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Abstract

Infrared pedestrian detection systems struggle with real-time processing performance.

Known solutions are limited to either low resolution systems with basic functionality

running at full frame rate, or software based techniques featuring higher detection rates

with full set of features, however running only in off-line mode for statistical analysis.

Here, a comprehensive solution for real-time pedestrian detection is described.

This research project includes investigation of possible solutions, design, development

and implementation of a pedestrian detection system, processing data from infrared

video source in real-time. Design requirements include processing at full frame rate as

well as low memory and system resource consumption. The memory utilization is one

of the major concerns since high demand for memory resources is a critical aspect in

most image processing applications.

For the purpose of this task, a number of general purpose image processing techniques

were revised, taking into consideration the suitability for infrared pedestrian detection.

These tasks include background separation, acquisition noise removal and object de-

tection through connected component labelling. They are discussed and addressed in

individual chapters.

Various techniques for background segmentation are discussed. A chronological review

of popular techniques is provided. The proposed architecture for background subtrac-

tion is based on selective running average for adaptive background model, supported by

adaptive thresholding based on histogram calculation. In order to remove acquisition

noise, a dual decomposed architecture was introduced, based on mathematical morphol-

ogy and basic set theory definitions. It includes both erosion and dilation performed

in a pipeline. For the purpose of object detection and feature extraction, a connected

component labelling technique was employed, based on a single pass approach to fulfil

real-time processing requirement.

The system was implemented, verified and tested on XUP FPGA Development Board

with Virtex-II Pro XC2VP30 chip from Xilinx. Details and limitation of the specific

implementation are discussed. An overview of experimental pedestrian detection results

is provided. The thesis concludes with system analysis and suggestions for future work.
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CHAPTER 1

Introduction

Pedestrian detection is an active research area. There is a number of publications related

to algorithmic development of computer vision application. They report increasing seg-

mentation rates as well as improvements in classification and tracking. However, since

they are mostly oriented on algorithmic development, they are targeted for implemen-

tation in software or simulation environments running on General Purpose Processing

(GPP) platforms. This approach reduces the development time as well as provides ex-

tensive simulation capabilities, however places heavy demand on computer power and

memory resources. Although the amount of computing power provided by GPP allows

for basic real-time video processing (early days of 2008), due to high bandwidth imposed

by video source and limited interfacing capabilities of ADC boards, video analysis is

limited to post-processing in off-line mode. This is caused by the lack of designated

video bus between ADC and PC.

Due to prohibitive costs, the use of infrared (IR) cameras, featuring wavelengths: 8-

14µm, was limited mainly to military purposes. Recently, they have become viable for

16
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commercial use allowing the detection and tracking of pedestrians to offer an alternative

technical approach to the one based on traditional CCD or CMOS sensors. Thanks to

the thermal detection capability, the video acquisition is based on emitted thermal ra-

diation rather than reflected as in visible images. Since the amount of emitted radiation

is highly related to the temperature, detection of pedestrians, often featuring higher

temperature than the surrounding background, will benefit from this technology. More-

over, although the thermal background is not constant, it varies gradually compared to

sudden changes caused by ambient lighting in visible detection. On the other hand, due

to different clothing styles, detected objects tend to form various shapes, they also may

have separated body parts caused by occlusions. Moreover, thermal camera provides

limited information about the spatial content of the scene, hence reduced number of

image processing techniques can be applied.

1.1 Motivation

Pedestrian detection has a number of applications in security, safety as well as in retail

and transportation sectors. Applications vary from post processing analysis of pedes-

trian movement to accurately studying shop footfall, to real-time surveillance applica-

tions, aimed at determination of suspicious behaviour or accidents. When considering

retail applications, the high performance is not as relevant. They are mostly used for

studying customers’ moving patterns to optimize the flow in order to optimize the layout

of shop isles or to appropriately position products with highest profit margin. However,

real-time performance and good accuracy are critical for security systems to guaran-

tee prompt reaction to accidents or crimes. Such systems operate on-line to detect the

presence, unexpected behaviour or measure activity of pedestrians. In critical cases such

applications can safeguard human beings. This is a rapidly growing market with a high

potential for improvements.

With increasing popularity of Closed Circuit Television (CCTV) cameras, there is

a strong demand for supervised detection or, ideally, fully automated systems. With

current technology, a single human operator of CCTV control panel is capable of mon-

itoring multiple cameras. However, an increasing number of cameras makes the task

more difficult and prone to detection errors, hence the need for process automation.

The automation of pedestrian detection is relevant to several areas in security or safety.

It would allow reduce the cost of running system by removing the need for human op-

erator, however, the main benefit is elimination of the human-factor causing detection

errors due to long shifts or late working hours.

Since pedestrian detection systems become more important in critical applications

such as surveillance or people counters employed for evacuation purposes in emergency
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situations, there is a need for high accuracy of the detection. Vision systems based on

traditional cameras employ higher resolution devices. This involves problems related

to high bandwidth imposed by video source. For the purpose of pedestrian detection

and tracking, a different technical approach such as infrared cameras with wavelengths

8-14µm can be considered.

Segmentation and classification techniques employed within the area of pedestrian de-

tection feature good detection rates, however, due to high complexity they put strong

demand on computing power and memory resources. In order to speed up develop-

ment process, tests and verification, they are often implemented in software, therefore

real-time processing from camera streaming live is difficult to achieve on commercially

available GPP platforms. Hence, an implementation on application specific device such

as Field-Programmable Gate Array (FPGA) shall be considered. This requires opti-

mization of known techniques for pedestrian detection in order to allow implementation

in hardware. Moreover, due to omnipresent miniaturization requirement, such imple-

mentation shall use limited amount of system resources and memory to keep the package

in small size, hence further customization is required.

1.2 Research Objective

The objective of the research presented in this thesis is to develop a self-contained

system capable of real-time (≥ 25fps) pedestrian detection from infrared video stream.

This involves an investigation into segmentation and classification techniques suitable

for such implementation. Due to limitations imposed by GPP platforms, the system

shall be implemented in hardware using a FPGA device. The implementation shall be

small enough to fit a single device with limited memory resources. The architecture

developed for this task shall be flexible and prone to further expansion. A modular

design approach shall be considered to allow individual processing modules to be used

as hardware accelerator within other processing systems.

In particular, this research explores the following areas:

- review of popular algorithms for pedestrian detection,

- Infrared camera utilization to gain detection rates and support light independent

environmental scenarios,

- investigation into techniques suitable for hardware implementation,

- development of custom solutions to support real-time detection rates,

- development, test and verification of the digital design architecture for the purpose

of self-contained IR pedestrian detection system for real-time video processing.
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1.3 Contribution to Knowledge

The main contribution is the digital architecture designed, developed and implemented

for IR pedestrian detection system, capable of processing video streams in real-time. As

well as the architecture, there is the analysis and evaluation of the algorithms and design

decisions that support and justify the digital design. Although the system can be used for

surveillance applications as an off-the-shelf solution, an emphasis was placed on further

expansion, for instance to support tracking applications as a hardware accelerator. The

system was designed in a modular approach where individual modules act as hardware

accelerators for particular processing tasks. They were developed based on available

solutions reported in the literature. For implementation purposes, they are enhanced

by custom solutions allowing the real-time performance of the entire system.

1.4 Outline of the Thesis

In addition to this introduction, the remainder of this thesis is split amongst six chap-

ters, organized as follows:

Chapter 2: This chapter gives an introduction into the field of Infrared Radiation

and Image Processing techniques used for the purpose of this research. An overview

of technology employed for the task of system implementation is also provided.

Such introduction will be given in the following order:

1. Infrared Detectors

2. Digital Image Processing

3. Hardware Development and Implementation

4. Pedestrian Recognition

The theoretical background into the area of IR radiation is given including the def-

inition of IR radiation followed by brief discussion on thermal sensors. An overview of

thermal cameras is provided together with popular applications for such devices.

The second section gives an introduction into common digital image processing con-

cepts, further referenced in this thesis.

This is followed by an overview of technology employed for the purpose of the final

implementation. A description of the design flow is also included.

The last section of this chapter gives a general overview of the pedestrian detection

processing flow. A typical data flow is included to introduce the reader to terminology

and processing steps, further described in individual chapters.
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This chapter does not provide a coherent literature-review for the entire research

project. Instead, the literature-review was split and included within individual chapters.

Chapter 3: This chapter provides an introduction and detailed analysis of popular

Background Segmentation techniques. It is supported by an extensive literature-

review into the area, followed by a summary and discussion on techniques employed for

this project. The second part of the chapter gives an overview of the custom algorithm.

This is followed by a description of the architecture developed for the purpose of back-

ground segmentation.

Chapter 4: An introduction into Morphological Noise Removal is provided in

this chapter. The literature-review includes set theory concepts and mathematical mor-

phology definitions, further used in the chapter when formulating the algorithm. The

implementation details are provided following an overview of popular techniques within

this area. The chapter is concluded with a discussion on execution time and memory

requirement imposed by the architecture.

Chapter 5: This chapter gives an extensive analysis on Connected Component

Labelling algorithms, commonly used in modern vision systems. A detailed discussion

on three chosen algorithms is provided to investigate the one suitable for this particular

application. The second part of the chapter gives details on the architecture developed

for this task together with discussion on resource utilization and the overall performance.

Chapter 6: In this chapter the System Integration is discussed. The top-level ar-

chitecture for the entire system is provided. An overview of system components used

for tests and verification is given. A brief description of the video acquisition module

implementation is also provided together with data handling tailored for the purpose of

this project. The data flow is described in detail pointing modules on the critical path.

An introduction into tracking as a natural extension to this project is also provided. The

chapter concludes with a summary on synthesis and resource utilization. Experimental

detection results are also discussed. This is followed by performance comparison and

suggestions for future work.

Chapter 7: This chapter provides a critical Review of the Research. It provides

final conclusions and suggestions for future work.
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Image Processing for Infrared Pedestrian Detection

Infrared pedestrian detection is an active research area with a long research history at

Edinburgh Napier University. Researchers from both Department of Engineering and

the School of Computing were investigating efficient techniques for pedestrian detection

and tracking using IR sensors. Due to a number of limitations imposed by available

computing power, such processing was mostly limited to basic pyroelectric detectors

or low resolution IR cameras. This thesis focuses on pedestrian detection using higher

resolution cameras.

In this chapter an introduction into the field of infrared radiation and image process-

ing techniques as well as technology used for this task will be provided. Such introduc-

tion will be given in the following order:

1. Infrared Detectors

2. Digital Image Processing

3. Hardware Development and Implementation

4. Pedestrian Recognition

21
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Figure 2.1: The electromagnetic spectrum characterised by wavelength λ and frequency ν [3].

2.1 Infrared Detectors

In this subsection a brief overview of infrared radiation and its applications will be

provided. The main purpose is to introduce the reader to IR radiation and its capabilities

for thermal detection.

2.1.1 Infrared Radiation

”... There are rays coming from the sun... invested with a high power of

heating bodies, but with none of illuminating objects... . The maximum of

the heating power is vested among the invisible rays... . It may be pardonable

if I digress for a moment and remark that the foregoing researches ought to

lead us on to others...” [1].

Sir William Herschel.

These are the words of Sir William Herschel, Royal Astronomer to King George II of

England, who was the first to reveal the existence of invisible partial radiation which

nowadays is referred to as infrared portion of the spectrum. He was the first researcher

who in 1800 found that there is a part of radiation which brings heat but is invisible.

In 1801 he referred to it in two papers but did not work on his discovery ever again.

Nowadays, all the characteristics of IR are broadly known and will be presented below.

IR radiation is an electromagnetic radiation with wavelength λ longer than visi-

ble light (λ = 0.75µm), but shorter than microwaves (1000µm). The visible range of

spectrum is relatively short - in between 0.4µm and 0.75µm [2]. The electromagnetic

spectrum can be seen in Figure 2.1.

The source of electromagnetic radiation can be any object at a temperature above

absolute zero (-2730C). The amount of emitted radiation and the wavelength distribu-
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tion depend on the temperature and emissivity of the body [4]. Each object even at a

low temperature of a few Kelvins emits electromagnetic radiation in the range of the

far infrared, see Figure 2.1. Human bodies emit the radiation at a wavelength close to

10µm, whereas warmer objects emit more radiation with the shorter wavelength.

A unique feature of IR is the material transparency, being one of the most distinctive

differences compared to visible light. For instance, semiconductor materials such as

germanium and silicon, opaque in the visible, are transparent in the infrared region

beyond 1.8µm and 1µm. On the other hand clear glass, transparent for visible light in

its whole spectrum, it is opaque for infrared radiation for wavelengths over 2.5µm.

2.1.2 Thermal Sensors

Thermal sensors can be categorized into one of the following groups: those with cooled

infrared image detectors or sensors with uncooled detectors.

Cooled Infrared Detectors

The main feature of cooled infrared detectors is they are usually contained in a vacuum-

sealed case cryogenically cooled. It is necessary to cool them down to temperatures in

the range of 4K - 110K. This allows to achieve desired sensitivity through increased

temperature contrast between the sensor and the object meant to be detected. In gen-

eral, cooled infrared detectors are very expensive to manufacture and run because of

their exploitation requirements. On the other hand, they are able to achieve higher

resolution with better image quality. Due to their capabilities and high cost, they are

mainly used for astronomy and military purposes.

Uncooled Infrared Detectors

Uncooled infrared detectors are more popular than cooled equivalents mostly due to

lower costs and smaller sizes. There are a number of advantages over cooled detectors:

they are portable, easy to set-up and ready to work in just a few seconds. There is

no need to cool them down since they operate at ambient temperature with the use of

additional temperature control elements.

The technology employed is a subject to a target market. Most popular are pyroelec-

tric sensors due to lower cost, although the number of applications is very limited - the

electric charge on the output reflects to the change in temperature hence the continu-

ous movement is desired. Moreover they are often limited to operate in low resolutions.

These problems do not apply to detectors based on microbolometer technology. Bolome-

ters change their resistance according to the heating source giving spatial image of the

scene. Although they are more expensive, for certain applications such as detecting loss
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(a) (b)

Figure 2.2: Example images taken by IR camera. (a) Colour coded temperature scale. (b) Grey-scale
temperature representation.

in insulated systems, observing the blood flow under the skin or overheating of electrical

apparatus, they cannot be replaced by pyroelectric equivalents.

2.1.3 Thermographic Cameras

The difference in infrared radiation is transferred to the change of resistance, voltage or

current, which is then compared with the value of operating temperature of the sensor.

These values form a new infrared image which is then transferred from the camera using

one of the available transmission protocols. A thermographic camera, also referred to as

an infrared camera, is a device that forms spatial images based on IR radiation. Thanks

to the ability to convert infrared energy onto an image, IR cameras can operate even

in total darkness since the radiation of ambient light does not apply. Example pictures

taken by IR camera can be seen in Figure 2.2.

Thermographic cameras are more expensive compared to traditional visible light cam-

eras with the operating resolution considerably lower (typically at 160×120, 320×240).

Thermal detectors from FLIR operating in 320×240 as of July 2011 are often priced

above £5000 [5]. Modern detectors support resolutions up to 640×480 with the high

end models operating in 1024×768 [6], aimed only for military and research purposes.

To make the visualisation of infrared imaging systems more clear and accessible for

further processing, it is common practice to use density slicing and interpolation tech-

niques [5]. Since the output of the infrared camera reflects the temperature changes in

the FOV, colour coding applied corresponds to different temperature ranges and is a

result of a post-processing operation, see Figure 2.2.
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Figure 2.3: An example image frame from IR video surveillance system.

2.1.4 Applications

Until recently, thermal imaging using infrared cameras has been limited to military

purposes. The first applications were developed for the Korean War in the second half

of previous century [7]. Thanks to advanced optics, dynamically developed interfaces,

rapidly falling prices and their increased portability, IR cameras are becoming much

more popular for typical surveillance and control applications. There are a number of

other applications where IR cameras can be efficiently used, for example detecting loss

in insulated systems, tracing the source of heat in electrical apparatus or improving

night vision.

An infrared camera is an excellent choice for they purpose of people detection. Many

surveillance and control applications are based on infrared people detection since they

are capable of working in low-light conditions. Moreover, they provide more accurate

information for computer vision (easier to distinguish pedestrians, see Figure 2.3), com-

paring with cameras operating on the visible portion of the spectrum. They are widely

used in security applications where permanent surveillance in both day and night time

is needed [8]. Other useful applications are emergency systems for people counting in

low or zero light conditions [9].

2.2 Digital Image Processing

This section gives a brief introduction to digital image representation and image process-

ing techniques. Definitions and concepts used in this section are referred from [10, 11].

They shall be used as a theoretical background for the remainder of this document.
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Figure 2.4: Digital image raster scan grid

2.2.1 Digital Image

Digital images are a pictures that have been converted into a binary format consisting

of logical 0s and 1s. These images are represented by pixels aligned to a grid with rows

and columns. The number of pixels in a row (R) and the number of pixels in a column

(C) defines the image resolution. The value of pixel p located at (x, y) corresponds to

the colour intensity of the picture at this particular location. Colour image analysis is

beyond the scope of this thesis, only grey-scale images will be taken into consideration.

In grey-scale images each pixel is assigned with a set of discrete values I ∈ {imin, imax}
representing different grey-scale levels from black to white. For an image with 8-bit

grey-scale depth, each pixel is assigned with a value within a range from 20 − 1 = 0 to

28 − 1 = 255. Binary (morphological) images are particular case of grey-scale images

where each pixel is represented by one bit: binary-0 or binary-1 corresponding to black

and white respectively.

Based on to the information listed above, it is possible to calculate the weight of

this particular digital image to check how much memory is required to keep the image

within a digital system. The image size is defined by the number of R rows multiplied

by the number of C columns (image resolution), multiplied by its grey-scale depth. An

example QVGA image with 8-bit grey-scale would require 320× 240× 8 = 614400 bits

of memory. The same size binary image would require only 320× 240× 1 = 76800 bits

of memory. Memory requirements are often an issue for image processing embedded

systems due to limited resources. This aspect will be discussed in detail further in this

thesis.
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(a) (b) (c)

Figure 2.5: Pixel neighbourhood. (a) Horizontal and vertical neighbours of pixel p denoted by N4(p).
(b) Diagonal neighbours of pixel p denoted by ND(p). (c) All the 8-neighbours of pixel p
denoted by N8(p).

2.2.2 Raster Scan

Due to the nature of video processing systems, digital images are scanned pixel by pixel

in raster scan mode. A raster scan is a popular scanning technique for raster graphics

images. The scanning starts from the first pixel aligned in the top-left corner of the

image with coordinates (0, 0). It runs from the left to the right, line by line, until the

last (bottom-right) pixel (R,C) is reached. An example of raster grid can be seen in

the Figure 2.4. The raster scan is of key importance for all video processing embedded

systems. Since image data provided to the system is aligned with raster scan, it would

be a natural to process the data on active sample simultaneous with image acquisition.

Further details on image acquisition and data handling will be provided in subsequent

chapters.

2.2.3 Pixel Neighbourhood

According to the raster grid, pixel p at location (x, y) has two horizontal and two vertical

neighbouring pixels at locations:

(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1),

these are called 4-connected of p and are denoted as N4(p). This can be seen in Fig-

ure 2.5(a). The pixel p at location (x, y) has also 4 diagonal neighbours at locations:

(x− 1, y − 1), (x− 1, y + 1), (x+ 1, y − 1), (x+ 1, y + 1),

which can be denoted as ND(p). This was illustrated in the Figure 2.5(b). Both horizon-

tal and diagonal neighbouring groups of pixels are called 8-connected of p and denoted

as N8(p), where N8(p) ∈ N4(p) ∪ND(p). When one or both coordinates (x, y) of pixel

p are equal to 0, R or C, some of its neighbours fall outside scope of N4 or N8. This

issue will be addressed further in this thesis.
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(a) (b) (c)

Figure 2.6: Pixels connectivity. (a) An arrangements of pixels. (b) Pixels 8-connectivity, connections
shown by dashed line. (c) Connection ambiguities solved by m-connectivity

2.2.4 Pixel Connectivity

There are three different kinds of pixel connectivity (adjacency) for binary images be-

tween two pixels p1 and p2:

• 4-connectivity - when p1 = p2 = 1 and p1 ∈ N4(p2)

• 8-connectivity - when p1 = p2 = 1 and p1 ∈ N8(p2)

• m-connectivity (mixed connectivity) - when p1 = p2 = 1 and p1 ∈ N4(p2) or when

p1 ∈ ND(p2) and N4(p1) ∩N4(p2) ∈ φ

Mixed connectivity, a modification of 8-connectivity, prevents ambiguities which arise

when 8-connectivity is used. An example of this type situation can be seen in Fig-

ure 2.6(b). Mixed connectivity eliminates multiple path connections and the result of

its use can be seen in Figure 2.6(c).

In most applications for computer vision systems, only 4 and 8-connectivities are

taken into consideration. Two examples of component labelling with 4-connectivity and

8-connectivity applied to the binary data from Figure 2.7(a) can be seen in Figure 2.7(b)

and Figure 2.7(c) respectively.

2.2.5 Connected Components

Two pixels p1 and p2 are part of an L connected component in a B binary image when

there is a path of connected pixels between pixels p1 and p2. The blob created by all the

pixels within the set of pixels connected to p1 and p2 is called a connected component.

Examples of connected components can be seen in Figure 2.7(b) and Figure 2.7(c).
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(a) (b) (c)

Figure 2.7: Connected Components (CC) labelled with 4 and 8-connectivity. (a) Binary image.
(b) CC labelled with 4-connectivity. (c) CC labelled with 8-connectivity.

(a) (b) (c)

(d) (e)

Figure 2.8: Scan mask. (a) 8-connected neighbourhood mask. (b) Forward 8-connected scan mask. (c)
Backward 8-connected scan mask. (d) Forward 4 - connected scan mask. (e) Backward
4-connected scan mask.

2.2.6 Scan Mask

In order to create connected components in computer vision, an image has to be scanned

through and all the adjacent pixels have to be detected. For this task, a scan mask is em-

ployed. The structure of 8-connected neighbourhood mask can be seen in Figure 2.8(a).

The centrally placed point E refers to the pixel p located at (x, y) within the binary

image B. All the other points are its 8-connected neighbours and are checked for ad-

jacency. The scan mask is being shifted pixel by pixel, line by line - according to the

raster scan. Recent algorithms for connected component analysis have reduced struc-

ture of the scan mask. The aim is to minimize the number of pixel operations. Scan

masks for 8-connected and 4-connected analysis can be seen in Figures 2.8(b), 2.8(c)

and Figures 2.8(d), 2.8(e) respectively.
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Figure 2.9: Run Length Encoding

2.2.7 Labelling

It is a fundamental feature of the computer vision system to be able to assign unique

identifiers (labels) to different, disjoint connected components. In this process, all the

pixels within the binary image B are analyzed in order to distinguish disjoint points

between separate connected components. The classic connected component labelling

technique employs the following steps:

– assign a label 0 if the pixel forms part of the background (pixel binary-0);

– if only pixel E was found as a foreground element (binary-1), assign a new

label;

– if only one of the neighbouring pixels to the E = 1 was already labelled,

assign its label to the current pixel;

– if two or more of the neighbouring pixels were already assigned with different

labels, these labels need to be merged.

The labelling technique together with detailed description of popular algorithms for

connected component analysis will be presented further in this thesis.

2.2.8 Run Length Encoding (RLE)

Run length encoding is an approach for encoding connected pixels (runs) within a

single row of a binary image. Each run is represented as a starting and ending point

within particular row. RLE was introduced as an approach to reduce the amount of data

required for the processing. The main assumption is that binary-0 and binary-1 pixels

continue within a row without a change over longer sections, therefore it is suitable

for higher resolution images. An example of encoded data using RLE technique can be

seen in Figure 2.9. The RLE-based approach can be also used to represent connected

components.
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2.3 Hardware Development and Implementation

There are a number of choices facing system designer while developing a video processing

system. Hardware development requires multiple electronics devices such as Analogue

to Digital and Digital to Analogue Converters (ADC and DAC respectively), processing

unit, storage memory as well as Input/Output (IO) peripherals e.g. push buttons, slide

switches, keyboard, monitor display.

The key element of the entire design is a processing unit. There is no ideal technology,

it is always the matter of a trade-off between flexibility and performance. In this section

alternative solutions will be presented and an overview of development process will be

given.

2.3.1 Processing Unit

There is a wide range of processing units utilizing different technologies available on

the market. Most common are listed below:

1. General Purpose Processor (GPP)

2. Digital Signal Processor (DSP)

3. Field-Programmable Gate Array (FPGA)

4. Application Specific Integrated Circuit (ASIC)

Each of the technologies has a specific set of features since they were designed for

different purposes and certain type of applications. They differ in price, size, power

consumption as well as development effort and processing power.

GPP

General Purpose Processors are commonly used in personal computers and mobile

devices [12]. They support floating point operations, allow to run different software

packages, including operating systems. Hence, they constitute great means as devel-

opment platforms for system prototyping. Programming in one of the high level pro-

gramming/scripting languages (C, C++, Matlab) is fast and supported with efficient

debugging tools. If there is a need for further code optimization, critical code can be

implemented at a lower abstraction level, e.g. C, C++ for Matlab or assembly for C,

C++. However, this comes at a cost of flexibility and development effort.
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DSP

Digital Signal Processors feature similar principle compared to GPPs with advanced

architecture and additional instruction set for signal processing operations such as Mul-

tiply and Accumulate (MAC) or memory read with simultaneous addition [13]. An

extended instruction set is a great advantage when comparing with GPPs. They are

also smaller in size and feature lower power consumption therefore oriented on specific

application within embedded system.

FPGA

Field-Programmable Gate Arrays are digital Integrated Circuits (ICs) containing con-

figurable (programmable) blocks of logic along with configurable interconnects in be-

tween [14]. Hardware Description Language (HDL) and FPGA devices allow designers

to quickly develop and simulate a sophisticated digital circuit, run it on a prototyp-

ing device, and verify the operation of the physical implementation [15]. Thanks to

embedded macro blocks such as multipliers, dual port memory blocks and even embed-

ded processor cores, signal processing algorithms may be implemented more efficiently

compared to DSPs. Moreover, Hardware/Software (HW/SW) workload can be parti-

tioned to run house-keeping tasks in software, whereas signal processing in parallel and

pipelined fashion on hardware.

The main drawback of FPGAs is the development time, which is much longer com-

pared to GPPs and DSPs due to low-level programming issues (Verilog or VHDL) and

variety of system components such as interfaces, pin constraints or timing constraints.

Moreover, testing and verification are more involved, hence require greater amount of

time and effort.

ASIC

Development of the Application Specific Integrated Circuit can be equated with FPGA

development in terms of programming, testing and verification [16]. The major difference

is the full scalability provided by ASIC, up to a single logic gate. Hence, final design

can be further optimized to meet specific packaging requirement, power dissipation can

be reduced and even the overall throughput further increased thanks to the ability to

run on higher operational frequency.

However, the back-end process is not a trivial task. It is often conducted by a group

of engineers. There are great costs involved in setting up the mask for mass production

therefore ASIC design shall be considered only for volume production.
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Table 2.1: Comparison of different technologies for signal processing development.

performance power reconfiguration time-to-market

GPP fair poor excellent excellent
DSP good good good excellent
FPGA excellent fair fair good
ASIC excellent excellent not applicable poor

Summary

The comparison between different technologies is provided in the Table 2.1. It is based on

various surveys [17–19] and comparison tools [20–22]. Such architectures are confronted

under the following categories: performance, power, reconfiguration and time to market.

Performance determines the capability of a product. It can be measured using mil-

lions of operations per second (MIPS), millions of multiply accumulates per second

(MMACS) or millions of cycles per second (MHz). The power criterion determines

power consumption of the device which becomes increasingly important in portable de-

vices. It also relates to the heat dissipation. Reconfiguration however gives the measure

of the capability to modify or add features to meet changing requirements. Time to

market is an important category in terms of business point of view. With the shrinking

product life cycle it becomes a critical issue. Further details can be found in [17].

As can be seen, it is the matter of choice between performance and flexibility. Dedi-

cated architectures (FPGA, ASIC) feature great processing power however they require

more development effort compared to other technologies. Algorithm implementation

comes as a trade-off between development time and algorithm complexity. On the other

hand, software based solutions (GPP, DSP) are more flexible, therefore suitable for

algorithm development and initial testing. In terms of time-to-market they are better

than FPGA and ASIC, however at a cost of limited performance. Due to the lack of ded-

icated hardware and fixed architecture, they cannot compete with FPGAs and ASICs

when it comes to computationally intensive tasks.

Specific applications, such as real-time video processing, require great amount of

computing power. Due to high computational load, parallel and pipelined architecture is

desired, whereas this can be achieved on DSP only in a limited scale. If the performance

is a major concern, FPGA or ASIC shall be considered as a target platform.

FPGAs and ASICs differ in many aspects: physical size of the package, cost of a

single chip, maximal frequency of the system clock, power consumption, development

flexibility as well as back-end design effort. Considering the data from Table 2.1, ASIC

turns out to perform better in most aspects - it is faster, smaller and requires less

power. However, for prototyping purposes there is no other choice than FPGA due to
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high set-up cost of the ASIC production line. Once the design is verified and tested

in test environment using software tools, it can be synthesized and mapped onto the

FPGA for the lab testing on a real-time system. A successful implementation can be

then resynthesized and optimized for ASIC design if mass production is considered.

2.3.2 Design Flow

It is required for a system designer to be familiar with design flow when implementing on

FPGA/ASIC. Poor GPP or DSP implementation may lead to memory leakage or longer

execution time, whereas even minor RTL-level design issues may significantly impact

the overall system performance, e.g. drop in operational frequency from 400MHz to

100MHz [23]. Hence, the coding style in RTL is essential, it must suit target platform

and comply with every step of the FPGA design flow: synthesis, mapping, placing and

routing. A conceptual block diagram of the FPGA design flow can be seen in Figure 2.10.

HDL

FPGA design flow in modern systems is fully automated and relies on software tools

provided by different FPGA vendors. In order to achieve the highest performance it is

strongly recommended to learn about the target device and follow certain rules specific

to this technology [23]. Synthesis tools as well as map, place and root tools are based on

algorithms to match the best possible coverage, however it is still up to the designer to

make sure all the constraints are achievable and the asynchronous components comply

with the overall system architecture. There is also a certain set of configuration rules for

FPGA design related to the use of SRLs, multipliers, RAMs and logic elements [25, 26].

There is also a set of specific design techniques to make tools maximize performance of

the device [23, 27].

Synthesis

Digital synthesis is a process when the HDL code is being transformed into the cor-

responding netlist, which is a standard form of representing the design at a low-level

of abstraction. It constitutes a set of gate-level components and interconnections be-

tween them. One of the synthesis objectives is to optimize the structure of the design

by reducing the number of redundant components [27].

Map, Place and Route

The process of mapping transfers the netlist into FPGA specific primitives. This is

done according to specific technology standards and libraries. During the place and
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Figure 2.10: FPGA design flow [24].

route these gates are interconnected according to the netlist. Although the process is

fully automated and entirely based on the output from the synthesis, the tool can be

guided by specific parameters listed in the user constraints file.

Programming File

Once the design is already mapped and routed, a configuration file is being produced

for the purpose of FPGA chip programming. It is a stream of binary data to indicate

whether switches on the FPGA should remain open or be closed. The successfully

generated file can be downloaded onto the target device for test and verification.
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2.3.3 Development Platform

In order to verify and test the design, an FPGA development platform has to be selected.

There is a wide variety of prototyping boards available on the market, for the purpose

of this project the XUP V2P Development Board from Digilent Inc. [28] was chosen.

System Requirements

For the purpose of video processing application development, a large FPGA chip was

required to avoid the need of system partitioning. Such applications often require a

substantial amount of fast memory, preferably dual port blocks for buffering video

streams. In order to run such application on the development board, multiple peripherals

are also required. The check list of system components required for such implementation

can be found below:

• large FPGA,

• substantial amount of embedded memory,

• VGA output,

• ADC converter,

• UART port,

• PIOs for debug and configuration,

• external PIOs for 3rd party components.

Platform Selection

At a time of project specification (late 2007), the best possible development board

available for academic purposes was XUP V2P Development Board from Digilent Inc.

This development platform fulfils all the requirements providing also additional system

components for further project expansion. The board is equipped with Virtex-II Pro

FPGA [26] from Xilinx providing sufficient logic for project development together with

satisfying amount of embedded memory for high speed data handling. Further details

regarding the development platform will be provided in the following chapters.
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2.4 Pedestrian Detection

This section gives a general introduction into pedestrian detection processing flow. The

aim is to emphasize the need for hardware accelerators in order to speed up the compu-

tationally intensive repetitive tasks. Detailed description and hardware implementation

details will be discussed in the following chapters.

Pedestrian detection as a task can be split up into several related stages. The most

common method is a two-step approach: segmentation followed by object detection.

The segmentation is a pre-processing stage with the aim to reduce redundant infor-

mation. Ideally, an image frame after the segmentation should not contain elements of

background. Moreover, acquisition noise should be also already removed. Image pixels

within the processing buffer consist of Regions of Interest (ROIs), likely correspond to

pedestrians. During the detection, ROIs are analysed to check for the correlation with

pedestrians. For detected objects some of the features can be extracted for the purpose

of further processing such as classification or tracking. In this thesis both segmentation

and object detection will be taken into consideration.

The two-step approach for pedestrian detection, compared to the blind approach,

reduces computational time by limiting the number of scanned regions. It can be further

split into smaller stages as follows, also depicted in the Figure 2.11:

1. Segmentation

a) Background Subtraction

b) Intensity Thresholding

c) Noise Removal

2. Object detection

a) Connected Component Labelling

b) Feature Extraction

3. Classification and Tracking

The number of sub-stages is not fixed, it is determined by the application and algo-

rithms applied. The efficacy of pedestrian detection system depends on both efficiency

of individual processing units as well as suitable selection and coexistence of the pro-

cessing chain as a whole.
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Figure 2.11: A block diagram of the data flow for a conceptual surveillance system.

2.4.1 Segmentation

During the first phase of pedestrian detection, an input image is processed to reduce

the amount of information. This is a computationally intensive task with a great im-

pact on the quality of object detection, classification or tracking. Efficient segmentation

makes the classification work easier, in some cases even simple classification can lead

to good detection rates, an example can be seen in [29]. Most common segmentation

techniques are based on background subtraction, intensity thresholding and noise re-

moval. Other intermediate processing stages can be also classified into segmentation, for

instance image acquisition can reduce over a half of the incoming data during the colour

space conversion [30]. Moreover, the colour space transformation can be also utilized

for shadow reduction [31], in order to increase the chance of successful classification.

Background Subtraction

Background subtraction is a popular technique in many image processing applications,

often it is a research area as its own [32–35]. The aim is to remove all the elements of the

background leaving only ROIs further required by the classifier. There are a number

of challenges facing this task: background image is not uniform, the pace of changes

may also vary, etc. The choice of background subtraction technique often is the case

of compromise between accuracy/quality versus computational load/implementation

complexity.

Intensity Thresholding

The aim of the intensity thresholding is to reduce the number of data bits representing

a single pixel. Most common approach is a binarization where the number of bits is

effectively reduced to one per pixel. Thresholding as a segmentation step is efficient

and cost effective for both GPP and DSP, and even more efficient when applied on
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application specific platforms. There are a number of techniques for calculating intensity

criterion (local, global, average, temporal, adaptive, etc.). They will be further discussed

in the following chapter.

Noise Removal

Noise removal, similar to background subtraction and intensity thresholding, is a com-

mon task in variety of image processing applications. The aim is to remove noise acquired

during image acquisition. There are different types of noise. It can be either correlated

or uncorrelated, with different distribution over the image frame. Noise removal is not

a trivial task as it can lead to significant distortions if wrongly applied.

There are multiple noise removal techniques, such as linear smoothing filters, signal

combination, anisotropic diffusion or non-linear filters. The choice is often application

specific, it also depends on the target processing platform. For the purpose of this

project linear smoothing based on morphological filters was implemented. This choice

will be further discussed together with implementation details provided further in this

thesis.

2.4.2 Object detection

Object detection is a processing step when the actual pedestrian detection takes place

[36]. The purpose is to process the data provided by segmentation unit, typically a

stream of binary pixels, in order to distinguish objects within the image. Furthermore,

specific features for individual objects can be extracted, such as position, height, weight

or Centre of Gravity (CoG).

Connected Component Labelling

The purpose of Connected Component Labelling (CCL) algorithms is to scan binary

images in order to distinguish disjoint groups of pixels (objects) and assign them with

individual labels. Once they are assigned with labels, each of the components can be

further processed as individual object.

Feature Extraction

Labelled objects can be further processed to calculate their features for the purpose of

classification, tracking or statistical analysis. During this processing step, a variety of

different features can be extracted such as position, width, height or centre of gravity,

etc. Such data can be used to classify individual objects whether they likely to be

pedestrians or not.
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2.4.3 Classification and Tracking

The aim of classification and tracking is to locate an object (or multiple objects), identify

as a pedestrian and keep track of its location in consecutive video frames. Tracking is

based on extracted features calculated on labelled objects. It is a post-processing step,

based on data gathered during classification. However, according to the recent research,

tracking can also improve detection rate in the process of object recognition, therefore

it can be considered as additional classifier [37].

Both classification and tracking are natural extensions for pedestrian detection sys-

tems. However, they are not in the scope of this thesis.

2.5 Conclusions

In this chapter an introduction into image processing, infrared radiation, FPGA devel-

opment and pedestrian detection was given. The aim of this chapter was to introduce the

reader with technology and processing techniques used for the purpose of this research.

Subjects introduced in this chapter will be further discussed in individual chapters.
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Background Segmentation

3.1 Introduction

In the modern world the number of applications designed for autonomous human detec-

tion grows rapidly. Such applications vary from basic human detectors based on elemen-

tary image sensors to complex processing platforms employing Infrared (IR) cameras.

Although systems based on IR detection were mostly limited to military applications

for surveillance purposes, due to falling prices of IR imagers they are becoming popular

also in other markets. IR detectors, well known for their capabilities to detect pedes-

trians in low light conditions, gradually replace CMOS and CCD sensors for specific

applications.

In general, human bodies keep higher temperature than the surrounding environment.

The contrast level may vary in different weather conditions, for example a sudden change

in sun exposure may reduce the contrast between pedestrians and their surroundings,

making them less visible to IR camera. Tasks such as people detection or people counting

41
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based on low-resolution detectors, such as the Irisys people counters, make an extensive

use of the features extracted by the pyroelectic sensor, therefore the decision making

(detection) process is relatively straight-forward and does not require great amount of

processing power [38]. More involved applications in the area of pedestrian detection

and tracking also use this technology as a sensing element. Its main drawback is limited

pixel resolution (typically up to 16× 16). This amount of data can be processed within

embedded system in real-time applications by MCUs [39].

Higher resolution pedestrian detection systems, often associated with surveillance

systems, feature both types of image sensing devices, IR and CMOS (or CCD). The

choice of technology used is highly related to the application and environmental con-

ditions, e.g. for the purpose of traffic analysis devices operating mostly in day light,

a colour sensitive CMOS image sensor would be the right choice [40]. However, the

choice is not as obvious in case of pedestrian detectors, used for security applications.

A typical colour image sensor can operate in higher resolution than IR, it can also ben-

efit from the RGB or YUV colour component information commonly used for shadow

removal or background modelling [31, 41]. It is also necessary to mention that although

IR detectors are becoming cheaper, they are still relatively expensive. However, if the

application requires higher sensitivity and is requested to operate in low light or even

no light conditions, an IR camera has significant advantages [36].

Due to high demand for advanced autonomous security applications, the majority

of outdoor surveillance systems are based on IR or use it for visible-infrared fusion

[36]. They are also employed in a number of other applications, such as transportation,

robotics or home automation. For the purpose of this thesis, one of the high resolution

IR cameras was used. From the Digital Signal Processing (DSP) point of view, there is

no difference between visual and IR sensors; the data provided can be processed using

similar techniques. However, due to the fact different information can be extracted,

some of the algorithms being popular for visual image processing cannot be applied

to the IR video stream. This issue will be also addressed in the following subsections.

An implementation of the autonomous surveillance system operating in real-time on

a video stream is a mixture of a number of DSP techniques. A block diagram of an

example application data flow is depicted in Figure 3.1.

This chapter concentrates on background segmentation. As can be seen in Figure 3.1,

segmentation (adaptive background model + background subtraction) constitutes one

of the initial processing stages, hence the quality of results provided is critical for further

processing. Background segmentation is a popular research area, giving a wide range of

techniques to be used for this task. The trade-off between the quality of data produced

and the required processing power is a major concern. Often, algorithms featuring good

performance require high computing power, frequently not efficient for hardware imple-
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Figure 3.1: A block diagram of the data flow for a conceptual surveillance system.

mentation, e.g. long floating point operations. In this chapter major techniques will be

introduced together with analysis of their usability for FPGA implementation.

3.2 Review of Background Subtraction Techniques

A separation of the foreground Regions of Interest (ROIs) from the background is a key

processing step in most pedestrian detection systems. The aim of background subtrac-

tion is to significantly reduce the amount of processing data. A common approach is to

binarize separated ROIs afterwards, hence the information is reduced to 1 bit per pixel.

This process can be seen in Figure 3.1.
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There is a wide variety of different techniques for background segmentation, three

major groups can be distinguished:

• intensity thresholding,

• temporal difference,

• background modelling.

3.2.1 Intensity Thresholding

The intensity thresholding for pedestrian detection is a popular segmentation technique

used in many systems based on IR cameras [8, 9, 29, 42, 43]. Due to the fact pedestrians

in most cases are considerably warmer than the surrounding background, it is possible

to reduce the amount of data by filtering input images using a threshold level factor.

The separation is made on the pixel basis, therefore only the current image frame is

required. This process can be described with the following equation:

B(x, y) =

1 if I(x, y) > th,

0 if I(x, y) ≤ th.
(3.1)

where B is a binary image after thresholding, I is an input greyscale image, th denotes

level of thresholding and (x, y) gives coordinates of the pixel location. In the simplest

approach, this technique may considerably reduce the amount of data already during the

image acquisition with no additional latency, in some cases leading to good segmentation

results. However, as it becomes obvious, badly calibrated system (th too low or too

high) will not be able to provide data suitable for further processing. An example of

such situation together with image histogram pointing on the balanced value of th can

be seen in Figure 3.2.

Global Average

The global average is a variation of intensity thresholding aiming towards an adaptive

approach [29, 44]. It is commonly used in systems operating in constantly changing

environmental conditions. It is based on the average intensity for each frame, calculated

as follows:

th = α×
∑ I(x, y)

Brow ×Bcol
. (3.2)
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(a) (b)

(c) (d)

Figure 3.2: Background segmentation based on intensity thresholding. (a) Greyscale input image.
(b) Histogram calculated for the input image. (c) Result of segmentation; input image
thresholded at a peak level of the histogram th = 128; threshold level too low, results in-
clude both pedestrians and elements of the background. (d) Result of thresholding with
th = 240; although th is at its optimal level, the output image reveals all the drawbacks of
this technique such as bright elements of the static background (camera logo).

where (Brow × Bcol) determines the number of image pixels, whereas I(x, y) gives the

grey scale value of each image pixel. Value α is a fixed coefficient specified by the system

operator during the initial calibration. The th is calculated for each image frame and

applied to the subsequent one.

Adaptive Local Thresholding

The adaptive local thresholding is more advanced form of segmentation comparing with

previously described intensity thresholding techniques [9]. It is based on the threshold-

ing value th being calculated from two diagonally positioned pixels according to the

following equation:
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th = δ + α×
∑
|I(x, y)− I(x− 1, y − 1)|, (3.3)

where both δ and α are calibration values determined during the prior experimentation.

Once the th is calculated, it is applied to image data as follows:

B(x, y) =

1 if |I(x, y)− I(x− 1, y − 1)| > th,

0 if |I(x, y)− I(x− 1, y − 1)| ≤ th.
(3.4)

Such comparison does not require a great amount of hardware resources. However it

implies the use of intermediate storage for diagonal pixel values. It is a major drawback

of this approach. Moreover, when processing higher resolution images, this approach

does not provide significant improvement in quality of output data due to low contrast

between neighbouring samples.

Intensity Thresholding Summary

The major benefit of background segmentation based on intensity thresholding is the

processing speed and low memory requirement - no need for intermediate storage for

reference image. However, the number of applications is very limited - it can be success-

fully applied only to IR based processing systems, for certain applications. Although

it mostly features high pedestrian detection rates, it is limited to a particular number

of case scenarios (e.g. pedestrian must be warmer than the background). Moreover, it

does not differentiate other warmer objects from the background, such as street lamps

or cars therefore it can not be applied as a stand-alone processing unit.

The intensity thresholding segmentation based on running global average gives rea-

sonably good intermediate results. It is also suitable for robust and efficient hardware

implementation for low cost devices. Thanks to low complexity and high processing

speed (real-time performance), it should be considered during the system implementa-

tion, possibly as part of higher complexity algorithm.

3.2.2 Temporal Difference

The principle of the temporal difference approach for background segmentation is based

on two successive images and comparison between them. Such comparison is performed

on the pixel basis, line by line, whereas results are provided in the coherent form of

another image being the difference between them. General description of the algorithm

in the mathematical form can be described with the following equation:
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(a) (b)

Figure 3.3: An example of segmentation output using temporal difference. (a) Input image frame.
(b) Results of the subtraction between two consecutive image frames.

B(x, y) =

1 if |It(x, y)− It−1(x, y)| > th,

0 otherwise.
(3.5)

where It−1(x, y) is the pixel at a location (x, y) from the preceding frame and th is

the threshold value, determined during initial calibration. An example output frame

of temporal difference in its basic form can be seen in Figure 3.3. Other variations

of temporal difference approach for background segmentation introduce different pre-

processing techniques applied on both image frames to be subtracted.

Noise Estimation

An interesting approach for ROIs segmentation described by Alexandropoulos et al. [45]

takes advantage of noise estimation within the image followed by brightness normal-

ization. The variance and the average value of pixels per block is calculated, followed

by global comparison. Block size (here 8 × 8) can be determined by the image frame

resolution and available system resources. Thanks to block processing, this technique

allows for real-time performance.

Homomorphic Filtering

The homomorphic filtering is based on the algorithm proposed by Lou et el. [46]. The

filtering is performed on illumination invariant local components in order to distinguish

foreground objects from the background. It is based on the assumption that illuminance

distribution is gradual over the image frame therefore it is located in the low part of

the frequency domain, whereas reflection components will occupy higher part. Based on
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high-pass filtering followed by Bayesian estimation, foreground objects can be extracted

under lighting changes without shadows. This approach, however, is less relevant in the

IR detection (no shadows).

Temporal Difference Summary

The major problem temporal difference techniques struggle with is the varying speed

of moving objects. Assuming the segmentation is performed on the frame rate in a

real-time, slow changes may not be detected, leading to poor detection rate.

The temporal difference for background segmentation is efficient for hardware imple-

mentation. Since it operates on two consecutive image frames, the memory requirement

is relatively low, making it suitable for memory-limited embedded system. Moreover, in

order to increase detection rate, this technique can benefit from integration with one of

the intensity thresholding algorithms at a very low cost.

There are also other techniques based on the temporal difference developed over

the time, not included in this subsection. They introduce more involved mathematical

models leading to complex implementations. However, temporal difference algorithms

suit only limited number of applications and such increase in hardware complexity can

not be justified with marginal improvement in segmentation quality [47–50].

3.2.3 Background Modelling

Amongst other methods for background segmentation, subtraction of the background

model from the current image frame gives substantially more information about new

objects entering the Field of View (FOV) [11, 32, 33, 51]. The principle of this technique

is based on frame differentiation where one of them is a model of the background,

containing information about the changes within the scene in time. An example of

the background model together with extracted foreground elements can be seen in

Figure 3.4. Results obtained from the subtraction are classified as ROIs if they exceed

a pre-defined threshold level. This can be described with the following equation:

B(x, y) =

1 if |I(x, y)−M(x, y)| > th,

0 otherwise.
(3.6)

where M(x, y) is a pixel of the background model at a location (x, y), I(x, y) is a

grey-scale source and B(x, y) is a binary output pixel.
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(a) (b)

(c) (d)

Figure 3.4: Segmentation based on the background modelling. (a) Background model. (b) Input im-
age frame. (c) Results of the background subtraction. (d) Background subtraction after
thresholding.

Although it seems to be a trivial task, the background subtraction may lead to false

detection in a very short time if the background image (model) is not updated accord-

ingly to the environmental changes. Such a processing must handle gradual illumination

changes dependent on the time of the day as well as moving background objects which

should not be considered as ROIs forever after [52]. Hence, a number of techniques for

updating the background model have been proposed in the literature, where the most

popular approaches will be presented below.

Temporal Median Filter

This approach for background modelling is based on the median filter commonly used

in image processing for noise filtering in spatial domain [11]. A background reference

image is created using a number of pixel values from consecutive image frames [53].

Once the background model is ready for the processing, the median is applied, hence

the need for captured data to be sorted in a numerical order.
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In order to distinguish foreground elements from the background model, an irreducible

test set needs to be acquired. This requires a large buffer to store n values per pixel

location, where n must be greater than 50 (typically 50 to 200) [54]. Since this requires

a great amount of memory, an alternative approach was suggested where background

model is based on the sub-sampled data source with ns elements, where ns ⊂ n [55].

Background separation based on median filtering does not provide good segmenta-

tions results for all the case scenarios. It can not be configured (at a reasonable cost)

to cope with both slowly as well as rapidly changing environmental conditions. More-

over, it requires a large amount of operational memory to store the test set for median

processing. Median filtering also implies data set must be sorted in a numerical order.

This adds additional complexity due to the fact sorting is not a trivial task in hardware,

alternatively it requires a large number of clock cycles to complete it in the brute force

search fashion.

W4

W4 is an independent surveillance system for people detection and tracking with an

interesting approach for background segmentation [56]. This technique uses a median

filter during the learning phase to distinguish moving pixels from stationary pixels

whereas the background frame is modelled with the use of three parameters for each

pixel: minimum m(x, y), maximum M(x, y) and the maximum illumination difference

d(x, y) between two consecutive frames. This can be written as follows: m(x, y)

M(x, y)

d(x, y)

 =

 min{Vi(x, y)}
max{Vi(x, y)}

max{|Vi(x, y)− Vi−1(x, y)|}


where V is an array containing N consecutive images, Vi(x, y) gives the intensity of the

pixel located at (x, y) for the ith frame of V .

The classification process determines whether the current pixel is a foreground or

background pixel based on the following:

B(x, y) =


0

It(x, y)−m(x, y) < th · dµ,

It(x, y)−M(x, y) < th · dµ,

1 otherwise.

(3.7)

where th determines the threshold level and the dµ gives the median of the largest

interframe absolute difference over the entire background model.
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This technique gives good segmentation results at a very low cost of two subtractions

and comparisons per image pixel. The memory requirement is much lower than previ-

ously described median filtering-based approach, however it is still relatively high for

implementation within memory-limited embedded systems.

Selective Running Average

The principle of the adaptive background modelling using a running average is based

on the mean illumination value calculated for every image pixel in time [44]. Unlike the

temporal median filter technique, there is no formal requirement to store n consecutive

samples in order to calculate the mean value. Running average is computed on the

incoming data rate and can be calculated as follows:

µt = αBt + (1− α)µt−1, (3.8)

where µt−1 is the average computed in the previous image scan and the α factor is

an empirical weight (learning rate) often chosen as a trade-off between stability and

quick response. The learning rate α is a fixed number and can be obtained during the

initial calibration. It determines the pace foreground objects are incorporated to the

background.

In order to keep the background model cleaner/sharper while reducing the number

of memory accesses, a selective adaptation approach can be applied. According to the

literature [57, 58], foreground segmentation gives better results when background model

is updated only for pixels with negative segmentation, otherwise remains unchanged.

The selective running averaging gives acceptable detection rate compared to other

techniques. Such an implementation does not require great amount of hardware re-

sources whereas memory requirement can be kept low. Since the sufficient model can be

represented with a single value per image pixel, the amount of required memory does

not exceed the size of the input image buffer.

Predictive Filters

An implementation of predictive filters for background segmentation is an attempt for

foreground detection based on the prediction criterion [59, 60]. Such a criterion is calcu-

lated as a probabilistic measure based on the recent samples using one of the predictive

filters, e.g. Wiener [52] or Kalman [61, 62]. Unlike above mentioned techniques for back-

ground modelling, predictive filters provide additional measure (variance), describing

how the incoming value may differ from the background. Such an approach gives closer

estimation therefore the false positive detection rate is further reduced.
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There is a variety of techniques for background segmentation using predictive filters.

An introduction into linear prediction can be found in [59]. The general approach is

to estimate the probabilistic prediction of the current background image using predic-

tion coefficient and incoming data. If the current pixel significantly deviates from its

background reference, it will be reported as part of the foreground. For the purpose of

calculating prediction filters, a number of previous covariance samples is needed. This

implies a large data storage which constitutes main drawback of implementation based

on predictive filters. According to the literature, hardware implementation based on the

Kalman filter [61, 62] is more efficient in terms of memory usage comparing with its

Wiener equivalent.

Mixture of Gaussians

More recent algorithms for background modelling support multi-modal case scenarios

thanks to a larger number of statistical distributions used to model the background [63].

An example of such technique is Mixture of Gaussians (MoG) introduced by Stauffer

and Grimson in [41]. It attempts to handle quasi-static background scenes as well as

gradually changing scenes and regularly moving objects such as branches of a tree or

escalators.

This algorithm is based on multiple Gaussian distributions (typically 3 to 5) used

to describe each pixel of the model. Every component of the RGB colour space is

modelled with a separate Gaussian, with an assumption they are independent, however

they have the same variances (to ease computational complexity). A different weight ωt

is assigned to the distribution (giving the total sum 1) and adjusted for the matching

model according to:

ωt = (1− α)ωt−1 + α, (3.9)

where α is a learning rate determined during the system calibration. If the model does

not match, the learning rate α is further subtracted from the Equation (3.9). Two other

parameters such as mean µ and variance σ can be calculated as follows:

µt = (1− ρ)µt−1 + ρSt, (3.10)

σ2
t = (1− ρ)σ2

t−1 + ρ(St − µt)T (St − µt), (3.11)

where ρ is a second learning rate and St provides the colour components of the input

signal. Then, the Gaussian probability density can be computed as follows:
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η(St, µ,Σ) =
1

(2π)
1
2 |Σ|

1
2

e−
1
2

(St−µt)T Σ−1(St−µt), (3.12)

where Σ is the covariance matrix of the ith Gaussian in the mixture.

The probability of the current pixel estimated using K Gaussian distributions for

each pixel can be calculated using Equations (3.9)(3.10)(3.12) according to the following

equation:

P (St) =

K∑
i=1

ωi,t · η(St, µi,t,Σi,t), (3.13)

The MoG for background subtraction gives good results, particularly in scenarios

with repetitive background motion. What is important, it fits best systems where a

large amount of information can be extracted from the coded source, for instance RGB

or YUV input signals are desired. In case of a single Gaussian distribution this algorithm

does not differ much from the running average based on a probability distribution. MoG

is suitable for hardware implementation with further modifications [64], however a large

memory bandwidth constitutes a major bottleneck.

Kernel Density Estimation

A different approach for background modelling using Gaussian distribution was pre-

sented by Elgammal et al. in [65]. Here, a probabilistic distribution is used to model

the frequency of background samples not being classified as foreground objects. The

algorithm is based on the principle that such values can be presented in the form of

histogram for n recent samples.

The Kernel Density Estimation (KDE) is a non-parametric model giving the detection

probability as a sum of the most recent n Gaussians according to the following equation:

P (St) =
1

n

N∑
i=1

η(St − Si,Σi,t), (3.14)

In contrast to MoG, multiple distributions are used to model data samples over

the number of recent frames instead of modelling a single pixel using a mixture of

Gaussians. For each frame a data sample from the frequency histogram is assigned with

a single Gaussian. Therefore, a large storage is required to keep all the distributions used
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Table 3.1: Comparison of background segmentation algorithms based on background modelling with
1-5 scale referring to poor/low-strong/high respectively.

accuracy/ computational/ memory
quality implementation complexity requirement

Temporal Median Filter 2 4 5
W4 3 2 2/3
Selective Running Average 3 1 1
Predictive Filters 3/4 4 3
Mixture of Gaussians 4 4/5 4
Kernel Density Estimation 5 5 5

by the probability function. The memory requirement of this algorithm is far beyond

limitations of a standard embedded system. It is also demanding in terms of computing

power due to large amount of processing data. However, this technique reports very

good segmentation results, even operating on a single Y component from the YUV

colour space.

Background Modelling Summary

A variety of background segmentation techniques was described in this subsection. All

of them feature good quality of output data comparing with techniques discussed in

previous subsections, however these are more computationally involved and operate

on higher bandwidths. It is difficult to determine which one features the highest seg-

mentation rate since this factor is highly influenced by specification of the application,

can be also specific to the particular test case. Hence, different reviews may lead to

contradictory opinions and conclusions can be subjective [32, 33, 51].

Based on experimental simulations supported by the literature, background segmen-

tation algorithms can be classified in regard to speed, complexity and memory require-

ment as poor/low - strong/high using 1-5 scale respectively. Such a comparison is shown

in Table 3.1.

The accuracy / quality is good and acceptable for all of the algorithms. Those marked

with lower grade do not handle multi-modal scenarios, therefore they are not as re-

sponsive to both fast and slow changes to the background reference image. Although

parametric algorithms (predictive filters, MoG) feature better quality of output data

for scenes with repetitive movements, the error rate of a single scalar based algorithms

in such cases may be filtered out with noise removal applied within the data flow chain.

The major drawback of a single scalar based model is its relatively poor flexibility - it

can be very responsive with the background model updated immediately, alternatively

it can be set to change the model slowly, to avoid sudden changes in the background
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model (not susceptible to noise). This applies when the learning rate is set too high or

too low, respectively.

Both computational / implementation complexity and memory requirement are closely

related. Although computational complexity may be compensated by parallel or pipelined

architecture, the memory bandwidth in most cases constitutes the main bottleneck.

Both techniques with the highest mark, median filter and KDE, will be inefficient in

terms of hardware implementation since a vast majority of processing power will be

consumed by memory controllers on data handling. Other techniques, such as predic-

tive filters or MoG are also memory demanding, however the memory bandwidth may

be significantly reduced with a couple of assumptions keeping the detection rate still

at a high level [64]. Unquestionably, algorithms based on a single (running average) or

triple scalar (W4), are the most efficient in terms of memory utilization. The data han-

dling process is also relatively straightforward therefore they are preferable for hardware

implementation.

3.3 Algorithm Overview

Although background modelling techniques outperform other algorithms in terms of

segmentation quality, they are memory demanding, in some cases also not suitable

for hardware implementation. Moreover, the choice of algorithm is application specific

and must be tailored to particular environment. Therefore, due to limited information

that can be extracted from the source data (single component luminance IR signal),

multi-modal techniques are not much of benefit for pedestrian detection systems using

infrared cameras. In such cases, the main feature of mixture-based models can not

be successfully applied. However, in such environment a thresholding technique can

be utilized, often underestimated by system designers. This add-on to the background

model can significantly improve the detection rate at a very low cost.

Based on the experimental work in the simulator and the review provided in previous

subsections, a unique background segmentation technique is introduced. It is based on

a selective running average background modelling in conjunction with a histogram-

based feedback loop controller for adaptive thresholding, developed for the purpose of

this thesis. Hence, the system keeps memory requirement relatively low, together with

computational and implementation complexity, however it is able to quickly correspond

to both fast and slow environmental changes, covering all the scenarios for pedestrian

detection application.
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3.3.1 Background Modelling

According to the review provided in the previous section, the adaptive background

modelling based on the running average features good segmentation rates as well as low

implementation complexity. The main drawback of this algorithm is the lack of flexibility

- it does not support both fast and slow environmental changes at the same time.

Thanks to the learning rate α, the updating process can be customized and adjusted to

the particular application however it should be rather used for slow or very slow model

adjustments. Higher learning rates can cause significant loss of information stored in the

background model (foreground objects incorporated to the background too quickly).

The efficacy of background updating can be further increased by pre-classification of

input data in the process of selective running average. If the pixel is considered to be a

part of the background, the learning rate is applied and the corresponding pixel of the

background model is updated by a small percentage of incoming data. However, if an in-

put pixel was classified as a foreground element (ROI), this particular background pixel

will remain unchanged. Therefore, the background model can be updated according to

the following:

M(x, y) =

(1− α)Mt−1(x, y) + αIt(x, y) if It(x, y) ⊂ background,

Mt−1(x, y) otherwise.
(3.15)

where M(x, y) is a pixel of the background model and I(x, y) refers to input data. By

applying selective running average, the background image is sharper, this also increases

further detection rates.

The motivation behind the selection of this algorithm is its relatively low memory

consumption and a potential for further improvements with additional techniques ap-

plied. The total memory utilization is three times lower comparing with the second

memory efficient algorithm W4. It provides satisfactory segmentation rates, competing

also with other, even more involved algorithms.

3.3.2 Histogram Calculation

Histograms are commonly used in a number of spatial domain processing applications

[11, 66]. They provide great insight into the colour or grey-scale information therefore

are often used for image enhancement or statistical analysis. Basic histogram analysis

can also be a valuable source of information for segmentation purposes. As an example,

sudden illumination changes depicted in Figure 3.5 can be quantized and used for further

analysis.
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(a) (b)

(c) (d)

Figure 3.5: Two frames of IR video sequence with corresponding histograms. (a) Original video frame
with artificial noise added and brightness level increased by 10. (b) The same video frame
with the brightness level increased by 50. (c) Histogram corresponding to (a). (d) Histogram
corresponding to (b).

The histogram, depicted in Figures 3.5(c) and 3.5(d), is a discrete function h(γ) = nn

for digital image with grey levels γ ∈ 〈0, L− 1〉, with L = 28 being the maximum

intensity level for 8-bit greyscale image. The left side of the plot corresponds to the

number of dark pixels within the image, whereas the right side corresponds to the

brightest spots. Since both images feature similar medium grey intensity, histograms

for both images will be similar. The distribution of γ is uniform and shifted to the

right for the brighter image. Although changes between both images are not significant

and would not cause problems to human observer in manual pedestrian detection, most

of the computer vision systems based on the thresholding criterion would return vast

amount of noise or in some cases even fail.

Assuming the threshold criterion th being set at a fixed level of 160 (see Figure 3.5(c)),

all the grey-scale values below th would be filtered out returning detected pedestrians

together with minimal amount of background data. However, if th would be applied

on the image depicted in Figure 3.5(b), according to the corresponding histogram, the
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(a) (b)

(c) (d)

Figure 3.6: Background subtraction and intensity thresholding of images with different brightness levels.
(a) Brightness level increased by 10. (b) Brightness level increased by 50. (c) Thresholding
th = 55 applied on image a. (d) Thresholding th = 55 applied on image b.

output data would be a mixture of background and pedestrians, causing a failure of the

detection step. Though this is an artificial example, it illustrates the potential problems

of relying on a fixed threshold. Hence, support for the adaptive mechanism in order to

comply also with fast environmental changes is desired.

3.3.3 Feedback Loop Control

The feedback loop control mechanism for adaptive intensity thresholding is based on the

histogram of the source image being subtracted from the background model. Results of

the background subtraction depicted in Figures 3.6(a) and 3.6(b) correspond to images

from Figures 3.5(a) and 3.5(b) respectively. After subtraction, an intensity thresholding

filter is applied, results can be seen in Figures 3.6(c) and 3.6(d). The amount of noise in

Figure 3.6(d) is caused by the threshold level th being set too low. This situation could

be avoided by applying higher th, according to the difference in brightness between two

compared images.
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(a) (b)

Figure 3.7: Histograms of the images after background subtraction. Left peak corresponds to back-
ground pixels, whereas data in between 100 and 150 refers to the detected pedestrians.
(a) Histogram corresponding to the image from the Figure 3.6(a). (b) Histogram corre-
sponding to the image from the Figure 3.6(b).

The principle of the adaptive thresholding developed for the purpose of this thesis

is based on analysis of histograms calculated for images after subtraction. Since sud-

den environmental changes do not affect temperature of pedestrians (not immediately),

the temperature distribution for ROIs is fixed, i.e. the position of corresponding data

on histogram remains unchanged. Histograms corresponding to frames depicted in Fig-

ures 3.6(a) and 3.6(b) can be found in Figure 3.7(a) and 3.7(b) respectively. The highest

peak correlates to pixels of the background, note the peak shifted to the right for the

image with brightness level increased. However, for both frames the distribution of ROIs

remain unchanged and can be located in between 100 and 150.

In order to achieve best results, the level of threshold must be kept as low as possible.

During the initial system start-up calibration the th shall be set by the system operator.

This value will be further adjusted by the data from the feedback loop controller in

order to keep the th low however within the safe distance from the main peak of the

histogram. It was found during test verification (model of the system running in Matlab)

that Gasussian-shaped background distribution vary in position and shape, therefore

the algorithm is based on both mean and variance of the distribution. The new value

is calculated on the frame-basis and is added to the reference th value set during the

calibration.

Considering the case scenario depicted in Figure 3.5, the properly calibrated system

should have the threshold level kept low, at a level of 30 and 70 for Figures 3.5(a) and

3.5(b) respectively. In this basic example, the threshold level was increased by 40 units,

as much as the peak was shifted as a result of sudden temperature change. Results can

be seen in Figure 3.8.
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(a) (b)

(c) (d)

Figure 3.8: Background subtraction at a properly calibrated system for different temperature scenarios.
(a) Original video frame with artificial noise added and brightness level increased by 10.
(b) The same video frame with the brightness level increased by 50. (c) Background subtrac-
tion at a minimal level 30. (d) Background subtraction with the threshold level increased
by the adaptive thresholding unit up to a level of 70.

3.3.4 Algorithm Pseudo Code

The algorithm introduced in previous subsections can be described with the following

pseudo-code:

1 // i n i t i a l c a l i b r a t i o n

2 α ← i n i t i a l v a l u e

3 th← i n i t i a l v a l u e

4

5 // s t a r t frame

6 for y in y max

7 for x in x max

8 // update his togram

9 h i s t ← h i s t++

10

11 // check input p i x e l

12 i f | I (x , y ) − M t−1 (x , y ) | > th
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13 // o b j e c t de t ec t ed , don ’ t update background model

14 M(x , y ) ←M t−1 (x , y )

15 else

16 // update background model

17 M(x , y ) ← (1−α) M t−1 (x , y ) + αI (x , y )

18 end

19 end loop

20 end loop

21

22 // update thr e sho l d l e v e l f o r the consecu t i v e image scan

23 th← th + h i s t

Listing 3.1: Labelling routine pseudo-code

3.4 Hardware Implementation

For the purpose of this thesis, a novel background segmentation algorithm was developed

and implemented. Unlike other algorithms previously described in this chapter, this

technique not only provides strong segmentation capabilities but is also suitable for

efficient hardware implementation.

3.4.1 Architecture

As was described previously, this algorithm is composed of two major stages. During

the first phase foreground elements are separated from the background, followed by

update of the background model. During the second stage, extracted data is further

filtered out by the adaptive thresholding module operating in the control feedback loop

at a frame-rate.

Background Modelling

In order to enable background modelling, a reference background frame must be stored

in the memory. As a storage for the background model Dual-Port Block RAM was

used to support two independent clock domains (27MHz from video acquisition and

25MHz for video graphics adapter controller). Background subtraction is performed

on the pixel basis synchronously with the 27MHz pixel clock provided by the VDEC1

video decoder board [67]. Based on the timing signals provided by ADC, input data is

immediately grid aligned. On the incoming 8-bit data sample, corresponding background

pixel is fetched from the memory and used for the subtraction. Subtracted data is

then thresholded to determine whether the pixel shall be classified as foreground or

background. If identified as an element of background, it is then processed according to
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Figure 3.9: A conceptual block diagram of the background segmentation and model updating process.

the Equation (3.15). If current pixel contains elements of foreground, the background

model remains unchanged (selective approach for background updating). However, if

the pixel was classified as a background, the corresponding element of the background

model needs to be updated according to the following:

Mt(x, y) = (1− α)Mt−1(x, y) + αIt(x, y) (3.16)

The gain factor α is a fixed value determined during the initial calibration, typically

equal or less than 0.125. The multiplication was implemented by shift registering mul-

tiplicant with the multiplier, being a multiple of 2. Such implementation avoids the

need of complex floating point operations and saves essential clock cycles as well as

system resources involved in hardware multiplications. The process of background seg-

mentation and model updating can be seen on the conceptual block diagram depicted

in Figure 3.9.

Adaptive Thresholding

As was mentioned previously, the adaptive thresholding technique is based on the data

from histogram, calculated on the results of subtraction of the background model from

the input frame. During the initial start-up calibration, a fixed value of intensity thresh-

olding must be set. This value will be used in further processing by the adaptive ap-

proach as a reference point. Depending on environmental conditions the threshold level

will be automatically increased or decreased.

An overview of the feedback loop adaptive thresholding module can be seen in sim-

plified block diagram depicted in Figure 3.10. For the purpose of histogram implemen-

tation, a Dual-Port BRAM was used as a storage element. Port A is used by the system

to address current grey-scale level, the data becomes available in the next clock cycle.
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Figure 3.10: A block diagram of the feedback loop adaptive thresholding element.

It is then incremented and written back to the memory using port B, while port A is

used to fetch another data sample. Thanks to the pipelined architecture, histogram is

being calculated using a single block of memory, in one clock domain, with only a single

clock latency. This implementation is very small and robust, performing better than

other similar architectures [68, 69].

An analysis of the histogram is performed once the image scan is completed. It takes

the time of a single line scan to read all the memory entries and it can be further

simplified as was discussed previously in this chapter. The adaptive threshold level

is calculated using not only the mean but also the variance of the Gaussian-shaped

histogram distribution. It was found during empirical experimentation that the last

value above the level of 512 can be effectively used for this purpose. Since the histogram

was calculated on results of background subtraction, the distribution features two peaks

where the first of them is always higher since it corresponds to the background pixels,

whereas the other refers to ROIs. The cut-off region for histogram analysis was marked

with the red thin line and can be seen in Figure 3.11. A fixed value th_offset (in this

application 10) added to the latest memory location with the data sample saturated at

512 gives the current threshold level. The offset value th_offset is determined during

initial system start-up calibration. It is set at a particular level based on the visual

verification by the system operator. Such fixed value is later used by adaptive control

mechanism. No further action is required from the system operator.

Since there is no requirement for full histogram analysis, in order to further simplify

the design and reduce memory consumption, histogram samples are saturated at a

level of 512. Moreover, no further values above grey-scale level of 128 are taken into

consideration since they would not benefit in threshold level calculation. Hence, memory

requirement can be significantly reduced, in this example from memory array of 213× 8

to 29 × 7, therefore by over 18 times.
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Figure 3.11: A cut-off region for simplified histogram analysis.

3.5 Conclusions

Background segmentation is of key importance in many pedestrian detection systems.

The aim is to reduce the amount of processing data, providing results containing only

ROIs. The efficacy of the segmentation unit has a strong impact on the quality of

data further in the processing chain. Hence, a number of techniques for background

segmentation was introduced and discussed in this chapter. They differ in complexity,

as well as in memory requirement. Often, algorithms performing good segmentation

require vast amount of memory and may not be suitable for hardware implementation.

The trade-off between the quality of output data and the required processing power is

a major concern.

This chapter gives a general overview of background segmentation as well as deep

analysis of a number of known techniques. They can be classified into the following

groups:

• intensity thresholding,

• temporal difference,

• background modelling.

There is no formal comparison test case for general evaluation. There were some at-

tempts in the literature to unify the test procedure [32, 33, 51, 52], however, since

algorithms were developed for different purposes, evaluations based on different test

cases provide contradictory conclusions.
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Segmentation techniques based on intensity thresholding provide reasonably good

quality results, however this technique may be applied only to a limited number of

applications - when ROIs are considerably brighter than all the background elements.

They are suitable for robust and efficient hardware implementation. Thanks to low

complexity and high processing speed (real-time performance), it should be taken into

consideration by the system designer, possibly as part of a higher complexity algorithm.

Algorithms based on temporal difference provide much different segmentation out-

put. Results are based on the subtraction of two consecutive frames, therefore contain

objects currently in motion. These techniques are also efficient for hardware implemen-

tation, however they can be successfully applied only in fast and continuously changing

scenarios. Since they are very sensitive to noise and unreliable with slow moving objects,

they were not taken into consideration while developing the segmentation technique for

IR pedestrian detection.

However, the last group of algorithms, based on background modelling, perform

better than the ones previously mentioned, at a cost of higher complexity and increased

memory requirements. These algorithms are based on the model of the background

frame, gradually updated over the time. The principle of this technique is based on

frame differentiation - for the incoming image pixel, a corresponding element of the

background model is fetched from the memory and subtracted. Ideally, results of the

subtraction contain ROIs and may be provided for further processing. However, it is

not a trivial task to set-up a background model. Fixed background will cause multiple

false detections due to the difference with gradual changes in the source image, on the

other hand there is a risk that adaptive model will incorporate ROIs to the background

too quickly. This chapter gives an overview of background modelling with analysis of

most common techniques.

In the second part of the chapter, a description of the background segmentation algo-

rithm developed for the purpose of IR pedestrian detection was provided. This algorithm

is a mixture of multiple techniques commonly used in image processing applications.

It is based on the selective running average background model, supported by adaptive

thresholding. Such thresholding is computed based on the histogram calculated for re-

sults of background subtraction. The histogram is calculated during the run time with

only a single clock latency. Hence, the threshold level is updated at the end of the image

scan and can be applied for the consecutive frame. Thanks to adaptive thresholding, the

system is capable of segmentation in both slow and fast changing environments. Inter-

mediate results of the processing were depicted using a single image frame, randomly

selected from IR video sequence. The same image was used for different processing

stages to visualize the difference between them.
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A novel background segmentation algorithm was developed and tailored for this par-

ticular application. Unlike other algorithms described in this chapter, it is suitable

for efficient hardware implementation while providing strong segmentation capabilities.

However, it was tested in limited scope on video sequences not exceeding 10 minutes of

the continuous stream. Example video sequences used for testing as well as results of

the processing can be found in [70–75].

The chapter provides implementation details on further optimization. The pipelined

architecture based on Dual-Port BRAMs ensures real-time performance together with

efficient management of hardware resources.



CHAPTER 4

Morphology Filtering

Mathematical Morphology (MM) is a set of theoretical methodologies for image analysis.

MM describes operations that can be performed at an image pixel level in order to

quantitatively describe the geometrical structure of image objects [76, 77].

This chapter gives an introduction into mathematical morphology and basic set theory

definitions for the purpose of morphological filtering. Such filters are commonly used in

image processing in order to remove various types of noise. Based on the duality and

decomposition of erosion and dilation, an algorithm for a low-level image filtering will

be presented. For the purpose of hardware implementation, a padding problem will be

discussed and suitable solution will be described. The architecture of such a system will

be discussed together with implementation details. The chapter will be concluded with

discussion on execution time and both memory and resource utilisation.

67
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4.1 Introduction

Mathematical morphology is extensively used for computer vision applications. Morpho-

logical techniques for pre- or post-processing, such as morphological filtering are mostly

used in early stages of processing images, as low level neighbourhood operations. They

are often employed within complex systems in a series of repetitive tasks such as noise

removal [78] or edge enhancement [79].

There is a practical need for robotic vision applications to develop schemes which

effectively suppress the noise content of an image, while simultaneously extracting fea-

tures of interest required for further processing. Both erosion and dilation, which are

primary operations for most of the morphological filters, they are well suited for hard-

ware implementation. However, there is a number of ways they can be implemented;

these are often not efficient in terms of resource utilization[80–82]. Thanks to the MM

set theory features, the architecture for noise removal can be highly optimized for a

particular application.

4.2 Mathematical Morphology

Mathematical morphology was initiated in late 1960s as a theoretical methodology for

binary image analysis [76, 83]. The theory set was developed for a number of applications

in the area of geological or biomedical monochrome data analysis, whereas in the late

1970s it was extended by Serra to grey-scale images [77]. The MM was applied by

Rosenfeld and Kak [84] for binary pattern recognition techniques based on Boolean logic,

widely used nowadays in image processing applications. Further publications describe

how it was generalized to arbitrary lattices [85], also algorithms and techniques for

non-linear filtering [86].

The above-mentioned set of theoretical methodology, concepts, techniques and algo-

rithms is nowadays called morphology image processing, published in a coherent form

[11, 66], widely used as key reference texts for image processing engineers. Researchers

in different fields commonly use these algorithms for a wide range of image processing

applications, they are investigated in terms of efficient implementation for image/video

processing systems. Although most of these techniques are suitable for implementation

within modern image processing platforms, some of the complex algorithms maintain

the trade-off between algorithm complexity and implementation efficiency.
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(a) (b) (c) (d)

Figure 4.1: Set Theory Concepts. (a) Subset SE ⊆ B. (b) Union B ∪ SE. (c) Intersection B ∩ SE. (d)
Bc complement of B.

4.2.1 Set Theory

The set theory definitions presented in this subsection are based on [11] and [66]. They

will be used as a base theory in further analysis.

There are two sets taken into consideration: B and SE of 2-D integer space Z2,

where each element is a tuple (2-D vector) described with a set of features and location

coordinates (x, y). For grey-scale images represented with 3-D vectors (Z3 integer space),

all the elements within the image pixel set can be described with additional feature

that refers to the discrete intensity value. Elements of binary image sets B and SE are

referred to as components b = (bx, by) and se = (sex, sey) respectively, where the SE is

a sliding window, referred to as Structuring Element. An expression B = {b | b = −se,
for se ∈ SE} means that set B is the set of elements b, where every b is formed by

multiplying both coordinates of all the elements of set SE by −1.

The set SE is a subset of B when all the elements of set SE are also elements of the

other set, B. This is depicted in Figure 4.1(a) and can be denoted by:

SE ⊆ B (4.1)

If the set C contains all the elements of both sets B and SE as depicted in Fig-

ure 4.1(b), the relationship between both sets is referred to as union and can be denoted

by:

C = B ∪ SE (4.2)

However, if set C contains elements that belong to both sets B and SE (see Fig-

ure 4.1(c)), such set relationship is called intersection:

C = B ∩ SE (4.3)
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(a) (b) (c)

Figure 4.2: Set Operations. (a) Translation of B by z, (B)z. (b) Reflection of B, B̂. (b) Reflection
invariant B = B̂.

The complementation of set B, denoted (B)c and depicted in Figure 4.1(d), is a

set of elements that do not belong to set B :

(B)c = {b | b /∈ B} (4.4)

Translation

The translation of SE by point z = (zx, zy), denoted (SE)z, is an operation, where

the output set (SE)z contains the same components as the set SE, which are placed in

a different position on the lattice. It is depicted in Figure 4.2(a) and can be defined as:

(SE)z = {sez | sez = se+ z, ∀se ∈ SE} (4.5)

Reflection

The reflection of set SE, denoted ŜE, is depicted in Figure 4.2(b) and can be defined

as:

ŜE = {ŝe | ŝe = −se, ∀se ∈ SE} (4.6)

The output set ŜE is a reflection of set SE when all the components ŝe were formed

by multiplying both coordinates (sex, sey) of all the SE elements by −1. A special case

of reflection invariant ŜE = SE can be seen in Figure 4.2(c).
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(a) (b) (c)

Figure 4.3: Structuring Element. (a) Flat with rectangular shape. (b) Flat with diamond shape.
(c) Non - flat with diamond shape.

Minkowski Algebra

For the purpose of set operations, an equivalent to algebraic addition and subtraction

was developed by Minkowski [87] to set theory and is referred to as Minkowski algebra.

These operations will be extensively used in the further analysis.

The Minkowski set subtraction 	, called erosion, is an equivalent of the Boolean

and transformation of set B by set SE. It can be defined as follows:

B 	 SE = {b | b− s ∈ B, s ∈ SE} =
⋂
s∈SE

B−s (4.7)

and corresponds to the intersection of sets B and SE assuming that B is translated for

∀s ∈ SE. Likewise, the Boolean or transformation of set B by set SE is equivalent to

the Minkowski’s set addition ⊕ and denoted by dilation. It can be defined as follows:

B ⊕ SE = {b+ s | b ∈ B, s ∈ SE} =
⋃
s∈SE

B+s, (4.8)

and corresponds to the union of sets B and SE assuming that B is translated for

∀s ∈ SE.

4.2.2 Structuring Element

Image processing applications based on morphological operations operate on sets, where

one of them is a set containing image pixels (components) denoted by B, the other set

SE is usually smaller, called Structuring Element. Results can be obtained by probing

a sliding window (kernel) SE on B. The structure of the SE depends on the application

and the data representation. It varies in size, shape, structure or values.

For a typical morphological filtering on a binary image, a flat SE is used. Since the

B ∈ Z2, such SE contains binary data s = 0, 1, ∀s ∈ SE. An example can be seen

in Figure 4.3(a) and Figure 4.3(b). For the purpose of processing grey-scale or colour

images, a non-flat SE is used, depicted in Figure 4.3(c).
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Moreover, considering the choice of SE for particular task, there are also other factors

that have to be taken into consideration, such as size, shape and structure. These factors

have significant impact on computational complexity and memory demand and are

strongly application dependent [88]. Typically, SE is small compared to the other set.

It was found that for tasks such as random noise removal, regular shapes for SE s are

the best choice [89]. These are lines, diamonds, circles or rectangles. Moreover, wider,

rectangular-type shapes, depicted in Figure 4.3(b) can significantly improve processing

efficiency since a wide range of MM techniques can be applied. Often it is a trade-off

between computational complexity and size determined by the application requirement.

4.2.3 Erosion

Both erosion (ε) and dilation (δ) are fundamental morphological operations. In MM,

many other operations are derived from them, such as opening, closing or hit-or-miss

transform. Therefore, it is of crucial importance to develop efficient system architecture

for them in order to perform other, more complex tasks.

For both sets B and SE of 2-D integer space Z2, an erosion (ε) of B by SE is denoted

by Minkowski subtraction B 	 SE and can be defined as:

B 	 SE = {b|(SE)z ⊆ B} (4.9)

Thus it is a process based on shifting SE by z in B. An erosion of B by SE is

the set of ∀z displacements of SE contained in B. In other words, for an arbitrary

SE with centrally based output pixel, the result can be obtained by performing logic

and operation on pixels being located within the intersection of both sets. Therefore,

referring to Equation (4.7) it can be written as:

εSE(B) =
⋂
s∈SE

B−s (4.10)

An example erosion of B 5×7 by flat rectangular SE 3×3 can be seen in Figure 4.4(a)

and 4.4(b).

4.2.4 Dilation

A dilation (δ) of two sets B by SE in 2-D integer space Z2, with ∅ being an empty set,

can be denoted using Minkowski’s addition B⊕SE and defined as dilation of B by SE

as follows:

B ⊕ SE = {b|(ŜE)z ∩B 6= ∅}, (4.11)
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(a) (b)

(c) (d)

Figure 4.4: Erosion and Dilation using flat rectangular structuring element SE 3×3. (a)-(b) An example
of binary erosion εSE(B); the mask scans an image in raster order, an output as a logic
and of all the pixels overlapped by SE. (c)-(d) An example of binary dilation δSE(B); an
output is given as logic or of pixels under the SE.

which can be interpreted as shifting the reflection of SE by z in B. Therefore, the output

is one for ∀z displacements such that ŜE and B overlap with at least one non zero

element (union of sets). It can be interpreted as logic or operation on compontents,

therefore can be written as:

δSE(B) =
⋃
s∈SE

B+s (4.12)

A dilation is illustrated in Figure 4.4(c) and 4.4(d).

4.2.5 Opening and Closing

As it was mentioned earlier, by combining erosion and dilation and processing them

in particular order, other morphological operations can be created, e.g. opening and

closing. Given the ability of erosion to shrink input images (see Figure 4.5(b)) and

dilation to expand it (see Figure 4.5(c)), erosion followed by dilation is often used

for smoothering contours or removing random noise. Since an erosion is performed in

the first place, it also removes thin connections between connected components. This

operation is called opening, denoted by Minkowski’s opening B◦SE and can be defined

as follows:

B ◦ SE = (B 	 SE)⊕ SE (4.13)

Thus, the opening is a morphological operation that consists erosion followed by dilation.

Results of the opening are highly related to the size and shape of SE, therefore it has
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Opening and Closing. (a) An input image frame. (b) An image frame after erosion. (c) An
image frame after dilation. (d) An image frame after opening. (e) An image frame after
closing. (f) An image frame after opening followed by closing.

to be arbitrary defined for particular application. An example image frame before and

after opening can be seen in Figures 4.5(a) and 4.5(d) respectively.

A closing is a morphological operation containing the same sub-operations, however

here dilation is followed by erosion. Using Minkowski closing nomenclature B • SE, it

can be defined as follows:

B • SE = (B ⊕ SE)	 SE (4.14)

Likewise opening, closing also tends to smooth contours, however in contrast to opening,

it fuses thin connections between connected components, eliminates small gaps of holes

within the contour.

Both opening and closing are illustrated in Figures 4.5(d) and 4.5(e) respectively.

The difference between them becomes evident. Moreover, in order to improve filtering

capabilities, systems often employ both opening and closing that are applied one after

another, an example of such output frame can be seen in Figure 4.5(f). Since the opening

removes random noise and thin interconnections, all the image objects become smaller,

therefore morphological closing is applied to fill all the gaps and holes. In order to

customize morphological filters, different size of SE can be applied. An impact of the

SE size for morphological filtering will be discussed in further subsections.
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(a) (b) (c)

Figure 4.6: Structuring Element Decomposition. (a) Structuring Element SE 3 × 5. (b) Decomposed
SE1 1× 5. (c). Decomposed SE2 3× 1.

4.2.6 Duality

An important MM feature of erosion and dilation is that they are dual of each other

with respect to set complementation and reflection [11, 66]. This can be written as

follows:

(B 	 SE)c = Bc ⊕ ŜE (4.15)

Therefore, an erosion can be derived from complemented dilation according to:

(B 	 SE)cc = (Bc ⊕ ŜE)c ⇒ B 	 SE = (Bc ⊕ ŜE)c (4.16)

Likewise erosion, the following equation can be derived for dilation:

B ⊕ SE = (Bc 	 ŜE)c (4.17)

The duality of erosion and dilation is an important feature in MM and can be applied

in designs performing morphological operations based on erosion and dilation. With such

knowledge, the system architecture can be reduced to one operation since both erosion

and dilation can be derived from dilation or erosion respectively.

4.2.7 Decomposition

In particular scenarios, to be discussed in further subsections, the structuring element

SE can be decomposed into two smaller sets according to:

SE = SE1 ⊕ SE2, (4.18)

which means that the morphological processing based on the SE can be performed either

on the whole SE or using smaller sets SE1 and SE2 with partial results dilated. Based

on the decomposition, illustrated in Figure 4.6, a dilation defined in Equation (4.11)
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Erosion using decomposed Structuring Element SE 3× 5. (a) An input binary image frame
scanned with decomposed SE 1×5. (b) An output pixel of the current erosion. (c) An output
image frame. (d) An output image from from the previous step is scanned with decomposed
SE 3× 1. (e) An output pixel of the current erosion. (f). An output image frame.

can be written as follows:

B ⊕ SE = B ⊕ (SE1 ⊕ SE2) = (B ⊕ SE1)⊕ SE2 (4.19)

Thus, dilation using two smaller SE s costs less in terms of pixel comparisons compared

to dilation using a single large SE. The computational saving comes from the fact that

both dilations using SE1 and SE2 can be performed in parallel and generate results as

a union of both partial outputs. Moreover, the number of comparisons is significantly

reduced since the floating window is smaller. For a SE 3 × 5 the number is decreased

from 15 to 8, however for larger SEs, e.g. 5 × 9, the number can be reduced to one

third of initial value. An example of erosion using decomposed SE 3 × 5 is depicted in

Figure 4.7.

Although decomposition of the structuring element clearly gives an advantage in

terms of number of comparisons per pixel, there is a limited number of SEs that can

be easily decomposed [90, 91]. However, for the purpose of noise removal in pedestrian

detection application, a rectangular-shaped SE can be successfully used.

4.2.8 Summary

As was described in the previous subsections, mathematical morphology methodology

allows the system designer to manipulate morphological operations in order to design

an architecture that suits further implementation. Assuming the SE is both reflection



Chapter 4: Morphology Filtering 77

invariant and decomposable, SE = ŜE and SE = SE1 ⊕ SE2 respectively, the

following equations can be derived:

B 	 SE = B 	 (SE1 ⊕ SE2) = (Bc ⊕ (SE1 ⊕ SE2))c =

= ((Bc ⊕ SE1)⊕ SE2)c = (Bcc 	 SE1)c ⊕ SE2)c =

= ((B 	 SE1)cc 	 SE2)cc = (B 	 SE1)	 SE2

(4.20)

B ⊕ SE = (B ⊕ SE1)⊕ SE2 = (Bc 	 SE1)c ⊕ SE2 =

= ((Bc 	 SE1)cc 	 SE2)c = ((Bc 	 SE1)	 SE2)c
(4.21)

Thus, by combining Equations (4.15), (4.17) and (4.18), morphological operations can

be optimized in order to develop a single system architecture for both erosion and dila-

tion, using morphological erosion only. With such architecture, the system performance

can be further optimized by scaling SE according to the particular application. It shall

be small and allows for processing streaming data with minimal latency and low number

of comparisons.

4.3 Implementation

The objective was to develop and implement an architecture that would be flexible for

both erosion and dilation. It should be small and robust, capable of processing input

signal at a pixel basis simultaneously with an image acquisition in order to maintain

real-time processing performance.

4.3.1 Introduction

A known issue of morphological filtering based on the sliding window is the boundary

padding problem illustrated in Figure 4.8(a). This is caused by the fact the filter kernel

SE with the centre point positioned in the middle of the SE need to overlap such area

of an input image. There are two common approaches to overcome such a problem.

The obvious solution is to use data provided, however this will lead to trimmed output

image, depicted in Figure 4.8(b). In order to fit output image within provided frame

boundaries, additional padding pixels zeros for erosion and ones for dilation. Although

it is easy and computationally inexpensive, such a solution leads to false results and

output data can not be reliably used for subsequent processing.

An alternative solution is to insert additional padding pixels outside the frame bound-

aries, already in the processing stage, depicted in Figure 4.8(c) as grey elements. The
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(a) (b) (c)

Figure 4.8: Boundary padding problem. (a) A binary image frame. (b) An erosion of a binary image
frame without padding using SE 3×3. (c). An erosion of a binary image frame with padding
using SE 3× 3.

padded area should be filled with logic zeros or ones for dilation and erosion respec-

tively. This technique leads to a temporary resolution increase, which can be significant

in case of large SE sizes. However, an implementation of such a processing unit is

required in order to generate reliable output which does not affect input data. The

solution for processing image frame without additional solution will be described in the

following subsections.

4.3.2 Previous Work

There is a number of system implementations for image processing applications em-

ploying both erosion and dilation. Over the years their architecture improved making

the parallel processing viable and efficient.

System architectures described in [80] and [81] are based on dedicated units in order

to perform either erosion or dilation. An architecture described by Diamantaras and

Kungin in [80] features cascaded processing element where results from one unit, once

completed, are forwarded to the another through the control unit. An overview block

diagram is depicted in Figure 4.9(a). In order to compute erosion or dilation, either the

dilation or erosion unit remains idle, which leads to unnecessary resource utilisation and

extended computing time. Moreover, the SE needs to be stored in both units, which

results in additional hardware overhead.

An architecture suggested by Lucke and Chakrabarti [82] features the duality prop-

erty of erosion and dilation therefore a single processing element is suggested in order

to perform both tasks. Although, a single processing element clearly is an advantage for

simple applications (erosion or dilation), its major drawback is the large latency when

either opening or closing (erosion followed by dilation or dilation followed by erosion

respectively) is requested. This comes from the fact that only one morphological oper-

ation can be performed at a time. Moreover, it leads to significant memory overhead

since the intermediate results have to be stored before they can be processed by the

other unit. A straightforward solution to this problem would be to double the archi-
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(a) (b) (c)

Figure 4.9: System architecture for morphological filtering applications. (a) Erosion vs dilation.
(b) Erosion or dilation. (c) Erosion and dilation.

tecture and perform both operations in a pipelined fashion however this requires twice

the system resources, therefore it is highly inefficient from the implementation point of

view. A block diagram of the system architecture is depicted in Figure 4.9(b).

A trade-off between both systems in terms of hardware complexity and execution time

was suggested by Malamas et al. in [92]. The system requires a single processing element

for both erosion and dilation equipped with multiplexers to control the operation mode

of the overall processing unit. It can be seen in Figure 4.9(c). This is achieved thanks to

the duality property between erosion and dilation discussed previously. Moreover, this

approach supports decomposed SE therefore is capable of processing multiple lines in

parallel.

Modern implementations such as [89] share most of the features described above

reducing the memory bandwidth by improving memory administration. A customized

SE size for performing multiple operation in series is also supported making the design

flexible for a wide variety of processing applications.

4.3.3 System Requirements

The system architecture for morphological filtering should be small and robust, capable

of performing both erosion and dilation. It will be used as a processing unit for the

pedestrian detection system, and since pedestrians have non-uniform shapes, it has to

support flexible SE sizes.

The major requirement is that the morphological filtering unit must be capable of

processing input data simultaneously with the data acquisition module. This implies

processing pixel by pixel, line by line at a pixel clock rate, according to raster scan.

Moreover, it is important that the size of SE could be customized since pedestrians

tend to form different shapes depending on the perspective of the view, e.g. they are

thin and tall looking at the 450 angle, whereas they are wider than taller looking from the

top perspective. Hence, the width and the height of the SE have to be set accordingly.
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(a) (b)

Figure 4.10: Architecture of the delayed element based erosion unit. (a) The SE is shifted in a window
filter manner, where every element is fed by the FIFO used to stores an image line. (b) A
low-level architecture of an erosion operation.

Also, it is required for the system operator to be able to set the size of SE for both

erosion and dilation independently.

4.3.4 Architecture

In this subsection two architectures for morphological erosion and dilation will be pre-

sented. The first approach, FIR-like with delay line elements, will be described and used

as a reference design for comparison purposes. The second architecture presented within

the following subsections is based on a decomposed SE, features dual mode for both

erosion and dilation. The memory bandwidth reduction scheme was applied by splitting

each process into consecutive sub-processes. These are based on serial additions instead

of parallel comparisons.

Delayed element architecture

An interesting approach for systems with variable SE sizes was suggested by Velten and

Kummert in [93]. This paper gives an overview of different approaches for morphology

filtering, also with arbitrary SEs. A description of a 2D FIR (Finite Impulse Response)

based filtering element suitable for processing with small filter mask was provided and

discussed. Such an implementation with both pixel and line delay elements is suitable

for systems processing data at an acquisition system frequency, however the arithmetic

operators employed within the design lead to significant increase in hardware resources.

Therefore, such an approach is not recommended for implementation with larger SEs.

As was suggested, the resources occupied by the processing element can be significantly

reduced by replacing memory registers with boolean operators.

An implementation of erosion based on the delayed element architecture is depicted

in Figures 4.10(a) and 4.10(b). The SE is sliding over the image frame in a window filter
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(a) (b)

Figure 4.11: Rectangular filter mask (SE) for pedestrian detection applications. (a) Pedestrians with
rectangular bounding boxes around them. (b) Decomposed rectangular flat reflection in-
variant SE.

manner according to the raster scan. An input image data is stored within the SE using

flip-flops, whereas delayed line data is stored in FIFOs. The size of FIFO is determined

by the binary image frame width defined by Bcol parameter. The number of storage

elements is determined by SErow, which specifies the height of the SE. Once all the

elements of the SE are filled with the image pixel data, all the registers are concurrently

accessed and the and boolean operation is performed on line vectors, followed by the

global and giving the output of an erosion for the current pixel location.

Such an implementation is capable of high speed processing, at a pixel clock frequency,

therefore it can be used within streaming data systems. However, it is limited to the

fixed size SEs, where a single change in architecture implies an increase in hardware

complexity (complex management of the data storage) and requires relatively large

amount of system resources to instantiate multiple FIFOs.

An analysis of the execution time together with the memory requirement will be

provided in the following subsections for comparison purposes.

Decomposed dual architecture

Assuming a decomposable, flat and reflection invariant SE, a dual architecture for

both erosion and dilation can be suggested. Such an approach for morphology filtering is

superior in terms of memory savings and system complexity compared to the traditional

delayed element architecture [94].



Chapter 4: Morphology Filtering 82

Figure 4.12: Block diagram of the decomposed dual system architecture

For the purpose of the pedestrian detection, a rectangular SE is used. It is a com-

mon filter mask for noise removal, perfectly suited for such applications (pedestrian

silhouettes form rectangular shapes, see Figure 4.11). Moreover, flat rectangular shapes

are reflection invariant and easily decomposable. Hence, both erosion and dilation can

take advantage of the structuring element decomposition, derived from Equation (4.18)

and Equation (4.19). In comparison to the classical approach based on delayed element

architecture, the number of operations per pixel can be significantly reduced (bigger

savings for larger SEs). Other advantages of SE decomposition are further discussed

in subsection 4.2.7.

The class of flat rectangular objects is also reflection invariant, therefore dilation can

be derived from erosion (see Equation (4.15) and (4.16)) and vice versa, according to

Equation (4.17). This leads to the main conclusion: since the flat rectangular SE is used,

a system architecture for binary erosion can be also used to perform binary dilation. It

can be achieved by combining Equations (4.15), (4.17) and (4.18), which leads to the

following:

B ⊕ SE = (B ⊕ SE1)⊕ SE2 = (Bc 	 SE1)c ⊕ SE2 =

= ((Bc 	 SE1)cc 	 SE2)c = ((Bc 	 SE1)	 SE2)c
(4.22)

Therefore, from the implementation point of view, a dilation can be performed as an

erosion when both input and output data are inverted. Such implementation is small

and allows for processing streaming data with minimal latency and low number of op-

erations per pixel.

A conceptual block diagram of the decomposed dual system architecture is depicted

in Figure 4.12. It contains the following elements:

- DATA CONTROL

This unit determines input data based on the H_CNT and V_CNT synchronization

signals in order to manage horizontal and vertical padding. For (H_CNT < H_MAX)
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and (V_CNT < V_MAX), the output value is specified by the input PIXEL signal,

however once the H_CNT or V_CNT reach H_MAX or V_MAX respectively, the output

data is generated by the control unit. It is a constant value one for bSE_X/2c
consecutive clock cycles or bSE_Y/2c rows respectively. This gives sufficient amount

of time to process padding area.

- OP CONTROL

The OP CONTROL unit specifies the operation mode for the morphology filtering

module. If the ERO_DILA signal is set high, the module performs an erosion, oth-

erwise dilation.

- SE_X++

This unit refers to the arithmetic element for the horizontally decomposed SE.

Here, the number of consecutive ones is incremented until it reaches value SE_X

- 1, then the module proceeds with the SE_Y++ unit. The data is stored in tempo-

rary register using flip-flops. Once the input pixel zero is received, the register is

cleared immediately and the counter starts again. In order to manage processing

pixels close to the image left boundary, the padded area contains pre-calculated

value SE_X - 1 which is assigned to the register. This can be described with the

pseudo-code listed below:

1 i f p i x e l = 1

2 i f p ix cnt < SE X − 1

3 p ix cnt ++

4 else

5 GOTO: SE Y++

6 end

7 else

8 p ix cnt ← 0

9 end

Listing 4.1: SE X++ control unit data flow pseudo-code

- SE_Y++

This unit refers to the vertical element of the decomposed SE. Once the SE_X++

unit reaches the threshold value, the SE_Y++ unit increments the number of con-

secutive lines where the SE_X value was reached. Then, it is stored in the ROW

BUFFER storage element, which is constantly accessed for the read operation. The

unit produces one as OUTPUT only if the current pixel is one, the number of con-

secutive pixels one is equal to SE_X - 1 and the value stored in the ROW BUFFER

is equal to SE_Y - 1. In such case the value stored in the ROW BUFFER remains
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unchanged. However, if the number of pixels within the current row up to this

point is lower than SE_X - 1, the vertical counter is cleared and assigned with 0.

The operation data flow can be described with the following pseudo-code:

1 i f p ix cnt = SE X − 1

2 i f row cnt < SE Y − 1

3 row cnt++

4 else

5 OUTPUT← 1

6 end

7 else

8 row cnt ← 0

9 end

Listing 4.2: SE Y++ control unit data flow pseudo-code

With such an architecture, the number of pixel accesses is significantly reduced from

SE_Y × SE_X in case of delayed element architecture, to only SE_Y - 1. The boundary

problem is handled with padded area controlled by the horizontal and vertical coun-

ters. Whenever the current pixel is aligned in the first row or in the first column, it is

assigned with one of the two pre-calculated values SE_Y - 1 or SE_X - 1 for row_cnt

or pix_cnt respectively. On the other hand, once the border pixel for either Bcol or

Brow is reached, further data for the horizontal or vertical padded area is provided by

the DATA CONTROL unit. In such situation, a constant value one is generated for the

consecutive bSE_X/2c clock cycles or bSE_Y/2c lines respectively. This signal is constant

for both erosion and dilation. Therefore, the system designer when instantiating this

module is not obliged to interface an auxiliary serial data generator to cover padded

areas. Moreover, in video processing applications, the processing task to cover padded

areas can be handled during the horizontal or vertical blanking periods, therefore there

is no need for auxiliary temporary storage to handle input data, the system is stall free.

An erosion data flow using 3×5 SE is depicted in Figure 4.13, where the intermediate

step with current register and memory values is illustrated in Figure 4.13(b). Since

SE_Y = 3 and SE_X = 5, the top padded and the left padded areas are assigned with

values 2 and 4 respectively. Once the Bcol is reached, the horizontal padding takes

another 2 consecutive clock cycles (bSE_X/2c), whereas vertical processing time takes

additional one line scan (bSE_Y/2c). As can be seen, the output data is generated with

the latency proportional to the SE size. The output data alignment is supported by

the H_CNT_OUT and the V_CNT_OUT signals, where H_CNT_OUT = H_CNT - bSE_X/2c and

V_CNT_OUT = V_CNT - bSE_Y/2c. Values in grey refer to the padded data, pix_cnt and
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(a) (b) (c)

Figure 4.13: An erosion data flow for decomposed dual system architecture using 3 × 5 SE. (a) An
example binary input data. (b) An intermediate step, where values in grey refer to padded
data, pix_cnt and row_cnt values are displayed in grey cells, whereas black cells refer to
the ones that the output signal is generated for. The content of ROW BUFFER can be found
in the top corner of each cell, otherwise it is 0. (c) An output image frame.

row_cnt values are displayed in grey cells, whereas black cells are the ones that the

OUTPUT = 1 signal is generated for.

The processing of input image starts simultaneously with the first input pixel pro-

vided. If the first image pixel (H_CNT = 1 and V_CNT = 1) is one, the pix_cnt register

is assigned with SE_X - 1 and the system proceeds with the SE_Y++ unit. Here, the

row_cnt register is assigned with SE_Y - 1, this value is also copied to the ROW BUFFER.

In such situation, according to the Listing 4.2, the OUTPUT signal should be assigned

with 1, however this will be postponed until both horizontal and vertical output counters

H_CNT_OUT and V_CNT_OUT reach threshold values dSE_X/2e and dSE_Y/2e, respectively.

4.3.5 Module Instantiation

The morphology filtering module based on the decomposed dual architecture was de-

veloped and implemented as a fully customizable generic HDL module. Thanks to the

modular architecture it can be easily adopted by other object detection or pattern

recognition systems. The module is semi-device independent thanks to the behavioural

HDL inference templates used for memory controllers. Therefore, it can be used as a

hardware accelerator for a wide variety of FPGA-based processing systems requiring

acquisition noise removal.

The block diagram of the morphology filtering module is depicted in Figure 4.14. The

top part of the block is occupied by generic parameters specifying width and height of

the binary image and the structuring element SE. Signals depicted on the left side

refer to input signals as follows: binary pixel data, operation mode control signal for

erosion (1) and dilation (0), horizontal and vertical counters giving the coordinates of

the current location, reset and clock. To simplify the overall system architecture, the

morphology filtering module can operate synchronously with the input data controller

therefore the clock signal operates on the video source pixel clock frequency.
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Figure 4.14: Morphology filtering module block

There are three output signals supported by the morphology filtering module. The

OUTPUT signal is set high if all the pixels within the SE are ones or at least one of the

pixels is one, for erosion and dilation respectively. Two other signals refer to the SE

kernel coordinates that the OUTPUT signal is generated for.

4.3.6 Results and Performance

The morphology filtering module based on the decomposed dual architecture was de-

veloped and tested using Matlab computing environment [95]. This was followed by

VHDL implementation for hardware design using Xilinx ISE 9.2 (Integrated Software

Environment) WebPACK Design Software [96]. The system was verified and tested using

Mentor Graphics ModelSim XE III 6.3c simulator [97]. It was synthesized and routed for

both Spartan-3A [25] and Virtex-II Pro [26] Xilinx FPGA devices. The system testing

involved also visual verification using both static images stored in the embedded ROM

memory block, also real-time video signals provided by two infrared cameras: Thermo-

Vision Micron A10 Infrared Camera [98] and FLIR Systems Thermacam PM595 [5].

For comparison purposes both approaches described in this chapter were implemented

and synthesized.

While testing on video signals at a resolution of 320 × 240 pixels, it was found that

most of the acquisition noise can be filtered out from the data source with the SEs as

small as 5 × 3 or 7 × 5 pixels, whereas for VGA resolution (640 × 480 pixels) 9 × 5 or

13×7 pixels accordingly. In order to achieve satisfying results (acquisition noise removed

whereas objects remain undistorted), the noise removal unit was implemented to support

morphological opening (erosion followed by dilation). According to the literature [11],
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Figure 4.15: Block diagram of the implemented system architecture for morphology opening (erosion
followed by dilation).

an opening followed by closing gives even better filtering results, however they are

not worth increase in system complexity. Synthesis reports for implementation for all

mentioned SE sizes will be provided and discussed in the following subsection.

The block diagram of the architecture for implemented morphology opening is de-

picted in Figure 4.15. The system is pipelined therefore a single instantiation of the

morphological unit is sufficient. Such an architecture features SE_X - 1 pixel clock cycles

with SE_Y - 1 rows latency, therefore, for most of the sensor based video processing

systems it supports real-time processing performance. This can be guaranteed with the

horizontal and vertical blanking pulses, whose provide sufficient amount of processing

time to accomplish noise removal in a single image scan, even for large SEs.

Memory Requirement

The motivation for this particular module development was to implement a processing

unit that would be small and robust, processing data with low latency. Since the noise

removal module is integrated within the system as a pre- as well as post-processing

step for other blocks, the timing and associated latency are critical for the overall

system performance. Moreover, although the prototype is implemented in HDL for

FPGA development platform synthesis, the area of the synthesized block needs to be

small if further ASIC design is taken into consideration. In order to ensure such design

requirements, memory resources must be reduced to the minimum since they are known

for being the largest element of the silicon chip in terms of area occupancy.

Here, for development purposes, the module was implemented using dual-port RAM

blocks. There are two reasons for such implementation: simultaneous memory read and

write is required in order to process data according to the algorithm described in the

previous subsections, also, dual-port BRAM memory is already available within the chip
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therefore it can be used with no additional cost. Since the addressing scheme is straight-

forward, for the purpose of further implementation on ASIC, simultaneous reads and

writes can be achieved by doubling the width of the data bus [89] or by increasing the

clock frequency.

Delayed element architecture

The memory requirement for the module implementation based on the delayed element

architecture described in Subsection 4.3.4 is highly proportional to the image size and

the size of SE. For efficient implementation, image pixels within the SE should be

stored in flip-flops, whereas delayed elements within previous lines should be stored in

FIFOs implemented using BRAM memory. The number of data bits required can be

calculated according to:

memDE total = (SErow − 1) · (Bcol − SEcol + 1) + SErow · (SEcol − 1) bits, (4.23)

where the first part of the equation refers to size of the FIFO and is proportional to the

image width and the height of the SE, the second part specifies the size of data to be

stored locally in registers. The equation listed above does not include memory required

by the system to handle padded areas. Therefore, an additional SEcol
2 · SEcol data bits

for every side of the image frame must be included into the final calculus.

Decomposed dual architecture

Decomposed dual architecture features advanced memory management scheme thanks

to the use of arithmetic operators. Such implementation requires less memory than cor-

responding implementation based on the delayed element architecture. It is proportional

to the size of the SE and the image width. It is determined by the sum of word-length

required to store SEcol − 1 and SErow − 1 multiplied by the image width increased by

half of SEcol. It can be written as follows:

memDD total = dlog2(SEcol−1)e+ dlog2(SErow−1)e · (Bcol+ b
SEcol − 1

2
c) bits (4.24)

In order to handle padding area, an additional storage is required hence bSEcol−1
2 c in

the equation above.

The memory requirement for both architectures are compared and depicted in Fig-

ure 4.16. Figure 4.16a illustrates memory requirement as a function of the SE size

increasing in the image at 640 × 480 pixels, whereas Figure 4.16b gives an overview

of the difference in memory requirements for the processing unit operating on different

image sizes with the SE size proportional to the resolution of the image frame.
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(a) (b)

Figure 4.16: Memory requirement for both delayed element and dual decomposed system architectures.
(a) This plot shows function of the SE at 640 pixels width image frame. (b) This plot
shows difference between both architectures for different size image frames.

As can be seen, the difference in memory consumption between these two architectures

is significant. It increases with growing size of SE, whereas for larger image the differ-

ence is even bigger. Assuming video stream at a resolution of 640 × 480 with the SE

size 13 × 7, number of bits to be stored is 7.8 Kbits and 2.6 Kbits for delayed element

and dual decomposed architectures respectively, which gives over 300% saving in terms

of memory requirement already for such as small SE. When considering implementation

for higher resolution image frame, dual decomposed architecture is preferred.

Execution Time

In this subsection the computational complexity for both architectures will be compared.

It will be measured as a number of operations on input pixels per each output data

sample generated. The execution time will be also provided. This will be calculated in

clock cycles required to generate Brow × Bcol pixels from the time when the first pixel

is provided until the last one is generated.

The computational complexity may not affect the time required to process input data

since some of the operations can be processed in parallel. This factor is taken into con-

sideration for ASIC since it has impact on power dissipation, which can further affect

increased heat generated by the circuit.

Computational complexity

The delayed element architecture is straight-forward and easy to analyse. Depending

on the SE size, every input pixel is accessed Bcol times within each line scan and this

is repeated for the Brow lines. Therefore it is directly proportional to the SE size and
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can be expressed as a product of Brow and Bcol. The number of memory accesses per

pixel is defined by SErow for each operation due to implemented data shifting when

processed horizontally.

The architecture based on the dual decomposed processing is more complex however

it features lower computational complexity than predecessor. It requires only a single

sum and one comparison for each arithmetic block therefore just 4 operations in total

are required. In contrast to the delayed element architecture, this number stays constant

for all the SE sizes.

Execution time

In contrast to computational complexity, the execution time has direct impact on the

overall system performance. It specifies the time required to generate output data for

the whole image frame including padded area therefore can be specified as follows:

timetotal = timeframe + timepadding (4.25)

Assuming processing unit operates on the pixel data clock, the time required to pro-

cess image frame is equal for both architectures. This can be calculated according to:

timeframe = Brow ·Bcol ·
1

fpixel
[seconds] (4.26)

whereas the time required to process padding area differs for both architectures. Due to

the parallel processing nature of the SE elements, the delayed element architecture is

required to scan all the pixels according to raster scan in order to fill the SE mask. This

puts a requirement on the scanning step to feed the system with data to process top

and left padding areas, whereas for dual decomposed architecture this is already done

by the control unit. The time required to process a single side horizontal and vertical

padded area can be calculated according to:

timepadding = bBrow
2
− 1c · bBcol

2
− 1c · 1

fpixel
[seconds] (4.27)

The time specified by Equation (4.27) must be doubled for delayed element architecture

therefore it constitutes the difference between those two processing techniques.

Comparing both architectures, the dual decomposed architecture gives better results

in both aspects. Although it features both lower computational complexity and shorter

execution time, these differences are marginal in terms of processing the whole image

frame. Since the processing element is not involved in the multiple pipeline chain, this

latency can be omitted.
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Table 4.1: Resource utilisation for implementation of the morphology erosion on the XC2VP30 FPGA
with 5× 3 SE at 320×240 image size

Resource in use total

Slice Flip Flops 14 27392
4 input LUTs 126 27392
Occupied Slices 64 13696
Block RAMs 1 136

Resource Utilisation

Considering lower memory consumption, lower complexity and shorter processing time,

the dual decomposed architecture fits better system requirements therefore it was chosen

for implementation. It was implemented in VHDL and synthesised for Virtex-II Pro [26]

Xilinx FPGA. For the purpose of noise removal for infrared pedestrian detection, a 5 × 3

rectangular filter mask was chosen for the image at a resolution of 320 × 240 pixels.

Results of the synthesis can be found in the Table 4.1.

As can be seen, implementation of morphology erosion is small and does not require

significant amount of system resources. Thanks to generic instantiation and semi-device

independent HDL inference templates used for memory controllers, it is scalable and

can be can applied within other computer vision system.

4.4 Conclusions

In this chapter, a new implementation approach for morphology filtering was described.

It is based on mathematical morphology and basic set theory definitions, also intro-

duced. The architecture presented in this thesis introduces a novel approach for handling

padded areas, allowing data flow simultaneously with video acquisition.

This particular implementation was intended for removing various types of noise

when detecting pedestrians from infrared video streams. Hence, a specific flat and de-

composable scan mask was used to improve its efficacy and make the use of MM set

theory features. Therefore, it takes an advantage of the duality and decomposition of

erosion and dilation. Moreover, a discussion and solution were also provided for padding

problem to cover image pixels within the border area of the image frame.

The objective was to develop and implement an architecture that would be flexible

for both erosion and dilation. It should be small and robust, capable of processing input

signal at a pixel basis simultaneously with an image acquisition in order to maintain

real-time processing performance. Moreover, the system had to support flexible SE sizes

since the pedestrians tend to form non-uniform shapes.
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The implementation is based on MM set theory concepts such as subset, union, inter-

section, translation and reflection together with an equivalent of algebraic subtraction

and addition referred to as Minkowski algebra. Based on these morphological opera-

tions, an optimized version of noise removal algorithm based on morphology erosion

and dilation was developed for hardware implementation. Such implementation takes

an advantage of the fact that erosion and dilation are dual of each other with respect

to set complementation and reflection [11, 66].

As a reference point, an implementation based on delay-element (classical) architec-

ture was described, also used for comparison purposes. Such implementation, based on

sliding filter, is capable of high speed processing, at a pixel clock frequency, hence it

suits streaming data systems. However, due to non-generic architecture, it is limited to

fixed size SEs.

In comparison, assuming flat and reflection invariant SE, a dual architecture for

both erosion and dilation was suggested. This approach for morphology filtering is

superior in terms of memory utilization and system complexity. It gives a significant

savings in terms of number of operations per image pixel, which could be beneficial when

processing higher resolution images with larger SEs. The module was implemented to

support both erosion and dilation in a single architecture, by using logic inverters on

input and output of the module. Moreover, the support for padding reduces system

complexity since there is no need for auxiliary serial data generators to be instantiated

within the data flow.

The module was developed and tested in software using Matlab, this was followed

by successful implementation in VHDL for Virtex-II Pro Xilinx FPGA, as a generic

HDL module. Thanks to the modular architecture it can be adopted by other object

detection or pattern recognition systems. It is semi-device independent thanks to the

behavioural HDL inference templates used for memory controllers. Therefore, it can be

used as a hardware accelerator for a wide variety of FPGA based processing systems

requiring noise removal.

In terms of memory utilization, the dual-decomposed architecture features better

compared to the classical approach for noise removal. It gives even greater margin when

processing on higher resolution images, however it is already 300% more efficient when

operating on VGA image frame with SE size 13×7. Such data was calculated based on

analysis of memory requirements derived for both architectures, using Equations (4.24)

and (4.23).

The dual decomposed architecture features also significant savings when considering

number of pixel operations per single output sample. This is a result of processing

based on decomposed scan mask. In terms of execution time they perform similar, with

marginal advantage when processing padded areas. This implementation features novel
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model of memory architecture developed for the purpose of real-time processing within

streaming data system.

In summary, an architecture for morphological noise removal is small in terms of

resources utilization, capable of real-time processing, features low memory requirement

and is suitable for further ASIC implementation. It is suitable for a variety of video

processing applications with flexible size flat rectangular SE.



CHAPTER 5

Connected Component Labelling

Connected Component Labelling (CCL) is a fundamental feature of many computer

vision systems. It allows the assignment of unique identifiers (labels) to different, disjoint

groups of pixels (connected components). Once it is completed, a variety of features, such

as position, size, width, height, etc., can be extracted for every connected component.

These features can be further used for other processing, such as classification or tracking.

Hence, the process of labelling constitutes a significant stage in automated surveillance

or pattern recognition systems.

A typical real-time video processing embedded system involves the following stages:

firstly, the video source is processed by one of the background separating algorithms.

In this step the foreground objects, often referred to as Regions of Interest (ROIs), are

subtracted from the background model. Results of this operation are forwarded to the

filtering and thresholding units where the acquisition noise is removed. By applying a

thresholding filter to the processed data, the image is binarized, therefore the amount

of information is significantly reduced. From now on, groups of connected pixels refer

94
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to the detected objects, however to allow classification or tracking, the data has to be

further processed by one of the mid-level vision grouping techniques.

CCL algorithms analyse binary images in order to distinguish disjoint groups of pixels

(here objects) and assign them with individual labels. The use of grouping techniques

changes the type of units being processed. Before the transformation the image units

were pixels, whereas after the transformation they are called regions or segments and

are composed of groupings of pixels. Once all the labels are distinguished, a variety of

property measurements can be made on them, this step is called feature extraction.

The data features such as position, size, width, height or Centre of Gravity (CoG) are

calculated for each object and can be used for statistical pattern recognition or tracking

analysis. The operation sequence beginning after the acquisition noise removal until the

region property measurement and statistical pattern recognition is called connected

component analysis [10].

This chapter gives an introduction into CCL techniques. An insightful analysis of the

memory requirement and the processing time for chosen algorithms will be provided. In

the remainder of this chapter, a detailed description of the single pass CCL algorithm

will be provided together with a deep analysis of the architecture for hardware imple-

mentation. This will be concluded with experimental results and discussion on further

improvements.

5.1 Introduction

Connected component labelling is an operation where groups of connected pixels (con-

nected components) are classified as disjoint objects with unique identifiers (labels).

This operation can be described as assigning a unique label l taken from a set of in-

tegral values L ⊂ N, to each connected component. Thereby, an input binary image

frame B ∈ Z2, where all the pixels p ∈ B correspond to the background or to the

foreground objects (Fb = 0 or Ff = 1 respectively), is transformed into a frame, where

each pixel is represented by a decimal value (label) being an identifier of the connected

component CCk it belongs to. Here, 1 ≤ k ≤ K and K defines the total number of

connected components within the frame. Labelling of B can be written as g : B 7→ N,

where g(x, y) is described as:

g(x, y) =

Fb if B(x, y) = Fb,

lk if p(x, y) ∈ CCk.
(5.1)
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Figure 5.1: A typical label collision

5.1.1 Labelling

The process of labelling is illustrated in Figure 5.1. According to Rosenfeld and Pfaltz

[99], who described the classical approach for CCL, the following stages can be distin-

guished:

- assign a label 0 if the pixel forms part of the background;

- if only the current pixel was found as a foreground element, assign a new label;

- if only one of the neighbouring (adjacent) pixels was already labelled, assign its

label to the current pixel;

- if two or more of the neighbouring pixels were labelled with different identifiers,

assign the lower label to the current pixel and store both of them in the equivalence

table for further merging;

5.1.2 Label Collision

A common problem many of the CCL algorithms struggle with is label collision, caused

by the ”U” shaped objects. This is when during the progressive scanning two of the

neighbouring pixels to the current pixel location are already labelled with different

identifiers. A typical label collision is depicted in Figure 5.1.

Since the image is scanned in raster scan order, the first foreground pixel encountered

will be the pixel denoted as p1. According to the classical approach for CCL [99], this

pixel will be assigned with a new label. During the successive line scan, assuming the

8-neighbourhood connectivity, pixels directly below the pixel p1 will be assigned with

the same label, however the pixel p2, despite the fact it belongs to the same object, will

be assigned with a different label.

The reason for pixel p2 being labelled with different identifier is caused by the fact

there is no momentary information about its affiliation with the same object as pixel p1
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belongs to. The label collision will occur when the pixel p3 will be encountered as two

of its neighbouring pixels are already assigned with different labels. A typical solution

for this problem is to record label equivalences in auxiliary arrays and keep scanning

the image while during the second or one of the consecutive image scans all the label

ambiguities will be resolved. How to address label collision problem is further discussed

in the following subsections.

5.1.3 Feature Extraction

In computer vision, feature extraction is a process when the input data is transformed

into a reduced representation set of features. The extracted set of features represents

the relevant information from the input data in order to perform the desired task, e.g.

classification or statistical pattern recognition.

There is a wide range of features that can be extracted from binary image B. Most

common used by classification or tracking algorithms are position, size, width, height,

CoG, colour or texture. The size is determined by the number of pixels within the

connected component and can be calculated as moment-zero M00 according to:

Mij =
∑
x

∑
y

xiyiB(x, y). (5.2)

Position, width and height of the object can be calculated in the simplest form using

two coordinates of the bounding box (top-left and bottom-right). The CoG coordinates

however can be calculated according to the following equation:

x =
M10

M00
, y =

M01

M00
. (5.3)

Both the colour and texture features can be extracted by superimposing labelled

object mask on the input colour image. An example image with extracted features

based on the binary motion mask is depicted in Figure 5.2. It is important to define the

set of features suitable for particular application, for instance extracted texture does

not bring as much information as position or size when tracking.

In video processing surveillance systems, feature extraction constitutes a significant

processing stage. Since most applications do not require uniquely labelled object mask,

the classical approach for labelling [99] can be significantly improved in terms of speed,

memory usage and computation power reduction. This will be addressed in the further

subsections.
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Figure 5.2: An example connected component with extracted binary features

5.2 Literature Review

The way that CCL algorithms distinguish disjoint groups of connected pixels and assign

them with unique identifiers has changed over the years. This section gives an overview

of how the CCL algorithms evolved since the initial release.

5.2.1 Labelling Algorithms

• Rosenfeld and Pflatz (1966) - the classical approach for CCL was described by

Rosenfeld and Pflatz in [99]. This algorithm requires two passes through the binary

image, also a large matrix to store label equivalences. The first scan is performed

as described in Subsection 5.1.1. Whenever the label collision is encountered, both

labels are recorded in an equivalence matrix. During the second scan, connected

components are re-labelled based on information stored in the equivalence matrix.

As a result, after two scans through the image, each connected component is

assigned with a unique label.

The main drawback of this algorithm is a necessity of using equivalence matrix,

which for more complex images (higher number of label collisions) can be very

large. This implies a long processing time before final labels could be assigned.

• Nassimi and Sahni (1980) - the CCL algorithm described by Nassimi and

Sahni in [100] was designed for highly specialized mesh-connected parallel com-

puters (MCC), called SIMD (Single Instruction Stream, Multiple Data Stream)

platforms. That was one of the first attempts for implementation of CCL using

parallel processing systems.

The implementation of this algorithm requires great amount of logic resources.

Also, due to its complexity, the size of an input image frame has to be limited to

small arrays.
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• Haralick (1981) - an iterative algorithm which does not require any auxiliary

storage for label equivalences was introduced by Haralick in [101]. This technique

involves multiple forward and backward raster scan passes through the image until

no label change occurs. All the label collisions are solved on the local neighbour-

hood basis.

This algorithm was designed for systems with limited memory resources processing

on low resolution images. The performance of this algorithm is highly related to

the size and the complexity of the input data thus it is not recommended for

higher resolution images.

• Lumia, Shapiro and Zuniga (1983) - the CCL algorithm by Lumia et al. [102]

was introduced as improvement to both previously described serially processing

algorithms. It employs the local equivalence table where only labels within the

current line are stored. Hence, the equivalence table size will not exceed the line

width. The image is scanned multiple times until no label change occurs, how-

ever thanks to the use of the local equivalence table, the number of scans was

significantly reduced compared to the algorithm proposed by Haralick [101].

This approach proved to be more efficient in terms of processing time. Thanks to

reduced size of the equivalence table, memory requirements were also reduced.

• Samet and Tamminen (1986) - a description of the CCL algorithm based on

the Union-Find approach together with empirical results can be found in [103].

Label equivalences are decoded using rooted trees as depicted in Figure 5.3(a).

This research proved that there is a quasi linear solution for typical labelling

problems. This algorithm requires two progressive scans through the image. Al-

though it is not the most efficient implementation for the CCL, the union-find

approach became very popular and was commonly used in a number of future

CCL implementations.

Recent research proved that implementations of the labelling algorithms based

on the union-find approach are more efficient and less memory consuming when

rooted trees are exchanged with the array-based structure, see Figure 5.3(b).

• Chang and Chen (2003) - a new variation of the CCL algorithm based on

the contour tracing approach was introduced by Chang and Chen in [104]. It is

based on improved techniques previously described in [105] and [106]. They claim

a single pass through the binary image is sufficient in order to label all the objects

within the image frame.

Although there are implementation limitations caused by the architecture require-
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(a) (b)

Figure 5.3: Equivalence labels encoding. (a) Equivalence labels encoded using rooted tree. (b) An array-
based structure.

ments (e.g. random access to all the image pixels), it was proved that this approach

gives superior results comparing with other labelling algorithms.

• Suzuki, Horiba and Sugie (2003) - a new approach for CCL based on multiple

image scans [101] was introduced by Suzuki et al. in [107]. The image is being

scanned multiple times in forward and backward directions, while one-dimensional

table, which memorizes label equivalences is used for uniting equivalent labels. The

proposed algorithm has a desirable characteristic: the execution time is directly

proportional to the number of pixels in connected components in an image.

Since the algorithm is based on the sequential local operations, there is no need

to employ large equivalence tables, which often require large amount of memory

resources and processing time. The execution time is directly proportional to the

number of pixels in connected components within the image. Thanks to the use

of local operators, it is suitable for hardware implementation.

• Bailey and Johnston (2007) - a new technique for connected component anal-

ysis based on the single pass through the binary image was described in [108]. It

does not comply with traditional sense of CCL. Instead of using a second image

frame to store labelled object masks in order to extract their features of interest,

they are calculated simultaneously with the input data being provided to the sys-

tem. This ensures real-time processing speed. Also, there is no need to buffer an

input image frame, hence the memory requirement can be significantly reduced.

Although the single pass technique does not complete the labelling in the tradi-

tional sense, results of the processing are sufficient for most of the image processing

applications. The significant memory savings together with high throughput make

this algorithm an interesting alternative.
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5.2.2 Summary

The problem of labelling dates back to the beginnings of the computer vision. In this sec-

tion a chronological review of the main CCL algorithms was provided. These algorithms

significantly differ in data management and execution time. They can be classified into

the following groups:

(a) two scans,

(b) multiple scan,

(c) parallel,

(d) contour tracing,

(e) single pass.

Algorithms from the group (a) are based on the classical approach for CCL developed

by Rosenfeld and Pflatz [99]. They share a key feature which is the constant number

of two scans through the image frame. They evolved significantly over the years. The

amount of additional storage for label equivalences was reduced thanks to the use of the

array-based union-find approach and their performance improved. They are currently

the most popular algorithms for computer-based image processing applications, e.g.

Matlab Image Processing Toolbox [109]. Thanks to the constant processing time they

can be applied to real-time video processing systems, however they require relatively

large amount of memory to output frame with label equivalences. Therefore they are

not the suitable choice for memory limited embedded systems. An example FPGA

implementation of such an algorithm can be found in [110].

Multiple scan algorithms can be easily implemented in hardware as they are based

on sequential local operations. They also do not occupy significant amount of memory

resources since they do not require auxiliary storage for label equivalences. However,

since the processing time (number of image scans) is highly dependent on the image

complexity, they cannot be applied for applications where the time is of critical impor-

tance, e.g. surveillance systems. The architecture aimed for FPGA devices based on a

serial and recursive CCL algorithm can be found in [111].

The group (c) contains algorithms highly specialized for parallel processing platforms

that are not suitable for ordinary computer architectures. These systems often are based

on one logical processing element per pixel. An example of such an implementation was

described in [112]. These algorithms, although suitable for FPGA implementation, re-

quire great amount of logic resources. Recent implementations proved to be less resource

consuming however they are still too large for implementation using a single device.
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An FPGA-based processing platform capable of processing an image frame while the

image is loaded was proposed by Mozef et al. in [113].

The contour tracing algorithms are an interesting alternative to the ones described

previously. Their main feature is the contour tracing approach for CCL. In contrast

to algorithms classified in groups (a) and (b), the contour tracing approach does not

comply with the raster scan. Instead, it requires a random access to the image pixels

(here contour pixels). This implies an initial image scan in order to buffer an input

frame. Despite this, the contour tracing algorithm proved good efficiency as well as

lower memory requirement comparing with algorithms based on the progressive scan.

An example of a successful hardware implementation can be found in [114].

The last group (e) of labelling algorithms is relatively new and was developed specifi-

cally for streaming data systems. Only one scan per image frame is required in order to

extract features of interest for all the connected components. This allows to significantly

reduce the processing time as well as the amount of required memory. Although, re-

sults of the processing (extracted features) are sufficient for most object detection and

counting systems, the algorithm is not applicable to applications where the labelled

object mask is required. An example of FPGA-based implementation can be found in

[115, 116].

In this section a variety of CCL algorithms were introduced and classified into five

general groups. The aim of this review was to compare their capabilities for real-time

video processing. Due to obvious reasons, two of the listed groups will not be taken into

consideration in further analysis: firstly, the multiple scan algorithms due to variable

processing time, and secondly, the parallel algorithms due to large resource requirements

even for lower resolution image frames. Other algorithms that comply with real-time

CCL processing criteria will be further analysed in the following subsections.

5.3 Algorithm Analysis

In this section the following groups of CCL algorithms will be taken into consideration:

- classical approach,

- contour tracing,

- single pass.

All of them proved real-time video processing capabilities. The performance together

with their memory requirements will be discussed in detail. They will be calculated for

a binary image frame with R rows and C columns. As a result, one of the algorithms

will be chosen for hardware implementation.
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(a) (b)

(c) (d)

Figure 5.4: Classical approach for CCL. (a) Assign a new label for a foreground pixel. (b) Repeat the
previous step. (c) Store both labels in the equivalence table. (d) Scan the image once again
and reassign labels with the ones from the equivalence table.

Table 5.1: Equivalence table

provisional label equivalence label

1 1
2 1
3 3
4 -

5.3.1 Classical Algorithm

The classical approach for CCL requires two consecutive scans through the binary

image frame. During the initial scan (see Figure 5.4), foreground pixels are assigned

with preliminary labels, whereas label collisions are stored in the equivalence table,

as can be seen in Table 5.1. During the consecutive image scan, all the labels are

reassigned with the ones stored in the equivalence table. Once the image frame is labelled

completely, features of interest can be extracted. This step takes another image scan

however the classical algorithm can be optimized in order to complete labelling and

feature extraction within two scans.
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Table 5.2: Classical algorithm memory requirement for variable image size with up to CCmax = 255
objects per frame

R C FE ET total
[pixels] [pixels] [Kbits] [Kbits] [Kbits]

320 240 4 585 1,281
640 480 5 585 3,355
1024 768 5 585 7,668

Memory Requirements

It is difficult to estimate the exact amount of memory required by the classical algorithm

due to the fact it depends on the image complexity (number of label collisions). It can

be calculated according to:

memtotal = dlog2(CCmax + CClcol + 1)e · (R× C)+

+memET +memFE ,
(5.4a)

where

memET = dlog2(CCmax + CClcol)e · (CCmax + CClcol), (5.4b)

and

memFE = (2 · dlog2(R)e+ 2 · dlog2(C)e) · (CCmax), (5.4c)

where CCmax defines the maximum number of connected components, CClcol number

of label collisions, d·e is an operator rounding · to the nearest upper integer and the

+1 comes from the fact that 0 is a preoccupied label. The frame resolution is deter-

mined by the number of R rows multiplied by the number of C columns. The Equation

(5.4b) specifies the amount of memory required by the equivalence table, whereas the

last equation memory required by the table which accumulates extracted features of

the connected components. Each memory location stores coordinates of two points

((xmin), (ymin)) and ((xmax), (ymax)) that correspond to the top-left and bottom-right

points of the rectangular bounding box respectively. With this data both position and

size of the connected component can be calculated.

Assuming one label collision per connected component, the total amount of required

memory for three different image sizes: 320 × 240, 640 × 480 and 1024 × 768 with

CCmax = 255 objects per image frame was calculated and can be found in Table 5.2.
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Execution Time

As it was mentioned previously, the classical algorithm requires two consecutive image

scans in order to label all the objects within the image frame. In order to extract fea-

tures such as position, size, bounding box, etc., the classical approach for CCL requires

additional image scan. However, with improved data administration, the third image

scan can be dismissed [108]. Processing complex images with multiple label collisions

can be time consuming (large equivalence table). For hardware-based video processing

system this can be completed during horizontal or vertical blanking periods. Hence,

during the second image scan all the preliminary labels can be reassigned with the ones

from the already preprocessed equivalence table. The total execution time will not ex-

ceed two image scans and can be written as timeexe = 2 · (R × C) + b, where b is the

time required to unify equivalence table during the vertical blanking period between

two scans. Therefore, it can be omitted and results in timeexe = 2 · (R× C).

5.3.2 Contour Tracing Algorithm

The contour tracing algorithm for CCL developed by Chang and Chen [104, 117] is

an interesting alternative to algorithms based on the progressive scan. Here, the image

frame is also scanned in raster order, however thanks to the contour tracing capability,

all the connected components can be distinguished in a single image scan as the problem

of label collisions does not apply.

In order to label a binary image frame, the input image has to be buffered in the

memory. The image is scanned until a foreground pixel p(x, y) = Ff is encountered as

depicted in Figure 5.5(a). The complete trace of the contour is performed until the same

pixel is reached again, see Figure 5.5(b). The contour pixels are labelled with index lk

for L ⊂ N, where 3 ≤ k ≤ K and K defines the total number of connected components

within a frame. Also, horizontal neighbouring pixels are labelled with the border label

(lk = 2). Once the contour is labelled completely, the index k is incremented by 1 and

the algorithm resumes scanning step, as depicted in Figure 5.5(c). At this point, one of

several pixels can be encountered:

- background pixel: p(x, y) = Fb,

- unlabelled foreground pixel: p(x, y) = Ff ,

- already labelled contour pixel: p(x, y) > 1,

- horizontal border pixel: x = C.

When background pixel is encountered, the algorithm keeps scanning the image and

no further action is required. However, for p(x, y) = Ff , the algorithm starts the contour
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(a) (b)

(c) (d)

Figure 5.5: Contour tracing approach for CCL. (a) Look for the foreground pixel and start tracing the
contour. (b) While tracing, assign horizontal neighbouring pixels with border label. (c) Fill
interior areas with labels and keep scanning until a new contour pixel is encountered. (d)
Keep scanning until all the components are labelled completely.

tracing procedure as described above. Once the border pixel p(x, y) = 2 is encountered,

the algorithm reads the label of the subsequent contour pixel p(x, y) = lk and keeps

scanning within the contour pixels while label lk is assigned to all the pixels p(x, y) = Ff

until another pixel p(x, y) = 2 is encountered. Once the last pixel in a row is reached

(x = C), the scan continues from the first pixel in the next row according to raster

scan.

However, not all the connected components within a binary image are solid blobs,

they may contain holes. The contour tracing algorithm traces internal contours in the

same manner as described above. Some pixels may be both internal and external contour

pixels at the same time. In order to avoid tracing them multiple times, the surrounding

border label lk = 2 is used. A detailed description of the contour tracing algorithm

implementation can be found in [117].

Memory Requirements

Unlike CCL algorithms based on the classical approach, the amount of memory required

by the contour tracing algorithms is constant for a specified number of connected com-

ponents. It varies in direct proportion to the image resolution and can be calculated

according to:
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Table 5.3: Contour tracing algorithm memory requirement for variable image size with
up to CCmax = 255 objects per frame

R C FE total
[pixels] [pixels] [Kbits] [Kbits]

320 240 4 158
640 480 5 619
1024 768 5 1578

memtotal = dlog2(CCmax + 3)e · (R× C) +memFE , (5.5)

where memFE is derived from Equation (5.4c) and +3 comes from the fact labels 0, 1

and 2 are already preoccupied by background, foreground and reserved labels respec-

tively. In comparison with Equation (5.4a), assuming one label collision per connected

component (CCmax = CClcol), algorithms based on the classical approach require ad-

ditional (R× C) bits.

Moreover, memory requirement for the contour tracing algorithm can be significantly

reduced. It comes from the fact that labelling algorithms are often employed in order to

extract features of interest for detected objects and the uniquely labelled object masks

are not needed. For those applications contour pixels for all the connected components

can be assigned with the same label lk = 3 whereas their features can be still extracted.

Hence, memory requirements can be calculated according to:

mem 2-bittotal = 2 · (R× C) +memFE . (5.6)

The Table 5.6 shows the difference between the regular and the reduced 2-bit approaches

for CCL based on the contour tracing.

Execution Time

The total execution time is determined by the number of memory operations on the

image frame. During the initial image scan, all the image pixels are written into the

labelling memory simultaneously with data acquisition. The second image scan however

involves additional read/write operations for the contour tracing procedure. Since the

number of contour pixels to be traced depends on the image complexity, it is difficult

to determine the number of pixel operations, but it will not exceed R × C operations.

Hence, the total execution time can be written as timeexe ≤ 3 · (R× C).
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Figure 5.6: Classical algorithm memory requirement for the regular and the reduced 2-bit approaches
for variable image size with CCmax = 255 objects per frame

5.3.3 Single Pass Algorithm

The data management for the single pass algorithm significantly differs from other

previously discussed algorithms. Firstly, since they operate on the streaming data, there

is no need to buffer an input image. Secondly, all the features of interest can be extracted

while the data is provided to the system, an output image with labelled object masks

does not have to be stored neither. This allows to significantly reduce the amount of

memory required by the system.

In order to extract features of interest in a single image scan, the algorithm requires

fully pipelined architecture. There are multiple memory units required, such as Line

Buffer (BUF), Lookup Table (LOOKUP) and Data Table (DATA), depicted in Figure 5.7(b).

The BUF stores all the labels assigned within the last line. The LOOKUP is a data table used

to manage pointers/equivalence labels and the DATA is used to store all the extracted

features of interest.

Once the new foreground pixel p(x, y) = Ff is appointed, a new label lk is assigned

and stored in the BUF at location x. Simultaneously, features for this object are extracted

and stored in the DATA table at location lk. If the label collision is encountered (pixel

p4) as can be seen in Figure 5.7(a), both labels stored in the BUF at (x− 1) and (x+ 1)

need to be merged as well as their features. Also, the LOOKUP needs to be updated.

A detailed description of the single pass algorithm will be provided in the subsequent

section. A block diagram of the single pass algorithm operation overview is depicted in

Figure 5.7.
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(a) (b)

Figure 5.7: Single pass approach for CCL. (a) Scan the image frame in raster order. (b) Memory reg-
isters. Values recently changed are underlined, "-" indicates empty cell, "x" previously
assigned value, "+" stands for an update.

Memory Requirements

According to the description of the single pass algorithm in [108], the amount of re-

quired memory is proportional to the image size (the width of the image to be precise),

the maximum number of connected components per frame and the number of label

collisions. Hence, the total memory requirement can be calculated according to:

memtotal = memBUF +memLOOKUP +memDATA, (5.7a)

where

memBUF = dlog2(CCmax + CClcol + 1)e · C, (5.7b)

memLOOKUP = dlog2(CCmax + CClcol + 1)e · (CCmax + CClcol), (5.7c)

and

memDATA = (2 · dlog2(R)e+ 2 · dlog2(C)e) · (CCmax + CClcol). (5.7d)

In further subsections a detailed description of the algorithm with improved memory

management will be provided. With this approach, the problem of label collisions will

not affect the demand for memory resources, the sum of CCmax + CClcol in Equations

(5.7b) to (5.7d) can be reduced to CCmax with a little overhead which can be omitted.

The algorithm also uses small amount of operating memory for label merging and

data handling. However, it is small enough to be ignored. The memory requirement for

improved implementation was calculated and can be found in Table 5.4.
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Table 5.4: Single pass algorithm memory requirement for variable image size with
up to CCmax = 255 objects per frame

R C DATA BUF LOOKUP total
[pixels] [pixels] [Kbits] [Kbits] [Kbits] [Kbits]

320 240 4 2 2 9
640 480 5 4 2 11
1024 768 5 7 2 14

Table 5.5: CCL algorithms comparison table for 640× 480 image size with CCmax = 255

memory requirement execution time
CCL algorithm [Kbits] [clock cycles]

Classical approach 3, 355 = 2 · (R× C) + b
Contour tracing 619 ≤ 3 · (R× C)
Single pass 11 = (R× C) +m

Execution Time

The analysis of the execution time for the single pass algorithm is straightforward.

The algorithm requires a single scan through the image frame with a little overhead m

for label merging that can be handled during horizontal blanking periods. Hence, the

execution time can be written as timeexe = (R× C) +m.

5.3.4 Conclusions

In this section three major groups of CLL algorithms were described and analysed in

terms of execution time and memory consumption. All of them meet real-time video

processing requirement. They are also suitable for hardware implementation. The com-

parison table for memory utilisation and execution time is presented in Table 5.5. More-

over, the Figure 5.8 gives a graphical comparison of memory requirement for CCL al-

gorithms with variable image size 320× 240, 640× 480 and 1024× 768 pixels, with up

to CCmax = 255 connected components per frame.

In comparison, both the classical and the contour tracing algorithms feature similar

capabilities. The contour tracing algorithm requires less memory resources, whereas the

classical approach can guarantee constant processing time in two image scans. However,

the single pass approach outperforms both the previously mentioned algorithms in all

the compared aspects. This comes from the fact the single pass algorithm does not

require stalled input image prior to labelling neither the output labelled frame in order to

extract objects’ features. Moreover, the algorithm can operate simultaneously with the

data acquisition system on the pixel clock frequency (the lowest frequency for real-time
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Figure 5.8: Memory requirements for labelling algorithms with CCmax = 255 objects per image

processing), whereas other algorithms provide results at the same rate while operating

on twice (or three) times higher frequency.

In overall, the single pass approach for CCL operates at least twice faster compared

to other algorithms. When operating on 640× 480 pixels and up to CCmax = 255 con-

nected components per image frame, it requires up to 299 and 55 times less memory

resources comparing with classical approach and the contour tracing algorithms respec-

tively. Hence, the single pass algorithm was chosen for the hardware implementation.

5.4 Implementation

Based on the overview provided in the previous subsections, the single pass CCL al-

gorithm was chosen for hardware implementation. This algorithm outperforms other

techniques in terms of memory requirement as well as execution time. It is capable of

extracting features of interest such as position, width, height, size and CoG in a single

pass through the binary image frame.

In this section a unique approach for CCL feature extraction will be described. Since

it is based on the single pass CCL algorithm, the raster scan labelling ambiguities

comply and will be discussed. An overview of the system architecture will be provided

with detailed description of the system components. This includes description of module

instantiation. The section will be concluded with experimental results and performance

analysis. This will be followed by conclusions and discussion on further improvements.

5.4.1 Introduction

Thanks to the low memory requirement and short execution time the single pass algo-

rithm for CCL was adopted for a wide range of image processing applications [118–120].
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Although, all of them feature single line labelling buffer, they differ in data adminis-

tration and memory management. The architecture of implemented algorithm is deter-

mined by the set of features to be extracted.

The relatively straightforward approach for single pass CCL was developed and de-

scribed by Pedre et al. in [118]. All the labels within the last line are kept in the stack.

If the current pixel is a foreground pixel p(x, y) = Ff , two of the adjacent pixels are

checked whether they are already labelled: the one on the left p(x − 1, y) and the one

directly above p(x, y − 1). The current pixel is assigned with a label according to the

classical labelling routine as described in subsection 5.1.1. However, if the label colli-

sion occurs, the smaller label is chosen and all the occurrences of the other label within

the stack are overwritten with the smaller label. All the stack entries are updated in a

single clock cycle. Although this algorithm allows to label and extract features for the

”worst-case-scenario” input stream in a single image scan with minimal overhead, an

implementation of such algorithm requires great amount of logic resources due to the

use of comparators and multiplexers for every stack entry. Therefore, it should not be

considered for higher resolution video signals.

Other implementations, such as [115] and [119], process data serially, with most of

the memory elements implemented in BRAM embedded memory blocks. Such an ap-

proach guarantees lower complexity and occupies less hardware resources. Therefore, it

is suitable even for smaller FPGA devices. However, it was not specified whether it can

handle the ”worst-case-scenario” - multiple cross mergers within a single line. This issue

will be further discussed in the following subsections.

Algorithms described in [115, 116] and [119, 120] were developed on the pointer based

approach. Therefore, every time labels are merged, not only the label line buffer (BUF),

but also the pointer Lookup Table (LOOKUP) is updated. The LOOKUP keeps pointers to

all the labels stored within the BUF. The pipelined system fetches data from the BUF (the

label of the top-adjacent pixel) and then looks in the LOOKUP for its equivalence label.

Thanks to the LOOKUP the size of the system architecture can be significantly reduced.

The architecture of the algorithm described in the following subsections is based on

the 4-neighbourhood connectivity N4(p) mask. Since it allows to extract the same set

of features of interest as the system based on the 8-neighbourhood connectivity N8(p)

mask, it guarantees lower complexity system architecture.

5.4.2 Single Pass Algorithm

An implementation of the single pass algorithm described in these thesis is based on the

pipelined pointer based approach. An overview of the system architecture is illustrated

in Figure 5.9. As can be seen, there are multiple memory units involved, such as DATA,
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Figure 5.9: System architecture block diagram

BUF and LOOKUP to store processing results, labels assigned within the last line and

their pointers, respectively. They will be described in the following subsections. The

MERGER STACK together with MERGER & DATA CONTROL unit were implemented in order

to manage multiple cross mergers. A unique ”label-reuse” approach was developed and

embedded within the LABEL CONTROL unit to keep the memory requirement as low as

possible. All these memory and control blocks will be described in detail in the following

subsections. This architecture assures correct object detection and feature extraction

even for the worst case scenario binary input data.

Scan Mask

An input data is provided to the detection module on the pixel basis, according to the

raster scan. The current pixel p(x, y) = Ff or p(x, y) = Fb is stored in the register

E, located at the position (x, y) of the scan mask Ms, introduced in Chapter 2. The

register D, located at position (x − 1, y) stores the label assigned in the previous clock

cycle. This data was shifted in the window filter manner from the register E after it was

stored in the BUF. The label of the second adjacent pixel located at (x, y−1) is stored in

the register B. The data for this register is provided by the LOOKUP. The register C was

employed in order to read previously calculated features from the DATA for one clock

cycle in advance.
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(a) (b)

Figure 5.10: Multiple label merge in a single line scan. (a) Traditional approach. (b) Label-reuse ap-
proach.

Label Selection

The current location is assigned with a label according to the classical labelling routine

described in subsection 5.1.1. If the label collision occurs, a common approach is to

use the lower label and rewrite the pointer in the LOOKUP. This approach (lower-label

first) simplifies the way multiple mergers are resolved - the lower label (the one assigned

earlier during the raster scan) is always used as a pointer for other labels [116, 118, 119].

The Figure 5.10(a) illustrates two objects requiring multiple mergers. Once the label

collision occurs, the label 1 is used as a pointer for labels 2 and label 3. Similar situation

applies to the second object - both labels 5 and 6 within the LOOKUP are overwritten

with label 4. After the merging, higher labels are disposed, they will not be used any

more. This is an inefficient use of memory resources.

For the purpose of this implementation, the label-reuse approach was developed. As

can be seen in Figure 5.10(b), labels 2 and 3 that were merged with label 1 within

the first object were also used for the second detected object during the image scan.

This approach however requires additional circuitry for label selection control, labels

are assigned based on their extracted features. Therefore, a random access to the DATA

memory is required. These issues will be discusses in the following subsection.

Lookups

The LOOKUP equivalence table is in the key importance of the pointer based single pass

algorithm implementation. It is hard-wired to the BUF and gives current pointers to all

the labels assigned within the last line. Let us consider a ”W ” shaped object in the

binary image illustrated in Figure 5.11. Once labels 1 and 3 are merged, the LOOKUP

pointer for label 3 is updated with 1, hence the next occurrence of label 3 in the BUF

will be pointing to the label 1. In most cases this approach is sufficient. The problem

of cross mergers will be further discussed.
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Figure 5.11: ”W” shaped object

Mergers

All the algorithms based on the raster scan struggle with the label collision problem. In

a typical video processing application the data to be merged is not usually as complex as

examples presented in this subsection, however they have to be taken into consideration

for the system integrity.

There are two chains of mergers illustrated in Figure 5.12. For every merger depicted

in Figure 5.12(a) the LOOKUP will be updated immediately therefore at the end of the

line scan all the BUF entries will have their pointers in the LOOKUP updated. Once the

pixel ”?” is appointed, it will be assigned with label 1.

The chain of mergers depicted in Figure 5.12(b) is more complex and requires different

approach for label merging. After the first merger the LOOKUP will be updated as follows:

(4 ← 3), whereas during the next merger the lower label will be updated according

to: (3 ← 2), similar with the last merger: (2 ← 1). Therefore, once the pixel ”?” is

appointed, it will be assigned with label 3. In order to obtain its correct identifier, the

LOOKUP would have to be accessed a number of times (4 → 3, 3 → 2, 2 → 1). Due

to the variable execution time, it can not be accepted for real time video processing

applications. A straightforward solution would be to search through the whole LOOKUP

every time merger occurs and check whether the current merger does not affect one of

the previous mergers. However, this may be time consuming and could affect further

data analysis. The other solution would be to access all the BUF entries and update

them with new data. Such an approach, suggested by Pedre et al. in [118], does not

involve the LOOKUP, however it would require concurrent access to all the memory cells

which results in great demand for hardware resources. Therefore, it is not suitable for

higher resolution image arrays.

An interesting alternative was suggested by Bailey and Johnston in [108]. For every

merger with the lower label assigned to the left-adjacent pixel, the LOOKUP is updated

immediately. However, for mergers with the top-adjacent pixel assigned with the lower
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(a) (b)

Figure 5.12: Merger chain. (a) Descending labels. (b) Ascending labels.

label, both labels are pushed onto the MERGER STACK, all the ambiguities could be

resolved at the end of the line scan, in the reverse order. Hence, the image is scanned

without delays. According to the binary image depicted in Figure 5.12(b), every couple

of labels to be merged is pushed onto the MERGER STACK as follows: 4 & 3, 3 & 2, 2 &

1, whereas at the end of the line scan, the LOOKUP is updated in the following order:

1→ 2, 2(1)→ 3, 3(1)→ 4. As a result, the pixel ”?” will be assigned with the label 1.

This approach involves implementation of a stack unit, it also involves additional

circuitry to manage label mergers during the horizontal blanking period, however it

results in a relatively small resource utilisation comparing with other solutions.

Data Table

The purpose of Data Table memory module is to store extracted features. It was depicted

as DATA in Figure 5.9. It is accessed through the label pointer stored in the LOOKUP.

Since the label-reuse approach applied, the merger routine does not depend on the label

numbers as in [108, 116]. This implies an update of ymin values for both the labels in

DATA.

5.4.3 Architecture

The architecture of the detection and feature extraction unit was developed as fully cus-

tomizable generic HDL module. It was developed in VHDL (Very-high-speed integrated

circuit Hardware Description Language) using behavioural HDL inference templates to

incorporate embedded memory modules. Other storage elements such as stack unit were

also developed in VHDL. This approach is semi-device independent, therefore design

files can be used for other implementations as third party IP. The block diagram of the

system architecture was depicted in Figure 5.13. All the system blocks will be described

in the following subsections.
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Figure 5.13: System architecture block diagram

BUF FIFO

The BUF FIFO is a line buffer used to store all the labels assigned during the line scan.

The write operation is performed every clock cycle if the current pixel p(x, y) is located

within the visible area of the image frame (x < C and y < R). Every memory location

is assigned with the number of the current label 0 ≤ lk ≤ CCmax, the address width is

determined by the image width C.

Since the BUF operates on the pixel clock synchronously with the image scan, the data

read from the buffer is accessed for three pixels in advance to allow the LOOKUP and

DATA time margin to access data before it will be processed by the LABEL CONTROL unit.

The constant simultaneous read and write operations require dual-port architecture of

the BUF memory unit.

LOOKUP TABLE

The LOOKUP memory module is hard-wired with the BUF and is accessed every time the

BUF read operation is issued. All the label processing is performed on the data read

from the LOOKUP. Moreover, every time during the image scan a new label is created,

the pointer to this label is written to the memory. There are two cases when the write

operation is issued - when two labels are merged therefore an immediate update of the

LOOKUP is required, also during the stack-based merging during the horizontal blanking

period. Therefore, a dual-port memory architecture is required. The size of this memory
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module is defined by the maximum number of connected components per image frame,

which was determined based on the simulation results performed on experimental video

sequences.

DATA TABLE

The DATA memory is of key importance for the implementation of the single pass CCL

algorithm. This is where all the extracted features of interests are stored. This data is

constantly used during the image scan in order to distinguish disjoint connected com-

ponents. Once the image scan is completed, it can be forwarded for further processing,

e.g. classification or tracking. It is the largest memory unit within the object detection

module, also implemented as a dual-port RAM. The size of DATA is determined by the

maximum number of connected components (CCmax), and the image size (R×C). The

minimal implementation requires both horizontal and vertical coordinates for top-left

and bottom-right pixels to be stored. This results in (2·dlog2(R)e+2·dlog2(C)e)·(CCmax)

bits of data.

The extracted features are written into the DATA whenever the first background pixel

is encountered after a series of foreground pixels (E = 0 and D 6= 0). The read operation

however is issued every time the BUF changes and the LOOKUP 6= 0. In order to reduce

the number of read and write memory operations, the data used to calculate features

of the current connected component is stored in temporary registers.

MERGER STACK

The STACK unit was developed as a Last-In First-Out (LIFO) memory element in order

to store both (or more) labels to be merged. These mergers are resolved at the end

of the line scan, in reverse order. The size of the STACK unit is relatively small, was

determined during experimental simulations. Therefore, it can be implemented using

distributed memory without affecting BRAM resources.

This memory module support two independent read and write control signals. They

are asserted for a single clock cycle to perform read or write operation respectively. The

write operation takes place during the line scan when label collision occurs, whereas the

read operation is issued during the stack-based merging in horizontal blanking period

only.

LABEL CONTROL

The LABEL CONTROL is one of the two major control units embedded within the de-

tection module. It is responsible for label selection according to the classical labelling
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routine. The label being assigned to the register E is selected using data stored in regis-

ters B, D and data features calculated for these labels by the MERGER & DATA CONTROL

unit. The labelling routine can be described with pseudo-code listed below:

1 i f E = 0

2 E ← 0

3 else

4 i f B = 0

5 i f D = 0

6 E ← new labe l

7 else

8 E ← D

9 end

10 else

11 i f D = 0

12 E ← B

13 else

14 //merger

15 i f y top (D) > y top (B)

16 // 1

17 // 2 1

18 // 2 2 x

19 E ← B

20 STACK ← push [D, B]

21 e l s i f y top (D) < y top (B)

22 // 1

23 // 1 2

24 // 1 1 x

25 E ← D

26 LOOKUP(B) ← D

27 e l s i f ( y top (D) = y top (B) ) and (B 6= D)

28 // 1 2

29 // 1 2

30 // 1 1 x

31 E ← B

32 STACK ← push [D, B]

33 else

34 E ← D;

35 end

36 end

37 end

38 end

Listing 5.1: Labelling routine pseudo-code
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The label choice is straightforward until the label collision is appointed (see line 13).

Due to the label-reuse approach, the label selection can not be solely based on the

label numbers of adjacent pixels as it takes place in other algorithms. The comparison

is based on coordinates calculated for top pixels from both labels. The following cases

apply:

- (y top(D) > y top(B))

Lines 15 - 20 refer to the situation when the connected component left-adjacent

to the current pixel was labelled after the top-adjacent one. In this scenario the

label stored in the register D will not occur again in the current line scan, hence

the register E is assigned with the label stored in B. Moreover, both labels are

pushed onto the MERGER STACK. At the end of the current line scan all the labels

within the STACK will be updated with most recent pointers to avoid situation

depicted in Figure 5.14(a), where the pixel ”?” is assigned with label 2, already

merged with label 1, therefore not valid any more.

- (y top(D) < y top(B))

Here we take into consideration the opposite situation to the one discussed above.

Lines 21 - 26 refer to the merger where label stored in B will not occur at the left

side of the label stored in D, however it can be still be appointed in the BUF during

the current line scan, as depicted in Figure 5.14(b). Therefore the immediate

update of the LOOKUP is required.

- (y top(D) = y top(B) and B 6= D)

The code listed within lines 27 - 32 refers to the situation when both objects

were appointed for the first time during the same line scan. This case has to be

taken into consideration since the label stored in D could be involved in one of the

other mergers within the current line, as depicted in Figure 5.14(a). Hence, the

stack-based LOOKUP update.

- In all other cases the register E will be assigned with the last known label stored

in the temporary register.

The LABEL CONTROL unit was implemented according to the label-reuse technique.

The label-reuse approach is based on the First-In First-Out (FIFO) storage element

where redundant labels are collected for further use. This FIFO operates synchronously

with the labelling routine and the size is determined by the image width C. In the

worst case scenario the binary image requires enough storage for C/4 labels, however

according to simulation results, typical binary image does not exceed C/10 mergers per
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(a) (b)

Figure 5.14: LOOKUP and STACK based merging. (a) The left-adjacent label could be already merged in
the line scan therefore the STACK-based merging is required. (b) The top-adjacent label
can still occur in the BUF during the line scan hence the immediate LOOKUP update.

line therefore the FIFO is relatively small and can be implemented in distributed logic.

The label-reuse technique can be described with the pseudo-code listed below:

1 // c o l l e c t l a b e l

2 i f E = 1

3 i f B = 1 and D = 1

4 //merger

5 i f y top (D) > y top (B)

6 LAB FIFO ← [ y , D]

7 e l s i f y top (D) < y top (B)

8 LAB FIFO ← [ y , B]

9 e l s i f ( y top (D) = y top (B) ) and (B 6= D)

10 LAB FIFO ← [ y , D]

11 end

12 end

13

14 // r e t r i e v e l a b e l

15 else

16 i f B = 0 and D = 0

17 i f (LAB FIFO empty = f a l s e ) and (LAB FIFO(1) < y−1)

18 E ← LAB FIFO(2)

19 else

20 E ← new labe l

21 end

22 end

23 end

Listing 5.2: Label-reuse technique pseudo-code

As can be seen in the Listing 5.2, every time the merger occurs, one of the labels

together with the current line number are written into the LAB_FIFO. The line number

stored in the FIFO is used as a control signal - once a new pixel is appointed, it is
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compared with the current line number. If the difference is greater than 1, the label

stored within the FIFO can be used. Since the line number stored within the LAB_FIFO is

accessed every time the new pixel is appointed, the First-Word Fall-Through (FWFT)

FIFO support is required [121]. The FWFT provides the low-latency access to data

thanks to the ability to look ahead to the next word available from the FIFO without

having to issue a read operation.

MERGER & DATA CONTROL

The MERGER & DATA CONTROL unit is responsible for managing mergers and extracting

features of interest, as well as for the data administration. It also manages control

signals for all the memory blocks within the module.

The stack-based merging was implemented to manage the chain of multiple cross

mergers within the single line scan. The process of merging starts at the end of the

active line scan and is performed according to the pseudo-code presented in Listing 5.3.

1 while STACK empty = f a l s e

2 i f merg ing s ta te = ” i n i t ”

3 STACK re ← 1 ;

4 index ← STACK(1)

5 LOOKUP addr B ← STACK(2)

6 merg ing s ta te ← ”merger ”

7 e l s i f merg ing s ta te = ”merger ”

8 STACK re ← 1

9 LOOKUP addr A ← index

10 LOOKUP A ← LOOKUP B

11 index ← STACK(1)

12 LOOKUP addr B ← STACK(2)

13 merg ing s ta te ← ”merger ”

14 end

15 else

16 STACK re ← 0

17 merg ing s ta te ← ” i n i t ”

18 end

Listing 5.3: Stack-based merging pseudo-code

The stack-based merging was implemented as a Finite State Machine (FSM) and in-

volves the following operations:

(a) read data from the STACK (both labels to be merged),

(b) set the second label as the LOOKUP address in order to read its pointer,
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(c) set the first label as the LOOKUP address and rewrite this memory location with

the pointer of the second label,

(d) disable the STACK read operation, finish merging.

The series of read and write memory operations requires multiple clock cycles however

with efficient implementation it can be pipelined with a throughput of one merger per

clock cycle. This can be achieved only with the dual-port architecture of the LOOKUP

where the port B is constantly used for read and the port A for write. Moreover, it

ought to be synthesized in the write-first mode (Read After Write). This will further

reduce the system latency. It is useful when a chain of labels needs to be merged, e.g.

1 → 2, 2(1) → 3, 3(1) → 4, etc. The STACK also supports the FWFT feature therefore

the stack-based merging starts immediately at the end of the active line scan.

The DATA CONTROL unit can be customized during the synthesis to extract a number

of different features for connected components during the image scan. They are listed

below:

• Position, object height and width

The minimal implementation of the single pass algorithm supports extraction of

the top-left and bottom-right corners for the bounding box for each object. With

this data its position as well as the width and height can be easily calculated.

• Object counter

Gives the number of detected connected components. It is implemented with a

single comparator to check at the end of the image scan whether the data stored

in the DATA is valid or not for every memory location. The sum of positive com-

parisons gives a number of objects in the current frame.

• Size

The size gives a number of foreground pixels p(x, y) = Ff within the connected

component. It is calculated for each object and is implemented with an additional

entry in the DATA, incremented every time the p(x, y) = Ff is encountered. Once

two labels are merged, their sums are added together.

• CoG

The implementation of the CoG extraction is more complex. Both moments M01

and M10 are calculated in the same manner as size (moment M00, see Equation

(5.2)). In order to calculate CoG coordinates, a division is required. For this task,

the Pipelined Divider IP Core from Xilinx Core Generator [122] was employed.

The implementation of the CoG extraction causes little increase in hardware com-

plexity and requires relatively large amount of memory.
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Figure 5.15: Object detection module block

5.4.4 Module Instantiation

The object detection with feature extraction based on the single pass CCL algorithm

was developed and implemented as a fully customizable generic HDL module. Thanks

to the modular architecture it can be easily adopted by other object detection or pat-

tern recognition systems. It was developed using behavioural HDL inference templates

therefore it is semi-device independent and can be used as a hardware accelerator for a

wide variety of FPGA-based processing systems.

The object detection module is depicted in Figure 5.15, where vectors on the top of the

diagram refer to the generic variables defining the total number of objects, the binary

width of this number and horizontal as well as vertical size of the image frame. Signals

depicted at the left side refer to input signals as follows: binary pixel data, horizontal

and vertical counters (specify position within the image frame), reset and clock. The

detection module operates synchronously with the input data controller therefore the

clock signal operates on the video source pixel clock frequency.

The object detection module can be instantiated in a minimal form (signals written

in black) with the single bit bounding box control signal which asserted whenever the

current pixel location belongs to the rectangle box bounding one of the connected

components. Such implementation simplifies debug and allows for visual verification,

with no external logic analyser required. The OBJ_ID output vector shall be used to

indicate the current object.
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(a) (b)

Figure 5.16: Binary image frame with multiple mergers. (a) Image frame with points of interest. (b)
Image frame with label assignment.

5.4.5 Results and Performance

The CCL module was implemented in VHDL using Xilinx ISE (Integrated Software

Environment) WebPACK Design Software [96] and simulated in Mentor Graphics Mod-

elSim simulator [97]. The final implementation was tested using both Spartan-3A [25]

and Virtex-II Pro [26] Xilinx FPGA devices.

The object detection unit was verified and tested with complex images containing

multiple cross mergers in order to fulfil the ”worst-case-scanario” criteria. An example

image is depicted in Figure 5.16(a), whereas the Figure 5.16(b) gives an overview of

how labels are assigned during the image scan.

Since the image is scanned in raster order, all the pixels p1, p2, p3 and p4 will be

assigned with unique labels. During the consecutive line scan, multiple label collision

occurs when pixels p5, p6 and p7 are appointed. While merging, the LOOKUP is imme-

diately updated for labels assigned to pixels p2, p3 and p4. Hence, when the pixel p8

is appointed, the LOOKUP entry for the top-adjacent pixel refers to the label assigned

to pixel p1. Moreover, all the labels that were overwritten in the LOOKUP while merged,

they will be accumulated in the LAB_FIFO so they could be further reused. Once the

pixel p9 is appointed, the first label will be taken from the LAB_FIFO, the second one

will be assigned to the pixel pA. Once the pixel pB is appointed, another label collision

takes place, however this time both labels are pushed onto the MERGER STACK and the

merger will be resolved at the end of the line scan. When the last active pixel in the line

scan is reached, the system starts stack-based merging routine. The LOOKUP for label

assigned to pixel pA is updated with the one from pixel p8. The redundant label will be

also accumulated by the LAB_FIFO. Once the STACK is empty, the system returns to the

scanning routine. A new pixel is appointed at pC , it will be assigned with the first label

available at the output of the LAB_FIFO. The pixel pD however will be labelled with

the incremented global label number, even the LAB_FIFO is not empty. This is caused
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Table 5.6: Video sequence analysis, resolution 320×240 pixels

Sequence 1 Sequence 2 Sequence 3

Max no. of objects per frame 9 6 8
Mean no. of objects per frame 4.3 1.8 2.7
No. of image frames in a sequence 1800 1800 1824

by the fact the label collision at pB took place in the line directly above, therefore it

does not comply with the condition stated in the 17th line of the Listing 5.2. However,

it can be used in the consecutive line. At pixel pF both adjacent labels are pushed onto

the MERGER STACK and the system keeps scanning with the older label. Similar situa-

tion happens at pixels pG and pH . At the end of the line scan, the STACK contains the

following pairs: (pE , pC), (pC , p9), (pD, p9). These mergers need to be resolved in the

reverse order they were accumulated. The first pair (pD, p9) is processed according to

the routine previously described for labels (pA, p8), it also applies for the second pair

of labels (pC , p9). The last merger can be also performed in a single clock cycle thanks

to the fact the LOOKUP was synthesized in the write-first mode. The LOOKUP entry for

the label assigned to the pixel pE is overwritten with the one written in the previous

clock cycle for label assigned to pixel pC . This labelling routine allows the assignment

of the correct label when the pixel pI is encountered.

Resource Utilisation

Based on the video analysis for three different scenarios, the maximum as well as the

mean number of connected components per video frame was determined (see Table 5.6).

The peak number of objects for PAL video signals did not exceed 10, however this refers

to the simulation with the system properly calibrated (low volume of noise). The mean

value oscillated around 2-4 objects per frame.

All the generic parameters of the object detection unit can be set with suitable

values thanks to the data summarized in Table 5.6. Since the number of connected

components per image frame does not exceed 255, the TOTAL_OBJ number is set to 255

(with L_BIT = 8). The maximum resolution of the video source is currently limited

by the VDEC1 Video Decoder Board [67] with ADV7183B Video Decoder chip from

Analog Devices. It supports NTSC, PAL and SECAM input signals therefore after the

video source adjustment (cropped active video area), system parameters are set to 320,

9 , 240, 8 for H_MAX, X_BIT, V_MAX and Y_BIT respectively.

For the purpose of resource utilisation analysis, the CCL module was synthesized as

a top-level file. It was found the size of the MERGER STACK has critical impact on the

overall system resource utilisation. The synthesis results summarized in the Table 5.7
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Table 5.7: Implementation and resource utilisation for the XC2VP30 FPGA implementation

Resource in use total [%]

Slice Flip Flops 2321 27,392 8
4 input LUTs 2209 27,392 8
Occupied Slices 2081 13,696 15
Block RAMs 3 136 2

Resolution [pixels] 320×240
Frame rate [fps] 60
Speed [MHz] 25
No of CCmax 255

were collected for the system with 8-bit width STACK address bus, whereas a change into

6-bit address width significantly reduces demand for system resources (4%, 4% and 8%

for Slice Flip Flops, 4 input LUTs and Occupied Slices respectively). The instantiation

of the stack-based merging circuit results in a large combinational logic circuit with

16-bit 256-to-1 (or 64-to-1 for 6-bit address width) multiplexer for the data read signal.

The STACK is synthesized as 4096-bit (1024-bit respectively) register.

The system was tested with a wide variety of test images, also with real-time video sig-

nals. Results were verified with on-screen data as well as using external logic analysers.

The system is capable of processing video streams without the need for buffering input

data. This significantly reduces memory requirement. The synthesis of such a system

architecture results in lower resource utilisation comparing with other implementations

previously mentioned in this chapter.

Optimization

The labelling module described in this chapter is capable of processing real-time video

streams with a high throughput at the video source pixel clock frequency. Therefore,

since the video source is provided on the pixel basis, all the data features can be ex-

tracted and forwarded for further processing immediately after the image scan is com-

pleted. With the increasing resolution of the video signal, the system would require more

memory in order to store extracted features of interest, however even for high-resolution

images this can be handled in a single FPGA using embedded BRAM.

In order to further reduce memory consumption, the ”memory-reuse”approach should

be considered. The principle is analogical to the label-reuse approach described in pre-

vious subsections. Once the component is labelled completely, extracted features stored

in the DATA memory block should be transmitted to the external system for further

processing. The table entry could be re-used during the image scan, therefore both the



Chapter 5: Connected Component Labelling 128

BUF and the LOOKUP sizes could be reduced (smaller number of labels). This approach

could be highly beneficial for systems with a high volume of acquisition noise.

5.5 Conclusions

In this chapter an overview of connected component labelling algorithms was given, a

fundamental feature of many computer vision systems. Following the literature review, a

discussion on memory requirement and resource utilization for hardware implementation

was provided. This was followed with implementation details of the algorithm based on

the single pass approach.

The literature review consists of algorithms grouped as follows:

- processing an image in two consecutive passes through the frame,

- multiple scans, with the number of scans depending on the image complexity,

- parallel algorithms, processing a number of pixels at a time,

- contour tracing techniques, following the contour of the object,

- single pass algorithms processing data sequentially in one scan through the image.

An overview for each group was provided together with a discussion on suitability

for hardware implementation within a real-time video processing system. Therefore,

aspects such as processing time, memory consumption and resource utilization were

taken into consideration. The label collision problem caused by the ”U” shaped objects

was introduced and a discussion on how it affects the overall system performance was

provided.

Based on the discussion provided, algorithms from the following groups were consid-

ered for the implementation: two passes, contour tracing and single pass. In comparison,

both the classical approach (two passes) and the contour tracing algorithms share simi-

lar features. The contour tracing algorithm requires less memory resources, whereas the

classical approach can guarantee constant processing time in two image scans. However,

the single pass approach outperforms both the previously mentioned algorithms in all

the compared aspects. Thanks to the advantageous architecture, it does not require

an auxiliary storage for neither input image nor output labelled frame, being the main

drawback for other algorithms. Moreover, it is capable of processing input data simulta-

neously with the image acquisition, providing extracted features immediately at the end

of the image scan. Therefore, it is at least twice faster compared to other algorithms.

Thanks to the shortest processing time and the lowest memory utilisation, the single

pass algorithm was chosen for the final implementation.
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The second part of the chapter gives implementation details of the algorithm based

on the single pass approach with unique memory management and label-reuse tech-

nique applied. This constitutes part of the contribution since known implementations

struggle with memory resources. An overview of the system architecture was provided

together with detailed description of the system components. The architecture of the

algorithm described is based on the 4-neighbourhood connectivity N4(p) mask. This

was chosen over the 8-neighbourhood connectivity N8(p) mask due to lower complexity

while providing the same set of features.

For the purpose of this implementation, the novel label-reuse approach was developed.

It allows labels previously assigned and merged during the image scan to be used for new

objects, once the labelling and merger of the current connected component is finished.

This approach is particularly beneficial for video streams, where multiple label collisions

occur. Thanks to improved memory management, the majority of memory entries can

be reused.

The system implementation was developed in VHDL as a customizable generic HDL

module. Thanks to the modular architecture and the use of behavioural HDL infer-

ence templates for embedded memory modules, the system is semi-device independent,

therefore it can be applied within other object detection or pattern recognition systems.

The final implementation was verified and tested on both Spartan-3A and Virtex-

II Pro Xilinx FPGAs. It was tested using still images stored in ROM to emulate the

worst-case-scenario as well as on live data provided by the video stream.



CHAPTER 6

System Integration

This chapter gives an overview of the IR pedestrian detection system implemented in

VHDL and targeted on XUP V2P FPGA development board. It provides an overview

of the system components, gives details on implementation and the overall system inte-

gration. The purpose of this chapter is to illustrate how system components described

in these thesis, designed as hardware accelerators, can be instantiated in a real-time

video processing platform. Moreover, an introduction into implementation of tracking

algorithms on embedded processor core will be also provided as possible extension to

the project for future work. The chapter will be concluded with experimental results

collected from the system running in real-time, processing pre-recorded IR video se-

quences.

130
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Figure 6.1: An overview of processing platform together with auxiliary system components.

6.1 Development Platform Overview

This section gives an overview of the processing platform and other system compo-

nents used for the purpose of this project. HDL drivers for system components were

implemented in VHDL, synthesised, built and verified on FPGA device from Xilinx.

For this task Virtex-II Pro XC2VP30 FPGA chip was used [26], embedded within XUP

V2P Development Board provided by Digilent Inc [28]. The board features a number

of ports and auxiliary connectors, therefore various external devices can be interfaced.

As an input video source FLIR Systems Thermacam PM595 IR camera was used [5].

Video signal from the camera (PAL) was digitized by VDEC1 Video Decoder Board

from Digilent Inc [67]. For the purpose of control and configuration push buttons and

slide switches were used, as well as standard PC keyboard equipped with PS/2 interface.

Results of the processing become available on the monitor display for visual verification.

Output data could be also also transmitted to the external device using BlueSMiRF

Bluetooth device [123]. An overview of the processing platform together with system

peripherals can seen in Figure 6.1.

6.1.1 XUP V2P Development Board

For the development purposes, XUP V2P Development Board from Digilent Inc. was

used. The board features comprehensive collection of peripherals, as follows: XSGA

video output; user LEDs, switches and push buttons; AC97 audio CODEC and stereo

amplifier; 10/100 Ethernet PHY; RS-232, PS/2, Serial ATA and multi-gigabit transceiver

ports; up to 2GB DDR SDRAM DIMM module; 5V tolerant expansion headers as well

as high speed expansion port. The main advantage of the board is the FPGA chip

Virtex-II Pro with fair amount of internal memory and two embedded processor cores.
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6.1.2 FPGA Chip with Embedded PowerPC

The on-board FPGA device, Virtex-II Pro XC2VP30, features 30,816 Logic Cells,

18×18-bit multiplier blocks, two PowerPC processor cores and 2,448 Kbits of block

RAM (136 blocks). Such amount of embedded memory is sufficient for implementation

of video processing algorithms operating on lower resolution images (QVGA in 8-bit

grey-scale). Thanks to PowerPC processor cores, embedded system development can be

speeded up with the use of internal control registers through designated software tools.

6.1.3 Video Decoder

The VDEC1 Video Decoder Board from Digilent Inc. was used for the purpose of

analogue to digital video conversion. It is based on ADV7183B Video Decoder chip from

Analog Devices [124]. The chip features three 54MHz 10-bit ADCs and provides 12-bit

output data at a rate of 27MHz. Such data is encoded to ITU-R BT.656 video format,

which defines the colour space, number of samples and sampling format. Thanks to the

custom interface, redundant data can be disposed simultaneously with data acquisition.

Hence, output of the decoding unit can be immediately used for the processing.

6.1.4 System Peripherals

For the purpose of debug and visual verification, a monitor display was interfaced

through the XSGA video port. A VGA controller was created according to VESA stan-

dards, providing live output at a rate of 60fps. A preview of the video source and

intermediate processing is of key importance during the start-up calibration.

In order to transmit detection results to the PC, BlueSMiRF Gold Bluetooth module

from SparkFun was interfaced via expansion connector. Thanks to supported standard

UART interface, a bidirectional communication link was established to allow further

configuration and control also remotely from the PC. A reliable link can be achieved for

mid-range distances (up to 10 m), with the data transmission rate of 115,200 bps. Fur-

ther details on link controller and a description of the successful system implementation

with software-based control panel running on the PC can be found in [30].

Although Bluetooth link is reliable and provides additional configuration flexibility,

for the purpose of laboratory experimentation it was replaced with slide switches and

push buttons. However, for additional settings and more configuration options (limited

number of on-board switches), an interface for standard PS/2 keyboard was provided.
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6.1.5 IR Camera

The video processing system was tested with two different IR cameras: a ThermoVision

Micron Infrared Camera featuring a 164×128 Indigo VOx uncooled microbolometer

sensor array and a FLIR Systems Thermacam PM595 equipped with 320×240 uncooled

microbolometer focal plane array. The temperature range of the ThermoVision Micron

in the standard package is 00C to 400C, where the scene temperature may reach up to

1500C. This camera delivers performance and features typically found in larger and more

expensive infrared systems. The second camera provided by FLIR Systems supports

temperature range of −400C up to 5000C. Thanks to higher resolution and greater

robustness, as well as the ability run on the battery (portable), the second camera was

selected as the preferred choice.

6.2 Video Data Acquisition from IR Camera

As it was mentioned in Section 6.1, VDEC1 video decoder board was used for the

purpose of IR video acquisition. The ADV7185 ADC chip encodes input video signal

from IR camera (PAL) into ITU-R.656 video standard, defined in ITU-R BT.601 and

SMPTE125M[125]. These standards define Timing Reference Signals (TRS) used to de-

termine image data and synchronisation signals such as video field and line timing [126].

This subsection gives an overview of video conversion and details custom timing model

with control signals extracted from TRS, further used for synchronisation purposes.

6.2.1 Analogue to Digital Video Conversion

Although IR camera FLIR Systems Thermacam PM595 used for the purpose of this

project features 320 × 240 uncooled microbolometer focal plane array, the output signal,

interpolated by the internal circuitry, is transmitted in PAL video format [5]. Hence, it

provides 625 lines of information in interlaced mode at 50Hz refresh rate [127]. Hori-

zontal scan line description for composite PAL can be seen in Figure 6.2.

Full ADC conversion is performed by ADV7185 chip from Analog Devices providing

10-bits of output active data coded in ITU-R BT.656 standard at a 27MHz pixel clock

rate. Based on 8 MSBs, TRS signals can be extracted since neither FFh nor 00h values

occur in the regular video stream, as it was depicted in Figure 6.3.

In order to decode timing information, the following sequence of data must be en-

countered: FF 00 00 XY, where XY gives timing reference definition and corresponds

to the following data: XY = 1,F,V,H,P3,P2,P1,P0. Timing signals F, V and H can
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Figure 6.2: Horizontal scan line for composite PAL [126].

Table 6.1: Vertical timing reference in ITU-R BT.656 standard, where EAV/SAV are End/Start of
Active Video respectively, XY = 1,F,V,H,P3,P2,P1,P0 and P3-P0 are protection bits.

Line # F V H(EAV) H(SAV) Notes

1-22 0 1 1 0 Blanking
23-310 0 0 1 0 Field 1 (Odd) Active Video
311-312 0 1 1 0 Blanking
313-335 1 1 1 0 Blanking
336-623 1 0 1 0 Field 2 (Even) Active Video
624-625 1 1 1 0 Blanking

be decoded according to the Table 6.1, where P3, P2, P1 and P0 are protection bits

used for corruption control and EAV with SAV refer to End or Start of Active Video

respectively.

Further details on video decoding can be found in [126].

6.2.2 PAL to Progressive Scan Conversion

Modern video processors operate in progressive (raster) scan as opposed to interlaced

scanning common in PAL or NTSC formats. Detailed information regarding progressive

scan can be found in Section 2.2.1.

In order to extract odd and even fields from interlaced video stream, F timing ref-

erence signal from ITU-R BT.656 formatted data stream shall be used. It indicates

whether the scan is odd or even according to the Table 6.1. Such signal can be aligned

with or incorporated within vertical line counter of the input buffer controller.
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Figure 6.3: Horizontal scan line codes in ITU-R BT.656 standard [126].

Since the IR camera used for the purpose of this project is equipped with 320 × 240

uncooled microbolometer focal plane array, the output signal from the camera is sub-

sampled to match native resolution of the sensor array. Hence, the deinterlacing function

is simplified to data acquisition of odd frames at a rate of 25fps with 20ms time space

between two consecutive image frames.

6.2.3 Active Data Extraction

For the purpose of video analysis, the amount of data extracted from the raw input

signal is substantially reduced by removing not relevant components from the YCbCr

colour space. As it was described in Chapter 3, the information relevant for further

analysis is carried by the luminance Y component. The colour space in ITU-R.656

format is coded as follows: Cb, Y, Cr, Y, according to the Figure 6.3.

In order to match decoded data within the system framework, a custom video de-

coding wrapper module was created. The purpose was to align input data with the

corresponding pixel location as well as to provide synchronisation signals for further

processing. For the convenience of data analysis, input data traverse was matched with

raster scan - horizontally from left to right, line by line, from top to bottom. Video

acquisition module generates Horizontal Reference (HREF) and Vertical Synchronization

(VSYNC) signals for synchronization purposes according to the Figure 6.4.

The data is synchronized with the 27MHz Pixel Clock (PCLK) provided by the video

acquisition module. Active data is clocked on HREF set high, whereas VSYNC pulses

indicate the end of active image frame, as it can be seen in Figure 6.5.
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Figure 6.4: Horizontal timing diagram of the video acquisition controller.

Figure 6.5: Vertical timing diagram of the video acquisition controller.

6.3 System Architecture

This section gives an overview of the system architecture designed and developed for the

purpose of this thesis. It illustrates how system components described in these thesis,

designed as hardware accelerators, can be instantiated within a self-contained system.

The data flow is described at every stage of the processing to reveal all the instantiation

subtleties. In further subsections an initial approach to the implementation of tracking

on PowerPC embedded processor core will be also described. This will be followed by the

summary of synthesis results and discussion on available system resources for further

expansion.

6.3.1 Design Goals

The aim was to create a platform for pedestrian detection from IR video stream, which

could be used as a self-contained processing system. The system should be capable of

further expansion. Moreover, individual subsystem blocks portable, to be used as sub-

systems within other processing systems. Hence, a modular approach was investigated
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for hardware accelerators, supported by their own control logic for synchronization pur-

poses.

At an initial stage of development, a conceptual model of the system was created us-

ing block diagram to describe data flow. This was followed by a software development

to verify and test concepts and algorithms. For this task Matlab was used. The final

step was implementation in RTL to speed up the processing time by accelerating repet-

itive routines and enabling parallel processing. Prior to HW implementation, a distinct

separation between HW and SW workload was made to partition implementation for

logic primitives and embedded processor core.

Designing a digital architecture is not a trivial task. It requires a significant amount of

planning in order to maintain data stream from IR camera in a real-time with minimum

latency. A number of design issues was encountered such as clock domain crossing,

synchronizing ADC data with raster scan grid and managing memory bottleneck while

transferring data between processing units.

Pedestrian detection system for IR video streams, being the subject of these thesis,

was designed, developed and implemented in multiple stages. An overview of the top-

level system hierarchy can be seen in Figure 6.6.

6.3.2 Data Flow

As it can be seen on the block diagram depicted in Figure 6.6, the data flow of the

system starts form the IR camera. Once Video Acquisition ADC module becomes

enabled, image pixels drive Active Data Extraction block through the 10-bit data

YCrCb vector synchronously with the rising edge of 27MHz pixel clock provided by

the VDEC1 board. Within the synchronisation block, ITU-R BT.656 signal is decoded

according to Figures 6.2 and 6.3, active data is extracted, de-interlaced and aligned

with the raster scan grid.

Extracted data is provided to both Video Buffer as well as Segmentation unit at

a rate of 27MHz. Video Buffer is a Dual-Port Block RAM and is used to cross the

acquisition pixel clock domain with the system clock running at 25MHz, driven by

Video Output Controller for monitor display. The memory address bus is 17-bits

wide, whereas grey-scale information is stored with 4-bit depth.

While data within Video Buffer is available instantly for Video Output Controller,

matching data provided to the Segmentation unit during the first image scan is used

to build a background reference image, according to the description provided in Chap-

ter 3. To reduce the latency in background segmentation, input data is matched with

the corresponding pixel from the background model, fetched one clock cycle in advance.

Moreover, while written to the memory, image data is simultaneously thresholded and
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Figure 6.6: IR Pedestrian detection system architecture. Top-level hierarchy block diagram.
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provided for further processing. The storage element is a true Dual-Port BRAM with

8-bit data width and 17-bits address bus. Background adaptation is performed syn-

chronously with 27MHz ADC pixel clock, whereas output data provided to Noise Re-

moval is clocked at 25MHz.

Since background segmentation is instantaneous, thresholded data becomes available

to the Noise Removal in the same clock cycle, with only gate propagation delay (can

be omitted). It is immediately used for the filtering, according to the specification

provided in Chapter 4. Due to the nature of morphological filtering, the output of this

processing step is transmitted further with constant latency, constrained by the size of

the Structuring Element SE. In this particular implementation, where SE_SIZE_X = 5

and SE_SIZE_Y = 3, it is delayed by the time of 2 line scans and 4 additional pixel

clocks, to accommodate horizontal and vertical padding.

The Connected Component Labelling block described in Chapter 5, takes advan-

tage of the VGA image scanning technique by performing various merging tasks during

horizontal blanking periods. This however does not affect the overall system perfor-

mance, therefore results of the labelling and feature extraction are available when the

last pixel of the image scan is reached. They can be accessed immediately during the

consecutive line scan, one label per clock cycle.

At the end of the image scan, an update of the adaptive thresholding value is per-

formed based on the data stored in the Histogram Data unit. The histogram data is

read synchronously with the image scan, updated on the last value reached. Simulta-

neously, extracted features are read from the Extracted Features table and written

to a set of output registers, also used by the VGA controller to draw bounding boxes

around pedestrians. Since VGA mode horizontal line scan takes 800 clock cycles includ-

ing display time, pulse width as well as front and back porches, it shall be considered

as a limit of labels supported by the display module for current system configuration.

6.3.3 Summary

The data flow chain is driven by image samples provided by the ADC. It is aligned

by the synchronization control logic during intermediate processing. This is a relatively

flexible approach, prone to further expansion. Additional HW accelerator blocks can

be embedded within the design at any stage of the processing. Moreover, it benefits

from fixed memory structure - no need for intermediate FIFOs, which is advantageous

in terms of limited memory resources as well as the overall system complexity.

The overall system latency is fixed to one image frame. Delays caused by data registers

on individual processing blocks are marginal. The main bottleneck of the system is the

Noise Removal unit, holding the data queue. It is caused by the row buffer, required
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Figure 6.7: Multi-window view on the monitor output.

to support Structuring Element in morphological processing. The overall number of

additional line scans is determined by the sum of dSE_Y/2e for both erosion and dilation.

Image pixels are provided by ADC to the Video Buffer at a rate of 27MHz and are

grid aligned. They are immediately available for VGA controller to be plotted on the

monitor display. The acquired data is accessed via the second port of the Block RAM.

This port is synchronized with local pixel clock running at 25MHz. While displayed on

the monitor, the data is processed in the pipelined system, where intermediate results

(background model, results of the subtraction and morphology filtering) can be also

accessed for visual verification using multi-window view as depicted in Figure 6.7. Ex-

tracted features are available for display at the end of image scan. Based on such data,

rectangular bounding boxes for pedestrians are generated and overlaid on the monitor

display to enhance visual verification.

Although every processing unit was individually verified and tested in the simulator,

visual verification using the live system benefits in various aspects. Video systems are

difficult to debug due to large amount of data required for testing and high volume of

output vectors. With the system implemented and running on FPGA board, a number

of issues was encountered, not spotted in the simulator previously. Moreover, using

multi-window display mode, the system can be properly calibrated.
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Table 6.2: Detailed synthesis report part 1.

ADC Video Segmentation Morphology Labelling
Pal Decoder Buffer

Slices 66 25 184 128 2081
Flip Flops 83 45 87 28 2321
4 input LUTs 111 57 343 226 2209
IOBs 40 3 76 43 49
BRAMs 21 32 73 2 3
GCLKs 1 2 3 1 2

6.3.4 Tracking on PowerPC

Although implementation of tracking algorithms using embedded processor core is a

natural extension for this research, is was not in the scope of these thesis. An initial

approach to tracking was developed as an honours project by Alexander Balazs under

guidance and supervision of the author. The project was concluded with the conference

paper [128].

An introduction into tracking together with brief description of the system imple-

mentation based on [129] can be found in Appendix A.1.

6.3.5 Synthesis and Resource Utilization

This subsection gives an overview of FPGA resource utilization. This particular system

build was synthesized for Virtex-II Pro XC2VP30 Xilinx FPGA [26]. Since other im-

plementations referenced in these thesis are targeted for different FPGA devices using

variable synthesis tools, the comparison one-to-one is not feasible. Synthesis results pro-

vided in this subsection shall be used for basic comparison as well as to give an overview

and scale of the final implementation. The data was collected with each block synthe-

sized independently, it can be seen in Tables 6.2 and 6.3. These tables provide detailed

information about individual blocks, grouped into the following categories: Slices, Flip

Flops, 4 input LUTs, IOBs, BRAMs and GCLKs. The term ”Slice” is Xilinx specific and

refers to an element containing two 4-input function generators, carry logic, arithmetic

logic gates, wide function multiplexers and two storage elements. Each of the function

generators can be configured as 4-input Look-Up Table (LUT), 16-bits of distributed

RAM or a 16-bit variable-tap shift register [26]. The number of slices used gives an

indication about the physical size of the block on the FPGA die. Detailed synthesis

results can found in Appendix A.2.
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Table 6.3: Detailed synthesis report part 2.

Font VGA Sum Available Resource
Display Controller Utilization [%]

Slices 301 45 2830 13696 21
Flip Flops 196 55 2815 27392 10
4 input LUTs 575 88 3609 27392 13
IOBs 55 28 - 556 -
BRAMs 3 0 134 136 99
GCLKs 1 2 - 16 -

Synthesis results for all the subsystems can be seen in Tables 6.2 and 6.3. All the mod-

ules were synthesized individually with the synthesis tool set to automatically choose

most efficient way for resource allocation, at a module level. The Resources Utilization

column in Table 6.3 refers to the sum of individual synthesis results. The Table 6.5

however provides synthesis results for the entire system. As it can be seen, at a cost of

additional logic, synthesis tool reduced the number of BRAMs used in order to reduce

the effort of Place and Root (PAR) tool further in the build flow chain. All the synthesis

results presented in this subsection are given for the following configuration:

- H_MAX = 320
- V_MAX = 240
- SRC_IM_BRAM_ADDR_WIDTH = 17
- SRC_IM_BRAM_DATA_WIDTH = 4
- BCKG_IM_BRAM_ADDR_WIDTH = 17
- BCKG_IM_BRAM_DATA_WIDTH = 8
- SE_SIZE_X = 3
- SE_SIZE_Y = 5
- TOTAL_LABELS = 250
- L_BIT = 8
- X_BIT = 9
- Y_BIT = 8

This is a set of generic parameters specified within the top-level module to configure

all the subsystems. With such configuration, an image source, background model and

output video is set to resolution 320 × 240 pixels. Video source is buffered with 4 -

bit grey-scale, whereas background model is handled in 8-bit depth. SE_SIZE_X and

SE_SIZE_Y refer to the size of the structuring element for morphology noise removal. In

this implementation, settings for both erosion and dilation are the same. TOTAL_LABELS

parameter determines the maximum number of detected objects per image frame. The

following parameters such as L_BIT, X_BIT and Y_BIT are used to determine the size of

both FIFO and STACK units.
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Table 6.4: Detailed synthesis report for chosen subsystems.

Histogram Stack Fifo buffer

Slices 40 446 440
Flip Flops 54 530 529
4 input LUTs 51 325 322
IOBs 36 38 38
BRAMs 1 0 0
GCLKs 1 1 1

Table 6.5: Synthesis report for the entire system.

Top Available Resource
Module Utilization [%]

Slices 3389 13696 24
Flip Flops 3260 27392 11
4 input LUTs 4157 27392 15
IOBs 47 556 8
BRAMs 118 136 86
GCLKs 5 16 31

The Table 6.4 gives a breakdown of two modules: Segmentation and Labelling. Data

presented in these tables gives indication about main contributors to the logic count.

The histogram subsystem is small containing one Block RAM to store 128 9-bit words.

However, if the synthesis tool is set arbitrary to synthesize using logic elements instead

of RAM Blocks (as it takes place in the top-level system synthesis), the number of

Slices utilization increases to 109, being over a half of the Segmentation module. The

following two subsystems Stack and Fifo buffer are main contributors of the Labelling

module. As can be seen, they both combined constitute almost a half of the overall

resource utilization of the block. It is due to their generic VHDL instantiation to be

semi portable and allow synthesis also using non-Xilinx specific tools.

In overall, the system implementation on Virtex-II Pro XC2VP30 FPGA from Xilinx

occupies a quarter of the logic available on the chip. The embedded memory utilization

ratio is high, at a level of 86%. This number is determined by the storage requirements

from both Segmentation unit and Video Buffer. The synthesis breakdown for individual

modules shows that Labelling module utilized most of the system resources, over 10

times more than Segmentation or Morphology. Font Display module, included in this

summary, was added to the system to enhance visual verification by displaying on-screen

features such as number of objects detected, their size or current threshold level. It was

added for debug purposes and can be safely removed from the system.
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6.4 Experimental Detection Results

This subsection gives details on testing and experimental results obtained from the

system running in real-time. For this task a set of test IR video samples was captured

using video camcorder [130] to allow repetitive tests running on the system in different

configurations. The test set contains three video samples, each around 60 seconds long.

All of them were taken during Scottish autumn, from the top of one of the university

buildings. The FOV varies from being the main university entrance, a way out from the

university area, or entrance to the computing centre. Videos were taken during academic

term within lecture hours hence increased student activity can be noticed. Prior to each

test, the system was calibrated with an empty background reference image and set

with initial intensity value for thresholding. The output from the monitor display was

captured at 30fps frame rate to allow frame-by-frame post processing analysis. For the

purpose of detection and error rate analysis, the following features were taken into

account:

- number of pedestrians,

- number of bounding boxes,

- number of merges,

- number of splits.

The term merge refers to two separate pedestrians with their body parts overlapping,

hence detected as a single object. Split, however, refers to pedestrians partially occluded

with not all the body parts contained within a single component, therefore detected as

multiple separate objects. The table with all the experimental results collected can be

found in Appendix A.3. For illustration purposes, results were plotted and can be seen

in Figure 6.8. Videos for both test data and experimental results can be found in [70–75].

Based on the data collected, the mean value of the detection rate as well as associated

error rate were calculated throughout the whole period of each video seqience and can

be found in Table 6.6. The Detection Rate was calculated including splits as follows:

Detection Rate =
boxes− splits
pedestrians

× 100%. (6.1)

The Error Rate however was calculated as a ratio of bounding boxed around splits

and merges to total number pedestrians:

Error Rate =
splits+merges

pedestrians
× 100%. (6.2)

The mean values of the Detection Rate as well as Error Rate for all the video sequences

were calculated and can be seen in Table 6.6. Although the system was calibrated
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Results of the experimental pedestrian detection. (a, b, c) Video sequences 1, 2, 3 - pedes-
trians. (d, e, f) Video sequences 1, 2, 3 - bounding boxes, merges and splits.

Table 6.6: Experimental Detection and Error Rates, mean values over the simulation period.

Sequence 1 Sequence 2 Sequence 3

Detection Rate [%] 87.9 87.1 79.6
Error Rate [%] 12.21 14.59 14.66

properly (no background object detected as pedestrians), relatively high value of Error

Rate is caused by frequent merges. This is a consequence of increased activity within

the FOV throughout the time of the simulation, see Figure 6.9a.

An increase in Error Rate can be also noted when pedestrians enter or leave FOV.

This is caused by the fact they enter/leave FOV with the foot first/last, followed by

the rest of the body, no associated within a single object at a time. This can be seen in

Figure 6.9b.

Moreover, badly positioned IR camera was also causing an increase in Error Rate.

The camera logo shown in the top left corner, as bright as pedestrians, was incorporated

to the background model. Hence, pedestrians within this area were partially occluded

causing multiple splits, as can be seen in Figure 6.9c.

An interesting case of merge was depicted in Figure 6.9d. This scenario involves

two pedestrians walking close together without a single split while in FOV. A different

approach for scene analysis is required to handle such situations. Such case was common

in video sequence 3 therefore lower detection rate listed in the Table 6.6.

In summary, both detection and error rates obtained during experimental testing are

satisfying, at acceptable level for basic surveillance applications. Since there is no unified
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(a) (b)

(c) (d)

Figure 6.9: Samples from test video sequences. (a) Typical merge, the case when three pedestrians are
detected and marked with a single bounding box as one object. (b) Pedestrians entering FOV
often segmented and split due to not associated body parts. (c) Badly positioned camera
when the manufacturer’s logo is treated as background causing multiple short splits. (d)
Continuous merge when two pedestrians walk next to each other therefore are detected as
a single object.

test framework it is difficult to compare results with other implementation such as [131,

132]. They feature detection and error rates at a level of 88-95% and 1-2%respectively.

These systems feature more sophisticated detection algorithms, moreover test video

sequences do not contain as many complex and difficult for pedestrian detection scenes

as used for the purpose of this research.

Although this system features satisfactory detection rates, it cannot be applied for

specific applications such as people counters due to classification issues in handling

merges and splits. This is a common issue in pedestrian detection. An implementation

of prediction-based tracking algorithm could reduce the Error Rate, however it would

not solve the problem entirely.
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6.4.1 Performance Comparison

The system running on FPGA-based processing platform benefits from all the aspects

of application specific hardware design, such as parallel processing, pipelined design

approach and fully optimized architecture. The application of IR pedestrian detection

being the subject of these thesis runs in a real-time providing results at a frame rate.

This was limited by the ADC subsystem to 30fps, however the system is capable of run-

ning at pixel rate synchronously with VGA controller (60fps, running at 25MHz pixel

clock). Based on the synthesis report, the system clock could potentially be running at

a frequency of 124MHz, which gives up to 300fps. Individual modules such as segmen-

tation, morphology or labelling can be synthesized with the following frequencies: 131,

355 and 147MHz respectively. Due to the pipeline, the system features latency described

in detail in previous sections. The overall latency is less than a singe image scan.

The prototype of the system was created in software. The same algorithm was imple-

mented in Matlab, without support from parallel processing toolbox. The code was not

optimized to benefit from Matlab embedded functions, which could potentially increase

processing speed. Although the system was running on 1.6 GHz Dual Core proces-

sor with 2GB RAM, steady data flow was not achieved. The limiting factor was the

video source provided in PAL format. The video buffer was not big enough to handle

such bandwidth, hence the system was crashing. The second attempt was made with

pre-recorded video sequence stored on the hard drive of the computer. In this case a

significant amount of computing power was allocated on video decoding. Similar to pre-

vious case, the video buffer could not handle such amount of data in continuous flow

failing the simulation. Finally, the system was simulated and tested using a number of

single PNG files extracted from the video stream.

Experimental results obtained from the real-time running system were compared

with simulation results from the prototype. The system proved to be error free and

working according to design requirements. Due to bandwidth limitation, the maximum

processing rate achieved was up to 5fps when reading / writing source / results to PNG

files. However, if there would be a need, this particular Matlab implementation could

be further optimized or ported to C/C++ for further processing speed increase.

Due to the sequential nature of the image processing as well as video acquisition and

operational memory bottlenecks, it is not physically possible to increase the processing

speed on general purpose processor (GPP) to match corresponding implementation in

HW. The application specific solution is capable of real-time processing with up to

60fps, benefiting from simultaneous processing on every stage of the data flow.
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6.5 Conclusions

In this chapter, an overview of the IR pedestrian detection system implementation was

given. The purpose of this chapter was to illustrate how system components described

in these thesis, designed as hardware accelerators, can be instantiated in a real-time

video processing platform.

The system was implemented in VHDL and targeted on XUP V2P FPGA develop-

ment board. An overview of system components was provided, together with imple-

mentation details and system integration. A successful implementation was verified and

tested with pre-recorded IR video sequences. After the synthesis at a subsystem level,

an overview of resource utilization was provided for individual blocks to give a break-

down of the overall implementation. The chapter was concluded with a brief analysis

of pedestrian detection rates obtained during experimental testing on a real-time run-

ning system. Moreover, an introduction into implementation of tracking algorithms on

embedded processor core was provided as a possible extension to the project for future

work.

For the purpose of system integration, XUP V2P Development Board with Virtex-II

Pro XC2VP30 FPGA chip from Xilinx was used. This particular development platform

was chosen thanks to fair amount of internal memory and embedded processor core

within the FPGA chip, as well as wide variety of system peripherals and expansion

connectors, appreciated during tests and verification. This overview was supported by

detailed description of video conversion from PAL to Progressive Scan and custom

timing model, created for the purpose of video acquisition. This included discussion on

timing reference signals extraction, further used for synchronisation purposes.

Prior to implementation, a distinct separation between HW and SW workload was

made to partition implementation for logic primitives and embedded processor core. A

number of implementation issues was discussed, such as clock domain crossing, ADC

data synchronization with raster scan grid and intricacies of memory management be-

tween processing units. An initial approach to implementation of tracking algorithm was

undertaken as an honours project under the guidance and supervision of the author.

Details regarding the implementation can be found in [129].

The data flow of the described implementation is driven by image samples, provided

by the ADC. This approach is relatively flexible, prone to further expansion. Thanks

to synchronization logic supported locally by each subsystem, an auxiliary IP can be

embedded within the system, at any stage of the processing. Moreover, thanks to the

fixed memory structure and data driven approach, there is no need for further FIFOs in

order to instantiate the module. The overall system latency, although related to the size

of scanning mask involved in morphological processing, will not exceed a single image
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scan. Detailed analysis of the overall system latency was provided.

The system after synthesis occupies 24% of entire logic available on the chip. The

critical resource in system integration is embedded BRAM memory, occupied in 86%.

Hence, the platform can be further used for auxiliary component or accelerator devel-

opment, however, for memory intensive tasks an interface to either DDR SDRAM or

external memory module shall be considered.

In terms of detection rates obtained during experimental testing, they were satisfac-

tory for basic surveillance applications. Although the system features good segmenta-

tion, an increased Error Rate (at a level of 13% for tested sequences with a large number

of pedestrians in FOV) is caused by classification issues in handling merges and splits.

An implementation of prediction-based tracking algorithm could significantly reduce

the Error Rate and further improve Detection Rate. However, for critical application,

the system shall be considered only as a support for the human operator.



CHAPTER 7

Review of Research and Conclusions

The research reported in this thesis develops the state of the art in hardware archi-

tectures for infrared pedestrian detection. The implementation of pedestrian detection

system reported in this thesis takes an advantage of infrared spectrum utilized by IR

camera being the video source of the system. Both image processing as well as hardware

implementation issues have been addressed in this thesis.

Pedestrian detection is an active research area, a number of implementation ap-

proaches have been reported in the literature. They are based on different algorithms,

feature unique techniques for data handling and processing flow management. They

meet the trade-off between the system performance and the quality of output data. Of-

ten, systems featuring higher detection rates are based on complex, memory intensive

algorithms. The challenging aspect is the real-time processing constraint, where most

of the algorithms implemented in software fail due to high data bandwidth imposed by

the video source. A solution is an expansion to the application specific platforms for

custom implementation at a lower abstraction level.

150
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The architecture reported in this thesis is targeted for the FPGA device and utilizes all

the aspects of custom implementation in hardware such as parallel or pipelined process-

ing. Moreover, various data reduction techniques based on mathematical morphology

were introduced to improve existing algorithms. The system is capable of processing

video stream in real-time providing results for analysis or further processing at a frame

rate. It was verified and tested as a stand-alone platform as well as at RTL subsystem

level. The challenging aspect of this project, handling high data bandwidth with limited

memory resources on embedded system, was achieved thanks to the unique combina-

tion of image processing and data reduction techniques described in preceding chapters.

The final implementation is capable of processing IR video stream in real-time simul-

taneously with data acquisition using a single FPGA device with no need for auxiliary

memory resources.

7.1 Review of Research

In this thesis an architecture and a successful implementation of IR pedestrian detec-

tion system is reported. The system is capable of processing video stream provided by

infrared camera in a real-time. Results of the processing are available at a frame-rate,

at the end each image scan.

For this task, an extensive review of algorithms for pedestrian detection was per-

formed. This includes literature-review in multiple areas, such as infrared detectors,

digital image processing and pedestrian recognition. Moreover, an introduction into

hardware development and implementation was provided as means for high speed im-

plementation.

The research is spread amongst various chapters referring to particular subsystem

and the overall system integration. There are the following subsystems employed: back-

ground segmentation, morphological noise removal and connected component labelling.

Moreover, a detailed description of system integration on FPGA development platform

was provided to emphasize intricacies of real-time video processing system.

An introduction to background segmentation is provided together with deep analysis

of system requirements. An architecture for adaptive background subtraction module is

introduced. It is based on the selective running average background model, supported

by adaptive thresholding. The architecture provides strong segmentation capabilities

while being suitable for efficient hardware implementation.

In order to remove video acquisition noise, an implementation approach for mor-

phology filtering was described. It is based on mathematical morphology and basic set

theory definitions, commonly used in this field by other researchers. This particular

implementation benefits from flat and decomposable scan mask. It takes an advantage
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of the duality and decomposition of erosion and dilation. Hence, the implementation is

small and robust, suitable for embedded systems with limited resources.

For the purpose of pedestrian recognition, a single-pass approach for connected com-

ponent labelling was employed. It is a relatively new processing technique suitable for

streaming data video processing systems. As opposed to other algorithms presented in

this thesis, this approach features constant processing time, extracted features are avail-

able immediately at the end of the image scan, and most of all, it requires significantly

less memory compared to other techniques. The implementation benefits from horizon-

tal blanking periods used by the algorithm to further optimize memory consumtion.

The system architecture was implemented using VHDL in semi-device independent

approach thanks to behavioural HDL inference templates used for memory controllers.

The initial implementation was targeted on Virtex-II Pro XC2VP30 FPGA chip. The

system was verified and tested using pre-recorded IR video sequences. A final imple-

mentation occupies 24% of available logic resources and 86% of embedded memory.

The system is running synchronously with 25MHz pixel clock. It is capable of process-

ing video stream at a rate of 60 frames per second.

7.2 Conclusions

In this thesis, a novel architecture for self-contained IR pedestrian detection system was

presented, being the main contribution. It is based on low-level algorithms customized

for hardware implementation. This research has addressed issues of both infrared pedes-

trian detection as well as system integration capable of real-time video processing.

The main advantage of this particular architecture is the ability to process video

stream in real-time utilizing limited memory resources. This is in benefit of possible

further implementation on ASIC, where memory resources are in the critical importance.

This was achieved thanks to the use of multiple data reduction techniques as well as

parallel and pipelined design approaches applied.

The system is fully customizable and is open to further expansion. Thanks to the

data driven approach, the timing is fixed and fully predictable. Therefore, further hard-

ware accelerators can be embedded within the data path at a minimal engineering

cost. Current implementation occupies 24% of a single Virtex-II Pro XC2VP30 FPGA

chip, leaving plenty space for further development. The on-chip memory is utilized in

86%, therefore an interface to an off-chip memory should be considered for memory

demanding applications.

The system is capable of processing IR video stream provided through the ADC

video decoder board in the PAL format. Video stream is converted into its digital

form, de-interlaced and encoded with synchronization signals at a rate of 27MHz clock
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provided by ADC. Digital data is further processed synchronously with 25MHz pixel

clock provided by the controller for video graphics adapter. Results of the background

segmentation, intensity thresholding and connected component labelling are available

at the end of the image scan, at a rate of 60fps.

There are three hardware accelerators involved in the processing chain: background

subtraction, morphology filtering and connected component labelling. For the purpose

of background segmentation, a number of processing techniques was reviewed. The

trade-off between the quality of output data and the processing power was taken into

consideration. Therefore, algorithms based on intensity thresholding as well as on tem-

poral difference, although suitable for robust implementation in HW, were not taken

into consideration due to poor quality of data produced. For the purpose of this project,

a new background subtraction technique was developed based on background modelling

approach. The background model is adaptive, hence capable of processing in changing

environmental conditions. The technique is a mixture of multiple algorithms commonly

used in image processing applications. Background model is based on selective running

average. In order to allow segmentation in both slow and fast changing environmental

conditions, it is supported by adaptive thresholding mechanism based on live histogram

calculation. This is a novel enhancement for segmentation based on background mod-

elling, not reported in the literature yet. Thanks to efficient memory management, the

memory consumption of this architecture is a major advantage compared to other algo-

rithms described in previous subsections. The quality of output data is at satisfactory

level. The final integration of the system revealed the increase in error detection rate was

caused by multiple splits and merges, an issue out of the scope segmentation module.

The second module further in the processing chain is responsible for acquisition noise

removal. This particular architecture is based on mathematical morphology and basic

set theory definitions. Since flat rectangular scan mask was used, a number of MM set

theory features could be applied. Furthermore, it takes an advantage of the duality and

decomposition of erosion and dilation. This technique was compared with the classical

approach for noise removal based on the delayed-element and sliding window. It fea-

tures lower complexity and benefits from lower memory consumption. Although both

techniques can be applied within the system to perform real-time noise removal, the

new architecture suits better hardware implementation - a single architecture for both

erosion and dilation. Moreover, the memory consumption becomes an issue for classical

approach when considering higher resolution images. The decomposed dual architecture

is already up to 300% more efficient when implemented for VGA image frame with SE

size 13× 7, with better margin for higher resolution and larger SEs. In order to avoid

the need for additional data generators, a static approach to handle padding areas was

introduced, utilizing horizontal blanking periods. This approach is suitable for stream-
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ing data systems and shall be considered as a contribution to this thesis. Although the

padding can be processed simultaneously with the image scan, it implies a fixed latency

to the pipeline, proportional to the size of the scan mask.

In order to distinguish disjoint groups of pixels and extract their features, a connected

component labelling algorithm was applied, based on a single-pass approach. This tech-

nique was chosen based on extensive review of CCL algorithms. It features constant

processing time and is capable of feature extraction such as position, width, size, CoG,

therefore it is suitable for this particular application. Moreover, the single pass algo-

rithm requires less memory resources due to unique labelling approach. It is the major

benefit of this architecture. In order to further improve memory management, a label-

reuse technique was developed, being a significant contribution to this technique. This

approach is highly beneficial when processing video streams with a significant number

label collisions. For implementation purposes, the 4-neighbourhood connectivity N4(p)

mask was used to reduce system complexity. The implementation of CCL algorithm

performs labelling and feature extraction in a single image scan. However, since it pro-

vides different type results compared to classical labelling approach (no output image

with labelled objects), hence, it is not suitable for applications where the labelled mask

is required.

In order to verify and test system components, a full system integration was per-

formed. For this task an architecture for real-time video processing was designed and

developed. It is based on the assumption the IR video signal is provided to the system

in a PAL format. The custom video acquisition module allows to significantly reduce

the amount of incoming data already during analogue to digital conversion. The image

data is synchronously grid aligned within the video buffer, at 27MHz pixel clock. It is

also provided to the segmentation module for further processing. At the final stage of

the processing, both input video stream and results of the processing (extracted fea-

tures used to draw bounding boxes around pedestrians) are muxed to be plotted on the

monitor display. The system was tested with pre-recorded video streams. Initial exper-

imental detection rates give results around 80%-85% for busy environments (around 3

pedestrians per FOV in average), with up to 10 pedestrians in a single image frame.

These are satisfactory results for basic surveillance system. However, due to repetitive

mergers and splits, the error detection rate varies around 13% for the same test set.

The main contribution is the digital architecture designed, developed and imple-

mented for IR pedestrian detection system, capable of processing video streams in real-

time. As well as the architecture, there is the analysis and evaluation of the algorithms

and design decisions that support and justify the digital design. Although the system

can be used for surveillance applications as an off-the-shelf solution, an emphasis was

placed on further expansion, for instance to support tracking applications as a hardware
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accelerator. The system was designed in a modular approach where individual modules

act as hardware accelerators for particular processing tasks. They were developed based

on available solutions reported in the literature. For implementation purposes, they are

enhanced by custom solutions allowing the real-time performance of the entire system.

7.3 Systems of Today

Since early days of this research (October 2007) the technology has changed rapidly.

Thanks to improved manufacturing process, prices of silicon devices are lower whereas

the maximum operating frequency in in digital circuits is significantly higher.

According to recent surveys throughout different architectures, there are several alter-

natives for FPGA devices in the field of low-cost high performance computing [133–136].

These are multi-core CPUs, Graphical Processing Units (GPUs) and Parallel Processor

Arrays. They feature high peak performance, some of them are energy efficient whereas

others are cost efficient. In order to select a device for particular application, a number

of features has to be considered, such as programmability, performance, development

cost and sources of overhead in the design flow.

For the purpose of real-time pedestrian detection from video stream, two architectures

shall be considered: multi-core CPUs and FPGAs. In terms of flexibility and power

consumption, FPGA is a clear leader. However, there are major drawbacks such as

accessibility (implementation difficulties) and limited resources. On the other hand, if

implementation of high complexity algorithms is desired with no consideration for power

consumption or portability, multi-core devices are better choice.

In terms of video source, although CCD and CMOS sensors feature much higher

spatial resolution compared to IR cameras, for the purpose of pedestrian detection in

outdoor environments, IR-based devices cannot be replaced with cheaper alternatives.

They provide significantly more information thanks to the use of thermal radiation,

moreover they can operate in low or even no-light conditions, when automated surveil-

lance is highly desired.

7.4 Future Work

Although IR cameras feature relatively low resolution compared to traditional image

sensors and it does not change as fast, the aspect of increasing bandwidth imposed

by the video source shall be considered as a future work. Moreover, an investigation

into further improvement in classification shall be considered, possibly through the

implementation of tracking algorithms.
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When considering higher resolution video signals, an interface to auxiliary memory is

required to support increased bandwidth on segmentation unit. Moreover, an expansion

of the CCL algorithm to Run Length Encoding-based approach is desired to reduce the

system complexity.

According to the discussion provided in Chapter 6, an implementation of tracking

algorithms on embedded processor core is a natural extension to this project. Although

the quality of segmentation makes an impact on classification, it was found that most

detection errors in pedestrian recognition are caused by repetitive mergers and splits.

This issue can be resolved by implementing alternative detection approach - detection

based on tracking.

The implementation of tracking algorithms shall be software-based and targeted for

either HW or SW embedded processor core. This approach would allow rapid algorithm

prototyping while not affecting the overall system architecture.
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APPENDIX A

An Appendix

A.1 Implementation of Tracking on PowerPC

Although implementation of tracking algorithms using embedded processor core is a

natural extension for this research, is was not in the scope of this thesis. An initial

approach to tracking was developed as an honours project by Alexander Balazs under

guidance and supervision of the author. The project was concluded with the conference

paper [128].

This section gives an introduction into tracking together with brief description of the

system implementation. It is based on [129]. A pointer to this section can be found in

Chapter 6, Section 6.3.4.
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Figure A.1: Merging pedestrians. (a). Before merge. (b). Pedestrians crossing their ways. (c). Split.

Introduction

In order to track an object in a video stream, its location has to be known for certain

number of frames. Such data is then stored in the memory and can be used to display

the object’s path in time or for further analysis. Pedestrian tracking is not a trivial task.

In real life case scenarios, moving pedestrians cross their ways or occasionally overlap,

as depicted in Figure A.1. The problem of tracking becomes even more complex when

objects split, merge, disappear or become partially occluded.

An implementation of tracking algorithms was partitioned for SW using PowerPC

embedded processor core [137]. For the purpose of system architecture development, a

Base System Builder (BSB) within Embedded Development Kit (EDK) was used [138].

In order to emulate movement of pedestrians, a custom HDL module was created and

added to the system. Such module generates corner coordinates for two pedestrians to

simulate possible splits and merges.

System Overview

The system implementation was targeted for XUP V2P Development Platform using

embedded PowerPC processor code [137]. It was built with the following settings:

- PowerPC as a target processor,

- 100MHz processor clock frequency,

- 100MHz bus frequency,

- 64KB program size,

- UART for debug using Serial Port.

The system generated in EDK includes the following components: Digital Clock Man-

ager (DCM), On-Chip Memory (OCM), Processor Local Bus (PLB), On-chip Peripheral

Bus (OPB), UART, as well as an OPB-to-PLB bus bridge for UART and Block RAM.

It also includes a custom IP to emulate movement of pedestrians within the FOV.
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Figure A.2: A block diagram of the top-level system hierarchy including processor buses.

Figure A.3: Register level interface.

System Architecture

The framework of the system architecture is based on the BSB configuration and auto

generated by EDK. An overview of the top-level design structure including buses for

processor interface can be seen in Figure A.2. OPB was instantiated for the purpose

of interfacing slower peripherals such as UART and control switches. The custom IP

however was connected to the processor core through PLB, following suggestions from

[139]. In order to instantiate custom logic with PowerPC, the RTL code required several

modifications to match IP Interconnect (IPIC) interface protocol. Detailed description

regarding of custom IP interfaces can be found in [140].

In order to interface the processor core with user logic emulating pedestrian move-

ment, three 32-bit registers were used. The custom peripheral interface supports two

sets of (x, y) coordinates referring to the top-left and the bottom-right corners of the

rectangular box for each pedestrian. Such data is temporarily stored in registers REG0,

REG1 and REG2 as depicted in Figure A.3. The PLB Handler manages communication

with PowerPC responsible for processing merges or splits as well as generating bounding

boxes around. Further details regarding this implementation can be found in [128, 129].
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Tracking

The custom IP was created to generate movement of two pedestrians. The purpose of

such implementation was to generate a set of test vectors to emulate most common

tracking case scenarios.

Due to the time-scale of this project, a limited number of tests was performed. An

initial algorithm for handling merges and splits was suggested, based on [141]. It is a

predictive approach based on Kalman filter. When objects merge, the system constantly

preserves the height and width for both objects. The movement prediction is calculated

based on samples for previous position. After the split, objects are assigned with la-

bels based on both criterions: height and width before the merge as well as movement

prediction.

A natural way to improve prediction accuracy is to use additional features extracted

during connected component labelling, such as size (number of pixels) or Centre of

Gravity (CoG). This, as well as multiple objects tracking was considered as a future

work.

Summary

In this subsection, an initial approach to implementation of tracking algorithm using

PowerPC was described. It gives details on HW/SW wrapper developed for the purpose

of this task. The custom logic used to emulate pedestrian movement was implemented

as a subsystem for the embedded processor core. It was optimized in order to be in-

terfaced with the processor using bi-directional 32-bit software addressable registers.

The system build involves modules such as peripheral cores, processor buses, program

memory blocks and digital clock managers. It was generated using proprietary tools

from Xilinx with custom settings for the internal clock of the processor, transmission

bus and program memory size.

A.2 Experimental Detection Results

This attachment presents experimental detection results collected during the simulation

performed on the running system. The data refers to simulations descried in Chapter 6.

It was listed in three different tables, each one corresponding to different video sequence.

Columns are assigned with the following symbols: #, P, B, M, S. They correspond to the

index of the frame within the video sequence, number of pedestrians, bounding boxes,

mergers and splits respectively. The data was plotted and can be seen in Figure 6.8.



# P B M S # P B M S # P B M S # P B M S # P B M S # P B M S

302 2 2 0 0 371 1 1 0 0 3748 0 0 0 0 357 3 3 0 0 426 1 1 0 0 3803 2 1 1 0

303 2 2 0 0 372 1 1 0 0 3749 0 0 0 0 358 3 3 0 0 427 1 1 0 0 3804 2 1 1 0

304 2 2 0 0 373 1 1 0 0 3750 0 0 0 0 359 3 3 0 0 428 1 1 0 0 3805 2 1 1 0

305 2 2 0 0 374 1 1 0 0 3751 0 0 0 0 360 3 3 0 0 429 1 1 0 0 3806 2 1 1 0

306 2 2 0 0 375 1 1 0 0 3752 0 0 0 0 361 3 3 0 0 430 1 1 0 0 3807 2 1 1 0

307 2 2 0 0 376 1 1 0 0 3753 0 0 0 0 362 3 3 0 0 431 1 1 0 0 3808 2 1 1 0

308 2 2 0 0 377 1 1 0 0 3754 0 0 0 0 363 3 3 0 0 432 1 1 0 0 3809 2 1 1 0

309 2 2 0 0 378 1 1 0 0 3755 0 0 0 0 364 3 3 0 0 433 1 1 0 0 3810 2 1 1 0

310 2 2 0 0 379 1 1 0 0 3756 0 0 0 0 365 3 3 0 0 434 1 1 0 0 3811 2 1 1 0

311 2 2 0 0 380 1 1 0 0 3757 0 0 0 0 366 3 3 0 0 435 1 1 0 0 3812 2 1 1 0

312 2 2 0 0 381 1 1 0 0 3758 0 0 0 0 367 3 3 0 0 436 1 1 0 0 3813 2 1 1 0

313 2 2 0 0 382 1 1 0 0 3759 0 0 0 0 368 3 3 0 0 437 1 1 0 0 3814 2 1 1 0

314 3 3 0 0 383 1 1 0 0 3760 0 0 0 0 369 3 3 0 0 438 1 1 0 0 3815 2 1 1 0

315 3 3 0 0 384 1 1 0 0 3761 0 0 0 0 370 3 3 0 0 439 1 1 0 0 3816 2 1 1 0

316 3 3 0 0 385 1 1 0 0 3762 0 0 0 0 371 3 3 0 0 440 1 1 0 0 3817 2 1 1 0

317 3 3 0 0 386 1 1 0 0 3763 0 0 0 0 372 3 3 0 0 441 1 1 0 0 3818 2 1 1 0

318 3 3 0 0 387 1 1 0 0 3764 0 0 0 0 373 3 3 0 0 442 1 1 0 0 3819 2 1 1 0

319 3 3 0 0 388 1 1 0 0 3765 0 0 0 0 374 3 3 0 0 443 1 1 0 0 3820 2 1 1 0

320 3 3 0 0 389 1 1 0 0 3766 0 0 0 0 375 3 3 0 0 444 1 1 0 0 3821 2 1 1 0

321 3 3 0 0 390 1 1 0 0 3767 0 0 0 0 376 3 3 0 0 445 1 1 0 0 3822 2 1 1 0

322 3 3 0 0 391 1 1 0 0 3768 0 0 0 0 377 3 3 0 0 446 1 1 0 0 3823 2 1 1 0

323 3 3 0 0 392 1 1 0 0 3769 0 0 0 0 378 3 3 0 0 447 1 1 0 0 3824 2 1 1 0

324 3 3 0 0 393 1 1 0 0 3770 0 0 0 0 379 3 3 0 0 448 1 1 0 0 3825 2 1 1 0

325 3 3 0 0 394 1 1 0 0 3771 0 0 0 0 380 3 3 0 0 449 1 1 0 0 3826 2 1 1 0

326 3 3 0 0 395 1 1 0 0 3772 0 0 0 0 381 3 3 0 0 450 1 1 0 0 3827 2 1 1 0

327 3 3 0 0 396 1 1 0 0 3773 0 0 0 0 382 3 3 0 0 451 1 1 0 0 3828 2 1 1 0

328 3 3 0 0 397 1 1 0 0 3774 0 0 0 0 383 3 3 0 0 452 1 1 0 0 3829 2 1 1 0

329 3 3 0 0 398 1 1 0 0 3775 0 0 0 0 384 3 3 0 0 453 1 1 0 0 3830 2 1 1 0

330 3 3 0 0 399 1 1 0 0 3776 0 0 0 0 385 3 3 0 0 454 1 1 0 0 3831 2 1 1 0

331 3 3 0 0 400 1 1 0 0 3777 0 0 0 0 386 3 3 0 0 455 1 1 0 0 3832 2 1 1 0

332 3 3 0 0 401 1 1 0 0 3778 0 0 0 0 387 3 3 0 0 456 1 1 0 0 3833 2 1 1 0

333 3 3 0 0 402 1 1 0 0 3779 0 0 0 0 388 3 3 0 0 457 1 1 0 0 3834 2 1 1 0

334 3 3 0 0 403 1 1 0 0 3780 0 0 0 0 389 3 3 0 0 458 1 1 0 0 3835 2 1 1 0

335 3 3 0 0 404 1 1 0 0 3781 0 0 0 0 390 3 3 0 0 459 1 1 0 0 3836 2 1 1 0

336 3 3 0 0 405 1 1 0 0 3782 1 0 0 0 391 3 3 0 0 460 1 1 0 0 3837 2 1 1 0

337 3 3 0 0 406 1 1 0 0 3783 1 0 0 0 392 3 3 0 0 461 1 1 0 0 3838 2 1 1 0

338 3 3 0 0 407 1 1 0 0 3784 1 0 0 0 393 3 3 0 0 462 1 1 0 0 3839 2 1 1 0

339 3 3 0 0 408 1 1 0 0 3785 1 0 0 0 394 3 3 0 0 463 1 1 0 0 3840 2 1 1 0

340 3 3 0 0 409 1 1 0 0 3786 1 0 0 0 395 3 3 0 0 464 1 1 0 0 3841 2 1 1 0

341 3 3 0 0 410 1 1 0 0 3787 1 1 0 0 396 3 3 0 0 465 1 1 0 0 3842 2 1 1 0

342 3 3 0 0 411 1 1 0 0 3788 1 1 0 0 397 3 3 0 0 466 1 1 0 0 3843 2 1 1 0

343 3 3 0 0 412 1 1 0 0 3789 1 1 0 0 398 3 3 0 0 467 1 1 0 0 3844 2 1 1 0

344 3 3 0 0 413 1 1 0 0 3790 1 1 0 0 399 3 3 0 0 468 1 1 0 0 3845 2 1 1 0

345 3 3 0 0 414 1 1 0 0 3791 1 1 0 0 400 3 3 0 0 469 1 1 0 0 3846 2 1 1 0

346 3 3 0 0 415 1 1 0 0 3792 1 1 0 0 401 3 3 0 0 470 1 1 0 0 3847 2 1 1 0

347 3 3 0 0 416 1 1 0 0 3793 1 1 0 0 402 3 3 0 0 471 1 1 0 0 3848 2 1 1 0

348 3 3 0 0 417 1 1 0 0 3794 2 1 1 0 403 3 3 0 0 472 1 1 0 0 3849 2 1 1 0

349 3 3 0 0 418 1 1 0 0 3795 2 1 1 0 404 3 3 0 0 473 1 1 0 0 3850 2 1 1 0

350 3 3 0 0 419 1 1 0 0 3796 2 1 1 0 405 3 3 0 0 474 1 1 0 0 3851 2 1 1 0

351 3 3 0 0 420 1 1 0 0 3797 2 1 1 0 406 3 3 0 0 475 1 1 0 0 3852 2 1 1 0

352 3 3 0 0 421 1 1 0 0 3798 2 1 1 0 407 3 3 0 0 476 1 1 0 0 3853 2 1 1 0

353 3 3 0 0 422 1 1 0 0 3799 2 1 1 0 408 3 3 0 0 477 1 1 0 0 3854 2 1 1 0

354 3 3 0 0 423 1 1 0 0 3800 2 1 1 0 409 3 3 0 0 478 1 1 0 0 3855 2 1 1 0

355 3 3 0 0 424 1 1 0 0 3801 2 1 1 0 410 3 3 0 0 479 1 1 0 0 3856 2 1 1 0

356 3 3 0 0 425 1 1 0 0 3802 2 1 1 0 411 3 3 0 0 480 1 1 0 0 3857 2 1 1 0
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412 3 3 0 0 481 1 1 0 0 3858 2 1 1 0 468 4 4 0 0 537 1 1 0 0 3914 3 2 1 0

413 3 3 0 0 482 1 1 0 0 3859 2 1 1 0 469 4 4 0 0 538 1 1 0 0 3915 3 2 1 0

414 3 3 0 0 483 1 1 0 0 3860 2 1 1 0 470 4 4 0 0 539 1 1 0 0 3916 3 2 1 0

415 3 3 0 0 484 1 1 0 0 3861 2 1 1 0 471 4 4 0 0 540 1 1 0 0 3917 3 2 1 0

416 3 3 0 0 485 1 1 0 0 3862 2 1 1 0 472 4 4 0 0 541 1 1 0 0 3918 3 2 1 0

417 3 3 0 0 486 1 1 0 0 3863 2 1 1 0 473 4 4 0 0 542 1 1 0 0 3919 3 2 1 0

418 3 3 0 0 487 1 1 0 0 3864 2 1 1 0 474 4 4 0 0 543 1 1 0 0 3920 3 2 1 0

419 3 3 0 0 488 1 1 0 0 3865 2 1 1 0 475 4 4 0 0 544 1 1 0 0 3921 3 2 1 0

420 3 3 0 0 489 1 1 0 0 3866 2 1 1 0 476 4 4 0 0 545 1 1 0 0 3922 3 2 1 0

421 3 3 0 0 490 1 1 0 0 3867 2 1 1 0 477 4 4 0 0 546 1 1 0 0 3923 3 2 1 0

422 3 3 0 0 491 1 1 0 0 3868 2 1 1 0 478 4 4 0 0 547 1 1 0 0 3924 3 2 1 0

423 3 3 0 0 492 1 1 0 0 3869 2 1 1 0 479 4 4 0 0 548 1 1 0 0 3925 3 2 1 0

424 3 3 0 0 493 1 1 0 0 3870 2 1 1 0 480 4 4 0 0 549 1 1 0 0 3926 3 2 1 0

425 3 3 0 0 494 1 1 0 0 3871 2 1 1 0 481 4 4 0 0 550 1 1 0 0 3927 3 2 1 0

426 3 3 0 0 495 1 1 0 0 3872 2 1 1 0 482 4 4 0 0 551 1 1 0 0 3928 3 2 1 0

427 3 3 0 0 496 1 1 0 0 3873 3 1 1 0 483 4 4 0 0 552 1 1 0 0 3929 3 2 1 0

428 3 3 0 0 497 1 1 0 0 3874 3 1 1 0 484 4 4 0 0 553 1 1 0 0 3930 3 2 1 0

429 3 3 0 0 498 1 1 0 0 3875 3 1 1 0 485 4 4 0 0 554 1 1 0 0 3931 3 2 1 0

430 3 3 0 0 499 1 1 0 0 3876 3 1 1 0 486 4 5 0 1 555 1 1 0 0 3932 3 2 1 0

431 3 3 0 0 500 1 1 0 0 3877 3 1 1 0 487 4 5 0 1 556 1 1 0 0 3933 3 2 1 0

432 3 3 0 0 501 1 1 0 0 3878 3 1 1 0 488 4 5 0 1 557 1 1 0 0 3934 3 2 1 0

433 3 3 0 0 502 1 1 0 0 3879 3 2 1 0 489 4 5 0 1 558 1 1 0 0 3935 3 2 1 0

434 3 3 0 0 503 1 1 0 0 3880 3 2 1 0 490 4 5 0 1 559 1 1 0 0 3936 3 2 1 0

435 3 3 0 0 504 1 1 0 0 3881 3 2 1 0 491 4 5 0 1 560 1 1 0 0 3937 3 2 1 0

436 3 3 0 0 505 1 1 0 0 3882 3 2 1 0 492 4 5 0 1 561 1 1 0 0 3938 3 2 1 0

437 3 3 0 0 506 1 1 0 0 3883 3 2 1 0 493 4 5 0 1 562 1 1 0 0 3939 3 2 1 0

438 3 3 0 0 507 1 1 0 0 3884 3 2 1 0 494 4 4 0 0 563 1 1 0 0 3940 3 2 1 0

439 3 3 0 0 508 1 1 0 0 3885 3 2 1 0 495 4 4 0 0 564 1 1 0 0 3941 3 2 1 0

440 3 3 0 0 509 1 1 0 0 3886 3 1 1 0 496 4 4 0 0 565 1 1 0 0 3942 3 2 1 0

441 3 4 0 1 510 1 1 0 0 3887 3 1 1 0 497 4 4 0 0 566 1 1 0 0 3943 3 2 1 0

442 3 4 0 1 511 1 1 0 0 3888 3 1 1 0 498 4 4 0 0 567 1 1 0 0 3944 3 2 1 0

443 4 4 0 0 512 1 1 0 0 3889 3 1 1 0 499 4 4 0 0 568 1 1 0 0 3945 3 2 1 0

444 4 4 0 0 513 1 1 0 0 3890 3 1 1 0 500 4 4 0 0 569 1 1 0 0 3946 3 2 1 0

445 4 4 0 0 514 1 1 0 0 3891 3 1 1 0 501 4 4 0 0 570 1 1 0 0 3947 3 2 1 0

446 4 4 0 0 515 1 1 0 0 3892 3 1 1 0 502 4 4 0 0 571 1 1 0 0 3948 3 2 1 0

447 4 4 0 0 516 1 1 0 0 3893 3 1 1 0 503 4 4 0 0 572 1 1 0 0 3949 3 2 1 0

448 4 4 0 0 517 1 1 0 0 3894 3 1 1 0 504 4 4 0 0 573 1 1 0 0 3950 3 2 1 0

449 4 4 0 0 518 1 1 0 0 3895 3 1 1 0 505 4 4 0 0 574 1 1 0 0 3951 3 2 1 0

450 4 4 0 0 519 1 1 0 0 3896 3 1 1 0 506 4 4 0 0 575 1 1 0 0 3952 3 2 1 0

451 4 4 0 0 520 1 1 0 0 3897 3 1 1 0 507 4 4 0 0 576 1 1 0 0 3953 3 2 1 0

452 4 4 0 0 521 1 1 0 0 3898 3 1 1 0 508 4 4 0 0 577 1 1 0 0 3954 3 2 1 0

453 4 4 0 0 522 1 1 0 0 3899 3 1 1 0 509 4 4 0 0 578 1 1 0 0 3955 3 2 1 0

454 4 4 0 0 523 1 1 0 0 3900 3 1 1 0 510 4 4 0 0 579 1 1 0 0 3956 3 2 1 0

455 4 4 0 0 524 1 1 0 0 3901 3 1 1 0 511 4 4 0 0 580 1 1 0 0 3957 3 2 1 0

456 4 4 0 0 525 1 1 0 0 3902 3 1 1 0 512 4 4 0 0 581 1 1 0 0 3958 3 2 1 0

457 4 4 0 0 526 1 1 0 0 3903 3 1 1 0 513 4 4 0 0 582 1 1 0 0 3959 3 2 1 0

458 4 4 0 0 527 1 1 0 0 3904 3 1 1 0 514 4 4 0 0 583 1 1 0 0 3960 3 2 1 0

459 4 4 0 0 528 1 1 0 0 3905 3 1 1 0 515 4 4 0 0 584 1 1 0 0 3961 3 2 1 0

460 4 4 0 0 529 1 1 0 0 3906 3 1 1 0 516 4 4 0 0 585 1 1 0 0 3962 3 2 1 0

461 4 4 0 0 530 1 1 0 0 3907 3 2 1 0 517 4 4 0 0 586 1 1 0 0 3963 3 2 1 0

462 4 4 0 0 531 1 1 0 0 3908 3 2 1 0 518 4 4 0 0 587 1 1 0 0 3964 3 2 1 0

463 4 4 0 0 532 1 1 0 0 3909 3 2 1 0 519 4 4 0 0 588 1 1 0 0 3965 3 2 1 0

464 4 4 0 0 533 1 1 0 0 3910 3 2 1 0 520 4 4 0 0 589 1 1 0 0 3966 3 2 1 0

465 4 4 0 0 534 1 1 0 0 3911 3 2 1 0 521 4 4 0 0 590 1 1 0 0 3967 3 2 1 0

466 4 4 0 0 535 1 1 0 0 3912 3 2 1 0 522 4 4 0 0 591 1 1 0 0 3968 3 2 1 0

467 4 4 0 0 536 1 1 0 0 3913 3 2 1 0 523 4 4 0 0 592 1 1 0 0 3969 3 2 1 0
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524 4 4 0 0 593 1 1 0 0 3970 3 2 1 0 580 4 4 0 0 649 1 1 0 0 4026 4 3 1 0

525 4 4 0 0 594 1 1 0 0 3971 3 2 1 0 581 4 4 0 0 650 1 1 0 0 4027 4 3 1 0

526 4 4 0 0 595 1 1 0 0 3972 3 2 1 0 582 4 4 0 0 651 1 1 0 0 4028 4 4 1 1

527 4 4 0 0 596 1 1 0 0 3973 3 2 1 0 583 4 4 0 0 652 1 1 0 0 4029 4 4 1 1

528 4 4 0 0 597 1 1 0 0 3974 3 2 1 0 584 4 4 0 0 653 2 1 0 0 4030 4 5 1 3

529 4 4 0 0 598 1 1 0 0 3975 3 2 1 0 585 4 4 0 0 654 2 1 0 0 4031 4 5 1 3

530 4 4 0 0 599 1 1 0 0 3976 4 2 1 0 586 4 4 0 0 655 2 4 0 2 4032 4 4 1 1

531 4 4 0 0 600 1 1 0 0 3977 4 2 1 0 587 4 4 0 0 656 2 4 0 2 4033 4 4 1 1

532 4 4 0 0 601 1 1 0 0 3978 4 2 1 0 588 4 4 0 0 657 2 2 0 0 4034 4 4 1 1

533 4 4 0 0 602 1 1 0 0 3979 4 2 1 0 589 4 4 0 0 658 2 2 0 0 4035 4 4 1 1

534 4 4 0 0 603 1 1 0 0 3980 4 3 1 0 590 4 4 0 0 659 2 2 0 0 4036 4 3 1 0

535 4 4 0 0 604 1 1 0 0 3981 4 3 1 0 591 4 4 0 0 660 2 2 0 0 4037 4 3 1 0

536 4 4 0 0 605 1 1 0 0 3982 4 3 1 0 592 4 4 0 0 661 2 2 0 0 4038 4 3 1 0

537 4 4 0 0 606 1 1 0 0 3983 4 3 1 0 593 4 4 0 0 662 2 2 0 0 4039 4 3 1 0

538 4 4 0 0 607 1 1 0 0 3984 4 3 1 0 594 4 4 0 0 663 2 2 0 0 4040 4 4 1 1

539 4 4 0 0 608 1 1 0 0 3985 4 3 1 0 595 4 4 0 0 664 2 2 0 0 4041 4 4 1 1

540 4 4 0 0 609 1 1 0 0 3986 4 3 1 0 596 4 4 0 0 665 2 2 0 0 4042 4 4 1 1

541 4 4 0 0 610 1 1 0 0 3987 4 3 1 0 597 4 4 0 0 666 2 2 0 0 4043 4 4 1 1

542 4 4 0 0 611 1 1 0 0 3988 4 3 1 0 598 4 4 0 0 667 2 2 0 0 4044 4 3 1 0

543 4 4 0 0 612 1 1 0 0 3989 4 3 1 0 599 4 4 0 0 668 2 2 0 0 4045 4 3 1 0

544 4 4 0 0 613 1 1 0 0 3990 4 3 1 0 600 4 4 0 0 669 2 2 0 0 4046 4 3 1 0

545 4 4 0 0 614 1 1 0 0 3991 4 4 1 1 601 4 4 0 0 670 2 2 0 0 4047 4 3 1 0

546 4 4 0 0 615 1 1 0 0 3992 4 4 1 1 602 4 4 0 0 671 2 2 0 0 4048 4 3 1 0

547 4 4 0 0 616 1 1 0 0 3993 4 4 1 1 603 4 4 0 0 672 2 2 0 0 4049 4 3 1 0

548 4 4 0 0 617 1 1 0 0 3994 4 4 1 1 604 4 4 0 0 673 2 2 0 0 4050 4 3 1 0

549 4 4 0 0 618 1 1 0 0 3995 4 4 1 1 605 4 4 0 0 674 2 2 0 0 4051 4 3 1 0

550 4 4 0 0 619 1 1 0 0 3996 4 4 1 1 606 4 4 0 0 675 2 2 0 0 4052 4 3 1 0

551 4 4 0 0 620 1 1 0 0 3997 4 2 3 0 607 4 4 0 0 676 2 2 0 0 4053 4 3 1 0

552 4 4 0 0 621 1 1 0 0 3998 4 2 3 0 608 4 4 0 0 677 2 2 0 0 4054 5 4 1 0

553 4 4 0 0 622 1 1 0 0 3999 4 2 3 0 609 4 4 0 0 678 2 2 0 0 4055 5 4 1 0

554 4 4 0 0 623 1 1 0 0 4000 4 2 3 0 610 4 4 0 0 679 2 2 0 0 4056 5 4 1 0

555 4 4 0 0 624 1 1 0 0 4001 4 2 3 0 611 4 4 0 0 680 2 2 0 0 4057 5 3 1 0

556 4 4 0 0 625 1 1 0 0 4002 4 2 3 0 612 4 4 0 0 681 2 2 0 0 4058 5 3 1 0

557 4 4 0 0 626 1 1 0 0 4003 4 2 3 0 613 4 4 0 0 682 2 2 0 0 4059 5 3 1 0

558 4 4 0 0 627 1 1 0 0 4004 4 2 3 0 614 4 4 0 0 683 2 2 0 0 4060 5 3 1 0

559 4 4 0 0 628 1 1 0 0 4005 4 3 2 1 615 4 4 0 0 684 2 2 0 0 4061 5 3 1 0

560 4 4 0 0 629 1 1 0 0 4006 4 4 2 3 616 4 4 0 0 685 2 2 0 0 4062 5 3 1 0

561 4 4 0 0 630 1 1 0 0 4007 4 3 2 1 617 4 4 0 0 686 2 2 0 0 4063 5 3 1 0

562 4 4 0 0 631 1 1 0 0 4008 4 3 2 1 618 4 4 0 0 687 2 2 0 0 4064 5 3 1 0

563 4 4 0 0 632 1 1 0 0 4009 4 3 2 1 619 4 4 0 0 688 2 2 0 0 4065 5 3 1 0

564 4 4 0 0 633 1 1 0 0 4010 4 3 2 1 620 4 4 0 0 689 2 2 0 0 4066 5 3 1 0

565 4 4 0 0 634 1 1 0 0 4011 4 3 2 1 621 4 4 0 0 690 2 2 0 0 4067 5 3 1 0

566 4 4 0 0 635 1 1 0 0 4012 4 3 2 1 622 4 4 0 0 691 2 2 0 0 4068 5 3 1 0

567 4 4 0 0 636 1 1 0 0 4013 4 4 1 0 623 4 4 0 0 692 2 2 0 0 4069 5 3 1 0

568 4 4 0 0 637 1 1 0 0 4014 4 4 1 0 624 4 4 0 0 693 2 2 0 0 4070 5 3 1 0

569 4 4 0 0 638 1 1 0 0 4015 4 4 1 0 625 4 4 0 0 694 2 2 0 0 4071 5 3 1 0

570 4 4 0 0 639 1 1 0 0 4016 4 3 1 0 626 4 4 0 0 695 2 2 0 0 4072 5 3 1 0

571 4 4 0 0 640 1 1 0 0 4017 4 3 1 0 627 4 4 0 0 696 2 2 0 0 4073 5 3 1 0

572 4 4 0 0 641 1 1 0 0 4018 4 3 1 0 628 4 4 0 0 697 2 2 0 0 4074 5 3 1 0

573 4 4 0 0 642 1 1 0 0 4019 4 3 1 0 629 4 4 0 0 698 2 2 0 0 4075 5 3 1 0

574 4 4 0 0 643 1 1 0 0 4020 4 3 1 0 630 4 4 0 0 699 2 2 0 0 4076 5 3 1 0

575 4 4 0 0 644 1 1 0 0 4021 4 3 1 0 631 4 4 0 0 700 2 2 0 0 4077 5 3 1 0

576 4 4 0 0 645 1 1 0 0 4022 4 3 1 0 632 4 4 0 0 701 2 2 0 0 4078 5 3 1 0

577 4 4 0 0 646 1 1 0 0 4023 4 3 1 0 633 4 4 0 0 702 2 2 0 0 4079 5 3 1 0

578 4 4 0 0 647 1 1 0 0 4024 4 3 1 0 634 4 4 0 0 703 2 2 0 0 4080 5 3 1 0

579 4 4 0 0 648 1 1 0 0 4025 4 3 1 0 635 4 4 0 0 704 2 2 0 0 4081 5 3 1 0
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636 4 4 0 0 705 2 2 0 0 4082 5 3 1 0 692 5 4 1 0 761 2 2 0 0 4138 5 3 1 0

637 4 4 0 0 706 2 2 0 0 4083 5 3 1 0 693 5 4 1 0 762 2 2 0 0 4139 3 3 0 0

638 4 4 0 0 707 2 2 0 0 4084 5 3 1 0 694 5 4 1 0 763 2 2 0 0 4140 3 3 0 0

639 4 4 0 0 708 2 2 0 0 4085 5 3 1 0 695 5 4 1 0 764 2 2 0 0 4141 3 3 0 0

640 4 4 0 0 709 3 3 0 0 4086 5 3 1 0 696 5 4 1 0 765 2 2 0 0 4142 3 3 0 0

641 4 4 0 0 710 3 3 0 0 4087 5 3 1 0 697 5 4 1 0 766 2 2 0 0 4143 3 3 0 0

642 4 4 0 0 711 3 3 0 0 4088 5 3 1 0 698 5 4 1 0 767 2 2 0 0 4144 3 3 0 0

643 4 4 0 0 712 3 3 0 0 4089 5 4 1 1 699 5 4 1 0 768 2 2 0 0 4145 3 3 0 0

644 4 4 0 0 713 3 3 0 0 4090 5 4 1 1 700 5 4 1 0 769 2 2 0 0 4146 3 3 0 0

645 4 4 0 0 714 3 3 0 0 4091 5 4 1 1 701 5 4 1 0 770 2 2 0 0 4147 3 3 0 0

646 4 4 0 0 715 3 3 0 0 4092 5 4 1 1 702 5 4 1 0 771 2 2 0 0 4148 3 3 0 0

647 4 4 0 0 716 3 3 0 0 4093 5 4 1 1 703 5 4 1 0 772 2 2 0 0 4149 3 3 0 0

648 4 4 0 0 717 3 3 0 0 4094 5 3 1 0 704 5 4 1 0 773 2 2 0 0 4150 3 3 0 0

649 4 4 0 0 718 3 3 0 0 4095 5 3 1 0 705 5 4 1 0 774 2 2 0 0 4151 3 3 0 0

650 4 4 0 0 719 3 3 0 0 4096 5 4 1 0 706 5 4 1 0 775 2 2 0 0 4152 3 3 0 0

651 4 4 0 0 720 3 3 0 0 4097 5 3 1 0 707 5 4 1 0 776 2 2 0 0 4153 3 3 0 0

652 4 4 0 0 721 3 3 0 0 4098 5 3 1 0 708 5 4 1 0 777 2 2 0 0 4154 3 3 0 0

653 4 4 0 0 722 3 3 0 0 4099 5 3 1 0 709 5 4 1 0 778 2 2 0 0 4155 3 4 0 1

654 4 4 0 0 723 3 3 0 0 4100 5 3 1 0 710 5 4 1 0 779 2 2 0 0 4156 3 4 0 1

655 4 4 0 0 724 3 3 0 0 4101 5 3 1 0 711 5 4 1 0 780 2 2 0 0 4157 3 3 0 0

656 4 4 0 0 725 3 3 0 0 4102 5 3 1 0 712 5 4 1 0 781 2 2 0 0 4158 3 3 0 0

657 4 4 0 0 726 3 3 0 0 4103 5 3 1 0 713 5 4 1 0 782 2 2 0 0 4159 3 3 0 0

658 4 4 0 0 727 3 3 0 0 4104 5 3 1 0 714 5 4 1 0 783 2 2 0 0 4160 3 3 0 0

659 4 4 0 0 728 3 3 0 0 4105 5 3 1 0 715 5 4 1 0 784 2 2 0 0 4161 3 3 0 0

660 4 4 0 0 729 3 3 0 0 4106 5 3 1 0 716 5 4 1 0 785 2 2 0 0 4162 3 3 0 0

661 4 4 0 0 730 3 3 0 0 4107 5 3 1 0 717 5 4 1 0 786 2 2 0 0 4163 3 3 0 0

662 4 4 0 0 731 3 3 0 0 4108 5 4 1 0 718 5 4 1 0 787 2 2 0 0 4164 3 3 0 0

663 4 4 0 0 732 3 3 0 0 4109 5 4 1 0 719 5 4 1 0 788 1 1 0 0 4165 3 3 0 0

664 4 4 0 0 733 3 3 0 0 4110 5 3 1 0 720 5 4 1 0 789 1 1 0 0 4166 3 3 0 0

665 4 4 0 0 734 3 3 0 0 4111 5 3 1 0 721 5 4 1 0 790 1 1 0 0 4167 3 3 0 0

666 4 4 0 0 735 3 3 0 0 4112 5 3 1 0 722 5 4 1 0 791 1 1 0 0 4168 3 3 0 0

667 4 4 0 0 736 3 3 0 0 4113 5 3 1 0 723 5 4 1 0 792 1 1 0 0 4169 4 4 0 0

668 4 4 0 0 737 3 3 0 0 4114 5 3 1 0 724 5 4 1 0 793 1 1 0 0 4170 4 4 0 0

669 4 4 0 0 738 3 3 0 0 4115 5 3 1 0 725 5 4 1 0 794 1 1 0 0 4171 4 4 0 0

670 5 4 1 0 739 3 3 0 0 4116 5 3 1 0 726 5 4 1 0 795 1 1 0 0 4172 4 4 0 0

671 5 4 1 0 740 3 3 0 0 4117 5 3 1 0 727 5 4 1 0 796 1 1 0 0 4173 4 4 0 0

672 5 5 0 0 741 3 3 0 0 4118 5 4 1 0 728 5 4 1 0 797 1 1 0 0 4174 4 4 0 0

673 5 5 0 0 742 3 3 0 0 4119 5 4 1 0 729 5 4 1 0 798 1 1 0 0 4175 4 4 0 0

674 5 5 0 0 743 3 3 0 0 4120 5 3 1 0 730 5 4 1 0 799 1 1 0 0 4176 4 4 0 0

675 5 5 0 0 744 3 3 0 0 4121 5 3 1 0 731 5 4 1 0 800 1 1 0 0 4177 4 4 0 0

676 5 5 0 0 745 3 3 0 0 4122 5 3 1 0 732 5 4 1 0 801 1 1 0 0 4178 4 4 0 0

677 5 5 0 0 746 3 3 0 0 4123 5 3 1 0 733 5 4 1 0 802 1 1 0 0 4179 4 4 0 0

678 5 5 0 0 747 3 4 0 1 4124 5 3 1 0 734 5 4 1 0 803 1 1 0 0 4180 4 4 0 0

679 5 5 0 0 748 3 3 0 0 4125 5 3 1 0 735 5 4 1 0 804 1 1 0 0 4181 4 3 0 0

680 5 5 0 0 749 3 3 0 0 4126 5 3 1 0 736 5 4 1 0 805 1 1 0 0 4182 4 3 0 0

681 5 5 0 0 750 2 2 0 0 4127 5 3 1 0 737 5 4 1 0 806 1 1 0 0 4183 4 3 0 0

682 5 4 1 0 751 2 2 0 0 4128 5 3 1 0 738 5 4 1 0 807 2 1 0 0 4184 4 3 0 0

683 5 4 1 0 752 2 2 0 0 4129 5 3 1 0 739 5 4 1 0 808 3 3 1 1 4185 4 3 0 0

684 5 4 1 0 753 2 2 0 0 4130 5 3 1 0 740 5 4 1 0 809 3 2 1 0 4186 4 3 0 0

685 5 4 1 0 754 2 2 0 0 4131 5 3 1 0 741 5 4 1 0 810 3 2 1 0 4187 4 4 0 0

686 5 4 1 0 755 2 2 0 0 4132 5 3 1 0 742 5 4 1 0 811 3 2 1 0 4188 4 4 0 0

687 5 4 1 0 756 2 2 0 0 4133 5 3 1 0 743 5 4 1 0 812 3 2 1 0 4189 4 4 0 0

688 5 4 1 0 757 2 2 0 0 4134 5 3 1 0 744 5 4 1 0 813 3 2 1 0 4190 4 4 0 0

689 5 4 1 0 758 2 2 0 0 4135 5 3 1 0 745 5 4 1 0 814 3 2 1 0 4191 4 4 0 0

690 5 4 1 0 759 2 2 0 0 4136 5 3 1 0 746 5 4 1 0 815 3 2 1 0 4192 4 4 0 0

691 5 4 1 0 760 2 2 0 0 4137 5 3 1 0 747 5 4 1 0 816 3 2 1 0 4193 4 4 0 0
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748 5 4 1 0 817 3 2 1 0 4194 4 4 0 0 804 5 4 1 0 873 3 1 1 0 4250 6 6 0 0

749 5 4 1 0 818 3 2 1 0 4195 4 4 0 0 805 5 4 1 0 874 3 1 1 0 4251 6 6 0 0

750 5 4 1 0 819 3 2 1 0 4196 4 4 0 0 806 5 4 1 0 875 3 1 1 0 4252 6 6 0 0

751 5 4 1 0 820 3 2 1 0 4197 4 4 0 0 807 5 4 1 0 876 3 1 1 0 4253 6 8 0 2

752 5 4 1 0 821 3 2 1 0 4198 4 4 0 0 808 5 4 1 0 877 3 1 1 0 4254 6 8 0 2

753 5 4 1 0 822 3 2 1 0 4199 4 4 0 0 809 5 4 1 0 878 3 1 1 0 4255 6 4 1 0

754 5 4 1 0 823 3 2 1 0 4200 4 4 0 0 810 5 4 1 0 879 3 1 1 0 4256 6 4 1 0

755 5 4 1 0 824 3 2 1 0 4201 4 4 0 0 811 5 4 1 0 880 3 1 1 0 4257 6 4 1 0

756 5 4 1 0 825 3 2 1 0 4202 4 4 0 0 812 5 4 1 0 881 3 1 1 0 4258 6 4 1 0

757 5 4 1 0 826 3 2 1 0 4203 6 3 1 0 813 5 4 1 0 882 3 1 1 0 4259 6 4 1 0

758 5 4 1 0 827 3 2 1 0 4204 6 3 1 0 814 5 4 1 0 883 3 1 1 0 4260 6 4 1 0

759 5 4 1 0 828 3 2 1 0 4205 6 5 1 0 815 5 4 1 0 884 3 1 1 0 4261 6 4 1 0

760 5 4 1 0 829 3 2 1 0 4206 6 5 1 0 816 5 4 1 0 885 3 1 1 0 4262 6 4 1 0

761 5 4 1 0 830 3 2 1 0 4207 6 5 1 0 817 5 4 1 0 886 3 1 1 0 4263 6 4 1 0

762 5 4 1 0 831 3 2 1 0 4208 6 5 1 0 818 5 4 1 0 887 3 1 1 0 4264 6 4 1 0

763 5 4 1 0 832 3 2 1 0 4209 6 5 1 0 819 5 4 1 0 888 3 1 1 0 4265 6 4 1 0

764 5 4 1 0 833 3 2 1 0 4210 6 5 1 0 820 5 4 1 0 889 3 1 1 0 4266 5 4 1 1

765 5 4 1 0 834 3 2 1 0 4211 6 5 1 0 821 5 4 1 0 890 3 1 1 0 4267 5 4 1 0

766 5 4 1 0 835 3 2 1 0 4212 6 5 1 0 822 5 4 1 0 891 3 1 1 0 4268 5 4 1 0

767 5 4 1 0 836 3 2 1 0 4213 6 5 1 0 823 5 4 1 0 892 3 1 1 0 4269 5 4 1 0

768 5 4 1 0 837 3 2 1 0 4214 6 5 1 0 824 5 4 1 0 893 3 1 1 0 4270 5 4 1 0

769 5 4 1 0 838 3 2 1 0 4215 6 5 1 0 825 5 4 1 0 894 3 1 1 0 4271 5 4 1 0

770 5 4 1 0 839 3 2 1 0 4216 6 6 0 0 826 5 4 1 0 895 3 1 1 0 4272 5 4 1 0

771 5 4 1 0 840 3 2 1 0 4217 6 6 0 0 827 4 3 1 0 896 3 1 1 0 4273 5 4 1 0

772 5 4 1 0 841 3 2 1 0 4218 6 6 0 0 828 4 3 1 0 897 3 1 1 0 4274 5 4 1 0

773 5 4 1 0 842 3 2 1 0 4219 6 5 1 0 829 4 3 1 0 898 3 1 1 0 4275 5 4 1 0

774 5 4 1 0 843 3 2 1 0 4220 6 5 1 0 830 5 4 1 0 899 3 1 1 0 4276 5 4 1 0

775 5 4 1 0 844 3 2 1 0 4221 6 5 1 0 831 5 4 1 0 900 3 1 1 0 4277 5 4 1 0

776 5 4 1 0 845 3 2 1 0 4222 6 5 1 0 832 5 4 1 0 901 3 1 1 0 4278 5 4 1 0

777 5 4 1 0 846 3 2 1 0 4223 6 5 1 0 833 5 4 1 0 902 3 1 1 0 4279 5 4 1 0

778 5 4 1 0 847 3 2 1 0 4224 6 5 1 0 834 5 4 1 0 903 3 1 1 0 4280 5 4 1 0

779 5 4 1 0 848 3 2 1 0 4225 6 5 1 0 835 5 4 1 0 904 3 1 1 0 4281 5 5 0 0

780 5 4 1 0 849 3 2 1 0 4226 6 5 1 0 836 5 4 1 0 905 3 1 1 0 4282 5 5 0 0

781 5 4 1 0 850 3 2 1 0 4227 6 5 1 0 837 5 4 1 0 906 3 1 1 0 4283 5 5 0 0

782 5 4 1 0 851 3 2 1 0 4228 6 5 1 0 838 5 4 1 0 907 3 1 1 0 4284 5 5 0 0

783 5 4 1 0 852 3 2 1 0 4229 6 5 1 0 839 5 4 1 0 908 3 1 1 0 4285 5 5 0 0

784 5 4 1 0 853 3 2 1 0 4230 6 5 1 0 840 5 4 1 0 909 3 1 1 0 4286 5 5 0 0

785 5 4 1 0 854 3 2 1 0 4231 6 5 1 0 841 5 4 1 0 910 3 1 1 0 4287 5 5 0 0

786 5 4 1 0 855 3 2 1 0 4232 6 5 1 0 842 6 5 1 0 911 3 1 1 0 4288 5 5 0 0

787 5 4 1 0 856 3 2 1 0 4233 6 5 1 0 843 6 5 1 0 912 3 1 1 0 4289 5 5 0 0

788 5 4 1 0 857 3 2 1 0 4234 6 5 1 0 844 6 5 1 0 913 3 1 1 0 4290 5 5 0 0

789 5 4 1 0 858 3 2 1 0 4235 6 5 1 0 845 6 5 1 0 914 3 1 1 0 4291 5 5 0 0

790 5 4 1 0 859 3 2 1 0 4236 6 5 1 0 846 6 5 1 0 915 3 1 1 0 4292 5 5 0 0

791 5 4 1 0 860 3 2 1 0 4237 6 6 0 0 847 6 5 1 0 916 3 1 1 0 4293 5 5 0 0

792 5 4 1 0 861 3 2 1 0 4238 6 6 0 0 848 6 5 1 0 917 3 1 1 0 4294 5 5 0 0

793 5 4 1 0 862 3 2 1 0 4239 6 6 0 0 849 6 5 1 0 918 3 1 1 0 4295 5 5 0 0

794 5 4 1 0 863 3 2 1 0 4240 6 6 0 0 850 6 5 1 0 919 3 1 1 0 4296 5 5 0 0

795 5 4 1 0 864 3 2 1 0 4241 6 6 0 0 851 6 5 1 0 920 3 1 1 0 4297 5 5 0 0

796 5 4 1 0 865 3 2 1 0 4242 6 6 0 0 852 6 5 1 0 921 3 1 1 0 4298 5 5 0 0

797 5 4 1 0 866 3 2 1 0 4243 6 6 0 0 853 6 5 1 0 922 3 1 1 0 4299 5 5 0 0

798 5 4 1 0 867 3 2 1 0 4244 6 6 0 0 854 6 5 1 0 923 3 1 1 0 4300 5 4 1 0

799 5 4 1 0 868 3 2 1 0 4245 6 6 0 0 855 6 5 1 0 924 3 1 1 0 4301 5 4 1 0

800 5 4 1 0 869 3 2 1 0 4246 6 6 0 0 856 6 5 1 0 925 3 1 1 0 4302 5 4 1 0

801 5 4 1 0 870 3 1 1 0 4247 6 6 0 0 857 6 5 1 0 926 3 1 1 0 4303 5 4 1 0

802 5 4 1 0 871 3 1 1 0 4248 6 6 0 0 858 6 5 1 0 927 3 1 1 0 4304 5 4 1 0

803 5 4 1 0 872 3 1 1 0 4249 6 6 0 0 859 6 5 1 0 928 3 1 1 0 4305 5 4 1 0
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860 6 5 1 0 929 3 1 1 0 4306 5 4 1 0 916 6 5 1 0 985 3 2 1 0 4362 5 4 0 0

861 6 5 1 0 930 3 2 1 0 4307 5 4 1 0 917 6 5 1 0 986 3 2 1 0 4363 5 4 0 0

862 6 5 1 0 931 3 2 1 0 4308 5 4 1 0 918 6 5 1 0 987 3 2 1 0 4364 5 5 0 1

863 6 5 1 0 932 3 2 1 0 4309 5 4 1 0 919 6 5 1 0 988 3 2 1 0 4365 5 4 0 0

864 6 5 1 0 933 3 2 1 0 4310 5 4 1 0 920 6 5 1 0 989 3 2 1 0 4366 5 5 0 1

865 6 5 1 0 934 3 2 1 0 4311 5 4 1 0 921 6 5 1 0 990 3 2 1 0 4367 5 5 0 1

866 6 5 1 0 935 3 2 1 0 4312 5 4 1 0 922 6 5 1 0 991 3 2 1 0 4368 5 4 0 0

867 6 5 1 0 936 3 2 1 0 4313 5 3 2 0 923 6 5 1 0 992 3 2 1 0 4369 4 4 0 0

868 6 5 1 0 937 3 2 1 0 4314 5 3 2 0 924 6 5 1 0 993 3 2 1 0 4370 4 4 0 0

869 6 5 1 0 938 3 2 1 0 4315 5 3 2 0 925 6 5 1 0 994 3 2 1 0 4371 4 4 0 0

870 6 5 1 0 939 3 2 1 0 4316 5 3 2 0 926 6 5 1 0 995 3 2 1 0 4372 4 4 0 0

871 6 5 1 0 940 3 2 1 0 4317 5 3 2 0 927 6 5 1 0 996 3 2 1 0 4373 4 4 0 0

872 6 5 1 0 941 3 2 1 0 4318 5 4 1 0 928 6 5 1 0 997 3 2 1 0 4374 4 4 0 0

873 6 5 1 0 942 3 2 1 0 4319 5 4 1 0 929 6 5 1 0 998 3 2 1 0 4375 4 4 0 0

874 6 5 1 0 943 3 2 1 0 4320 5 4 1 0 930 6 5 1 0 999 3 2 1 0 4376 4 4 0 0

875 6 5 1 0 944 3 2 1 0 4321 5 4 1 0 931 6 5 1 0 1000 3 2 1 0 4377 4 4 0 0

876 6 5 1 0 945 3 2 1 0 4322 5 4 1 0 932 6 5 1 0 1001 3 2 1 0 4378 4 5 0 1

877 6 5 1 0 946 3 2 1 0 4323 5 4 1 0 933 6 5 1 0 1002 3 2 1 0 4379 4 5 0 1

878 6 5 1 0 947 3 2 1 0 4324 5 4 1 0 934 6 5 1 0 1003 3 2 1 0 4380 4 4 0 0

879 6 5 1 0 948 3 2 1 0 4325 5 4 1 0 935 6 5 1 0 1004 3 2 1 0 4381 4 4 0 0

880 6 5 1 0 949 3 2 1 0 4326 5 4 1 0 936 6 5 1 0 1005 3 2 1 0 4382 4 4 0 0

881 6 5 1 0 950 3 2 1 0 4327 5 4 1 0 937 6 5 1 0 1006 3 2 1 0 4383 4 4 0 0

882 6 5 1 0 951 3 2 1 0 4328 5 4 1 0 938 6 5 1 0 1007 3 2 1 0 4384 4 4 0 0

883 6 5 1 0 952 3 2 1 0 4329 5 4 1 0 939 6 5 1 0 1008 3 2 1 0 4385 4 4 0 0

884 6 5 1 0 953 3 2 1 0 4330 5 4 1 0 940 6 5 1 0 1009 3 2 1 0 4386 4 4 0 0

885 6 5 1 0 954 3 2 1 0 4331 5 4 1 0 941 6 5 1 0 1010 3 2 1 0 4387 4 3 0 0

886 6 5 1 0 955 3 2 1 0 4332 5 4 1 0 942 6 5 1 0 1011 3 2 1 0 4388 4 3 0 0

887 6 5 1 0 956 3 2 1 0 4333 5 4 1 0 943 6 5 1 0 1012 3 2 1 0 4389 4 3 0 0

888 6 5 1 0 957 3 2 1 0 4334 5 4 1 0 944 6 5 1 0 1013 3 2 1 0 4390 4 3 0 0

889 6 5 1 0 958 3 2 1 0 4335 5 4 1 0 945 6 5 1 0 1014 3 2 1 0 4391 4 3 0 0

890 6 5 1 0 959 3 2 1 0 4336 5 4 1 0 946 6 5 1 0 1015 3 2 1 0 4392 3 3 0 0

891 6 5 1 0 960 3 2 1 0 4337 5 4 1 0 947 6 5 1 0 1016 3 2 1 0 4393 3 3 0 0

892 6 5 1 0 961 3 2 1 0 4338 5 4 1 0 948 6 5 1 0 1017 3 2 1 0 4394 3 3 0 0

893 6 5 1 0 962 3 2 1 0 4339 5 4 1 0 949 6 5 1 0 1018 3 2 1 0 4395 3 3 0 0

894 6 5 1 0 963 3 2 1 0 4340 5 4 1 0 950 6 5 1 0 1019 3 2 1 0 4396 3 3 0 0

895 6 5 1 0 964 3 2 1 0 4341 5 4 1 0 951 6 5 1 0 1020 3 2 1 0 4397 3 3 0 0

896 6 5 1 0 965 3 2 1 0 4342 5 4 1 0 952 6 5 1 0 1021 2 1 1 0 4398 3 3 0 0

897 6 5 1 0 966 3 2 1 0 4343 5 4 1 0 953 6 5 1 0 1022 2 1 1 0 4399 3 3 0 0

898 6 5 1 0 967 3 2 1 0 4344 5 4 1 0 954 6 5 1 0 1023 2 1 1 0 4400 3 3 0 0

899 6 5 1 0 968 3 2 1 0 4345 5 4 1 0 955 6 5 1 0 1024 2 1 1 0 4401 3 3 0 0

900 6 5 1 0 969 3 2 1 0 4346 5 4 1 0 956 6 5 1 0 1025 2 1 1 0 4402 3 3 0 0

901 6 5 1 0 970 3 2 1 0 4347 5 4 1 0 957 6 5 1 0 1026 2 1 1 0 4403 3 3 0 0

902 6 5 1 0 971 3 2 1 0 4348 5 4 1 0 958 6 5 1 0 1027 2 1 1 0 4404 3 3 0 0

903 6 5 1 0 972 3 2 1 0 4349 5 4 1 0 959 6 5 1 0 1028 2 1 1 0 4405 3 3 0 0

904 6 5 1 0 973 3 2 1 0 4350 5 4 1 0 960 6 5 1 0 1029 2 1 1 0 4406 3 3 0 0

905 6 5 1 0 974 3 2 1 0 4351 5 4 1 0 961 6 5 1 0 1030 2 1 1 0 4407 3 3 0 0

906 6 5 1 0 975 3 2 1 0 4352 5 4 1 0 962 6 5 1 0 1031 2 1 1 0 4408 3 3 0 0

907 6 5 1 0 976 3 2 1 0 4353 5 4 1 0 963 6 5 1 0 1032 2 1 1 0 4409 3 3 0 0

908 6 5 1 0 977 3 2 1 0 4354 5 4 1 0 964 6 5 1 0 1033 2 1 1 0 4410 3 3 0 0

909 6 5 1 0 978 3 2 1 0 4355 5 4 1 0 965 6 5 1 0 1034 2 1 1 0 4411 3 3 0 0

910 6 5 1 0 979 3 2 1 0 4356 5 4 1 0 966 6 5 1 0 1035 2 1 1 0 4412 3 3 0 0

911 6 5 1 0 980 3 2 1 0 4357 5 4 1 0 967 6 5 1 0 1036 2 1 1 0 4413 3 3 0 0

912 6 5 1 0 981 3 2 1 0 4358 5 5 0 0 968 6 5 1 0 1037 2 1 1 0 4414 3 3 0 0

913 6 5 1 0 982 3 2 1 0 4359 5 5 0 0 969 6 5 1 0 1038 2 1 1 0 4415 3 3 0 0

914 6 5 1 0 983 3 2 1 0 4360 5 5 0 0 970 6 5 1 0 1039 2 1 1 0 4416 3 3 0 0

915 6 5 1 0 984 3 2 1 0 4361 5 5 0 0 971 6 5 1 0 1040 2 1 1 0 4417 3 3 0 0
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972 6 5 1 0 1041 2 1 1 0 4418 3 3 0 0 1028 6 6 0 0 1097 2 3 0 1 4474 3 3 0 1

973 6 5 1 0 1042 2 1 1 0 4419 3 3 0 0 1029 6 6 0 0 1098 2 2 0 0 4475 3 3 0 1

974 6 5 1 0 1043 2 1 1 0 4420 3 3 0 0 1030 6 6 0 0 1099 2 2 0 0 4476 3 2 0 0

975 6 5 1 0 1044 2 1 1 0 4421 3 3 0 0 1031 6 6 0 0 1100 2 2 0 0 4477 3 2 0 0

976 6 5 1 0 1045 2 1 1 0 4422 3 3 0 0 1032 6 6 0 0 1101 2 2 0 0 4478 3 2 0 0

977 6 5 1 0 1046 2 1 1 0 4423 3 3 0 0 1033 6 6 0 0 1102 2 2 0 0 4479 3 2 0 0

978 6 5 1 0 1047 2 1 1 0 4424 3 3 0 0 1034 6 6 0 0 1103 2 2 0 0 4480 3 2 0 0

979 6 5 1 0 1048 2 1 1 0 4425 3 3 0 0 1035 6 6 0 0 1104 2 2 0 0 4481 3 2 0 0

980 6 5 1 0 1049 2 1 1 0 4426 3 3 0 0 1036 6 6 0 0 1105 2 2 1 1 4482 3 2 0 0

981 6 5 1 0 1050 2 1 1 0 4427 3 3 0 0 1037 6 6 0 0 1106 2 2 1 1 4483 3 2 0 0

982 6 5 1 0 1051 2 1 1 0 4428 3 3 0 0 1038 6 6 0 0 1107 2 2 1 1 4484 3 2 0 0

983 6 5 1 0 1052 2 1 1 0 4429 3 3 0 0 1039 6 6 0 0 1108 2 2 1 1 4485 3 2 0 0

984 6 5 1 0 1053 2 1 1 0 4430 3 3 0 0 1040 6 6 0 0 1109 2 2 1 1 4486 3 2 0 0

985 6 5 1 0 1054 2 1 1 0 4431 3 3 0 0 1041 6 6 0 0 1110 2 3 1 2 4487 3 2 0 0

986 6 5 1 0 1055 2 1 1 0 4432 3 3 0 0 1042 6 6 0 0 1111 2 3 1 2 4488 3 2 0 0

987 6 5 1 0 1056 2 1 1 0 4433 3 3 0 0 1043 6 6 0 0 1112 2 3 0 1 4489 3 2 0 0

988 6 5 1 0 1057 2 1 1 0 4434 3 3 0 0 1044 6 6 0 0 1113 2 3 0 1 4490 3 3 0 0

989 6 6 0 0 1058 2 1 1 0 4435 3 3 0 0 1045 6 6 0 0 1114 2 3 0 1 4491 3 3 0 0

990 6 6 0 0 1059 2 1 1 0 4436 3 3 0 0 1046 6 6 0 0 1115 2 3 0 1 4492 3 3 0 0

991 6 6 0 0 1060 2 1 1 0 4437 3 3 0 0 1047 6 6 0 0 1116 2 3 0 1 4493 3 3 0 0

992 6 6 0 0 1061 2 1 1 0 4438 3 4 0 1 1048 6 6 0 0 1117 2 3 0 1 4494 3 3 0 0

993 6 6 0 0 1062 2 2 1 1 4439 3 3 0 0 1049 6 6 0 0 1118 2 3 0 1 4495 3 3 0 0

994 6 6 0 0 1063 2 2 1 1 4440 3 3 0 0 1050 6 6 0 0 1119 2 3 0 1 4496 3 2 0 0

995 6 6 0 0 1064 2 1 1 0 4441 3 3 0 0 1051 6 6 0 0 1120 2 3 0 1 4497 3 2 0 0

996 6 6 0 0 1065 2 1 1 0 4442 3 3 0 0 1052 6 6 0 0 1121 2 3 0 1 4498 3 2 0 0

997 6 6 0 0 1066 2 1 1 0 4443 3 3 0 0 1053 6 6 0 0 1122 2 3 0 1 4499 3 2 0 0

998 6 6 0 0 1067 2 1 1 0 4444 3 3 0 0 1054 6 6 0 0 1123 2 3 0 1 4500 3 2 0 0

999 6 6 0 0 1068 2 1 1 0 4445 3 3 0 0 1055 6 6 0 0 1124 2 1 1 0 4501 2 2 0 0

1000 6 6 0 0 1069 2 1 1 0 4446 3 3 0 0 1056 6 6 0 0 1125 2 1 1 0 4502 2 2 0 0

1001 5 5 0 0 1070 2 1 1 0 4447 3 3 0 0 1057 6 6 0 0 1126 2 2 0 0 4503 2 2 0 0

1002 5 5 0 0 1071 2 1 1 0 4448 3 3 0 0 1058 6 6 0 0 1127 2 2 0 0 4504 2 2 0 0

1003 5 5 0 0 1072 2 1 1 0 4449 3 3 0 0 1059 6 6 0 0 1128 2 2 0 0 4505 2 2 0 0

1004 5 5 0 0 1073 2 1 1 0 4450 3 3 0 0 1060 6 6 0 0 1129 2 3 0 1 4506 2 2 0 0

1005 5 5 0 0 1074 2 1 1 0 4451 3 3 0 0 1061 6 6 0 0 1130 2 3 0 1 4507 2 2 0 0

1006 5 5 0 0 1075 2 2 1 1 4452 3 3 0 0 1062 6 6 0 0 1131 2 3 0 1 4508 2 2 0 0

1007 5 5 0 0 1076 2 2 1 1 4453 3 3 0 0 1063 6 6 0 0 1132 2 3 0 1 4509 2 2 0 0

1008 5 5 0 0 1077 2 2 1 1 4454 3 3 0 0 1064 6 6 0 0 1133 2 3 0 1 4510 2 2 0 0

1009 5 5 0 0 1078 2 2 1 1 4455 3 3 0 0 1065 6 6 0 0 1134 2 3 0 1 4511 2 2 0 0

1010 5 5 0 0 1079 2 1 1 0 4456 3 3 0 0 1066 6 6 0 0 1135 2 3 0 1 4512 2 2 0 0

1011 5 5 0 0 1080 2 2 0 0 4457 3 3 0 0 1067 6 6 0 0 1136 2 2 0 0 4513 2 2 0 0

1012 5 5 0 0 1081 2 2 0 0 4458 3 3 0 0 1068 6 6 0 0 1137 2 2 0 0 4514 2 2 0 0

1013 5 5 0 0 1082 2 2 0 0 4459 3 3 0 0 1069 6 5 1 0 1138 2 2 0 0 4515 2 2 0 0

1014 5 5 0 0 1083 2 2 0 0 4460 3 3 0 0 1070 6 5 1 0 1139 2 4 0 2 4516 2 2 0 0

1015 5 5 0 0 1084 2 2 0 0 4461 3 3 0 0 1071 6 5 1 0 1140 2 3 0 1 4517 2 2 0 0

1016 6 6 0 0 1085 2 2 0 0 4462 3 3 0 0 1072 6 5 1 0 1141 2 2 1 1 4518 2 2 0 0

1017 6 6 0 0 1086 2 2 0 0 4463 3 3 0 0 1073 6 5 1 0 1142 2 2 0 0 4519 2 2 0 0

1018 6 6 0 0 1087 2 1 1 0 4464 3 3 0 0 1074 6 5 1 0 1143 2 2 0 0 4520 2 2 0 0

1019 6 6 0 0 1088 2 2 1 1 4465 3 3 0 0 1075 6 5 1 0 1144 2 2 0 0 4521 2 2 0 0

1020 6 6 0 0 1089 2 4 0 2 4466 3 3 0 0 1076 6 5 1 0 1145 2 2 0 0 4522 2 2 0 0

1021 6 6 0 0 1090 2 4 0 2 4467 3 3 0 0 1077 6 5 1 0 1146 2 2 0 0 4523 2 2 0 0

1022 6 6 0 0 1091 2 4 0 2 4468 3 3 0 0 1078 6 5 1 0 1147 2 2 0 0 4524 2 2 0 0

1023 6 6 0 0 1092 2 4 0 2 4469 3 3 0 0 1079 6 4 2 0 1148 2 2 0 0 4525 2 2 0 0

1024 6 6 0 0 1093 2 4 0 2 4470 3 3 0 0 1080 6 4 2 0 1149 2 2 0 0 4526 2 2 0 0

1025 6 6 0 0 1094 2 4 0 2 4471 3 3 0 0 1081 6 4 2 0 1150 2 2 0 0 4527 2 2 0 0

1026 6 6 0 0 1095 2 4 0 2 4472 3 3 0 0 1082 6 4 2 0 1151 2 2 0 0 4528 2 2 0 0

1027 6 6 0 0 1096 2 4 0 2 4473 3 3 0 0 1083 6 4 2 0 1152 2 2 0 0 4529 2 2 0 0
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1084 6 4 2 0 1153 2 2 0 0 4530 2 2 0 0 1140 6 4 2 0 1209 2 3 0 1 4586 3 3 0 0

1085 6 4 2 0 1154 2 2 0 0 4531 2 2 0 0 1141 6 4 2 0 1210 2 1 0 0 4587 3 3 0 0

1086 6 4 2 0 1155 2 2 0 0 4532 2 2 0 0 1142 6 4 2 0 1211 2 1 0 0 4588 3 3 0 0

1087 6 4 2 0 1156 2 2 0 0 4533 2 2 0 0 1143 6 4 2 0 1212 2 1 0 0 4589 3 3 0 0

1088 6 4 2 0 1157 2 2 0 0 4534 2 2 0 0 1144 6 4 2 0 1213 2 2 0 0 4590 3 3 0 0

1089 6 4 2 0 1158 2 2 0 0 4535 2 2 0 0 1145 6 4 2 0 1214 2 2 0 0 4591 3 3 0 0

1090 6 4 2 0 1159 2 2 0 0 4536 2 1 0 0 1146 6 5 1 0 1215 2 2 0 0 4592 3 3 0 0

1091 6 5 1 0 1160 2 2 0 0 4537 2 2 0 0 1147 6 5 1 0 1216 2 2 0 0 4593 3 3 0 0

1092 6 5 1 0 1161 2 2 0 0 4538 2 2 0 0 1148 6 5 1 0 1217 2 2 0 0 4594 3 3 0 0

1093 6 5 1 0 1162 2 2 0 0 4539 2 2 0 0 1149 6 5 1 0 1218 2 2 0 0 4595 3 3 0 0

1094 6 5 1 0 1163 2 2 0 0 4540 2 2 0 0 1150 6 5 1 0 1219 2 2 0 0 4596 3 3 0 0

1095 6 5 1 0 1164 2 2 0 0 4541 2 1 0 0 1151 6 5 1 0 1220 2 2 0 0 4597 3 3 0 0

1096 6 5 1 0 1165 2 2 0 0 4542 2 1 0 0 1152 6 5 1 0 1221 2 2 0 0 4598 3 3 0 0

1097 6 5 1 0 1166 2 2 0 0 4543 2 2 0 0 1153 6 5 1 0 1222 2 2 0 0 4599 3 3 0 0

1098 6 5 1 0 1167 2 2 0 0 4544 2 2 0 0 1154 6 5 1 0 1223 2 1 0 0 4600 3 3 0 0

1099 6 5 1 0 1168 2 3 2 1 4545 2 2 0 0 1155 6 5 1 0 1224 2 1 0 0 4601 3 3 0 0

1100 6 5 1 0 1169 2 3 2 1 4546 2 2 0 0 1156 6 5 1 0 1225 2 1 0 0 4602 3 3 0 0

1101 6 5 1 0 1170 2 3 2 1 4547 2 2 0 0 1157 6 5 1 0 1226 2 1 0 0 4603 3 3 0 0

1102 6 5 1 0 1171 2 2 0 0 4548 2 2 0 0 1158 6 5 1 0 1227 2 2 0 0 4604 3 3 0 0

1103 6 5 1 0 1172 2 2 0 0 4549 2 2 0 0 1159 6 5 1 0 1228 2 2 0 0 4605 3 3 0 0

1104 6 5 1 0 1173 2 2 0 0 4550 2 2 0 0 1160 6 5 1 0 1229 2 2 0 0 4606 3 3 0 0

1105 6 5 1 0 1174 2 2 0 0 4551 2 2 0 0 1161 6 5 1 0 1230 2 2 0 0 4607 3 3 0 0

1106 6 5 1 0 1175 2 2 0 0 4552 3 2 0 0 1162 6 5 1 0 1231 1 1 0 0 4608 3 3 0 0

1107 6 5 1 0 1176 2 3 0 1 4553 3 2 0 0 1163 6 5 1 0 1232 1 1 0 0 4609 3 3 0 0

1108 6 5 1 0 1177 2 2 0 0 4554 3 1 0 0 1164 6 5 1 0 1233 1 1 0 0 4610 3 3 0 0

1109 6 5 1 0 1178 2 2 0 0 4555 3 2 0 0 1165 6 5 1 0 1234 1 1 0 0 4611 3 3 0 1

1110 6 5 1 0 1179 2 2 0 0 4556 3 1 0 0 1166 6 5 1 0 1235 1 1 0 0 4612 3 3 0 1

1111 6 5 1 0 1180 2 2 0 0 4557 3 1 0 0 1167 6 5 1 0 1236 1 1 0 0 4613 3 3 0 1

1112 6 5 1 0 1181 2 2 0 0 4558 3 3 0 0 1168 6 5 1 0 1237 1 1 0 0 4614 3 2 0 0

1113 6 5 1 0 1182 2 2 0 0 4559 3 3 0 0 1169 6 5 1 0 1238 1 1 0 0 4615 3 2 0 0

1114 6 5 1 0 1183 2 2 0 0 4560 3 3 0 0 1170 6 5 1 0 1239 1 1 0 0 4616 3 2 0 0

1115 6 5 1 0 1184 2 2 0 0 4561 3 2 0 0 1171 6 5 1 0 1240 1 1 0 0 4617 3 2 0 0

1116 6 5 1 0 1185 2 3 0 1 4562 3 3 0 0 1172 6 5 1 0 1241 1 1 0 0 4618 2 2 0 0

1117 6 5 1 0 1186 2 2 0 0 4563 3 3 0 0 1173 6 5 1 0 1242 1 1 0 0 4619 2 2 0 0

1118 6 5 1 0 1187 2 2 0 0 4564 3 3 0 1 1174 6 5 1 0 1243 1 0 0 0 4620 2 2 0 0

1119 6 5 1 0 1188 2 2 0 0 4565 3 3 0 1 1175 6 5 1 0 1244 1 1 0 0 4621 3 2 0 0

1120 6 5 1 0 1189 2 2 0 0 4566 3 2 0 0 1176 6 5 1 0 1245 1 1 0 0 4622 3 2 0 0

1121 6 5 1 0 1190 2 2 0 0 4567 3 2 0 0 1177 6 5 1 0 1246 1 1 0 0 4623 3 3 0 0

1122 6 5 1 0 1191 2 2 0 0 4568 3 2 0 0 1178 6 5 1 0 1247 1 1 0 0 4624 3 3 0 0

1123 6 5 1 0 1192 2 2 0 0 4569 3 2 0 0 1179 6 5 1 0 1248 1 1 0 0 4625 3 3 0 0

1124 6 5 1 0 1193 2 2 0 0 4570 3 2 0 0 1180 6 5 1 0 1249 1 1 0 0 4626 3 3 0 0

1125 6 5 1 0 1194 2 2 0 0 4571 3 2 0 0 1181 6 5 1 0 1250 1 1 0 0 4627 3 3 0 0

1126 6 4 2 0 1195 2 2 0 0 4572 3 2 0 0 1182 6 5 1 0 1251 1 1 0 0 4628 3 3 0 0

1127 6 4 2 0 1196 2 2 0 0 4573 3 3 0 0 1183 6 5 1 0 1252 1 1 0 0 4629 3 3 0 0

1128 6 4 2 0 1197 2 2 0 0 4574 3 3 0 0 1184 6 5 1 0 1253 1 1 0 0 4630 3 3 0 0

1129 6 4 2 0 1198 2 2 0 0 4575 3 3 0 0 1185 6 5 1 0 1254 1 1 0 0 4631 3 3 0 0

1130 6 3 3 0 1199 2 2 0 0 4576 3 3 0 0 1186 6 5 1 0 1255 1 1 0 0 4632 3 3 0 0

1131 6 3 3 0 1200 2 2 0 0 4577 3 3 0 0 1187 6 5 1 0 1256 1 1 0 0 4633 3 3 0 0

1132 6 3 3 0 1201 2 2 0 0 4578 3 3 0 0 1188 6 5 1 0 1257 1 1 0 0 4634 3 3 0 0

1133 6 4 2 0 1202 2 2 0 0 4579 3 3 0 0 1189 6 5 1 0 1258 1 1 0 0 4635 3 3 0 0

1134 6 4 2 0 1203 2 2 0 0 4580 3 3 0 0 1190 6 5 1 0 1259 1 1 0 0 4636 3 3 0 0

1135 6 4 2 0 1204 2 2 0 0 4581 3 3 0 0 1191 6 5 1 0 1260 1 1 0 0 4637 3 3 0 0

1136 6 4 2 0 1205 2 2 0 0 4582 3 3 0 0 1192 6 5 1 0 1261 1 1 0 0 4638 3 3 0 0

1137 6 4 2 0 1206 2 2 0 0 4583 3 3 0 0 1193 6 5 1 0 1262 1 1 0 0 4639 3 3 0 0

1138 6 4 2 0 1207 2 2 0 0 4584 3 3 0 0 1194 6 5 1 0 1263 1 1 0 0 4640 3 3 0 0

1139 6 4 2 0 1208 2 2 0 0 4585 3 3 0 0 1195 6 5 1 0 1264 0 0 0 0 4641 3 3 0 0
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1196 6 5 1 0 1265 0 0 0 0 4642 3 3 0 0 1252 5 5 0 0 1321 0 0 0 0 4698 4 4 0 0

1197 6 5 1 0 1266 0 0 0 0 4643 3 3 0 0 1253 5 5 0 0 1322 0 0 0 0 4699 4 4 0 0

1198 6 5 1 0 1267 0 0 0 0 4644 3 2 1 0 1254 5 5 0 0 1323 0 0 0 0 4700 4 4 0 0

1199 6 5 1 0 1268 0 0 0 0 4645 3 2 1 0 1255 5 5 0 0 1324 0 0 0 0 4701 4 4 0 0

1200 6 5 1 0 1269 0 0 0 0 4646 3 2 1 0 1256 5 5 0 0 1325 0 0 0 0 4702 4 4 0 0

1201 6 5 1 0 1270 0 0 0 0 4647 4 2 1 0 1257 5 5 0 0 1326 0 0 0 0 4703 4 4 0 0

1202 6 5 1 0 1271 0 0 0 0 4648 4 2 1 0 1258 5 5 0 0 1327 0 0 0 0 4704 4 4 0 0

1203 6 5 1 0 1272 0 0 0 0 4649 4 2 1 0 1259 5 5 0 0 1328 0 0 0 0 4705 4 4 0 0

1204 6 5 1 0 1273 0 0 0 0 4650 4 2 1 0 1260 5 5 0 0 1329 0 0 0 0 4706 4 4 0 0

1205 6 5 1 0 1274 0 0 0 0 4651 4 3 1 0 1261 5 5 0 0 1330 0 0 0 0 4707 4 4 0 0

1206 6 5 1 0 1275 0 0 0 0 4652 4 4 0 0 1262 5 5 0 0 1331 0 0 0 0 4708 4 4 0 0

1207 6 5 1 0 1276 0 0 0 0 4653 4 4 0 0 1263 5 5 0 0 1332 0 0 0 0 4709 4 4 0 0

1208 6 5 1 0 1277 0 0 0 0 4654 4 4 0 0 1264 5 5 0 0 1333 0 0 0 0 4710 4 4 0 0

1209 6 6 0 0 1278 0 0 0 0 4655 4 4 0 0 1265 5 5 0 0 1334 0 0 0 0 4711 4 4 0 0

1210 6 6 0 0 1279 0 0 0 0 4656 4 4 0 0 1266 5 5 0 0 1335 0 0 0 0 4712 4 3 0 0

1211 6 6 0 0 1280 0 0 0 0 4657 4 4 0 0 1267 5 5 0 0 1336 0 0 0 0 4713 4 3 0 0

1212 6 6 0 0 1281 0 0 0 0 4658 4 4 0 0 1268 5 5 0 0 1337 0 0 0 0 4714 4 3 0 0

1213 6 6 0 0 1282 0 0 0 0 4659 4 4 0 0 1269 5 5 0 0 1338 0 0 0 0 4715 4 3 0 0

1214 6 6 0 0 1283 0 0 0 0 4660 4 4 0 0 1270 5 5 0 0 1339 0 0 0 0 4716 4 3 0 0

1215 6 6 0 0 1284 0 0 0 0 4661 4 4 0 0 1271 5 5 0 0 1340 0 0 0 0 4717 4 3 0 0

1216 6 6 0 0 1285 0 0 0 0 4662 4 4 0 0 1272 5 5 0 0 1341 0 0 0 0 4718 4 3 0 0

1217 6 6 0 0 1286 0 0 0 0 4663 4 4 0 0 1273 5 5 0 0 1342 0 0 0 0 4719 4 3 0 0

1218 6 6 0 0 1287 0 0 0 0 4664 4 4 0 0 1274 5 5 0 0 1343 0 0 0 0 4720 4 3 0 0

1219 6 6 0 0 1288 0 0 0 0 4665 4 4 0 0 1275 5 5 0 0 1344 0 0 0 0 4721 4 3 0 0

1220 6 6 0 0 1289 0 0 0 0 4666 4 4 0 0 1276 5 5 0 0 1345 0 0 0 0 4722 4 3 0 0

1221 6 6 0 0 1290 0 0 0 0 4667 4 4 0 0 1277 5 5 0 0 1346 0 0 0 0 4723 4 3 0 0

1222 6 6 0 0 1291 0 0 0 0 4668 4 4 0 0 1278 5 5 0 0 1347 0 0 0 0 4724 3 3 0 0

1223 6 6 0 0 1292 0 0 0 0 4669 4 4 0 0 1279 5 5 0 0 1348 0 0 0 0 4725 3 3 0 0

1224 5 5 0 0 1293 0 0 0 0 4670 4 4 0 0 1280 5 5 0 0 1349 0 0 0 0 4726 3 3 0 0

1225 5 5 0 0 1294 0 0 0 0 4671 4 4 0 0 1281 5 5 0 0 1350 0 0 0 0 4727 3 3 0 0

1226 5 5 0 0 1295 0 0 0 0 4672 4 5 0 1 1282 5 5 0 0 1351 0 0 0 0 4728 3 3 0 0

1227 5 5 0 0 1296 0 0 0 0 4673 4 4 0 0 1283 5 5 0 0 1352 0 0 0 0 4729 3 3 0 0

1228 5 5 0 0 1297 0 0 0 0 4674 4 4 0 0 1284 5 5 0 0 1353 0 0 0 0 4730 3 3 0 0

1229 5 5 0 0 1298 0 0 0 0 4675 4 4 0 0 1285 5 5 0 0 1354 0 0 0 0 4731 3 3 0 0

1230 5 5 0 0 1299 0 0 0 0 4676 4 4 0 0 1286 5 5 0 0 1355 0 0 0 0 4732 3 3 0 0

1231 5 5 0 0 1300 0 0 0 0 4677 4 5 0 1 1287 5 5 0 0 1356 0 0 0 0 4733 3 3 0 0

1232 5 5 0 0 1301 0 0 0 0 4678 4 5 0 1 1288 5 5 0 0 1357 0 0 0 0 4734 3 3 0 0

1233 5 5 0 0 1302 0 0 0 0 4679 4 5 0 1 1289 5 5 0 0 1358 0 0 0 0 4735 3 3 0 0

1234 5 5 0 0 1303 0 0 0 0 4680 4 4 0 0 1290 5 5 0 0 1359 0 0 0 0 4736 3 5 0 2

1235 5 5 0 0 1304 0 0 0 0 4681 4 4 0 0 1291 5 5 0 0 1360 0 0 0 0 4737 3 5 0 2

1236 5 5 0 0 1305 0 0 0 0 4682 4 4 0 0 1292 5 5 0 0 1361 0 0 0 0 4738 3 3 0 0

1237 5 5 0 0 1306 0 0 0 0 4683 4 4 0 0 1293 5 5 0 0 1362 0 0 0 0 4739 3 3 0 0

1238 5 5 0 0 1307 0 0 0 0 4684 4 4 0 0 1294 5 5 0 0 1363 0 0 0 0 4740 3 3 0 0

1239 5 5 0 0 1308 0 0 0 0 4685 4 4 0 0 1295 5 5 0 0 1364 0 0 0 0 4741 3 3 0 0

1240 5 5 0 0 1309 0 0 0 0 4686 4 4 0 0 1296 5 5 0 0 1365 0 0 0 0 4742 3 3 0 0

1241 5 5 0 0 1310 0 0 0 0 4687 4 4 0 0 1297 5 5 0 0 1366 0 0 0 0 4743 3 3 0 0

1242 5 5 0 0 1311 0 0 0 0 4688 4 4 0 0 1298 5 5 0 0 1367 0 0 0 0 4744 3 3 0 0

1243 5 5 0 0 1312 0 0 0 0 4689 4 4 0 0 1299 5 5 0 0 1368 0 0 0 0 4745 3 3 0 0

1244 5 5 0 0 1313 0 0 0 0 4690 4 4 0 0 1300 5 5 0 0 1369 0 0 0 0 4746 3 3 0 0

1245 5 5 0 0 1314 0 0 0 0 4691 4 4 0 0 1301 5 5 0 0 1370 0 0 0 0 4747 3 3 0 0

1246 5 5 0 0 1315 0 0 0 0 4692 4 4 0 0 1302 5 5 0 0 1371 0 0 0 0 4748 3 3 0 0

1247 5 5 0 0 1316 0 0 0 0 4693 4 4 0 0 1303 5 5 0 0 1372 0 0 0 0 4749 3 3 0 0

1248 5 5 0 0 1317 0 0 0 0 4694 4 4 0 0 1304 5 5 0 0 1373 0 0 0 0 4750 3 3 0 0

1249 5 5 0 0 1318 0 0 0 0 4695 4 4 0 0 1305 5 5 0 0 1374 0 0 0 0 4751 3 3 0 0

1250 5 5 0 0 1319 0 0 0 0 4696 4 4 0 0 1306 5 5 0 0 1375 0 0 0 0 4752 3 3 0 0

1251 5 5 0 0 1320 0 0 0 0 4697 4 4 0 0 1307 5 5 0 0 1376 0 0 0 0 4753 3 3 0 0
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1308 5 5 0 0 1377 0 0 0 0 4754 3 3 0 0 1364 8 5 3 0 1433 0 0 0 0 4810 2 2 0 0

1309 5 5 0 0 1378 0 0 0 0 4755 3 3 0 0 1365 8 5 3 0 1434 0 0 0 0 4811 2 2 0 0

1310 5 5 0 0 1379 0 0 0 0 4756 3 2 0 0 1366 8 5 3 0 1435 0 0 0 0 4812 2 2 0 0

1311 5 5 0 0 1380 0 0 0 0 4757 3 2 0 0 1367 8 5 3 0 1436 0 0 0 0 4813 2 2 0 0

1312 5 5 0 0 1381 0 0 0 0 4758 3 2 0 0 1368 9 6 3 0 1437 0 0 0 0 4814 2 2 0 0

1313 5 5 0 0 1382 0 0 0 0 4759 3 2 0 0 1369 9 6 3 0 1438 1 1 0 0 4815 2 2 0 0

1314 5 5 0 0 1383 0 0 0 0 4760 3 2 0 0 1370 9 7 2 0 1439 1 1 0 0 4816 2 2 0 0

1315 5 5 0 0 1384 0 0 0 0 4761 3 2 0 0 1371 9 7 2 0 1440 1 1 0 0 4817 2 2 0 0

1316 5 5 0 0 1385 0 0 0 0 4762 3 2 0 0 1372 9 7 2 0 1441 1 1 0 0 4818 2 2 0 0

1317 5 5 0 0 1386 0 0 0 0 4763 3 2 0 0 1373 9 7 2 0 1442 1 1 0 0 4819 2 2 0 0

1318 5 5 0 0 1387 0 0 0 0 4764 3 2 0 0 1374 9 7 2 0 1443 1 1 0 0 4820 2 2 0 0

1319 6 6 0 0 1388 0 0 0 0 4765 3 2 0 0 1375 9 7 2 0 1444 1 1 0 0 4821 2 2 0 0

1320 6 6 0 0 1389 0 0 0 0 4766 3 2 0 0 1376 9 7 2 0 1445 1 1 0 0 4822 2 2 0 0

1321 6 6 0 0 1390 0 0 0 0 4767 3 2 0 0 1377 9 6 3 0 1446 1 1 0 0 4823 2 2 0 0

1322 6 6 0 0 1391 0 0 0 0 4768 3 3 0 0 1378 9 6 3 0 1447 1 1 0 0 4824 2 2 0 0

1323 6 6 0 0 1392 0 0 0 0 4769 3 3 0 0 1379 9 6 3 0 1448 1 1 0 0 4825 2 2 0 0

1324 6 6 0 0 1393 0 0 0 0 4770 3 2 0 0 1380 9 6 3 0 1449 1 1 0 0 4826 2 2 0 0

1325 6 6 0 0 1394 0 0 0 0 4771 3 2 0 0 1381 9 6 3 0 1450 1 1 0 0 4827 2 2 0 0

1326 6 5 1 0 1395 0 0 0 0 4772 3 2 0 0 1382 9 8 1 0 1451 1 1 0 0 4828 2 2 0 0

1327 6 5 1 0 1396 0 0 0 0 4773 2 2 0 0 1383 9 8 1 0 1452 1 1 0 0 4829 2 2 0 0

1328 6 5 1 0 1397 0 0 0 0 4774 2 2 0 0 1384 9 8 1 0 1453 1 1 0 0 4830 2 2 0 0

1329 6 5 1 0 1398 0 0 0 0 4775 2 2 0 0 1385 9 8 1 0 1454 2 1 1 0 4831 2 2 0 0

1330 6 5 1 0 1399 0 0 0 0 4776 2 2 0 0 1386 9 8 1 0 1455 2 1 1 0 4832 2 2 0 0

1331 6 5 1 0 1400 0 0 0 0 4777 2 2 0 0 1387 9 8 1 0 1456 3 2 1 0 4833 2 2 0 0

1332 6 5 1 0 1401 0 0 0 0 4778 2 2 0 0 1388 9 8 1 0 1457 3 2 1 0 4834 2 2 0 0

1333 6 5 1 0 1402 0 0 0 0 4779 2 2 0 0 1389 9 8 1 0 1458 3 3 1 1 4835 2 2 0 0

1334 8 6 2 0 1403 0 0 0 0 4780 2 2 0 0 1390 9 9 1 1 1459 3 3 1 1 4836 2 2 0 0

1335 8 6 2 0 1404 0 0 0 0 4781 2 2 0 0 1391 9 9 1 1 1460 3 3 1 1 4837 2 2 0 0

1336 8 6 2 0 1405 0 0 0 0 4782 2 2 0 0 1392 9 9 1 1 1461 3 3 1 1 4838 2 2 0 0

1337 8 6 2 0 1406 0 0 0 0 4783 2 2 0 0 1393 9 9 1 1 1462 3 3 1 1 4839 2 2 0 0

1338 8 6 2 0 1407 0 0 0 0 4784 2 2 0 0 1394 9 8 1 0 1463 3 3 1 1 4840 2 2 0 0

1339 8 6 2 0 1408 0 0 0 0 4785 2 2 0 0 1395 9 8 1 0 1464 3 3 1 1 4841 2 2 0 0

1340 8 6 2 0 1409 0 0 0 0 4786 2 2 0 0 1396 9 8 1 0 1465 3 3 1 1 4842 3 2 0 0

1341 8 7 1 0 1410 0 0 0 0 4787 2 2 0 0 1397 9 8 1 0 1466 3 2 1 0 4843 3 2 0 0

1342 8 6 2 0 1411 0 0 0 0 4788 2 2 0 0 1398 9 8 1 0 1467 3 2 1 0 4844 3 2 0 0

1343 8 6 2 0 1412 0 0 0 0 4789 2 2 0 0 1399 9 8 1 0 1468 3 2 1 0 4845 3 2 0 0

1344 9 6 3 0 1413 0 0 0 0 4790 2 2 0 0 1400 9 8 1 0 1469 3 2 1 0 4846 3 2 0 0

1345 9 6 3 0 1414 0 0 0 0 4791 2 2 0 0 1401 9 8 1 0 1470 3 2 1 0 4847 3 2 0 0

1346 10 7 3 0 1415 0 0 0 0 4792 2 2 0 0 1402 9 8 1 0 1471 3 2 1 0 4848 3 2 0 0

1347 10 7 3 0 1416 0 0 0 0 4793 2 2 0 0 1403 9 8 1 0 1472 3 2 1 0 4849 3 2 0 0

1348 10 7 3 0 1417 0 0 0 0 4794 2 2 0 0 1404 9 8 1 0 1473 3 2 1 0 4850 3 2 0 0

1349 10 7 3 0 1418 0 0 0 0 4795 2 2 0 0 1405 9 8 1 0 1474 3 2 1 0 4851 3 2 0 0

1350 10 7 3 0 1419 0 0 0 0 4796 2 2 0 0 1406 9 8 1 0 1475 3 2 1 0 4852 3 2 0 0

1351 10 7 3 0 1420 0 0 0 0 4797 2 2 0 0 1407 9 8 1 0 1476 3 2 1 0 4853 3 2 0 0

1352 10 7 3 0 1421 0 0 0 0 4798 2 2 0 0 1408 9 8 1 0 1477 3 2 1 0 4854 3 2 0 0

1353 10 7 3 0 1422 0 0 0 0 4799 2 2 0 0 1409 8 7 1 0 1478 3 2 1 0 4855 3 2 0 0

1354 10 7 3 0 1423 0 0 0 0 4800 2 2 0 0 1410 8 7 1 0 1479 3 2 1 0 4856 3 2 0 0

1355 10 7 3 0 1424 0 0 0 0 4801 2 2 0 0 1411 8 7 1 0 1480 3 2 1 0 4857 3 3 0 0

1356 10 7 3 0 1425 0 0 0 0 4802 2 2 0 0 1412 8 7 1 0 1481 3 2 1 0 4858 3 3 0 0

1357 10 7 3 0 1426 0 0 0 0 4803 2 2 0 0 1413 8 7 1 0 1482 3 2 1 0 4859 3 2 0 0

1358 10 7 3 0 1427 0 0 0 0 4804 2 2 0 0 1414 8 7 1 0 1483 3 2 1 0 4860 3 2 0 0

1359 9 6 3 0 1428 0 0 0 0 4805 2 2 0 0 1415 8 7 1 0 1484 3 2 1 0 4861 3 2 0 0

1360 8 6 2 0 1429 0 0 0 0 4806 2 2 0 0 1416 8 7 1 0 1485 3 2 1 0 4862 3 2 0 0

1361 8 6 2 0 1430 0 0 0 0 4807 2 2 0 0 1417 8 7 1 0 1486 3 2 1 0 4863 3 2 0 0

1362 8 5 3 0 1431 0 0 0 0 4808 2 2 0 0 1418 8 7 1 0 1487 3 2 1 0 4864 3 2 0 0

1363 8 5 3 0 1432 0 0 0 0 4809 2 2 0 0 1419 8 7 1 0 1488 3 2 1 0 4865 3 2 0 0
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1420 8 7 1 0 1489 3 2 1 0 4866 3 2 0 0 1476 8 6 2 0 1545 4 3 1 0 4922 3 2 0 0

1421 8 7 1 0 1490 3 2 1 0 4867 3 3 0 0 1477 8 6 2 0 1546 4 3 1 0 4923 3 2 0 0

1422 8 6 2 0 1491 3 2 1 0 4868 3 3 0 0 1478 8 6 2 0 1547 4 3 1 0 4924 3 2 0 0

1423 8 6 2 0 1492 3 2 1 0 4869 3 2 0 0 1479 8 6 2 0 1548 4 3 1 0 4925 3 2 0 0

1424 8 6 2 0 1493 3 2 1 0 4870 3 2 0 0 1480 8 6 2 0 1549 4 3 1 0 4926 3 3 0 0

1425 8 6 2 0 1494 3 2 1 0 4871 3 2 0 0 1481 8 6 2 0 1550 4 3 1 0 4927 3 3 0 0

1426 8 6 2 0 1495 3 2 1 0 4872 3 2 0 0 1482 8 6 2 0 1551 4 3 1 0 4928 3 4 0 1

1427 8 6 2 0 1496 3 2 1 0 4873 3 2 0 0 1483 7 5 2 0 1552 4 3 1 0 4929 3 4 0 1

1428 8 6 2 0 1497 3 2 1 0 4874 3 2 0 0 1484 7 6 2 1 1553 4 3 1 0 4930 3 4 0 1

1429 8 6 2 0 1498 3 2 1 0 4875 3 2 0 0 1485 7 5 2 0 1554 4 3 1 0 4931 3 4 0 1

1430 8 6 2 0 1499 3 2 1 0 4876 3 2 0 0 1486 7 5 2 0 1555 4 3 1 0 4932 3 3 0 0

1431 8 6 2 0 1500 3 2 1 0 4877 3 2 0 0 1487 7 5 2 0 1556 4 3 1 0 4933 3 3 0 0

1432 8 6 2 0 1501 3 2 1 0 4878 3 2 0 0 1488 7 5 2 0 1557 4 3 1 0 4934 3 3 0 0

1433 8 6 2 0 1502 3 2 1 0 4879 3 2 0 0 1489 7 5 2 0 1558 4 3 1 0 4935 3 3 0 0

1434 8 6 2 0 1503 3 2 1 0 4880 3 2 0 0 1490 7 5 2 0 1559 4 3 1 0 4936 3 3 0 0

1435 8 6 2 0 1504 3 2 1 0 4881 3 2 0 0 1491 7 5 2 0 1560 4 3 1 0 4937 3 3 0 0

1436 8 6 2 0 1505 3 2 1 0 4882 3 2 0 0 1492 7 5 2 0 1561 4 3 1 0 4938 4 3 0 0

1437 8 6 2 0 1506 3 2 1 0 4883 3 2 0 0 1493 7 5 2 0 1562 4 3 1 0 4939 4 3 0 0

1438 8 6 2 0 1507 3 2 1 0 4884 3 2 0 0 1494 7 5 2 0 1563 4 3 1 0 4940 4 3 0 0

1439 8 6 2 0 1508 3 2 1 0 4885 3 2 0 0 1495 7 5 2 0 1564 4 3 1 0 4941 4 3 0 0

1440 8 5 3 0 1509 3 2 1 0 4886 3 2 0 0 1496 7 5 2 0 1565 4 3 1 0 4942 4 3 0 0

1441 8 5 3 0 1510 3 2 1 0 4887 3 2 0 0 1497 7 5 2 0 1566 4 3 1 0 4943 4 3 0 0

1442 8 5 3 0 1511 3 2 1 0 4888 3 2 0 0 1498 7 5 2 0 1567 4 3 1 0 4944 4 4 0 0

1443 8 6 2 0 1512 3 2 1 0 4889 3 2 0 0 1499 7 5 2 0 1568 4 3 1 0 4945 4 4 0 0

1444 8 6 2 0 1513 3 2 1 0 4890 3 2 0 0 1500 7 5 2 0 1569 4 3 1 0 4946 4 4 0 0

1445 8 6 2 0 1514 3 2 1 0 4891 3 2 0 0 1501 7 6 1 0 1570 4 3 1 0 4947 4 4 0 0

1446 8 6 2 0 1515 3 2 1 0 4892 3 2 0 0 1502 7 6 1 0 1571 4 3 1 0 4948 4 4 0 0

1447 8 6 2 0 1516 3 2 1 0 4893 3 2 0 0 1503 7 6 1 0 1572 4 3 1 0 4949 4 4 0 0

1448 8 7 2 1 1517 3 2 1 0 4894 3 2 0 0 1504 7 6 1 0 1573 4 3 1 0 4950 4 3 1 0

1449 8 7 2 1 1518 3 2 1 0 4895 3 2 0 0 1505 7 6 1 0 1574 4 3 1 0 4951 4 3 1 0

1450 8 7 2 1 1519 3 2 1 0 4896 3 2 0 0 1506 7 6 1 0 1575 4 3 1 0 4952 4 3 1 0

1451 8 7 2 1 1520 3 2 1 0 4897 3 2 0 0 1507 7 6 1 0 1576 4 3 1 0 4953 4 3 1 0

1452 8 7 2 1 1521 3 2 1 0 4898 3 2 0 0 1508 7 6 1 0 1577 4 3 1 0 4954 4 3 1 0

1453 8 7 2 1 1522 3 2 1 0 4899 3 2 0 0 1509 7 6 1 0 1578 5 3 1 0 4955 4 3 1 0

1454 8 6 2 0 1523 3 2 1 0 4900 3 2 0 0 1510 7 6 1 0 1579 5 3 1 0 4956 4 3 1 0

1455 8 6 2 0 1524 4 3 1 0 4901 3 2 0 0 1511 7 6 1 0 1580 5 3 1 0 4957 4 3 1 0

1456 8 6 2 0 1525 4 4 1 1 4902 3 2 0 0 1512 7 6 1 0 1581 5 3 1 0 4958 4 3 1 0

1457 8 6 2 0 1526 4 4 1 1 4903 3 2 0 0 1513 7 6 1 0 1582 5 3 1 0 4959 4 3 1 0

1458 8 6 2 0 1527 4 4 1 1 4904 3 2 0 0 1514 7 6 1 0 1583 5 4 1 0 4960 4 3 1 0

1459 8 6 2 0 1528 4 4 1 1 4905 3 2 0 0 1515 7 6 1 0 1584 5 4 1 0 4961 4 3 1 0

1460 8 6 2 0 1529 4 3 1 0 4906 3 2 0 0 1516 7 6 1 0 1585 5 4 1 0 4962 4 3 1 0

1461 8 6 2 0 1530 4 3 1 0 4907 3 2 0 0 1517 7 6 1 0 1586 5 4 1 0 4963 5 3 0 0

1462 8 6 2 0 1531 4 3 1 0 4908 3 2 0 0 1518 7 6 1 0 1587 5 4 1 0 4964 5 3 0 0

1463 8 6 2 0 1532 4 3 1 0 4909 3 2 0 0 1519 7 6 1 0 1588 5 4 1 0 4965 5 3 0 0

1464 8 6 2 0 1533 4 3 1 0 4910 3 2 0 0 1520 7 6 1 0 1589 5 4 1 0 4966 5 4 0 0

1465 8 6 2 0 1534 4 3 1 0 4911 3 2 0 0 1521 7 5 2 0 1590 5 4 1 0 4967 5 4 0 0

1466 8 6 2 0 1535 4 3 1 0 4912 3 2 0 0 1522 7 5 2 0 1591 5 4 1 0 4968 4 5 0 1

1467 8 6 2 0 1536 4 3 1 0 4913 3 2 0 0 1523 7 5 2 0 1592 5 4 1 0 4969 4 5 0 1

1468 8 6 2 0 1537 4 3 1 0 4914 3 2 0 0 1524 7 5 2 0 1593 5 4 1 0 4970 4 4 0 0

1469 8 6 2 0 1538 4 3 1 0 4915 3 2 0 0 1525 7 5 2 0 1594 5 4 1 0 4971 4 4 0 0

1470 8 6 2 0 1539 4 3 1 0 4916 3 2 0 0 1526 7 5 2 0 1595 5 4 1 0 4972 4 4 0 0

1471 8 6 2 0 1540 4 3 1 0 4917 3 2 0 0 1527 7 5 2 0 1596 5 4 1 0 4973 4 4 0 0

1472 8 6 2 0 1541 4 3 1 0 4918 3 2 0 0 1528 7 5 2 0 1597 5 4 1 0 4974 4 4 0 0

1473 8 6 2 0 1542 4 3 1 0 4919 3 2 0 0 1529 7 5 2 0 1598 5 4 1 0 4975 4 4 0 0

1474 8 6 2 0 1543 4 3 1 0 4920 3 2 0 0 1530 7 5 2 0 1599 5 4 1 0 4976 4 4 0 0

1475 8 6 2 0 1544 4 3 1 0 4921 3 2 0 0 1531 7 5 2 0 1600 5 4 1 0 4977 4 5 0 1
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1532 7 5 2 0 1601 5 4 1 0 4978 4 5 0 1 1588 6 4 2 0 1657 5 4 1 0 5034 6 5 1 0

1533 7 5 2 0 1602 5 4 1 0 4979 4 5 0 1 1589 6 4 2 0 1658 5 4 1 0 5035 6 5 1 0

1534 7 5 2 0 1603 5 4 1 0 4980 4 5 0 1 1590 6 4 2 0 1659 5 4 1 0 5036 6 5 1 0

1535 7 5 2 0 1604 5 4 1 0 4981 4 5 0 1 1591 6 4 2 0 1660 5 4 1 0 5037 6 5 1 0

1536 7 5 2 0 1605 5 4 1 0 4982 4 4 0 0 1592 6 4 2 0 1661 5 4 1 0 5038 6 5 1 0

1537 7 5 2 0 1606 5 4 1 0 4983 4 4 0 0 1593 6 4 2 0 1662 5 4 1 0 5039 6 5 1 0

1538 7 5 2 0 1607 5 4 1 0 4984 4 4 0 0 1594 6 4 2 0 1663 5 4 1 0 5040 6 5 1 0

1539 7 5 2 0 1608 5 4 1 0 4985 4 4 0 0 1595 6 4 2 0 1664 5 4 1 0 5041 6 5 1 0

1540 7 6 1 0 1609 5 4 1 0 4986 4 4 0 0 1596 6 4 2 0 1665 5 4 1 0 5042 6 5 1 0

1541 7 6 1 0 1610 5 4 1 0 4987 4 4 0 0 1597 6 4 2 0 1666 5 4 1 0 5043 6 5 1 0

1542 7 6 1 0 1611 5 4 1 0 4988 4 4 0 0 1598 6 4 2 0 1667 5 4 1 0 5044 6 5 1 0

1543 7 6 1 0 1612 5 4 1 0 4989 4 4 0 0 1599 6 4 2 0 1668 5 4 1 0 5045 6 5 1 0

1544 7 4 3 0 1613 5 4 1 0 4990 4 4 0 0 1600 6 4 2 0 1669 5 4 1 0 5046 6 5 1 0

1545 7 4 3 0 1614 5 4 1 0 4991 4 4 0 0 1601 6 4 2 0 1670 5 4 1 0 5047 6 5 1 0

1546 7 4 3 0 1615 5 4 1 0 4992 4 4 0 0 1602 6 4 2 0 1671 5 4 1 0 5048 6 5 1 0

1547 7 4 3 0 1616 5 4 1 0 4993 4 4 0 0 1603 6 4 2 0 1672 5 4 1 0 5049 6 5 1 0

1548 7 4 3 0 1617 5 4 1 0 4994 4 4 0 0 1604 6 4 2 0 1673 5 4 1 0 5050 6 5 1 0

1549 7 4 3 0 1618 5 4 1 0 4995 4 4 0 0 1605 6 4 2 0 1674 5 4 1 0 5051 6 5 1 0

1550 7 4 3 0 1619 5 4 1 0 4996 4 4 0 0 1606 6 4 2 0 1675 5 3 2 0 5052 6 5 1 0

1551 7 4 3 0 1620 5 4 1 0 4997 4 4 0 0 1607 6 4 2 0 1676 5 3 2 0 5053 6 5 1 0

1552 7 4 3 0 1621 5 4 1 0 4998 4 4 0 0 1608 6 4 2 0 1677 5 3 2 0 5054 6 5 1 0

1553 7 4 3 0 1622 5 4 1 0 4999 4 4 0 0 1609 6 4 2 0 1678 5 3 2 0 5055 6 6 1 1

1554 7 4 3 0 1623 5 4 1 0 5000 4 4 0 0 1610 6 4 2 0 1679 5 3 2 0 5056 6 5 1 0

1555 7 4 3 0 1624 5 4 1 0 5001 4 4 0 0 1611 6 4 2 0 1680 5 3 2 0 5057 6 5 1 0

1556 7 4 3 0 1625 5 4 1 0 5002 4 4 0 0 1612 6 4 2 0 1681 5 3 2 0 5058 6 5 1 0

1557 7 4 3 0 1626 5 4 1 0 5003 4 4 0 0 1613 6 4 2 0 1682 5 3 2 0 5059 6 5 1 0

1558 7 4 3 0 1627 5 4 1 0 5004 4 4 0 0 1614 6 4 2 0 1683 5 3 2 0 5060 6 4 2 0

1559 7 4 3 0 1628 5 4 1 0 5005 4 4 0 0 1615 6 4 2 0 1684 5 3 2 0 5061 6 4 2 0

1560 7 4 3 0 1629 5 4 1 0 5006 4 4 0 0 1616 6 4 2 0 1685 5 3 2 0 5062 6 4 2 0

1561 7 4 3 0 1630 5 4 1 0 5007 4 4 0 0 1617 6 4 2 0 1686 5 3 2 0 5063 6 4 2 0

1562 7 4 3 0 1631 5 4 1 0 5008 4 4 0 0 1618 6 4 2 0 1687 5 3 2 0 5064 6 4 2 0

1563 7 4 3 0 1632 5 4 1 0 5009 4 4 0 0 1619 6 4 2 0 1688 5 3 2 0 5065 6 4 2 0

1564 7 4 3 0 1633 5 4 1 0 5010 4 4 0 0 1620 6 4 2 0 1689 5 4 1 0 5066 6 4 2 0

1565 7 4 3 0 1634 5 4 1 0 5011 4 4 0 0 1621 6 4 2 0 1690 5 4 1 0 5067 6 4 2 0

1566 7 4 3 0 1635 5 4 1 0 5012 4 4 0 0 1622 6 4 2 0 1691 5 4 1 0 5068 6 4 2 0

1567 7 4 3 0 1636 5 5 1 1 5013 4 3 1 0 1623 6 4 2 0 1692 5 4 1 0 5069 6 4 2 0

1568 7 4 3 0 1637 5 5 1 1 5014 4 3 1 0 1624 6 4 2 0 1693 5 4 1 0 5070 6 5 2 1

1569 7 4 3 0 1638 5 5 1 1 5015 4 3 1 0 1625 6 4 2 0 1694 5 4 1 0 5071 6 5 2 1

1570 7 4 3 0 1639 5 5 1 1 5016 4 3 1 0 1626 6 4 2 0 1695 5 4 1 0 5072 6 4 2 0

1571 7 4 3 0 1640 5 5 1 1 5017 4 3 1 0 1627 6 4 2 0 1696 5 4 1 0 5073 6 4 2 0

1572 7 4 3 0 1641 5 5 1 1 5018 4 3 1 0 1628 6 4 2 0 1697 5 4 1 0 5074 6 5 1 0

1573 6 3 3 0 1642 5 5 1 1 5019 4 3 1 0 1629 6 4 2 0 1698 5 4 1 0 5075 6 5 1 0

1574 6 3 3 0 1643 5 5 1 1 5020 4 3 1 0 1630 6 4 2 0 1699 5 4 1 0 5076 6 5 1 0

1575 6 3 3 0 1644 5 4 1 0 5021 4 3 1 0 1631 6 4 2 0 1700 5 4 1 0 5077 6 5 1 0

1576 6 3 3 0 1645 5 4 1 0 5022 4 3 1 0 1632 6 4 2 0 1701 5 4 1 0 5078 6 5 1 0

1577 6 3 3 0 1646 5 4 1 0 5023 6 4 2 1 1633 6 4 2 0 1702 5 4 1 0 5079 6 5 1 0

1578 6 3 3 0 1647 5 4 1 0 5024 6 4 2 1 1634 6 4 2 0 1703 5 4 1 0 5080 6 5 1 0

1579 6 3 3 0 1648 5 4 1 0 5025 6 4 2 0 1635 6 4 2 0 1704 5 4 1 0 5081 6 5 1 0

1580 6 3 3 0 1649 5 4 1 0 5026 6 4 2 0 1636 6 4 2 0 1705 5 6 1 2 5082 6 5 1 0

1581 6 3 3 0 1650 5 4 1 0 5027 6 5 1 0 1637 6 5 1 0 1706 5 6 1 2 5083 6 5 1 0

1582 6 3 3 0 1651 5 4 1 0 5028 6 5 1 0 1638 6 6 0 0 1707 5 5 1 1 5084 6 5 1 0

1583 6 3 3 0 1652 5 4 1 0 5029 6 5 1 0 1639 6 6 0 0 1708 5 5 1 1 5085 6 6 1 0

1584 6 3 3 0 1653 5 4 1 0 5030 6 5 1 0 1640 6 6 0 0 1709 5 5 1 1 5086 6 7 1 2

1585 6 3 3 0 1654 5 4 1 0 5031 6 5 1 0 1641 6 6 0 0 1710 5 5 1 1 5087 6 7 1 2

1586 6 3 3 0 1655 5 4 1 0 5032 6 5 1 0 1642 6 6 0 0 1711 5 5 1 1 5088 6 6 1 1

1587 6 3 3 0 1656 5 4 1 0 5033 6 5 1 0 1643 6 6 0 0 1712 5 5 1 1 5089 6 6 1 1
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1644 6 5 1 0 1713 5 5 1 1 5090 6 5 1 0 1700 6 5 1 0 1769 5 4 1 0 5146 4 3 1 0

1645 6 5 1 0 1714 5 5 1 1 5091 6 5 1 0 1701 6 5 1 0 1770 5 4 1 0 5147 4 3 1 0

1646 6 5 1 0 1715 5 5 1 1 5092 6 5 1 0 1702 6 5 1 0 1771 5 4 1 0 5148 4 3 1 0

1647 6 4 2 0 1716 5 5 1 1 5093 6 6 1 1 1703 6 5 1 0 1772 5 4 1 0 5149 4 3 1 0

1648 6 4 2 0 1717 5 5 1 1 5094 6 6 1 1 1704 6 5 1 0 1773 5 4 1 0 5150 4 3 1 0

1649 6 4 2 0 1718 5 5 1 1 5095 6 6 1 1 1705 6 5 1 0 1774 5 4 1 0 5151 4 3 1 0

1650 6 4 2 0 1719 5 4 1 0 5096 6 6 1 1 1706 6 5 1 0 1775 5 4 1 0 5152 4 3 1 0

1651 6 4 2 0 1720 5 4 1 0 5097 6 6 1 1 1707 6 5 1 0 1776 5 4 1 0 5153 4 3 1 0

1652 6 4 2 0 1721 5 4 1 0 5098 6 6 1 2 1708 6 5 1 0 1777 5 4 1 0 5154 4 3 1 0

1653 6 4 2 0 1722 5 4 1 0 5099 6 6 1 2 1709 6 5 1 0 1778 5 4 1 0 5155 4 3 1 0

1654 6 4 2 0 1723 5 4 1 0 5100 6 6 1 2 1710 6 5 1 0 1779 5 4 1 0 5156 4 3 1 0

1655 6 4 2 0 1724 5 4 1 0 5101 6 4 1 0 1711 6 5 1 0 1780 5 4 1 0 5157 4 3 1 0

1656 6 4 2 0 1725 5 5 1 1 5102 6 4 1 0 1712 6 5 1 0 1781 5 4 1 0 5158 4 3 1 0

1657 6 4 2 0 1726 5 5 1 1 5103 5 4 1 0 1713 6 5 1 0 1782 5 4 1 0 5159 4 3 1 0

1658 6 4 2 0 1727 5 4 1 0 5104 5 4 1 0 1714 6 5 1 0 1783 5 4 1 0 5160 4 3 1 0

1659 6 4 2 0 1728 5 4 1 0 5105 5 4 1 0 1715 6 5 1 0 1784 5 4 1 0 5161 4 3 1 0

1660 6 4 2 0 1729 5 4 1 0 5106 5 4 1 0 1716 6 5 1 0 1785 5 4 1 0 5162 4 3 1 0

1661 6 4 2 0 1730 5 4 1 0 5107 5 4 1 0 1717 6 5 1 0 1786 5 4 1 0 5163 4 3 1 0

1662 6 4 2 0 1731 5 4 1 0 5108 5 5 1 1 1718 6 6 0 0 1787 5 4 1 0 5164 4 3 1 0

1663 6 4 2 0 1732 5 4 1 0 5109 5 5 1 1 1719 6 6 0 0 1788 5 4 1 0 5165 4 3 1 0

1664 6 4 2 0 1733 5 4 1 0 5110 5 6 1 1 1720 6 6 0 0 1789 5 4 1 0 5166 4 3 1 0

1665 6 4 2 0 1734 5 5 1 1 5111 5 6 1 1 1721 6 6 0 0 1790 5 4 1 0 5167 4 4 1 1

1666 6 4 2 0 1735 5 5 1 1 5112 5 4 1 0 1722 6 6 0 0 1791 5 4 1 0 5168 4 4 1 1

1667 6 4 2 0 1736 5 5 1 1 5113 5 3 2 0 1723 6 6 0 0 1792 5 4 1 0 5169 4 4 1 1

1668 6 4 2 0 1737 5 5 1 1 5114 5 3 2 0 1724 6 6 0 0 1793 5 4 1 0 5170 4 3 1 0

1669 6 4 2 0 1738 5 5 1 1 5115 5 3 2 0 1725 5 4 1 0 1794 5 4 1 0 5171 4 3 1 0

1670 6 4 2 0 1739 5 5 1 1 5116 5 3 2 0 1726 5 4 1 0 1795 5 4 1 0 5172 4 3 1 0

1671 6 4 2 0 1740 5 5 1 1 5117 5 4 2 1 1727 5 4 1 0 1796 5 4 1 0 5173 4 3 1 0

1672 6 4 2 0 1741 5 5 1 1 5118 5 4 2 1 1728 5 4 1 0 1797 5 4 1 0 5174 4 3 1 0

1673 6 4 2 0 1742 5 5 1 1 5119 5 4 2 1 1729 5 4 1 0 1798 5 4 1 0 5175 4 3 1 0

1674 6 5 1 0 1743 5 5 1 1 5120 5 4 2 1 1730 5 4 1 0 1799 5 4 1 0 5176 4 3 1 0

1675 6 5 1 0 1744 5 5 1 1 5121 5 4 2 1 1731 5 4 1 0 1800 5 4 1 0 5177 4 3 1 0

1676 6 5 1 0 1745 5 5 1 1 5122 5 2 2 0 1732 5 4 1 0 1801 5 4 1 0 5178 4 3 1 0

1677 6 5 1 0 1746 5 5 1 1 5123 5 2 2 0 1733 5 4 1 0 1802 5 4 1 0 5179 4 3 1 0

1678 6 5 1 0 1747 5 5 1 1 5124 5 3 2 1 1734 5 4 1 0 1803 5 4 1 0 5180 4 3 1 0

1679 6 5 1 0 1748 5 5 1 1 5125 5 3 1 0 1735 5 4 1 0 1804 5 4 1 0 5181 4 3 1 0

1680 6 5 1 0 1749 5 5 1 1 5126 5 3 1 0 1736 5 4 1 0 1805 5 4 1 0 5182 4 3 1 0

1681 6 5 1 0 1750 5 5 1 1 5127 4 3 1 0 1737 5 4 1 0 1806 5 4 1 0 5183 4 3 1 0

1682 6 5 1 0 1751 5 5 1 1 5128 4 3 1 0 1738 5 4 1 0 1807 5 4 1 0 5184 4 4 1 1

1683 6 5 1 0 1752 5 5 1 1 5129 4 3 1 0 1739 5 4 1 0 1808 5 4 1 0 5185 4 4 1 1

1684 6 5 1 0 1753 5 5 1 1 5130 4 3 1 0 1740 5 4 1 0 1809 5 4 1 0 5186 4 3 1 0

1685 6 5 1 0 1754 5 5 1 1 5131 4 4 1 1 1741 5 5 0 0 1810 5 4 1 0 5187 4 3 1 0

1686 6 5 1 0 1755 5 5 1 1 5132 4 3 1 0 1742 5 5 0 0 1811 5 4 1 0 5188 4 3 1 0

1687 6 5 1 0 1756 5 5 1 1 5133 4 4 1 1 1743 5 5 0 0 1812 5 4 1 0 5189 4 3 1 0

1688 6 5 1 0 1757 5 5 1 1 5134 4 4 1 1 1744 5 5 0 0 1813 5 4 1 0 5190 4 3 1 0

1689 6 5 1 0 1758 5 5 1 1 5135 4 4 1 1 1745 5 5 0 0 1814 5 4 1 0 5191 4 3 1 0

1690 6 5 1 0 1759 5 4 1 0 5136 4 4 1 1 1746 5 5 0 0 1815 5 4 1 0 5192 4 3 1 0

1691 6 5 1 0 1760 5 4 1 0 5137 4 4 1 1 1747 5 5 0 0 1816 5 4 1 0 5193 4 3 1 0

1692 6 5 1 0 1761 5 4 1 0 5138 4 4 1 1 1748 5 5 0 0 1817 5 4 1 0 5194 4 3 1 0

1693 6 5 1 0 1762 5 4 1 0 5139 4 3 1 0 1749 5 5 0 0 1818 5 4 1 0 5195 4 3 1 0

1694 6 5 1 0 1763 5 4 1 0 5140 4 3 1 0 1750 5 5 0 0 1819 5 4 1 0 5196 4 3 1 0

1695 6 5 1 0 1764 5 4 1 0 5141 4 3 1 0 1751 5 5 0 0 1820 5 4 1 0 5197 4 3 1 0

1696 6 5 1 0 1765 5 4 1 0 5142 4 3 1 0 1752 5 5 0 0 1821 5 4 1 0 5198 4 3 1 0

1697 6 5 1 0 1766 5 4 1 0 5143 4 3 1 0 1753 5 5 0 0 1822 5 4 1 0 5199 4 3 1 0

1698 6 5 1 0 1767 5 4 1 0 5144 4 4 1 1 1754 5 5 0 0 1823 5 4 1 0 5200 4 3 1 0

1699 6 5 1 0 1768 5 4 1 0 5145 4 3 1 0 1755 5 5 0 0 1824 5 4 1 0 5201 4 3 1 0
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1756 5 5 0 0 1825 5 4 1 0 5202 4 3 1 0 1812 3 3 0 0 1881 2 2 0 0 5258 3 1 1 0

1757 5 5 0 0 1826 5 4 1 0 5203 4 3 1 0 1813 3 3 0 0 1882 2 2 0 0 5259 3 1 1 0

1758 5 5 0 0 1827 5 4 1 0 5204 4 3 1 0 1814 4 3 1 0 1883 2 2 0 0 5260 3 1 1 0

1759 5 5 0 0 1828 5 4 1 0 5205 4 3 1 0 1815 4 3 1 0 1884 2 2 0 0 5261 3 1 1 0

1760 5 5 0 0 1829 5 4 1 0 5206 4 3 1 0 1816 4 3 1 0 1885 2 2 0 0 5262 3 1 1 0

1761 5 5 0 0 1830 5 4 1 0 5207 4 3 1 0 1817 4 3 1 0 1886 2 2 0 0 5263 3 1 1 0

1762 5 5 0 0 1831 5 4 1 0 5208 4 3 1 0 1818 4 3 1 0 1887 2 2 0 0 5264 3 1 1 0

1763 5 5 0 0 1832 5 4 1 0 5209 4 3 1 0 1819 4 3 1 0 1888 2 2 0 0 5265 3 1 1 0

1764 5 5 0 0 1833 5 4 1 0 5210 4 3 1 0 1820 4 3 1 0 1889 2 2 0 0 5266 4 1 1 0

1765 5 5 0 0 1834 5 4 1 0 5211 4 3 1 0 1821 4 3 1 0 1890 2 2 0 0 5267 4 1 1 0

1766 5 5 0 0 1835 3 4 0 1 5212 4 3 1 0 1822 4 3 1 0 1891 1 1 0 0 5268 4 1 1 0

1767 5 5 0 0 1836 3 4 0 1 5213 4 3 1 0 1823 4 4 0 0 1892 1 1 0 0 5269 4 1 1 0

1768 4 4 0 0 1837 3 4 0 1 5214 4 3 1 0 1824 4 4 0 0 1893 1 1 0 0 5270 4 1 1 0

1769 4 4 0 0 1838 3 4 0 1 5215 4 3 1 0 1825 4 4 0 0 1894 1 1 0 0 5271 4 2 1 0

1770 4 4 0 0 1839 3 3 0 0 5216 4 3 1 0 1826 4 4 0 0 1895 1 1 0 0 5272 4 2 1 0

1771 4 4 0 0 1840 3 3 0 0 5217 4 3 1 0 1827 4 4 0 0 1896 1 1 0 0 5273 4 2 1 0

1772 4 4 0 0 1841 3 3 0 0 5218 4 3 1 0 1828 4 4 0 0 1897 1 1 0 0 5274 4 2 1 0

1773 3 3 0 0 1842 3 3 0 0 5219 4 3 1 0 1829 4 4 0 0 1898 1 1 0 0 5275 4 2 1 0

1774 3 3 0 0 1843 3 3 0 0 5220 4 3 1 0 1830 4 4 0 0 1899 1 1 0 0 5276 4 2 1 0

1775 3 3 0 0 1844 3 3 0 0 5221 4 2 1 0 1831 4 4 0 0 1900 1 1 0 0 5277 4 2 1 0

1776 3 3 0 0 1845 3 3 0 0 5222 4 2 1 0 1832 4 4 0 0 1901 1 1 0 0 5278 4 2 1 0

1777 3 3 0 0 1846 3 3 0 0 5223 4 3 1 0 1833 3 3 0 0 1902 1 1 0 0 5279 4 2 1 0

1778 3 3 0 0 1847 3 3 0 0 5224 4 2 1 0 1834 3 3 0 0 1903 1 1 0 0 5280 4 2 1 0

1779 4 5 0 1 1848 3 3 0 0 5225 4 2 1 0 1835 3 3 0 0 1904 1 1 0 0 5281 4 2 1 0

1780 4 5 0 1 1849 3 3 0 0 5226 4 2 1 0 1836 3 3 0 0 1905 1 1 0 0 5282 4 2 1 0

1781 4 4 0 0 1850 3 3 0 0 5227 4 2 1 0 1837 3 3 0 0 1906 1 1 0 0 5283 4 2 1 0

1782 4 4 0 0 1851 3 3 0 0 5228 4 2 1 0 1838 3 3 0 0 1907 1 1 0 0 5284 4 2 1 0

1783 4 4 0 0 1852 3 3 0 0 5229 4 2 1 0 1839 3 3 0 0 1908 1 1 0 0 5285 3 2 1 0

1784 4 4 0 0 1853 3 3 0 0 5230 4 2 1 0 1840 3 3 0 0 1909 1 1 0 0 5286 3 1 1 0

1785 4 3 0 0 1854 3 4 0 1 5231 3 2 1 0 1841 3 3 0 0 1910 1 1 0 0 5287 3 1 1 0

1786 4 3 0 0 1855 3 4 0 1 5232 3 2 1 0 1842 3 3 0 0 1911 1 1 0 0 5288 3 1 1 0

1787 4 3 0 0 1856 3 3 0 0 5233 3 2 1 0 1843 3 3 0 0 1912 1 1 0 0 5289 3 1 1 0

1788 4 3 0 0 1857 3 3 0 0 5234 3 2 1 0 1844 3 3 0 0 1913 1 1 0 0 5290 3 1 1 0

1789 4 3 0 0 1858 3 3 0 0 5235 3 2 1 0 1845 3 3 0 0 1914 1 1 0 0 5291 3 1 1 0

1790 4 3 0 0 1859 3 3 0 0 5236 3 2 1 0 1846 3 3 0 0 1915 1 1 0 0 5292 3 1 1 0

1791 4 3 0 0 1860 3 3 0 0 5237 3 2 1 0 1847 3 3 0 0 1916 1 1 0 0 5293 3 1 1 0

1792 4 4 0 0 1861 2 2 0 0 5238 3 2 1 0 1848 3 3 0 0 1917 1 1 0 0 5294 3 1 1 0

1793 4 4 0 0 1862 2 2 0 0 5239 3 2 1 0 1849 3 3 0 0 1918 1 1 0 0 5295 3 1 1 0

1794 4 4 0 0 1863 2 2 0 0 5240 3 2 1 0 1850 3 3 0 0 1919 1 1 0 0 5296 3 1 1 0

1795 4 4 0 0 1864 2 2 0 0 5241 3 2 1 0 1851 3 3 0 0 1920 1 1 0 0 5297 3 1 1 0

1796 4 4 0 0 1865 2 2 0 0 5242 3 2 1 0 1852 3 3 0 0 1921 1 1 0 0 5298 3 1 1 0

1797 4 4 0 0 1866 2 2 0 0 5243 3 2 1 0 1853 3 3 0 0 1922 1 1 0 0 5299 3 1 1 0

1798 3 3 0 0 1867 2 2 0 0 5244 3 2 1 0 1854 3 3 0 0 1923 1 1 0 0 5300 3 1 1 0

1799 3 3 0 0 1868 2 2 0 0 5245 3 2 1 0 1855 3 3 0 0 1924 1 1 0 0 5301 3 1 1 0

1800 3 3 0 0 1869 2 2 0 0 5246 3 2 1 0 1856 3 3 0 0 1925 1 1 0 0 5302 3 1 1 0

1801 3 3 0 0 1870 2 2 0 0 5247 3 2 1 0 1857 3 3 0 0 1926 1 1 0 0 5303 3 1 1 0

1802 3 3 0 0 1871 2 2 0 0 5248 3 1 1 0 1858 3 3 0 0 1927 1 1 0 0 5304 3 1 1 0

1803 3 3 0 0 1872 2 2 0 0 5249 3 1 1 0 1859 3 3 0 0 1928 1 1 0 0 5305 3 1 1 0

1804 3 3 0 0 1873 2 2 0 0 5250 3 1 1 0 1860 3 3 0 0 1929 1 1 0 0 5306 3 1 1 0

1805 3 3 0 0 1874 2 2 0 0 5251 3 1 1 0 1861 3 3 0 0 1930 1 1 0 0 5307 3 1 1 0

1806 3 3 0 0 1875 2 2 0 0 5252 3 1 1 0 1862 3 3 0 0 1931 1 1 0 0 5308 3 1 1 0

1807 3 3 0 0 1876 2 2 0 0 5253 3 1 1 0 1863 3 3 0 0 1932 1 1 0 0 5309 3 1 1 0

1808 3 3 0 0 1877 2 2 0 0 5254 3 1 1 0 1864 3 3 0 0 1933 1 1 0 0 5310 3 1 1 0

1809 3 3 0 0 1878 2 2 0 0 5255 3 1 1 0 1865 3 3 0 0 1934 1 1 0 0 5311 3 1 1 0

1810 3 3 0 0 1879 2 2 0 0 5256 3 1 1 0 1866 3 3 0 0 1935 1 1 0 0 5312 3 1 1 0

1811 3 3 0 0 1880 2 2 0 0 5257 3 1 1 0 1867 3 3 0 0 1936 1 1 0 0 5313 3 1 1 0
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1868 3 3 0 0 1937 1 1 0 0 5314 3 1 1 0 1924 2 1 1 0 1993 1 1 0 0 5370 1 1 0 0

1869 3 3 0 0 1938 1 1 0 0 5315 3 1 1 0 1925 2 1 1 0 1994 1 1 0 0 5371 1 1 0 0

1870 3 3 0 0 1939 1 1 0 0 5316 3 1 1 0 1926 2 1 1 0 1995 1 1 0 0 5372 1 1 0 0

1871 3 3 0 0 1940 1 1 0 0 5317 3 1 1 0 1927 2 1 1 0 1996 1 1 0 0 5373 1 1 0 0

1872 3 3 0 0 1941 1 1 0 0 5318 3 1 1 0 1928 2 1 1 0 1997 1 1 0 0 5374 1 1 0 0

1873 3 3 0 0 1942 1 1 0 0 5319 3 1 1 0 1929 2 1 1 0 1998 1 1 0 0 5375 1 1 0 0

1874 3 3 0 0 1943 1 1 0 0 5320 3 1 1 0 1930 2 1 1 0 1999 1 1 0 0 5376 1 1 0 0

1875 3 3 0 0 1944 1 1 0 0 5321 3 0 1 0 1931 2 1 1 0 2000 1 1 0 0 5377 1 1 0 0

1876 3 3 0 0 1945 1 1 0 0 5322 3 0 1 0 1932 2 1 1 0 2001 1 1 0 0 5378 1 1 0 0

1877 3 3 0 0 1946 1 1 0 0 5323 3 0 1 0 1933 2 1 1 0 2002 1 1 0 0 5379 1 1 0 0

1878 3 3 0 0 1947 1 1 0 0 5324 3 0 1 0 1934 2 1 1 0 2003 1 1 0 0 5380 1 1 0 0

1879 3 3 0 0 1948 1 1 0 0 5325 3 0 1 0 1935 2 1 1 0 2004 1 1 0 0 5381 1 1 0 0

1880 3 3 0 0 1949 1 1 0 0 5326 3 1 1 0 1936 2 1 1 0 2005 1 1 0 0 5382 1 1 0 0

1881 3 3 0 0 1950 1 1 0 0 5327 3 0 1 0 1937 2 1 1 0 2006 1 1 0 0 5383 1 1 0 0

1882 3 3 0 0 1951 1 1 0 0 5328 3 1 1 0 1938 2 1 1 0 2007 1 1 0 0 5384 1 1 0 0

1883 3 3 0 0 1952 1 1 0 0 5329 3 1 1 0 1939 2 2 0 0 2008 1 1 0 0 5385 1 1 0 0

1884 3 3 0 0 1953 1 1 0 0 5330 3 1 1 0 1940 2 2 0 0 2009 1 1 0 0 5386 1 1 0 0

1885 3 3 0 0 1954 1 1 0 0 5331 3 1 1 0 1941 2 2 0 0 2010 1 1 0 0 5387 1 1 0 0

1886 3 3 0 0 1955 1 1 0 0 5332 3 1 1 0 1942 2 2 0 0 2011 1 1 0 0 5388 1 1 0 0

1887 3 3 0 0 1956 1 1 0 0 5333 3 1 1 0 1943 2 2 0 0 2012 1 1 0 0 5389 1 1 0 0

1888 3 3 0 0 1957 1 1 0 0 5334 3 1 1 0 1944 2 2 0 0 2013 1 1 0 0 5390 1 1 0 0

1889 3 2 1 0 1958 1 1 0 0 5335 3 1 1 0 1945 2 2 0 0 2014 1 1 0 0 5391 1 1 0 0

1890 3 2 1 0 1959 1 1 0 0 5336 3 1 1 0 1946 2 2 0 0 2015 1 1 0 0 5392 1 1 0 0

1891 3 2 1 0 1960 1 1 0 0 5337 3 1 1 0 1947 2 2 0 0 2016 1 1 0 0 5393 1 1 0 0

1892 3 2 1 0 1961 1 1 0 0 5338 3 1 1 0 1948 2 2 0 0 2017 1 1 0 0 5394 1 1 0 0

1893 3 2 1 0 1962 1 1 0 0 5339 3 1 1 0 1949 2 2 0 0 2018 1 1 0 0 5395 1 1 0 0

1894 3 2 1 0 1963 1 1 0 0 5340 3 1 1 0 1950 2 2 0 0 2019 1 1 0 0 5396 1 1 0 0

1895 3 2 1 0 1964 1 1 0 0 5341 3 1 1 0 1951 2 2 0 0 2020 1 1 0 0 5397 1 1 0 0

1896 3 2 1 0 1965 1 1 0 0 5342 3 1 1 0 1952 2 2 0 0 2021 1 1 0 0 5398 1 1 0 0

1897 3 2 1 0 1966 1 1 0 0 5343 3 1 1 0 1953 2 2 0 0 2022 1 1 0 0 5399 1 1 0 0

1898 3 2 1 0 1967 1 1 0 0 5344 3 1 1 0 1954 2 2 0 0 2023 1 1 0 0 5400 1 1 0 0

1899 3 2 1 0 1968 1 1 0 0 5345 3 1 1 0 1955 2 2 0 0 2024 1 1 0 0 5401 1 1 0 0

1900 3 2 1 0 1969 1 1 0 0 5346 3 1 1 0 1956 2 2 0 0 2025 1 1 0 0 5402 1 1 0 0

1901 3 2 1 0 1970 1 1 0 0 5347 3 1 1 0 1957 2 2 0 0 2026 1 1 0 0 5403 1 1 0 0

1902 3 2 1 0 1971 1 1 0 0 5348 3 1 1 0 1958 2 2 0 0 2027 1 1 0 0 5404 1 1 0 0

1903 3 2 1 0 1972 1 1 0 0 5349 3 2 1 0 1959 2 2 0 0 2028 1 1 0 0 5405 1 1 0 0

1904 3 2 1 0 1973 1 1 0 0 5350 3 2 1 0 1960 2 2 0 0 2029 1 1 0 0 5406 1 1 0 0

1905 3 2 1 0 1974 1 1 0 0 5351 3 2 1 0 1961 2 2 0 0 2030 1 1 0 0 5407 1 1 0 0

1906 3 2 1 0 1975 1 1 0 0 5352 3 2 1 0 1962 2 2 0 0 2031 1 1 0 0 5408 1 1 0 0

1907 3 2 1 0 1976 1 1 0 0 5353 3 2 1 0 1963 2 2 0 0 2032 1 1 0 0 5409 1 1 0 0

1908 3 2 1 0 1977 1 1 0 0 5354 3 2 1 0 1964 2 2 0 0 2033 1 1 0 0 5410 1 1 0 0

1909 3 2 1 0 1978 1 1 0 0 5355 3 1 1 0 1965 2 2 0 0 2034 1 1 0 0 5411 1 1 0 0

1910 3 2 1 0 1979 1 1 0 0 5356 3 1 1 0 1966 2 2 0 0 2035 1 1 0 0 5412 1 1 0 0

1911 3 2 1 0 1980 1 1 0 0 5357 3 1 1 0 1967 2 2 0 0 2036 1 1 0 0 5413 1 1 0 0

1912 3 2 1 0 1981 1 1 0 0 5358 3 1 1 0 1968 2 2 0 0 2037 1 1 0 0 5414 1 1 0 0

1913 3 2 1 0 1982 1 1 0 0 5359 3 1 1 0 1969 2 2 0 0 2038 1 2 0 1 5415 1 1 0 0

1914 2 1 1 0 1983 1 1 0 0 5360 3 1 1 0 1970 2 2 0 0 2039 2 3 0 1 5416 1 1 0 0

1915 2 1 1 0 1984 1 1 0 0 5361 3 1 1 0 1971 2 2 0 0 2040 2 3 0 1 5417 1 1 0 0

1916 2 1 1 0 1985 1 1 0 0 5362 3 1 1 0 1972 2 2 0 0 2041 2 3 0 1 5418 1 1 0 0

1917 2 1 1 0 1986 1 1 0 0 5363 1 1 0 0 1973 2 2 0 0 2042 2 3 0 1 5419 1 1 0 0

1918 2 1 1 0 1987 1 1 0 0 5364 1 1 0 0 1974 2 2 0 0 2043 2 2 1 1 5420 1 1 0 0

1919 2 1 1 0 1988 1 1 0 0 5365 1 1 0 0 1975 2 2 0 0 2044 2 2 1 1 5421 1 1 0 0

1920 2 1 1 0 1989 1 1 0 0 5366 1 1 0 0 1976 2 2 0 0 2045 2 2 1 1 5422 1 1 0 0

1921 2 1 1 0 1990 1 1 0 0 5367 1 1 0 0 1977 2 2 0 0 2046 2 1 1 0 5423 1 1 0 0

1922 2 1 1 0 1991 1 1 0 0 5368 1 1 0 0 1978 2 2 0 0 2047 2 1 1 0 5424 1 1 0 0

1923 2 1 1 0 1992 1 1 0 0 5369 1 1 0 0 1979 2 2 0 0 2048 2 1 1 0 5425 1 1 0 0
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1980 2 2 0 0 2049 2 1 1 0 5426 1 1 0 0 2036 3 3 0 0 2105 1 1 0 0 5482 1 1 0 0

1981 2 2 0 0 2050 2 1 1 0 5427 1 1 0 0 2037 3 3 0 0 2106 1 1 0 0 5483 1 1 0 0

1982 2 2 0 0 2051 2 1 1 0 5428 1 1 0 0 2038 3 3 0 0 2107 1 1 0 0 5484 1 1 0 0

1983 2 2 0 0 2052 2 1 1 0 5429 1 1 0 0 2039 3 3 0 0 2108 1 1 0 0 5485 1 1 0 0

1984 2 2 0 0 2053 2 1 1 0 5430 1 1 0 0 2040 3 3 0 0 2109 1 1 0 0 5486 1 1 0 0

1985 2 2 0 0 2054 2 1 1 0 5431 1 1 0 0 2041 3 3 0 0 2110 1 1 0 0 5487 1 1 0 0

1986 2 2 0 0 2055 2 1 1 0 5432 1 1 0 0 2042 3 3 0 0 2111 1 1 0 0 5488 1 1 0 0

1987 2 2 0 0 2056 2 2 0 0 5433 1 1 0 0 2043 3 3 0 0 2112 1 1 0 0 5489 1 1 0 0

1988 2 2 0 0 2057 2 2 0 0 5434 1 1 0 0 2044 3 3 0 0 2113 1 1 0 0 5490 1 1 0 0

1989 2 2 0 0 2058 2 2 0 0 5435 1 1 0 0 2045 3 3 0 0 2114 1 1 0 0 5491 1 1 0 0

1990 2 2 0 0 2059 1 1 0 0 5436 1 1 0 0 2046 3 3 0 0 2115 1 1 0 0 5492 1 1 0 0

1991 2 2 0 0 2060 1 1 0 0 5437 1 1 0 0 2047 3 3 0 0 2116 1 1 0 0 5493 1 1 0 0

1992 3 3 0 0 2061 1 1 0 0 5438 1 1 0 0 2048 3 3 0 0 2117 1 1 0 0 5494 1 1 0 0

1993 3 3 0 0 2062 1 1 0 0 5439 1 1 0 0 2049 3 3 0 0 2118 1 1 0 0 5495 1 1 0 0

1994 3 3 0 0 2063 1 1 0 0 5440 1 1 0 0 2050 3 3 0 0 2119 2 1 0 0 5496 1 1 0 0

1995 3 3 0 0 2064 1 1 0 0 5441 1 1 0 0 2051 3 3 0 0 2120 2 1 0 0 5497 1 1 0 0

1996 3 3 0 0 2065 1 1 0 0 5442 1 1 0 0 2052 3 3 0 0 2121 2 1 0 0 5498 1 1 0 0

1997 3 3 0 0 2066 1 1 0 0 5443 1 1 0 0 2053 3 3 0 0 2122 2 2 0 0 5499 1 1 0 0

1998 3 3 0 0 2067 1 1 0 0 5444 1 1 0 0 2054 3 3 0 0 2123 2 2 0 0 5500 1 1 0 0

1999 3 3 0 0 2068 1 1 0 0 5445 1 1 0 0 2055 3 3 0 0 2124 2 2 0 0 5501 1 1 0 0

2000 3 3 0 0 2069 1 1 0 0 5446 1 1 0 0 2056 3 3 0 0 2125 2 2 0 0 5502 1 1 0 0

2001 3 3 0 0 2070 1 1 0 0 5447 1 1 0 0 2057 3 3 0 0 2126 2 2 0 0 5503 1 1 0 0

2002 3 3 0 0 2071 1 1 0 0 5448 1 1 0 0 2058 3 3 0 0 2127 2 2 0 0 5504 1 1 0 0

2003 3 3 0 0 2072 1 1 0 0 5449 1 1 0 0 2059 3 3 0 0 2128 2 2 0 0 5505 1 1 0 0

2004 3 3 0 0 2073 1 1 0 0 5450 1 1 0 0 2060 3 3 0 0 2129 2 2 0 0 5506 1 1 0 0

2005 3 3 0 0 2074 1 1 0 0 5451 1 1 0 0 2061 3 3 0 0 2130 2 2 0 0 5507 1 1 0 0

2006 3 3 0 0 2075 1 1 0 0 5452 1 1 0 0 2062 3 3 0 0 2131 2 2 0 0 5508 1 1 0 0

2007 3 3 0 0 2076 1 1 0 0 5453 1 1 0 0 2063 3 3 0 0 2132 2 2 0 0 5509 1 1 0 0

2008 3 3 0 0 2077 1 1 0 0 5454 1 1 0 0 2064 3 3 0 0 2133 2 2 0 0 5510 1 1 0 0

2009 3 3 0 0 2078 1 1 0 0 5455 1 1 0 0 2065 3 3 0 0 2134 2 2 0 0 5511 1 1 0 0

2010 3 3 0 0 2079 1 1 0 0 5456 1 1 0 0 2066 3 3 0 0 2135 2 2 0 0 5512 1 1 0 0

2011 3 3 0 0 2080 1 1 0 0 5457 1 1 0 0 2067 3 3 0 0 2136 2 2 0 0 5513 1 1 0 0

2012 3 3 0 0 2081 1 1 0 0 5458 1 1 0 0 2068 3 3 0 0 2137 2 2 0 0 5514 1 1 0 0

2013 3 3 0 0 2082 1 1 0 0 5459 1 1 0 0 2069 3 3 0 0 2138 2 2 0 0 5515 1 1 0 0

2014 3 3 0 0 2083 1 1 0 0 5460 1 1 0 0 2070 3 3 0 0 2139 2 2 0 0 5516 1 1 0 0

2015 3 3 0 0 2084 1 1 0 0 5461 1 1 0 0 2071 3 3 0 0 2140 2 2 0 0 5517 1 1 0 0

2016 3 3 0 0 2085 1 1 0 0 5462 1 1 0 0 2072 3 3 0 0 2141 2 2 0 0 5518 1 1 0 0

2017 3 3 0 0 2086 1 1 0 0 5463 1 1 0 0 2073 3 3 0 0 2142 2 2 0 0 5519 1 1 0 0

2018 3 3 0 0 2087 1 1 0 0 5464 1 1 0 0 2074 3 3 0 0 2143 2 2 0 0 5520 1 1 0 0

2019 3 3 0 0 2088 1 1 0 0 5465 1 1 0 0 2075 3 3 0 0 2144 2 2 0 0 5521 1 1 0 0

2020 3 3 0 0 2089 1 1 0 0 5466 1 1 0 0 2076 3 3 0 0 2145 2 2 0 0 5522 1 1 0 0

2021 3 3 0 0 2090 1 1 0 0 5467 1 1 0 0 2077 3 3 0 0 2146 2 2 0 0 5523 1 1 0 0

2022 3 3 0 0 2091 1 1 0 0 5468 1 1 0 0 2078 3 3 0 0 2147 2 2 0 0 5524 1 1 0 0

2023 3 3 0 0 2092 1 1 0 0 5469 1 1 0 0 2079 3 3 0 0 2148 2 2 0 0 5525 1 1 0 0

2024 3 3 0 0 2093 1 1 0 0 5470 1 1 0 0 2080 3 3 0 0 2149 2 2 0 0 5526 1 1 0 0

2025 3 3 0 0 2094 1 1 0 0 5471 1 1 0 0 2081 3 3 0 0 2150 2 2 0 0 5527 1 1 0 0

2026 3 3 0 0 2095 1 1 0 0 5472 1 1 0 0 2082 3 3 0 0 2151 2 2 0 0 5528 1 1 0 0

2027 3 3 0 0 2096 1 1 0 0 5473 1 1 0 0 2083 3 3 0 0 2152 2 2 0 0 5529 1 1 0 0

2028 3 3 0 0 2097 1 1 0 0 5474 1 1 0 0 2084 3 3 0 0 2153 2 2 0 0 5530 1 1 0 0

2029 3 3 0 0 2098 1 1 0 0 5475 1 1 0 0 2085 3 3 0 0 2154 2 2 0 0 5531 1 1 0 0

2030 3 3 0 0 2099 1 1 0 0 5476 1 1 0 0 2086 3 3 0 0 2155 2 2 0 0 5532 1 1 0 0

2031 3 3 0 0 2100 1 1 0 0 5477 1 1 0 0 2087 3 3 0 0 2156 2 2 0 0 5533 1 1 0 0

2032 3 3 0 0 2101 1 1 0 0 5478 1 1 0 0 2088 3 3 0 0 2157 2 2 0 0 5534 1 1 0 0

2033 3 3 0 0 2102 1 1 0 0 5479 1 1 0 0 2089 3 3 0 0 2158 2 2 0 0 5535 1 1 0 0

2034 3 3 0 0 2103 1 1 0 0 5480 1 1 0 0 2090 3 3 0 0 2159 2 2 0 0 5536 1 1 0 0

2035 3 3 0 0 2104 1 1 0 0 5481 1 1 0 0 2091 3 3 0 0 2160 2 2 0 0 5537 1 1 0 0
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2092 3 3 0 0 2161 2 2 0 0 5538 1 1 0 0

2093 3 3 0 0 2162 2 2 0 0 5539 1 1 0 0

2094 3 3 0 0 2163 2 2 0 0 5540 1 1 0 0

2095 3 3 0 0 2164 2 2 0 0 5541 1 1 0 0

2096 3 3 0 0 2165 2 2 0 0 5542 1 1 0 0

2097 3 3 0 0 2166 2 2 0 0 5543 1 1 0 0

2098 3 3 0 0 2167 2 2 0 0 5544 1 1 0 0

2099 3 3 0 0 2168 2 2 0 0 5545 1 1 0 0

2100 3 3 0 0 2169 2 3 0 1 5546 1 1 0 0

5547 1 1 0 0

5548 1 1 0 0

5549 1 1 0 0

5550 1 1 0 0

5551 1 1 0 0

5552 1 1 0 0

5553 1 1 0 0

5554 1 1 0 0

5555 1 1 0 0

5556 1 1 0 0

5557 1 1 0 0

5558 1 1 0 0

5559 1 1 0 0

5560 1 1 0 0

5561 1 1 0 0

5562 1 1 0 0

5563 1 1 0 0

5564 1 1 0 0

5565 1 1 0 0

5566 1 1 0 0

5567 1 1 0 0

5568 1 1 0 0

5569 1 1 0 0

5570 1 1 0 0
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A.3 Synthesis Reports

Top Level Output File Name : pal_decoder
Design Statistics
IOs : 40
Cell Usage :
BELS : 220

GND : 1
INV : 19
LUT1 : 24
LUT2 : 17
LUT2_L : 1
LUT3 : 19
LUT4 : 29
LUT4_L : 2
MUXCY : 61
MUXF5 : 1
VCC : 1
XORCY : 45

FlipFlops/Latches : 104
FDCE : 12
FDR : 45
FDRE : 26
LD : 21

Clock Buffers : 1
BUFGP : 1

IO Buffers : 39
IBUF : 9
OBUF : 30

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 66 out of 13696 0%
Number of Slice Flip Flops: 83 out of 27392 0%
Number of 4 input LUTs: 111 out of 27392 0%
Number of IOs: 40
Number of bonded IOBs: 40 out of 556 7%
IOB Flip Flops: 21
Number of GCLKs: 1 out of 16 6%

Top Level Output File Name : video_buffer
Design Statistics
IOs : 57
Cell Usage :
BELS : 60

GND : 1
LUT2 : 1
LUT3 : 33
LUT4 : 11
MUXF5 : 9
MUXF6 : 4
VCC : 1

FlipFlops/Latches : 3
FD : 3

RAMS : 32
RAMB16_S1_S1 : 32

Clock Buffers : 2
BUFGP : 2

IO Buffers : 47
IBUF : 43
OBUF : 4

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 25 out of 13696 0%
Number of 4 input LUTs: 45 out of 27392 0%
Number of IOs: 57
Number of bonded IOBs: 49 out of 556 8%
IOB Flip Flops: 3
Number of BRAMs: 32 out of 136 23%
Number of GCLKs: 2 out of 16 12%
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Top Level Output File Name : segmentation
Design Statistics
IOs : 76
Cell Usage :
BELS : 477

GND : 1
INV : 2
LUT1 : 6
LUT2 : 71
LUT2_D : 1
LUT2_L : 1
LUT3 : 130
LUT3_D : 4
LUT3_L : 2
LUT4 : 113
LUT4_D : 3
LUT4_L : 10
MUXCY : 45
MUXF5 : 48
MUXF6 : 17
VCC : 1
XORCY : 22

FlipFlops/Latches : 87
FD : 8
FDR : 24
FDRE : 36
FDSE : 2
LDCPE : 17

RAMS : 73
RAMB16_S1_S1 : 72
RAMB16_S9_S9 : 1

Clock Buffers : 3
BUFGP : 3

IO Buffers : 73
IBUF : 56
OBUF : 17

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 184 out of 13696 1%
Number of Slice Flip Flops: 87 out of 27392 0%
Number of 4 input LUTs: 343 out of 27392 1%
Number of IOs: 76
Number of bonded IOBs: 76 out of 556 13%
Number of BRAMs: 73 out of 136 53%
Number of GCLKs: 3 out of 16 18%

Top Level Output File Name : noise_removal
Design Statistics
IOs : 44
Cell Usage :
BELS : 266

GND : 1
INV : 2
LUT1 : 16
LUT2 : 19
LUT3 : 37
LUT3_L : 2
LUT4 : 143
LUT4_D : 1
LUT4_L : 6
MUXCY : 16
MUXF5 : 6
VCC : 1
XORCY : 16

FlipFlops/Latches : 28
FDE : 10
FDRE : 18

RAMS : 2
RAMB16_S4_S4 : 2

Clock Buffers : 1
BUFGP : 1

IO Buffers : 42
IBUF : 21
OBUF : 21

------------------
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Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 128 out of 13696 0%
Number of Slice Flip Flops: 28 out of 27392 0%
Number of 4 input LUTs: 226 out of 27392 0%
Number of IOs: 44
Number of bonded IOBs: 43 out of 556 7%
Number of BRAMs: 2 out of 136 1%
Number of GCLKs: 1 out of 16 6%

Top Level Output File Name : morphology
Design Statistics
IOs : 44
Cell Usage :
BELS : 129

GND : 1
INV : 1
LUT1 : 8
LUT2 : 12
LUT3 : 21
LUT4 : 60
LUT4_D : 1
LUT4_L : 3
MUXCY : 8
MUXF5 : 5
VCC : 1
XORCY : 8

FlipFlops/Latches : 14
FDE : 5
FDRE : 9

RAMS : 1
RAMB16_S4_S4 : 1

Clock Buffers : 1
BUFGP : 1

IO Buffers : 42
IBUF : 21
OBUF : 21

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 61 out of 13696 0%
Number of Slice Flip Flops: 14 out of 27392 0%
Number of 4 input LUTs: 106 out of 27392 0%
Number of IOs: 44
Number of bonded IOBs: 43 out of 556 7%
Number of BRAMs: 1 out of 136 0%
Number of GCLKs: 1 out of 16 6%

Top Level Output File Name : lab_module
Design Statistics
IOs : 51
Cell Usage :
BELS : 3001

GND : 1
INV : 4
LUT1 : 7
LUT2 : 158
LUT2_D : 1
LUT2_L : 1
LUT3 : 1224
LUT3_D : 15
LUT3_L : 19
LUT4 : 364
LUT4_D : 38
LUT4_L : 40
MUXCY : 126
MUXF5 : 530
MUXF6 : 256
MUXF7 : 128
MUXF8 : 64
VCC : 1
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XORCY : 24
FlipFlops/Latches : 2331

FDC : 48
FDCE : 2081
FDE : 180
FDP : 1
FDPE : 21

RAMS : 4
RAMB16_S2_S2 : 1
RAMB16_S36_S36 : 1
RAMB16_S9_S9 : 2

Shift Registers : 8
SRL16E : 8

Clock Buffers : 2
BUFG : 1
BUFGP : 1

IO Buffers : 50
IBUF : 22
OBUF : 28

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 2020 out of 13696 14%
Number of Slice Flip Flops: 2331 out of 27392 8%
Number of 4 input LUTs: 1879 out of 27392 6%
Number used as logic: 1871
Number used as Shift registers: 8
Number of IOs: 51
Number of bonded IOBs: 51 out of 556 9%
Number of BRAMs: 4 out of 136 2%
Number of GCLKs: 2 out of 16 12%

Top Level Output File Name : histogram
Design Statistics
IOs : 36
Cell Usage :
BELS : 74

GND : 1
INV : 1
LUT1 : 6
LUT2 : 13
LUT3 : 4
LUT3_L : 1
LUT4 : 24
LUT4_D : 1
LUT4_L : 1
MUXCY : 15
VCC : 1
XORCY : 6

FlipFlops/Latches : 54
FDR : 24
FDRE : 30

RAMS : 1
RAMB16_S9_S9 : 1

Clock Buffers : 1
BUFGP : 1

IO Buffers : 35
IBUF : 28
OBUF : 7

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 40 out of 13696 0%
Number of Slice Flip Flops: 54 out of 27392 0%
Number of 4 input LUTs: 51 out of 27392 0%
Number of IOs: 36
Number of bonded IOBs: 36 out of 556 6%
Number of BRAMs: 1 out of 136 0%
Number of GCLKs: 1 out of 16 6%

Top Level Output File Name : font_display
Design Statistics
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IOs : 56
Cell Usage :
BELS : 677

GND : 1
LUT2 : 40
LUT2_D : 9
LUT2_L : 5
LUT3 : 100
LUT3_D : 9
LUT3_L : 11
LUT4 : 352
LUT4_D : 16
LUT4_L : 33
MUXCY : 5
MUXF5 : 94
MUXF6 : 1
VCC : 1

FlipFlops/Latches : 196
FDC : 112
FDE : 7
FDR : 65
FDRE : 7
FDS : 4
FDSE : 1

RAMS : 3
RAMB16_S4_S4 : 2
RAMB16_S9 : 1

Clock Buffers : 1
BUFGP : 1

IO Buffers : 54
IBUF : 53
OBUF : 1

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 301 out of 13696 2%
Number of Slice Flip Flops: 196 out of 27392 0%
Number of 4 input LUTs: 575 out of 27392 2%
Number of IOs: 56
Number of bonded IOBs: 55 out of 556 9%
Number of BRAMs: 3 out of 136 2%
Number of GCLKs: 1 out of 16 6%

Top Level Output File Name : fifo_module
Design Statistics
IOs : 38
Cell Usage :
BELS : 563

BUF : 1
LUT2 : 1
LUT2_D : 1
LUT3 : 258
LUT3_D : 4
LUT4 : 51
LUT4_D : 4
LUT4_L : 3
MUXF5 : 128
MUXF6 : 64
MUXF7 : 32
MUXF8 : 16

FlipFlops/Latches : 529
FDC : 16
FDCE : 512
FDP : 1

Clock Buffers : 1
BUFGP : 1

IO Buffers : 37
IBUF : 19
OBUF : 18

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 440 out of 13696 3%
Number of Slice Flip Flops: 529 out of 27392 1%
Number of 4 input LUTs: 322 out of 27392 1%
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Number of IOs: 38
Number of bonded IOBs: 38 out of 556 6%
Number of GCLKs: 1 out of 16 6%

Top Level Output File Name : vga
Design Statistics
IOs : 28
Cell Usage :
BELS : 198

GND : 1
INV : 3
LUT1 : 31
LUT2 : 18
LUT3 : 3
LUT4 : 28
LUT4_D : 4
LUT4_L : 1
MUXCY : 57
VCC : 1
XORCY : 51

FlipFlops/Latches : 55
FDC : 11
FDCE : 10
FDE : 1
FDR : 32
FDS : 1

Clock Buffers : 2
BUFG : 1
BUFGP : 1

IO Buffers : 27
IBUF : 1
OBUF : 26

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 45 out of 13696 0%
Number of Slice Flip Flops: 55 out of 27392 0%
Number of 4 input LUTs: 88 out of 27392 0%
Number of IOs: 28
Number of bonded IOBs: 28 out of 556 5%
Number of GCLKs: 2 out of 16 12%

Top Level Output File Name : stack
Design Statistics
IOs : 38
Cell Usage :
BELS : 566

BUF : 1
INV : 1
LUT2 : 2
LUT2_D : 1
LUT2_L : 1
LUT3 : 290
LUT3_L : 2
LUT4 : 16
LUT4_D : 8
LUT4_L : 4
MUXF5 : 128
MUXF6 : 64
MUXF7 : 32
MUXF8 : 16

FlipFlops/Latches : 530
FDC : 7
FDCE : 512
FDE : 10
FDP : 1

Clock Buffers : 1
BUFGP : 1

IO Buffers : 37
IBUF : 19
OBUF : 18

------------------
Device utilization summary:
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------------------
Selected Device : 2vp30ff896-7
Number of Slices: 446 out of 13696 3%
Number of Slice Flip Flops: 530 out of 27392 1%
Number of 4 input LUTs: 325 out of 27392 1%
Number of IOs: 38
Number of bonded IOBs: 38 out of 556 6%
Number of GCLKs: 1 out of 16 6%

Top Level Output File Name : top_module
Design Statistics
IOs : 48
Cell Usage :
BELS : 6985

GND : 1
INV : 112
LUT1 : 84
LUT2 : 1022
LUT2_D : 2
LUT2_L : 1
LUT3 : 1507
LUT3_D : 17
LUT3_L : 4
LUT4 : 1367
LUT4_D : 11
LUT4_L : 22
MUXCY : 1599
MUXF5 : 624
MUXF6 : 278
MUXF7 : 128
MUXF8 : 64
VCC : 1
XORCY : 141

FlipFlops/Latches : 3260
FD : 14
FDC : 44
FDCE : 2441
FDE : 160
FDP : 1
FDPE : 359
FDR : 103
FDRE : 80
FDS : 1
FDSE : 2
LD : 21
LDCPE : 34

RAMS : 118
RAMB16_S1_S1 : 112
RAMB16_S36_S36 : 1
RAMB16_S4_S4 : 2
RAMB16_S9_S9 : 3

Shift Registers : 8
SRL16E : 8

Clock Buffers : 5
BUFG : 3
BUFGP : 2

IO Buffers : 45
IBUF : 16
OBUF : 29

------------------
Device utilization summary:
------------------
Selected Device : 2vp30ff896-7
Number of Slices: 3389 out of 13696 24%
Number of Slice Flip Flops: 3260 out of 27392 11%
Number of 4 input LUTs: 4157 out of 27392 15%
Number used as logic: 4149
Number used as Shift registers: 8
Number of IOs: 48
Number of bonded IOBs: 47 out of 556 8%
Number of BRAMs: 118 out of 136 86%
Number of GCLKs: 5 out of 16 31%
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