may survive in dry timber for 

several years but cannot re-infest dry timber. 
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5.4.3 Effects of climate 
 

The environmental parameters outlined above assume varying levels of importance in 

different geographical locations. In sub-arctic areas, minimum temperature is the 

limiting factor for much of the year although lack of moisture is also an issue. In 

deserts, a lack of moisture is the main controlling factor, although the upper temperature 

threshold can also be important. In temperate climates low temperatures can be the 

dominant factor in the winter whilst water availability is more important during the rest 

of the year [12].  

 

Regional climate is not the only environmental factor: microclimate is also important. In 

Europe, the occurrence of wood-destroying organisms in buildings is outlined in 

European Standards BS EN 335 Parts 1 to 3 [38] 39  [40], which groups timber products 

into five ‘use classes’ reflecting their moisture conditions and associated biodeterioation 

risk. External joinery such as cladding is assigned to use class 3: a microclimate in 

which the timber is frequently, but not permanently, at a moisture content where it is 

liable to attack by fungi (Table 5.7). The use class system was revised in 2006. Before 

this revision, the classes were termed ‘hazard classes’ but this was seen as being too 

alarmist. The revision introduced sub-classes in use classes 3, 4, and 5 to reflect 

variations in microclimate or the occurrence of particular biological agents. The 

practical application of these sub-classes is not yet clear, however, with some people 

arguing that the presence of a surface coating on external timber is sufficient to change 

the sub-class from 3.1 to 3.2. Others point to the likelihood that coatings will not be 

maintained as evidence that class 3.1 should only applied in conditions where the wall is 

well protected by physical features such as wide eaves. These issues are still poorly 

understood. In any case, the use class system applies throughout Europe and necessarily 

involves a degree of approximation. In Mediterranean and sub-tropical climates, for 

example, it is argued that thin cladding tends to perform best as it dries out quickly 

whereas thick boards tend to split thereby creating water traps (Figure 5.11) [41]. In 

Scandinavia, by contrast, thick boards are sometimes recommended because they are 

believed to be more stable and, as a consequence, reduce the risk of water entrapment 

(Figure 5.12) [42].  This topic has not been properly investigated. In some countries the 

effect of these local factors is described in national standards. The use class system 

should not be confused with the service classes given in Eurocode 5 [43]. Although the 

two systems are superficially similar they are designed for different purposes and 

cannot be combined. The service classes are discussed in section 5.8.1.3.  

- 
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Table 5.7 Use classes for wood products in Europe (after: BS EN 335 parts 1 and 2, 

[38] [39]) 

Biological agents a Use 

class 

General service condition 

and sub-class where relevant 

Moisture content 

F
u

n
g

i 

B
ee

tle
s 

T
er

m
ite

s 

M
ar

in
e 

b
o

re
rs

 

1 Interior and covered, e.g. internal 

joinery   

Maximum 20 % - Ub Lf - 

2 Interior or covered, e.g. timber in 

external timber-frame walls, slating 

laths. 

Occasionally > 20 % Uc Ub Lf - 

3.1 Exterior, above ground, protected 

from wetting, by e.g. large eaves h 

Occasionally > 20 %  Uc Ub Lf - 3 

3.2 Exterior, above ground, 

unprotected from wetting, e.g. 

cladding, windows h 

Frequently > 20 %  Uc Ub Lf - 

4.1 Exterior, in ground contactor 

fresh water  

Predominantly or 

permanently > 20 % 

Ud Ub Lf - 4 

4.2 Exterior in ground (severe) or 

fresh water  

Permanently > 20 % 

 

Ud Ub Lf - 

5 In salt water Permanently > 20 % Ud Ube Le Ug 

U = universally present in Europe                     L = locally present in Europe 

It may not be necessary to protect against all biological agents as they may not be present or 

significant in all conditions or locations. A higher use class may be assigned if timber is likely to be 

wet due to e.g. design faults or poor workmanship. 
a  Due to local variation in occurrence and the need for targeted prescription, sub-classifications of 

biological agents is possible. 
b The risk of attack can be insignificant in some geographical locations 
c Both disfiguring & decay fungi occur 
d Disfiguring & decay fungi occur plus soft rot 
e The above-water portion can be exposed to wood boring insects including termites 
f  If termites are locally present the use class is given the suffix T (e.g. 3.1T) 
g Use class 5 is split into 3 sub-classes depending on the type of marine borer:   

5A  = Teredinids and Limnoria   

5B = as A + creosote tolerant Limnora  

5C = as B + Pholads. 
h Some publications interpret sub-class 3.1 as referring to coated timber and sub-class 3.2 to 

uncoated.  
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100 mm 

100 mm 

Figure 5.12 Thin cladding timbers are preferred in Mediterranean or sub-tropical 

climates. It is argued that they dry out quickly after wetting and thereby have a low 

decay risk. (Obi, Japan) 

Figure 5.13 Thick cladding timbers are traditional in Finland where it is argued 

that they are stable and thereby resistant to water accumulation due to splitting. 
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5.4.4 Assessing biodeterioation risks in use class 3 

 

Natural durability is often discussed as if it is an intrinsic material characteristic 

whereas it is simply a statement of performance under specific test conditions. Being an 

extrinsic phenomenon, natural durability statements should be used with caution. 

Although there are extensive test data on timber durability, much is from laboratory and 

short-term exposure trials which experience has shown to be poorly correlated with 

performance under some in-service conditions. Part of the difficulty is that these tests 

are derived from use class 4 conditions and do not adequately model the effects of 

intermittent wetting and drying. It is therefore likely that a new exposure trial procedure 

– known as a double layer test – will be adopted for assessing natural durability in use 

class 3 [44]. This method will not, however, do away with the need for product specific 

exposure trial tests such as those discussed in the next chapter. This topic is reviewed in 

Råberg et al. and Van Acker et al  [45] [46]. 
 

 

5.4.5 Decay indexes 

There have been several attempts to express the regional importance of these factors 

using various forms of fungal decay index. Three of these are discussed below although 

a note of caution should be sounded. All of these models are derived, at least in part, 

from historical climate data. They have a predictive role where environmental 

conditions are similar from year to year but their future accuracy can be questioned in 

the light of climate change.  

 

5.4.5.1 The Scheffer index 
 

The earliest model of fungal decay in out of ground contact conditions is the Scheffer 

Index [31] developed during the 1960s and based upon temperature and rainfall data. It 

assumes a linear relationship between mean monthly temperature (T) and decay with a 

lower threshold of 2 °C below which decay ceases. For rainfall, it uses the number of 

days (D) with at least 0.25 mm of precipitation. Rainfall of fewer than three days per 

month is discounted. Converted to metric units, it becomes:  
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The divisor is chosen to give a score below 100 for most of the United States. The index 

ranges from below 35 (virtually no decay) in parts of the American southwest, through 

to 70 - 130 (rapid decay) in the southeast and a small part of the Pacific northwest. 

Tropical areas such as north west Brazil score around 300. 

 

 

5.4.5.2 The European Climate Index 

 

Work is ongoing on an index for Europe based on the Scheffer model. It appears that 

the decay rate increases slightly from continental climates to western coastal conditions, 

and from north to south. Expressed on the Scheffer scale, the decay rate in most of 

western Europe is 50 to 80 [47]. 

 

  

5.4.5.3 The Timber Life index 

 

The Scheffer Index has its limitations and so other models have been developed. 

Australian researchers have developed the most advanced model to date [48]. It is one 

of a series of engineering-based degradation models developed through the Timber Life 

programme [49]. These models assume that once the relevant preconditions have been 

met, fungal decay (or any other degradation) develops at a uniform rate for the location 

and timber concerned. Maintenance can remove the preconditions for a time, thereby 

introducing a lag effect. But, once maintenance ceases degradation will proceed at the 

original rate. Although this model appears to allow the service life of timber in use class 

3 to be estimated, it is currently only applicable to Australian conditions and would 

need to be recalibrated for other climates. One difficulty is that the Australian natural 

durability classification is different to Europe. It is known that natural durability 

rankings are only relative and can change in different durability classes. This is not 

currently reflected in BS EN 350-2 [50] although work by Rapp and Augusta [18] is 

addressing the issue. The Australian research has produced different natural durability 

classifications for in ground and out of ground contact. Table 5.8 compares the current 

Climate index = 



 101 

European and Australian classifications using timber species common to both 

documents.  

 

Table 5.8 Durability classes against fungi [48] [50]  

Australian 
durability classes 

Common name Botanical name 

Hazard 
class 3 

Hazard 
class 4 

European 
durability 
classes in 

use class 4 

Western red cedar (US) Thuja plicata 2 3 2 

Douglas fir (US) Pseudotsuga menziesii 4 4 3 

Hemlock Tsuga heterophylla 4 4 4 

Jarrah Eucalyptus marginata 2 2 1 

Keruing Dipterocarpus spp. 3 3 3* 

Meranti, dark red Shorea spp. 3 4 2 - 4* 

Meranti, light red Shorea spp. 2 4 3 - 4* 

American white oak Quercus spp. 3 4 2 - 3* 

Radiata pine Pinus radiata 4 4 4 - 5* 

Burmese teak Tectona gradis 1 2 1 

*  Variable, depending upon growth rate and other factors 
 

It is known that durability classes of some species in Table 5.5 are variable whilst others 

(e.g. teak and western red cedar) may be changing due to a shift from old growth to 

plantation origin. In which case, the differences between the two classifications can 

probably be explained, although more work would be needed to confirm this. It is, 

however, reasonable to assume that the durability classes in BS EN 350-2 broadly 

equate to Australian durability classes for hazard class 4.  

 

The Australian index predicts the decay rate using a range of biological factors 

expressed as: 

 
Decay rate = kwoodkclimatekpktkwknkg 

 
 

where kwood  describes the timber species and type (heartwood, sapwood, preservative 

treated); kclimate is a climate parameter; kp is a parameter for paint; kt is a thickness 

parameter; kw is a width parameter reflecting the risk of splitting; kn is a fastener 

parameter  and kg is a parameter for component geometry.  

 

(5.3) 
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The wood parameter (kwood) quantifies the effect of different natural durability classes. 

Converted to the European natural durability classification it is expressed as: 

 














=

52.6

20.2

14.1

62.0

50.0

woodk          (5.4) 

 

Australia spans a wider range of climate conditions than Europe and this necessitated 

the country being split into four decay zones. Different zones were also devised for in-

ground and out-of-ground conditions: 

 

• In-ground hazard zone B describes the Australian dry-temperate zone that virtually 

encircles the desert interior. It is broadly equivalent to European use class 4.  

 

• Out-of-ground hazard zone C describes the Australian east coast temperate zone, it 

excludes some dry-temperate areas. It is broadly equivalent to European use class 3. 

 

Climate parameter kclimate = 0.65 is used for hazard zone C and comes closest to 

describing use class 3 conditions in Western Europe. 

 

The paint parameter is set at kp = 1.0 for unpainted timber, while the effect of paint 

timber is quantified differently for each natural durability class: 
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1.1
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5.3

pk          (5.5) 

 

The thickness parameter is set at kt = 1.0 for timber in contact with other timber but if 

the component is not in contact: 

 





=
5.0

1
tk          (5.6) 
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The width parameter ranges from kw = 1.0 for a 50 mm wide board up to kw = 1.5 for a 

200 mm wide board according to the expression: 

6

5

300
+= w

kw          (5.7) 

The connection parameter is set at kn = 2  where there is a connector and kn = 1 where 

there is not. These parameter values are very provisional 

 
The geometry parameter is expressed as: 

 

kg = kg1 kg2         (5.8) 

 

where kg1 is a contact factor and kg2 is a position parameter. The contact factor depends 

on if the assessed surface is in contact with other components or not: 

 









=
0.1

6.0

3.0

1gk          (5.9) 

 

The position parameter for non contact surfaces takes account of orientation and the 

effect of shelter and exposure to sun.  For vertical members the values are: 

  
















=

0.2

5.1

5.1

0.2

0.5

0.6

2gk                              (5.10) 

 

The values for north and south are reversed from those for Australia. The effect of 

differences in sunlight exposure between the UK and Australia cannot yet be estimated. 

 

The position parameter for contact surfaces takes account of the type of contact material 

and the size and location of gaps. It is expressed as: 

 

kg2 = kg21 kg22 kg23               (5.11) 

 

Non-contact surface 

Flat contact 

Embedded contact 

Top flat 

Top sloping 

Facing south  

Facing north 

Facing east 

Facing west 
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where kg21 is the contacted material, kg22 is the orientation and kg23 is the gap. Parameter 

values for the type of contacted material are: 

 





=
7.0

0.1
21gk                             (5.12) 

 

Where members are end jointed, if is the gap is ≤ 1.0 mm, kg23 = 2.0, while if the gap is 

≥ 2.5, kg23  = 2.0. Intermediate values are calculated as:  

 

×−=
5.1

7.0

5.1

7.3
23gk (gap size)                (5.13) 

 

The index is based on three types of test, in-ground stakes, vertical boards, and L-joints.  

With vertical boards, for example, researchers examined the effect of water traps at the 

top and bottom edge and at a saw cut;  decay at the bottom edge was around three times 

faster than at the other two locations (Figures 5.14 and 5.15). The L-joint samples with 

a surface coating test tended to decay around 25% more slowly than those without a 

coating (Figure 5.16). Test samples within the European climate index appear to be 

performing in a similar fashion but this has not been quantified yet. 

 

Although at first sight the Australian work seems comprehensive this is not yet the case. 

The researchers also note that the impact of construction detailing has not yet been fully 

addressed in the model. Cladding is poorly described, for example, and so the model 

cannot in its current form be used to predict the service life of timber facades. Table 5.6 

compares the Australian performance-based service life predictions with the 

prescriptive estimates in BS 8417 [19]. In most cases the use class 3 service life 

estimates in BS 8417 fall within the upper half of the Australian hazard zone C 

predictions for fencing and pergolas but have less correspondence with the equivalent 

estimates for decking. Similarly, the UK estimates for service life in use class 4 broadly 

correspond with the Australian predictions for square posts; the exception being Jarrah 

(Eucalyptus marginata) but this can probably be explained by differences in relative 

durability rankings (Table 5.9). It is therefore plausible to assume that the Australian 

performance based estimates for hazard class 3 can be used to make very provisional 

predictions of the service life of external cladding in the UK.  

 

Porous material (e.g. wood, concrete) 

Non-porous material (e.g. steel, plastic DPC) 
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Figure 5.14 Extrapolated 50 

percentile value for 20 year decay 

of non-preservative treated species 

in the vertical boards (see Figure 

5.13) comparison between decay 

zones. (From: Leicester et al. [48]) 

 

Figure 5.16 Extrapolated mean 

value for 20 year decay of non-

preservative treated species 

measured using an L-joint test; 

comparison between coated and 

uncoated samples. (From: 

Leicester et al. [48]) 

 

 

Figure 5.15 Design of the 

vertical board test (After:  

Leicester et al [48].) 

229 mm 

76 mm 

Sawcut 1.6 mm ×  32 mm 

Thickness 19 mm 

Bottom edge 

Top edge 
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Table 5.9 Service life estimates in UK and Australian guidance [19] [48]  

Australian performance based 
service life estimates * 

(years) 

Hazard class 3 

Hazard zone C 

Australian 
performance 

based service life 
estimates ** 

(years) 

Hazard class 4 

Hazard zone B 

UK prescriptive 
service life 

estimates (years) 

 

Common name 

Botanical name 

Fencing Pergolas Decking Round 
pole 

Square 

post 

Use 
class 3 

Use 
class 4 

Western red cedar (US) 

Thuja plicata 

35 - 80 25 - 40 35 - 50 25 - 40 15 - 25 60 15 

Douglas fir (US) 

Pseudotsuga 
menziesii 

10 - 25 8 - 15 10 - 15 - - 30 - 

Hemlock 

Tsuga heterophylla 

10 - 25 8 - 15 10 - 15 - - 15 - 

Jarrah 

Eucalyptus 
marginata 

35 - 80 25 - 40 35 - 50 25 - 40 15 - 25 > 60 60 

Keruing 

Dipterocarpus spp. 
20 - 45 15 - 25 20 - 25 - - 30 - 

Meranti dark red 

Shorea spp. 

20 - 45 15 - 25 20 - 25 - - 15 - 60 - 

Meranti light red 

Shorea spp. 

35 - 80 25 - 40 35 - 50 25 - 40 15 - 25 30 - 60 - 

American white oak 

Quercus spp. 

20 - 45 15 - 25 20 - 25 - - 30 - 60 - 

Radiata pine 

Pinus radiata 

10 - 25 8 - 15 10 - 15 - - ≤ 15 - 

Burmese teak 

Tectona gradis 

4 - 90 30 - 50 45 - 60 45 - 80 30 - 50 > 60 60 

* Depends upon component geometry 
** Depends upon diameter or section 
 

 

5.5 Weathering 

 

All external building materials change with time: metals corrode, masonry erodes, 

plastic becomes brittle, wood rots. Eventually these processes can result in the 

disintegration of the facade material but, before this; there is a period of ageing – of 

weathering – where the surface appearance changes in often unpredictable ways. These 

processes condition the way we view buildings, and our expectations of how, and for 
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how long, a facade will resist the effects of its environment. In the UK people tend to 

have a consistent set of expectations about how masonry-based materials will age. Yet 

they often lack a corresponding appreciation of timber. By contrast, in countries such as 

Norway where wooden facades are commonplace, people have more of a shared 

language for using timber externally; it is not controversial.  

 

All uncoated timber, irrespective of species, eventually weathers to various shades of 

grey when exposed out of doors. If the effect is uniform it may be described as ‘silver-

grey’ and is even, misleadingly, compared to the green patina that forms on copper. 

Leaving a timber facade to weather naturally can minimise maintenance costs, but in 

many cases the resultant finish can have unexpected and variable characteristics. Often 

this is viewed as being cheap or drab and in this respect uncoated timber facades have 

much in common with those of mass concrete. The challenge for facade designers is to 

pre-empt reaction against the current generation of uncoated timber cladding by the use 

of careful design and construction.  

 

5.5.1 Main weathering processes on wood 
 

When wood is exposed out of doors without a protective coating, the surface undergoes 

changes to its appearance and texture (Figure 5.17). Weathering of wood should not be 

confused with fungal decay, which results from extended periods of excess moisture 

allowing wood-destroying fungi to colonise and degrade the timber. Nor is it a purely 

physical process driven by ultraviolet (UV) light. Although the physical, chemical and 

biological processes involved in weathering of timber are understood [51] 5253 [54] their 

interaction in specific cases is difficult to predict. The normal weathering sequence in 

the UK is as follows although not all these stages appear in every case.  

 

1. Oxidation: as timber dries, extractives accumulate on the surface where they 

oxidise to a brown stain (this is similar to the cut surface of an apple turning brown). 

The effect is usually short-lived, as rainwater will remove the extractives, although 

it can persist where the timber is protected.  Leached extractives are often deposited 

as temporary brown stains on surfaces exposed to runoff from the facade. These 

effects vary but can be pronounced, particularly in oak and sweet chestnut. 

 

- 
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2. Photo-degradation: the visible and UV components of sunlight both act to photo-

degrade lignin at the timber’s surface to produce organic acids and other compounds 

which are then leached away leaving the fibrous cellulose and hemicelluloses 

largely intact. The depth affected is up to 0.5 mm. Weathered timber surfaces tend 

to roughen as the fibres are exposed (Figure 5.18). 

 

3. Staining: the greying of damp wood is generally due to the presence of stain fungi; 

Aureobasidium pullulans is particularly important in temperate climates. The 

hyphae of these fungi are pigmented and they tend to refract visible light, 

accordingly the timber surface appears grey. Refraction varies depending upon the 

surface moisture content and so weathered timber is always darkest when wet. 

Under favourable conditions, A. pullulans grows on the surface of many materials. 

Its ecological requirements are modest, the main condition being the occasional 

supply of water. On weathered timber, the organism lives off lignin breakdown 

products leached down the surface. It can colonise timber surfaces after less than a 

year’s weathering though the rate depends upon water availability – the effects are 

most pronounced on upward facing surfaces and those exposed to wind channelling, 

splashing or high relative humidity  (Figures 5.19 to 5.22).  Stain fungi such as A. 

pullulans also colonise weathered timber under coatings (Figure 5.23).   

 

4. Splitting : repeated movement of the timber due to moisture content fluctuation may 

lead to surface cracks. These vary according to the timber’s characteristics and how 

the board is fixed to the wall. Experience in Scandinavia [55] suggests that the risk 

of splitting is minimised if boards are positioned so that the side of the board nearest 

the pith faces outwards. Some UK publications claim otherwise, although this 

appears to be based on a misreading of Scandinavian advice. 

 

5. Erosion: the surface of external timber will slowly be worn away due to a 

combination of photo-degradation, mechanical abrasion by wind blown particles 

and biodeterioation. The rate varies depending upon the site conditions and timber 

density. 
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Figure 5.17 Weathering of timber is rarely uniform as it depends on a complex 

interaction of factors. This photograph shows cladding made of European oak (Quercus 

spp.) at Henley River and Rowing Museum. On the bottom left the oxidised surface of 

the cladding has been protected from leaching by the projecting canopy. On the right 

side the cladding has been photo-degraded and the resultant breakdown products are, 

given sufficient moisture, supporting the growth of stain fungi turning the timber 

surface grey. All of the right hand side is equally exposed to UV light. The variation in 

grey staining appears to be due to differences in moisture availability affecting the 

growth rate of stain fungi. 
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Figure 5.20 Light 

microscope image (×5) 

of the surface of a 

Douglas fir board after 

18 months weathering. 

The dark grey areas 

are fungal staining on 

the surface.  

(Photo courtesy of  

Victoria Sharratt) 

Figure 5.19 This 

light microscope 

image (×5) of a 

section through a 

piece of weathered 

larch illustrates how 

the grey staining is 

mainly a surface 

effect. 

Figure 5.18 Fibres 

being exposed as the 

timber surface 

weathers. 
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Figure 5.22 This western 

red cedar cladding in 

Aberdeenshire has been 

exposed to wind-driven 

rain at the gable while the 

three side panels have 

been sheltered. This 

variation in wetting has 

resulted in marked 

differences in fungal 

staining.  

 

Figure 5.21 This oak 

cladding at Henley-on-

Thames has stained in 

a uniform manner due 

to its sheltered humid 

site 

 

Figure 5.23  Florescence 

light microscope image 

(×5) through an exterior 

varnish. The grey lines 

are fungal mycelium 

growing between the 

coating and wood 

substrate. (Photo courtesy 

of  Victoria Sharratt) 
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5.5.2 Other weathering effects 

 

Although weathered timber generally turns some shade of grey due to colonisation by 

stain fungi, other organisms can also affect surface appearance. The most important of 

these in UK conditions are algae, wasps, slugs and lichen.  

 

Algal growth on timber cladding usually first appears in areas exposed to rainwater run-

off (e.g. below leaking gutters). The growth rate increases with moisture availability and 

is limited by drying or erosion. Algae require higher moisture contents than stain fungi. 

The most frequent species is the common subaerial green algae (Desmococcus 

olivaceus) [56] [57] which occurs on shaded or polluted timber not colonised by lichen. 

 

Wasps harvest photo-degraded timber to build their nests (Figure 5.24), whilst slugs eat 

algae. In both cases the effect is that light coloured irregular lines appear on the grey or 

green surface of the wood.  

 

Many lichen species can colonise external timber though their speed of growth is slow 

(Figure 5.25). Most species are sensitive to pollution and consequently are rarely seen in 

urban areas. In unpolluted locations, however, their growth can be extensive. Although 

lichen growth appears to have little detrimental effect on the timber substrate, the 

owners of many of the recently completed timber clad country homes in western Britain 

may come to take a different view. Lichen growth on timber facades has not been 

investigated. Indeed the whole topic of non-fungal growths on external timber has 

received little research attention. 
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Figure 5.24 Wasp harvesting 

photo-degraded timber 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25 Lichen growth on 

a 25 year old larch gate near 

Inverness 
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5.5.3 Factors influencing weathering 
 

Weathering of timber is affected by a number of factors particularly the site 

characteristics and the species used. 

 

5.5.3.1 Building location and design 
 

In areas of high rainfall some timber facades can turn grey in only a few months whilst 

in dry locations this process is generally slower. Walls facing south-west tend to 

experience relatively fast weathering. North-facing walls tend to weather uniformly as 

do facades on humid sites. 

 

The form and shape of a building strongly influences the impact of wind-driven rain 

upon it. Buildings without eaves tend to experience their highest moisture loads near the 

top of the facade, particularly at outer corners [58]. This may result in those areas 

staining faster than other parts of the wall. Eaves shelter the upper part of the wall, 

though the effect depends upon the ratio of wall height to depth of the eaves projection. 

An overhang ratio of at least 4:1 is required before the entire wall is sheltered [59]. 

Projections such as eaves can cause uneven weathering immediately below that point, 

however, because extractive staining persists and photo-degradation is prevented in the 

area sheltered by the projection. Projections can also cause splashing, which in turn 

leads to localised staining. Projections and splash-zones are therefore an important 

influence on weathering.  

 

5.5.3.2 Timber species, modification and preservatives 
 

Although all timber species turn grey when exposed to a combination of sunlight and 

moisture, some tend to be more predictable than others. Whilst the influence of species 

is usually less important than a building’s form and detailing, a number of general 

points can be made. 

 

If timber is to be left uncoated to weather naturally, it is normal practice for the 

heartwood of a relatively durable timber species to be used. Low durability timbers will 

turn grey but, because these species have little resistance to fungal decay, a surface 

coating is usually applied in an attempt to keep their moisture content as low as 
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possible. In the UK it is normally assumed that the heartwood of durability class 3 (i.e. 

moderately durable) timbers can be used externally without a coating although a 

durability class 2 or 1 species (i.e. durable or very durable) will tend to have a longer 

service life [19]. Density is also important. Low density timbers such as western red 

cedar (Thuja plicata) are prone to more rapid erosion than denser timbers and so it may 

be prudent to avoid these species wherever wind blown particles are a risk.  

 

Some timbers species are particularly prone to staining. Oak (Quercus spp.) and sweet 

chestnut (Castanea sativa) are well known for their rapid and variable weathering 

response. The effect is most pronounced in the first few years. In contrast, many tropical 

hardwood species and imported western red cedar tend to weather uniformly unless 

affected by differential wetting due to either orientation or the design of the facade. 

 

Some chemically-modified timbers such as Accoya™ are also very prone to staining, 

whereas most thermally-modified timbers tend to stain more uniformly. These effects 

are not fully understood. Preservative-treated timber contains a fungicide and this 

reduces the speed and variability of colonisation of wood surfaces by stain fungi. The 

preservatives used for external applications often impart a green or brown colouration to 

the timber, which although fading over time, may not be visually acceptable in all cases. 

 

5.5.4 Anticipating or responding to weathering 
 

Although weathering tests are published for surface coatings, and for external flame 

retardants (see below), there is no standardised weathering test for timber itself. It is 

unlikely such a test will be developed as the phenomenon is so variable and because 

there is little commercial incentive to do so.  

 

In some cases the effects of differential weathering can add to the architectural effect of 

the timber facade. This approach was pioneered by Louis Kahn in the United States who 

used uncoated teak on the facades of several buildings. Kahn’s aesthetic accommodates 

the effects of weathering; whilst many modernist buildings might be considered to have 

aged poorly and become outwardly shabby, the bleaching and streaks on Kahn’s facades 

are not so obtrusive and indeed are regarded by many as complementing their 

appearance [60].  It should, however, be cautioned that Kahn was mostly working in 

relatively dry North American climates where the degree of weathering is generally not 
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so pronounced as that experienced by external timber facades in temperate oceanic 

conditions such as the UK.  Kahn’s aesthetic is, in some respects, reminiscent of the 

celebration of diversity and transience evident in traditional Japanese construction. The 

concept is termed   (wabi sabi) which is typically defined as the flawed beauty or 

simple wisdom inherent in natural objects [61]. Timber facades in Japan can experience 

very pronounced and rapid weathering due to their warm, wet climate; many of their 

traditional timber buildings celebrate this effect. 

 

Weathering of exposed timber is unavoidable. There is no surface coating that will 

preserve the original colour of timber indefinitely. Attempts to prevent weathering by 

applying a water-repellent oil or clear varnish coating generally result in patchy grey or 

black staining of the timber. This is because stain fungi can develop under the coating 

where their hyphae turn the wood substrate grey (Figure 5.23). Coating the timber with 

a fungicide can slow down the onset of weathering although it will still occur 

eventually. Consequently, weathering effects can either be accepted, in all their 

unpredictability, or, if this is not appropriate, the main alternative option is to apply a 

pigmented surface coating before, or immediately after, the cladding is installed. The 

most durable external timber coatings employ a fungicidal primer.  

 

A number of techniques are occasionally used to ‘pre-weather’ timber. Their success is 

variable and some can be quite expensive. It is possible to char external timber to 

simulate a uniform weathered appearance, an effect that is easier to achieve with low 

density timbers. ‘Weathering stains’ provide a cheaper and more controllable option: 

they use either grey pigments or involve a chemical change to the wood’s surface. In 

each case the effect is to induce a temporary greying of the timber, but this will 

disappear after a few years. Several proprietary products are available to simulate the 

effect of weathering (although vague claims made about their ability to ‘protect’ the 

timber should be ignored). Often the easiest way to simulate the effect of weathering is 

to use a readily available ferric sulphate solution, as is occasionally done in Norway. 

The temporary staining caused by extractives can easily be removed with a 5 - 10 % 

solution of oxalic acid bleach. The grey stain caused by colonisation by Aureobasidium 

pullulans can also be removed by bleaching but this does not remove the photo-

degraded timber: sanding the surface is the only option for this. Oxalic acid can also be 

used to remove any blue-black markings caused by ferrous metal corrosion. It is, 

however, preferable to avoid corrosion occurring in the first place. 
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5.6 Dimensional change 

 
Timber changes size in response to changes in moisture content. Temperature will also 

affect the dimensions of a wood sample, although not to the same extent as moisture. 

 

Below the FSP, timber shrinks as the cell walls dry out (i.e. bound water is removed) 

and swells as the cell walls gain moisture. At moisture contents above the FSP, the cell 

walls are fully saturated and so changes in moisture content have no effect on size. For 

any given species, the magnitude of shrinkage and swelling within the hygroscopic zone 

is approximately in proportion to the volume of water lost or gained (desorbed or 

adsorbed) by the cell wall. By convention, dimensional change due to initial drying of 

the timber is often referred to as shrinkage while subsequent changes due to moisture 

fluctuation in service are known as movement. Shrinkage and movement values are 

quoted separately as the former are greater than the latter.  These dimensional changes 

are anistropic. Changes in the longitudinal direction are minimal and can usually be 

ignored. The changes are greater in a radial direction and greater still in a tangential 

direction. Designers and builders normally have no control over whether the timber they 

are using is radially or tangentially cut, in which case it is prudent to assume that the 

larger (tangential) values apply. 

 

Moisture in the cell wall is held by hydrogen bonding. The bonds are mainly to the 

hemicelluloses and the hydroxyl groups in the amorphous cellulose. These components 

contract as water is removed from the cell wall. The lack of longitudinal change is 

mainly due to the orientation of microfibrils in the S2 layer: these fibres shrink and 

swell across their width but not their length [62]. The difference between dimensional 

changes in the radial and tangential axes is not fully explained. The most common 

explanation is the presence of ray cells which are believed to have a radial restraining 

effect. These dimensional changes in wood can be influenced by several factors 

including extractives content, permeability, density and microfibril angle. Juvenile 

wood is relatively unstable as it is associated with changes in microfibril angles.  
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5.6.1 Shrinkage 
 
In Europe, shrinkage values for different timber species are conventionally given for a 

moisture content reduction from the FSP down to 12%. American literature often quotes 

shrinkage values from the FSP down to ‘oven dry’. The extent of shrinkage varies both 

between trees and within a tree. The published shrinkage coefficients are necessarily 

approximate. Shrinkage values are only applicable to timber facades where green (i.e. 

unseasoned) timber is used. In such cases the moisture content ranges quoted in the 

literature may not be relevant and so intermediary shrinkage values need to be 

interpolated. This can be done algebraically but it is usually more convenient to 

interpolate graphically by representing the shrinkage curve as a straight line and then 

reading off the percentage dimensional change that occurs as the timber dries from FSP 

down to the target moisture content (Figure 5.26). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26 Graphical interpolation of shrinkage at a specific moisture content 

 Actual shrinkage curve (often not available in practice) 

 Linerised shrinkage values (taken from published shrinkage coefficients) 

 Interpolation of shrinkage at a specific moisture content 

| | | | | | | 
0 5 10 15 20 25 30 

Moisture content (%) 

Shrinkage  
(% of green 
dimension) FSP 

0 - 
 

2 - 
 

4 - 
 

6 - 
 

8 - 
 

10 - 
 



 119 

5.6.2  Movement 
 

Most construction timber is used where it will not be exposed to precipitation. In which 

case, providing it has been dried to near its EMC, designers do not need to concern 

themselves with shrinkage and instead need only to consider movement in-use due to 

ongoing fluctuations in moisture content within the hygroscopic zone. The extent of 

these fluctuations can usually be predicted and so BS EN 942 [63] gives in-service 

moisture content values for most joinery applications (Table 5.10). 

 

Table 5.10 Moisture content of solid timber in in-service climates in Europe [63] 

Category  Sub-category based on in-service climate Moisture content (%) 

External joinery 12 - 19 

In unheated buildings 12 - 16 

In buildings heated to 12 - 21 °C 9 - 13 

Internal joinery 

In buildings heated to over 21 °C 6 - 10 

 

Movement values have been derived by measuring the dimensional changes occurring 

when timber in equilibrium with air at an RH of 60% is moved to air where the RH is 

90%; the temperature in both cases being 25 °C. For most softwood timber species this 

equates to a moisture content fluctuation between approximately 21% and 12%, 

although due to the hysteresis effect already outlined there are slight differences 

depending on whether the timber is gaining or losing moisture. The movement value for 

most commercial timbers is known and, for any given species, the relationship between 

movement and moisture is approximately linear and can be estimated from several 

formulae.  

 

Hoffmeyer gives what is probably the most elegant formulation [64]: 

       

( )




 −+= 1212 100
1 wwhh

β
                (5.14) 

 

where h1 and h2 are the thickness dimensions at moisture contents w1 and w2 

respectively. β is the coefficient of swelling (positive) or shrinkage (negative) taken 

from the literature.  
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Brown [65] gives an easily understood but cumbersome formula which, with minor 

adjustments for clarity, can be stated as: 
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                (5. 15) 

 

where is S shrinkage or swelling, minit is initial moisture content, mfinal is final moisture 

content, dinit is initial moisture content, mfsp is the fibre saturation point, and Stan is the 

tangential shrinkage or swelling coefficient from FSP to oven dry. 

 

The movement characteristics of timber species are often expressed in relative terms 

using three movement classes (Table 5.11) [66] [67]. Timbers with a medium or low 

classification are suitable for most cladding applications though a small movement class 

is usually selected for tongued and grooved profiles, boards over 150 mm wide or any 

design where dimensional change is difficult to accommodate. Large movement species 

can also be used as cladding providing that the detailing can accommodate the 

dimensional changes that will occur. Unlike timber used inside buildings, cladding 

timber is exposed to both bulk wetting and intense drying. The resultant moisture 

content is thus likely to be wider in range than the 12% to 21% used as the basis of 

movement class definitions. The implications of this are discussed in later chapters. 

 

Table 5.11 Movement classes of timber (After: Hislop [67]) 

Movement 
class 

Across grain dimensional chance due to moisture fluctuation 
in service 

Small 1% for every 5% change in moisture content 

Medium 1% for every 4% change in moisture content 

Large 1% for every 3% change in moisture content 
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5.7 Corrosion 

 

Virtually all timber facades use metal fastenings and many have metallic flashings and 

support brackets as well. If these are degraded by corrosion, the building’s appearance 

will be affected and the attachment of the cladding to the wall may be compromised. 

Corrosion can be defined as ‘the destructive attack of a metal by chemical or 

electrochemical reaction with its environment.’[68]. This definition excludes physical 

deterioration and all non-metallic degradation. Rust is the corrosion of iron and its 

alloys to produce hydrous ferric oxides; non-ferrous metals corrode but do not rust. 

Although dry timber is not corrosive, all timbers pose a corrosion risk if they become 

wet. Some species are especially corrosive, as are particular flame retardant and wood 

preservation treatments. Coastal environments are also a problem. The corrosion of 

metals by wood is controllable providing it is considered at the outset. Corrosion is 

therefore an important topic in timber facade design.  

 

There are numerous types of corrosion although they all share five characteristics: 

 

1. Ions are involved and need a medium to move within (this is usually water); 

2. Oxygen is involved and has to be available; 

3. The metal has to be willing to donate electrons to start the process; 

4. A new material is formed which may be reactive or can protect the original metal; 

5. Corrosion proceeds through a series of steps that all require a driving force. 

 

Where metals are surrounded by dry air, a direct reaction occurs to form an oxide film 

on the metal’s surface. As it thickens, the film prevents contact with the air and thereby 

prevents further oxidation. By contrast, most types of corrosion occur when a metal 

surface is wet; this aqueous medium makes the process more destructive [69]. Uniform 

(or atmospheric) corrosion occurs over most of the exposed surface of a metal; the rate 

is steady and often predictable. It is generally easy to control by making the material 

thick enough to function for its projected service life or by coating the surface with a 

non-conducting paint or by use of a sacrificial coating. The rate increases in corrosive 

atmospheres, such as near the coast, where control measures require a metal relatively 

high on the electrochemical series such as 316 grade austenitic stainless steel. 
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5.7.1 Corrosion of metals by wood 
 

Wood is inherently corrosive and can be made more so by processing. Unlike most 

corrosive materials, wood contains acetic acid; this is volatile and in a poorly ventilated 

space wood can corrode adjacent metals even though there is no physical contact. In 

immersed conditions, large electrolytic cells can form. Corrosion of metals by wood can 

therefore arise in three areas [70]: 

  

1. in poorly ventilated containers, by vapour corrosion without physical contact;  

2. at points of physical contact in immersed structures, particularly seawater; large 

scale galvanic mechanisms predominate; 

3. at points of physical contact in land-based structures, through attack by wood acids 

and chemicals such as some flame retardants or preservatives.  

 

The first is mainly restricted to where corrosive timbers such as oak are used to make 

museum cases; it is not a concern with external timber and so will not be considered 

further here; nor will corrosion in immersed structures.  

 

5.7.2 Corrosion mechanisms 
 

Where there is contact between wood and metal in atmospheric conditions, corrosion 

can take place due to several micro-electrolytic mechanisms: 

 

• Crevice corrosion (also called embedded or concentration cell corrosion) 

occurs where two adjacent areas of metal differ in electric potential. It typically 

occurs when oxygen cannot penetrate a crevice leading to differential aeration; 

corrosion occurs in the area with less oxygen. The rate can be rapid especially 

where the substrate is particularly acidic. In ferrous fixings the process is 

initially manifested as either blue/black iron tannate stains or rust (Figure 5.27) 

Crevice corrosion requires an incubation period but once developed it proceeds 

at an accelerating rate. It is controlled by selecting resistant metals.  

 

• Galvanic (or bimetallic) corrosion occurs where two dissimilar metals, such as 

aluminium and copper, are in contact with an electrolyte such as water. It is 

caused by the greater willingness of one metal to give up electrons relative to the 
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other. The two metals must have an electrical connection to enable electron 

movement. The less easily corrodible metal forms a cathode, the other (in this 

case aluminium) the anode; the cathodic metal is corroded. Galvanic corrosion is 

prevented by several measures including: breaking the electrical contact with 

insulators or coatings; choosing metals that are close together on the galvanic 

series; or preventing water entrapment. 

 

• Pitting  corrosion (Figure 5.27) occurs in metals having a protective film such as 

a corrosion product or when a surface coating breaks down. The metal readily 

gives up electrons and the reaction causes tiny indentations (pits) where the local 

chemistry will support rapid attack. It mainly occurs wherever upward facing 

surfaces experience stagnant conditions. Pitting corrosion can be controlled by 

several measures including: selecting resistant metals, using corrosion 

inhibitors; or protecting the metal with a barrier or coating. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5.7.2.1 Naturally occurring acids 
 
Tannic acid is often assumed to be the cause of corrosion of metals by wood; this is 

incorrect as tannic acid can act a corrosion inhibitor [71].  The real culprit is usually 

acetic acid. Cellulose molecules contain mildly basic hydroxyl radicals, parts of which 

are combined with radicals (unpaired electrons) of acetic acid to form ester (organic 

salt) groupings. These can combine with water (i.e. they hydrolyse) to yield acetic acid 

and free hydroxyl radicals. This causes the moisture in wood to be constantly acidic. 

Acetyl radicals constitute about 1% to 6% of the weight of oven dry wood with 

Figure 5.27 Iron-

tannate staining due to 

crevice corrosion of 

ferrous fixings 
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hardwoods containing more than softwoods. The amount of acetyl radicals determines 

the quantity of acetic acid that can be formed. The rate of emission depends on the 

species; wood with a lower acetyl content can liberate acetic acid faster than another 

species having a higher content. The rate of acetic acid formation is affected by the 

temperature and moisture content of the wood, whilst the rate of emission depends on 

the component geometry. Kiln drying accelerates acetic acid production and, because it 

does not all have time to escape; the acid tends to accumulate in the wood. Kiln dried 

wood is therefore more immediately corrosive than air dried timber, although the effect 

reduces over time. Wood also contains small quantities of other acids such as formic, 

propionic and butyric acid, but their corrosion effects are usually minimal. Ash can 

contain trace amounts of sulphate and chloride radicals which can augment the 

corrosive action of acetic acid.  

 

5.7.2.2 Corrosive additives 
 

Although the natural chloride content of wood is low, it can absorb salt from spray and 

mist in coastal conditions and when floated as logs in seawater. Timber in roofs near the 

coast is particularly susceptible. Salt is also occasionally used to season timber although 

this does not usually occur with cladding boards. 

 

Some flame retardants contain ammonium sulphate and other corrosive salts. These 

substances are also hygroscopic and thus act to increase the moisture content of the 

timber. Fortunately those flame retardants that are based on simple salts are not used 

externally due to their poor leach resistance. The flame retardants designed for external 

use are not corrosive. 

 

It has long been known that copper-based wood preservatives are corrosive [72], 

however, the risks have tended to increase following the withdrawl of chromated copper 

arsenate formulations in 2006. Whilst CCA was itself relatively corrosive, many of its 

replacements are even more so. Some of the current ‘CCA alternatives’ include: ACQ 

(alkaline copper quaternary) and CA (copper azoles) and these tend to corrode steel 

more quickly than CCA. The rate depends upon the carrier that delivers the active 

chemicals. Carriers can be ammonia-based (particularly corrosive), amine-based or a 

hybrid [73]. 
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Copper based preservatives can leach soluble copper compounds, which are then 

deposited on surfaces exposed to run-off. If this occurs on iron, aluminium or zinc, a 

galvanic cell is formed that accelerates the corrosion of the metal substrate. The 

leaching is greatest from freshly treated wood, and so preserved wood should be 

allowed to age for at least seven days to give time for the preservative to become fixed 

before fasteners are inserted. Manufacturers of preservatives are addressing these issues 

and new, less corrosive, products are beginning to emerge although it is too early to 

evaluate their long-term performance [73].  

 

5.7.2.3 Acidity of different wood species 
 

Table 5.12 gives typical pH values for several timber species [74]. The pH of the 

heartwood of most timber species lies within 3.5 to 4.5. As a rough guide, timbers 

below pH 4 tend to be the most corrosive whilst those above pH 5 tend to be safe.  

 

Statements about the acidity of timber are necessarily approximate: the pH varies within 

a wood species, within a tree (heartwood is usually more acidic than sapwood) and due 

to storage conditions. Timbers also vary in how easily acetyl is hydrolysed to free acetic 

acid. Moreover, woods with a low acetyl content (such as oak) can yield more free acid 

in a given time than species with a higher content; some species still emit acetic acid 

many years after the tree has been felled. For embedded fasteners, the rate of crevice 

corrosion is affected by the permeability of wood towards water, oxygen and carbon 

dioxide. Thus, iron embedded in impermeable woods, such as the white oak species 

Figure 5.28 Pitting 

corrosion of the 

aluminium foil wrapping 

for an intumescent cavity 

barrier. This occurred 

after two months contact 

with timber treated with 

copper based 

preservative. 
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used in barrel making, can last a considerable time even when immersed. In spite of 

these reservations, experience shows that some timber species are especially corrosive. 

These include European oak, sweet chestnut, western red cedar, Douglas fir and most 

eucalyptus species [70] [74].  

 

Table 5.12 Acidities of various external cladding timbers [70] [74] 

Common name Botanical name Approximate 

pH 

Western red cedar Thuja plicata 3.3 

Douglas fir Pseudotsuga menziesii 3.5 

European oak Quercus robur and Q. petraea 4.0 

Larch Larix spp. 4.0 

Sitka spruce Picea. sitchensis 4.0 

Sweet chestnut Castanea sativa 4.5 

European redwood Pinus sylvestris 4.5 

Burmese Teak Tectona gradis 5.0 

Iroko Chlorophora excelsa and C. regia 5.5 

 

Timber that has been thermally or chemically modified may be more corrosive than 

unmodified wood, although this varies depending upon the process involved. Mild steel 

and zinc coated steel are particularly vulnerable whilst stainless steel is not attacked. 

The effect is not fully understood but is believed to be due to residual acids formed 

during the treatment process. Acetylated timbers such as Accoya™ are the most 

corrosive although some types of thermal modification also cause problems. 
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5.7.2.4 Effect of moisture content 
 

All timbers are corrosive if their moisture content is above 20% although the rate varies 

between species. CCA impregnated timbers are corrosive at moisture contents as low as 

12% [74] and it is likely that the CCA alternatives have a similar behavior. 

 

5.7.3 Susceptibility of different metals 
 

The UK’s National Physical Laboratory has ranked the susceptibility of different metals 

to attack by acetic acid vapour or direct contact with wood (Table 5.13) [70].  Although 

the susceptibility of zinc is as high as steel, this does not mean that zinc coated steel has 

no value; steel will not rust until the zinc has been corroded away, and this usually takes 

a long time. Although lead is frequently used as a flashing it is relatively susceptible to 

acetic acid corrosion and so should not be used in contact with timber. 

 

Table 5.13 Ranking of susceptibility of metals to attack by acetic acid in wood [70] 

Group Metals 

1. Severe attack Cadmium 

Carbon steels 

Low alloy steels 

Lead and its alloys 

Zinc and its alloys 

Magnesium and its alloys 

2. Moderate attack Copper and its alloys 

3. Slight attack Aluminium and its low strength alloys 

Nickel 

4. Insignificant attack Austenitic stainless steels 

Chromium 

Molybdenum 

Silver 

Tin 

Titanium and its alloys 
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5.7.4 Degradation of wood by metal 
 

Corroding steel can degrade wood due to a corrosion cell being formed where alkali is 

produced at the cathode and iron salts produced at the anode. Both corrosion products 

can attack wood, which may become sufficiently degraded for the holding power of the 

fixing to be lost. This is known as nail sickness. Corrosion cells in wood can be 

identified by their breakdown products: the dark blue iron tannate stains around ferrous 

metal fixings in timber are due to the interaction between iron salts and the extractives 

in wood. The stains are not always associated with current corrosion however as they 

can be caused by iron salts left over from when the timber was shaped using ferrous 

tools [75]. 

 

5.7.5 Corrosion testing 
 

Although many corrosion tests have been published, none of the standardised methods 

are suitable for assessing the effects of wood on metal and vice versa. Zelinka & 

Rammer [76] reviewed all of the published tests in this field and concluded that 

electrochemical methods offer the best potential.  

 

5.7.6 Resisting corrosion 
 

Austenitic stainless steel fixings offer the best resistance to the corrosion effects of 

acetic acid or copper-based wood preservatives. Type 304 is normally adequate 

although the more resistant type 316 may be required near the coast.  

 

 

5.8 Structural robustness 
 

The structural performance of timber facades is often ignored. Providing the cladding is 

on a low-rise building and follows best practice for board profiles and fastenings then 

this is rarely a problem. In the UK, however, timber cladding is in a period of 

innovation that indicates existing guidance may be inadequate. These issues are most 

clearly highlighted in Scotland where structural engineers are nowadays being 

contracted to verify that buildings are constructed in accordance with the guidance 

supporting building regulations. When verifiers assess timber cladding against the 
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guidance documents they sometimes find that it does not comply. Delays, remedial 

work or in situ testing can then ensue giving rise to two initial questions: what are the 

structural issues affecting timber cladding and how can these facades be constructed to 

ensure robustness? Both are affected by the moisture conditions of the facade.  

 

5.8.1 Structural concerns 
 

Non-loadbearing external cladding has been increasingly popular in the UK since the 

1950s. Initially engineers were not directly involved with cladding design except insofar 

as it had a secondary effect on a building’s structure. However, with the growing scale 

and complexity of this form of construction it has become common practice for 

structural engineers to take responsibility for cladding design or for assessing the 

designs of others. The first UK guidance on an engineering approach to cladding design 

was contained in a 1995 report [77] that considered all cladding materials including 

timber. A performance-based standard for cladding design has since been issued [78], 

although it does not address all of the performance issues relevant to a biogenic material 

such as timber. From an engineering viewpoint, cladding design involves the 

consideration of several factors including: design life, structural loads, fire performance, 

internal and external environments, construction tolerances and any access limitations. 

The design must also take account of all applicable standards, which nowadays means 

beginning with the relevant Eurocodes. Timber structures are designed to Eurocode 5 

(EC5) [79] using the guidance in other Eurocodes as necessary. Eurocode 5 is in the 

course of superseding BS 5268-2 [80], although the latter norm is still in use. It should 

also be noted that whilst most cladding applications are bespoke designs for specific 

buildings, other contracts involve the use of proprietary systems developed by specialist 

companies. In either instance, however, wind loads are usually the main structural 

concern.  

 

5.8.1.1 Wind  
 

Although exterior cladding (of whatever material) is intended to be largely non-

structural, wind can give rise to lateral loads on walls and uplift forces on roofs. The 

calculation of wind loads on cladding and its support assembly is based on the same 

criteria as the main structural design and guidance on this is given in Eurocode 1.4 [81]. 

The highest wind loads are experienced in coastal locations and at altitude. 
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For a given wind direction, the pressure will vary around and over the building and so 

special attention should be paid to the possibility of wind concentration at external 

corners, gaps between buildings and on roofs (Figure 2.2). Cladding on the leeward face 

of a building may experience suction forces while the windward face is simultaneously 

exposed to strong positive pressures. Wind suction will act to pull the cladding off its 

support battens and the battens off the wall; the cladding assembly has to be able to 

resist these actions (Figure 5.29). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is known [82] that in coastal parts of Scotland, cladding at the outer corners of 

medium-rise buildings is typically exposed to peak suction loads of around -1.2 kN/m2. 

Suction loads will tend to be higher on the Western Isles, Orkney, Shetland and in other 

very exposed locations. 

 

A further issue may arise where a timber-framed building on a windy site is clad with 

timber instead of masonry. The latter type of cladding can act to stiffen a timber-framed 

structure against wind loads [83].  If such structures are clad with timber, however, their 

capacity to resist wind forces may be compromised unless the issue is addressed at the 

design stage. This issue mainly occurs in coastal areas, particularly northwest Scotland 

and the Scottish islands. All existing UK guidance on timber cladding ignores this issue. 

Figure 5.29 The masonry 

cladding on this gable near 

Inverness was inadequately 

fastened to the timber structure 

and so had little resistance to 

outward wind suction. 
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5.8.1.2 Differential movement 
 

Heavyweight cladding materials such as brick, stone or blockwork are constructed from 

the foundations and tied back to the wall structure using flexible ties that allow for 

differential movement between the cladding and substrate. By contrast, lightweight 

claddings such as timber, fibre cement boards, rendered mesh, tiles or brick slips are 

fixed to a support assembly that is fully supported from the wall structure [84].  

 

Differential movement occurs wherever the cladding and wall structure move in 

different ways in response to moisture or temperature change. It is not normally a 

concern in situations where lightweight cladding is used in conjunction with a timber-

framed structure [85]. However, differential vertical movement can occur at junctions 

between heavyweight and lightweight cladding. In the case of timber-framed and post-

and-beam walls it can occur because: floor joists and other horizontal elements made of 

solid timber will shrink slightly as they dry out in service whereas clay brick cladding 

can expand. The problem also occurs where blockwork or calcium silicate bricks shrink 

more than the timber structure and cladding (Figure 5.30). Table 5.14 gives 

recommended allowances for differential movement between heavyweight cladding and 

timber cladding on a timber-frame. Some junctions between heavyweight and 

lightweight cladding will require engineering design. 

 

5.8.1.3 Service classes 
 

The strength and stiffness of timber are affected by changes in moisture, with dry timber 

having the highest strength and stiffness. As the moisture content increases, these 

properties steadily reduce until the FSP is reached. Above this threshold, further 

increases have no additional effect on timber’s mechanical properties (Figure 5.31) [86]. 

Engineers need to be able to take account of this variation during their designs and so 

EC5 gives three service classes for timber (Table 5.15) that reflect the different 

moisture conditions that occur in service.  

 

It is frequently argued that the support battens behind timber cladding are sheltered 

from direct wetting and should therefore be assigned to service class 2, but this can be 

questioned. This issue is discussed in later chapters. 
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Figure 5.30 Differential vertical movement between heavyweight and light weight 

cladding. Left, flashing uplift due to inadequate movement allowance. Right: uplift has 

been avoided using an adequate movement gap. (After: TRADA Technology [84]) 

 

 

Table 5.14 Allowances for differential vertical movement between heavyweight 

cladding and timber cladding on a timber-frame. (After: TRADA Technology [84]) 

Location of horizontal junction between 

heavy and lightweight cladding 

Minimum gap for differential vertical 

movement between heavyweight and 

lightweight cladding * ** *** **** 

At ground floor  3 mm 

At first floor 11 mm 

At second floor 19 mm 

Notes 

* If a timber platform ground floor is used then add 8 mm to the allowances quoted 

** Movement reduces if, for example, engineered wood joints or super-dried timber is 

used  

*** Movement increases in nursing homes and other buildings where the equilibrium 

moisture content is particularly low. It is also high where the brickwork employed 

expands over time. 

**** The allowances quoted are for clear gaps: they should be increased if compressible 

seals are installed in the gap. 
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Figure 5.31 General relationship between strength and stiffness properties and 

moisture content. (After: Porteous and Kermani [86])  

 

 

Table 5.15  Services classes for timber given in Eurocode 5 [80] 

Service 

class 

Timber moisture content and associated environmental conditions 

1 A moisture content of no more than 12 %: this corresponds to a 

temperature of 20 °C and a relative humidity below 60 % for most of the 

year. 

2 A moisture content of no more than 20 %: this corresponds to a 

temperature of 20 °C and a relative humidity below 85 % for most of the 

year. 

3 Climate conditions leading to a higher moisture content than in service 

class 2 
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5.8.2  Robustness 

 

At its simplest, an engineering specification for cladding will prescribe [77]: 

• The calculated self-weight of the cladding 

• The calculated imposed loads acting from the cladding onto the wall  

• The acceptable cladding attachment to the wall 

• Construction movements and tolerances 

 

Most structural questions concerning timber cladding concern attachment to the wall. 

 

 

5.8.2.1 Dowel type fasteners 
 

Most timber cladding is attached using nails or screws. In EC5 these are known as 

dowel type fasteners (fasteners where the load is transferred by a dowel action). Dowel 

fasteners can be subject to lateral loads (shear perpendicular to the line of the fastener) 

and axial loads (withdrawal along the line of the fastener). Dowel fasteners in timber 

cladding are mainly loaded axially due to wind suction. Ignoring tension failure of the 

dowel itself, there are two nail failure modes in axial loading (Figure 5.32) [79] [86]: 

• The dowel pulls out of the timber (termed pointside withdrawal) 

• The head of the dowel pulls through the timber (termed headside pull through) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32 Nail failure modes in axial loading [79] [86]: 

 

Headside pull through Pointside withdrawal 
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In the case of nails, the withdrawal capacity is taken to be the minimum of pointside 

withdrawal or headside pull-through. This is calculated from factors such as nail 

diameter, shank profile, timber thickness, nail penetration and the density of the timbers 

involved. In EC5 the recommended pointside penetrations of nails into the timber 

substrate are as follows:  

 

 Smooth nails      12d 

 Annular ring shank and other improved nails  6d 

  

where d is the shank diameter of the fixing. If the nail head diameter is at least 2d it is 

assumed pull-through will not occur because the pull-through resistance exceeds the 

withdrawal resistance. Fastener lengths for timber cladding are often determined using a 

simple ‘rule of thumb’ whereby a smooth nail should be two and a half times the board 

thickness and an improved nail should be twice the board thickness [67] [87]. 

Experience suggests that this simple guidance is adequate for most low-rise buildings 

but, although approximately correct, it is not consistent with EC5 and so is 

inappropriate for taller buildings or exposed locations. In both of these locations, the 

cladding fasteners should be designed by a structural engineer. 

 

Low velocity shot-fired nails are the most popular fixing method for timber cladding in 

the UK; this is due to their ease and speed of application. Both round and improved 

nails can be installed in this way. Other types of nailed fixing such as the ‘T’ nails used 

to secret-fix timber flooring should not be used with external cladding as they offer little 

resistance to axial withdrawal; indeed, there is no means of calculating their axial 

strength to meet the requirements of EC5. Lost head nails should also be avoided as 

they offer little resistance to pull through. Although shot fired nails are popular with 

contractors, their suitability for timber cladding installation can be questioned because 

nail guns tend to over drive the fixing and this can create water traps. In theory, this 

problem can be minimised by using nail guns that can be adjusted for timber density but 

this is not a complete solution, as many contractors will ignore this precaution and in 

any case timber density varies. Hammer fixed nails are, therefore, preferred wherever 

possible. The risk of the timber splitting should be minimised through the choice of 

fixing positions. These should conform to the edge and end distance requirements 

provided in EC5 (Figure 5.33 and Table 5.16). In addition, dense timbers (≥ 500 kgm-3 

at a moisture content of 12%) and species prone to splitting (e.g. larch, Douglas fir and 
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spruce) should be predrilled, the hole diameter being no greater than 80% of the nail 

diameter. Hardwood cladding timbers are normally fixed with screws as these have 

greater axial strength than nails. Design guidance for screw connections is given in EC5 

although it does not provide minimum spacings or end distances for the board 

thicknesses commonly used for cladding. The maximum axial loads on the timber 

cladding assembly tend to occur, not in the cladding itself, but in the fixings joining 

horizontal support battens to the vertical counter battens (Figure 5.34). Peak suction 

loads can be in the order of -0.3 kN per fixing on many coastal sites and may be higher 

still in particularly exposed locations. 

 

 

 

 

 

 
 
Figure 5.33 Nail spacings and distances (After EC5 [79]) (see Table 5.16) 

 

Table  5.16 Nail spacings and distances, d = nail diameter in mm (see Figure 5.33) [79] 

No pre-drilling Category 

Timber density 

≤ 420 kgm-3 (at 12% 

moisture content) 

Timber density 420 

to 500 kgm-3 (at 12% 

moisture content) 

Pre-drilled holes 

(timber density 

> 500 kgm-3 or species 

prone to splitting) 

Spacing s1  

(perpendicular 

to the grain) 

5d 5d 3d 

Spacing s2   

(parallel to the 

grain) 

d < 5 mm: 10d 

 d ≥ 5 mm: 12d 

15d 4d 

Distance d1  

(edge with no 

lateral load) 

5d 7d 3d 

Distance d2  

(end with no 

lateral load) 

10d 15d 7d 

s2 d1 

d2 

s1 
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Figure 5.34 Typical installation assembly and fixings for vertical timber cladding 

 

The wall studs are at a maximum spacing of 600 mm between centres. The vertical 

counter battens are fixed to the studs every 300 to 400 mm along their length, giving 

around 3 fixings per metre length or 6 per m2. The horizontal battens are spaced at a 

maximum of 600 mm centres and are fixed where they overlap the counter battens, 

giving 2 fixings per metre length or 4 per m2. The vertical boards are fixed at their 

overlap with a horizontal batten using 2 nails per overlap, giving 4 fixings per metre 

length or around 26 fixings per m2 (assuming 150 mm wide boards). 

 

Assuming a peak suction of -1.2 kNm-2 on the cladding, then the maximum load per 

fixing is -0.3 kN, this occurs at the 4 points where the horizontal battens are secured to 

the counter battens (-1.2 kN / 4). In this scenario the fixings securing the boards are 

only exposed to peak suction loads of -0.05 kN per fixing (-1.2 kN / 26). 

 

Vertical counter 
battens 

Horizontal 
battens 

Vertical 
cladding boards 

≤ 600 mm 

≤ 600 mm 
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5.8.2.2 Hidden fasteners 

 

Hidden fixings are becoming increasingly popular with timber cladding. Most use 

folded or extruded metal clips to connect into a slotted joint between the boards. These 

clips tend to be expensive to manufacture in small volumes and so most hidden fixings 

tend to be components in proprietary cladding systems. These are usually derived from 

ceramic cladding systems and can have several advantages including appearance, ease 

of erection and ability to accommodate insulation within the cavity. Most systems 

employ a metal support assembly, such as that by James and Taylor [88], although 

timber-based systems are becoming available. These facades are normally supplied by 

specialist companies who provide the engineering calculations.  

 

 

5.8.2.3 Strength grading and batten sizes 
 

Eurocode 5 states that all timber intended for load-bearing use in buildings must be 

strength graded by an approved grader, either visually according to standardised rules or 

by an automatic grading machine. External cladding is not load-bearing and so there is 

no requirement for cladding boards to be strength graded.  The cladding support battens 

do need to be graded, however, as BS 5534 [89] sets limits for their permissible 

characteristics and defects. Although these limits are not visual strength grades as such, 

they are similar to the knot criteria in the GS visual grade provided in BS 4976 [90]. 

This norm also specifies the timber species required for the cladding support assembly. 

These include UK grown larch (Larix spp.), Scots pine (Pinus sylvestris) and spruce 

(Picea spp.) plus several European and north American species. The norm also specifies 

that these timbers should be preservative treated for use as battens. 

 

Minimum batten sections are determined by the need to avoid both splitting as they are 

fixed and the risk of deflection between supports. Vertical battens are typically at least 

19 ×  38 mm, whilst horizontal battens are normally at least 45 ×  50 mm. Minimum 

batten sections may also be set at 38 mm thick due to the fire resistance requirements 

for cavity barriers (see below). 
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5.9 Combustibility 

 
Fire – the state of combustion – takes many forms, all of which involve a fast chemical 

reaction that liberates heat. This reaction usually occurs between combustible gases 

from fuel and oxygen from the air. A flame is the visible part of a gas volume within 

which combustion is occurring [91]. 

 

5.9.1 The fire triangle 
 

The mechanisms of fire ignition, growth and decay are well understood. To be sustained 

a fire needs three components: fuel, oxygen and heat; this is illustrated by the fire 

triangle (Figure 5.35). If any two of these are present, the addition of the third will 

trigger ignition. Similarly, a fire is extinguished when one component is removed. Once 

a fire has started, the heat released by combustion is usually enough to enable it to 

grow. A growing fire then releases more heat and so the process continues. Fire can be 

controlled using a range of suppression measures, most of which either remove heat 

(e.g. by spraying with water), cut off oxygen (e.g. with the use of foam), or both. If a 

fire is not suppressed it will eventually die when it runs out of fuel or oxygen [92].    

 

 

 

 

 

 

 

 

Figure 5.35 The fire triangle 

 

5.9.1.1 Fuel 
 

A fuel, in this context, is any substance that burns. The best fuels are molecules with 

large amounts of extractable energy held in their chemical bonds. Combustion releases 

this as heat (it is exothermic) due to the difference between the potential energy stored 

Heat 

Oxygen Fuel 
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in the fuel’s original molecular bonds and that stored in the bonds of the end products. 

By contrast, most chemical reactions consume energy (they are endothermic) because 

the bonds in their end products store more energy than that in the original molecules 

[93]. With a few exceptions such as hydrogen gas, all fuels are carbon-based. Indeed, 

the fossil record suggests that fire only appeared on the earth’s surface after land 

vegetation had first evolved about 450 million years ago [94]. Fossil fuels such as coal 

are the remains of such vegetation. Most other fuels derive from wood or other carbon-

based materials formed by organisms living today. As regards fire chemistry, the term 

fuel thus encompasses most substances we use in our day-to-day lives: petrol, food, 

fabrics, plastics, medicines, wood and paint are all carbon based. They all burn.  

 

Although fire results from chemical reactions, the mode of burning is affected more by 

the physical state and spread of the fuel and its environment than by its chemistry. A 

log, for example, is difficult to ignite whereas kindling will readily burn if built into a 

suitable pile. Similarly, a layer of coal dust burns slowly but explodes if ignited as a 

dust cloud. 

 

5.9.1.2 Oxygen 

 

Although air is normally needed to support combustion, some fuels already contain 

oxygen, which is released as they are broken down by heat. In other cases some 

chemical processes can sustain combustion without oxygen. Strictly speaking the 

requirement is for an oxidant, which is a substance that can oxidise atoms, molecules or 

ions by stripping them of electrons. Carbohydrates such as timber are good electron 

donors, whilst oxygen is the perfect electron scavenger [95]. 

 

5.9.1.3 Heat 

 

Heat is not an entity that can be added to something, it is instead the flow of thermal 

energy from a warmer to a cooler object due to temperature difference. Thermal energy 

is transferred in three ways. Conduction is the transfer of energy by direct molecular 

contact; it is mainly associated with solids. Convection is the transfer of energy between 

a liquid or gas and a solid; it involves the movement of the fluid. Heat radiation is the 

transfer of energy by the emission of electromagnetic waves; it does not require an 
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intervening medium. These processes can be aided by mass transfer, such as the 

airborne movement of burning embers. The amount of energy released when a unit mass 

of a substance is completely burnt is termed the heat of combustion (∆Hc), or calorific 

value. The gross ∆Hc of fully dry timber is around 20 kJ/g or ≅ 18 kJ/g at a moisture 

content of 12 %. For comparison, the ∆Hc of hydrogen is 122 kJ/g, methane 50 kJ/g, 

polystyrene 40 kJ/g, polyvinylchloride 16 kJ/g, whilst raw potatoes only yield 3 kJ/g. 

 

The power of a fire is expressed in terms of the heat release rate (HRR), also termed the 

rate of heat release (RHR). This quantifies the rate at which combustion reactions 

convert potential chemical energy into thermal energy. The rate of fire growth (speed of 

HRR increase) generally begins slowly but soon accelerates. The rate depends on the 

size of the fire and can often be approximated using a parabolic curve known as the ‘t-

squared fire’ where the HRR is proportional to the square of time after ignition.  

 

5.9.2 Burning of wood 
 

After ignition, the burning of timber involves two main stages, decomposition and 

charring. 

 

5.9.2.1 Decomposition 
 

As wood is heated above about 100 °C, it begins to go though a process of thermal 

decomposition (pyrolysis) as the material state changes from solid to combustible 

vapour. It is the vapour that burns. The free water in wood evaporates first. As the 

temperature rises further, the main constituents of wood decompose into volatile gases 

including carbon dioxide, carbon monoxide, ethane, propane, methane and non-volatile 

water vapour. The decomposition temperatures are different for each of the main 

constituents of wood, typical values are: hemicelluloses 200 - 260 °C; cellulose 240 -

350 °C; and lignin 280 - 500 °C. Wood rapidly discolours above about 200 - 250 °C 

although prolonged heating at temperatures as low as 120 °C can have the same effect. 
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5.9.2.2 Charring 
 

The physical structure of wood rapidly breaks down above about 300 °C. The process 

begins when small surface cracks form perpendicular to the grain direction. These allow 

volatiles to easily escape from the wood surface. At temperatures between 400 - 450 °C, 

about 50% of the lignin volatilises, the rest remaining as a residue of carbon, known as 

charcoal or char. A higher proportion of the hemicelluloses and cellulose are 

decomposed, although this varies depending upon the wood’s composition and the 

temperatures involved. When wood is heated above 450 °C only 15 - 25% normally 

remains as char. Most char comes from the lignin. The cracks widen as the char depth 

increases, giving burnt wood its characteristic cubic appearance. Char looks quite 

similar to wood that has been colonised by brown rot fungi. This is no coincidence 

because, these organisms mainly degrade cellulose and hemicelluloses leaving lignin 

relatively unaffected.  

 

5.9.3 Compartment Fires 
 

Building fires usually start in a room, and then spread outwards. Spread of fire is 

prevented by ensuring that the walls, ceiling and floor can act as fire barriers, which 

sub-divide the building’s interior into sections. A fire in a room is termed a 

‘compartment fire’ and the fire barriers are ‘compartmentation’. If there are sufficient 

fuel and ventilation available, a compartment fire typically goes through the sequence of 

stages shown in Figure 5.36 and Table 5.17 [96]. The key stage is known as flashover, 

which describes the rapid transition from a localised fire to one involving the whole 

compartment. Not all compartment fires follow this curve - some run out of fuel whilst 

others have insufficient ventilation. The fire may also be suppressed by fire fighters or 

sprinklers. Fully developed fires can have temperatures in the region of 800 - 1200 °C. 

The fire energy in a building compartment is usually expressed as the energy density 

per square metre of floor area or per square metre of the total surface area of a room. 

The latter method is normally used in Europe. Eurocode 1 [97] gives five fire load 

classes ranging from 250 to 2000 MJm-2 of floor area; a medium sized domestic room 

typically contains around 450 MJm-2. 
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Figure 5.36 Schematic time-temperature curve for a typical compartment fire [96] 

 

Table 5.17 Stages of a typical compartment fire [96] 

Fire stage Description 

Growth stage 

(pre-flashover) 

Once ignited, a fire either smoulders or grows depending upon fuel or 

oxygen availability. If the fire is fuel-controlled, combustion can continue 

until all available combustible materials are consumed. A fire restricted by 

oxygen availability (a ventilation-controlled fire) occurs where there is 

insufficient air to allow a large amount of fuel to be burnt. Windows and 

other openings may permit air to enter; in which case the burning rate is 

mainly set by the size of openings. Fuel controlled fires can achieve the 

maximum HRR for that substance and their main products are carbon 

dioxide and water. Ventilation-controlled fires have a lower HRR but 

produce large amounts of soot and toxic combustion products.2  

Flashover As the fire grows, hot smoke builds under the ceiling. This radiates heat 

and can become intense enough to ignite all combustible surfaces in the 

room. Termed ‘flashover’, this has been defined [3] as ‘a rapid change 

from a localised fire to one involving all combustible surfaces in the 

compartment’ . It occurs when the buoyant smoke layer reaches 

approximately 550 °C.  

Fully developed 

fire  

(post-flashover) 

Following flashover, the fire enters its fully developed stage. At this point 

life becomes untenable in the compartment. The HRR increases rapidly 

until it is limited by the amount of oxygen that can be drawn into the 

compartment or when all available fuel is involved. This is the most 

critical stage as a post-flashover fire can cause structural damage and 

spread to other compartments in the building. 

Decay stage If the fire is not suppressed it will eventually burn out when it runs out of 

fuel. The HRR once again becomes fuel-controlled. 

Ignition Extinction 

Growth 
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5.9.4 Reaction to fire and fire resistance 

 

Because most building fires start in a room and spread outwards, fire tests of 

construction products typically assess what happens during the initial or later stages of a 

compartment fire [98].  Performance at either stage is not an intrinsic material attribute 

but is instead extrinsic – it is a system phenomena where the test results are affected by 

how a building product is assembled and installed. 

 

• Reaction to fire tests: these assess relevant performance attributes up to and 

including flashover. This includes: ignition, flame spread, heat release rate, rate of 

smoke production, fire area and time to flashover. Reaction to fire is mainly 

expressed in terms of the performance of internal wall linings.  

 
• Fire resistance tests: these assess how building components withstand the power of 

a fully developed fire. In these circumstances some construction elements, such as 

beams, need to withstand structural loads whilst others, such as cavity barriers, need 

only contain the fire. Performance is expressed as the time for which the element 

can fulfill these functions.  

 

The relative importance of these categories varies depending upon where and how the 

timber component is used in a building. Although timber performs relatively badly 

during the initial stages of a fire it can nonetheless have a good structural performance 

during a fully developed fire. Accordingly timber’s reaction to fire and fire resistance 

performance usually need separate consideration. These two categories of test do not 

suit all requirements. The fire conditions inside a lift shaft are poorly modelled, for 

example, as are the fire scenarios affecting the external face of a wall or roof. 

Nonetheless, the fire performance of construction materials is generally defined in terms 

of reaction to fire and fire resistance.  

 

Two principal test and classification systems for fire performance are recognised in the 

documents supporting the various UK building regulations. National classes are given 

in the BS 476 series, while the European system is described in the BS EN 13501 series. 

The latter will, eventually, replace national fire standards such as the BS 476 series but 

until this happens the two systems continue to co-exist. Numerous other standards give 

performance criteria for specific applications: reaction to fire tests for facades, for 

example, are given in the BS 8414 series. 
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5.9.4.1 Reaction to fire performance of timber surfaces 
 

Several chemical physical and environmental factors affect flame spread over wood 

surfaces.  

 

The principal chemical factors are extractives content, moisture content and flame 

retardants. Extractives composition varies between species with resinous softwoods 

being the most flammable. Moisture content is important because energy is needed to 

drive the water off. Flame retardants are discussed below.  

 

Several physical factors are relevant. Low density timber is a poor conductor of heat 

and so the lower the density, the shorter time needed to get a surface to ignition 

temperature. Accordingly wood products with a density below 400 kgm-3 achieve a 

lower reaction to fire class than denser timber (Figures 5.37 and 5.38). Geometry is also 

significant, indeed the reaction to fire classification achieved by a product often varies 

considerably depending upon its orientation, section and how it is assembled. Flame 

spread upwards on vertical surfaces is faster than across other orientations. Small pieces 

of wood ignite and burn easier than large timbers, as do constructions that promote air 

movement. As the surface/volume ratio increases, ignition starts more easily and flames 

spread faster. Sharp corners and coarse surfaces enlarge this ratio and result in poor fire 

behaviour. Moreover, in freestanding timber elements, such as louvres or the boards in 

open-jointed cladding, all surfaces are exposed to flame spread; this creates a larger fire 

load than if the elements had closed joints (Figure 4.39) [99]. Thickness, meanwhile, 

affects the burn-through rate of wood: rapid burn-through of thin materials increases the 

area exposed to fire [100].  

 

The main environmental factors are temperature and ventilation. Timber becomes more 

flammable as the temperature rises. At about 250 °C a pilot flame is needed before it 

will ignite, whereas ignition is spontaneous at 500 °C or more. Ventilation increases the 

speed of ignition and flame spread. 
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Figure 5.37 (above) Fire growth 

rate (FIGRA) as a function of 

density for wood based panel 

products. The boundary between 

Euroclass E and D is shown as a 

dotted line. (from: Östman and 

Mikkola [99]) 

 

Figure 5.38 (top left) Fire growth 

rate as a function of density for 

solid wood panelling and cladding 

with thickness of 9-21 mm and 

various profiles tested with and 

without an air gap (from: Östman 

and Mikkola [99]) 

 

Figure 5.39 (bottom left) Fire 

growth rate as a function of the 

exposed area of free standing 

timber strips (ribbon elements) 

such as open jointed cladding or 

louvres. (from: Östman and 

Mikkola [99]) 
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Reaction to fire is assessed using a number of tests, each having a specific fire scenario. 

Typical reaction to fire classifications for wall coverings are given in Table 5.18. Most 

solid timber achieves Euroclass D (national class 3) but can be upgraded to Euroclass C 

or B using a flame retardant treatment. The only products containing wood that achieve 

a higher classification are those cement-bonded particleboards with a low percentage of 

wood fibre. A similar classification exists for roof coverings. The classifications in BS 

EN 15501 and BS 476 are not equivalent and so the transpositions in Table 5.18 are not 

exact. Some fibre cement board, for example, achieves an A2 classification under the 

Euroclass system but only Class 0 under the BS 476 series. Confusingly, the Building 

Regulations in Scotland use a different classification terminology to the rest of the UK. 

 

Table 5.18 Reaction to fire classes for wall linings showing the indicative transposition 

between BS 476, Euroclasses, and the Scottish risk categories [99] [101] [102] [103] 

Euroclass in 

EN 13501-1 

Classification 

to BS 476 series 

Risk categories 

in Scotland 

Typical products  
(Wood-based examples shown in bold) 

A1 Non 

combustible 

Inorganic products such as stone, 

glass, concrete, ceramic and steel 

A2 Limited 

combustibility 

Non 

combustible 

As above but with small amounts of 

organic material. Gypsum boards with 

thin coverings, Mineral wool. 

Some cement-bonded particleboard.  

B 0 Low risk Gypsum boards with thick coverings. 

Some plastic insulation. Some flame 

retardant treated wood products. 

Some cement-bonded particleboard. 

1 Medium risk C 

2 

Most flame retardant treated wood 

products. 

D 3 

High risk 

Glass reinforced polyesters. Solid 

wood ≥ 400 kgm-3.  Most wood-based 

panels. 

E 4 Some plastic insulation.  

Solid wood < 400 kgm-3.  

Low density fibreboard. 

F Unclassified 

Very high risk 

Untested products  
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5.9.4.2 Fire resistance of timber 

 

Timber can have exceptionally good structural performance in a fire. This is due to the 

thermal conductivity of char being around one sixth that of solid timber [104]. As the 

char layer develops, it acts to insulate the underlying wood from thermal degradation. 

The charring rate of timber follows a linear relationship with time, subject to three main 

variables: it decreases with increasing density or moisture content but increases with the 

external heat flux. Design values for the charring rates of various wood products are 

given in BS EN 1995-1-2 [104]; they are typically about 0.5 - 1.0 mm/min. Where the 

timber is not thick enough to achieve the required fire resistance; it can be protected 

using plasterboard or other non-combustible cladding material. If timber is protected in 

this way the component cannot ignite and burn until its surface temperature reaches 

around 400 °C.  

 

 

5.9.5 Flame retardants 

 

Timber building products can usually be used in their natural state with no requirement 

for flame retardant (FR) treatment. The use of flame retardants further widens their use 

to include situations where a relatively high reaction to fire classification is needed. 

Most flame retardant treatments work either by controlling ignition, reducing flame 

spread across a surface or lowering the rate of heat release from the material. Flame 

retardant treated timber may still burn, but not as quickly or at as high a temperature as 

untreated timber. The charring rate is not much influenced although char yield may 

increase. Flame retardants cannot therefore make timber non-combustible – nothing can 

– and so while they can improve timber’s reaction to fire classification, they make no 

significant contribution to increasing timber’s fire resistance. Many timber products 

suppliers make this basic error and claim that applying a flame retardant to a door will 

make it fire resistant.  

 

5.9.5.1 Types of FR treatment 
 

Flame retardants for timber can be divided into surface coatings or those that are 

pressure impregnated into the material.  
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Most flame retardant coatings are paints or varnishes that intumesce (swell on heating) 

thereby trapping an insulating layer of gas against the timber surface. Others release 

gases that interfere with the combustion reactions in the flame; these do not form a 

surface film or otherwise affect the timber’s appearance. 

 

Impregnation treatments are forced into the timber using a pressure vessel. As with 

wood preservatives, they form an ‘envelope of protection’ within the timber enclosing 

an untreated core. Timber intended for such treatment should be machined to size 

before being impregnated; if it is shaped afterwards the envelope will be lost. Flame 

retardant impregnation treatments for external use are usually organo-phosphate resins 

that are heat-polymerised in the timber to become water resistant.  

 

Flame retardant coatings have a long history, with lime plaster being the earliest known 

example. In many ways lime is an excellent flame retardant coating, being cheap, easily 

applied, safe and attractive in service. It is, however, neither particularly weather 

resistant nor suitable in conditions where the timber is constantly changing size due to 

fluctuations in moisture content. Lime thus performs well as a flame retardant coating 

for wood in stable moisture conditions, such as down a mine, but will not give long-

term protection to a timber facade unless it is regularly maintained. These issues affect 

every flame retardant product. All are susceptible to moisture to some extent; many 

require regular maintenance if used externally; and none is suitable for all applications. 

Accordingly it is essential that their suitability for a particular application be evidenced 

to the requirements of the relevant product standard. Most requirements for external 

timber cladding are given in EN 14915 [105] although leach resistance is not covered.   

 

5.9.5.2  Susceptibility to weathering 
 

Very few flame retardant treatments are leach resistant and none is totally unaffected by 

moisture. This is a complex subject with unresolved questions concerning the service 

life that can be achieved. Further research is needed this topic. 

 

Leach resistance is evidenced by either long-term exposure trials or accelerated 

weathering in a laboratory. Exposure trials are more realistic but are prohibitively slow 

and expensive. The main accelerated weathering test for flame retardants is US 

Standard ASTM D 2898 [106]. A Nordic standard, NT FIRE 053 [107] has also been 
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published, as has a draft European Standard prEN 15912 [108]. The UK Wood 

Protection Association (WPA) classifies the leach resistance of flame retardants [109] 

using a procedure similar to ASTM D 2898. Their most durable category is known as 

Type LR (leach resistant); only one product is given this classification at present.  

 

The relationship between performance in these tests and the service life achieved in the 

practice is poorly documented. One of the few published reports on this topic estimated 

that accelerated weathering tests ‘seem to be equivalent to about 2 years of outdoor field 

exposure’ [110]. Although it may be possible to infer something about long-term 

performance from such a test, the risk is that manufacturers simply focus upon passing 

the test without considering how this relates to the real world. Thus some flame 

retardant products with a poor leach resistance are able to be upgraded to the top Nordic 

classification simply by being given a moisture-repellent surface coating; in which case 

their service life is dependent upon the protective coating being maintained. Even the 

most leach resistant flame retardant products have a limited service life in full external 

exposure. Unpublished test data from one manufacturer suggest [111] that the service 

life of their Type LR product may be 30 years. Independent data would be valuable, but 

to date there has been little recognition of these issues by regulatory bodies.  

 

5.9.5.3  Effect on fungal decay 
 

In 2006 CCA – hitherto the main exterior wood preservative – was withdrawn. 

Although CCA was compatible with subsequent impregnation using a Type LR flame 

retardant, its replacements – the so-called CCA alternatives – are not, the problem being 

that the copper in the replacement products becomes soluble in the alkali conditions 

created by flame retardant impregnation. Thus, if external timber has to be impregnated 

with a type LR flame retardant, it cannot presently be preservative treated. 

Manufacturers are addressing this issue, but in the meantime there are two main options. 

 

It may be possible to avoid the need for a wood preservative by switching to a more 

decay-resistant timber. In many cases, however, this would need to be a durability class 

1 or 2 species and this would preclude most UK grown timbers. Western red cedar may 

also prove unsuitable because it is usually preservative-treated for use on roofs in the 

UK. 
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Alternatively, it may be possible to rely on the flame retardant resin itself. It has been 

known for some time [112] that the pressure-impregnation of leach-resistant resins into 

timber can help control fungal decay. In effect, the resin is acting as a form of chemical 

wood modification. Unpublished test results from one manufacturer [113] suggest that a 

timber service life of up to 30 years can be achieved in some circumstances. 

Independent research on this topic is needed. 

 

5.10 Acoustic performance 
 
Noise is unwanted sound; and noise pollution is an increasing problem. In the UK, 

external noise pollution is controlled through the planning system by ensuring that 

buildings are separated or screened from potential noise sources such as motorways.   

Building regulation guidance is, therefore, only concerned with noise pollution between 

different parts of the same building. Acoustic performance thus becomes relevant to 

facades where the external envelope forms a junction with a separating wall or floor in a 

multi-occupancy dwelling.  

 

5.10.1 Sound waves from other sources 
 

When sound waves impinge on a timber surface part of their energy is reflected and the 

remainder enters the timber causing it to vibrate. The sound is then either intensified or 

absorbed. Intensification occurs when the timber acts as a resonator, such as the sound 

box of a violin, this is not relevant to facades. By contrast sound absorption is often an 

important consideration in facade design. 

 

When sound waves enter the timber they are repeatedly refracted and reflected. This 

generates molecular friction that partly or completely transforms acoustic into thermal 

energy. The coefficient of sound absorption (K) is used to express the percentage of 

absorbed sound. Wood has a K value of less than 10% (i.e. it is a good absorber) due to 

its porous nature, although the coefficient is affected by several factors including 

density, moisture content, temperature, defects and modulus of elasticity (MOE). 

Timbers with a low density, low MOE, a high moisture content and at higher 

temperatures are the most absorbent. Wave frequency is also important and sounds with 

a low frequency are absorbed best.  
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Sound propagation in timber varies depending upon several factors including the 

direction (axial is faster than transverse), moisture content, MOE and species. The 

sound wave is damped as the vibration energy is radiated to the atmosphere or 

converted to heat. Defects interrupt the wave propagation, as do discontinuities in 

material, such as a change in density between two adjoining timbers. Sound 

transmission through building elements is most effectively minimised by means of mass 

(interposing a continuous dense material between the transmitter and receiver) or 

separation (providing a clear space between building elements). A complex sound path 

through numerous changes of material and direction can also be effective. 

 

5.10.2 Verifying acoustic performance of buildings 
 

It is impossible to predict accurately the acoustic performance of untested building 

elements. Accordingly, post-completion testing has been used for many years to ensure 

that new buildings meet their relevant performance requirements. This is expensive, 

especially if the construction fails to meet minimum standards and requires remedial 

work, and so Edinburgh Napier University have developed Robust Standard Details 

(RSD) as an alternative [114]. These are derived from tests of large numbers of 

completed buildings. No RSD have yet been published for timber-clad facades. 

 

5.11 Summary 
 

Timber has three key attributes as a facade material. It is non-uniform, moisture 

sensitive and combustible: 

 

• Non-uniformity is manifested through heterogeneity and anisotropicity. It affects 

material selection, robustness, degradation and dimensional stability. These factors 

are often neglected or misunderstood by facade designers who are mostly experienced 

in inorganic and non-biogenic materials.  

 

• Moisture sensitivity is manifested through biodeterioation, weathering, dimensional 

change, corrosion, and loss of structural robustness. Other things being equal, timber 

facades will first fail to meet their serviceability requirements where the local 

moisture content is higher than that prevailing on the wall.  
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• Combustibility of timber facades is mainly manifested through its reaction to fire 

performance. This is a system phenomenon where assembly conditions and moisture 

exposure are more important than chemical composition. The long-term performance 

of external flame retardants is poorly documented. 

 

The control of these attributes may be constrained by the need to ensure the facade has 

appropriate acoustic performance.  

 

All of timber’s characteristics as a facade material are affected in one way or another by 

moisture. This is the key consideration that needs to be understood before timber 

facades can be designed for optimum performance. Moisture conditions in timber 

facades need to be better understood. 

 

Further research is needed into the moisture behaviour of facade materials; leaching out 

of wood preservatives and flame retardants are particularly important topics. 
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Chapter 6 

Experimental 

 

 

This experiment was designed to address the second research question posed in the 

introduction, namely: how wet do timber-clad facades get? It comprises an exposure 

trial of 16 datalogged test panels spread over two sites. The trial ran from January 2005 

to December 2007. 

 

6.1 Background 
 

The scope and objectives of this exposure trial were constrained by its origin as one part 

of the larger ETC trans-national project. The trial was restricted to only one timber 

species, Sitka spruce (Picea sitchenis), and had to be carried out in the Scottish 

Highlands. Sitka spruce was stipulated because of its commercial importance to UK 

sawmills and its similarity to Norway spruce (P. abies) which is widely used as external 

cladding in Scandinavia. The Scottish Highlands were stipulated because it was the only 

part of Scotland covered by the EU Northern Periphery Programme when the project 

application was submitted in 2002. 

 

The research tasks in the full trans-national project were divided up amongst the 

research contractors. BRE compared the moisture take-up and loss characteristics of 

Norway and Sitka spruce and graded the boards to be used in the UK. NBRI assessed 

cavity ventilation and the impact on moisture conditions of differences in timber growth 
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rate, Forest Research compared wind-driven rain exposure across the NPP area. The 

author investigated the impact of construction detailing upon moisture conditions in the 

facade assembly. In principle, the outputs of each task were to be shared amongst the 

research providers although this was not always achieved in practice. 

 

 

6.1.1 Sitka spruce 

 

It is known that Norway spruce is the most common external cladding timber in 

Scandinavia, being used without preservative treatment on all but the wettest sites on 

the west coast of Norway and the Faroes. The timber typically achieves a service life in 

excess of 50 years in this application. Scandinavians argue that the timber is suitable for 

cladding due to its refractory nature which results in a low moisture take-up during 

intermittent wetting (a view reiterated in European Standard BS EN 460 [1]). Little test 

evidence is available to justify this assertion, however, and so it may be that other 

factors such as regular maintenance or a low rate of fungal decay are more important. 

Scandinavians take Norway spruce so much for granted as cladding that their guidance 

documents rarely mention other timbers and may even ignore natural durability as a 

relevant issue. NBRI, for example, review the performance requirements for timber 

facades [2] whilst hardly mentioning resistance to fungal decay. 

 

Sitka and Norway spruce have similar timber properties (Table 6.1) which suggests that, 

if resistance to moisture take-up is a key factor in timber facade performance, Sitka 

spruce should perform well, at least on relatively dry sites. To assess this, the author’s 

exposure trial had to be replicated across both wet and dry sites. 

 

Sitka spruce comprises around 26% of Britain’s total woodland area (692,000 ha out of 

2,665,000 ha, this includes both planted forests and semi-natural woodland). The 

equivalent figure for Norway spruce is 3% of woodland area (79,000 ha) [3]. Small 

diameter logs are used to produce paper and panel products, whilst larger logs (sawlogs) 

are mainly converted into structural timber and fencing. Sawmills are always seeking 

new outlets, particularly for the outer ‘falling boards’ (Figure 6.1) produced as a by-

product of sawlog processing and which are often difficult to sell at a profit. External 

cladding is seen as a potential new market opportunity for these and so the exposure 

trial had to focus on falling boards.  



 166 

Table 6.1 Physical properties of Sitka spruce (Picea sitchensis) and Norway spruce (P. 

abies) most relevant to external cladding [4]   5 [6] 

Physical property Sitka spruce Norway spruce 

Mean density at w = 12% 390 kgm-3 460 kgm-3 

Natural durability class: 

• fungi (4: slightly durable, 5: not durable) 

• common furniture beetle  

(SH: sapwood & heartwood are susceptible) 

 

4 to 5 

SH 

 

4 to 5 

SH 

Tangential shrinkage  from green to w = 12%  3% 4% 

Movement class  

(relative humidity change from 60% to 90%) 

small medium 

Treatability  

• heartwood (3: difficult, 4: extremely difficult) 

• sapwood (2:  moderately easy, 3: difficult, v: 

variable) 

 

3 

2 to 3 

 

3 to 4 

3 v 

Distinctiveness of sapwood: generally 

indistinct 

not distinct 

Fibre saturation point (%)  w ≈ 29 w ≈ 27 

Equilibrium moisture content 

• at 60% relative humidity 

• at 40% relative humidity 

 

12% ≤ w ≤ 13% 

9% ≤ w ≤ 10% 

 

12% ≤ w ≤ 13% 

8% ≤ w ≤ 9% 

Mean acidity (pH)  4 4 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Sawing pattern 

for a softwood sawlog 

showing the falling boards 

(hatched) produced when 

structural battens are cut 

from the centre of a log. 

Falling boards are 

typically around 145 mm 

wide and 16 - 22 mm 

thick. The lengths are 

usually 2.5 to 6 m 

 

- 
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6.1.2 Construction detailing and workmanship 

 

During discussions with the ETC project steering group it was decided that this trial 

would focus upon establishing a base-line performance for the moisture load in normal 

timber cladding. The assumption being that the load would be increased by poor design 

and workmanship (e.g. the problems identified in Chapter 3) or reduced by rainwater 

deflection (e.g. wide eaves). Cavity ventilation was not assessed as this task was 

undertaken by NBRI and so the cavity details were those recommended across the UK 

and Scandinavia. The trial thus focused on three frequently occurring questions. Should 

the boards run horizontally or vertically? Should the joint between boards be open or 

closed? Should the timber be given a surface coating? 

 

The main assessment criterion was the extent to which each variable increased or 

decreased the moisture load in the timber. Moisture load being defined as a duration and 

intensity of wetting sufficient to support fungal decay. Fungi are unable to grow 

effectively in wood below its fibre saturation point (FSP) [7] which varies between 

species, but typically 28% ≤ FSP ≤ 32%. Short duration wetting events above FSP do 

not pose an additional biodeterioration threat, but if the wetting lasts at least three days 

per month it can be assumed that there is a decay risk  [8]. For Sitka spruce, w = 25% 

was chosen as the threshold. This approximated to the lowest FSP for Sitka spruce after 

allowing for measurement uncertainties. Fortuitously, it was also the highest moisture 

content that could be accurately measured using electrical resistance meters. Applying a 

safety margin gave a lower threshold of w = 22%. 

 

6.1.3 Generalising the results 

 

Although outside the scope of the ETC project, this trial was always intended to be 

applicable to other timber species where possible. To achieve this, the results needed to 

be generalised through a model allowing a timber’s moisture load to be predicted from 

published physical properties. This was attempted using a subsidiary exposure trial. A 

few months into the project, the steering group introduced a requirement that all of the 

guidance being developed should take account of fire safety. Although too late to 

refocus the test programme, the author was able to take account of detailing for fire 

safety by participating in a parallel project led by BRE (see Chapter 7). 
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6.2 Methodology 
 

The exposure trails were experimental and subsequently involved a time series 

numerical and statistical analysis. Aspects of the analysis were causal-comparative. 

 

6.2.1 Time series analysis 

 

A time series is a record of phenomena that vary irregularly with time. Time series 

modelling is reviewed by numerous authors [9] 10111213 [14].  There are few standard methods 

of time series analysis; instead the process begins with consideration of graphed data, 

from which the next steps and their statistical modelling are developed. Time series 

often exhibit periodic components linked to daily or seasonal patterns. Missing and 

outlying observations are also frequent occurrences and necessitate data interpolation. 

Time series can be classified in various ways:   

 

• Data recorded at certain time intervals (e.g. hourly temperature readings) are termed 

discrete time series, in contrast to the continuous series recorded by an analogue 

device (e.g. a tape recorder). Discrete time series can be categorised into two types 

depending upon whether the recording interval is regular or irregular.  

 

• Univariate time series consist of a single reading at each time point, whereas 

multivariate time series involve several simultaneous observations.  

 

• Time series can be expressed using a stochastic model (a statistical description of a 

physical process whose structure involves a random mechanism). Series where the 

random element does not vary with time are termed stationary. Others are termed 

non-stationary. 

 

• A time series with a normal distribution of the data is termed Gaussian; it is 

otherwise described as being non-Gaussian.  

 

The time series in this thesis are discrete, regular, multivariate and non-stationary. Some 

are Gaussian whilst others are not. The frequency curves are particularly skewed. 

 

 - 
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6.2.2 Experimental design 

 

The exposure trial had an n-factor experimental design whereby n different factors were 

varied so that the response to these manipulations could be measured, both singly and 

through their interactions. Four factors were tested, each with two levels of treatment. 

This may seem a small number of factors and treatments but it is important to realise 

that each combination of factor and treatment has to be separately tested. Every time 

another interaction is added the size of the experiment doubles; n-factor designs become 

unworkable if too many interactions are assessed. The experimental conditions are 

given in Table 6.2; although two factors are quantitative and two qualitative, all were 

assigned to either a high or low level for the purpose of this experiment. There were 

thus 16 test panels in the experiment (a 24 design) giving 15 degrees of freedom.  

 

Table 6.2 The four factors and their two levels of treatment 

Level Variable factor 

 Low High 

Board orientation  Horizontal Vertical 

Joint ventilation (mm) 0 6 

Mean coating thickness (mm) 0 0.5 

Site Exposed Sheltered 

 

This design can described in several ways. The factors are often labelled A, B, C and D; 

a plus sign is used to represent the high level of treatment and a minus for the low. This 

known as geometric notation as it can be visualised as two cubes. Lowercase letters, and 

one number, can also be used to label each treatment combination in a standardised 

order, namely: (1), a, b, ab, c, ac, bc, abc and so on. The 16 possible combinations can 

be presented as a design matrix (Table 6.3).  Four are associated with the main effects 

of A, B, C and D, six with interactions AB, AC, BC etc. In Table 6.4 the high treatment 

levels are coloured yellow. In this trial the standard notation was altered to a four letter 

descriptive code to make it easier to remember. The 16 four letter panel codes are given 

in Table 6.3. The relationship between these code letters and the geometric 

representation is shown in Figure 6.2.  
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Table 6.3 The four letter panel code used to describe each treatment combination. 

Factor Panel code 

(red = high) A Orientation B Joint C Coating D Site 

Label* 

EHCN Horizontal Closed None Exposed (1) 

EVCN Vertical Closed None Exposed a 

EHON Horizontal Open None Exposed b 

EVON Vertical Open None Exposed ab 

EHCF Horizontal Closed Front Exposed c 

EVCF Vertical Closed Front Exposed ac 

EHOF Horizontal Open Front Exposed bc 

EVOF Vertical Open Front Exposed abc 

SHCN Horizontal Closed None Sheltered d 

SVCN Vertical Closed None Sheltered ad 

SHON Horizontal Open None Sheltered bd 

SVON Vertical Open None Sheltered abd 

SHCF Horizontal Closed Front Sheltered cd 

SVCF Vertical Closed Front Sheltered acd 

SHOF Horizontal Open Front Sheltered bcd 

SVOF Vertical Open Front Sheltered abcd 

* Label refers to the standardised labelling scheme used in most statistics textbooks 

when describing the treatment combinations in factorial experiments of this kind. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 How the panel codes, factors and treatment levels in the trial relate to the 

geometric view (red indicates a factor is at its high level). 
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6.2.3 Sites 

 

One of the test sites was at Leanachan, a Forest Enterprise owned forest flanking the 

Ben Nevis range on the west of Scotland. The nearest village is Spean Bridge, amongst 

the wettest inhabited locations in the UK. The other site, a forest owned by Inverness 

College on the east coast near Inverness, has a low rainfall. The Leanachan site was 

within a forest clear-fell and had no shelter from the prevailing wind, whereas the 

Inverness site was in a sheltered forest clearing. The location and conditions of the two 

sites are indicated in Table 6.4 and Figures 6.3 and 6.4. 

 

Table 6.4 Site locations and climate 

 Leanachan,  

Spean Bridge 

Balloch, 

Inverness 

Grid reference NN 2219 7786 NH 7369 4617 

Height (m) above mean sea level 190 117 

Latitude 56º 51́ N 57º 48́ N 

Longitude 4º 55́ W 4º 10́ W 

Rainfall per annum (mm) 1915 636 

Days at or below 0 °C per annum  56 33 

 

The flora and fauna at both locations can be characterised using the biodiversity data in 

Humphrey et al. [15], which was based on the Forestry Commission’s ecological site 

classification zones (Table 6.5) [16]. The zones are defined from annual precipitation 

totals and further divided into woodland type and growth stage. The soil classification is 

from the Soil Survey of Scotland [17]. 
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Table 6.5 Typical flora and fauna at the two test sites  

Site conditions and species counts  

Leanachan Balloch 

Ecological site classification Upland, Sitka spruce, 

pre-thicket 

Foothill, Scots pine, 
mature forest 

Soil type Peaty podzol Humus-iron podzol 

Canopy invertebrates  

Coleoptera 

 

47 

 

53 

Sub-canopy invertebrates 

• Cicadomorpha 

• Syrphids 

• Coleoptera 

 

33 

29 

52 

 

35 

25 

61 

Ground invertebrates 

• Coleoptera (excluding carabids) 

• Carabids 

 

35 

17 

 

30 

18 

Deadwood invertebrates 23 20 

Fungi* 

Lichens 

Bryophytes 

Vascular plants 

Songbirds 

232 

46 

54 

40 

15 

210 

100 

31 

27 

17 

Totals 623 627 

* Wood destroying fungi are assumed to be ubiquitous 
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Figure 6.4 Arial view of the Balloch site (red line) in a forest 

clearing 

(Image © Google Earth) 

Figure 6.3 Location of the Balloch test site near Inverness 
(Main map © Ordinance Survey) 

Inverness 
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Spean Bridge 

0.1 km 

Figure 6.6 Arial view of the Leanachan site (red line) in a forest 

clear-fell 

(Image © Google Earth) 

N 

Figure 6.5 Location of the Leanachan test site near Spean Bridge 
(Main map © Ordinance Survey) 
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6.2.4 Timber selection and processing 

 

All timber was Scottish-grown Sitka spruce, sourced from commercial supplies of 

falling boards: some 2000 boards were donated by BSW Timber plc, with a similar 

number being given by James Jones and Sons Ltd. The board sizes were nominally 

2400 x 146 x 22 mm and were obtained kiln dried to a moisture content of around 20%. 

Boards with mould growth were rejected by the author as this could have affected 

coating performance.  

 

All boards were appearance graded to an equivalent quality to imported European 

whitewood (i.e. the timber of Picea spp. and Abies spp.). Cladding from these species is 

generally graded to the S/F criteria in ‘The Green Book’ [18] used throughout 

Scandinavia in preference to the relevant European Standard [19]. The S/F category 

combines six grades, the lowest being V and VI. UK timber distributors are familiar 

with selling timber graded in this way. The grading was undertaken in collaboration 

with BRE using both manual inspection and automatic scanning. The latter method used 

the Wood Eye optical scanner manufactured by Innovativ Vison [20]. The grading is 

discussed further in BRE Digest 500 [21]. The graded timber was delivered to 

Edinburgh Napier University where a final selection was made using computer 

generated random numbers. These boards were conditioned in a climate-controlled 

chamber to an EMC of 12% and then machined to profile (Figure 6.7). No 

measurements were made of timber density or mechanical properties. 

 

The boards were machined on their rear face and edges to ensure a consistent thickness 

of 20 mm and width of 144 mm. The front was left with an off-saw finish as 

recommended in Scandinavia [22]. The selection of front and rear face also followed 

Scandinavian practice: the boards being oriented so that the side nearest the pith faced 

outwards on the wall [22].  

 

Half of the boards were coated and half left uncoated. The coatings used a solvent based 

primer (Jotun Visor) followed by two applications of an opaque acrylic finish coat 

(Jotun Demidekk, white) [23]. This product was selected as it was the most popular 

high performance opaque timber coating in Norway. The coatings were brush applied in 

controlled conditions to the manufacturer’s instructions. The front face, edges and ends 

were coated, with the rear face left without a finish.  
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Figure 6.7 The four board profiles used in the trial, the screws are positioned 

about 20 - 30 mm in from the edges of the boards 
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6.2.5 Panel design 

 

There is no published norm for exposure testing of timber cladding. Nonetheless, a 

number of researchers are involved in such trials and the panel design used in this 

experiment (Figure 6.8) was developed jointly with BRE and NBRI. Each panel 

consisted of a 1 m square, preservative-treated softwood frame within which were 

mounted the test boards. The completed panels were installed on a robust support frame 

oriented to the southwest so that the cladding was exposed to the prevailing wind 

(Figure 6.9). The panels were positioned approximately 1 m above the ground level, 

their order on the support frame being determined by random selection. 

 

The boards were fixed with 45 mm long stainless steel screws onto preservative treated 

support battens to create a drained and ventilated cavity behind the cladding. The 

battens were fixed to a plywood substrate behind which was housed a waterproof (IP56) 

box containing a datalogger and connection node. One datalogger was used for each 

panel. The datalogger systems (Materialfox datalogger and Multisensor Revision 1 

node) were supplied by Scanntronik Mugrauer GmbH [24]. Each datalogger 

accommodated 10 channels and could store 45,000 readings. The datalogger boxes were 

hidden behind the rear face of each panel; these were removable to allow data download 

to a laptop (Figure 6.10). 
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The moisture sensors were built from PVC-coated 1.5 mm diameter copper coaxial 

cable to a design supplied by the datalogger manufacturer. The cable end was separated 

in two and the plastic coating stripped back about 5 mm. The exposed ends were 

inserted into 6 mm diameter holes drilled from the rear face of the board. The holes 

were 30 mm apart and stopped 5 mm from the front face of the cladding. The cable ends 

were secured in the holes with electrically conductive adhesive (a mix of 50:50 by 

volume, graphite powder : epoxy resin, diluted with a 90 % solution of ethanol until 

workable) and sealed against moisture from the rear face using normal non-conductive 

epoxy (Figure 6.11).  

Figure 6.9  The 

Leanachan exposure site 

during construction 

 

Figure 6.10  Datalogger 

and node installed at the 

rear of a panel  
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The electrodes making up each sensor were positioned parallel to the grain in 

accordance with BS EN 13183-2 [25]. The other end of the cable was fitted with a jack 

plug for connection to the datalogger. To minimise signal losses due to electrical 

resistance, the cables were no more than 1.5 m long.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Design of a moisture sensor 

 

Eight moisture sensors were installed in the rear face of the cladding boards on each 

panel; two in each of the following positions:  

 

• Board centres (clear timber, away from any defects) 

• Board defects (near a knot, split or area of irregular grain) 

• Board edges (5 mm from the edge of a board) 

• Support battens (behind the boards where two boards meet) 

 

The position of the sensors in the board edges, board centres and cavity battens were 

decided by two computer generated random numbers (the first number selected the 

board and second the position), whilst the board defects chosen were the two worst 

examples on the panel (Figure 6.12). To avoid edge effects, the outer 150 mm of the 

panel was not sampled. 

 

30 mm 

Insulating epoxy 
to seal the hole 
 
Conductive 
epoxy 

1.5 mm coaxial cable, with the ends 

separated and stripped 

Staple to secure the cable 

5 mm  

To the data 
logger 
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Because the support battens used in the trial were impregnated with a copper based 

preservative (Tanalith E) they could not be used for moisture content measurements due 

to their electrical conductivity being different to that of untreated timber. Accordingly, 

the moisture sensors for the battens were fitted into simulated battens made from short 

lengths of non-preservative-treated Sitka spruce installed across a junction between two 

boards. The ends of these simulated battens were sealed against moisture using epoxy 

resin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.6 Data collection  

 

At the back of each panel, two data cables were plugged into the datalogger while the 

other six went via a separate node. The directly connected channels were assigned to the 

moisture sensors in the support battens with the node taking those for the cladding. 

 

The dataloggers were configured to record from each sensor hourly. The readings were 

downloaded at approximately two monthly intervals using the Softfox Version 1.2 

software supplied by the datalogger manufacturer. To ensure accuracy, moisture content 

readings were also collected once a year using a freshly calibrated hand-held moisture 

meter (Protimeter Timbermaster) [26]. The data cables could be connected to the 

Protimeter by their jack plugs.  

Figure 6.12 Moisture sensors 

positioned near a defect, 

board edge and in clear 

timber. 
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6.2.7 Weather data 

 

Each site was equipped with an automatic weather station (Davis Vantage Pro2TM) 

manufactured by Davis Instruments [27]. The stations recorded hourly readings for 

temperature, rainfall, relative humidity, wind speed and direction, sunshine and 

ultraviolet radiation. As a back-up against instrument problems, weather data for each 

area was obtained, under licence, from the nearest operational Met. Office site (Table 

6.6.). The station nearest to the Spean Bridge site was approximately 14.5 km (9 miles) 

east at Tulloch Bridge. At the Inverness site, the nearest weather station from which 

data was available was approximately 37 km (23 miles) east at RAF Kinloss.  

 

Table 6.6 Location of the two Met. Office weather stations 

 Tulloch Bridge Kinloss 

Height above mean sea level (m) 237 5 

Latitude 56°87́ N 57°65́ N 

Longitude 04°71́ W 03°56́ W 

 

 

6.2.8 Data processing 

 

After downloading, the data were loaded into an MS Office Excel® 2003 spreadsheet 

for processing.  The raw data (x ) were converted to electrical resistance readings in 

megohms (MΩ) using a formula supplied by Scanntronik Mugrauer GmbH (Eq 6.1):  

 









− ××= 106
1

1

10101
x

R         (6.1) 

 

The converted data (R values) were then converted to moisture content w using another 

formula supplied by the datalogger manufacturer (Eq 6.2): 

 

164.0034.26 −= Rw          (6.2) 

 

Resistance-type moisture meters can achieve an accuracy of  ± 2 % at moisture contents 

between 6 and 25 %. Higher values are only indicative. This can be seen in Figure 6.13 

which plots equation 6.2 against moisture content readings obtained whilst drying a 
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sample of Sitka spruce that had been soaked to saturation. The readings were taken by 

BRE using a moisture sensor installed as above and then read (over a jack-plug 

connection) using a freshly calibrated Protimeter Timbermaster. The coefficient of 

determination r2 was 0.9 indicating that 90 % of the data variability can be explained by 

the regression. The cause of the outlying data point at 375 MΩ was not investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.13 Calibration curve used in the experiment (Data courtesy of BRE) 
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6.2.9 Statistics 

 

All data processing and analysis was done in MS-Office Excel® 2003. The statistical 

tools employed were: 

 

• Descriptive methods: these summarise the essential characteristics of the time series 

using simple graphs and descriptive statistics. Most of the findings from subsequent 

stages of the analysis were first identified using descriptive methods. They were also 

useful in highlighting data gaps and other problems.  

 

• Time series modelling: the selection of a model and parameter depends upon the 

characteristics of the time series and the objectives of the analysis. The phenomenon 

being measured – the duration and intensity of moisture uptake in the timber – is the 

realisation of one or more random variables that follow a probability distribution. 

Modelling therefore seeks to specify this distribution based on the data. The 

technique employed in this trial is a design matrix (Table 6.7), termed the Yates 

Algorithm [28], where every effect (main or interaction) is calculated as the mean of 

all results at the high level of the effect minus the mean of all results at the low level. 

For every effect, half the results are negative and half positive. The matrix is 

orthogonal and so the estimate of one effect is not affected by changes in the others. 

A multivariate analysis was undertaken once the effects were estimated. Each effect 

was squared and divided by 2n to give the sum of squares corresponding to that 

effect. The result being expressed as a percent contribution. 

 

• Predictive methods; these estimate the future behaviour of the time series using 

information extracted from the series such as correlations over time. To be a useful as 

a predictive tool, the correlations need to employ some readily quantifiable intrinsic 

or extrinsic attribute of the facade, e.g. a material property or assembly condition.  

 

• Signal extraction: this extracts the underlying signal or other information relevant to 

the analysis. The signal of most interest concerns how the waveform of each time 

series varies on diurnal, seasonal and annual bases. This was assessed with annual 

radar charts and using Fourier analysis to transform data from the most uniform and 

most varied panel into the frequency domain. 
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Table 6.7 Design matrix used in the trial 
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6.2.10 Subsidiary exposure trial 

 
In addition to the main exposure trial, a small experiment was undertaken to assess the 

extent to which the results can be generalised to other timber specie using published 

physical properties. The literature [29] [30] suggested that the fibre saturation point is 

the most obvious physical property to use. If this is so, the maximum moisture content 

of any particular cladding timber will be approximately the same as its FSP, subject to a 

modification factor accounting for the effects of detailing and other parameters. To 

investigate this, a small exposure trial (Figure 6.14) was established involving samples 

of 12 timber species with FSP values ranging from 21% ≤ FSP ≤ 30%. and initial 

gravimetric moisture content w = 10%.  Each sample measured 110 x 75 x 13 mm. The 

samples were mounted in a drained and ventilated arrangement similar to external 

cladding. They were attached to the support batten with one stainless steel screw  The 

design is similar to the EVON and SVON panels in the main exposure trial. 

 

The samples were exposed to the prevailing weather in the author’s garden, 11 km (7 

miles) east of Inverness (location: 57º 32ˊ N, 4º 00́ W, grid reference: NH 8026 5212, 

height above mean sea level 37 m). Using a hand held moisture meter (Protimeter 

Timbermaster), daily moisture content readings were taken either in the late afternoon 

or about three hours after rain. The trial initially ran for two months (April – May 

2010). The set-up was then altered to use permanently installed moisture sensors made 

to the design already outlined. The other ends of the co-axial cables were fitted with 

jack plugs for connection to a Protimeter. This trial ran for a further two months (July – 

August 2010). As before the readings were taken daily, in the late afternoon or a few 

hours after rain. 

 

Figure 6.14 Front view of the subsidiary exposure trial, the overall dimensions were 

1010 x 154 mm 
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6.3 Results 

 

These results cover three topics: timber, the exposure trial and the subsidiary trial.  

 

6.3.1 Timber quality 

 

Although the experiment did not set out to assess timber grading, the process of board 

selection and processing highlighted two points. Firstly, the presence of large knots and 

areas of cross grain meant that almost 70% of the boards could only achieve grade VI, 

(the lowest acceptable in the S/F category); the remainder were grade V. Non-

intergrown knots were the most common reason a board was downgraded. Secondly, 

when the graded timber was being machined, the inner part of many intergrown knots 

tended to become detached. This zone typically occupied the inner four growth rings 

and had a diameter of about 8 mm. The detached portion of the knot usually fell out, but 

in some cases it only slid partway through the board creating a projecting peg that got 

caught in the planer or spindle moulder (Figures 6.15 and 6.16). About 15% of boards 

were thus affected.  

 

 

Figure 6.15 Diagram of an 

intergrown knot with the 

central detached portion 

forming a peg 

 

 

Figure 6.16 Two 

intergrown knots 

showing how the centre 

breaks and can become 

detached. 

Intergrown knot Projecting peg 
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6.3.2 Main exposure trial 

 

The results, in terms of moisture content w versus time t, are described according to the 

type of statistics used. 

 

6.3.2.1 Descriptive statistics 

 

In general, 10% ≤ w ≤ 30%, although there was considerable variation between panels. 

Five panels remained relatively dry (w ≤ 25% for at least 90% of the trial): four of these 

(EHOF, EVOF, SHOF and SVOF) were open-jointed with a front coating, whilst the 

fifth (EVCF) was on the wet site and comprised vertical closed jointed cladding with a 

front coating. Eleven panels were wet between November and late March. Figure 6.17 

illustrates the most obvious differences between the two groups. Figures 6.18 and 6.19 

show three-year moisture graphs for the 16 test panels. 
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6.3.2.2 Missing data 

 

It is apparent from Figures 6.18 and 6.19 that there were a number of gaps in the data 

series. These occurred because of several factors: 

 

• In a few cases a moisture sensor or connection failed. Most of these problems could 

not be resolved without dismantling the panel, which ran the risk of damaging other 

components. Consequently, these failures were usually not repairable.  

 

• The two channels with direct connections to the datalogger gave few problems but 

those through the nodes experienced frequent signal losses. The gaps were usually 

less than six hours duration although they sometimes continued until the data were 

next downloaded. 

 

• There were also periods when no data were recorded from a panel due to battery 

failures. This was most frequent on the Spean Bridge site during cold weather. 

 

• Downloading the data often caused power surges, resulting in signal spikes. 

 

• Most of the dataloggers experienced intermittent faults whereby the actual readings 

were over-written by repeat sections of existing data. This was the most serious 

problem as it was not spotted until all of the data had been collected and graphed. In 

the worst case this resulted in two months of data being lost. 

 

A further problem occurred with the climate data. Both weather stations had gaps in 

their data due to battery failures. In addition, the Leanachan station experienced 

breakdowns due to low temperatures or snow; whilst low temperatures and blockages 

by leaves were problems at Balloch. The breakdowns due to temperature could only 

have been solved by running the stations from mains power, which, given the site 

locations, was impossible. Unfortunately the intact portions of the moisture content and 

weather station data rarely coincided. In view of this, the author tried to use the back-up 

climate data from the two Met. Office stations as this was almost complete. Originally it 

was intended to use data from a Met. Office station 2 km southwest of the Leanachan 

test site but this was impossible as that station also experienced frequent breakdowns. 

The station that was used was in a more sheltered position. The distances involved 
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meant that the data could not reliably be temperature corrected and so this step was 

omitted.  

 

Two following data interpolation methods were employed. Firstly, where only some of 

the channels were missing data, those remaining were used to infill the gaps. Each 

missing value was interpolated from the known data value for that hour, plus or minus 

the difference between the last known value for the missing data and the value at that 

same hour in the complete data series (Tables 6.8 and 6.9). Secondly, where all eight 

channels had missing data, gaps of up to 12 hours were infilled by linear interpolation 

but longer gaps were left empty. These gaps generally affected between 3% to 17% of 

data series for a panel. However, in one case (SVOF) around 35% of the data were 

missing. The implications of this data loss are considered in section 6.4.1 below. 

 

Table 6.8 Interpolation method where at least one channel is complete  

(Cells with complete values are shaded yellow; those with missing values are shaded 

green with the interpolation formulae shown). 

 A B C D 
1     
2  = (A2 + (B1 - A1)) = (A2 + (C1 - A1)) = (A2 + (D1 - A1)) 
3  = (A3 + (B1 - A1)) = (A3 + (C1 - A1)) = (A3 + (D1 - A1)) 
4  = (A4 + (B1 - A1)) = (A4 + (C1 - A1)) = (A4 + (D1 - A1)) 
5     

 

Table 6.9 Worked example using the formulae in Table 6.8 

 A B C D 
1 24.70 32.89 27.13 30.60 
2 24.78 32.98 27.21 30.69 
3 24.87 33.06 27.30 30.77 
4 22.43 30.62 24.86 28.34 
5 24.98 32.86 27.35 30.74 

 

Table 6.9 confirms that the interpolation formula is adequate wherever the missing data 

series fluctuate approximately in proportion to the known data. If the series diverged 

(e.g. during a gap of a month or more) then the difference was split into two. The top 

half was treated as described above, with the second half being infilled backwards from 

the first complete value after the gap. As a final check the interpolations were plotted as 

a graph and were only accepted if there were no obvious discontinuities. All 

interpolated data points are highlighted in the accompanying CD-ROM. 
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6.3.2.3 Ranking using the descriptive data 

 

To get an initial feel for the data, the gaps in each series were removed to create a 

continuous dataset for each panel; some of the resultant datasets spanned around 25,000 

hours (almost three years), whilst the shortest was only 8,000 hours (under one year). 

The datasets were ranked to show the durations for which each test panel experienced w 

> 22% and w > 25% (tw > 22% and tw > 25% respectively). The actual moisture contents 

during these periods were expressed as averages of all positions on the boards along 

with the corresponding value in the support battens behind the cladding (Table 6.10 and 

6.11). The means for boards and battens tended to be similar, as demonstrated by their 

Pearson’s rank correlation coefficient r of 0.81. An r value around 0.8 indicates a 

positive linear dependence between the variables. Tables 6.12 and 6.13 compare the 

maximum duration of wetting for each sensor location (board centres, board defects, 

board edges and support battens). Figures 7 and 8 show the relative frequency of 

moisture contents averaged at each sensor location (edges, clear timber, defects and 

battens). Tables 6.14 to 6.16 highlight the panels with modal moisture contents below 

22%, below 25% and over 25%. Several points emerge from these data: 

 

i) Five panels remained relatively dry throughout: four (EHOF, EVOF, SHOF and 

SVOF) were open-jointed and coated, the fifth (EVCF) was on the exposed site 

and comprised vertical, closed-jointed, coated cladding. Eleven panels were wet 

between November and late March. 

 

ii) Most panels experienced similar moisture conditions on both sites. The 

exceptions being the four with vertical closed joints: EVCF, EVCN SVCF and 

SVCN. 

 

iii) Most panels had a non-Gaussian data distribution skewed towards their 

maximum values. The exceptions were the four panels with open joints and front 

coatings (EHOF, EVOF, SHOF and SVOF) and the two exposed panels with 

vertical closed joints (EVCF and EVCN). 

 

iv) No sensor locations in the cladding boards were consistently wetter than the 

others. 

 

v) The support battens were generally as wet as the boards although there was a lag 

effect in both wetting and drying cycles. 
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Table 6.10 Percentage of time when moisture contents were over 22% on the exposed 

site (ranked by board average) 

 

Type of cladding 

Board orientation Type of 
joint 

Surface 
coating 

Board 
Average 

(% time) 

Battens 

(% time) 

Vertical Open Front 14 20 

Vertical Closed Front 35 0 

Horizontal Open Front 41 30 

Vertical Closed None 49 26 

Vertical Open None 56 43 

Horizontal Open None 58 66 

Horizontal Closed None 62 47 

Horizontal Closed Front 78 61 

   r = 0.77 

 
Table 6.11 Percentage of time when moisture contents were over 22% on the sheltered 
site (ranked by board average) 
 

Type of cladding 

Board 
orientation 

Type of 
joint 

Surface 
coating 

Board 
Average 

(% time) 

Battens 

(% time) 

Vertical Open Front 28 34 

Horizontal Open Front 32 33 

Vertical Open None 59 67 

Horizontal Closed Front 61 70 

Horizontal Open None 61 69 

Vertical Closed None 63 51 

Horizontal Closed None 65 74 

Vertical Closed Front 70 55 

   r = 0.81 
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Table 6.12 Percentage of time when moisture contents were over 25% on the exposed 

site (ranked by board average)  

Type of cladding 

Board 
orientation 

Type of 
joint 

Surface 
coating 

Board 
Average 

(% time) 

Battens 

(% time) 

Vertical Open Front 1 3 

Horizontal Open Front 5 8 

Vertical Closed Front 8 0 

Vertical Closed None 32 7 

Horizontal Open None 33 37 

Vertical Open None 36 21 

Horizontal Closed None 49 30 

Horizontal Closed Front 55 38 

   r = 0.84 

 
 
 
Table 6.13Percentage of time when moisture contents were over 25% on the sheltered 

site (ranked by board average) 

Type of cladding 

Board 
orientation 

Type of 
joint 

Surface 
coating 

Board 
Average 

(% time) 

Battens 

(% time) 

Vertical Open Front 2 1 

Horizontal Open Front 5 4 

Horizontal Closed Front 27 35 

Horizontal Open None 35 45 

Vertical Open None 38 45 

Horizontal Closed None 45 62 

Vertical Closed None 51 33 

Vertical Closed Front 52 35 

   r = 0.80 
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Table 6.14 Percentage of time when moisture contents were over 22%  

Type of cladding Exposed Site Sheltered Site 
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None 26 51 31 65 51 73 52 63 

 
 
 
Table 6.15 Percentage of time when moisture contents were over 25%  

Type of cladding Exposed Site Sheltered Site 
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Table 6.16 Moisture contents   

 Type of cladding Statistic 
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6.3.2.4 Time series modelling 

 

Due to the gaps previously outlined, it was impossible to construct complete three year 

time series for either site. Five periods were identified where continuous data existed for 

all 16 panels; two of these are analysed below. These comprise:  

 

• Summer  (22 May to 20 September 2006, see Figure 6.22) 

• Winter  (26 December 2006 to 20 April 2007, see Figure 6.23) 

 

As above, the data were analysed against the minimum moisture content needed to 

support fungal decay i.e. w > 22% or w > 25%. The significance of these thresholds has 

been discussed in section 6.1.2.  

 

The hourly frequency at each moisture content was determined (Tables 6.17. and 6.19) 

and a chi squared test undertaken (Tables 6.18 and 6.20). The null hypothesis being that 

each factor had no effect on moisture content. A chi squared test assumes that all values 

are five or higher and so to meet this requirement the frequency totals for moisture 

contents of  14 or fewer were added, so too the totals for 22 or more; these data are 

highlighted in yellow. The chi squared (χ2) values range from 130 to 17896 with seven 

degrees of freedom. The two-tailed P values are less than 0.0001 which, by 

conventional criteria, can be considered extremely statistically significant. The null 

hypothesis is therefore rejected. It is also notable that the moisture content ranges in the 

panels with a front coating were lower than the equivalent uncoated panels. The 

multivariate analysis is shown in Tables 6.22 and 6.23. Tables 6.23 and 6.24 rank these 

results in terms of the contribution of each factor and factor combination. Those that are 

statistically significant (at the 95 % level) are highlighted in yellow. These two tables 

reinforce and quantify the effects already noted from the descriptive statistics (section 

6.3.2.3). Namely:  

 

• the combination of open joints and front coatings result in the driest conditions 

• vertical, front-coated boards were dry on the exposed site but wet on the sheltered.  

 

It is notable that 76% to 80% of the data’s variance is encapsulated by the factor 

combinations: SV, SF, OF, SVO and F in summer, and: SVF, VF, V, O and F in winter. 
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Table 6.17 Moisture content frequencies – exposed site (summer 2006) 

  Frequency (hours) at each moisture content 

 EHCF EHCN EHOF EHON EVCF EVCN EVOF EVON 

9 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 7 
11 0 306 0 87 0 214 2 186 
12 25 412 13 127 23 203 44 114 
13 65 154 39 88 66 251 51 176 
14 93 121 38 143 110 192 71 178 
≤ 14 183 993 90 445 199 860 168 661 
15 153 107 81 203 183 169 156 180 
16 183 93 125 188 256 146 254 161 
17 183 92 208 147 385 155 509 170 
18 212 81 537 219 427 159 547 153 
19 258 71 377 167 434 165 330 156 
20 302 92 367 137 194 114 130 133 
21 344 110 225 154 69 106 49 94 
≥ 22 337 516 145 495 8 281 12 447 
22 219 80 126 99 8 101 12 65 
23 94 56 19 103 0 52 0 86 
24 22 69 0 108 0 59 0 96 
25 2 76 0 119 0 56 0 99 
26 0 74 0 37 0 13 0 85 
27 0 94 0 29 0 0 0 16 
28 0 53 0 0 0 0 0 0 
29 0 14 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 0 

M
oi

st
ur

e 
co

nt
en

t (
%

) 

35 0 0 0 0 0 0 0 0 
 

Table 6.18 Chi squared test for each factor on the exposed site (summer 2006) 

 

A B 

χ
2  

 ((A – B)2)/B 

EHCN EHON 367 

EVCN EVON 130 

EHCF EHOF 753 

Closed or 
open joints 

EVCF EVOF 141 

EHCN EHCF 4305 

EVCN EVCF 12085 

EHON EHOF 2950 

No coating 
or front 
coating 

EVON EVOF 17896 

EHCN EVCN 381 

EHON EVON 154 

EHCF EVCF 14999 

Horizontal 
or vertical 

boards 

EHOF EVOF 2861 
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Table 6.19 Moisture content frequencies – sheltered site (summer 2006) 

  Frequency (hours) at each moisture content 

 SHCF SHCN SHOF SHON SVCF SVCN SVOF SVON 

9 0 0 0 0 0 0 0 0 
10 0 33 0 0 0 83 0 67 
11 0 264 0 0 0 331 13 364 
12 0 274 0 39 0 274 171 287 
13 16 263 4 88 19 244 302 249 
14 82 246 42 142 102 158 307 174 
≤ 14 98 1080 46 269 121 1090 793 1141 
15 136 113 126 215 149 82 289 137 
16 223 143 285 283 185 75 293 127 
17 437 123 484 352 208 141 269 115 
18 519 188 622 279 235 170 223 103 
19 394 194 290 194 195 111 169 54 
20 189 100 182 139 185 85 72 83 
21 89 57 55 124 149 47 15 79 
≥ 22 70 157 65 300 728 354 32 316 
22 51 75 28 90 107 20 17 75 
23 19 47 37 70 169 77 15 58 
24 0 27 0 64 148 49 0 35 
25 0 8 0 50 72 31 0 22 
26 0 0 0 26 99 9 0 41 
27 0 0 0 0 100 22 0 63 
28 0 0 0 0 33 26 0 22 
29 0 0 0 0 0 18 0 0 
30 0 0 0 0 0 34 0 0 
31 0 0 0 0 0 33 0 0 
32 0 0 0 0 0 20 0 0 
33 0 0 0 0 0 8 0 0 
34 0 0 0 0 0 7 0 0 

M
oi

st
ur

e 
co

nt
en

t (
%

) 

35 0 0 0 0 0 0 0 0 
 

Table 6.20 Chi squared test for each factor on the sheltered site (summer 2006) 

 

A B 

χ
2  

 ((A – B)2)/B 

SHCN SHON 533 

SVCN SVON 173 

SHCF SHOF 154 

Closed or 
open joints 

SVCF SVOF 17208 

SHCN SHCF 10572 

SVCN SVCF 8247 

SHON SHOF 2347 

No coating 
or front 
coating 

SVON SVOF 3353 

SHCN SVCN 254 

SHON SVON 2119 

SHCF SVCF 1431 

Horizontal 
or vertical 

boards 

SHOF SVOF 2077 
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Figure 6.22 Cumulative frequency for mean MC in boards during the summer (22 May 

to 20 Sept. 2006). 

 

Table 6.21 Percentage time when moisture content (%) in boards ≥ 22%  

Effects and interactions in panels during the summer (22 May to 20 Sept. 2006) 

Panel 

code Label 
% time when 
MC ≥ 22 % 

Effect 

estimate 

Sum of 

squares 
Percent contribution of 
factor or combination 

EHCN (1) 23.94 - - - 

EVCN A 13.04 0.54 1.16 0.08 

EHON B 22.97 -3.71 54.95 3.81 

EHCF C 15.64 -8.52 290.42 20.16 

SHCN D 7.29 -1.27 6.45 0.45 

EVON AB 20.74 -2.84 32.18 2.23 

EVCF AC 0.37 1.35 7.31 0.51 

SVCN AD 16.43 9.18 337.25 23.41 

EHOF BC 6.73 -6.61 174.60 12.12 

SHON BD 14.66 -3.21 41.16 2.86 

SHCF CD 3.25 5.83 135.93 9.44 

EVOF ABC 0.56 -2.91 33.78 2.34 

SVON ABD 14.66 -7.28 211.97 14.71 

SVCF ACD 33.78 3.43 47.01 3.26 

SHOF BCD 3.02 -2.74 30.11 2.09 

SVOF ABCD 1.48 -3.01 36.25 2.52 

Mean % time when MC ≥ 22% 12.4 Standard deviation 4.84 

Degrees of freedom 15 Observations 16 

Significance level (at P = 95%) 2.36 Confidence interval of effect estimate ± 5.72 
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Figure 6.23 Cumulative frequency for MC in boards during the winter (26 Dec. 06 to 

20 Apr. 2007) 

 

Table 6.22 Percentage time when moisture content (%) in boards ≥ 22%  

Effects and interactions in panels during the winter (26 Dec. 2006 to 20 Apr. 2007). 

Panel 

code Label 
% time when 
MC ≥ 22% 

Effect 

estimate 

Sum of 

squares 
Percent contribution of 
factor or combination 

EHCN 1 94.80 - - - 

EVCN A 94.23 -9.67 373.72 11.34 

EHON B 88.47 -12.21 596.38 18.09 

EHCF C 100.00 -13.27 704.36 21.37 

SHCN D 99.96 6.21 154.47 4.69 

EVON AB 94.89 -0.47 0.88 0.03 

EVCF AC 64.35 -8.93 319.26 9.69 

SVCN AD 99.39 7.47 223.23 6.77 

EHOF BC 90.48 -7.24 209.74 6.36 

SHON BD 88.47 -5.25 110.39 3.35 

SHCF CD 99.96 3.19 40.69 1.23 

EVOF ABC 51.73 -0.31 0.37 0.01 

SVON ABD 88.47 -1.44 8.31 0.25 

SVCF ACD 99.96 11.13 495.46 15.03 

SHOF BCD 72.13 -3.12 39.03 1.18 

SVOF ABCD 72.13 2.22 19.66 0.60 

Mean % time when MC ≥ 22% 88.0 Standard deviation 7.35 

Degrees of freedom 15 Observations 16 

Significance level (at P = 95%) 2.36 Confidence interval of effect estimate 8.68 
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Table 6.23 Ranking of factors and interactions during summer 2006 

Panel Effect estimate Percent contribution Factor at high level 

SVCN 9.18 23.41 Site, orientation 

SHCF 5.83 9.44 Site, coating 

SVCF 3.43 3.26 

EVCF 1.35 0.51 

EVCN 0.54 0.08 

EHCN 0.00 0.00 

SHCN -1.27 0.45 

SHOF -2.74 2.09 

EVON -2.84 2.23 

EVOF -2.91 2.34 

SVOF -3.01 2.52 

SHON -3.21 2.86 

EHON -3.71 3.81 

 

 

 

 

 

EHOF -6.61 12.12 Joint, coating 

SVON -7.28 14.71 Site, orientation, joint 

EHCF -8.52 20.16 Coating 

 79.84 % of variance encapsulated (at P = 0.05) 

 

Table 6.24 Ranking of factors and interactions during winter 2006-07 

Panel Effect estimate Percent contribution Factor at high level 

SVCF 11.13 15.03 Site, orientation, coating 

SVCN 7.47 6.77 

SHCN 6.21 4.69 

SHCF 3.19 1.23 

SVOF 2.22 0.60 

EHCN 0.00 0.00 

EVOF -0.31 0.01 

EVON -0.47 0.03 

SVON -1.44 0.25 

SHOF -3.12 1.18 

SHON -5.25 3.35 

EHOF -7.24 6.36 

 

 

 

 

 

EVCF -8.93 9.69 Orientation, coating 

EVCN -9.67 11.34 Orientation 

EHON -12.21 18.09 Joint 

EHCF -13.27 21.37 Coating 

  75.52 % of variance encapsulated (at P = 0.05) 

Statistically 

significant at 

the 95% level 

 

Wetter 
 
 
 
 

 
 
 
 

 
 

Drier 

Statistically 

significant at 

the 95% level 

 

Wetter 
 
 
 
 
 
 
 

 
 

 
Drier 
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6.3.2.5 Prediction of maximum moisture content 

 

The mini-exposure trial assesses if the results of the main exposure trial can be 

generalised to other species. Table 6.25 gives the results of the mini-trial plotted as the 

average of the five maximum moisture content readings for each timber sample against 

the FSP for the species involved. The data are ranked by the ratio of their moisture 

content to fibre saturation point. Figure 6.24 gives these results as a scatter plot.  

 

Table 6.25 Timbers used in the mini exposure trial showing their FSP and maximum 

moisture content (mean of the highest five readings) ranked by their MC/FSP ratio 

 FSP (%) MC (%) MC/FSP 

Keruing (Dipterocarpus spp.) 30 14 0.47 

Afrormosia (Pericopsis eleta) 22 11 0.50 

European redwood (Pinus sylvestris) 30 17 0.52 

European oak (Quercus petraea, Q. robur) 30 17 0.57 

Douglas fir (Pseudotsuga menziesii) 28 16 0.58 

Iroko (Chlorophora excelsa) 21 12 0.59 

Teak (Tectona grandis) 22 14 0.62 

European larch (Larix decidua) 29 18 0.63 

Greenheart (Ocotea rodiaei) 25 16 0.63 

Western red cedar (Thuja plicata) 23 16 0.69 

Sapele (Entandrophragma cylindricum) 29 20 0.70 

Sitka spruce (Picea sitchensis) 29 21 0.71 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24 Association of maximum moisture content and FSP.  
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6.3.2.6 Signal extraction 

 
Figure 6.25 illustrates the moisture content fluctuation for four test panels over a one 

year period on the exposed site. Three cycles can be observed:  

 

• Annual; moisture contents were uniformly high between December and late April, 

but fluctuated widely for the other months; 

• Storm; between late April and November moisture content fluctuations were tied to 

storm events. There were around 19 peaks and troughs during this period; 

• Diurnal ; the daily moisture content range was narrow during the winter but wide 

during the summer, moisture contents were highest at night. 

 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 6.25 Moisture content fluctuations in four panels on the exposed site from  

25 November 2006 to 24 November 2007. 
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2005

2006

2007

Figure 6.26 plots the mean moisture content in one panel (EHCF) over three years. The 

same cycles recur although the timing varies by up to eight days. The next two figures 

plot how these cycles relate to the climate at the Tulloch Bridge Met. Office weather 

station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.26 Moisture content fluctuations in one panel (EHCF) over the three years of 

the trial. 
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Figure 6.27 is a logarithmic plot of relative humidity against the moisture contents of 

four panels described in Figure 6.25. The period of lowest RH occurs in early June at 

the same time as the lowest moisture contents. The relative humidity drops to around 

30% over several days and down to 20% on one. At these relative humilities the EMC 

for Sitka spruce is in the region of 6% to 8% whereas the recorded MC is 10%. 

Moreover, the RH curve starts to drop three days before the moisture content. It is 

unlikely that the time lag can fully account for the difference between the minimum 

moisture content and EMC; instead it appears that the increasing energy required for 

desorption at moisture contents below around 10% is a co-factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.27 Moisture content fluctuations in four panels on the exposed site compared 

to the ambient relative humidity (25 November 2006 to 24 November 2007) 
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The relationships between temperature, rainfall and moisture content are less clear. It is 

likely that this is simply due to differences in the timing of rainfall events between the 

exposure site and climate station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.28 Moisture content fluctuations in four panels on the exposed site compared 

to the ambient rainfall and temperature (25 November 2006 to 24 November 2007) 
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Figure 6.29 gives the moisture content on one panel during an 11 day period  where the 

rates of moisture loss and gain were amongst the most rapid recorded in the trial. The 

period of desorption lasted 158 hours and involved a reduction in moisture content of 

13.9%. The desorption rate over this period was 2.1% per day although the largest drop 

during a 12 hour period was 5.7%. The adsorption rate during the following 81 hours 

was 2.3% per day. During the period of drying the moisture content fluctuated over a 

diurnal cycle linked to RH, whereas the rate was uniform during wetting by rain. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

The signal frequency was investigated using the Fast Fourier Transform (FFT) [31]. 

Mean moisture contents of two panels were sampled for periods of 4096 hours. This 

period was chosen because the Fourier engine in MS-Excel® 2003 requires n be a power 

of two with an upper limit of 212. The limit was, however, convenient as it covered 

approximately six months. This allowed the winter and summer months to be compared 

for the two panels (SHCN and EHCN) exhibiting the widest variation during the trial. 

The sampling interval was set to its maximum i.e. every hourly data point was used. The 

results are summarised in Figures 6.30 and 6.31. It appears that: 

 

• The energy level of the signals are highest at short frequencies and over the summer  

• The signal spikes at around 170 and 350 Hz may represent weather fronts. 
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Figure 6.29 Maximum rates of  

drying and wetting during the 

trial  

(Panel EHCF, 28 April 2007 to  

9 May 2007) 
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Figure 6.30 Frequency spectrum for the SHCF panel during the winter (13 Sept. 2006 

to 3 March 2007).   
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Figure 6.31  Frequency spectrum for the EHCF panel during the summer (15 March to 

1 Sept. 2007).  
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6.4 Discussion 

 
 
The results have clear implications for using Sitka spruce as external cladding. More 

generally they indicate the moisture take-up and loss that other types of timber facade 

will experience. 

 

 

6.4.1 Uncertainties in the data 

 

Are the results plausible? One way of answering this is to compare them with an 

independent data set. The most relevant [32] (p.25) is probably a survey of the moisture 

content in two stacks of Sitka spruce boards during one year’s air drying on the west of 

Scotland; one stack was under a roof whilst the other was exposed to the elements 

(Figure 6.32). The moisture conditions in the unroofed stack are reminiscent of those 

observed during this exposure trial. The stack without a roof stayed wet throughout the 

winter, then dried during April and May at a rate of around 1% per day (half that 

recorded during this exposure trial). The moisture content fluctuated around 20% over 

the summer before climbing towards the FSP during October.  
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Figure 6.32 Air 

drying rate of two 

stacks of Sitka 

spruce boards 

(100 ×  50 mm 

section) in west 

Scotland. One 

stack was under 

cover and the 

other exposed. 

(From: Pratt, et al. 

[32])  
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 The exposure trial data have two main sources of uncertainty 

 

• Instrument resolution: it is known that resistance type moisture meters can 

achieve an accuracy of ± 2% at w ≤ 25 %. Higher values are only indicative.  

 

• Temperature: although data from resistance type moisture meters are affected by 

temperature the data in this trial were not corrected: ∆w was c. -0.1% K-1 below 

20°C and +0.1% K-1 above 20°C. The moisture content may, therefore, have been 

overestimated by up to 2% in winter and underestimated by up to 4% in summer. 

The practical implications of this are minimal as moisture contents above 25% are 

only indicative (due to the measurement technique employed) and, as previously 

outlined, wetting above the FSP has no additional effect on biodeterioration. 

 

The practical implications of this are minimal as moisture contents above 25% are only 

indicative (due to the measurement technique employed) and, as previously outlined, 

wetting above the FSP has no additional effect on biodeterioration. 

 

In addition, all of the time series have gaps, which in the worst case (SVOF) amount to 

around 35% of the total length of the trial. This gap is evident in the frequency curves 

for SVOF given in Figure 6.21: a binomial distribution such as this is usually associated 

with missing data.  The time series analysis has been able to work around these gaps by 

focusing upon the periods where data is complete for all panels. Given that the 

descriptive statistics, analysis, and post trial inspection (see section 6.4.4.) all point to 

the same conclusions, the impact of these gaps is considered to be minimal. 
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6.4.2 Timber 

 

From a commercial viewpoint the timber would have been rejected as being unsuitable 

for most types of machining. Sitka spruce falling boards are, therefore, only suited for 

simple rectangular cladding profiles that do not require much profiling after the timber 

has been dried. Rip and pullover sawing would be possible but not thicknessing or 

moulding. Vertical board on board is, thus, the main cladding option.  

 

Interestingly this profile is common on 19th century timber clad buildings in Scotland. It 

appears that wherever possible the boards were oriented so that sloping knots faced 

outwards and towards the ground. A survey in Strathspey involving the author indicated 

that about 80% of vertical cladding boards were oriented in this way [33]. This 

technique is not possible with horizontal boards as the knot whorl inevitably produces 

upward facing knots. Norwegian cladding practices also used this technique for timber 

siding although it has been discontinued now that the cladding is designed as a 

rainscreen [22]. 

 

Discussions with Norwegian and Swedish sawmillers indicates that Scandinavian S/F 

grade spruce does not contain as many large loose knots as the boards in this trial. Nor 

does the inner part of live knots become detached. This may be attributable to 

differences in timber quality although it could also be due to how the timber is 

processed. Much Scandinavian spruce cladding is sawn from the centre of the log. It is 

initially cut as a thick batten containing two boards. The batten is then kiln dried before 

being resawn to yield two cladding boards [34]. Scandinavians argue that this gives the 

most stable result. This approach is possible in Scandinavia where timber cladding is 

perceived as a large and valuable market, whereas in Scotland sawmillers are currently 

not prepared to use the middle part of the board in this way. For the moment, therefore, 

spruce cladding in Scotland will have to be cut from falling boards. This implies that the 

design options available are limited to simple board profiles as already discussed. 

 

 



 216 

6.4.3 Moisture load 

 

The most obvious conclusion from the descriptive statistics is that the four panels 

having open-jointed cladding with a front coating tended to stay relatively dry whereas 

most other combinations were wet. Two panels experienced intermediate values. It is 

notable that the nine relatively wet panels exhibit a skewed frequency distribution 

whereas the five relatively dry panels have more normally distributed curves (Figures 

6.20 and 6.21). The moisture content of timber cladding is often quoted as a mean value 

of around 16%. This may be the case in summer on a dry site, but the frequency curves 

in Figures 6.20 and 6.21 suggest that such a value is misleading. The mean is only 

useful where the data are approximately normally distributed. If the frequency curves 

are skewed, then the mode is more representative of the data distribution. Four types of 

moisture behaviour can be identified. Figure 6.33 shows one year of moisture curves for 

four panels that are representative of the different types of moisture conditions recorded 

in the trial. A number of trends are evident: 

 

i) All panels experienced their highest moisture contents from November to either 

March or April. Peak values on the wettest panels (e.g. EVCN) were near FSP. 

 

ii) The closed-jointed panels (e.g. EHCF, EVCN) tended to experience a rapid drop 

in moisture content in March or April whereas open-jointed ones (e.g. SVON, 

SHOF) displayed a more gradual transition. 

 

iii) The uncoated panels (e.g. EVCN, SVON) showed wide moisture content 

fluctuations throughout the summer. 

 

iv) The battens behind vertical, open-jointed, uncoated panels (e.g. SVON) dried 

out more slowly than the cladding. 

 

v) As the support battens and cladding had similar moisture contents, they both fell 

within structural Service Class 3, as defined by Eurocode 5 [35]. 

 

vi) The combination of open-jointed boards and front-coating (e.g. SHOF) stayed 

relatively dry. 

 

vii)  All panels experienced a similar minimum moisture content of between 10% and 

11%. 
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6.4.4 The inferential statistics 

 

During the summer, a surface coating and horizontal open joint appear to be the key 

factor combination to maintain a low moisture load in the timber; coatings presumably 

act to limit water up-take whilst the open joints aid drying. Conversely, vertical boards, 

coatings and a sheltered site appear to result in the highest moisture loads; in this case 

the absence of drying by wind is probably a key factor especially where the surface 

coating limits evaporation. During the winter, meanwhile, a surface coating and 

horizontal open joint again appear to be key factors in maintaining a low moisture load 

although vertical boards with a coating are also important. Similarly, the factor 

combination that stands out as a cause of high moisture loads during the winter is 

vertical boards, closed joints, coatings and a sheltered site. The underlying causes are 

presumably similar to those during the summer. One word of caution is needed, 

however, as vertical open jointed boards also resulted in a high moisture load in the 

support battens as well as exposing them to a drying lag.  

 

 

6.4.5 Follow up inspection 

 

For operational reasons, Forest Enterprise asked that the Spean Bridge site be cleared as 

soon as the trial was completed. The Inverness site could however be retained, albeit 

with the dataloggers removed to avoid theft. The final condition of the cladding on the 

Spean Bridge site was:  

 

• Weathering; there were no obvious differences between the panels in the weathering 

rate of uncoated timber. All had turned grey with the bottom 150 mm of the panel 

exhibiting the most pronounced staining (Figure 6.34).  

 

• Wasps; uncoated boards exhibited numerous areas where weathered timber had been 

harvested by wasps (Figure 6.35).  

 

• Algal growth;  green areas were observed on the panels with a front coating, this 

occurred on the bottom edges of boards and at other locations where surface moisture 

was retained (Figure 6.36). The species was Desmococcus olivaceus. There was 

virtually no algal growth on the uncoated boards. 
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Figure 6.34 Weathering 

of uncoated timber, the 

heaviest staining is near 

the bottom of the 

boards. 

 

 

 

 

 

 

 

Figure 6.35 These 

stripes are due to wasps 

harvesting  weathered 

timber.  

 

 

 

 

 

 

 

 

Figure 6.36 Algal 

growth on the bottom 

edge of a coated board. 
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The Inverness site was retained for a further three years. This allowed the condition of 

the panels to be inspected up to early 2010. Three findings emerged: 

 

• Algal growth;  the panel with horizontal open joints and a front coating (SHOF) had 

little algal growth whereas all the other coated panels did (Figure 6.37).  

 

• Staining; all of the uncoated panels exhibited unsightly surface stains particularly 

when the timber was wet (Figure 6.38). The entire surface was affected and was 

slimy to touch.  

 

• Decay; the fruiting bodies of the orange jelly mould fungus (Dacrymyces stillatus) 

could be seen on the surface of several panels. This organism is a frequent cause of 

fungal decay in external joinery in the UK [36] and Norway [37]. The occurrence of 

fruiting bodies appeared to be linked to the presence of intergrown knots which were 

creating localised water traps on the four uncoated panels.  

 

These comments reinforce the findings discussed above. The EHOF and SHOF panels 

offered the best overall performance. All uncoated panels will experience variable 

staining which is most pronounced in wet weather and humid locations. The areas of 

decay around knots suggest that wetting from localised water traps will tend to over-ride 

the effect of any factor combination. 
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Figure 6.37  Differences in algal growth between panels SHCF (left), SVOF (centre) 

and SHOF (right). The latter panel had little growth whilst the other three painted 

panels were colonised by Desmococcus olivaceus over most of their surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.38 Widespread and unsightly surface staining along with occasional orange-

red fruiting bodies (arrowed) of Dacrymyces stillatus. 
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6.4.6 Scope for generalising the results 

 

The mini-trial investigates whether these results can be generalised to other timber 

species using the concepts in section 6.2.10. Fibre saturation point appears to influence 

the relative ranking of maximum moisture content between species, even though none 

of the samples in the mini-trial attained moisture content values equivalent to their FSP. 

The moisture content result for Sitka spruce (21%) in the mini-trial is lower than the 

values for the SVON and EVON panels in the main trial (29% and 30% respectively). 

There are two obvious explanations for this discrepancy: firstly the different sampling 

intervals (hourly or daily) and, secondly, the differences in sample size (the short 

lengths of the mini-trial samples allowing drying from the ends as well as offering a 

smaller catchment area for WDR). In spite of this discrepancy it may be plausible to use 

the moisture content:FSP ratios observed in the two trials to make tentative predictions 

about the moisture conditions that a particular combination of timber species and 

detailing will experience. Two assumptions are required. Firstly, given that the mini-

trial under-represented the maximum moisture content of Sitka spruce in the main trial 

by about 30 %, it could have had a similar influence on other samples in the mini-trial.  

Secondly, ghe MC:FSP ratios observed for the panel designs in the main trial (Table 

6.26) would recur irrespective of the species involved. If so, then they can be applied to 

the species in the mini-trial although adjustment may be needed for site differences. If 

these assumptions are valid then the moisture conditions in any timber and detailing 

combination can be predicted using an expression of the form: 

 

ww cs λλ=′           (6.3) 

 

where w′  is the predicted moisture content, λs is the moisture content:FSP ratio for that 

species and λc is a ratio of moisture content:FSP ratio for the type of cladding involved 

(VOF, HCN etc.). The species parameter (λs) is increased by 30% to adjust for the 

difference between the results of the mini- and full trial. Similarly, the cladding 

parameter (λc) can be adjusted for site. Using this formula the maximum moisture 

content of cladding panels made from species in the mini-trial can be predicted (Table 

6.27). Other moisture content predictions (e.g. mean or range) can be made in a similar 

way. A typical application of Eq. 6.3 would therefore predict 14% ≤ w  ́ ≤ 15% in 

European larch cladding under xVOF conditions if Sitka spruce cladding had w = 20% 

in similar circumstances (i.e. w  ́= 0.9 × 0.8 × 20%). 
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Table 6.26 The cladding parameter for each panel type 

 

 

Orientation 

 

 

Joint 

 

 

Coating 
Exposed 

site 
Sheltered 

site 

Mean of 
the two 

sites 

MC:FSP ratio 
for each panel 

type 

λc 

Front 26 26 26 0.9 
Open 

None 28 27 28 0.9 

Front 27 27 27 0.9 

H
or

iz
on

ta
l 

Closed 
None 31 29 30 1.0 

Front 25 25 25 0.8 
Open 

None 28 29 29 1.0 

Front 30 29 30 1.0 V
er

tic
al

 

Closed 
None 30 35 33 1.1 

 

Table 6.27 Predicted maximum moisture content (%) for each species/cladding 

combination. Those with a potential decay risk are highlighted in red (high risk: 

moisture content at or above FSP) and orange (moderate risk: moisture content near 

FSP). 

 Cladding parameter λc 

Species parameter λVOF λHOF λHON λHCF λHCN λVON λVCF λVCN 

Species (FSP) λs 0.8 0.9 0.9 0.9 1 1 1 1.1 

Keruing  (30) 0.7 16 18 18 18 20 20 20 22 

Afrormosia (22) 0.7 13 14 14 14 16 16 16 17 

European redwood (30) 0.8 19 22 22 22 24 24 24 27 

European oak (30) 0.8 19 22 22 22 24 24 24 27 

Douglas fir (28) 0.8 18 21 21 21 23 23 23 25 

Iroko (21) 0.8 14 15 15 15 17 17 17 19 

Teak (22) 0.9 16 18 18 18 20 20 20 22 

European larch (28) 0.9 21 23 23 23 26 26 26 28 

Greenheart (25) 0.9 18 20 21 21 23 23 23 25 

Western red cedar  (23) 1.0 18 20 21 21 23 23 23 25 

Sapele (29) 1.0 23 26 26 26 29 29 29 31 

Sitka spruce (29) 1.0 24 27 27 27 29 29 29 32 
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6.5  Conclusions 

 

Other things being equal, timber facades will first fail where the local moisture content 

is greater than the average across the wall. As discussed above, the key threshold being 

a moisture content at or above the fibre saturation point for the timber species 

concerned. The FSP of Sitka spruce and most other temperate species is w = 28% ≤ FSP 

≤ 32%. The duration of wetting (tw) has to be at least 10% of the exposure time. After 

allowance for measurement uncertainties and other factors this equates to a practical 

threshold of tw > 22% ≥ 10%. 

 

This exposure trial has highlighted how differences in construction detailing may affect 

this degradation risk. The results of the main exposure trial answer two of the three 

research questions posed in the introduction: 

 

• Firstly, it is clear that Sitka spruce cladding becomes relatively wet (tw > 22% ≥ 10%) 

even though it is a refractory timber species. Indeed, the moisture conditions were 

such that the timber is near to its fibre saturation point in many circumstances. As 

such it would normally need preservative treatment by impregnation before use as 

external cladding. 

 

• Secondly, it appears that it may be possible to generalise the results to other species 

using the moisture content:FSP ratios for the timber species and cladding type 

involved. A formula is proposed for this purpose.  

 

In terms of the three specific questions addressed by the exposure trial it appears that 

the combination of open jointed cladding with a surface coating gives the best overall 

performance. Knots and other water traps will, however, tend to over-ride the moisture 

take-up characteristics associated with any treatment combination. Consequently, all of 

the factor combinations tested in this trial will require preservative treatment by 

impregnation. 

 

Sitka spruce falling boards are relatively knotty when appearance graded against the 

criteria for Scandinavian whitewood cladding. This will tend to increase water 

entrapment and will limit the board profiles that can be produced. The only type of 

external cladding that can be recommended as being suitable for Sitka spruce is 
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therefore vertical board on board. Because the timber will be preservative treated, a 

surface coating is not essential although it may minimise moisture take-up as well as 

improving appearance. It may be possible to avoid using a biocidal primer however as 

the preservative impregnation can often fulfil a similar function. 

 

The moisture contents reported in this trial are sufficient to leach out Type LR flame 

retardants in about 30 years although they are unlikely to have a similar effect on leach 

resistant wood preservatives. See Chapter 5 for more information.  

 

Spruce cladding that has been preservative treated will not generally be compatible with 

flame retardant impregnation and so is unlikely to be suitable for use on public 

buildings. See Chapter 5 for more information. 

 

Although the data in Table 6.27 are only speculative, equation 6.3 suggests how a 

predictive model could be developed. More work is, however, needed before it could be 

definitive. This would involve repeating some version of the exposure trial using a 

number of timber species. 

 

Above all, the data quantify the moisture conditions that timber facades in the UK are 

likely to experience. This is the first time this has been done at this scale and 

complexity. The results allow the implications for moisture related degradation to be 

better assessed than has been possible hitherto; this is the information that facade 

designers are after. 
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Chapter 7 

Implications 

 

 

Previous chapters have identified the moisture conditions and degradation mechanisms 

affecting timber facades in temperate coastal climates such as the UK. This chapter 

develops a set of performance requirements and outline specifications based on these 

findings. It defines the technical properties that timber facades need to both resist the 

moisture effects identified in previous chapters and comply with the UK’s Building 

Regulations. The chapter ends by developing a decision sequence to guide timber 

facade design. 
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7.1 Structure 

 

The exposure trial results suggested that all of the external timber cladding assembly, 

including the support battens, is in structural service class 3. This has implications for 

the strength and stiffness coefficients that are used in batten and fastener design. 

Biodeterioration resistance is also affected; as is the requirement for batten grading 

(Table 7.1). These findings will have little impact on low-rise timber-clad buildings 

away from the coast but will affect how engineers design and verify timber facades on 

taller buildings and those within five kilometres of the coast. Timber cladding fasteners 

on low-rise inland sites can continue to be sized using existing ‘rules of thumb’ (see 

Chapter 5) but formal calculation to Eurocode 5 [1] will be required in more demanding 

locations, this could be assisted by developing tabulated guidance for fastener design. 

Batten grading is discussed in the book arising from this thesis [2]. 

 

Table 7.1 Main options for ensuring robustness  

Specification 

option 

Benefits Problems Solution 

Fastener sizing 

using ‘rules of 

thumb’ 

Simple and adequate for 

low-rise inland sites 

Not consistent with 

EC5 

Only use on low-rise 

buildings away from 

the coast 

Fastener sizing by 

calculation to EC5 

may be needed for 

low-rise buildings 

and certainly will 

be for medium-

rise and above  

Robust It may be unclear if a 

particular cladding 

job needs formal 

engineering design 

Get advice from a 

structural engineer 

where there is any 

doubt 

Accommodate 

differential 

movement 

Essential where heavy 

and lightweight cladding 

are in contact 

None Ensure differential 

movement is 

addressed at the 

design stage and that 

contractors 

understand what is 

needed 

Grading battens to 

BS 5534 [3] 

Grading helps ensure 

robustness and is simple 

to carry out 

The contractor  needs 

to be able to grade to 

BS 5534 

Ensure specific 

joiners are familiar 

with batten grading 
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7.2 Fire safety 

Fire can start on or spread onto the external envelope of a residential or public building 

through any of three main fire scenarios (Figure 7.1) [4] 5 [6]. Scenario 1 is usually the 

most problematic. Industrial building envelopes are exposed to additional risks which 

are outwith the scope of this chapter. 

Scenario 2: Small fire near the facade 
 

Scenario 3: Fire in an adjacent but non-adjoining building  
 

Figure 7.1 The main fire scenarios affecting the external envelopes of residential 

and public buildings [4] - [6] 

 

Scenario 1: Compartment fire  
 

- 



 232 

External fire spread can be limited in several ways [4] - [6]:  

 

1. Compartmentation (e.g. using plasterboard room linings); 

2. Preventing external flame plumes (e.g. using internal sprinklers); 

3. Controlling fire spread from fires in neighbouring buildings or similar sources (e.g. 

separating buildings with clear space or non-combustible materials); 

4. Limiting flame spread in cavities (e.g. using cavity barriers); 

5. Reducing the reaction to fire class of the building envelope assembly (e.g. using 

flame retardants); 

6. Deflecting external flaming (e.g. using projecting baffles); 

7. Protecting openings (e.g. using fire resistant glazing or window sprinklers). 

 

Most of these techniques are well established although their implementation may vary 

between countries. Those most relevant to the UK are as follows: 

 

 

7.2.1 Techniques for limiting fire spread 

 

Compartmentation: because most building fires start internally, fire codes make 

provision for compartmentation to limit fire spread and structural damage. The 

requirements at separating walls will affect the design and position of cavity barriers on 

the facade as well as the design and combustibility of roof coverings. Confusingly, the 

fire resistance of cavity barriers is only defined in terms of heat insulation against a fire 

emerging from an opening and, although a performance criterion is given, there is no 

standardised test available. This creates much confusion as building control officers 

sometimes impose their own arbitrary criteria, whilst cavity barrier manufacturers are 

able to make all sorts of unverifiable performance claims. A standard test is needed. 

 

Preventing external flame plumes: if automatic sprinklers are installed, compartment 

fires should not develop to flashover; in which case flaming from a window will be 

prevented, or have a relatively low HRR. The remaining risks are then due to fire spread 

from a large fire nearby, or a fire being ignited near the facade. Regulators have resisted 

the introduction of sprinklers for residential use in the UK but this is starting to change. 

If internal sprinklers are adopted the design of timber facades will be simplified. 
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Fire spread from a large adjacent fire: the risks of fire spread from a large fire in a 

neighbouring but non-adjoining building are determined by the extent to which the 

facade and roof are exposed to heat radiation and flying embers. In the UK, the main 

risk to the facade is assumed to be heat radiation, whilst the roof is also vulnerable to 

embers. The minimum allowable boundary distance between facades is calculated 

assuming an incident heat flux threshold of 12.6 kWm-2; the minimum needed for 

ignition of wood in the presence of a pilot light. Wherever the radiant heat flux on the 

receiving surface will exceed its heat flux threshold, buildings will have to be 

positioned further apart or the affected facade must achieve a low reaction to fire 

classification [7]. The requirements vary between fire codes: the Scottish codes require 

that a non-combustible material be used near boundaries (driven largely by the high 

incidence of arson in Glasgow) whilst the rest of the UK accepts a Euroclass B 

classification or equivalent. Non-combustibility precludes timber, but Euroclass B will 

allow flame retardant treated timber to be used.  

 

Fire spread in cavities: none of the provisions outlined above is designed to limit 

flame spread across a facade where buildings are in direct contact with each other (e.g. a 

terrace). This is because heat radiation across the junction between them is minimal; 

thermal transmission due to conduction and convection within the cavity is the main 

concern and this is controlled using cavity barriers. Accordingly, cladding at separating 

wall junctions does not need a low reaction to fire classification unless, as described in 

the previous section, it is also close to, and facing, a boundary. This is a frequent source 

of confusion amongst both designers and building control officers. There are several 

types of cavity barrier. The most common is a continuous band of non-combustible 

material such as mineral wool installed so that it fully blocks the cavity at all times. The 

second type is an intumescent strip that permits the through-flow of air in normal use 

but expands when heated to close the gap. Both need to have a defined period of fire 

resistance, although some other materials (e.g. timber battens at least 38 mm thick) may 

be accepted on low- and medium-rise buildings. Detailing cavity barriers within 

masonry cavity walls is usually straightforward, but it has become apparent that these 

techniques are not always suitable for use with timber cavity walls. This is due to three 

conflicting design criteria: 

 

1. Timber cladding needs to function as a rainscreen with a drained and ventilated 

cavity between the cladding and wall structure;  
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2. The cavity has to incorporate horizontal and vertical barriers to block ventilation 

during a fire; 

 

3. The cladding assembly has to limit flanking sound transmission across the 

separating walls and floors of multi-occupancy dwellings. 

 

The first criterion seeks to ensure free air movement to promote evaporative drying 

whilst the second stops ventilation to limit flame spread. The third criterion compounds 

these difficulties by limiting those elements, such as timber battens, that span across 

separating wall junctions. Many cavity barriers used with timber cladding do not fulfil 

all three criteria. Most problems arise with horizontal barriers; vertical barriers are more 

straightforward as they do not require through ventilation. The sound transmission 

criteria mainly apply to vertical junctions; these are discussed below in the section on 

acoustics. A further issue can arise where the fire penetrates the timber cladding on each 

side of the cavity barrier even though the barrier itself maintains its integrity. This issue 

is most acute with open-jointed cladding, although simple overlapping joints are also 

vulnerable. Force-fitted joints such as tongue and groove offer the best protection [8] 

although even they are likely to burn through in less than 30 minutes.  

 

As a result of these issues vertical cavity barriers can generally be mode of softwood 

timber at least 38 mm thick whilst horizontal barriers need to be intumescent strips. The 

minimum thickness requirement for timber cavity barriers is of uncertain origin but 

appears to be an attempt to prescribe sufficient fire resistance to the batten. Combustible 

cavity barriers such as timber battens are generally prohibited at heights above 18 m. 

The intumescent strip barriers are of recent origin. They are tested for fire resistance to 

BS 476-20 [9] and BS 476-22 [10] but do not block low temperature smoke. This can 

be a problem as some building control officers insist on horizontal cavity barriers being 

able to act as smoke barriers even though there is no performance level set for this in 

building regulations. Nor indeed is there a published test standard. 

 

Flame retardants; many building codes require FR treatment where timber is used to 

clad the facades and roofs of tall buildings and near boundaries. As already highlighted, 

even the most leach-resistant flame retardants will have a maximum 30 year service life 

in exterior exposure, although there is currently no recognition of this issue in building 
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codes. If this changes, timber cladding will probably be restricted to a maximum height 

of 18 m and excluded on public buildings and near property boundaries. 

 

Facade geometry; there is growing interest (particularly in Germany, Switzerland and 

Finland) in using construction detailing to reduce flame spread on timber cladding. The 

most common approach involves using horizontal projections to deflect flames away 

from the wall. To be fully effective the deflector needs to project by 1 m and extend to 

1.2 m on each side of the opening [11]. This is usually impractical and so narrower 

deflectors are used (Figure 7.2). These have little effect on a flame plume from a fully 

developed fire but can slow the spread of small fires providing they are used in 

combination with other measures such as a non-combustible rear face to the cavity [8]. 

The author has observed designers mistakenly employing these deflectors in the UK 

without realising that they do not work in isolation, some construction guidance [12] 

also makes this error (Figure 7.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glazing; windows are generally the part of the facade most vulnerable to external fire. 

If a flame plume spreads out of an opening onto a facade, windows in the storey above 

can fail allowing the fire entry into that compartment. The window frame is also 

important, plastic frames tending to fail before the glass does: the glass in timber framed 

Figure 7.2 Horizontal flame 

deflectors used to slow external flame 

spread on a timber-clad block of flats 

in Porvoo, Finland.  

Figure 7.3 Cavity barrier guidance in 

BRE Digest 262 [12]. Details such as 

this enable cavity ventilation but 

cannot stop upward fire spread as 

there is nothing to prevent fire 

bypassing the barrier. 
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windows lasts longer, but not as long as those made from aluminium. Several measures 

are available to help prevent windows failing, with fire-resistant glazing being the most 

common. UK regulators resist this approach as test procedures are not yet standardised. 

 

Fire safety engineering; whilst many of the foregoing provisions are relatively 

straightforward, some facades and roofs require alternative solutions involving a fire 

safety engineering approach. This has been defined [13] as the ‘… application of 

scientific and engineering principles to the protection of people, property and the 

environment from fire’.  This approach may be the only practical way to achieve fire 

safety in large, complex or historic buildings. The solutions include a combination of 

measures such as automatic fire detection, fire suppression, ventilation systems and 

passive fire protection. An extensive programme of tests has recently been completed in 

Germany and Switzerland with the result that the fire safety of medium-rise timber 

facades is now fully documented. However, the results cannot readily be transferred to 

low-rise buildings in the UK as the costs are prohibitive and due to the lack of rapid (< 

15 minute) fire brigade arrival times in rural areas. There are also questions over some 

of the details would perform in the UK’s wet and windy climate. 

 

 

7.2.2 Fire testing in the UK 

 

In view of the confusion and complexity affecting the fire performance of timber 

facades in the UK, the author participated in a full-scale ad hoc fire test of separating 

wall and floor junctions (Figures 7.4 to 7.8). The design of the timber frame junctions 

and cavity barriers was based on the details being developed for this thesis. With minor 

adjustments the method appeared to provide a template for future standardised testing of 

cavity barrier performance behind timber cladding. It has confirmed that only a full-

scale, semi-natural test is capable of modelling the fire conditions on a timber facade. 

The smaller scale tests currently being employed are meaningless as they do not model 

three-dimensional fire behaviour, such as burn through of the cladding on each side of 

the cavity barrier. Although it was an ad hoc test, and so cannot be definitive, the results 

suggested that the cavity barrier details will be able to meet the performance criteria in 

current building regulations. However, further testing is required to confirm this. The 

test is described in a BRE report [14]. 
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5.1 m 

2.4 m 

6.2 m 

Rear ventilation into the furnace 

 

Furnace lined to give 90 minutes’ fire 

resistance.  

 

Fire cribs of Scots pine baulks (at 12 % 

moisture content) giving a fire load of  

450 MJm-2. 

 

Figure 7.4 Plan section of the L-shaped facade 

assembly in front of the furnace. Position of vertical 

cavity barriers are shown in red. 

Window  

Figure 7.5 Isometric view of the L-shaped facade  

assembly. Cavity barrier positions on the facade are in  

red. Vertical barriers on the facade are 38 mm thick timber  

battens whilst the horizontal barriers are intumescent strips. The 

two vertical mineral wool barriers between the separating walls 

are not shown. 
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Figure 7.8 View of the 

facade after the fire was 

extinguished. Although 

the fire had spread the 

full height of the facade 

it had not spread 

laterally beyond the 

vertical cavity barriers 

(dashed lines). 

 

Figure 7.7 View of the 

facade 53 minutes into 

the test. The cladding 

has burnt through above 

the window and on each 

side of the horizontal 

cavity barrier at first 

floor level. The cavity 

linings are alight at 

ground level. 

Figure 7.6 View of the 

facade just after 

flashover. The paint 

above the window has 

burnt off and the window 

frame is alight. 
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 7.3 Acoustics 

 

Noise pollution is a growing problem between attached dwellings (e.g. flats) and so the 

UK’s building regulations are setting ever more demanding acoustic requirements for 

these buildings. Criteria are given for minimising airborne sound transmission through 

walls and floors (e.g. from people talking) and impact sound transmission through 

floors (e.g. footsteps). A wall between attached dwellings is termed a separating wall 

whilst the floor between flats is termed a separating floor. Sound can be transmitted 

directly through separating walls and floors or across the junction between them and an 

exterior wall, in which case it is known as flanking sound (Figure 7.9) [15] [16].  

 

 

 

 

 

 

 

 

 

 

The continuous vertical structure of the external wall provides a ready sound path. 

Consequently, flanking sound transmission between floors has to be minimised by 

providing layers of acoustic damping to isolate the floor and ceiling from the external 

wall. Separating wall junctions are simpler to detail as a clear space can be maintained 

between the two dwellings. The implications for timber cladding are that it can span 

across separating floors with no need for acoustic separation but flanking sound paths 

across separating wall junctions require three separate cavity barriers (two behind the 

cladding on each side of the junction and a third within the junction itself).  

 

The existing guidance typically uses cavity stops made of mineral wool or a similar 

material separated from the masonry cladding using an impermeable membrane. This 

detail is unsuited for use with timber cladding due to risk of water entrapment – and 

thus fungal decay – between the cladding and cavity stop. To avoid this risk, the vertical 

cavity stops need to be constructed using two timber battens with a third barrier, of 

mineral wool or a similar material, located in the gap between the separating walls.  

Flanking 
path 

Direct 
path 

Separating wall or floor 

Inner leaf of wall 

Outer leaf of wall 

Figure 7.9 Direct and flanking 
sound transmission 



 240 

7.4 Durability and workmanship 

 

Degradation is controlled using a range of measures encompassed by the term ‘design 

for durability’. The options vary depending upon the cladding design, materials and 

service conditions. Selection used to be a relatively straightforward choice between a 

small number of prescriptive approaches but this is no longer the case as much of the 

relevant guidance is becoming performance-based. This move has coincided with a 

growing concern to avoid the negative environmental impacts associated with some 

traditional approaches and this has stimulated the development of new wood protection 

processes. The net result is that designers of timber facades now have an unprecedented 

range of options available to them and, although this freedom is to be welcomed, it does 

put considerable onus on designers to ensure that the approach they select will deliver 

the performance they – and their clients – expect. The technical priorities most relevant 

to timber facade designers are often summarised [17] as the 4Ds: 

 

1. Deflection: rainwater needs to be deflected away from the facade using eaves 

and flashings; 

2. Drainage: rainwater that enters the facade assembly should be able to drain 

through unrestricted openings at the base of every cavity; horizontal surfaces 

should be sloped wherever possible; 

3. Drying:  cavities should have openings at the top to promote moisture 

evaporation;  

4. Durability: the materials should be resistant to all the degradation effects that 

may occur due to moisture. 

 

 These are a useful first approximation although it is worth adding a fifth D to the list: 

 

5. Destruction: the life safety costs and other consequences of component failure 

should be taken into account as these may limit the actual options available [18]. 

 

The first three points concern the design and construction of a rainscreen whilst the final 

two are about material selection.  
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7.4.1 Fungal decay and insect attack 
 

The exposure trial results suggested that – with the possible exception of open jointed,  

coated designs – timber cladding is at risk of decay on any site exposed to regular 

wetting or limited drying. This includes most of the western half of Britain (see Figure 

2.6) plus any sites where the mean annual relative humidity is above 90% (this mainly 

includes sites near open water or sheltered by woodland). The main material-based 

options for controlling wood destroying organisms are listed in Table 7.2 but it must be 

stressed that minimising moisture uptake should always the first line of defence.  

 

Table 7.2  Main options for controlling wood destroying organisms 

Type of timber 

specified 

Benefits Problems Solution 

Low durability  Avoids biocides, enables 

readily available and low 

cost local timber to be 

used. 

Regular maintenance 

essential, impossible 

to guarantee, needs a 

surface coating. 

Only suitable for 

low-rise buildings. 

Naturally durable 

heartwood  

Can reduce maintenance,  

durability class can be 

selected according to 

service life, complexity 

etc. 

Some 

unpredictability 

remains, grading 

essential, can be 

prohibitively 

expensive. 

Only use if the client 

is prepared for some 

unpredictability. Mill 

must be prepared to 

grade out sapwood 

Wood modified  As naturally durable but 

with increased 

predictability, guarantees 

are possible, good 

substrate for coatings. 

Local sourcing 

currently limited in 

the UK. Brittle. 

Specified as being 

equivalent to 

naturally durable 

heartwood.  

Preservative 

treated 

Minimal maintenance, 

predictable.  

Appearance not to 

everyone’s taste, 

contains biocides, 

incompatible with 

flame retardants. 

May be the only 

option where a 

guaranteed long-term 

performance is 

needed. 

 

Several recent publications give general technical principles for designing a timber 

rainscreen to minimise moisture up-take and promote drying. [12] [19] 20 [21]. These can 

be summarised as follows: 

- 
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Eaves and flashings: if most rainwater is diverted before it can wet the wall then the 

need for other wood protection measures is reduced. Where large eaves are not 

appropriate – perhaps because of the desire to avoid differential weathering problems – 

it is still important to protect the wall head using a flashing. The endgrain of vertical 

boards should always be protected. Flashings should project by at least 50 mm.  

 

Splashzone: a common problem occurs where timber cladding is brought too close to 

the ground or another horizontal surface. The resultant splashing causes rapid localised 

weathering and can lead to fungal decay. A minimum vertical gap of 150 mm is 

recommended although 200 - 250 mm will give better protection. In most cases the 

splashzone will be formed of rendered masonry although metal sheeting is also used. 

 

Cavity drainage and ventilation: a 10 mm gap is recommended at the base of the 

cavity to allow rainwater to escape whilst also ensuring that ends of boards do not form 

water traps. cavities always need to be ventilated (open at the top and bottom to allow 

through flow of air). The gap at the cavity head need only be 6 mm wide and should 

always be protected from rainwater. Open joints between boards and surface coatings 

can also help to keep the timber dry. The depth of cavity required is often overstated. 

Providing that there is a 4 mm deep continuous air gap, the effect of additional depth is 

minimal. That said, the cavity normally has to be deeper than this to ensure that the 

support battens are robust and to avoid the cavity becoming blocked over time. 

Horizontal battens or cavity barriers should not obstruct the free movement of air in 

normal circumstances. Cavity barriers must fully bridge the cavity during fire and this 

usually requires that horizontal cavity barriers be intumescent. A vermin mesh is needed 

at openings near the ground. 

 

Breather membranes: the rear face of the cavity functions not only as an air seal, it 

provides a second line of defence against rainwater penetration and must allow water 

vapour diffusing from inside the building to escape. A high performance breather 

membrane is normally used to fulfil these functions although other options (e.g. latex 

impregnated fibre-board) are possible.  

 

Openings: in Scotland, window and door openings in masonry walls were traditionally 

protected using what was called a check reveal. In this detail the joinery was set back 

from the face of the wall and the junction covered with render. A similar detail is 
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beneficial with timber cladding and is included in most Scandinavian recommendations 

[21] (Figures 7.10 and 7.11). This would need modification before use in the UK due to 

differences in fire regulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 Recommended 

window detail for southern 

and central Norway. 

 

(NBRI, with permission) 

Figure 7.11 Recommended 

flashing details for window 

sills in Norway 

 

(NBRI, with permission) 
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Breather membrane 
 
Window head 
 
 
 

Mineral wool 

Compressible seal 

Mastic seal 

 
Trim 
 
 
 
 
Metal sill flashing 
Wooden sub sill 
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7.4.2 Weathering 

 

It is impossible to make any specific statements about how a building will weather 

unless one has information on the local climate and how this is modified by the shape of 

the building and those around it. This is rarely available. Even with such information 

there would still be considerable uncertainly as no reliable weathering model has yet 

been developed. Coatings give a uniform appearance but cannot be guaranteed to 

protect the timber from moisture gain and its effects. Leaching out of flame retardants 

can be a problem if the facade has to have a service life of over 25 years. The main 

options are given in Table 7.3 below. 

 

Table 7.3 Main options for controlling weathering 

Type of timber 

specified 

Benefits Problems Solution 

Uncoated, 

naturally durable 

or wood modified  

Can minimise 

maintenance. 

Unpredictable. Only use if the client is 

prepared for unpredictability. 

Surface coated  Gives uniform 

predictable 

appearance. 

Requires regular 

maintenance, the 

most durable 

products contain a 

biocide. 

Opaque with a fungicidal 

primer gives the best 

performance, factory coated, 

wood modified substrate 

preferred. Preservative treated 

timber may avoid the need for a 

fungicidal primer. 

Uncoated, 

preservative 

treated 

Minimal 

maintenance, 

predictable.  

Appearance not to 

everyone’s taste, 

contains biocides, 

incompatible with 

flame retardants. 

May be the only option where a 

guaranteed long-term 

performance is needed.  

 

In addition, if the facade combines requirements for a low reaction to fire classification 

(e.g. Euroclass A1 to C) with a 50 year service life then timber cannot be used due to 

the incompatibility of type LR flame retardants and the current generation of CCA 

alternative wood preservatives. 
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7.4.3 Dimensional Change 
 
 

Designers often try to accommodate movement with a 2 mm gap between boards. While 

better than nothing this can lead to problems where the expansion is greater than 2 mm 

or the gap is closed during installation. If either of these occurs the result can be 

catastrophic (see Figure 7.12). It is therefore prudent to estimate the movement that will 

occur and essential to ensure the specified gap is provided on site (Table 7.4). On 

simple cladding jobs the three movement classes (see Chapter 5) allow designers to 

select the appropriate timber. Those with a medium or low class suit most applications 

though a small movement timber should be selected for tongued and grooved profiles, 

boards over 150 mm wide or any design where size change is difficult to accommodate. 

Large movement species can also be used providing the detailing can accommodate the 

size changes that will occur. Where there is any doubt, however, movement should be 

calculated using any Equation 5.14 or 5.15. 

 

Table 7.4 Main options for estimating dimensional change in cladding 

Specification 

option 

Benefits Problems Solution 

2 mm gap Maximum simplicity. Often inadequate. Only use within 

limitations. 

Using the 

movement classes 

Reasonable simplicity. Not particularly 

accurate. 

Adequate for small or 

simple  jobs. 

Calculation using 

published 

formulae  

A relatively 

straightforward 

calculation. 

Some designers and 

contractors may be 

resistant to algebra. 

Use a specialist if in 

doubt. 

Figure 7.12  

Cladding failure due to American white oak 

timber being installed too dry (moisture 

content around 8 - 10%) and with no 

expansion gaps. Unsuitable fixings were 

also a factor. 
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7.4.4 Corrosion 

 

Although corrosion is well understood it can be difficult to predict in some cases such 

as where new wood preservatives are used. In general the best advice is to ensure that 

cladding fixings are made from austenitic stainless steel. Flashings can be in several 

materials although lead in contact with damp timber should be avoided as it can be 

corroded by acetic acid. The main options are given in Table 7.5. 

 

Table 7.5 Main options for controlling corrosion  

Specification 

option 

Benefits Problems Solution 

Galvanised steel Cost effective, widely 

available, particularly 

suitable for flashings. 

Can be chipped, not 

fully resistant to 

acetic acid. 

Only use fixings on 

simple facades with 

surface coatings. 

304 grade 

austenitic stainless 

steel 

Resistant to virtually all 

corrosion mechanisms 

affecting wood.  

Cost, availability. The best solution in 

most cases. 

316 grade 

austenitic stainless 

steel 

Resistant to marine 

exposure. 

Cost, availability. Only required within 

2 km of coast. 

Brass and other 

copper alloys 

Malleable, attractive. Not fully resistant to 

acetic acid, fixings 

have limited 

availability, cost. 

Sometimes used with 

western red cedar. 

Aluminium Useful for flashings and 

protecting intumescent 

cavity barriers 

Bimetallic corrosion 

if in contact with 

copper. 

Must be separated 

from copper 

(including timber 

treated with copper 

based wood 

preservatives). 

Coatings and other 

barriers 

Cost-effective,  Susceptible to 

damage. 

Mainly useful for 

separating aluminium 

from copper based 

preservatives. 
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7.5 Decision sequence 

 

Cladding designers need simple guidance that takes them through the sequence of 

decisions that allow timber facades to be designed for durability, whilst ensuring that 

fire safety and acoustic performance are also addressed. There are presently two main 

options. Firstly, BS EN 335-2 [22] gives a decision sequence for selecting natural 

durability or wood preservation but it is mainly targeted at the wood protection industry 

and is all but unusable by facade designers because it is too detailed on treatment 

processes whilst ignoring other design criteria (e.g. compatibility with flame retardants). 

Secondly, the WPA has issued generic specifications for most generic product types, 

including timber cladding [23]. These are simple to use but they omit several options 

and are now out of date. Although the WPA is in the process of updating this it is 

unlikely that they will address the range of issues of concern to facade designers. 

Accordingly Figure 7.13 provides a decision sequence to guide design and material 

selection. It is based on BS EN 335-2 but has been updated and modified to make it 

usable by facade designers. Each box or diamond in Figure 7.12 corresponds to a 

heading below. In working through this decision sequence, designers are in effect 

moving through the 5Ds from the bottom up, beginning with a consideration of life 

safety.  

 

7.5.1 Preliminary facade design 

 
This initial stage uses the performance concepts already outlined in this chapter to 

define the functional demand for the design and to sketch out preliminary solutions.  

 

7.5.2 Define the performance requirements and use class 
 

Once the performance concept for the facade is understood, the cost of component 

failure or replacement needs to be considered; this varies with the type of component 

and affects the choice of wood protection measure. The performance requirements of 

timber components in the UK are discussed in BS 8417 [18], which recommends 

different natural durability or preservative treatment specifications based on the life 

safety and economic considerations anticipated during the service life of the component. 

These are shown in Table 7.6. The standard assigns timber components to one of four 

service factors depending upon their ease of replacement and cost of failure.  
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Figure 7.13 Decision sequence to aid selection of design for durability options 
 

1. Preliminary facade design 

2. Define performance requirements & use class  

3. Select wood species or wood modification 

4. Determine natural durability  

11. Either 
change the 
design or 
material 
selection 

 

yes 

Additional wood 
protection necessary 

8. Is treatabilty of  
the wood species appropriate?  

10. Check 
compliance  

12. Final design 

yes 

5. Is the  
natural durability 

appropriate to the performance 
and use class? 

6. Is wood preservation  
suitable and acceptable?  

 

no 

yes no 

compliant not compliant 

no 

7. Select preservative specification 

9. Select wood preservative and process  
 

Additional wood 
protection unnecessary 



 249 

Table 7.6 Timber selection for service life performance (after BS 8417 [18]) 

Safety and economic considerations Need for high level of 

resistance to wood 

destroying organisms 

Service factor 

Negligible Unnecessary A 

Where remedial action or replacement 

is simple 

Optional B 

Where remedial action or replacement 

is difficult or expensive 

Desirable C 

Where structural collapse would be a 

serious danger to persons or property 

Essential D 

 

BS 8417 assigns external cladding to service factor C, meaning that remedial action or 

replacement is difficult or expensive. This is certainly the case for most buildings but 

low-rise domestic buildings may be relatively simple to maintain. Whilst it is normally 

desirable that timber facades have a high level of resistance to biodegradation, this may 

be optional on small buildings, or where components are straightforward to replace 

should the need arise [24].  It can be argued that service factor B may be more 

appropriate in such cases. 

 

As previously discussed, European standards employ the term ‘use class’ to describe the 

microclimate conditions and associated biodegradation risk that characterise particular 

groups of timber components. Use classes are defined in BS EN 335-1 [25], and their 

application to solid timber is given in BS EN 335-2 [22] (see Chapter 5.). Each class 

requires a different combination of wood protection measures. External cladding comes 

under use class 3. The use class system applies throughout Europe and necessarily 

involves a degree of approximation. For example, the system is mainly determined by 

the moisture load in the timber and does not take account of temperature. The risks of 

fungal decay and insect attack are affected by temperature and so there will be regional 

differences in the biological agents that occur or the extent to which they cause damage. 

Some countries describe the effect of these factors in national standards.  

 

The use class system was revised in 2006. Before this revision, the classes were termed 

‘hazard classes’ but this was seen as being too alarmist. The older term is still found in 

some standards. The revision also introduced sub-classes in use classes 3, 4 and 5 to 
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reflect variations in microclimate conditions or the occurrence of particular biological 

agents. The practical application of these sub-classes is not yet clear, however, with 

some people arguing that the presence of a surface coating on external timber is 

sufficient to change the sub-class from 3.1 to 3.2. Others point to the likelihood that 

coatings will not be maintained as evidence that class 3.1 should only applied in 

conditions where the wall is well protected by physical features such as wide eaves. The 

exposure site data in Chapter 6 suggest that the second, more conservative, approach is 

the most accurate. 

  

Once the use class has been determined, the biodegradation organisms that are locally 

important in each microclimate need to be assessed. Several standards and other 

documents give guidance on wood protection selection according to the biological 

agents locally present in each use class [18] [26] 27 [28].  In use class 3 conditions in the 

UK the main risk is decay fungi; wood boring beetles are only a minor problem and 

termites are not present. 

 

7.5.3 Select the wood species or wood modification product 
 
The physical properties of most wood species of commercial importance in Europe are 

defined in BS EN 350-2 [29]. Several properties usually need to be considered and 

those usually most important for external cladding [30] 31 [32] are given in Table 7.7. If, 

for example, the cladding boards are tongued and grooved they generally cannot 

accommodate dimensional change of more than 2 mm and so a low movement species 

is required and this will tend to drive the species selection. 

 

Table 7.7 includes examples of wood modified products. For the purposes of this 

decision sequence, they can be considered as being equivalent to a wood species. Wood 

modification is a rapidly-evolving field and several new products are likely to become 

available in the next few years. Modified timber does, however, tend to be more 

expensive than preservative-treated wood and the type of biodegradation resistance 

these products offer is usually more specific than the wide-ranging protection offered by 

traditional biocides.  

 

 

 

- 

- 
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Table 7.7 Selecting a natural durability or wood protection approach 

Treatability class Species or trade name 

Plus origin where relevant 

Average 

density 

(kg m-3) 

Natural 

durability 

class 

Movement 

class 
Sapwood Heartwood 

Accoya  475 1 Small 

Thermowood D  420 2 Small 

Not applicable 

Robinia (Robinia psudoacacia) 740 1 - 2 Medium 

Sweet chestnut (Castanea sativa) 590 2 Small 

European oak (Quercus robur and 

Q. petraea) 

710 2 Medium 

Imported western red cedar (Thuga 

plicata) 

370 2 Small 

American white oak (Quercus spp. 750 2 Medium 

Generally not relevant 

Imported Douglas fir 

(Pseudotsuga menziesii) 

530 3 Small 3 3 - 4 

Siberian larch (Larix sibirica) 610 3 Small ? ? 

UK western red cedar (T. plicata) 370 3 Small 3 3 - 4 

UK grown larch (Larix spp.) 540 3 - 4 Small 2 4 

European redwood / Scots pine 

(Pinus sylvestris) 

520 3 - 4 Medium 1 3 - 4 

UK Douglas fir (P. menziesii) 510 3 - 4 Small 2-3 4 

Norway spruce (Picea abies) 460 4 - 5 Small 3 3 - 4 

Sitka spruce (P. sitchensis) 390 4 - 5 Small 2-3 4 

 

 Wood modification used instead of wood preservation  

Wood modified timbers are used in a similar way to naturally durable timbers of the same 

durability class. They should not normally be used for structural applications. 

 Wood preservatives usually unnecessary  

The heartwood is usually suitable for use as external cladding without preservative treatment 

(western red cedar shingles need to be preservative treated). 

 Wood preservatives optional or desirable  

Timbers with a mean natural durability class of 3 can be used as external cladding without 

preservative treatment. This is appropriate on many low- or medium-rise buildings but should 

be avoided where the cost of failure is high. Preservative treatment is needed in such cases. 

 Wood preservatives desirable except on low rise buildings 

Timber with a variable natural durability class may be appropriate on low-rise buildings but 

should be avoided if the cost of failure is high. Preservative treatment is needed in such cases. 

 Wood preservatives normally essential  

Low durability timbers or those with a wide sapwood zone (e.g. Scots pine) should normally be 

preservative treated before use as external cladding. It may be possible to avoid this on some 

low-rise buildings if the cladding is easy to maintain.  
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7.5.4 Determine the natural durability 
  

European Standard BS EN 350-2 [29] gives natural durability classifications for most 

timber species that were of commercial importance in Europe during the 1990s (see 

Table 7.7). If a species is not listed in the standard, test data should be obtained from a 

reputable independent source. The use of tropical hardwoods are discussed in Davies 

and Wood [2]. Wood modification is not currently covered by BS EN 350-2; the 

supplier should be able to provide durability data from a reputable and independent 

source if required. Specification for the durability of modified wood products should be 

expressed using the same classification as unmodified timbers. 

 

7.5.5 Is the natural durability adequate? 

European Standard BS EN 460 [26] gives guidance on the level of natural durability or 

preservative treatment needed for resistance against fungal decay (Table 7.8). This 

covers the whole of Europe and so is necessarily quite general. Country-specific 

information is published in national standards such as BS 8417 [18] (see Table 7.9). If 

the natural durability of the selected species is sufficient, then additional wood 

protection is unnecessary and the designer can finalise the design using the principles in 

Section 6.4.1. Many of the relevant construction details are given in Chapter 8. If, 

however, the natural durability of the timber in question is deemed unsuitable then 

additional wood protection will be required. 

 

7.5.6 Is wood preservation suitable and acceptable? 
 

Where wood protection is deemed necessary, the designer has to decide which options 

are suitable for the particular facade. Preservative treatment requires pressure 

impregnation with a leach-resistant biocide. Brush or dip applications of preservative 

are relatively ineffective as well as posing a health and safety risk. Problems can, 

however, occur where the timber also needs to be impregnated with a flame retardant, in 

which case it may not be compatible with wood preservative impregnation. This can be 

a particular challenge with shingles and shakes as these are generally preservative 

treated for use in UK conditions. Some people may also want to avoid wood 

preservatives due to concerns over their safety or eco-toxicity. In cases where wood 

preservation is not suitable designers may need to change the facade design or the 

timber species they propose to use. 
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Table 7.8 BS EN 460 Natural durability or preservative treatment needed for resistance 

against fungal decay [26] 

                      Durability class 

 

Use class 

1 

Very 

durable 

2 

Durable 

3 

Moderately 

durable 

4 

Slightly 

durable 

5 

Not 

durable 

1. Above ground, covered, dry. 

 

     

2. Above ground, covered, risk 

of wetting. 

     

3. Above ground, not covered, 

periods of wetting. 

     

4. In ground or fresh water. 

 

     

5. In sea water. 

 

     

Key 

 In these conditions natural durability is always sufficient and there is no requirement for 

preservative treatment 

 Natural durability is normally sufficient in these conditions but for certain uses where 

condensation is likely preservative treatment is advised 

 Natural durability may be sufficient in these conditions, but, depending upon the wood 

species and end use, preservative treatment may be needed 

 Preservative treatment is normally advised in these conditions but natural durability may be 

sufficient in some cases 

 Preservative treatment is always necessary in these conditions 
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Table 7.9 BS 8417 Service life of timber in different use classes in the UK [18] 

Durability class where heartwood can 

be used without treatment 

Desired service life (years) 

Component Use 

class 

Service 

factor 

15 30 60 

Internal joinery 1 A 5 5 5 

Roof timbers dry 1 B 5 5 5 

Roof timbers dry (Hylotrupes area) 1 D 3b 3b 3b 

Roof timbers risk of wetting 2 C 4 3 2 

External walls, ground floor joints 2 B/C/D 4 3 2 

External joinery 3 C 4 3 2 

Fence rails, garden decking 3 B/C/D 4 3 2 

Sole plates below the DPC 4 D 2c 1 1d 

Fence posts 4 B/C/D 2c 1 1d 

Poles 4 D 2c 1 1d 

Sleepers 4 D 2c 1 1d 

Timber in fresh water 4 D 2 1 1 

Cooling tower packing, fresh water 4 D 2 1 - 

Timber in salt water 5 D 1e - f - f 

Cooling tower packing, salt water 5 D 1 - - 

a) Natural durability classes from BS EN 350-2. 

b) Any hardwood can be used. House longhorn beetle (Hylotrupes bajulus) can attack heartwood of 

some low durability softwood species wherever the species is locally present. 

c) Some durability class 3 timbers can achieve 15 years service life. 

d) Some durability class 1 timbers can achieve 60 years service life. 

e) Preferred species are listed in the standard 

f) Most durability class 1 species will not give more than 15 years service though a few can give 

longer service if large sections are used. 

Table 7.8 is oversimplified whilst Table 7.9 has a number of gaps. Moreover, these 

tables are inconsistent. Consequently these two tables have been redrawn as Table 7.10 

to make them more compatible. The new table contains a number of suppositions 

including the service life of cladding made from durability class 4 or 5 timber. 
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Table 7.10 Natural durability or preservative treatment requirements for timber 

components (after BS EN 460 [26] and BS 8417 [18]) 

Durability class  

(BS EN 350-2) 

Use condition and  

natural durability class 

Component 

Use 

class 

 

Service 

factor 

 1 2 3 4 5 

Internal joinery and structural timber 1 A      

Roof timbers dry 1 B      

Roof timbers dry (Hylotrupes area) 1 D      

Roof timbers with a risk of wetting 2 C     1 

Structural timber in external walls & ground floors 2 B/C/D     1 

External joinery e.g. cladding & windows 3 C     1 

Fence rails, decking, hand rails 3 B/C/D     1 

Structural parts of timber bridges 3 D 1 1 1 1 1 

Fence posts 4 B/C/D      

Sole plates below the DPC 4 D      

Transmission poles, sleepers 4 D      

Timber in fresh water 4 D      

Cooling tower packing in fresh water 4 D      

Timbers in salt water 5 D      

Cooling tower packing in salt water 5 D      

 
Key 
 Service life of at least 60 years without 

preservative treatment unless water traps. 

 Service life of at least 30 years without 

preservative treatment unless water traps. 

 Service life of at least 15 years without 

preservative treatment unless water traps. 

 Service life usually less than 15 years unless 

regular maintenance is employed. 

The service life varies but is often greater 

than these minimum estimates which 

represent ‘worst case’ conditions. Where, 

however, a guaranteed service life greater 

than the estimates is required, there is no 

alternative but to use preservatives or 

some types of wood modification. 

 Preservative treatment normally recommended. Depending upon the species, and 

exposure conditions, natural durability may give at least a 15 year service life.  

 Preservative treatment recommended. 

  

Notes: (1) Not shown in BS 8417 but included here for clarity   
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7.5.7 Select preservative specification 
 
Wood preservative specification is described in BS 8417 [18], BS EN 351-1 [25] and 

BS EN 599-1 [33]. In principle, the specification is written in terms of the results of the 

preservative treatment process: the required penetration of the biocide into the wood has 

to be stated along with its concentration in a defined zone. The goal being to achieve a 

sufficient loading of preservative to guarantee a service life of either: 15, 30 or 60 years. 

These documents are complex and so the WPA has issued generic specifications for 

many product types [23]. Cladding is covered by WPA commodity specification C6. 

 

 

7.5.8 Is the treatability adequate? 

 

Wood species vary in their permeability to preservative impregnation; this is known as 

treatability. The treatability of most commercial timbers is given in BS EN 350-2 [29] 

(see Table 7.7.) If the treatability of the timber species in question is adequate then the 

preservative can be selected. If not, then another species should be chosen. 

 

 

7.5.9 Select wood preservative 

 

The WPA manual [23] gives guidance on selecting the most appropriate preservative 

treatment products and process. The UK list of approved pesticides is regularly updated, 

however, and current information is available from the Health and Safety Executive 

website [34] [35].  

 

7.5.10 Is it compliant? 
 
The preservative supplier must be able to demonstrate compliance with relevant 

standards. Facade designers cannot be expected to be able to assess this themselves and 

so adherence to the relevant WPA specification [23] is essential. If compliance is 

achieved then designers can proceed with their design; if not then a different 

preservative or process may be needed or the facade design or timber selection could be 

changed. 
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7.5.11 If all else fails start again 
 

It may be necessary to go through this decision sequence a number of times before an 

appropriate solution emerges.  This may involve adjusting the facade design to improve 

moisture performance, allow component replacement or use a more degradation-

resistant timber. Whatever option is chosen the designer must ensure that the measures 

employed give sufficient degradation resistance in the anticipated service conditions.  

 

7.5.12 Final design 
 
Once the design for durability approach is fully worked out, the construction details and 

specifications in Chapter 7 can be used to help ensure that the facade complies with the 

other performance requirements in the applicable building regulations. Detailing can 

begin. This is discussed in the next chapter. 

 

 

7.6 Summary 

 

This Chapter has provided outline specifications and a decision sequence for the design 

of low- and medium-rise timber facades in the UK. Key points from this chapter are: 

 

• There is a conflict in UK Building Regulations between fire safety, design for 

durability and acoustic insulation. This can be resolved using a combination of 

measures including intumescent cavity barriers. 

 

• The fire safety of timber facades needs further work: a test standard is required for 

cavity barriers and for full-scale facade tests. The ad hoc test outlined in this chapter 

provides a template for such research. 

 

• An improved decision sequence for timber cladding design is provided. This is 

targeted at the needs of facade designers whilst ensuring compliance with regulatory 

requirements for wood protection. 
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Chapter 8 

Detailing 

 

 

This chapter develops construction details for timber cladding on low- and medium-rise 

buildings in the UK. They have been developed in response to the findings of previous 

chapters. In particular: 

 

• The detailing and workmanship survey in Chapter 3 suggests that many challenges 

presented by timber facades occur at junctions such as above access ramps, around 

windows or where different cladding materials meet. Defects at these junctions can 

create water traps (leading to degradation) and compromise fire safety. 

 

• The exposure trial results presented in Chapter 5 employed a moisture index 

(expressed as the percentage of time when the moisture content of the cladding is 

over 22% or 25%) to evaluate the degradation risks in 16 test panels clad with Sitka 

spruce. Only the combination of open jointed cladding with a surface coating 

achieved a low moisture index score on both test sites (i.e. the degradation risk was 

low). The moisture content range in the other panels was higher, in many cases 

fluctuating between 10% up to near the FSP. A supplementary test suggested that a 

similar pattern of moisture behaviour may occur in other timber species. 

 

• The technical information on timber facades available in standards and building 

regulation guidance is often incomplete, inconsistent and inaccurate. Small wonder 

then that designers and contractors make frequent detailing and workmanship errors.   
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8.1 Scope 

 

The details provided here are designed for use with low-rise residential buildings 

although many are also suitable, or can be adapted, for taller facades or non-domestic 

applications. Each detail is designed to be compliant with the performance criteria given 

in the guidance documents supporting the UK’s building regulations as at February 

2011. Although the energy performance standards in these details will be superseded in 

due course, their fire safety, durability and acoustic principles continue to be relevant. 

 

Construction detailing in the UK is in flux as governments and regional assemblies seek 

to improve the energy performance and sustainability of buildings. Although some 

design codes or accredited construction details are available [1] 2 [3], there is little 

consensus on how these improvements are to be achieved and, as a consequence, 

designers and builders are responding with a range of technical solutions. In view of 

this, most of the details in this chapter use a standard timber-framed structure, as this is 

currently the commonest substrate for timber cladding in the UK. Other wall build-ups, 

such as a ‘reverse wall’ can be developed using the principles illustrated in these 

drawings. Similarly, a zone for services can be created under the plasterboard, or 

additional insulation installed on the inner, or outer face, of the structural frame. Other 

wall substrates such as masonry can also be used. Figures 8.1 to 8.4 give examples. 

 

Although open jointed and coated cladding performed best in the exposure trial, no 

construction details are given below provided for this type of facade. This is because 

open jointed cladding is incompatible with the criteria for cavity barriers in the current 

guidance to the UK’s building regulations. The issue is that, even if the cavity is 

blocked with a cavity barrier, there is little to prevent fire bypassing the barrier through 

the open joints. This does not mean open-jointed cladding is unsuitable for use in the 

UK, but rather that it has to be used in combination with internal room sprinklers to 

fully comply with UK fire regulations. If sprinklers are available then both open and 

closed jointed cladding can be detailed in the same way. Diagonal cladding is also 

omitted. This is because it is detailed in a similar way to vertical cladding; the boards 

are normally fixed to horizontal battens on counter battens. Diagonal battens can also be 

used, but they do not remove the need for counter battens.  

 

 

- 
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8.2 Objective 
 

The objective of the details included here is to provide a ready means of reconciling the 

sometimes-conflicting performance requirements for:  

 

1. The prevention of rain penetration;  

2. The restriction of unseen spread of flame through cavities;  

3. The limiting of flanking sound transmission across party wall and floor junctions. 

 

Other performance requirements, such as airtightness, have not been addressed to the 

same extent as they are already covered by recent industry guidance e.g. the Association 

for Environment Conscious Building’s CarbonLite programme [4], which gives 

construction details based on the German PassivHaus [5] (Passive House) approach. 

 

8.3 Construction details 
 

Three types of facade junction are illustrated: horizontal, vertical and miscellaneous 

(Figure 8.5). There are nine groups of drawings as listed in Table 8.1.  

 

It is rare that a new construction detail is entirely without influences or precedent. So 

how original are the details given below? They certainly build upon and refine cladding 

details published by NBRI [6] and TRADA Technology [7] [8]. But they also go 

beyond these sources in several ways. Most importantly: 

 

• They integrate timber cladding design with design of the underlying wall junction, 

this had not been attempted in the UK; 

 

• They apply acoustic separation techniques [9] to timber cladding for the first time;  

 

• They resolve, for the first time, the building regulation conflict between durability, 

fire safety and acoustics; 

 

• They provide different cavity barrier detailing depending upon if the rear face of the 

cladding is smooth or uneven. 
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In Figure 8.1 the sheathing is lined 

externally with compressible insulation 

supported on 50 mm square battens. 

These also carry the cladding support 

battens; no vertical counter-battens are 

used. This detail is adequate for a dry 

site but requires counter-battens to allow 

additional ventilation in wet locations. 

 

Figure 8.2 shows reverse wall 

construction where the sheathing is 

positioned on the inner face of the timber 

frame. The outer face of the frame is 

lined with rigid insulation. The cladding 

battens are fixed through this to the 

vertical studs. A breather membrane may 

not be needed if the insulation is 

moisture resistant (e.g. latex 

impregnated fibre board).  

 

In Figure 8.3 the cladding battens are 

fixed to I joists used to create a deep 

wall section with minimal thermal 

bridging. The Larsen truss uses a similar, 

but non-proprietary arrangement, where 

studs are built of vertical battens with 

plywood gussets.  

 

In Figure 8.4 the thermal performance of 

a masonry wall has been upgraded using 

compressible external insulation 

protected by a timber rainscreen. This 

approach is valuable on exposed sites or 

where it is uneconomical to refurbish the 

masonry to make it weather proof.  

 

 

Figure 8.1  

Compressible insulation outside the sheathing 

Figure 8.2 Reverse  

wall with rigid insulation behind the cavity  

Figure 8.3  

Wall frame made from I joists  

Figure 8.4 Timber  

-clad external insulation on a masonry wall 
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Figure 8.5 The nine groups of construction details 

    

Table 8.1 Descriptions of the nine groups of construction details   

Type of junction Description of group 

1) Eaves and parapets 

2) Floors (separating or intermediate) 

Horizontal  

3) Ground level, flat roofs or other near horizontal surfaces 

4) External corner 

5) Internal corner (intermediate or separating) 

Vertical  

6) In-line junctions (intermediate or separating) 

7) Windows and doors 

8) Junctions between cladding boards 

Miscellaneous  

9) Junctions with other cladding materials 

4 6 

1 

2 

3 9 8 7 

5 
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Group 1. Eaves and parapets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normal or deep eaves (Figure 8.6) shelter the top of the wall, although to protect the 

full height they would need to extend by a quarter of the height of the facade, a 

solution that is usually impractical. If the cladding is left uncoated, deep eaves can lead 

to uneven weathering of the wall below. If this is a concern the eaves depth can be 

reduced, although this will tend to increase the moisture load on the facade. 

Alternatively the cladding can be carried above roof height as a parapet (Figure 8.7). 

This has the benefit of minimising the risk of an external fire (such as arson) spreading 

to the roof. The detail does, however, tend to increase wind-driven rain concentration 

at the top of the facade.  

 

The wall cavity is normally ventilated (i.e. open at both base and top to allow through 

ventilation) and so a 6 mm gap should be provided at the top of cavity. The top 

opening should have an intumescent cavity barrier to prevent fire spread; these are 

shown in red. The intumescent barrier should be fixed back to solid timber (e.g. a stud 

or dwang) in accordance with manufacturer’s instructions. These figures show 

horizontal cladding. Vertical cladding has similar junction details at the eaves although 

the cavity depth will be greater. 

 
 

Figure 8.7 Junction with a parapet Figure 8.6 Junction with normal to 

deep eaves 

Horizontal cavity barrier formed using an 

intiumescent strip fixed back to solid construction 
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Group 2. Separating or intermediate floor 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8 illustrates how the cladding support assembly (in this case vertical timber 

battens) and a horizontal cavity barrier at a separating floor can be provided whilst 

minimising flanking sound transmission through the external wall and maintaining 

through-ventilation of the cavity.  

 

For structural reasons, there is no alternative but to have direct physical contact 

between the load-bearing elements in the wall; vertical flanking sound transmission 

can, therefore, only be controlled by isolating the floor and ceiling using acoustic 

battens, quilts or similar products. Vertical cladding battens are thus able to span 

across the separating floor without unduly compromising the flanking sound 

performance of the junction. If a vertical timber batten also has to function as a cavity 

barrier, it may need to be packed out at the floor junction to ensure that the cavity is 

fully closed; the batten itself should be at least 38 mm thick. Where a horizontal cavity 

barrier is required, an intumescent strip can be used. Intermediate floor junctions are 

much simpler to detail as there are fewer flanking sound issues.  

Acoustic battens, quilts and other 

products are used to minimise 

flanking sound transmission 

between floors. 

 

Vertical timber battens span across 

the floor junction. If the vertical 

batten is also a cavity barrier, it 

may need rear packing (e.g. with 

OSB) to ensure the cavity is 

closed. 

 

Horizontal cavity barrier formed 

using an intumescent strip.  

 

Note: thermal insulation between 

joist ends near the ring beam has 

been omitted for clarity. 

 

Figure 8.8 Junction with a separating floor  
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Group 3. Ground level or abutments with roofs and decks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where timber cladding is brought near to a horizontal surface such as the ground or a 

roof abutment there is a risk of localised wetting of the facade due to splashing. This 

can cause uneven weathering or even fungal decay. The height of the splash zone is up 

to 200 mm. The cladding needs to be kept above this zone and so a separation of at 

least 200 mm is needed (Figure 8.9). If this is not possible, then the horizontal surface 

needs to be covered with free draining and uneven materials (e.g. gravel) or be 

provided with a gutter (Figure 8.10). If the gutter is at ground level or alongside 

decking it will need covering with a grille conforming to the A15 or B 125 load classes 

in BS EN 1433 [10]. In addition, the grille elements must be as narrow as possible to 

minimise splashing; this will generally require vertical strips formed of galvanised 

steel or plastic. Cavity barriers are not required at ground level but may be necessary in 

other locations, e.g. where a balcony abuts the facade. If vermin enter the cavity, they 

can damage the breather membrane and also gain access into the building. A metal 

vermin mesh is thus needed at all openings into the cavity near the base of the facade. 

The maximum mesh size is 4 mm.  

 

The base of the cladding is normally 

kept at least 200 mm above ground 

level (or other horizontal surface) in 

order to avoid splashing onto the wall. 

If a 200 mm gap cannot be provided 

the splash risk can be avoided using a 

gutter and grille against the wall. 

Figure 8.9 Normal ground level junction Figure 8.10 Junction without splashzone 

≥ 200 mm 



 269 

Group 4. External corners 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are numerous ways of detailing external corners. Figures 8.11 and 8.12 show 

two examples. The following points should always be addressed: Vertical cavity 

barriers are needed at all external corners. They have a duel function of limiting fire 

spread and preventing horizontal air movement within the cavity. Vertical cavity 

barriers are formed from softwood battens at least 38 mm thick. Cavity barriers must 

fully close the cavity. This is straightforward where the rear face of the cladding is flat 

(Figure 8.11) but is more complex where the rear face is uneven. In some cases the 

cavity barrier batten will need to be continued through to the face of the cladding with 

the ends of the cladding boards butted tightly against it (Figure 8.18, for example).  

The cladding boards may need to be predrilled to comply with the edge and end 

distances for fixings, alternatively the batten width or position could be changed.   

 

Wherever horizontal boards meet another surface near an external corner a 6 mm gap 

should be provided to enable the endgrain to dry quickly after rain (Figure 8.11). 

 

 

 

 

 

Figure 8.11 External corner with 

horizontal boards 

 

Figure 8.12. External corner with 

vertical boards 

6 mm gaps 
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Group 5. Internal corners 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal corners often involve a separating wall junction (i.e. a staggered wall). Most 

UK staggered wall details for timber frame employ a 89 mm deep frame. This is 

simple to detail since both the external and separating walls are the same thickness 

(Figure 8.13). But where the external wall becomes 140 mm thick, difficulties arise at 

internal corners because the separating wall frames usually stay at 89 mm thereby 

creating a step in one of the internal walls (Figure 8.14). To solve this, a new staggered 

wall detail was developed for this thesis to ensure fire and acoustic separation whilst 

avoiding the need for a stepped internal wall (Figure 8.15). The next page gives 

examples of how the detail works in practice. This is only an interim solution as it is 

likely to be superseded by existing Scandinavian details (Figure 8.16) as UK thermal 

efficacy requirements further increase.  

140 mm deep 
external walls 

89 mm deep 
separating walls 

89 mm deep 
external walls 

Timber 
cladding 

89 mm deep 
separating walls 

Timber 
cladding 

A 51 mm step in one of the internal 
walls  

89 mm deep 
separating walls 

140 mm deep 
external walls 

Timber 
cladding 

89 mm deep 
separating walls 

External walls 
with 230 mm 
deep frames 
 

Timber 
cladding 

Separating 
walls carried 
through to act 
as an external  
wall 

Figure 8.13 Plan view of a  

staggered wall with all frames 

the same depth 

Figure 8.14 Plan view of staggered wall with 

a stepped internal wall due to the separating 

and external walls being different depths  

89 mm deep 
separating walls 

Figure 8.15 Plan view of a  

staggered wall avoiding the stepped 

internal wall Figure 8.16 Plan view of the kind of 

staggered wall arrangement that becomes 

feasible as wall thicknesses increase further  
Acoustic batt cavity barrier 

Timber cavity barrier 
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Three separate vertical cavity barriers are needed at this junction.  

 

The two timber barriers should block the cavity irrespective of the type of cladding 

profile. This requires different construction details depending upon whether the rear 

face of the cladding is flat (e.g. tongued and grooved boards) or irregular (e.g. board 

on board). The barriers are positioned so that they do not come into direct contact with 

each other since that could increase flanking sound transmission.  

 

The compressible barrier also needs to fully block the cavity. The key consideration is 

that the sheet material lining the separating wall junction (e.g. OSB) must not continue 

across the vertical gap separating the frames. 

Figure 8.17 (top left) Horizontal cladding 

with a flat rear face 

 

Figure 8.18 (top right) Horizontal 

cladding with an uneven rear face 

 

Figure 8.19 (left) Vertical cladding with 

an uneven rear face 
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This is generally the most complex junction to detail and construct. All of the 

principles in Groups 2 and 5 apply. In addition, a short intumescent strip is needed to 

close off the void between the three vertical cavity barriers. 

Non-combustible  

and compressible 

material (e.g. 

mineral wool) used 

as a vertical cavity 

barrier between the 

separating walls. 

If a sheathing board is used to line 

either side of the separating wall 

cavity, this must not continue across 

the vertical gap at the corner. 

Two vertical timber cavity 

barriers not in contact with 

each other. 

Short 

intumescent strip 

needed to close 

the vertical void 

between the 

three cavity 

barriers. 

Figure 8.20 Junction between a staggered wall and separating floor 

Intumescent strip 

cavity barrier sized 

to suit cavity depth 

and installed to 

manufacturer’s 

guidance, timber 

or proprietary  

packers may be 

needed with deep 

cavities. 
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 Group 6. In-line junction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detailing these junctions can cause confusion because the fire regulations are often 

interpreted incorrectly to mean that the cladding needs to be non-combustible for 1 m 

on each side of the separating wall. In reality, the 1 m rule only applies where two 

buildings face each other across their mutual boundary. The rule is designed to limit 

fire spread by heat radiation between adjacent but non-adjoining buildings. This 

mechanism of fire spread does not occur where the buildings are attached and in the 

same plane (e.g. a terrace). As with staggered wall junctions, there are two vertical 

timber cavity barriers behind the cladding, with a third in mineral wool between the 

separating walls. The design of the timber cavity barriers varies according to the 

cladding profile and direction.  

 

 

 

Figure 8.21 (top left) In-line junction with 

horizontal boards having a flat rear face. 

 

Figure 8.22 (top right) In-line junction 

with horizontal shiplap cladding. The 

boards are butted against the timber 

cavity barriers.  

 

Figure 8.23 (left)In-line junction finished 

with a vertical board on board cladding. 



 274 

Group 7. Windows and doors 

 

Although windows are often tested for weather tightness and other requirements, this 

only demonstrates the performance of the window itself. The joint between the 

window and wall is equally important and needs to be both weather tight and fire 

resistant. In terms of weather tightness, window installations tend to be a weak link in 

the facade. This is usually because rainscreen principles have not been followed.  

Wherever possible there should be discrete rain and wind-proofing layers separated by 

a drained and ventilated cavity. Most weather tightness problems occur at the junction 

between the base of the window and the wall: a properly designed and installed 

flashing is therefore essential at this point (Figure 8.24). Planted wooden sill 

extensions give poor performance. The window should be installed so that the upper 

edge of the flashing is flush with, or slightly outside, the wall’s air seal layer [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To achieve fire resistance, window openings in timber-clad walls have to be have 

cavity barriers at the head, jambs and sill. Those on the jambs and sill are normally 

formed from a timber batten at least 38 mm thick, whilst the barrier at the head is an 

intumescent strip. Because there is no ventilation gap under the sill, the cladding 

support battens beneath the window should allow ventilation to each side. The window 

details below are unquestionably compromises since they prioritise compliance with 

fire safety requirements at the expense of drainage and ventilation. If this is a concern, 

the timber cavity barrier at the jambs could be replaced with intumescent strips 

although this would incur additional cost.  

Figure 8.24 Sill detail showing metal sub-sill flashing 

Window frame positioned so that the slot under 

the sill (to take the flashing upstand) is at or just 

in front of the breather membrane. 

Metal sub-sill with 20 mm 

high upstanding water bars 

at ends and rear. The 

corners are welded. 

Timber cavity barriers alongside and below 

the window opening (the window head has 

an intumescent strip) 
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Figure 8.25 Horizontal cladding at window showing the support assembly 

and final appearance 

Intumescent strip sized to suit cavity depth. It allows cavity 

ventilation except during fires. 

Timber 

moulding 

supporting  

stainless or 

galvanised 

steel flashing 

at the 

window head 

and sill. 

 

Ensure side ventilation of cavity under the window, this may be behind the 

uneven rear face of the cladding (as in this drawing) or if this is not possible the 

vertical batten may need to have gaps.  

Timber 

battens 

form 

cavity 

barriers at 

the jamb 
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Figure 8.26 Elevation and section of horizontal cladding at a window 

Head 

Sill 

Jamb 

Intumescent strip cavity barrier sized to suit cavity depth and installed to 

manufacturer’s guidance, timber or proprietary packers may be needed 

with deep cavities. 

Metal 

flashing 

at head 

and sill 

Vertical coverstrip to 

shelter the butt joint 

between the cladding 

and cavity barrier 

Ensure 10 mm 

clearance 

between base of 

cladding and 

flashing 

Metal flashings at head 

and sill to have 20 mm 

vertical upstands at 

sides and rear to act as 

water bars 

Insect mesh 

advisable 

behind opening 
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Figure 8.27 Vertical cladding at a window showing the cladding support assembly  

Intumescent strip sized to suit 

cavity depth. It allows cavity 

ventilation except during fires. 

Timber moulding 

supporting stainless or 

galvanised steel 

flashing at the window 

head and sill. 

 
Timber battens form 

cavity barriers at the 

jamb and sill. 

Ensure side ventilation of cavity under the window, between the 

battens and counter-battens  
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Figure 8.28 Elevation and section of vertical cladding at a window  

Metal flashings at 

head and sill to 

have 20 mm 

vertical ‘waterbars’ 

at sides and rear 

Metal 

flashing 

at head 

and sill 

Insect mesh advisable 

behind opening 
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Group 8. Junctions between boards 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Junctions between boards generally involve either staggering the joints or aligning 

them all. With slight adjustments these options can be used with both horizontal and 

vertical boards. To allow for fixing, the length of boards should coincide with the 

batten positions. To comply with the end and edge distance requirements in Eurocode 

5, staggered joints usually require an additional short batten to be fixed alongside the 

main batten to accommodate fixings for the second board (Figure 8.29). If vertical 

boards are joined in this way, their ends should be sloped outwards to allow the 

endgrain to drain. It is usually more convenient to stop vertical boards at storey height 

where the line of the facade can be interrupted by a horizontal metal flashing sloped to 

the exterior (Figure 8.30). The cavity above and below the flashing will need to be 

protected by intumescent strips if the floor junction is a separating floor. 

Figure 8.29 End junction between 

horizontal boards 

A short strip of batten used to 

accommodate fixings where two 

boards butt together 

An intumescent strip 

cavity barrier may be 

needed at this level. 

Ensure 10 mm 

clearance between 

base of cladding 

and flashing 

A ventilation gap is required at the top of 

all cavities (in this case it is provided 

behind the counter board). The gap may 

require an intumescent strip cavity barrier. 

Figure 8.30 End junction between 

vertical boards at an intermediate floor 
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In most cases the combination of a 2 mm gap and 10 mm overlap is sufficient to 

accommodate movement between boards. Where there is any doubt, however, the 

movements involved in a specific timber species, moisture content and board width 

combination are determined from Equations 5.14 and 5.15 and the details adjusted 

accordingly. Different issues apply depending on whether the boards are fixed once or 

twice across their width. Single fixings minimise the risk of boards splitting but do not 

give sufficient support for wide boards. With single fixings (Figure 8.31), the board 

movement takes place either side of the fixing and can be accommodated at the 

junction between boards as the sum of the movements occurring at A1 + A2. The fixing 

is positioned near to the joint but taking account of the minimum edge and end 

distances in Table 5.31. With double fixings (Figure 8.32) the movement takes place 

each side of the centre line of the fixings as the sum of movements occurring at B1 + 

B1. The minimum gap between boards should make allowance for this. Change at the 

fixings is determined as the sum of movements occurring at C1 + C2. Fixings are 

located at the quarter points of the front face of the board. To minimise the risk of 

boards splitting as they dry the fixings may need to be installed in predrilled, slightly 

oversized, holes; this is mainly a concern with dense timbers, boards over 150 mm 

wide, or species known for large movement. Typical board profiles for closed jointed 

cladding are given in Figures 8.33 and 8.34. 

Figure 8.31 (above) Detailing board installation 

to accommodate movement with single fixings 

 

Figure 8.32 (right) Detailing board installation 

to accommodate movement with double fixings 

Minimum  2 mm 
gap and 10 mm 
overlap 

A1 

A2 

B1 

B2 

C1 

C2 
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. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.33 Typical profiles and fixings for horizontal closed jointed cladding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.34 Typical profiles and  

fixings for vertical closed jointed  

cladding 

 

To minimise the risk of splitting, boards 

should be installed so that the side nearest 

the pith faces outwards on the wall. 

Tongued and grooved boards should have 

a maximum width of 125 mm with small 

movement class timber; less if a medium 

movement class species is used. Tongue 

length should be at least 9 mm. Avoid 

secret fixing near the tongue as this tends 

to split the boards and may force them 

together thereby closing up expansion 

gaps. Shiplap joints should typically have 

a 15 mm joint overlap. If the profile is 

tapered the minimum thickness should be 

9 mm (to comply with guidance 

supporting the fire regulations in England 

and Wales). Board-on-board/batten type 

joints should typically have a 20 mm 

overlap. Fixings should be sized and 

positioned in accordance with the 

guidance in Chapter 5. 
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Group 9. Junctions between heavy and lightweight cladding  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Any lightweight cladding, such as timber, that butts onto or overhangs heavyweight 

cladding needs to allow for differential movement. The cavity behind heavyweight 

cladding is normally vented whilst the cavity behind timber cladding is ventilated. A 

vented cavity needs to be closed at the top using a cavity barrier, in this case a timber 

batten at least 38 mm deep. Horizontal cavity barriers in ventilated cavities are formed 

by an intumescent strip. Vertical cavity barriers can be formed from timber battens at 

least 38 mm thick. Horizontal junctions are of two types: either the lightweight 

cladding is flashed out to the heavyweight cladding (Figure 8.37) or the upper wall 

panel is cantilevered to allow the lightweight cladding to be in the same plane as the 

wall below (Figure 8.36). In both cases the gap between the two types of cladding 

needs to be sized according to the predicted movement of the heavyweight cladding. 

The cantilevered floor in Figure 8.36 must be designed by a structural engineer. 

Vertical junctions (Figure 8.35) are generally easier to build. The main issue being that 

the battens behind vertical lightweight cladding may need to be thicker than normal to 

bring the cavity either side of the junction to the same depth. 

Figure 8.35 (top left) Horizontal flashed junction 

between timber and brick cladding 

Figure 8.36 (top right) Intermediate floor junction 

where the upper wall panel has been cantilevered to 

allow the timber cladding to oversail the brickwork. 

Figure 8.37 (left) Typical vertical junction between 

lightweight and heavyweight cladding. 

Gaps for differential 

movement 
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8.4 Summary 
 
This chapter has developed construction details for timber cladding on low- and 

medium-rise buildings in the UK. Each detail is designed to be compliant with the 

performance criteria given in the guidance documents supporting the UK’s building 

regulations as at February 2011. No details are provided for open-jointed cladding 

because these types of facades are incompatible with the criteria for cavity barriers in 

the current guidance to the UK’s building regulations.  

 

The objective of the details included here is to provide a ready means of reconciling 

the sometimes-conflicting performance requirements for: prevention of rain 

penetration, restriction of unseen spread of flame through cavities and limiting 

flanking sound transmission across party wall and floor junctions. Three types of 

facade junction were illustrated: horizontal, vertical and miscellaneous. 
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Chapter 9 

Conclusions 

 

 

This thesis has attempted to go beyond the simple and oft repeated statements about 

how timber facades work, and consider instead what is really going on and how this can 

better inform design decision making. In doing so it has challenged some of the 

prevailing assumptions about moisture, its effects, and how they are best controlled. It 

has also reviewed how moisture issues affect, and are affected by, the need to ensure 

that fire safety and acoustics are fully addressed.   

 

 

9.1 Key findings 

 

The key findings are: 

 

1.  There is more – much more – timber cladding being used in the UK than is 

commonly acknowledged.  

 

2. Timber cladding offers a unique combination of performance benefits. These are 

relevant to cladding on both a timber structural frame (e.g. timber frame) and to 

massive walls (e.g. masonry or log construction). 

 

3. Timber is an organic and biogenic material. It, therefore, has three key 

characteristics as a facade material: it isnon-uniform, combustible and has an 
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intimate relationship with moisture. The performance-based design of timber 

facades is largely about the management of these characteristics. 

 

4. Although performance-based design aims to be solution independent, the designer’s 

background always conditions its application. Some designers are only familiar with 

the performance issues relevant to inorganic and non-biogenic materials such as 

steel or masonry. They may therefore miss, or misunderstand, issues that only occur 

with organic-biogenic materials. Accordingly the discipline of facade engineering 

will need to encompass a wider range of performance issues if it is to design 

successfully with timber. 

 

5. Conventional timber cladding design also has its gaps. Much existing guidance 

stresses, quite correctly, the importance of resistance to fungal decay but gives less 

attention to other degradation mechanisms, particularly movement and weathering.  

 

6. Similarly, structural robustness receives insufficient attention. Although timber 

facades generally have enough strength and stiffness to withstand the wind loads to 

which they are exposed, this is not always the case. The guidance on this topic is 

limited. 

 

7. The exposure trial has developed a robust test panel design that is suitable for 

testing virtually all types of timber cladding. The associated analysis method readily 

estimates the moisture load effects of each factor and their interactions.   

 

8. The trial measured the moisture take-up and loss characteristics of UK grown Sitka 

spruce and the extent to which the Scandinavian practice of using such timber 

without preservative treatment was transferable to the UK. It found that the moisture 

conditions were such that preservative treatment was essential.  

 

9. The trial also found that the knot characteristics of Sitka spruce falling boards are 

only suitable for cladding profiles that require minimal machining (e.g. vertical 

board on board or horizontal shiplap).  
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10. UK grown Sitka spruce is, therefore, only able to supply large volumes of external 

timber cladding providing the customer is prepared to accept preservative treatment 

and a limited choice of cladding profiles.  

 

11. It appears from the small supplementary exposure trial that it may be possible 

generalise the results to other timber species. If so the moisture content range 

experienced by most types of timber cladding is wider than often stated. It appears 

that the minimum moisture content of timber cladding is around 10% irrespective of 

the species involved. The maximum is more variable but in some cases tends to 

fluctuate around the fibre saturation point of the species concerned. Cladding with 

water traps will experience still higher maximum values.  

 

12. A preliminary model is proposed for predicting the moisture conditions in timber 

facades. 

 

13. Cladding support battens also tend to be relatively wet. This places them in 

structural service class 3, which means that they are wetter – and  therefore weaker 

– than is often assumed. 

 

14. The only timber cladding that appears to stay relatively dry in most site conditions is 

open jointed boards used in combination with a surface coating. Vertical closed 

jointed cladding also appears to have a relatively low moisture content on exposed 

sites. Surface coatings do not appear sufficient, by themselves, to ensure a low 

moisture content in the timber substrate, nor does uncoated open jointed cladding. 

 

15. These two board profiles – open joints and simple overlapping joints – are also 

significant for another reason, as they tend to have the worst performance in a fire. 

This is no surprise given that a high level of ventilation is a requirement for both 

rapid drying and rapid flame spread.  

 

16. The state-of-the-art review highlighted that the service life of even the most leach 

resistant flame retardants is unlikely to match that of the timber cladding. In extreme 

cases it is even possible to pass the relevant weathering test for flame retardants 

while offering only about four years’ maintenance free performance in the real 

world. This problem is concealed by flame retardant manufacturers – so much so 
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that neither cladding suppliers nor building regulators were aware of it. All current 

UK publications on timber cladding miss this problem as do the Building 

Regulations. As this changes, it is likely that timber cladding will be prohibited on 

public buildings, near boundaries and those parts of a facade over 18 m high. 

 

17. The guidance documents supporting the UK’s building regulations contain a conflict 

between three performance requirements affecting cavity barriers behind timber 

cladding.  The barriers need to be ventilated to promote evaporative drying yet they 

also need to block off air movement during a fire, and minimise the degree to which 

they span across separating wall junctions. These issues can be reconciled using 

careful detailing, possibly involving intumescent cavity barriers but no suitable 

construction details were available. Those that exist either ignore the conflict or 

propose solutions derived from masonry cladding that create water traps when used 

with timber. 

 

18. There is no standard fire test for cavity barriers. This leads to confusion and allows 

cavity barrier manufacturers to make unverifiable claims. Accordingly, the author 

participated in the development of a full-scale ad hoc test for cavity barriers behind 

timber cladding. For financial reasons only one test was carried out. Although not 

definitive the test results indicate that the cavity barrier details developed for this 

thesis are likely to meet UK regulatory criteria. 

 

19. Chapter 7 outlines all of the performance criteria and specifications that apply to 

timber facades in the UK and gives an improved decision sequence to guide timber 

cladding design. 

 

20. Probably the most significant output of this thesis is the suite of construction details 

for timber-clad facades, based on a combination of new experimental data and a 

fresh appraisal and synthesis of existing information. Although their performance 

cannot currently be verified, these details illustrate – for the first time – how the 

various requirements affecting timber facades could be reconciled so as to fulfil all 

relevant performance criteria in the UK.  
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9.2 Recommendations for future work 

 

Several topics merit further investigation: 

 

1. The most immediate gap is a UK code of practice for timber cladding. This thesis 

provides most of the research needed to draft such a document. 

 

2. Although the moisture load in Sitka spruce cladding has been quantified, more work 

is needed before such data can be used to estimate service life. The moisture load 

concept (i.e. the duration and intensity of wetting) appears to offer a means to do 

this providing the assessment is carried out for a decade or so and is combined with 

temperature and other meteorological data. 

 

3. The exposure trial needs to be repeated with other timber species to assess the extent 

to which the FSP-based model for moisture content estimation can be generalised. 

This requires a multi-site test involving timber species with a range of fibre 

saturation points.  

 

4. The long-term appearance of uncoated timber cladding remains unpredictable. A 

weathering model is therefore desirable although the likelihood of it succeeding is 

probably quite slim. 

 

5. Further guidance is needed on the structural robustness of timber cladding. The 

results should be presented in tabular form linked to a wind map, thereby allowing 

fastener length to be readily estimated, at least for low- and medium-rise buildings. 

 

6. The ad hoc fire test for cavity barriers needs to be standardised and repeated by 

other laboratories. Until this occurs, the fire performance of the type of timber 

facades being designed in the UK will remain unquantifiable. 

 

7. Independent test data are needed on the service life of flame retardants. Building 

regulators need to consider their implications for the fire safety of timber facades 

that will have a long (i.e. 50 year) service life, or which are over 18 m high.  
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8. Independent tests are needed of the effectiveness of impregnation with Type LR 

flame retardants as a form of wood modification against fungal decay. 

 

9. Many more construction details are needed. Further feedback is also required on 

those already produced. Much more training needs to be delivered on the detailing 

and installation of timber facades.  

 

A number of construction details could not be included in this thesis because the 

supporting evidence was not available, nor can some of the results yet be considered 

definitive. This is an inevitable limitation of an evidence-based approach. As 

Wittgenstein wrote, in the last line of the Tractatus [1]: Whereof one cannot speak, 

thereof one must be silent. 
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Appendix 1 

Publications 

 

The following conference proceedings and book were derived from this thesis. A set of 

these papers is bound in this appendix; the book is reduced to thumbnail format. Full 

permission from the relevant publisher or copyright holder has been obtained.  

 

1. Davies, I., Stupart, A. and Choo, B.S. (2004). Timber cladding on the coastal 

fringe of North-west Europe. In: Proc. 8th World Conf. on Timber Engng, Lahti, 

Finland. 14 – 17 June 2004. 

 

2. Davies, I. (2008). Evidence-based design of timber facades. In: Proc. 10th World 

Conf. on Timber Engng, Miyazaki, Japan. 2 – 5 June 2008. 

 

3. Davies, I. and Wood, J. (2010). Exterior timber cladding: design, installation 

and performance. Edinburgh: arcamedia, ISBN 978-1-904320-04-3. 

 

Two journal papers have been submitted. They are not included in this appendix as they 

are currently under review. 

 

Davies, I., Fairfield, C., Stupart, A. and Wilson, P. Moisture conditions in timber 

cladding: field trial data. (Under review by Proc. ICE, Construction Materials). 

 

Davies, I., Fairfield, C., Stupart, A. and Wood, J. External timber cladding: 

design and performance. (Under review by The Structural Engineer). 
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Appendix 2 

Defects 

 

This appendix is a catalogue of cladding defects. It illustrates the problems that 

typically occur and highlights the associated risks. 
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Figure A.2.1 Poor window installation. The lack of space below the boards ends will 

trap water, as will the mastic sealant. There is no water bar at the end of the metal sub-

sill flashing. 

 

 

 
 
 

 

Figure A.2.2 Poor window installation. The sub-sill is wooden with end joints that will 

trap water. Also note the use of lost head nails, these have little resistance to axial 

loads. 
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Figure A.2.3 Poor window installation. The flashing has been sealed with mastic 

thereby preventing cavity drainage and ventilation.  There is no water bar at the end of 

the flashing. The space under the flashing will allow insects into the cavity.  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2.4 These butt-jointed boards will create a water trap. Also note the use of 

lost head nails, these have little resistance to axial loads.  
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Figure A.2.5 These shot fired nails have been overdriven thereby creating water traps 

and splits. 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure A.2.6 This duct cover is only suitable for use with masonry cladding. It has 

created a water trap when used with timber.  
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Figure A.2.7 This access ramp to a door will cause a splashzone, as will the ground 

level being too close to the cladding, and the plastic meter box. 

 
 
 
 
 
 
 
 

Figure A.2.8 These boards have been nail gunned together, thereby creating a risk of 

splitting the boards by preventing them from moving. Also note poor insect mesh 

installation and the over-driven nails.  
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Figure A.2.9 No eaves ventilation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.2.10 Decking has been carried up to the wall, thereby creating a splashzone 

on the cladding (cladding timber unknown) 
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Figure A.2.11 These circular plastic vents are above and below a horizontal cavity 

barrier at a separating floor. This vent is designed for vented cavities and is inadequate 

for those that are ventilated. Also note water traps around the duct covers and flashing. 

Figure A.2.12 A plastic DPC has been positioned between the cladding and vertical 

cavity barrier. Although essential with masonry cladding this detail is a potential water 

trap if used behind timber. Timber: preservative treated western red cedar. 
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Figure A.2.13 Unsuitable fixings – the short boards should have been predrilled, while 

the vertical board has been fixed with flooring sprigs that offer little withdrawal 

resistance. Also note the numerous butt joints that will trap water. 

 
 

Figure A.2.14 The light coloured areas are sapwood, this should have been graded out. 

Also note the use of lost head nails. 
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Figure A.2.15 These boards have been butted against a flashing thereby creating a 

water-trap as well as blocking off cavity ventilation. 

 
 
 
 
 
 
 
 

Figure A.2.16 This junction between heavyweight and lightweight cladding does not 

make adequate provision for differential movement. Also the use of mastic at the board 

ends will trap water.  
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Figure A.2.17 These exposed structural timbers are butted against the cladding with a 

risk of water entrapment. Also the structural timber is local Douglas fir which offers 

little resistance against fungal decay.  

 
 
 
 
 
 
 

Figure A.2.18 This pattern has been routed into the timber using a simple rectangular 

cutter profile. Every routed line has horizontal edges that will trap water. 
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Appendix 3 

Data 

 

The enclosed CD-ROM contains three folders; their contents are as follows: 

 

Exposure site data: has two folders each with eight files giving data and calibrations: 

 

Inverness Spean Bridge 

SHCF  EHCF 

SHCN  EHCN 

SHOF  EHOF 

SHON  EHON 

SVCF  EVCF 

SVCN  EVCN 

SVOF  EVOF 

SVON  EVON 

 

Weather: has two files giving the weather data from the nearest Met. Office sites  

 

Analysis: has three files. Two have the calibrated data with gaps in-filled wherever 

possible using data interpolation. The third is the analysis with seven worksheets 

containing: 

 

Full data  All data after calibration and interpolation  

Summer 06 (Yates) Analysis of sample data using the Yates algorithm 

Winter 06-07(Yates) Analysis of sample data using the Yates algorithm 

FFT winter 06-07 Fast Fourier Transform of sample data 

FFT summer 07 Fast Fourier Transform of sample data 

Chi sq   Chi squared test on the descriptive statistics 

Prediction  Combined results of the main and mini exposure trial 


