

Cloud Based Processing of Real Time

Sensor-Data Streams

Paul Lapok

Submitted in partial fulfilment of
the requirements of Edinburgh Napier University

for the Degree of
Master of Science

18 th Aug 2014

School of Computing

Edinburgh Napier University

P a g e | 2

A u t h o r s h i p D e c l a r a t i o n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Authorship Declaration

I, Paul Lapok, confirm that this dissertation and the work presented in it are my own

achievement.

Where I have consulted the published work of others this is always clearly attributed;

Where I have quoted from the work of others the source is always given. With the

exception of such quotations this dissertation is entirely my own work;

I have acknowledged all main sources of help;

If my research follows on from previous work or is part of a larger collaborative

research project I have made clear exactly what was done by others and what I have

contributed myself;

I have read and understand the penalties associated with Academic Misconduct.

I also confirm that I have obtained informed consent from all people I have involved

in the work in this dissertation following the School's ethical guidelines

Signed:

Date: 18.08.2014

Matriculation no: 40 132 336

P a g e | 3

D a t a P r o t e c t i o n D e c l a r a t i o n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Data Protection Declaration

Under the 1998 Data Protection Act, The University cannot disclose your grade to an

unauthorised person. However, other students benefit from studying dissertations

that have their grades attached.

The University may make this dissertation, with indicative grade, available to others.

Signed:

P a g e | 4

A b s t r a c t

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Abstract

The aim of the project is to design an architecture for real time sensor data streaming,

management and live visualisation over the web to contribute to existing research in

the field of the Web of Things. The project will investigate the infrastructure between

streaming hardware and website. Typical hardware would be programmable, equipped

with sensors or the ability to connect up sensors and a possibility to communicate over

the internet, e.g. an Arduino board, Raspberry Pi or also a smartphone.

This project focuses on the universality and manageability of the system to allow many

users to deploy the sensing data over a web portal and consume the data on their own

websites or allow others to integrate the data into third party websites. The

requirements for a universal and manageable streaming service will be developed by

investigation of existing systems and analysis of use cases in different application

areas.

The operational capability of the architecture was investigated by implementing key

features and experiments. The project identified the strength and weaknesses of the

architecture and investigated the feasibility of the concept. A basic prototype was

developed and tested. The feasibility of several parts of the system was proved by

implementations and tests. Visualisation possibilities, security and processes were

investigated. System requirements for different application areas were defined. System

limits were investigated such as the relation between the streamed amount of sensor

values and visualisation update rate, the accuracy of the system with high visualisation

update rates and the limits of creating streaming instances as a bottleneck. The

experiments and tests defined the limits and gave statements about the system

performance, security and feasibility.

Keywords: Sensor Streaming, Real Time, Web Service, Cloud Computing, Node.js,

HTML5, WebSockets, Internet of Things, Web of Things

P a g e | 5

L i s t o f C o n t e n t

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

List of Content

1. Introduction .. 13

2. Literature Review ... 15

2.1. Sensor Streaming.. 15

2.2. Sensor Technologies... 17

2.3. Sensor Streaming Area ... 18

2.4. Architecture ... 20

2.5. Web Technologies... 22

2.6. Conclusion .. 24

3. Requirement Analysis ... 25

3.1. Requirement definition .. 25

3.2. Review of Example Application Areas ... 29

3.3. List of Requirements ... 31

4. Proposed System Architecture .. 34

4.1. Overview ... 34

4.2. Management User Interface .. 35

4.3. System Tasks .. 37

4.4. System Processing Sequence .. 38

4.5. Monitoring ... 40

5. Implementation and Experiments... 41

5.1. Node.js Server instance .. 41

5.2. Registration Service .. 43

5.3. Data Visualisation ... 51

5.4. Database adaptation ... 54

P a g e | 6

L i s t o f C o n t e n t

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

5.5. Security Setup and Issues ... 54

5.6. Server Instance and Limits .. 55

6. Evaluation ... 69

7. Conclusion and Future Work .. 74

P a g e | 7

L i s t o f F i g u r e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

i. List of Figures

Figure 1: Internet of Things Schematic showing the end users and application areas

based on data (Gubbi et al., 2013) .. 19

Figure 2: Architecture - Overall System ... 34

Figure 3: System Process Sequence .. 37

Figure 4: Processing Steps ... 38

Figure 5: Monitoring Process ... 40

Figure 6: Node.js Server Instance ... 42

Figure 7: Registration Management Application .. 44

Figure 8: Setup .. 51

Figure 9: Smoothie Chart .. 52

Figure 10: ECG Signal (Association for the Advancement of Medical Instrumentation,

2002) ... 53

Figure 11: ECG Visualisation .. 53

Figure 12: Instances Experiment - Results Memory .. 57

Figure 13: Instances Experiment - Results CPU 1 .. 58

Figure 14: Instances Experiment - Results CPU 2 .. 59

Figure 15: Instances Experiment - Results CPU 3 .. 59

Figure 16: Instances Experiment - Results CPU 4 .. 60

Figure 17: Instances Experiment - Results CPU 5 .. 60

Figure 18: Transmission Speed Experiment - Results CPU 1 62

Figure 19: Transmission Speed Experiment - Results CPU 2 63

Figure 20: Transmission Speed Experiment - Results CPU 3 63

Figure 21: Transmission Speed Experiment - Results CPU 4 64

Figure 22: KDiff3 - Count Irregularities .. 65

Figure 23: Lost Packages Experiment - Results CPU 1 .. 67

Figure 24: Lost Packages Experiment - Results CPU 2 .. 67

Figure 25: Lost Packages Experiment - Results CPU 3 .. 68

Figure 26: Project Plan .. 91

P a g e | 8

L i s t o f T a b l e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

ii. List of Tables

Table 1: Valuation Basis .. 26

Table 2: Database Schema ... 44

Table 3: Acceptance Test Unique ID ... 46

Table 4: Acceptance Test Unique Port .. 47

Table 5: Acceptance Test Delete ID .. 47

Table 6: Acceptance Test Delete Port ... 48

Table 7: Acceptance Test User Sensors ... 49

Table 8: Acceptance Test All Sensors ... 49

Table 9: Acceptance Test Register Sensors ... 50

Table 10: Instances Experiment .. 56

Table 11: Transmission Speed Experiment ... 62

Table 12: Lost Packages Experiment .. 66

Table 13: Rating of Cases ... 79

P a g e | 9

L i s t o f S o u r c e C o d e

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

iii. List of Source Code

Source Code 1: Registration Interface .. 43

Source Code 2: Receiving Data on Website ... 52

Source Code 3: Node.js Script .. 80

Source Code 4: Node.js Script with TLS ... 81

P a g e | 10

L i s t o f A b b r e v i a t i o n s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

iv. List of Abbreviations

API
Application Programming Interface .. 16

ATAM
Architecture Trade-off Analysis Method ... 25

CPU
Central Processing Unit ... 53

ECG
Electrocardiography ... 29

GPRS
General Packet Radio Service ... 16

GSM
Global System for Mobile Communication ... 16

GUI
Graphical User Interface .. 31

HTML
Hypertext Markup Language .. 22

HTML5
Hypertext Markup Language Version 5 ... 22

IoT
Internet of Things ... 15

IP
Internet Protocol .. 16

IPv6
Internet Protocol Version 6 .. 21

Json
JavaScript Object Notation .. 42

LAN
Local Area Network ... 30

LTE
Long Term Evolution .. 27

m-Health
Mobile Health ... 16

P2P
Peer to Peer ... 21

QoS
Quality of Service ... 24

RAM
Random-Access Memory... 55

RFID
Radio-Frequency Identification .. 15

SMS
Short Message Service .. 16

P a g e | 11

L i s t o f A b b r e v i a t i o n s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

SSH
Sensor Streaming Hardware .. 17

TCP
Transmission Control Protocol ... 16

TLS
Transport Layer Security.. 36

UDP
User Datagram Protocol .. 41

WebGL
Web-based Graphics Library ... 23

WISP
Wireless Identification and Sensing Platform ... 18

WoO
Web of Objects .. 20

WoT
Web of Things .. 15

WSN
Wireless Sensor Networks ... 15

XMPP
Extensible Messaging and Presence Protocol ... 21

P a g e | 12

A c k n o w l e d g e m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

v. Acknowledgements

I would like to thank Alistair Lawson, my research supervisor, for his patient

guidance, support and useful critiques throughout this research work.

P a g e | 13

I n t r o d u c t i o n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

1. Introduction

The term “Internet of Things” has become ubiquitous in recent years, and involves the

connection between objects and communication between those objects at increasingly

high-speed. The internet is becoming more and more dynamic in respect to timely

visualisation of data. Higher bandwidth and powerful servers allows the transfer of a

large amount of data in milliseconds. This increase in resources creates opportunities

for new ideas and technologies. The development of an infrastructure that meets the

demand of this high speed data transfer is investigated in this work.

The aim of the project is to design an architecture for real time sensor data streaming,

and for management and live visualisation of that data over the web to contribute to the

existing research field of the Web of Things. This project will investigate the

infrastructure between streaming hardware and website. The hardware used for this

kind of streaming is typically programmable, equipped with sensors or the ability to

connect up sensors and a possibility to communicate over the internet, e.g. an Arduino

board, Raspberry Pi or also a smartphone.

The project focuses on the universality and manageability of the system to allow many

users to deploy sensing data over a web portal and consume the data on own

websites or allow others to use the data on their websites. The requirements for a

universal and manageable streaming service will be developed by investigation of

existing systems and analysis of use cases in different application areas.

The operational capability of the architecture will be investigated by implementations

and experiments. The project will identify the strength and weaknesses of the

architecture, and investigate the feasibility of the concept. A basic prototype will be

developed and tested. The feasibility of several parts of the system will be proved by

implementations and tests. Visualisation possibilities, security, and processes will be

investigated. The experiments and tests will define the limits of the system and give

statements about the system performance.

P a g e | 14

I n t r o d u c t i o n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

In order to meet the above aim, the dissertation is set out as follows. In chapter 2, the

literature will be reviewed. This is followed in chapter 3 by an investigation of use

cases and an analysis of system requirements. The system architecture will be

proposed in chapter 4. Chapter 5 treats implementations and experiments to prove the

feasibility of several parts of the proposed system. In chapter 6 the work will be

evaluated, followed by the conclusion and future work in chapter 7.

P a g e | 15

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

2. Literature Review

This chapter will investigate applications and services where sensing data is

involved. The area of sensor streaming and sensor technologies, including Wireless

Sensor Networks (WSN) and Radio-Frequency Identification (RFID) will be

investigated to give an overview about technical possibilities in the field of sensing.

The vision of “Internet of Things” (IoT) and the relations to sensor data streaming will

be analysed. The transition to the “Web of Things” (WoT) as an evolutionary step of

the IoT will be made to explain the term of virtualisation and infrastructure of sensor

streaming. Then web service architectures and sensor streaming management

systems will be treated and finally actual web technologies will be investigated.

2.1. Sensor Streaming

Sensors measure a physical quantity and convert that measurement to a signal,

which can be presented as a single value over time. The sampling rate of a sensor

may vary from milliseconds to hours depending on the tasks and requirements of a

system. A large range of Sensors have been used in different applications, to

enumerate all of them would be beyond the scope of this work. The focus will be on

sensors that can be involved in web applications for visualisation.

Application Areas

Data from sensors have been recorded and streamed for over 30 years, mostly

concentrated on environment monitoring. This has included systems monitoring

drought (Deng et al., 2013), seismology (IRIS, 2014), tsunamis (Australia, 2014),

landslides (Teja et al., 2014) or floods (Y. Zhang, Li, Li, & Guo, 2009) for the purpose

of alerting to potentially dangerous situations. Such systems send their data at

intervals to their base stations or to a centralized computer (Ha, Lee, Vu, Jung, &

Ryu, 2012), sometimes directly over the web where it will be stored in databases for

use in longer term research. The update rate of the sensor data in a browser or

database may vary from between a few seconds up to hours according to the

requirements of most of the systems reviewed, e.g. the systems previously

P a g e | 16

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

mentioned. A high update rate compared to the sensor sampling rate or real-time

computing, like in industrial applications, e.g. machine control, is not targeted by the

systems.

There are existing systems in the area of object tracking over the web as well.

Tracking systems consisting of hardware and server using the Global System for

Mobile Communication (GSM), General Packet Radio Service (GPRS) and often the

Google API to visualize the tracked objects as discussed in (Chadil,

Russameesawang, & Keeratiwintakorn, 2008), an open source tracking system using

commodity hardware as described in (El-Medany, Al-Omary, Al-Hakim, Al-Irhayim, &

Nusaif, 2010), a system using ASP.NET and TCP/IP sockets sending IP data

packets over the connection with a time interval of 1 minute. Other systems using the

Short Message Service (SMS) to transfer the data with an interval of 12 seconds

(Rao, Izadi, Tellis, Ekanayake, & Pathirana, 2009). A fire emergency system was

introduced and implemented in Java (Shamszaman, Ara, Chong, & Jeong, 2014).

The system has a user interface which presents sensing data but there was no focus

on performance of the system especially not on a fast transmission and actualisation

rate. Most of these systems store the data in databases which can be accessed over

the web.

In 2010, Val Jones established a discussion on two existing solutions for Mobile

Health (m-Health) systems (Jones, Gay, & Leijdekkers, 2010). Patients wear sensor

systems, measuring electrical activity of the heart (Electrocardiography), electrical

potential generated by muscle cells (Electromyography), weight, temperature,

respiration, body position, blood pressure, blood glucose and oxygen saturation. The

sensor systems transmit their data to a handheld which acts like a communication

gateway to a remote healthcare location. The philosophy of both solutions is to

design a generic mobile system which can be adapted to different clinical

applications (Jones et al., 2010).

The present work will concentrate on high speed data transmission and visualisation.

The aim is to design a system which is able to stream sensing data with a high

P a g e | 17

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

transmission speed and visual update rate in a range of milliseconds. Data will not be

stored on the way between the Sensor Streaming Hardware (SSH) and the website

to avoid slowing down the data flow and increase the privacy and security of data.

The system will be kept as universal as possible to allow operational capability in

many different application areas. For that reason system attributes should be

configurable for different requirements.

2.2. Sensor Technologies

Different kind of sensor technologies can be used for sensor streaming. The following

section is an investigation into Wireless Sensor Networks (WSN) and RFID

technologies, demonstrating how they feature as a rising technology, and pointing

out the possibilities of sensor streaming now and in the future.

Wireless Sensor Networks (WSN)

WSN are used in many application areas including environment monitoring,

healthcare, home automation and traffic control. WSN are networks of autonomous

devices monitoring physical and environmental conditions at different locations, like

temperature, vibration or pressure with sensors (Ha et al., 2012). Moreover they are

used in m-Health applications, where wearable body sensor networks monitor the

physical condition of patients (Jones et al., 2010). There are different architectures of

sensor networks. One scenario can be of sensors which send their data to a sink

node and the sink node redirects the data to the web.

Radio-Frequency Identification (RFID)

RFID allows unique identification of objects and tracking them by stationary RFID

readers. Systems based on RFID technologies are focused on energy consumption

caused by the limitation of energy transmission over the air. Many application areas

involving RFID based systems are described e.g. in transportation and logistics

domain, healthcare domain, smart environment domain, and personal and social

domain (Atzori, Iera, & Morabito, 2010), as well as in Traffic Monitoring, Tracking,

Smart Environments, and local and global sensing (Singh, Tripathi, & Jara, 2014).

P a g e | 18

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

They all include a base station RFID reader and objects with RFID capacity. RFID

can be categorised depending on how it is powered. Active RFID is battery powered

and nearly similar to WSN, passive RFID is powered over the air by the RFID reader

and hybrid systems like WISP (Wireless Identification and Sensing Platform) are

powered by the RFID reader, but have also a small solar cell to allow data logging

beyond the range of the reader, which can be up to 10 meter. A future aim is to

improve the sampling rate of the sensors and the range of this system (Sample,

Braun, Parks, & Smith, 2011). The reader combined with a streaming hardware acts

like an interface between local RFID processing and the sensor streaming web

service.

The present work will not focus on low level sensor architecture and local

communication between sensors. The focus of investigation will be on the

infrastructure between the SSH, which could be a sensor node or sink, and the

website used to visualise data in real time.

2.3. Sensor Streaming Area

Internet of Things (IoT)

The IoT is a large area with the vision of unique identification of real world objects

and interaction with and between different objects and services. Depending on

different technologies or application areas the definition of IoT may vary in a number

of ways. Some of these definitions focus on uniquely addressable interconnected

objects by using RFID technologies, others focus on communication and interaction

between objects or investigation in infrastructures and others focus on user centric

approaches (Gubbi, Buyya, Marusic, & Palaniswami, 2013). The data transmission

between objects is the core statement of these definitions.

Due to the interdisciplinary nature of the subject, three paradigms for realising IoT

were defined. The internet – oriented (middleware), the things oriented (sensors) and

the semantic oriented (knowledge). The IoT is the interception of these three

paradigms (Atzori et al., 2010).

P a g e | 19

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

In 2013, Jayavardhana Gubbi defines the IoT as an “Interconnection of sensing and

actuating devices providing the ability to share information across platforms through

a unified framework, developing a common operating picture for enabling innovative

applications. This is achieved by seamless large scale sensing, data analytics and

information representation using cutting edge ubiquitous sensing and cloud

computing.” (Gubbi et al., 2013) This definition is also an approach for this work.

The present system will allow deploying and summarizing collected data from single

sensors, sensor networks, RFID systems or smartphones and making them

accessible over the web for visualisation purposes or allowing communication with

other objects.

Figure 1: Internet of Things Schematic showing the end users and application areas based on data (Gubbi

et al., 2013)

P a g e | 20

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Web of Things (WoT)

The WoT or Web of Objects (WoO) is a higher level of the IoT. It focuses on

infrastructure and addresses virtualisation of real world objects. It has been defined

by Zia Ush Shamszaman as: “The goal of the WoO is to deliver a service

infrastructure that simplifies the management of the smart service environments able

to provide a service that integrates various technologies like cloud computing and

social networking. Hence, WoO allows the reuse of existing web technologies to build

new applications and services by attaching smart objects to the Web. In this way,

smart objects are abstracted as web services and seamlessly integrated into the

living world of the Web, while services are discovered, composed and executed as

needed.” (Shamszaman et al., 2014)

One output of the present work will be an infrastructure that allows easily deploying

and managing sensing data. This infrastructure will be extendable and reusable in

specific context, which matches the goals of the WoT. The proposed system does

not abstract objects as web services, but their attributes are projected to the web in

form of sensing data.

2.4. Architecture

Data Centric Systems

Data Centric systems are the state of the art. The information exchange is running

through a central server. Most web services have this centric architecture. Data

centric systems can handle massive connections and support different

communication protocols, depending on their performance and bandwidth. Scenarios

in the domain of smart cities, connected cars, crisis management and health care

require user-centric services (Bendel et al., 2013). Data centric systems allow

keeping manageability of data on one place. Most of introduced systems in chapter

2.1 and 2.2 are data centric systems.

P a g e | 21

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Peer to Peer networks

In Peer to Peer (P2P) networks all computers have the same status. P2P is a

decentralized network architecture where every computer (Peer) is acting like a client

and a server at the same time. One approach to connect objects in a P2P way, is to

equip every object with hardware and tiny web servers and make them accessible

over the web with a standard web browser by a TCP connection (Duquennoy, Lifl, &

Grimaud, 2009). In RFID a similar approach can be found by making RFID equipped

objects reachable from a network by addressing them over IPv6 address (Atzori et

al., 2010). This is done by embedded webservers which make communication

between objects easier. An example for near real-time device to device

communication with P2P connection over Extensible Messaging and Presence

Protocol (XMPP) is done by Bendel in 2013. The setup consists of a Wii Remote

controlling a robot over a server with a delay of 112 milliseconds (Bendel et al.,

2013). In 2013, Forsström created a P2P architecture which allow real time

communication between entities and had the idea of a sensor sharing platform

(Forsström & Kanter, 2013). P2P approaches may increase communication speed

but making it difficult to ensure security and manageability of data. Also the scalability

is an issue in case if one device needs to handle a mass of connections.

Sensing Data Management

Several projects for sensing data management exist, such as introduced by Cia,

Liang and Wang in 2011, a monitoring systems, collecting sensor data like

temperature or humidity and sending them to a sink node using the ZigBee

communication protocol (Cai, Liang, & Wang, 2011). The data is send from the sink

over a Network Bridge to a control centre where the data is stored and can be

viewed. The data can be accessed over the web. Another project is presented by

Zhang in 2013, which has the goal to maximize sharing and utility of available sensor

data sources and data services. Zhang also compares different existing commercial

sensor data platforms, like TempoDB, COSM and Sensor Cloud. TempoDB

(TempoDB, 2014) is a database as a service. It has built-in visualisation tools and

focus on time series data sets and on individual users, using own data (J. Zhang et

P a g e | 22

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

al., 2013). COSM (LogMeIn Inc., 2014) (renamed to Xively) is a commercial platform

for deployment of sensor data and visualisation in nearly real-time for industrial

software solutions. It allows sharing of sensing data between users, supports certain

commercial devices and focus on sensors with discrete readings (J. Zhang et al.,

2013). Sensor Cloud (MicroStrain, 2014) focus on individual users, using own data

and allows remote device management. It has a math engine and built-in

visualisation (J. Zhang et al., 2013).

All these systems store sensor data to databases in contrast to the idea of present

work, where data will be redirected and direct consumed by client applications, e.g.

visualisation of data. The decision is to store data on client side. The work will

investigate fast processing, high update rates for smooth visualisation and how to

deliver a high grade of universality.

The Sensible Things Platform is a web service for deployment of sensors and

enabling IoT based applications (Forsström, Kardeby, Österberg, & Jennehag, 2014).

It allows connecting different sensors and actuators by registering them to the

platform. The platform is an open source architecture which allows developers to

build their application based on it. The platform uses P2P connections and has a

response time of a few milliseconds. The system does not store any data in a

database and is open to use for everyone.

It is nearly similar to the idea of present work with the difference that Forsströms

system is a real P2P system without any central server for management of the

sensor streams. It is easy to use but coding skills in java are required by the user

which requires a much experienced developer.

2.5. Web Technologies

HTML5 and WebGL

The Hypertext Mark-up Language (HTML) is a core technology of the internet.

HTML5 is the latest HTML standard for structuring and presenting World Wide Web

content. It allows the inclusion of multimedia and graphical content without the use of

P a g e | 23

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

plugins (Chen, 2011). The Web-based Graphics Library (WebGL) allows 3D

accelerated graphics in web browsers. It uses JavaScript and can be used with

HTML5 without any browser plugins (Chen, 2011). It is important for the visualisation

part of this work because it allows the actualisation of web content in real time.

WebSockets

WebSockets allow bi-directional communication over TCP between web browsers

and web servers or other client or server applications. The usual way before

WebSockets exist was to ask the server for a resource, getting the response and

closing the connection (Chen, 2011). In one project WebSockets were used to

transfer intensive rendering visualisation data in real time. The data was rendered on

server side and transferred to a client application to minimize client side processing

(Wessels, Purvis, Jackson, & Rahman, 2011). An architecture for a virtual world web

client was developed and evaluated consisting of WebGL and WebSockets

technology (Dahl, Koskela, Hickey, & Vatjus-Anttila, 2013). WebLab-FPGA is an

remote laboratory project connecting WebGL, WebSockets with hardware (Orduña &

Angulo, 2014). The hardware can be remotely programmed and control a virtual

pump. WebGL and HTML5 was studied in Anderson and Johansson in 2012 with

focus on cross-device and cross-browser ability (Andersson & Johansson, 2012).

WebSockets are integrated in the HTML5 standard. In this project WebSockets were

used for the connection and data transfer between sensor streaming hardware and

server and the connection between server and website.

Node.js

Node.js is a lightweight server technology for data intensive real time applications. It

uses asynchronous non-blocking input and output processing and is used and

established by many companies like Yahoo, eBay, Microsoft and PayPal. Node.js is

built on Chrome´s Java Script runtime and is written in C++ and Java Script

programming language. Programs for Node.js must be written in Java Script (Joyent

Inc., 2014). Alternatives like SignalR from Microsoft exist. Node.js was chosen

because of the high acceptance of the community and a larger support. In this project

P a g e | 24

L i t e r a t u r e R e v i e w

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

it is used as the junction between sensor streaming hardware and website. It

manages the incoming data stream and broadcast it to the websites.

ASP.NET

ASP.Net is a Microsoft technology for creating web applications. It is a client and

server-side technology. ASP.NET is based on the .Net Framework architecture and

allows the creation, deployment and execution of web applications and web services.

It makes the development process much easier because it provides a lot of

development tools and advantages like libraries from the .Net Framework (Microsoft,

2014). Alternative technologies are PHP5 (Hypertext Pre-processor) or JAVA Server

Pages. ASP.NET was chosen because of the possibility to use a Microsoft server

technology.

2.6. Conclusion

Different technologies have been reviewed. RFID has some problems such as

missing standards, mobility support, naming, transport protocols, traffic

characterisation and Quality of Service (QoS) support, authentication, data integrity,

privacy, and digital forgetting (Atzori et al., 2010). Several different sensor

management systems were investigated with different focus, philosophies,

architectures and possibilities. There are many sensor streaming services available.

Most systems are focused on one specific task. The data refreshing intervals are

often higher than one second. The architectures consist mostly of data centric

systems with databases and are concentrating on long term research, monitoring or

big data analysis. Some sensor platforms use P2P architectures. Web technologies

for creating real time systems were investigated such as WebSockets, HTML5 and

Node.js.

The present work aims to solve existing issues and provide a means to deploy and

manage sensor data in a user friendly way. To do this, it will mainly focus on

streaming data from SSH to a website and visualisation of data in real time.

P a g e | 25

R e q u i r e m e n t A n a l y s i s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

3. Requirement Analysis

This chapter is an investigation of requirements for the sensor streaming web

service. The first part is a requirement definition which identifies requirements and

specifications for the architecture concept. The second part analyses representative

test cases in different application areas and sets them in relation to the previous

definition of requirement. The last part lists all identified requirements based on the

analysis.

3.1. Requirement definition

The system will be used in many different applications. The focus of the system will

be on universal usability and configurability. Some requirements may change for

different use cases others not. The requirements were taken form (J. Zhang et al.,

2013), which is a nearly similar system handling a big amount of data and

connections. Zhangs requirements arose from an Architecture Trade-off Analysis

Method (ATAM) and are as follows:

 Scalability

 Reliability

 Interoperability (Static requirement)

 Security

 Integrity (Static requirement)

 Data Freshness (Static requirement)

 Privacy

 Performance

 Reusability (Static requirement)

 Extensibility (Static requirement)

The requirements were divided into changing and static requirements. Static

requirements are not changing in different for use cases. Changing requirements

P a g e | 26

R e q u i r e m e n t A n a l y s i s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

may vary for different use cases. The following changing requirements were rated to

distinguish the different use cases.

 Scalability

 Visualisation update rate (Performance)

 Importance of mobility

 Importance of reliability

 Importance of security

 Importance of privacy

For each requirement limits are defined (high, medium or low) which are shown in

Table 1. The limits are explained and will be used to distinguish the application cases

in the next chapter.

Table 1: Valuation Basis

The six requirements were identified. They may have different importance and

definition for different applications. The complete table can be found in the appendix

(A.1).

The first requirement is the scalability. Different applications use a different amount of

sensors streamed over a SSH. Some applications may stream many sensors at once

and others applications may send a set of sensor data recorded in an interval.

Especially in applications with an extremely high sensor sampling rate the data can

Area Healtcare Engineering Transport Private Sector HCI

Measuring ECG
Manufacturing

Tolerances

Vehicle

Telemetry

Smartphone

Sensors

Position/

Acceleration

sensors

Visualisation

Technology
2D-Graph

Values, 2D-

Model

Values, 2D-

Graph/Map
2D-Interaction 3D-Interaction

Scalability High Low Low Low Medium

Visualisation

Rate
Low Low Medium High High

Mobility High Low High Medium Medium

Reliability Medium High Medium Medium Medium

Security High High Medium Low Low

Privacy High Medium Medium Low Low

Evaluation of Cases

P a g e | 27

R e q u i r e m e n t A n a l y s i s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

be sent after a time interval in a set. It was assumed that most tasks will transmit

between 10 and 100 values at once. A “high” amount was defined for sending more

than 100 values at once, a “medium” amount for fewer than 100 values and “low”

amount for fewer than 10 values sent at once.

The visualisation update rate is the second requirement. It defines the speed of

actualising the data in the browser. Some applications may actualize their data in an

interval of a couple seconds, like weather data, where a fast update rate is not

important because the sensor data changes slowly. Other applications need timely

visual feedback, such as a human computer interface for controlling web content,

which needs an update rate in the range of milliseconds to produce a smooth visual

feedback for the user. Based on the assumption that for most applications an interval

of one second will be enough, as discussed in other systems in the literature review

in section 2.1, a visualisation rate of 0.1 seconds was defined as “high”, fewer than 1

second as “medium” and more than 1 second as “low”. Smooth visualisations can be

produced with a rate faster than 16 frames per second (Neumeyer & Brown, 2014),

which is a visualisation rate of 0.0625 seconds. Section 5.6 investigates how close

the system can get to a smooth visualisation.

Mobility is the third requirement. It is different between different application areas.

Some applications will be used whilst stationary and others whilst mobile which may

have an influence on data transmission speed and connection stability. Mobility was

divided into “high”, which means a high flexibility nearly everywhere by using mobile

internet like 3G. Long Term Evolution (LTE) was not considered since it is still not as

widespread. “Medium” means location based flexibility by using Wi-Fi and “low” is for

fixed wire internet connections.

Reliability is the fourth requirement. Mechanisms for monitoring the system are

needed, to allow exception handling and to redeploy or scale a broken or overloaded

server instance. The importance is “high” if there is no tolerance for connection

problems because the data is timely needed. “Medium”, if the connection may break

but a timely arrival time of data is not important. In this case data can be buffered and

P a g e | 28

R e q u i r e m e n t A n a l y s i s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

send at once if the connection is rebuild. And “low” if transmitted data can be left

unnoticed.

The fifth requirement is the security. The streaming data needs to be secured against

unauthorised access of third parties. “High” security is a complete encryption of data

with encryption certificates. “Medium” security is a secure transport between

destinations. And “low” security is the transmission or raw data, which can be done in

case of sharing the data.

Privacy is the sixth requirement. “High” importance of privacy was defined if the

streamed data can be abused by a third party to harm an individual person or an

organisation. A “medium” importance is defined if the data is privacy relevant but

cannot harm an individual person or organisation. And “low”, if privacy is not

important, e.g. in case of data sharing.

P a g e | 29

R e q u i r e m e n t A n a l y s i s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

3.2. Review of Example Application Areas

Five different application areas were investigated to keep the web service as

universal as possible. Each area includes a case, which focus on high speed

streaming and direct visualisation over the web. A table which summarizes the

evaluation of the cases can be found in the appendix (A.1).

3.2.1. Health

Electrocardiography (ECG) is used to measure the electrical activity of the heart and

usually visualizing the values in a 2-Dimensional graph. The transmission of an ECG

signal was chosen as an example because it is a complex and time critical task. An

average human resting heart rate ranges from 60-80 beats per minute (American

Heart Association, 2014). The ECG records also values between heartbeats, which

creates a more complex graph. An ECG signal was investigated to find out how

many values are recorded during a second. PhysioNet (Goldberger et al., 2000) is a

database which keeps records of medical data also, among other, ECG signal data.

The selected ECG signal (Association for the Advancement of Medical

Instrumentation, 2002) has a sampling rate of 720Hz, which could be transmitted in

two ways. The first possibility is to send every single value to the website. In that

case the transmission and visualisation need to be faster than 1.4ms. The second

way is to send a set of 720 values each second, which is more efficient regarding

transmission speed. The systems targets flexible users with high mobility thus not

critical patients, e.g. for sports, study or diagnosis purpose. Accordingly, it should be

able to transfer the data over a mobile connection. In this case, connection

interruptions may be caused by poor mobile connectivity. The system needs to be

secure against attacks. Data privacy is very important and the data needs to be

encrypted, because it has a direct relation to a person.

3.2.2. Engineering

An engineering example is a production line producing a high number of products

e.g. one second per product. These products were monitored by e.g. five laser

P a g e | 30

R e q u i r e m e n t A n a l y s i s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

sensors which were used for detecting manufacturing tolerances. The streaming

system is used to send the measured values to a company internal website to

increase the flexibility of responsible employees. The data is accessible from

anywhere with any device. Tolerances can be visualized as blank values, but also as

2-Dimensional models. The system needs to transmit the five measured values

immediately. The visualisation update rate depends on the speed of production which

is in this case one update per second. The data can be transferred over a LAN

connection, because the production line is stationary. The reliability of the system

needs to be high because it is responsible for production quality and the data is kept

as a record for the company. The system needs to be safe against attacks, but data

do not need to be encrypted. The privacy of data is in that case not important

because it has no relation to a person.

3.2.3. Transport

Vehicle telemetry is sent from a vehicle to a website to visualize energy consumption,

position and acceleration of the vehicle, or CO2 emission. The data can be visualized

as blank values, a 2-Dimensional graph or on a map. In this specific case are not

many sensor values involved. The visualisation rate should be faster than a second

to allow a smooth visualisation. The system needs to work over a mobile connection,

which could cause connection interrupts. The connection between vehicle and

website needs to be secured. The data privacy is important but is not in a direct

relationship to a person.

3.2.4. Private Sector

A smartphone is used as an input device for interaction with web content. Sensors,

like gyroscope, accelerometer and touchscreen are streamed to the website and their

values can directly influence the content. There are not many sensors involved, but

the visualisation update rate needs to be high to allow a smooth interaction with a

minimum of delay. Wi-Fi is used for data transmission, because the interaction takes

place in front of a screen. Connection loss may happen, however it is not a critical

P a g e | 31

R e q u i r e m e n t A n a l y s i s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

application. The connection between device and website needs to be secure. Privacy

is not of importance in this area.

3.2.5. Human Computer Interaction

Sensors position and acceleration sensors in gloves are used as an input device to

interact with a 3-Dimensional environment directly inside the browser. Three

Sensors, gyroscope, accelerometer and magnetometer are needed like in (YEI

Corporation, 2014), which is a sensor suit for motion capture. Each sensor generates

three values to represent one rigid object. In this case, two fingers are equipped with

one sensor system consisting of gyroscope, accelerometer and magnetometer on

each finger, which allows many different interactions with a virtual environment. The

visualisation update rate needs to be very high to allow a smooth interaction with the

environment. The interaction happens in front of a screen, so the sensors could

communicate over Wi-Fi. The reliability of the system is in that case not very

important. The importance of security and privacy is similar to the usual interaction

with websites.

3.3. List of Requirements

This section lists the defined requirements of the system based on the analysis of the

application areas and evaluation in the previous section of this chapter.

i. Scalability

The service can be used in different application areas. It can transmit any kind of text

based data and different amount of values at once. The amount of values can be

configured by a web based Graphical User Interface (GUI).

ii. Visualisation Update Rate

The system can be used with different visualisation update rates. The interval of data

transmission needs to be configurable by a web based GUI.

P a g e | 32

R e q u i r e m e n t A n a l y s i s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

iii. Configurability

The system needs to provide a web based GUI which allows configuration of the

system. The user should make only a minimum of configurations on hardware side.

The hardware should also provide a GUI for the configuration.

iv. Sensor Data Sharing

The system needs to provide a web based GUI which allows deploying, sharing and

publishing the sensor stream.

v. Frontend Development

The user should only need frontend development skills in HTML and Java Script for

visualizing sensor data.

vi. Visualising Data

The service should allow visualisation of sensor data as single values, 2D graphs or

maps and also interaction with 3D objects without significant delay.

vii. Database Adaption

The user should be able to adapt a database and redirecting data from client side to

the backend by using Java Script and storing the data to the database.

viii. Security

The service needs to provide user authentication for the management system (GUI).

The user can choose between different kind of security, like encrypted, transport

secured and raw data transmission. Potential threats need to be analysed and

avoided.

ix. Privacy

The system should hide private user data or trace back of user connections.

x. Reliability

The system needs to be reliable and handle connection loss, overloads and server

break downs by monitoring the system and solving problems.

P a g e | 33

R e q u i r e m e n t A n a l y s i s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

xi. System Limits

System limits should be identified and stored to give the user feedback on

configuration and avoid an impossible setup, e.g. extremely high visual update rate

with extremely big amount of values to transmit at the same time.

P a g e | 34

P r o p o s e d S y s t e m A r c h i t e c t u r e

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

4. Proposed System Architecture

This chapter proposes a system architecture design. It starts with a general overview

and description of the system and goes in more detail by investigation of a single

connection. The processing sequence from the user’s point of view and the internal

server processes will be described. The last part will discuss the relation to the

requirements and a concept of monitoring the system.

4.1. Overview

The architecture concept will provide a platform for sensor data distribution and

sharing. Figure 2 shows the overall system.

Figure 2: Architecture - Overall System

P a g e | 35

P r o p o s e d S y s t e m A r c h i t e c t u r e

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Different users can use the platform at once. They streaming sensor data over Wi-Fi,

but it could also be a mobile connection or LAN to a virtual server instance, created

by a management server. The virtual server instance is a Node.js instance and will

be configured by a management website on the server by the sensor owner. It will

allow configuration of security, update rate, amount of values and usage permissions

for other users. The Node.js instance works as a distributor and can be consumed by

many websites at once. Websites can connect to the instance and use the stream for

visualisation or can redirect the data to a local or cloud-based database. The data

can be visualised due to standard web technologies in many ways, e.g. graphs and

3-Dimensional models. The sensor data can be also used by other hardware, like

robots or machines. It will be also possible to combine two nodes on one website or

merge two sensors of different users on one server node.

4.2. Management User Interface

The management web service is an ASP.NET MVC project which provides a website

with a user interface. A user can create an account, authenticate and register a

sensor. The following connection properties can be configured by the interface.

Sensor Identification number

The sensor identification number will be generated automatically from the server after

registration. The user needs to copy the number together with the username to the

streaming hardware. It will be used to identify the sensor stream when it connects the

first time to the service.

Amount of Values

The amount of values to stream in one interval to the server will be configured by the

user. One sensor has usually one value. It may happen that a sensor has more

values, e.g. acceleration in three dimensions, or a user connects ten different

sensors to a SSH and wants to send all values to a website at once. Another

possibility is to use this attribute for sensors with an extremely high sampling rate,

e.g. 720Hz. This would comply with 720 updates on a website during one second,

which is not practical and not effective. In that case the user can configure to stream

P a g e | 36

P r o p o s e d S y s t e m A r c h i t e c t u r e

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

a set of, e.g. 360, 720 or 1440 values in one interval. The amount of values has an

influence on the possible update rate of the system. As more values are streamed at

once as larger the package size will be, as slower the data transmission and also the

visualisation. The influence of different amount of values will be investigated in a later

chapter.

Update Rate

The update rate is the interval in which the SSH send the data to the server and the

server actualize the content of the website. Depending on the use case, the user can

choose from hours up to millisecond. The influence of different update rates and

limits will be investigated in a later chapter.

Data Hold

The user can decide to choose the “Data Hold” option to minimize traffic between

SSH and server. The sensor data will be only streamed to the server if the measured

value changes. This option is interesting for sensors which measuring slow changing

physical quantities, like e.g. room temperature, light or trigger. This function should

be integrated between the server and the website as a standard to lower the traffic

on client side.

Sensor Publishing

The user can choose to publish the sensor data with the community or make it

accessible to specific users. Other users can consume the data on their websites.

Security

The user needs to configure the security between SSH and server. Three options are

available for the connection. Standard is the Transport Layer Security (TLS). In

addition, the data can be full encrypted by exchange of encryption certificates. But

also a transmission of raw data is possible.

P a g e | 37

P r o p o s e d S y s t e m A r c h i t e c t u r e

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

4.3. System Tasks

After the registration and configuration, the management server creates a Node.js

instance with the configured setup. Figure 3 shows a single connection between

SSH, Node.js instance and website. Also the management website connected to the

management server is illustrated. Each element of the architecture has individual

tasks.

Figure 3: System Process Sequence

The management website provides the user interface for registration and

configuration of the hardware. After creating a sensor on the website, the

management server generates the Node.js server instance based on the

configuration. Like mentioned in 4.2, the user has the task to configure the SSH. The

P a g e | 38

P r o p o s e d S y s t e m A r c h i t e c t u r e

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

SSH provide a GUI which can be accessed through the local network by the IP

address of the SSH. After turning the SSH on, it connects to a registration service,

where the device will be validated based on the stored configuration on the web

service. The SSH receives the configuration from the service, connects to the

Node.js instance over a WebSocket connection and streams sensor data to the

server instance. The Node.js instance is the broker between SSH and visualisation

website. It has a WebSocket connection to both ends, one to the SSH and another to

the website, which could be also used bidirectional. The visualisation website can

have a backend with the possibility to connect to a database and store the sensor

data in intervals.

4.4. System Processing Sequence

A detailed model of the service with all processing steps and interactions is illustrated

below in Figure 4.

Figure 4: Processing Steps

P a g e | 39

P r o p o s e d S y s t e m A r c h i t e c t u r e

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

The first step is the interaction of the user with the management service. The user

registers and configures the sensor and data stream. The management service

creates a Node.js Server instance with the user configurations and sends the

configuration data and Node.js instance address to the Registration Service, which

could be hosted on the same server. The Registration Service is responsible for

storing configuration data, registration and first configuration of the SSH. It saves the

configuration data sent by the Management Service to a database and confirms it.

The Management Service confirms to the user that the setup was successful with a

sensor ID and the address of the Node.js instance for connecting a website. The user

configures the sensor ID and username on the SSH and turns the hardware on. The

SSH will automatically connect to the Registration Service with the configured ID and

username. The Registration Service compares the ID with the database records and

after validation, it sends the users configurations and security certificates to the SSH.

Now the SSH knows the address of the Node.js instance and has also the correct

security certificates. It connects to it and starts to stream the data immediately. The

user can create a website and use the Node.js instance address to fetch the sensor

data from the SSH. The user has also the possibility to publish the sensor stream. In

that case it appears on the management website in a shared location for a specific

user. Permitted users can see the Node.js instance address, can download the

certificate and connect to the instance with their websites and fetch the data.

P a g e | 40

P r o p o s e d S y s t e m A r c h i t e c t u r e

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

4.5. Monitoring

The system is monitored by a separate web service. The monitoring system is

illustrated in Figure 5. It increases the reliability of the system. The web service has

an own administration web site for statistics and provides an overview over running

processes and system failures. The web service fetch a list of all running sensor

stream Node.js instances from the registration web service and ping each server of

this list. If a Node.js server instance is unobtainable it sends the server information to

the management server, which reloads the Node.js server instance. This will

guarantee that all servers are running and registered sensors can be streamed.

Figure 5: Monitoring Process

P a g e | 41

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

5. Implementation and Experiments

This chapter explains the implementation of the software and experiments. Different

parts of the architecture concept were implemented and tested to evaluate the

operational capability of the concept. The software refers to different points in the

concept. Experiments will evaluate the abilities of the architecture and also reveal the

limits of the system.

5.1. Node.js Server instance

A Node.js server was implemented in two versions, one version with TLS security

configuration and one without. The code can be found in the appendix (A.2). The

secure version uses security certificates for transport security, which means the data

is encrypted between the endpoints. Both versions can be merged in one server

script at a further step. It is possible to instantiate a Node.js server instance with

variable ports by adding the port numbers to the execution command.

The server works as a broker between SSH and client websites. A User Datagram

Protocol (UDP) connection is used for data transmission between SSH and Node.js

server. An UDP connection is fast because after a package is send, there is no

confirmation about the arrival of the package. So it may happen that packages get

lost or arrive in a wrong order. The incoming SSH stream is received at one server

port, processed and sends to websites over another port with a Transmission Control

Protocol (TCP) connection, like illustrated in Figure 6. The TCP connection between

server and website ensures that data packages will arrive and are also in the right

order. The transmission is slower caused by the validation process.

P a g e | 42

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Figure 6: Node.js Server Instance

Due to the UDP connection which does not synchronize the incoming data, it may

also happen that packages are received from the server multiple times. A processing

step avoid similar packages be forwarded to websites. The incoming data packages

are strings in Java Script Object Notation (Json) format. Each package has a

timestamp which distinguish it from others. Reading the timestamp would require de-

serializing, parsing and serializing, which makes the processing slow. To avoid this,

only the hash value of each object will be compared with the hash value of the last

object. A new timestamp inside the object generates each time a unique hash value.

Similar packages have a similar hash value.

The server allows transmitting data with a variable update rate and the transmission

of any kind of text based data. These properties meet the requirements of i.

Scalability and ii. Visualisation update rate.

P a g e | 43

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

5.2. Registration Service

A registration service was implemented to test the registration process and analyse

the attributes for the registration. The service is an ASP.NET WCF service and

consists of a database and a communication interface.

1. [ServiceContract]
2. public interface ISensorRegistrationService
3. {
4. [OperationContract]
5. Registration RegisterSensor(string username, int sensorid);
6.
7. [OperationContract]
8. Response AddSensor(string username, int amountOfValues, int updateRate,
9. string code);
10.
11. [OperationContract]
12. Response DeleteSensor(string username, int sensorid, string code);
13.
14. [OperationContract]
15. Response GetSensor(string username, string code);
16.
17. [OperationContract]
18. Response GetAllConnections(string code);
19. }

Source Code 1: Registration Interface

The interface allows the SSH to register a sensor which exists in the database by

sending the username and sensor id. All other methods are secured by a code and

can be only accessed by the system itself for communication purposes. New sensors

can be added with a configuration and existing sensors can be deleted. The interface

allows retrieving all sensors of one user and also all sensors at once from the

database.

The database is illustrated in Table 2. It has a unique id for each record and stores

username, sensor id, Node.js server address and port, client website port, access

token, security certificate, visualisation update rate and amount of values to stream.

P a g e | 44

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Table 2: Database Schema

Two applications were implemented for the communication with the registration

service. The first is a management application with GUI to test the WCF registration

service interface. The second application is a console application to simulate the

registration process accomplished by the SSH.

Figure 7: Registration Management Application

The management application, illustrated in Figure 7, allows testing the registration

interface. A sensor can be added by entering the username, amount of values and

update rate. If the user does not exist the registration service will create a new one.

The registration service creates all other attributes automatically, like the unique

sensor id, Node.js server address with unique ports, access token and security

P a g e | 45

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

certificate. The combination of username and sensor id needs to be unique, that

allows the user to combine multiple sensor streams. The ports need to be also

unique, because the server instance is running on a physical machine and the ports

are limited to 65.535. Each port can be used for one incoming and one outgoing

connection on server side. One port is used for incoming data from the SSH and the

other is used for the outgoing communication, a broadcast to other websites.

The registration application is a console application, which simulates the registration

process from SSH point of view. The application takes a username and sensor id. In

production state this would be configured by the user on the SSH. The registration

application knows the static registration service address and connects to it

automatically. The incoming data are checked on the registration server and if they

are valid, the registration service response with all needed information for connection

to the Node.js instance and also the update rate, amount of values to stream and the

security certificate for a save TLS connection. A Node.js server instance was created

before in the background which would be created by another server in production

state. The registration application starts to stream random data in Json-format to the

Node.js instance. The data is visible in the Node.js console and can be also viewed

by a local website.

In a production state scenario the SSH configuration would be done by connecting

the SSH to a local network and visiting the menu website by a local IP address

owned by the SSH like in a modern Wi-Fi router. Username and id can be entered

and also additional security token could be added to make the service saver.

This setup fits to requirements iii. Configurability and iv. Sensor Data Sharing. It is

possible to add sensors through a GUI, the configuration of the SSH is reduced to a

minimum effort and can be easily extended with a GUI interface. It is easily possible

to extend the service by a web portal to allow sensor data sharing.

An acceptance tests for the registration service were defined to test the web service

interface and investigate the operational capability of the registration service. The

acceptance test was conducted with the registration management application.

P a g e | 46

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

5.2.1. Acceptance Test: Unique username and sensor ID combination

Each user may have several SSH which are connected to the service. For

identification purpose, the combination of username and sensor ID needs to be

unique. Similar sensor IDs may exist but need to be owned by different users.

Examples

Adding new sensors creates a unique username and sensor ID combination. The

following is expected:

Table 3: Acceptance Test Unique ID

The test was successfully passed. Each username and sensor ID combination is

unique.

5.2.2. Acceptance Test: Unique ports

After adding a new sensor, the service needs to find free ports for the Node.js server

instance to avoid port conflicts.

Examples

Adding new sensors create each time new port numbers. The following is expected:

User Sensor ID Unique

User1 1 yes

User1 2 yes

User1 3 yes

User2 1 yes

User2 2 yes

User2 3 yes

User3 1 yes

User3 2 yes

User3 3 yes

…

P a g e | 47

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Table 4: Acceptance Test Unique Port

The test was successfully passed. The service chooses each time new ports.

5.2.3. Acceptance Test: Set sensor ID free after deleting

After deleting a sensor of a user, the sensor ID should be free to use for the next

sensor.

Examples

Adding some sensors and deleting the first will set the sensor ID free for the next

added sensor. The following is expected:

Table 5: Acceptance Test Delete ID

The test was successfully passed. The service set the ID from deleted sensors free.

The ID is used for the next added sensor.

User Sensor Port Website Port Unique

User1 45000 50000 yes

User1 45001 50001 yes

User1 45002 50002 yes

User2 45003 50003 yes

User2 45004 50004 yes

User2 45005 50005 yes

User3 45006 50006 yes

User3 45007 50007 yes

User3 45008 50008 yes

…

User Sensor ID Action

User1 1 Add

User1 2 Add

User1 3 Add

User1 4 Add

User1 5 Add

User1 2 Delete

User1 4 Delete

User1 2 Add

User1 4 Add

…

P a g e | 48

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

5.2.4. Acceptance Test: Set ports free after deleting

After deleting a sensor from a user the ports should be free to use for the next sensor

added.

Examples

Adding some sensors and deleting the first will set the ports free for the next added

sensor. The following is expected:

Table 6: Acceptance Test Delete Port

The test was successfully passed. The service set not used ports free and use them

for the next added sensor.

5.2.5. Acceptance Test: Get sensors of one user

The service need to provide an overview of created sensors of a specific user.

Examples

Adding some sensors for different users and retrieving the sensors by username will

return a list of sensors owned by the user. The following is expected:

User Sensor ID Sensor Port Website Port Action

User1 1 45000 50000 Add

User1 2 45001 50001 Add

User1 3 45002 50002 Add

User2 1 45003 50003 Add

User2 2 45004 50004 Add

User1 1 45000 50000 Delete

User2 1 45003 50003 Delete

User3 1 45000 50000 Add

User3 2 45003 50003 Add

User3 3 45005 50005 Add

…

P a g e | 49

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Table 7: Acceptance Test User Sensors

The test was successfully passed. The service provides a list of sensors owned by a

specific user.

5.2.6. Acceptance Test: Get all sensors

The service need to provide an overview of all available sensors stored in a

database.

Examples

Adding some sensors for different users and retrieving them by a command will

return a list of all sensors stored in the database. The following is expected:

Table 8: Acceptance Test All Sensors

User Sensor ID Action

User1 1 Add

User1 2 Add

User1 3 Add

User2 1 Add

User2 2 Add

User3 1 Add

User1 1, 2, 3 Get

User2 1, 2 Get

User3 1 Get

…

User Sensor ID Action

User1 1 Add

User1 2 Add

User1 3 Add

User2 1 Add

User2 2 Add

User3 1 Add

User1 1, 2, 3

User2 1, 2

User3 1

…

Get

P a g e | 50

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

The test was successfully passed. The service provides an overview of all stored

sensors.

5.2.7. Acceptance Test: Register sensor

The SSH can register itself by sending a username and a sensor ID to the service.

The service needs to validate the data and give a feedback to the SSH.

Examples

Adding some sensors and register the SSH to the service with a valid username and

sensor ID results in a positive feedback. Attempts to register with a not existing

username and sensor ID combination should result in a negative feedback. The

following is expected:

Table 9: Acceptance Test Register Sensors

The test was successfully passed. The service allows to register the SSH with valid

username and sensor ID and responses with a positive feedback. Non valid

username and sensor ID combinations result in a negative feedback.

User Sensor ID Message Action

User1 1 Add

User1 2 Add

User2 1 Add

User2 2 Add

User1 1 Successful Register

User1 2 Successful Register

User1 3 Not Available Register

User2 1 Successful Register

User2 2 Successful Register

User2 3 Not Available Register

… Register

P a g e | 51

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

5.3. Data Visualisation

Different websites for visualisation of sensor data were implemented. The websites

are totally independent from the Node.js server and can be deployed on other

servers. To evaluate the independence, a Raspberry Pi was configured as a server

and several websites were hosted on it. Figure 8 shows the setup.

Figure 8: Setup

The websites can be visited from the local network by a smartphone or laptop.

Simultaneous streaming from multiple SSH was simulated with the help of the

console applications, which was introduced in the previous chapter. The sensor

simulation application sends a Json string which appears on the website as a text. It

is possible to receive multiple streams on one website and also different streams on

different websites.

P a g e | 52

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

The Java Script code for receiving the sensor data string on the website is very

simple, like shown below.

1. var socket = io.connect('http://NodejsAdress:port/', {secure: true});
2. socket.on('notification', function (data) {
3. var object = jQuery.parseJSON(data.message);
4. $("#ObjectId").html(object.attribute);
5. });

Source Code 2: Receiving Data on Website

A WebSocket connection is opened, which receives the data string and de-serialize it

to an object. Afterwards all object attributes can be used inside the HTML website. If

more than one different SSH sources need to be combined on one website, the code

needs to be copied for each source and the address and port needs to be adjusted.

The sensor data was injected into a graph to prove that the data can be used. The

open source library Smoothie Charts (Walnes & Noakes, 2014) was used for

visualization. Random single values where streamed over the Node.js server to the

website and visualized in real time. An example is shown in Figure 9. Incoming data

is appended at the right side.

Figure 9: Smoothie Chart

In a second step a 720 Hz ECG signal was read by the application out of a file and

send in sets of 720 values each second to the website. The visualisation of the ECG

is not equivalent with the real ECG graph because it was not possible to serve the

chart library with the right timestamp format. The ECG signal should look like

illustrated in Figure 10.

P a g e | 53

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Figure 10: ECG Signal (Association for the Advancement of Medical Instrumentation, 2002)

The streamed ECG signal is visualized like shown in Figure 11.

Figure 11: ECG Visualisation

It is noticeable that the pattern of the y-values seems right. The x-axis is compressed.

It could be surly possible to visualize the ECG properly with more programming effort

and another visualisation library. In this case the data consists of a very large array

containing 720 objects filled with key value pairs. The visualisation of such an

amount of values costs a lot of Central Processing Unit (CPU) load on client side due

to the parsing of a long array. This may cause heating up the CPU and turning on the

CPU van, which can be annoying for the user. Adding the data directly to the object,

thus not in an array, may lower the CPU load.

These tests prove that sensing data can be used in real time on a website. This

meets the requirements v. Frontend Development. The user needs only frontend

development skills to create real time applications. The tests show also that the data

can be injected and used in Java Script applications which meet the requirement vi.

Visualising Data.

P a g e | 54

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

5.4. Database adaptation

The adaptation of a database was not tested because the possibility is proved by the

previous chapter. It works on the same way than the visualisation process. To adapt

a database, the website needs a server backend like ASP.NET Web API or another

programming language. The data will be received on the website and injected in a

Java Script code. The script sends the data to the server backend which stores the

data into a database. Afterwards it can be visualized in the browser. For this reason,

it fulfils the requirement of vii. Database Adaptation.

5.5. Security Setup and Issues

Three security setup possibilities were planned, Transmission of raw data, Transport

Layer Security and a complete encryption. Two versions, one transmitting raw data

and another with TLS were implemented and tested. A total encryption would

influence mostly the websites by more processing effort for decryption and was not

considered at this stage. A big problem when using TLS with untrusted self-signed

certificates is that a confirmation is needed each time a connection is created, which

slowed down the experiment process. It is also a problem for mobile devices which

cannot confirm an untrusted certificate. The solution would be to buy trusted

certificates by a certificate authority.

A security issue was identified. The Node.js instance allows to transmit strings to a

website not only from a SSH, a computer can be connected to the Node.js instance

as well. This allows sending sensor values, messages, but also scripts to client

websites. An offender could create a harmless looking website and prepare his

computer sending messages to the website. There would be no suspect code on the

page and the antivirus scanner would not find anything suspicious. The offender

could then send Java Script to the website. The script would be executed on each

connected client.

Web browsers keep Java Script code in a sandbox for security reason, which means

the code has no access to the file system. But it can be used to gather information

P a g e | 55

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

about the client or to pop up messages which are mostly annoying and hard to close.

The worst thing could be to run a script which steals session cookies from other

browsers. The offender can load the stolen cookies in a browser. If a cookie is from

an active session, the website identifies the offender as another user. The offender

has now the possibility to access and hijack accounts, like Facebook, email account

or also banking accounts. A deeper analysis of this issue is beyond the scope of this

work. It requires a larger focus on hacking techniques.

The tests meet the requirements of viii. Security and ix. Privacy. Different security

configurations were implemented and tested. Potential threats were identified and

analysed. The sensor publisher cannot be traced back because only the Node.js

instance address is visible.

5.6. Server Instance and Limits

This chapter investigates the performance of the system. Three different applications

were implemented to test the system by monitoring the CPU load and the available

Random-Access Memory (RAM) in different operational capabilities. The first

experiment will analyse the instantiation process. The second experiment will

concentrate on data streaming speed and the third will focus on data irregularity

during the streaming process.

The CPU load and RAM usage was recorded directly in the application by using the

Windows performance counter build in function. It uses the same functions like the

Windows Task Manager Performance Counter. After sending a data package, the

interval stopwatch will start and before the next package will be send the

performance values will be recorded. This gives the performance counter some time

to actualize the performance values.

All tests were carried out with an Intel(R) Core(TM) i5-3317U CPU @ 1.70GHz 4 GB

RAM with Windows 8.1. These experiments serve the requirement xi. System Limits

and will identify the system limits and operational capability of the system.

P a g e | 56

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

5.6.1. Instantiation Limits

The following experiments will identify the maximum amount of instances which can

be created on one machine, how fast instances can be created and the influence on

CPU load and RAM. The aim is to define specifications for a stable running system.

A console application was developed to test the instantiation process. The

application runs an automated test. The user need to enter two values, the amount of

instances to create and the initiation interval in which each instance will be created.

The application creates instances in the given interval and logs the machine CPU

load and the available machine RAM after an instance is created. If the application

created all instance, it closes them and saves the logged values in a spread sheet.

Various series were carried out with different number of instances and in different

intervals. The results are listed in Table 10.

Table 10: Instances Experiment

The experiment was carried out in series of 100, 200, 300, 350 and 400 maximal

numbers of instances. For each step the test was run in initiation intervals of 50, 200,

500 and 1000 milliseconds. Each test run produced a table with CPU load and RAM.

The raw data can be found in the appendix (CD). Table 10 list the average CPU load

Average St.Deviation σ σ max σ min Total Average St.Deviation σσ max σ min Average St.Deviation σ σ max σ min

100 50 8.09 1.15 9.24 6.94 99.14 6.01 105.2 93.13

100 200 16.47 1.4 17.87 15.07 90.01 10.56 100.6 79.45

100 500 16.8 1.15 17.95 15.65 27.87 7.87 35.74 20

100 1000 16.09 1.34 17.43 14.75 12.14 6.21 18.35 5.93

200 50 7.05 0.45 7.50 6.60 99.58 4.37 104 95.21

200 200 15.37 2.05 17.42 13.32 91.2 8.91 100.1 82.29

200 500 15.2 2.55 17.75 12.65 31.56 9.9 41.46 21.66

200 1000 14.82 2.22 17.04 12.60 16.58 9.71 26.29 6.87

300 50 11.11 2.56 13.67 8.55 99.75 3.29 103 96.46

300 200 9.22 4.09 13.31 5.13 99.97 0.37 100.3 99.6

300 500 12.51 4.07 16.58 8.44 30.16 9.25 39.41 20.91

300 1000 11.6 3.8 15.40 7.80 18.84 10.4 29.24 8.44

350 50 4.22 0.59 4.81 3.63 99.96 0.7 100.7 99.26

350 200 11.46 3.7 15.16 7.76 99.89 1.51 101.4 98.38

350 500 11.99 4.17 16.16 7.82 29.69 8.37 38.06 21.32

350 1000 11.72 3.98 15.70 7.74 25.78 11.22 37 14.56

400 50 5.65 0.69 6.34 4.96 99.78 3.51 103.3 96.27

400 200 9.11 4.33 13.44 4.78 96.11 6.75 102.9 89.36

400 500 10.29 4.52 14.81 5.77 31.38 9.65 41.03 21.73

400 1000 10.88 4.34 15.22 6.54 22.5 11 33.5 11.5

Instances

Interval

[ms]

CPU Load [%]RAM usage [MB]

16.45

15.13

11.11

11.72

10.09

Total Average RAM usage [MB]

1.30 17.75 15.16

4.40

3.95

3.99

2.27

14.49

15.67

15.10

17.40

5.70

7.77

7.12

12.86

P a g e | 57

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

in percent and used RAM in Mega Byte with the standard deviation during each test

run. This allows a statement about the machine state and stability. As lower the CPU

load and deviation is, as more stable is the system. The average used RAM for an

instance was calculated in each series.

The series with an interval of 50 milliseconds was not considered in the results since

it was found that there is a measurement inaccuracy. The RAM value is actualising to

slow, so that wrong values were logged. This was monitored by observing the

Windows Task Manager Performance tool.

Figure 12 shows the results for the average RAM usage of each instance. The green

and red lines are the maximum and minimum standard deviation.

Figure 12: Instances Experiment - Results Memory

The experiment showed that one instance uses approximately 16 MB of RAM at the

beginning and that the instances getting smaller as closer the system memory gets to

a usage of 100% which was reached on the tested machine after approximately 350

instances. For verification the Windows Task Manager was monitored and it showed

that one part of the instances is still using 16 MB but others are using less than 2 MB

and some only 0.3 MB, which explains the rising spread of the standard deviation.

One of the small instances was tested for function and it worked but expands to a

P a g e | 58

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

RAM usage of 15 MB. It suggests that a working instance will need a minimum of 15

MB to work probably. The maximum amount of instances is limited by the available

RAM. Not used instances can get smaller to make space for instances in use. The

CPU load is only affected during the initiation process but not when the instances are

running.

Figure 13 to Figure 17 show the average CPU load for different initiation intervals for

each test series. The green and red lines are the standard deviation. A high deviation

is an indicator for a high fluctuation of the CPU load. The aim is to keep the CPU load

and the deviation as small as possible.

Figure 13: Instances Experiment - Results CPU 1

P a g e | 59

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Figure 14: Instances Experiment - Results CPU 2

Figure 15: Instances Experiment - Results CPU 3

P a g e | 60

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Figure 16: Instances Experiment - Results CPU 4

Figure 17: Instances Experiment - Results CPU 5

The results show that an initiation interval faster than 500 milliseconds increase the

CPU load drastically and an interval faster than 200 milliseconds is not practicable.

The similar average CPU load between the series in the range from 500 to 1000

milliseconds proves that the amount of running instances does not affect the CPU

load.

P a g e | 61

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

To avoid high CPU load the system needs an instantiation load balancer which

creates new instances in an interval of more than 500 milliseconds. The amount of

instances needs to be limited and this is also the bottleneck of the system. The

maximal amount depends on the RAM of the server. Each instance needs

approximately 16 MB of RAM.

5.6.2. Streaming Limits

The following experiments will identify the impact of different streaming speed and

data size on the CPU load and RAM usage. The target is to find specify limits and

test the operational capability of the system.

As in 5.6.1., a console application was developed logging CPU load and RAM usage.

The console application starts a server instance and start to stream data to the

server. The transmission interval, amount of values to stream and the duration of the

stream can be configured at the beginning. After the application finishes it saves the

results in a spread sheet.

The experiment was accomplished in various series, started with 10.000, 1.000, 100

and 10 values streamed in one interval. Also the interval speed varied from 500, 200,

50, down to 10 milliseconds. The duration of the stream was set to 10 seconds.

Table 11 shows the results of the experiment.

P a g e | 62

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Table 11: Transmission Speed Experiment

The average CPU load was calculated and also the standard deviation. It has been

found that streaming data has no effect on RAM usage. The RAM usage was not

considered caused by the constant level. The raw data can be found on the CD.

Figure 18 to Figure 21 shows the average CPU load in relation to the update rate.

Figure 18: Transmission Speed Experiment - Results CPU 1

Average St.Deviation σ σ max σ min

10000 500 10 35 17.3 52.3 17.7

10000 200 10 34.46 10.4 44.86 24.06

10000 50 10 44.13 13.41 57.54 30.72

10000 10 10 50.06 15.06 65.12 35

1000 500 10 15.11 11.94 27.05 3.17

1000 200 10 20.48 13.74 34.22 6.74

1000 50 10 22.6 8.92 31.52 13.68

1000 10 10 44.31 13.81 58.12 30.5

100 500 10 2.55 1.76 4.31 0.79

100 200 10 5.17 4.43 9.6 0.74

100 50 10 24.45 20.06 44.51 4.39

100 10 10 42.98 26.24 69.22 16.74

10 500 10 1.8 1.67 3.47 0.13

10 200 10 2.29 2.81 5.1 -0.52

10 50 10 6.88 7.22 14.1 -0.34

10 10 10 23.69 35.03 58.72 -11.34

CPU Load [%]Packag

e Size

Choosen

Rate [ms]

Streamed

Time [s]

P a g e | 63

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Figure 19: Transmission Speed Experiment - Results CPU 2

Figure 20: Transmission Speed Experiment - Results CPU 3

P a g e | 64

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Figure 21: Transmission Speed Experiment - Results CPU 4

It should be noted that the results concern only one instance on the server. For that

reason it is very important to keep the CPU load as low as possible. Figure 18 shows

the CPU load vacillates between 20 and 50 percent. It suggests that streaming a set

of 10.000 values at once is not useful. Streaming a set of fewer than 100 values with

a maximum update rate of 200 milliseconds is feasible. As well as streaming a set

fewer than 10 values with a maximum update rate of 50 milliseconds. The maximum

amount of values which can be streamed with the used setup is approximately

22.000. This is due to the limited UDP package size of 65 kb.

5.6.3. Packet Loss

The experiment focuses on the accuracy and lost packages by streaming data over a

UDP connection.

A console application was developed with the ability to log CPU load and RAM

usage. The application creates a server instance and stream data to the server over

UDP. The update rate and amount of values to stream can be configured. It also logs

the sent messages and stores each message in a file. The Node.js server instance is

modified and stores each received message in another file as well. Both files are

compared to each other at the end of the experiment to analyse data irregularities

P a g e | 65

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

caused by the UDP. KDiff3 is a tool based on the LINUX command “diff” and was

used to calculate differences between the two files and visualise it like illustrated in

Figure 22.

Figure 22: KDiff3 - Count Irregularities

The experiment was conducted in series, like in 5.6.1 and 5.6.2 but in shorter

intervals of 50, 25, 5 and 1 milliseconds. The short interval was chosen to raise the

risk to produce data irregularities. The mount of values streamed was set to 100, 10

and 1 value. The duration of the stream was set to 10 seconds. The set update rate

varies from the real update rate caused by the overhead of the calculation and

creation of mock data, the latency and the process of writing in files. The record of

the send and received packages make it possible to calculate the true update rate

and the overhead by comparing the amount of transmitted packages with the

expected amount of received packages. Table 12 shows the results.

P a g e | 66

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Table 12: Lost Packages Experiment

The calculation overhead takes longer for larger packages like expected, for 100

values approximately 8 milliseconds and for a single value approximately 3.2

milliseconds. Unexpectedly, irregularities in the data were very low, also with very

fast update rates of 8 milliseconds. There are a larger amount of irregularities with an

update rate of 4.11 milliseconds but in total the accuracy is still higher than 99.75%.

The irregularities occur at high CPU load from nearly 100% which is caused by the

stream itself but also by calculation of the mock data and writing the data transfer into

files.

Figure 23 to Figure 26 illustrates the average CPU load for different update rates

and amount of streamed values. The green and red lines are the standard deviation.

AverageSt.Deviation σσ max σ min

100 50 10 171 58.48 8.48 0 100.00 34.99 16.14 51.13 18.85

100 25 10 306 32.68 7.68 0 100.00 40.41 19.33 59.74 21.08

100 10 10 560 17.86 7.86 1 99.82 70.63 20.2 90.83 50.43

100 5 10 777 12.87 7.87 1 99.87 80.2 23.48 103.68 56.72

100 1 10 1091 9.17 8.17 1 99.91 90.17 21.2 111.37 68.97

10 50 10 184 54.35 4.35 0 100.00 15.61 10.24 25.85 5.37

10 25 10 345 28.99 3.99 0 100.00 28.96 20.45 49.41 8.51

10 10 10 720 13.89 3.89 0 100.00 54 34.03 88.03 19.97

10 5 10 1099 9.10 4.10 0 100.00 72.86 40.06 112.92 32.8

10 1 10 1992 5.02 4.02 3 99.85 88.47 29.92 118.39 58.55

1 50 10 188 53.19 3.19 0 100.00 13.51 9.85 23.36 3.66

1 25 10 355 28.17 3.17 0 100.00 24.58 20.44 45.02 4.14

1 10 10 755 13.25 3.25 0 100.00 47.57 34.95 82.52 12.62

1 5 10 1225 8.16 3.16 0 100.00 65.27 44.58 109.85 20.69

1 1 10 2431 4.11 3.11 6 99.75 88.14 32.05 120.19 56.09

CPU Load [%]Package Size

[Values]

Choosen

Rate [ms]

Streamed

Time [s]

Effective

Transmitt

True

Rate

Overhead

[ms] Irregularities

Accuracy

[%]

P a g e | 67

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Figure 23: Lost Packages Experiment - Results CPU 1

Figure 24: Lost Packages Experiment - Results CPU 2

Comparing Figure 24 with Figure 21 of previous experiment (5.6.2.) shows the high

influence of logging the data transfer on the CPU load. 15.61% CPU load by an

update rate of 50 milliseconds with data logging against 6.88% without data logging.

P a g e | 68

I m p l e m e n t a t i o n a n d E x p e r i m e n t s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Figure 25: Lost Packages Experiment - Results CPU 3

The experiment shows that it is possible to send data in a high update rate of 25 to

50 milliseconds and with high background processing with an accuracy of 100% with

an UDP connection between SSH and server. A visual update rates in the area of a

smooth visualisation of 62.5 milliseconds, like mentioned in section 3.1., and

reasonable CPU load, can be reached by streaming less than 10 sensor values at

once.

P a g e | 69

E v a l u a t i o n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

6. Evaluation

This chapter is an evaluation of the project. The project management, scope,

experiments and the results will be summarised and evaluated. The project will be

analysed and compared to the requirements and the work of others.

The project plan has been followed and all five milestones are reached in time.

However, some parts of the work could not be carried out in as much detail as

wished at the beginning of the project. On the one hand the literature review took

more time than planned due to the interdisciplinary subject with a large amount of

papers to review. On the other hand there was a shift of the focus from frontend

technologies to server technology due to the finding that server technology is of more

interest for the feasibility of the project.

The registration service as an interface between SSH and user management system

was implemented and tested. Acceptance tests showed that the manageability of the

system is not an issue. GUIs and management web service could not be

implemented due to the short time of the project. However, it was not necessary for

proving the operational capability and it can be easily extended with standard web

development technologies like ASP.NET.

An investigation of various frontend technologies could not be carried out in the

planned scope, like mentioned before, caused by questions on the performance of

the broadcasting server which arose during the development. It seemed more

important to analyse the server first and investigate frontend technologies after

setting up an evaluated infrastructure. Nevertheless, the functional capabilities to

visualise streamed data in real time in a browser, combining different streams and

injecting the streamed data in java script applications was proved.

The security of the system was analysed in two ways. The first was the general

security of the system during data transfer. To do this, three versions of the server

were designed. One transmitting raw data, a server with TLS secured connection and

a complete encrypted data transfer, however, the first two versions could be

P a g e | 70

E v a l u a t i o n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

implemented. Full encryption was not useful at this stage of development and would

require some extra time which was beyond the scope of this project. The second

direction was an investigation of the abuse of the system for malicious purposes. It

was identified that the system could be abused by offenders to attack online users by

creating fake websites and get access to user information and possibilities to hijack

user accounts. It is worth investigating this security issue in more detail in future.

Different experiments were conducted to determine the system limits. Effects on CPU

load and RAM usage by the system were identified. First, the amount of instances

running on one physical server is limited by the available RAM. Over 300 server

instances can be started on a machine with only 4 GB of RAM. Second, the CPU

load is affected by the instantiation speed. This needs to be controlled by a load

balance system. Third, streaming data has no effect on the RAM usage of the

physical server and also high update rates of 25 to 50 milliseconds create a pleasant

CPU load and would allow smooth visualisation. And fourth, the high data accuracy

of 99.75% with an interval faster than 5 milliseconds and 100% with 25 milliseconds

in spite of using UDP connection is a good result as well. The definition of these

limits gives a feeling for the system and allows scaling the system up in future. Due to

the short time and resources, it was not possible to run the test in a reality close

environment by separation of SSH simulation and server on different physical

machines. This would make detailed tests of network latency possible. It would be of

interest as well to compare the results by running the experiments on machines with

different performance and compare the results to make statements about benefits of

special processors or other hardware.

In total the main objectives were reached. One objective was to keep the system as

universal as possible. For that reason different use cases and application areas were

described and analysed by focusing on their priorities and requirements. The

requirements of a similar system were analysed (J. Zhang et al., 2013). Based on this

analysis, requirements for the system were defined and listed which serve the

different application areas and priorities. Parts of the system were implemented and

tested to prove the feasibility of the requirements.

P a g e | 71

E v a l u a t i o n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

All implementations and experiments address and confirm the requirements like

mentioned in chapter 5, such as i. Scalability and ii. Visualisation update rate are

addressed by the possibility to vary the visualisation update rate for different

application areas and the possibility to transmit any kind of text based data. The

implemented registration service addresses the requirements iii. Configurability and

iv. Sensor Data Sharing. It is possible to add sensors through a GUI, the

configuration of the SSH is reduced to a minimum effort and can be easily extended

with a GUI interface. It is easily possible to extend the service by a web portal to

allow sensor data sharing. Tests proved that sensing data can be used in real time

on a website by little programming effort. This meets the requirements v. Frontend

Development. The user needs only frontend development skills to create real time

applications. The tests in section 5.3 show that the data can be injected and used in

Java Script applications which meet the requirement vi. Visualising Data as well as

the requirement vii. Database Adaptation by redirecting the data over a Java Script

code to the server backend. Different security configurations were implemented and

tested and potential threats were identified and analysed. The tests met the

requirements of viii. Security and ix. Privacy. The investigation of the system limits

and operational capability of the system in section 5.6 serve the requirement xi.

System Limits. Only the x. Reliability could not be analysed. It would require a

working prototype and a mobile application which could not be provided in the scope

of the project.

The system shares the idea of streaming sensing data with other platforms. The

SensibleThings platform from Forsström has a P2P architecture compared to the

data centric architecture of proposed system. Forsströms system appeals to more

coding experienced users and mobile application developers (Forsström et al., 2014).

The proposed system can be used by less coding skilled users and it is focused on

high configurability over simple GUI.

Zhang presented a service oriented platform with the aim to maximize the sharing

and utility of available sensor data sources (J. Zhang et al., 2013). One difference is

that the proposed system does not use databases for storing sensing data in the

P a g e | 72

E v a l u a t i o n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

architecture. The requirements of both systems are mostly the same with the

difference that proposed system has a larger focus on configurability and GUIs for

manageability by the user. Zhangs system transfers as well as the proposed system

a Json string with multiple sensor data. However Zhangs system concentrates in big

data analytics and has no focus on high update rates. It actualizes the data in

intervals of a few seconds.

Many systems concentrate mostly on one application area. E.g. monitoring drought

(Deng et al., 2013), agriculture (Cai et al., 2011), landslides (Teja et al., 2014) or

floods (Y. Zhang, Li, Li, & Guo, 2009). These systems send their data at intervals to

their base stations or to a centralized computer where the data will be stored for long

term research. A GPS tracking system was introduced by El-Medany using ASP.NET

and TCP/IP sockets. The system sends data in intervals of one minute. The

proposed system focuses on universal usability in many application areas. It is not

designed for one specific area and can be used or consumed by users.

In total the project is a success. It proved the feasibility of the architecture and forms

a basis which offers some points for further research in the area of detailing the

experiments, evaluation of visualisation technologies and analysis of security issues.

The experiments can be repeated on other machines to get feedback about the

influence of different hardware, e.g. different amount of CPUs. In any case the

experiments should be conducted in a more production-like environment. The

streaming server, website and SSH need to be separated on different physical

machines to investigate the latency of the system. The visualisation part can be done

in more detail. The amount of different visualisation libraries is enormous. An

evaluation of different libraries with focus on low processing on client side would be

of interest. The identified security issue, hijacking of accounts by steeling session

cookies, should be investigated by detailed experiments because it is of general

interest if Node.js can be easily abused for cybercrime.

P a g e | 73

E v a l u a t i o n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

The present work fits into present research of the WoT and delivers a system

concept which could rival with commercial systems like TempoDB, Xively and Sensor

Cloud in future.

P a g e | 74

C o n c l u s i o n a n d F u t u r e W o r k

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

7. Conclusion and Future Work

The present work contributes to the infrastructure of the internet by providing an

architecture concept for sensor data streaming, processing and live visualisation of

streamed data over the web.

The idea of a sensor streaming system belongs to the area of the Web of Things.

Similar systems exist in the commercial sector nevertheless they all have different

strengths and targeting different application areas. As well as open source systems

in the area of research with different architectures and different degree of difficulty to

deploy own sensors. The present work delivers a universal system trying to combine

different application areas and streaming tasks in one easy manageable system.

The system requirements were defined by creating use cases in different application

areas. An identification of their priorities and an investigation of requirements of

similar systems results in a list of system requirements with a large focus on

universality and manageability. The system requirements were used to prove the

architecture concept by implementing critical parts of the system and carrying out

experiments.

The architecture was designed and discussed. The starting point is a Sensor

Streaming Hardware (SSH) and the endpoint a website. The architecture defines not

only the infrastructure to transfer the data between SSH and website but as well

ensures an easy sensor deployment, manageability of the sensors and security. The

architecture consists of various elements and servers. A management service allows

the user to create an account and to configure the SSH online. The data is

transferred to a second registration service which stores the data into a database. In

the meanwhile the management server creates a virtual streaming server with the

configured setup. The user needs only to access the SSH over the local network by

an IP address and configure the username and sensor ID. After starting the SSH, the

SSH will automatically connect to the registration service where the username and

sensor ID will be validated. The SSH will get all configured data and the streaming

P a g e | 75

C o n c l u s i o n a n d F u t u r e W o r k

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

server address and connect to the streaming server instance. The data stream will

start immediately with the configured setup. A monitoring service running on a

separate physical machine is used to monitor the status of the virtual server

instances and will handle exceptions.

As mentioned before, important parts of the system were implemented to evaluate

the feasibility of the system. The registration service is an interface between the

management system, the SSH and the database and was implemented and tested

by acceptance tests. The streaming server was implemented with Node.js and Java

Script in two versions, one with TLS and the other transferring raw data. The server

was modified and instantiated by a C# application. This was the basis for the different

experiments to define the system limits. Three different experiments were conducted

focusing on effects of creating large amounts of virtual streaming server instances,

data streaming of large packages and accuracy of getting the right data on the server

through the UDP connection. Security issues were analysed and discussed.

Especially sending and execution of malicious java script over the connection was

identified as a possible abuse. Section 5.3 showed that sensing data can be easily

injected and used in browser applications. The sensing data can be also processed

by Java Script code on client side.

Like mentioned in chapter 6, further research can be done in the area of detailing the

experiments by repeating them on other machines to get a feedback about the

influence of different hardware and the behave in a more production-like

environment. A more detailed evaluation of visualisation technologies can be done

and the analysis of the identified security issues in section 5.5.

P a g e | 76

R e f e r e n c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

vi. References

American Heart Association. (2014). Target Heart Rates. Retrieved from
http://www.heart.org/HEARTORG/GettingHealthy/PhysicalActivity/Target-Heart-
Rates_UCM_434341_Article.jsp

Andersson, K., & Johansson, D. (2012). Mobile e-services using HTML5. 37th Annual IEEE
Conference on Local Computer Networks -- Workshops, 814–819.
doi:10.1109/LCNW.2012.6424068

Association for the Advancement of Medical Instrumentation. (2002). Cardiac monitors, heart
rate meters, and alarms [American National Standard (ANSI/AAMI EC13:2002)].
Arlington. Retrieved from http://www.physionet.org/physiobank/database/aami-ec13/

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer
Networks, 54(15), 2787–2805. doi:10.1016/j.comnet.2010.05.010

Australia, C. of. (2014). Deep Ocean Tsunami Detection Buoys. Retrieved July 06, 2014,
from http://www.bom.gov.au/tsunami/about/detection_buoys.shtml

Bendel, S., Springer, T., Schuster, D., Schill, A., Ackermann, R., & Ameling, M. (2013). A
service infrastructure for the Internet of Things based on XMPP. 2013 IEEE
International Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops), 385–388. doi:10.1109/PerComW.2013.6529522

Cai, K., Liang, X., & Wang, K. (2011). Development of Field Information Monitoring System
Based on the Internet of Things *, 675–680.

Chadil, N., Russameesawang, A., & Keeratiwintakorn, P. (2008). Real-time tracking
management system using GPS, GPRS and Google earth. 2008 5th International
Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology, 393–396. doi:10.1109/ECTICON.2008.4600454

Chen, B. (2011). A framework for browser-based Multiplayer Online Games using WebGL
and WebSocket. 2011 International Conference on Multimedia Technology, 471–474.
doi:10.1109/ICMT.2011.6001673

Dahl, T., Koskela, T., Hickey, S., & Vatjus-Anttila, J. (2013). A Virtual World Web Client
Utilizing an Entity-Component Model. 2013 Seventh International Conference on Next
Generation Mobile Apps, Services and Technologies, 7–12.
doi:10.1109/NGMAST.2013.11

Deng, M., Di, L., Han, W., Yagci, A. L., Peng, C., & Heo, G. (2013). Web-service-based
Monitoring and Analysis of Global Agricultural Drought, 22030.

Duquennoy, S., Lifl, I., & Grimaud, G. (2009). The Web of Things : interconnecting devices
with high usability and performance, 2009.

P a g e | 77

R e f e r e n c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

El-Medany, W., Al-Omary, A., Al-Hakim, R., Al-Irhayim, S., & Nusaif, M. (2010). A Cost
Effective Real-Time Tracking System Prototype Using Integrated GPS/GPRS Module.
2010 6th International Conference on Wireless and Mobile Communications, 521–525.
doi:10.1109/ICWMC.2010.104

Forsström, S., & Kanter, T. ubiquitous sensor-assisted applications on the internet-of-things.
(2013). Enabling ubiquitous sensor-assisted applications on the internet-of-things.
Personal and Ubiquitous Computing, 18(4), 977–986. doi:10.1007/s00779-013-0712-9

Forsström, S., Kardeby, V., Österberg, P., & Jennehag, U. (2014). Challenges when
Realizing a Fully Distributed Internet-of-Things – How we Created the SensibleThings
Platform, (c), 13–18.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., …
Stanley, H. E. (2000). {PhysioBank, PhysioToolkit, and PhysioNet}: Components of a
New Research Resource for Complex Physiologic Signals. Circulation, 101(23), e215–
e220.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A
vision, architectural elements, and future directions. Future Generation Computer
Systems, 29(7), 1645–1660. doi:10.1016/j.future.2013.01.010

Ha, S. W., Lee, Y. K., Vu, T. H. N., Jung, Y. J., & Ryu, K. H. (2012). An environmental
monitoring system for managing spatiotemporal sensor data over sensor networks.
Sensors (Basel, Switzerland), 12(4), 3997–4015. doi:10.3390/s120403997

IRIS. (2014). Incorporated Research Institutions For Seismology. Retrieved July 06, 2014,
from http://www.iris.edu/

Jones, V., Gay, V., & Leijdekkers, P. (2010). Body sensor networks for mobile health
monitoring: Experience in europe and australia. Digital Society, 2010. ICDS’10. ….

Joyent Inc. (2014). Nodejs. Retrieved August 01, 2014, from http://nodejs.org

LogMeIn Inc. (2014). Xively. Retrieved August 01, 2014, from https://xively.com/

Microsoft. (2014). ASP.NET. Retrieved July 06, 2014, from http://www.asp.net/

MicroStrain. (2014). SensorCloud. Retrieved August 01, 2014, from
http://www.sensorcloud.com/

Neumeyer, D., & Brown, J. (2014). Audio-Visual Palimpsests: Resynchronizing Silent Films
with “Special” Music. In The Oxford Handbook of Film Music Studies (p. 588). Oxford
University.

Orduña, P., & Angulo, I. (2014). Graphic Technologies for Virtual , Remote and Hybrid
laboratories : WebLab-FPGA hybrid lab, (February), 163–166.

P a g e | 78

R e f e r e n c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Rao, A. S., Izadi, D., Tellis, R. F., Ekanayake, S. W., & Pathirana, P. N. (2009). Data
monitoring sensor network for BigNet research Testbed. 2009 International Conference
on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 169–
173. doi:10.1109/ISSNIP.2009.5416816

Sample, A. P., Braun, J., Parks, A., & Smith, J. R. (2011). Photovoltaic enhanced UHF RFID
tag antennas for dual purpose energy harvesting. 2011 IEEE International Conference
on RFID, 146–153. doi:10.1109/RFID.2011.5764615

Shamszaman, Z. U., Ara, S. S., Chong, I., & Jeong, Y. K. (2014). Web-of-Objects (WoO)-
based context aware emergency fire management systems for the Internet of Things.
Sensors (Basel, Switzerland), 14(2), 2944–66. doi:10.3390/s140202944

Singh, D., Tripathi, G., & Jara, A. J. (2014). A survey of Internet-of-Things: Future vision,
architecture, challenges and services. 2014 IEEE World Forum on Internet of Things
(WF-IoT), 287–292. doi:10.1109/WF-IoT.2014.6803174

Teja, G. N. L. R., Harish, V. K. R., Nayeem Muddin Khan, D., Krishna, R. B., Singh, R., &
Chaudhary, S. (2014). Land Slide detection and monitoring system using wireless
sensor networks (WSN). 2014 IEEE International Advance Computing Conference
(IACC), 149–154. doi:10.1109/IAdCC.2014.6779310

TempoDB. (2014). TempoDB. Retrieved August 01, 2014, from https://tempo-db.com/

Walnes, J., & Noakes, D. (2014). Smoothie Chart. Retrieved July 26, 2014, from
http://smoothiecharts.org/

Wessels, A., Purvis, M., Jackson, J., & Rahman, S. (Shawon). (2011). Remote Data
Visualization through WebSockets. 2011 Eighth International Conference on Information
Technology: New Generations, 1050–1051. doi:10.1109/ITNG.2011.182

YEI Corporation. (2014). YEI Technology. Retrieved July 16, 2014, from
https://www.yeitechnology.com/

Zhang, J., Iannucci, B., Hennessy, M., Gopal, K., Xiao, S., Kumar, S., … Rowe, A. (2013).
Sensor Data as a Service -- A Federated Platform for Mobile Data-centric Service
Development and Sharing. 2013 IEEE International Conference on Services Computing,
446–453. doi:10.1109/SCC.2013.34

Zhang, Y., Li, J., Li, Z., & Guo, L. (2009). Real-Time Flood Forecasting System Based on B/S
Mode. 2009 International Conference on Management and Service Science, 1–4.
doi:10.1109/ICMSS.2009.5303965

P a g e | 79

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

A. Appendices

A.1. Evaluation of Cases

Table 13: Rating of Cases

Area Healtcare Engineering Transport Private Sector HCI

Measuring ECG
Manufacturing

Tolerances

Vehicle

Telemetry

Smartphone

Sensors

Position/

Acceleration

sensors

Visualisation

Technology
2D-Graph

Values, 2D-

Model

Values, 2D-

Graph/Map
2D-Interaction 3D-Interaction

Scalability High Low Low Low Medium

Visualisation

Rate
Low Low Medium High High

Mobility High Low High Medium Medium

Reliability Medium High Medium Medium Medium

Security High High Medium Low Low

Privacy High Medium Medium Low Low

High Medium Low

Area

Measuring

Visualisation

Technology

Scalability >100 <100 <10

Visualisation

Rate
<0.1s (10fps) <=1s >1s

Mobility
Everywhere

(WiFi/3G)

In specific area

(WiFi)
Stationary (LAN)

Reliability
No failure

tolerated

May lose

connection

Reliability not

important

Security
Encryption

needed

Only Transport

Security

Raw Readable

Data

Privacy
Can harm privacy

extremly
Privacy relevant

Privacy is not

important

Describes the needed visualisation

update rate for the sensor.
Describs the acting radius of the

sensor.
Describes the reliability of the

system focused on the connection.
Describes the security of the

system based on the connection.
Describes the importance of the

data regarding on privacy.

Evaluation of Cases

Application areas

Describes the data to transmit.

Describes efford how measurment

could be logicly visualised.
Describes how many values will be

transferred at once.

Legend

P a g e | 80

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

A.2. Node.js code

A.2.1. Raw Data transmission

1. var http = require('http');
2. var url = require('url');
3. var socket = require('socket.io');
4. var md5 = require('MD5');
5.
6. // Ports
7. var portClient = !isNaN(process.argv[2]) ? process.argv[2] : 8443;
8. var portSensor = !isNaN(process.argv[3]) ? process.argv[3] : 41181;
9.
10. //http listen
11. var httpServer = http.createServer().listen(portClient);
12. var httpSocketIo = socket.listen(httpServer);
13. var oldData = null;
14.
15. //udp server on portSensor
16. var server = require("dgram").createSocket("udp4");
17.
18. // triggered on incomming message throught the udp server launched after
19. server.on("message", function (msg, rinfo) {
20. // Store Hash from object
21. var temp = md5(msg);
22.
23. // Avoid similar objects to update the client website
24. // Compare with Object hash with last object hash
25. if(oldData != temp){
26. // Send message to client website
27. httpSocketIo.sockets.emit('notification', {'message': String.fromCharCode.apply(

null, new Uint16Array(msg))});
28. // Log in console
29. console.log("msg: " + msg);
30. }
31. // Store actual object hash
32. oldData = temp;
33. });
34.
35. // Start listening on udp server port portSensor
36. server.on("listening", function () {
37. var address = server.address();
38. console.log("udp server listening " + address.address + ":" + address.port);
39. console.log("and broadcasting to " + address.address + ":" + portClient);
40. });
41. server.bind(portSensor);

Source Code 3: Node.js Script

P a g e | 81

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

A.2.2. With TLS

1. var https = require('https');
2. var url = require('url');
3. var fs = require('fs');
4. var socket = require('socket.io');
5. var portClient = !isNaN(process.argv[2]) ? process.argv[2] : 8443;
6. var portSensor = !isNaN(process.argv[3]) ? process.argv[3] : 41181;
7.
8. var options = {
9. key: fs.readFileSync('privatekey.pem'),
10. cert: fs.readFileSync('certificate.pem')
11. };
12.
13. //https listen
14. var httpsServer = https.createServer(options).listen(portClient);
15. var httpsSocketIo = socket.listen(httpsServer);
16.
17. //udp server on portSensor
18. var server = require("dgram").createSocket("udp4");
19.
20. // triggered on incomming message throught the udp server launched after
21. server.on("message", function (msg, rinfo) {
22. console.log("msg: " + msg);
23. httpsSocketIo.sockets.emit('notification', {'message': String.fromCharCode.apply(n

ull, new Uint16Array(msg))});
24. });
25.
26. // Start listening on udp server port portSensor
27. server.on("listening", function () {
28. var address = server.address();
29. console.log("udp server listening " + address.address + ":" + address.port);
30. });
31. server.bind(portSensor);

Source Code 4: Node.js Script with TLS

P a g e | 82

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

A.3. MSc Research Proposal

1. Student details

Last (family) name Lapok

First name Paul

Napier matriculation number 40132336

2. Details of your programme of study

MSc Programme title MSc Computing

Year that you started your diploma

modules

1 Year

Month that you started your diploma

modules

September

Mode of study of diploma modules Full-time

Date that you completed/will complete

your diploma modules at Napier

31th August 2014

3. Project outline details

Please suggest a title for your proposed project. If you have worked with a supervisor

on this proposal, please provide the name. NB you are strongly advised to work with

a member of staff when putting your proposal together.

P a g e | 83

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Title of the proposed project Cloud Based Visualisation of Real Time

Sensor-Data Streams

Name of supervisor Alistair Lawson

I do not have a member of staff

lined up to supervise my work

4. Brief description of the research area - background

Please provide background information on the broad research area of your project in

the box below. You should write in narrative (not bullet points). The

academic/theoretical basis of your description of the research area should be evident

through the use of references. Your description should be between half and one page

in length.

Sensor data was streamed mostly concentrated on environment monitoring.

This has included systems monitoring drought (Deng et al., 2013),

seismography, tsunamis, landslides (Teja et al., 2014) or flood (Y. Zhang et al.,

2009) for the purpose of alerting to potentially dangerous situations. Systems

like these send their data in intervals to their base stations or a centralized

computer (Ha et al., 2012), sometimes directly over the web where it will be

stored in databases used as historic data for longer term research. The

sampling rate may vary between a few seconds up to hours which meet the

requirements of these systems. A high sampling rate compared to real-time

computing is not needed, like in industrial applications, e.g. machine control.

There are also existing systems in the area of object tracking over the web.

Tracking systems consisting of hardware and server using the Global System

for Mobile Communications (GSM), General Packet Radio Service (GPRS) and

P a g e | 84

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

often the Google API to visualize the tracked objects as discussed in (Chadil et

al., 2008), an open source tracking system using commodity hardware as

described in (El-Medany et al., 2010), a system using ASP.NET and TCP/IP

sockets sending IP data packets over the connection with an time interval of 1

minute. Other systems using the Short Message Service (SMS) to transfer the

data with an interval of 12 seconds (Rao et al., 2009). Most of these systems

store the data in databases which can be accessed over the web.

A big area is the Internet of Things (IoT). The vision is the unique identification

of real world objects and interaction of them with other objects or services.

Depending on technologies or application areas the Internet of Things can be

defined in a number of ways. Some of these definitions focus on uniquely

addressable interconnected objects by using Radio-Frequency Identification

(RFID) technologies, others focus on communication and interaction between

objects or investigation in infrastructures and others concentrate on user centric

approaches (Gubbi et al., 2013). The data transmission between objects is the

core statement of these definitions.

The aim of the project is to design an architecture for real time sensor data

streaming, management and live visualisation over the web. State of the art

technologies will be reviewed and potential application areas for sensor data

streaming will be identified.

The focus will be on identification and testing of front end technologies to allow an

evaluation of operational capability in different application areas. One big

difference will be that the system does not store sensor data. It will be redirected

to client applications, where data will be consumed directly, e.g. visualisation of

data. The decision to store data is on client side.

P a g e | 85

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

5. Project outline for the work that you propose to complete

Please complete the project outline in the box below. You should use the emboldened

text as a framework. Your project outline should be between half and one page in

length.

The idea for this research arose from:

The idea arose from my work on web services for the Pro-talk Project lead by

Alistair Lawson and from the courses I had chosen during the master program in

software engineering and web development. I am also interested in measuring

and like the idea of “the internet of things”.

The aims of the project are as follows:

The aim of the project is to design an architecture for real time sensor data

streaming, management and live visualisation over the web. State of the art

technologies will be studied and potential application areas for sensor data

streaming will be identified.

The focus will be on identification and testing of front end technologies to allow an

evaluation of operational capability in different application areas.

The main research questions that this work will address include:

Is it possible to build a manageable real time sensor streaming system?

Which areas of application related to sensor data streaming can be covered with

the identified technologies?

Where are the limits of these identified technologies?

P a g e | 86

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

The software development/design work/other deliverable of the project will

be:

The Project will deliver some software for testing and evaluation of some

technologies.

The project will involve the following research/field

work/experimentation/evaluation:

The first part will be an evaluation of state of the art technologies. A requirement

analysis and survey over areas of application will be done for definition of the

system requirements. An experimental setup will allow an investigation of client

side web technologies and measurement of performance which will allow an

evaluation of operational capabilities.

This work will require the use of specialist software:

The work will require open source tools for measurement of network traffic to

evaluate operational capabilities.

This work will require the use of specialist hardware:

It does not require specialist hardware, because sensor streaming hardware will

be simulated.

P a g e | 87

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

6. References

Please supply details of all the material that you have referenced in sections 6 and 7

above. You should include at least three references, and these should be to high

quality sources such as refereed journal and conference papers, standards or white

papers. Please ensure that you use a standardised referencing style for the

presentation of your references, e.g. APA, as outlined in the yellow booklet available

from the School of Computing office and

http://www.soc.napier.ac.uk/~cs104/mscdiss/moodlemirror/d2/2005_hall_referencing.p

df

American Heart Association. (2014). Target Heart Rates. Retrieved from
http://www.heart.org/HEARTORG/GettingHealthy/PhysicalActivity/Target-Heart-
Rates_UCM_434341_Article.jsp

Andersson, K., & Johansson, D. (2012). Mobile e-services using HTML5. 37th Annual IEEE
Conference on Local Computer Networks -- Workshops, 814–819.
doi:10.1109/LCNW.2012.6424068

Association for the Advancement of Medical Instrumentation. (2002). Cardiac monitors, heart
rate meters, and alarms [American National Standard (ANSI/AAMI EC13:2002)]. Arlington.
Retrieved from http://www.physionet.org/physiobank/database/aami-ec13/

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks,
54(15), 2787–2805. doi:10.1016/j.comnet.2010.05.010

Australia, C. of. (2014). Deep Ocean Tsunami Detection Buoys. Retrieved July 06, 2014, from
http://www.bom.gov.au/tsunami/about/detection_buoys.shtml

Bendel, S., Springer, T., Schuster, D., Schill, A., Ackermann, R., & Ameling, M. (2013). A service
infrastructure for the Internet of Things based on XMPP. 2013 IEEE International
Conference on Pervasive Computing and Communications Workshops (PERCOM
Workshops), 385–388. doi:10.1109/PerComW.2013.6529522

Cai, K., Liang, X., & Wang, K. (2011). Development of Field Information Monitoring System
Based on the Internet of Things *, 675–680.

Chadil, N., Russameesawang, A., & Keeratiwintakorn, P. (2008). Real-time tracking
management system using GPS, GPRS and Google earth. 2008 5th International
Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology, 393–396. doi:10.1109/ECTICON.2008.4600454

Chen, B. (2011). A framework for browser-based Multiplayer Online Games using WebGL and
WebSocket. 2011 International Conference on Multimedia Technology, 471–474.
doi:10.1109/ICMT.2011.6001673

Dahl, T., Koskela, T., Hickey, S., & Vatjus-Anttila, J. (2013). A Virtual World Web Client Utilizing
an Entity-Component Model. 2013 Seventh International Conference on Next Generation

http://www.soc.napier.ac.uk/~cs104/mscdiss/moodlemirror/d2/2005_hall_referencing.pdf
http://www.soc.napier.ac.uk/~cs104/mscdiss/moodlemirror/d2/2005_hall_referencing.pdf

P a g e | 88

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

Mobile Apps, Services and Technologies, 7–12. doi:10.1109/NGMAST.2013.11

Deng, M., Di, L., Han, W., Yagci, A. L., Peng, C., & Heo, G. (2013). Web-service-based
Monitoring and Analysis of Global Agricultural Drought, 22030.

Duquennoy, S., Lifl, I., & Grimaud, G. (2009). The Web of Things : interconnecting devices with
high usability and performance, 2009.

El-Medany, W., Al-Omary, A., Al-Hakim, R., Al-Irhayim, S., & Nusaif, M. (2010). A Cost Effective
Real-Time Tracking System Prototype Using Integrated GPS/GPRS Module. 2010 6th
International Conference on Wireless and Mobile Communications, 521–525.
doi:10.1109/ICWMC.2010.104

Forsström, S., & Kanter, T. ubiquitous sensor-assisted applications on the internet-of-things.
(2013). Enabling ubiquitous sensor-assisted applications on the internet-of-things.
Personal and Ubiquitous Computing, 18(4), 977–986. doi:10.1007/s00779-013-0712-9

Forsström, S., Kardeby, V., Österberg, P., & Jennehag, U. (2014). Challenges when Realizing a
Fully Distributed Internet-of-Things – How we Created the SensibleThings Platform, (c),
13–18.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., …
Stanley, H. E. (2000). {PhysioBank, PhysioToolkit, and PhysioNet}: Components of a New
Research Resource for Complex Physiologic Signals. Circulation, 101(23), e215–e220.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision,
architectural elements, and future directions. Future Generation Computer Systems, 29(7),
1645–1660. doi:10.1016/j.future.2013.01.010

Ha, S. W., Lee, Y. K., Vu, T. H. N., Jung, Y. J., & Ryu, K. H. (2012). An environmental
monitoring system for managing spatiotemporal sensor data over sensor networks.
Sensors (Basel, Switzerland), 12(4), 3997–4015. doi:10.3390/s120403997

IRIS. (2014). Incorporated Research Institutions For Seismology. Retrieved July 06, 2014, from
http://www.iris.edu/

Jones, V., Gay, V., & Leijdekkers, P. (2010). Body sensor networks for mobile health monitoring:
Experience in europe and australia. Digital Society, 2010. ICDS’10. ….

Joyent Inc. (2014). Nodejs. Retrieved August 01, 2014, from http://nodejs.org

LogMeIn Inc. (2014). Xively. Retrieved August 01, 2014, from https://xively.com/

Microsoft. (2014). ASP.NET. Retrieved July 06, 2014, from http://www.asp.net/

MicroStrain. (2014). SensorCloud. Retrieved August 01, 2014, from
http://www.sensorcloud.com/

Neumeyer, D., & Brown, J. (2014). Audio-Visual Palimpsests: Resynchronizing Silent Films with
“Special” Music. In The Oxford Handbook of Film Music Studies (p. 588). Oxford University.

Orduña, P., & Angulo, I. (2014). Graphic Technologies for Virtual , Remote and Hybrid

P a g e | 89

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

laboratories : WebLab-FPGA hybrid lab, (February), 163–166.

Rao, A. S., Izadi, D., Tellis, R. F., Ekanayake, S. W., & Pathirana, P. N. (2009). Data monitoring
sensor network for BigNet research Testbed. 2009 International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 169–173.
doi:10.1109/ISSNIP.2009.5416816

Sample, A. P., Braun, J., Parks, A., & Smith, J. R. (2011). Photovoltaic enhanced UHF RFID tag
antennas for dual purpose energy harvesting. 2011 IEEE International Conference on
RFID, 146–153. doi:10.1109/RFID.2011.5764615

Shamszaman, Z. U., Ara, S. S., Chong, I., & Jeong, Y. K. (2014). Web-of-Objects (WoO)-based
context aware emergency fire management systems for the Internet of Things. Sensors
(Basel, Switzerland), 14(2), 2944–66. doi:10.3390/s140202944

Singh, D., Tripathi, G., & Jara, A. J. (2014). A survey of Internet-of-Things: Future vision,
architecture, challenges and services. 2014 IEEE World Forum on Internet of Things (WF-
IoT), 287–292. doi:10.1109/WF-IoT.2014.6803174

Teja, G. N. L. R., Harish, V. K. R., Nayeem Muddin Khan, D., Krishna, R. B., Singh, R., &
Chaudhary, S. (2014). Land Slide detection and monitoring system using wireless sensor
networks (WSN). 2014 IEEE International Advance Computing Conference (IACC), 149–
154. doi:10.1109/IAdCC.2014.6779310

TempoDB. (2014). TempoDB. Retrieved August 01, 2014, from https://tempo-db.com/

Walnes, J., & Noakes, D. (2014). Smoothie Chart. Retrieved July 26, 2014, from
http://smoothiecharts.org/

Wessels, A., Purvis, M., Jackson, J., & Rahman, S. (Shawon). (2011). Remote Data
Visualization through WebSockets. 2011 Eighth International Conference on Information
Technology: New Generations, 1050–1051. doi:10.1109/ITNG.2011.182

YEI Corporation. (2014). YEI Technology. Retrieved July 16, 2014, from
https://www.yeitechnology.com/

Zhang, J., Iannucci, B., Hennessy, M., Gopal, K., Xiao, S., Kumar, S., … Rowe, A. (2013).
Sensor Data as a Service -- A Federated Platform for Mobile Data-centric Service
Development and Sharing. 2013 IEEE International Conference on Services Computing,
446–453. doi:10.1109/SCC.2013.34

Zhang, Y., Li, J., Li, Z., & Guo, L. (2009). Real-Time Flood Forecasting System Based on B/S
Mode. 2009 International Conference on Management and Service Science, 1–4.
doi:10.1109/ICMSS.2009.5303965

P a g e | 90

A p p e n d i c e s

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

7. Ethics

If your research involves other people, privacy or controversial research there may be

ethical issues to consider (please see the information on the module website). If the

answer below is YES then you need to complete a research Ethics and Governance

Approval form (available on the website:

http://www.ethics.napier.ac.uk).

Does this project have any ethical or

governance issues related to working

with, studying or observing other

people? (YES/NO)

No

8. Supervision timescale

Please indicate the mode of supervision that you are anticipating. If you expect to be

away from the university during the supervision period and may need remote

supervision please indicate.

Weekly meetings over 1 trimester X

Meetings every other week over 2

trimesters

Other

9. Submitting your proposal

Please save this file using your surname, e.g. macdonald_proposal.doc, and e-mail it

to the module leader in time for the next proposal deadline.

http://www.ethics.napier.ac.uk/

P a g e | 91

A . 4 . P r o j e c t P l a n

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

A.4. Project Plan

Figure 26: Project Plan

Tasks CW21 CW22 CW23 CW24 CW25 CW26 CW27 CW28 CW29 CW30 CW31 CW32 CW33

Literature Review M1

Search for Papers

Read Papers

Write Review

Project Proposal

Write Initial Report

Methodology M2

Requirement Analysis

Sensor Classification

Visualisation Technologies

Planing Implementation

Planing Experiment details

Writing Methodology

Implementation M3

Requirements

Sensor Simulator

(Mobile Application)

Web Service

Tesing / Experiments

Results and Evaluation M4

Correcting Dissertation M5

Milestone 1: 15th June 2014 Finish literature review

Finish project proposal

Finish initial report

Milestone 2: 29th June 2014 Finish Analysis

Milestone 3: 27th July 2014 Finish implemetation

Finish testing

Finish experiments

Milestone 4: 3th August 2014 Summarize Results and finish evaluation

Milestone 5: 17th August 2014 Finish, print Report, put together documents

P a g e | 92

A . 5 . D i g i t a l A p p e n d i x

M S c C o m p u t i n g , E d i n b u r g h N a p i e r U n i v e r s i t y
P a u l L a p o k

A.5. Digital Appendix

The following additional content can be found on the attached CD.

 Dissertation as PDF

 Research Proposal

 Initial Report

 Figures of Architecture (chapter 4)

 Measurement data of Experiments (chapter 5)

 Acceptance Test (Results of chapter 5.2)

 Applications and Source Code

o Frontend Data Visualisation (Websites chapter 5.3)

o Applications (Virtual Studio 2013 Project)

 ClientWebsite (example of client website)

 ECGSignal (Streaming ECG Signal data to Server)

 InstanceTest (Experiment chapter 5.6.1)

 LoadTest (Experiment chapter 5.6.2)

 LostPackages (Experiment chapter 5.6.3)

 ManageSensors (Console application for communication with

Registration Service chapter 5.2)

 NodeIterator (Example application – Sending data to Server)

 RegistrationServiceTester (GUI for Registration Service chapter

5.2)

 SendMessage (Investigation of Security chapter 5.5)

 SensorRegistrationService (Registration Service and database)

o Node.js Server Scripts

 With TLS

 Without TLS

 Prepared for data logging

