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Abstract

Ucides cordatus is an abundant mangrove crab in Brazil constructing burrows of up to 2 m depth. Sediment around burrows
may oxidize during low tides. This increase in sediment-air contact area may enhance carbon degradation processes. We
hypothesized that 1) the sediment CO2 efflux rate is greater with burrows than without and 2) the reduction potential in
radial profiles in the sediment surrounding the burrows decreases gradually, until approximating non-bioturbated
conditions. Sampling was conducted during the North Brazilian wet season at neap tides. CO2 efflux rates of inhabited
burrows and plain sediment were measured with a CO2/H2O gas analyzer connected to a respiration chamber. Sediment
redox potential, pH and temperature were measured in the sediment surrounding the burrows at horizontal distances of 2,
5, 8 and 15 cm at four sediment depths (1, 10, 30 and 50 cm) and rH values were calculated. Sediment cores (50 cm length)
were taken to measure the same parameters for plain sediment. CO2 efflux rates of plain sediment and individual crab
burrows with entrance diameters of 7 cm were 0.7–1.3 mmol m22 s21 and 0.2–0.4 mmol burrows21 s21, respectively. CO2

released from a Rhizophora mangle dominated forest with an average of 1.7 U. cordatus burrows21 m22 yielded 1.0–
1.7 mmol m22 s21, depending on the month and burrow entrance diameter. Laboratory experiments revealed that 20–60%
of the CO2 released by burrows originated from crab respiration. Temporal changes in the reduction potential in the
sediment surrounding the burrows did not influence the CO2 release from burrows. More oxidized conditions of plain
sediment over time may explain the increase in CO2 release until the end of the wet season. CO2 released by U. cordatus and
their burrows may be a significant pathway of CO2 export from mangrove sediments and should be considered in
mangrove carbon budget estimates.
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Introduction

In mangrove ecosystems, semi-terrestrial burrowing crabs are

important bioturbators affecting the biogeochemistry of the

sediment and carbon cycling [1–5]. Their bioturbation activity

includes constructing and maintaining of burrows leading to the

reworking of sediment particles and organic material. Organic

material, such as litter, is also reworked by their feeding, ingestion

and defecation and can become buried in the sediment leading to

carbon storage [1,6–8]. Crabs accumulate carbon as body biomass

by feeding on mangrove litter which otherwise would have been

washed away by the tide [9–14]. However, crabs may also account

for carbon depletion in the sediment. Their burrows present an

extension of the sediment surface area [1,15], thus, at low tide

sediment surrounding the burrows can become oxidized by

atmospheric oxygen. Atmospheric oxygen enters only a few

millimeters into the mangrove sediment [8,16,17] where oxic

reduction can take place. During burrow maintenance, crabs may

mix more oxidized sediment inside their burrows with surrounding

less oxidized sediment. The resulting increase in reduction

potential affects the sediment surrounding the burrows up to a

distance of several centimeters [18,19]. This may alter the type of

microbial carbon oxidation from mainly anaerobic (e.g. sulfate

reduction or methanogenesis) to partially aerobic decomposition

processes (e.g. aerobic respiration or iron reduction) [1,8,20,21],

which can result in higher CO2 efflux rates [22] and consequently

to carbon loss from the sediment [6]. Thus, bioturbation by crabs

and associated changes in the microbial decomposition process

possibly influence CO2 release from the sediment.

To better evaluate the role of burrowing crabs in carbon

cycling, it is important to quantify the amount of carbon stored

and released by the crabs and their burrows. Bouillon et al. [23]
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assume that the CO2 released by burrows, animal respiration and

roots is currently underestimated and may be an uncertain factor

within the global carbon budget estimates for mangrove forests.

Studies investigating the CO2 release by crab burrows or the

reduction potential in the sediment surrounding the burrows have

only been conducted for the relatively small fiddler crabs

[18,19,24]. Inhabited fiddler crab burrows increased the CO2

release from mangrove sediment approximately 2 to 5 times

compared to plain sediment [19,24]. 58% of the released CO2

originated from the sediment surrounding the burrows and the

remainder from the crab inside the burrow [24]. Studies

characterizing the reduction potential in sediment surrounding

fiddler crab burrows in salt marsh and mangrove sediments found

a 1.5–4 cm thick oxidized zone, where iron reduction replaced the

usually predominant sulfate reduction [18,19]. This zone also

presented the highest CO2 production rates. The rates decreased

with increasing distance from the burrow, indicating that the

change in reduction potential can influence carbon decomposition

processes [18]. The availability and quality of carbon as well as the

temperature can further influence carbon decomposition processes

and thereby CO2 efflux from the sediments [8,21].

Araújo Jr. et al. [25] investigated the bioturbation activity of the

large and abundant crab Ucides cordatus (Ucididae), which,

together with much smaller fiddler crabs, influence with their

burrows the microtopography of the sediment in Brazilian

mangrove forests. Araújo Jr. et al. [25] concluded from

measurements of the reduction potential in sediment cores from

bioturbated and non-bioturbated sites that U. cordatus burrows

oxidized the sediment. However, the study did not provide

information on the supposed gradient and the horizontal range of

the reduction potential in the sediment surrounding the burrows,

likewise, no CO2 efflux rates were measured.

In the present study the effects of bioturbation by U. cordatus on

carbon dynamics and sediment reduction potentials were evalu-

ated by (i) quantifying the CO2 efflux rate of individual burrows

compared to plain sediment and (ii) measuring the reduction

Figure 1. Study area on the Ajuruteua peninsula, Northern Brazil. The study was performed in Brazil (A) near the city of Bragança (46u389W
0u509S, B). The study site is marked by a black dot and is located at the tidal channel Furo Grande (B).
doi:10.1371/journal.pone.0109532.g001
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potential in radial profiles in the sediment around burrows at

different depths in a Rhizophora mangle forest, respectively. We

hypothesized that (i) sediment with U. cordatus burrows has higher

CO2 efflux rates than sediment without burrows and (ii) reduction

potentials in radial profiles of the sediment surrounding the

burrows down to 50 cm depth decrease gradually from the burrow

wall, approximating conditions of non-bioturbated sediment.

Materials and Methods

The artisanally harvested study species Ucides cordatus is listed

as endangered in the Brazilian legislation due to the risk of

overfishing. All research activities were allowed by a research

permit granted by SISBIO (Sistema de Autorização e Informação

em Biodiversidade, authorization number 30007-1). Field work

was performed in the extractive reserve ‘‘Reserva Extrativista

Marinha de Caeté-Taperaçu’’.

Study area
The study area is located on the Ajuruteua peninsula, the

western bank of the Caeté river estuary in North Brazil (Figure 1).

Field work was performed in the high intertidal zone near the tidal

channel Furo Grande (46u389W 0u509S) (Figure 1, B). The region

has semidiurnal tides with amplitudes of 2 to 5 m. During spring

tide days the study site is flooded twice a day, while during neap

tide days tidal heights are too low to inundate the whole mangrove

forest [26,27]. The forest is dominated by the mangrove tree

Rhizophora mangle (Rhizophoraceae). Other mangrove tree

species are also present including Avicennia germinans (Acantha-

ceae) and Laguncularia racemosa (Combretaceae) [26].

Mean annual temperature in 2012 was 26.361uC (mean 6

standard deviation, [28]). Total precipitation recorded at the

weather station in Tracuateua (50 km from the study area) was

1552 mm (Figure 2). In Northern Brazil, the wet season generally

occurs from January to August and the dry season (monthly

precipitation ,100 mm) from September to December [28].

Surface water salinity of the tidal channel Furo Grande varied

between 22 and 37 throughout the year 2012 (unpublished data).

In the study area U. cordatus is the only large burrowing crab

(max. carapace width of 9.9 cm in the Caeté estuary, [29]). An

average density of 1.7 ind. m22 was reported for the Furo Grande

area in R. mangle dominated forests [30]. U. cordatus prefers to

construct its burrow around the root system of R. mangle, because

large roots structure the sediment and thereby increase sediment

stability and provide shelter against predators [31]. Burrows of U.
cordatus can have various forms. They can be simple burrows with

one opening and one corridor, U-shaped with more than one

opening, or even more complex structures with a maximum of

three openings [32]. In northeast Brazil simple burrows are the

most common type (more than 85% of all investigated burrows,

n = 735) [32]. In the Furo Grande area simple burrows are also the

most common burrow type (unpublished observation). Such

burrows have the following morphology: Their corridors initially

descend with a slight slope and then bend vertically downwards

until forming a terminal burrow chamber ([14], Figure 3). At our

study site at the Furo Grande total burrow corridor lengths (initial

horizontal and vertical part) ranged from 73 to 219 cm with an

average of 123632 cm (mean 6 standard deviation, n = 30, own

data). The inner walls of the burrows of U. cordatus have no

conspicuous inner mucus layer such as known from Polychaetes

(e.g. reviewed by Kristensen and Kostka [33]). The burrows of the

other crab species, for example sympatric fiddler crabs, also seem

to be unlined (own observation, [34]).

CO2 efflux rates
CO2 efflux rates of both burrows and plain sediment were

measured in April, July, September and October 2012 around

neap tides during the daytime. Due to technical reasons,

measurements of sediment with burrows and plain sediment were

performed during two succeeding neap tide cycles. In October

2012, the sampling of plain sediment was performed two neap tide

cycles later.

U. cordatus burrows with only few R. mangle stilt roots nearby

were chosen for the measurements to minimize the effect of root

respiration. Furthermore, freshly excavated and blackish sediment

had to be in front of their entrances indicating the presence of a

live crab and ensuring sampling of recently bioturbated sediment.

The diameter of the burrow entrances and if possible the current

Figure 2. Total monthly precipitation in 2012. Precipitation (mm)
was recorded by the weather station in Tracuateua (50 km southwest
from the study site), Pará, Brazil [28]. The asterisks mark the sampling
months (CO2 efflux rate and rH of burrows and control sediment). The
circle marks the only control sampling (CO2 efflux rate and rH), which
had to be conducted two neap tide cycles later than the corresponding
sampling in October 2012 due to technical reasons.
doi:10.1371/journal.pone.0109532.g002

Figure 3. Vertical and horizontal sampling scheme of the
sediment surrounding U. cordatus burrows for the rH measure-
ments.
doi:10.1371/journal.pone.0109532.g003
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depths from the sediment surface to the water surface inside the

burrow were recorded with a measuring tape before taking

measurements. If the water surface inside the burrows was too low

to measure, measurement was delayed to the rH measurements,

when parts of the burrow walls were removed to facilitate access.

The area of the burrow wall exposed to air was estimated based on

the entrance diameter and the distance to the water surface.

For measuring the CO2 efflux rate of a burrow, a PVC collar

with 20 cm diameter was positioned around the entrance and

slightly pushed several centimeters into the sediment. To avoid any

influence of CO2 released during and after the installation of the

collar, the measurements were delayed for 1 h. A respiration

chamber connected to a CO2/H2O infrared gas analyzer (LI-

8100A, LI-COR, Biosciences) was then placed on top of the PVC

collar. Since the respiration chamber was opaque no CO2 was

consumed through photosynthesis during measurements. The

CO2 efflux was recorded over 2 min and the measurement

repeated five times. Between replicates, the chamber was opened

for 25 s to release the accumulated CO2. Most probably, these

measurements included the respiration of the crab inside the

burrow. The contribution of crab respiration to the measured CO2

efflux rate was estimated by a separate experiment (see below).

Sediment temperature was measured outside the collar at 2 cm

sediment depth with a thermocouple (OMEGA Engineering).

As a control, the CO2 efflux rate of plain sediment without U.
cordatus burrows and at the most with very few fiddler crab

burrows was performed, following the same measurement protocol

as for the sediment with burrows. However, four replicates were

taken, because preliminary tests had shown that variance of

measured values for plain sediment was smaller than for sediment

with U. cordatus burrows.

The CO2 efflux rates were calculated for a linear flux rate [35]

taking into account the surface sediment temperature and surface

area inside the collar. For the measurement with U. cordatus
burrows, the surface area inside the collar also included the

burrow wall surface area. It also had to be considered that the

relationship between burrow opening area and surface sediment

area inside the collar did not represent the average relationship of

burrow opening area to plain sediment area at the study site due to

specific selection of single burrows and the small collar area.

Under natural conditions, the proportion of burrow to plain area

is lower (1.7 ind. m22, [30]). Therefore, the calculated CO2 efflux

rates inside collars with a crab burrow could not be directly

compared with rates of plain sediment. To nevertheless allow for a

comparison between the CO2 efflux rates of plain sediment with

sediment containing burrows at a given burrow density, the

following calculations were performed: First, the CO2 efflux rates

of crab burrows without the surface sediment were estimated. To

do this, the corresponding monthly mean CO2 efflux rates of the

plain sediment measurements were subtracted from the calculated

CO2 efflux rate of the burrows, considering the areal proportions

of each term as follows:

Fb~(Ft|At{Fs|As)=Ab

F is the CO2 efflux rate and A the area, which are both linked to

plain sediment s, burrow b, total measured area t or total CO2

efflux t. The total measured area refers to the surface area inside

the PVC collar. Mean control CO2 efflux rates of each month

were used for Fs. From this calculation values for Fb (mmol

m22 s21) were obtained. From these values we derived CO2 efflux

rate of individual burrows (mmol burrows21 s21) with entrance

diameters of 5, 6 and 7 cm corresponding to the range of burrow

diameters sampled in the field. CO2 efflux rates for mangrove

sediment based on the CO2 efflux rate of plain sediment and

individual burrows were then obtained with the help of size-

specific crab burrow density data. Two burrow densities were

chosen, one represents the mean U. cordatus burrow density in a

R. mangle dominated forests with 1.7 ind. m22 for the Furo

Grande area [30]. To simplify the calculation, this density of crabs

can be related to 1.7 burrows21 m22 since most U. cordatus
burrows have only one opening. The other chosen burrow density

was 11.9 burrows21 m22 (unpublished data) representing the

increased burrow density around dense R. mangle stilt roots.

Respiration of U. cordatus
Measuring the CO2 efflux rate of a burrow without a live crab

was not feasible as removal of the crab would have strongly

disturbed the sediment. To nevertheless allow an estimation of the

proportion of the CO2 efflux rate contributed by the crabs, their

respiration rates were determined in an additional experiment.

Adult male U. cordatus were caught nearby the study site. The

carapace width (cm) of each animal was measured and the wet

mass (g) was calculated by the regression formula for male U.
cordatus provided by Diele [36]:

Wet mass~0:4489|carapace width2:9533

In the laboratory, crabs were placed in a PVC basin (20 cm

diameter, 6 cm height) with the respiration chamber mounted on

top. Under natural conditions crabs rest in air and water (own

observation). Therefore, measurements were performed with

different crabs in a dry basin (1. treatment: respiration in air,

n = 14) and in a basin containing seawater (2. treatment:

respiration in seawater, water level 4 cm, salinity 32, n = 14).

CO2 released by each crab was measured five times for 10 min

with breaks of 25 s in-between to open the chamber and release

the accumulated CO2. Crabs were not acclimated inside the

chamber prior to measurements. Therefore, the five consecutive

measurements presented a gradient of crab respiration from a least

acclimated state to a more acclimated one. CO2 respiration rates

of crabs (mmol CO2 kg21 s21) were calculated as described above,

but related to wet mass instead of surface area in the calculation.

In the next step the contribution of crab respiration to the CO2

efflux rate was estimated for individual burrows with a burrow

entrance diameter (BED) of 5, 6 and 7 cm. Since the inhabitants of

the burrows used for CO2 measurements were not captured, their

carapace width was estimated from the BED by a least squared

regression formula based on data collected by Piou et al. [31]:

Carapace width~(BED{0:32)70:97 (R2~0:5, n~310)

The wet mass was then estimated from the calculated carapace

width with the formula for male U. cordatus by Diele [36] as

indicated above. With the estimated wet mass of crabs inhabiting

burrows with entrance diameters of 5, 6, and 7 cm, respectively,

the respiration rate of individual crabs (mmol CO2 crab21 s21, in

air and in seawater) was calculated based on the first and the last

measurement of the five consecutive respiration measurements.

These two measurements represent a ‘‘worst’’ (crab least

acclimated, resting in air) and a ‘‘best’’ case scenario (crab with

the longest acclimatization time and resting in water), since

preliminary tests had shown that crabs resting in air had higher

CO2 efflux rates compared to crabs resting in water.

CO2 Release from Burrows of Ucidid Mangrove Crabs
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Reduction potential
After the CO2 efflux rate measurements in the field were

performed, reduction potentials of both burrow walls and of non-

bioturbated sediment were measured at the selected sites on the

same day. Redox potential (61.0 mV), pH (60.1) and temper-

ature (60.1uC) were measured in the sediment excavated by the

crabs outside the burrow and in the upper 2 cm of the burrow

water with a Sartorius ORP (redox) combination electrode and a

WTW Sentix 41 pH-electrode connected to a WTW portable

meter (Multi 340i), respectively. The above mentioned parameters

were also measured in the sediment surrounding the burrow (from

here on referred to as ‘‘burrow wall sediment’’ - BWS) at sediment

depths of 1, 10, 30 and 50 cm. To be able to measure the

reduction potential in deeper sediment depths, one half of the

burrow was carefully opened. When the desired measuring depth

inside the burrows was below the water table, the water was

manually removed with a small vial before taking the measure-

ment. Measurements beyond 50 cm sediment depth were

technically too difficult due to the rapid refilling of the burrow

with water from below. At each sediment depth, the electrodes

were inserted perpendicularly to the burrow wall, thereby

subsequent readings at horizontal distances of 2, 5, 8 and 15 cm

from the BWS were obtained (Figure 3). As reduction potentials in

the sediment around fiddler crab burrows have been observed as

being influenced at a range of 1–4 cm [18,19] and U. cordatus
burrows are larger, we choose a larger maximal horizontal

distance of 15 cm to insure that the change in reduction potential

were within the measured radius.

In addition to the burrows, non-bioturbated sediment (referred

to as the control) was also measured for comparison. Sediment

cores were taken at least 15 cm away from burrows and stilt roots

to sample areas where the influence of burrows and roots on the

surrounding sediment was most likely low. A peat sampler

(Eijkelkamp) of 50 cm length and 6 cm diameter was used to

obtain the cores. Redox potential, pH and temperature of the

sediment core were measured at depths of 1, 10, 30 and 50 cm.

Redox potential, temperature and pH values of each measure-

ment were used to calculate the rH values [37]. These values are

an indicator of the reduction force of a redox system and range

between 0 (strongly reducing conditions) and 42 (strongly oxidizing

conditions).

Statistical analyses
The statistical analyses were carried out following protocols for

data exploration and analysis of Zuur et al. [38,39] using the

statistical programming environment R [40] with the ‘‘nlme’’ [41]

and the ‘‘ggplot2’’ [42] package. Data were checked for outliers

(Cook distance) and these were, if necessary, removed. For

information on data sets used for the analyses see Data S1.

Burrow entrance diameters, depth from the surface sediment to

the water surface inside burrows, and rH values of burrow water

and excavated sediment were each separately analyzed with a one

way ANOVA for differences over time. When the trend over time

was not linear, time was considered as a factor and a Tukey post-

hoc test was applied to detect differences throughout the wet

season.

Gaussian linear mixed-effects (LME) models were used for the

following analyses, as they can account for inner variation between

sediment cores or burrows [38,43,44]. The CO2 efflux rates of

burrows (Fb) and controls were analyzed with a LME model to test

for differences over time. The random intercept of the model

allowed for heterogeneity among burrows and between the

sampling sites of plain sediment. To find the optimal set of fixed

terms, a backwards model selection was used based on the

maximum likelihood ratio test (ML) and/or on the Akaike

Information Criterion (AIC). The validity of the model was

checked by examination of diagnostic plots of model residuals.

Final models were checked for homogeneity between residuals

versus fitted values and covariates. Independence was examined

by plotting residuals versus time. The final model was generated

and evaluated with the restricted maximum likelihood estimation

(REML) and these models are presented in Tables S1, S2, S3, S4,

S5 and S6. All following LME models were analyzed as described

above. Estimated values from statistical analyses are presented as

mean 6 standard error (se). Respiration rates of crabs were

analyzed with a LME model to test for difference between

treatments, number of measurements (from least acclimated to

acclimated) and their respective interaction terms. The random

intercept accounted for heterogeneity between individual crabs.

No function for the temporal correlation structure was considered

in the repeated measurements of the same crab, to be able to

detect those differences between repeated measurements.

The rH data for the BWS were analyzed with a LME model to

test for differences among sediment depths, horizontal distances

from the burrow wall, time and their interaction terms. The

random intercept accounted for heterogeneity among individual

burrows. Control rH values were tested with a LME model for

differences between sediment depths, time and their interaction

term. The random term allowed for heterogeneity between

sediment cores. Since general trends over time for the control

and burrow rH data had already been analyzed in the two LME

models and to keep the following models simple, control and

burrow rH data were analyzed separately for each month.

Monthly data sets of rH values from burrows and controls were

analyzed in four LME models to test for differences among

horizontal sampling levels, sediment depths and their interaction

terms. BWS values of 2 (BWS2), 5 (BWS5), 8 (BWS8) and 15 cm

(BWS15) and the control (.15 cm) represented the five horizontal

sampling levels. BWS values and the control value were set as

categorical covariates, because the exact horizontal distances of

the control cores to the neighboring below ground burrow

corridors was unknown. The random term allowed for heteroge-

neity among sampling locations (sediment core or burrow).

A Pearson correlation was applied to measure the relationship

between surface rH values and CO2 efflux rates of the plain

sediment. Because the CO2 efflux rate of a burrow could be

associated to several rH values in the burrow wall sediment (from

horizontal distances of 2 cm in several sediment depths) no

correlation was performed.

Results

CO2 efflux rates
Burrow entrance diameters did not significantly differ over time

(F = 3.3, df = 1, p= 0.07, Table 1) insuring that burrows of

different samplings were comparable to each other. Depths from

the sediment surface to the water surface inside burrows changed

over time (F = 9.9, df = 1, p,0.001) and were largest in October

(Tukey post-hoc: p# 0.002, Table 1). The mean burrow wall area

exposed to air was 0.0460.02 m2 (mean 6 standard deviation,

n = 78) and ranged from 0 (burrow completely filled with water) to

0.1 m2.

Examining the CO2 efflux rates of burrows (Fb) for differences

over time showed that the LME model which included the term

time was not better than the model without this term (Likelihood

Ratio/L. Ratio = 1.1, df = 1, p= 0.3, Table S1) indicating that

measured values did not differ over time. By contrast, control

sediment CO2 efflux rates increased over time (Table 1); removing

CO2 Release from Burrows of Ucidid Mangrove Crabs
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the term time from the corresponding LME model led to a less

suitable model, so the factor was retained (L. Ratio = 15.3, df = 1,

p,0.001, Table S2). Calculated CO2 efflux rates of individual

burrows ranged from 0.1 mmol burrows21 s21 for burrows with a

BED of 5 cm to 0.4 mmol burrows21 s21 for burrows with a BED

of 7 cm (Table 1).

Respiration of U. cordatus
Mean carapace width and derived wet masses of crabs are given

in Table 2. A LME model of the crab respiration data with the

interaction term treatment6number of observations was signifi-

cantly better than a model without this interaction (L.

Ratio = 12.5, df = 1, p,0.001, Table S3). This indicates that crab

respiration rates varied considerably between individuals of one

treatment, but decreased during the five consecutive measure-

ments. Crabs resting in seawater had the lowest respiration rates

(Table 2). During the measurements, the least acclimated crabs

produced foam in front of their mouthparts, whereas more

acclimated crabs did not foam and stopped respiring for a few

seconds up to several minutes. Respiration rates of individual crabs

with a wet mass corresponding to burrow entrance diameters of 5,

6 and 7 cm, respectively, are presented for the ‘‘worst’’ (crab least

acclimated, resting in air) and ‘‘best’’ case scenarios (crab with the

longest acclimatization time and resting in water) in Table 2. The

crabs’ contribution to the CO2 efflux rates of individual burrows

was 55–100% in the ‘‘worst’’ case and 20–60% in the ‘‘best’’ case

scenario (Table 1, Table 2).

Estimates for CO2 release of mangrove sediment
Calculated CO2 efflux rate estimates of mangrove sediment

with 1.7 and 11.9 burrows21 m22 increased over time. The reason

for this was an increase in CO2 efflux rates of plain sediment over

time due to seasonality, while individual burrow CO2 efflux rates

remained constant over time (Figure 4). Estimates of CO2 efflux

rate of sediment with U. cordatus burrows (Table 3, Figure 4) are

15 to 500% (considering 1.7 and 11.9 burrows21 m22, respec-

tively) higher than for plain sediment (Table 3). Despite the small

contribution of burrow openings to total sediment surface area (,

5%), U. cordatus burrows, especially in densely rooted sediment,

can increase the CO2 efflux rate of plain sediment by 92 to 500%

(Table 3, Figure 4).

Reduction potential
The rH values of both burrow water (F = 0.6, df = 1, p= 0.4,

Table 1) and excavated sediment (F = 2.3, df = 1, p= 0.1, Table 1)

did not differ over time. The final model of the BWS rH data

indicates that rH values decreased with sediment depth and

horizontal distance as well as over time (Figure 5); a LME model

of the BWS rH data with a three way interaction term was not

significantly better than a model without this interaction (L.

Ratio = 4.4, df = 9, p= 0.9, Table S4). Furthermore, the interac-

tion terms horizontal depth6time (L. Ratio = 1.0, df = 3, p= 0.8,

Table S4) and sediment depth6time (L. Ratio = 3.2, df = 3,

p= 0.4, Table S4) were eliminated. The model with the interaction

term horizontal distance6sediment depth was better than without

interaction (L. Ratio = 17.2, df = 9, p= 0.045, Table S4). However,

we continued with the simpler (using fewer degrees of freedom)

and slightly better model (AIC of model with the interaction term:

4389.1 and without interaction term: 4388.4) by excluding the

interaction term. Finally, comparing models where each main

term was excluded once with the original model containing all

three main terms showed that the latter was best (sediment depth:

L. Ratio = 555.0, df = 3, p,0.001; horizontal distance: L.

Ratio = 35.6, df = 3, p,0.001; time: L. Ratio = 20.7, df = 1, p,
0.001, Table S4).

The model of the control rH data with the interaction term

sediment depth6time was significantly better (L. Ratio = 10.1,

df = 1, p= 0.0015, Table S5) than the model without this term

indicating that control rH values decreased with sediment depth,

but had different depth-rH curves over time (Figure 5). Further,

the surface rH values positively correlated with the CO2 efflux

rates of plain sediment (correlation coefficient = 0.18, p,0.001).

In the next step, BWS and control rH data were compared

separately for each sampling campaign. The comparison of the

four models including and excluding the interaction term sediment

depth6time showed that the interaction term significantly

improved the four models (April: L. Ratio = 18.0, df = 4,

p= 0.001, July: L. Ratio = 33.2, df = 4, p,0.001, September: L.

Ratio = 38.3, df = 4, p,0.001, October: L. Ratio = 44.0, df = 4,

p,0.001, Table S6). Hence, at any point of time rH values

decreased with increasing sediment depth, and depth-rH curves

differed between horizontal sampling levels, in the way that rH

values decreased mostly with increasing horizontal distances

(Figure 5). Measured pH values are not shown in detail; they

ranged from 3.5 to 7.1 for plain sediment and from 4.3 to 7.8 for

burrow wall sediment.

Discussion

Measured CO2 efflux rates of individual burrows are composed

of three elements: The respiration of the inhabiting crab itself, the

CO2 released by the burrow wall sediment and the CO2 released

by the water inside the burrow.

The crabs’ contribution to the CO2 efflux rate of burrows
In our study measurements of CO2 exhaled by isolated crabs

showed that high CO2 production by respiration was related to

stress. Crabs in our study, particularly those kept without seawater

in the PVC basin, were probably not fully acclimated during the

50 min respiration measurements, because CO2 respiration of

crabs resting in air were always higher in the five measurements

compared to crabs resting in water (Table 2). Some crabs exhaled

four or fewer times in 10 min (see minimum values in Table 2)

suggesting reasonable acclimatization.

During field measurements, crabs were sometimes seen inside

their burrows when the respiration chamber was opened between

measurements. The crabs did not appear to be stressed by the

chamber, since they moved slowly and did not produce foam, as

they do when they are handled or otherwise stressed [45].

Therefore, respiration rates of U. cordatus measured in the

laboratory for the ‘‘worst’’ case scenario (crabs with no acclima-

tization time and resting in air) are probably overestimating the

crabs’ respiration under field conditions. Respiration rates for the

‘‘best’’ case scenario (crabs with longest acclimatization time

resting in water) on the other hand, probably resemble field

conditions more closely. Our data thus suggest that crabs

contributed about 20–60% to the CO2 efflux rates of individual

burrows, which leaves the burrow CO2 efflux rates without crabs

to range between 0.04–0.32 mmol burrows21 s21 for burrows of 5

to 7 cm entrance diameter (Table 1). Respiration rates of an

acclimated U. cordatus specimen (250 g wet mass, in seawater) are

0.1960.04 mmol CO2 crab21 s21 and are similar to rates

recorded for a large sesarmid crab (Neoepisesarma versicolor,
250 g wet mass, in seawater) of 0.24 mmol CO2 crab21 s21 [46].
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CO2 efflux rates of burrows and sediment
CO2 efflux rates of inhabited U. cordatus burrows were at least

20 times higher (Table 1) than estimated rates from inhabited

fiddler crab burrows (0.005 mmol burrows21 s21) measured in a

Tanzanian mangrove forest [24]. Higher CO2 efflux rates of U.
cordatus burrows are probably caused by the larger body size and

higher respiration of the crab and the corresponding larger burrow

size (and depth) compared with Uca spp. and their burrows

(average wet mass of Uca spp.: 3.2 g, 0.002 mmol CO2 crab21 s21,

average burrow entrance diameter not reported, [24]). Mean CO2

efflux rates of plain sediment in our study ranged from 0.7 to

1.3 mmol m22 s21 and were similar to other mangrove sediments

[20,22], e.g. to values measured by Lovelock [47] for sites in the

Caribbean, Australia and New Zealand, which ranged from 2

0.25 to 2.97 mmol m22 s21. In line with our first hypothesis, CO2

efflux rates of mangrove sediment containing burrows inhabited

by U. cordatus were 15 to 500% higher than for plain sediment

depending on burrow density and month (Table 3). In a

Tanzanian mangrove forest, Kristensen et al. [24] recorded

CO2 efflux rates of sediment with inhabited Uca spp. burrows in

areas without obvious above ground roots. Measured rates ranged

between 0.68 mmol m22 s21 (68617 burrows21 m22) and

1.38 mmol m22 s21 (237653 burrows21 m22) and were similar

to ours with 1.060.02 until 1.760.05 mmol m22 s21 based on an

average U. cordatus burrow density of 1.7 burrows21 m22

(Table 3). Although CO2 release of individual fiddler crab burrows

is much lower than that of U. cordatus, the burrow density of

fiddler crabs at the Tanzanian study site was much higher (68–626

burrows21 m22, [24]) than burrow densities of U. cordatus
recorded near our study site (1.7 burrows21 m22 at an average,

Diele et al. [30]). Thus, a high density of burrows may compensate

for a lower per-burrow CO2 efflux rate.

In addition to U. cordatus burrows, Uca spp. burrows were also

present at our study site (28 to 105 burrows21 m22 with an

average of 57618 burrows21 m22, mean6standard deviation,

n = 42, with each sample area 1 m2, unpublished data). Future

investigations should focus on the entire crab community of a

mangrove site, involving all burrowing crabs, to obtain more

precise estimates of overall CO2 efflux rates from the mangrove

sediment.

The amount of CO2 released by sediment or burrows depends

on the prevalence of organic carbon in the sediment and its

oxidation pathways by microorganisms [48–50]. In a study on the

Ajuruteua peninsula the organic matter content and mean cell

Table 2. Data of U. cordatus respiration measurements.

Crab in air Crab in seawater

Carapace width (cm)

Mean 6 se (n) 7.360.1 (14) 7.060.1 (14)

Median 7.4 7.0

Minimum 6.5 6.2

Maximum 7.8 7.5

Wet mass (g)

Mean 6 se (n) 161.666.3 (14) 140.465.9 (14)

Median 162.4 137.7

Minimum 113 98.2

Maximum 193.5 172.4

Crab respiration (mmol CO2 kg
21 s21)

Mean 6 se (n) of measurement 1 2.360.4 (13) 1.460.2 (13)

Mean 6 se (n) of measurement 2 1.460.2 (13) 1.060.2 (12)

Mean 6 se (n) of measurement 3 1.160.1 (13) 0.960.2 (12)

Mean 6 se (n) of measurement 4 0.960.1 (12) 0.760.1 (12)

Mean 6 se (n) of measurement 5 0.960.1 (12) 0.860.2 (12)

Minimum of all measurement (n) 0.4 (63) 0.04 (61)

Maximum of all measurement (n) 4.1 (63) 2.4 (61)

Crab respiration - worst case (mmol CO2 crab21 s21)

BED: 5 cm, WM: 28 g, mean 6 se (n) 0.1160.02 (13) 0.0760.01 (13)

BED: 6 cm, WM 55 g, mean 6 se (n) 0.1960.03 (13) 0.1260.02 (13)

BED: 7 cm, WM 93 g, mean 6 se (n) 0.3060.05 (13) 0.1960.02 (13)

Crab respiration - best case (mmol CO2 crab21 s21)

BED: 5 cm, WM: 28 g, mean 6 se (n) 0.0460.004 (12) 0.0460.01 (12)

BED: 6 cm, WM 55 g, mean 6 se (n) 0.0760.01 (12) 0.0660.01 (12)

BED: 7 cm, WM 93 g, mean 6 se (n) 0.1260.01 (12) 0.1060.02 (12)

Carapace width, estimated wet mass after Diele [36], average respiration rates during the five measurements and respiration rate of individual crabs of a specific wet
mass inhabiting burrows with different burrow entrance diameters for the ‘‘worst’’ case scenario (crab not acclimated, values calculated from measurement 1) and for
the ‘‘best’’ case scenario (crab with longest acclimatization time, values calculated from measurement 5).
Abbreviation: BED=burrow entrance diameter (in cm), n = sample size, se = standard error, WM=wet mass.
doi:10.1371/journal.pone.0109532.t002
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numbers of bacteria were measured in the BWS of U. cordatus
burrows (70 cm depth) and were similar to corresponding values of

the surface sediment [51]. Therefore, microbial activity in BWS

may be more similar to surface sediment than to non-bioturbated

sediment at 70 cm sediment depth. However, CO2 released from

burrows may not exclusively originate from carbon oxidation in

the BWS, but also from the carbon stock in deeper sediment layers

which may be released via the burrows [20,24]. Furthermore, the

amount of CO2 released from the water accumulated inside the

burrow is unknown. The water may contain CO2 originating from

bacterial, meio- and macrofaunal respiration and from tidal input.

How the bicarbonate system of the burrow water is constituted is

also an unknown, e.g. how such systems react to increasing/

decreasing CO2 concentrations and whether changing water levels

inside burrows influence the burrow water CO2 gas exchange.

CO2 dissolved in water may also be partly exported by the

groundwater during the ebb tide [52].

Apart from microbial decomposition in the sediment, CO2 is

produced by root respiration. Information about root respiration

of mangrove tree species is scarce; root respiration rates are

reported to be low for R. mangle trees. Kristensen et al. [24]

estimated the amount of CO2 released by pneumatophores of

Sonneratia alba and Avicennia marina in a Tanzanian mangrove

forest, yielding an equivalent or higher efflux rate than sediment

with burrows. Due to technical reasons we had to avoid measuring

near aboveground aerial roots. However, underground root

respiration may have contributed to the CO2 released by burrows

and, equally, by surface sediment without burrows. As U. cordatus
prefers areas with R. mangle roots when constructing its burrows

[31], their burrows possibly function as an exhalant channel for

CO2 produced by root respiration. To test this hypothesis, further

work on CO2 release must overcome technical restrictions and

focus on areas where crabs and mangrove tree roots occur closely

together.

Temporal and spatial patterns of reduction potentials
Reduction potentials of the burrow water and the excavated

sediment were similar during the wet season and relatively

oxidized compared to the BWS and control rH values in deeper

sediment depths. This indicates that burrow water is regularly

mixed with more oxidized water or oxygen by, for example, tidal

flushing or groundwater flow [53–55]. Further, excavated

sediment oxidizes at the surface when in contact with atmospheric

oxygen. Thus, bioturbation by crabs significantly oxidizes previ-

ously reduced sediment.

In contrast to the stable values in the burrow water and the

excavated sediment, rH values in the BWS changed over time. In

April, BWS had the lowest rH values. At 1 and 10 cm sediment

depth rH values were even lower compared to plain sediment. The

rising water column inside the burrows (Table 1) and waterlogging

of the sediment caused by the high precipitation rates in this

month may have led to anoxic conditions along the burrow wall.

In contrast, during the last sampling at the end of the wet season

rain showers, temporally filling up burrows became less frequent

and water levels sank to 50 cm below the surface (Table 1). The

longer exposure of BWS to air at the end of the wet season led to

more oxidized conditions at 30–50 cm sediment depths compared

with plain sediment. Additionally, from July onwards BWS rH and

control rH values increased with decreasing precipitation rates

(Figure 2, Figure 5).

The spatial pattern of the U. cordatus BWS rH values indicated

a wider oxidized zone, reaching up to 15 cm away from the

burrow, compared to the Uca sp. burrows, where the oxidized

zone reached only 1.5–4 cm into the surrounding sediment

[18,19]. This difference is most likely due to the much larger

size and depth of U. cordatus burrows, leading to improved solute

exchange conditions between the BWS and tidal water, ground-

water and atmospheric air compared to the smaller fiddler crab

burrows. Why rH values for the up to 15 cm horizontal distance

from the burrow wall did not approximate control values remains

unclear. However, an approximation may have been masked by

the high variance of the rH values due to nearby below ground

burrow galleries or roots [56], which could not be seen during the

measurements. Since rH values in the BWS were not always more

oxidized compared to plain sediment we reject our second

hypothesis. The reduction potential of the sediment is further

affected by different environmental and biotic factors such as

water logging, tree roots and age of the forest stand

[1,18,19,48,49,57].

Temporal pattern in CO2 release
CO2 efflux rates of plain surface sediment increased over time.

Possibly surface sediment became more oxidized towards the end

of the wet season and a change in the microbial decomposition

process may thus have resulted in the different CO2 efflux rates

[22]. Another possible reason could be that CO2, which is

normally released over the sediment surface, may have been

dissolved after rainfalls and stored in rain water filling sediment

pore space. This would have increased the sediment CO2

concentrations, while less CO2 would have been released from

the sediment, as observed in our study at the beginning of the wet

season. Corresponding results have been obtained by studies

performed in a temperate pinewood forest [58,59]. In contrast to

the CO2 efflux rates of plain surface sediment, the CO2 efflux rates

of individual burrows did not change over time, despite

simultaneously varying rH values. The reasons for this are not

clear.

Conclusions

Until now, the ecological role of Ucides cordatus has been

mostly discussed in terms of carbon retention through litter

feeding. The results of the present study emphasize the crabs’

importance for carbon export via CO2 release. Respiration by U.
cordatus and CO2 release by its burrows increase the CO2 efflux

rate compared to plain sediment by 15–71% assuming a

conservative average density of 1.7 burrows21 m22 for Rhizophora
mangle dominated forests at the Caeté estuary in North Brazil.

This increase in CO2 efflux rate is particularly high considering

Figure 4. CO2 efflux rates (mmol m22 s21) of plain sediment and
sediment with a burrow density of 1.7 and 11.9 bur-
rows21 m22. *For these estimates all burrow entrance diameters were
set at 6 cm.
doi:10.1371/journal.pone.0109532.g004
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the relatively low proportion (0.3–0.7%) for which crab burrow

entrances of U. cordatus account for per sediment area.

Furthermore, burrows lead to changes in the reduction potential

in the sediment and may thereby indirectly influence microbial

decomposition pathways and CO2 release. This study further

demonstrates that the reduction potential around the burrow walls

underlies spatio-temporal variations which need to be considered

to improve estimates of CO2 release from mangrove sediments.

Future studies should disentangle carbon release and carbon

storage by crabs and determine whether these two processes are in

balance. Moreover, we underline the importance of including

CO2 efflux rates of burrows and respiration rates of crabs into

carbon budget estimates of mangrove ecosystems.
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CO2 efflux rate data.

(PDF)

Table S3 Final linear mixed-effects model of crab
respiration data.

(PDF)

Table S4 Final linear mixed-effects model of burrow rH
data.

(PDF)

Table S5 Final linear mixed-effects model of control rH
data.

(PDF)

Table S6 Final linear mixed-effects model of control-
burrow rH data.

(PDF)

Data S1 Complete data set used for statistical analyses.

(PDF)

Figure 5. Burrow and plain sediment rH values for each sampling campaign in the year 2012. Mean sediment rH values6 standard error
(se) plotted against sediment depth (cm) (sample size (n) for each month: April: n = 308, July: n = 363, September: n = 282 and October: n = 240).
Different grey shades and symbols represent the different horizontal sampling distances from the burrow wall sediment (BWS, BWS2= 2 cm,
BWS5= 5 cm, BWS8= 8 cm, BWS15= 15 cm and control .15 cm).
doi:10.1371/journal.pone.0109532.g005
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