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Abstract 

Affiliate advertising is changing the way that people do business online. Retailers are now 

offering incentives to third-party publishers for advertising goods and services on their 

behalf in order to capture more of the market. Online advertising spending has already over 

taken that of traditional advertising in all other channels in the UK and is slated to do so 

worldwide as well [1]. In this highly competitive industry, the livelihood of a publisher is 

intrinsically linked to their web site performance. 

Understanding the strengths and weaknesses of a web site is fundamental to improving its 

quality and performance. However, the definition of performance may vary between 

different business sectors or even different sites in the same sector. In the affiliate 

advertising industry, the measure of performance is generally linked to the fulfilment of 

advertising campaign goals, which often equates to the ability to generate revenue or brand 

awareness for the retailer. 

This thesis aims to explore the correlation of web site evaluation metrics to the business 

performance of a company within an affiliate advertising programme. In order to explore 

this correlation, an automated evaluation framework was built to examine a set of web sites 

from an active online advertising campaign. A purpose-built web crawler examined over 

4,000 sites from the advertising campaign in approximately 260 hours gathering data to be 

used in the examination of URL similarity, URL relevance, search engine visibility, broken 

links, broken images and presence on a blacklist. The gathered data was used to calculate a 

score for each of the features which were then combined to create an overall HealthScore 

for each publishers. The evaluated metrics focus on the categories of domain and content 

analysis. From the performance data available, it was possible to calculate the business 

performance for the 234 active publishers using the number of sales and click-throughs 

they achieved. 

When the HealthScores and performance data were compared, the HealthScore was able to 

predict the publisher’s performance with 59% accuracy.  
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1 Introduction 

The Internet has changed the way people work, play and stay connected with each other 

and the world around them. From news sites, to e-commerce and gaming, the Internet has 

become an intricate part of daily life. One area in which the Internet has instigated major 

changes is the process with which businesses advertise their goods and services. One 

popular method, affiliate advertising, is a performance-based sub-set of online advertising 

in which individuals or companies, referred to as publishers, create a web site specifically 

to advertise the goods and services offered by another company, called the advertiser. The 

research presented in this Thesis explores the correlation between the features of these 

publisher sites and the actual business performance of the publisher on an affiliate 

advertising campaign. 

1.1 Motivations 

This research is the product of a Financial Services Authority (FSA) sponsored studentship 

to explore a topic related to a weakness in e-commerce that has the potential to affect the 

financial services sector. The exploration into the affiliate advertising industry began with 

an initial evaluation  of the websites and affiliate network profiles of the individuals 

believed to be involved in a massive affiliate fraud case in the UK in 2008 [2]. The 

Northumbria police were able to disclose the URLs and related entries from the publisher 

database of a large affiliate network that was one of the victims of this incidence of affiliate 

fraud. The associated losses  totalled more than £200,000 with a further £215,000 of 

pending transactions that were cancelled when the deceit was discovered. The fraud was 

exposed during a manual spot-check when an employee of the affiliate advertising team at 

one of the affected retailers luckily noticed clues that the transactions may be fraudulent 

and flagged them with the affiliate network.  

After completing the initial evaluation, it was clear that a system capable of automating the 

review of publishers on these advertising campaigns might be beneficial in preventing 

losses of this nature in the future. Through working closely with several digital marketing 

agencies, it was identified that fraud was not the only case of missed revenue in the affiliate 

advertising industry. A typical advertising campaign can contain thousands or even tens of 
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thousands of publishers that must be managed by a programme manager in order to ensure 

that the publisher’s sites are good enough to represent the brand and products of an 

advertiser. Many of these sites fall into what is referred to as the long tail of affiliate 

advertising. The long tail typically refers to the large number of affiliates on an advertising 

campaign that receive relatively few customers per month. In an e-consultancy article on 

the topic, Hewitson notes that from September 2010 to September 2011, the top 10 

publishers for one of the top affiliate networks, Affiliate Window, were responsible for 

76% of the total sales for the network in that period. Hewitson suggests that the long tail 

can be cultivated in order to grow those publishers and earn more money for advertisers, 

but acknowledges that it is hard work, and more of a long-term investment [3]. Several of 

the digital marketing agencies I was in contact with while conducting this research 

confirmed that they had also identified the same trend on their campaigns. From these 

observations, the idea for exploring the link between the features of a publisher site and the 

real-world performance of that publisher in an affiliate advertising campaign was born. The 

ability to determine how well a publisher is likely to perform based upon information that is 

readily available could prove to be useful in the identification of publishers with the 

potential to perform well along with providing a warning about potentially problematic 

publishers so that actions can be taken to curtail any issues before they arise. These 

problematic publishers could be those with a site that is simply under-performing, 

incompatible with the advertising campaign, poorly designed, breaking terms and 

conditions, or possibly even hosting malicious content.  

Currently, most affiliate networks provide programme managers with access to data that 

tells them how their publishers are performing but the tools and information available do 

not provide an insight as to why a certain publisher is a “Good” or “Poor” performer. 

Unless they are able to devote the time and resources necessary to look at each individual 

publisher site, affiliate managers also do not have a complete picture of how their product 

or brand is being promoted or whether their publishers are adhering to online best practice 

and affiliate network terms of service. For these reasons, affiliate advertising is an ideal 

area in which to explore the correlation between web site features and business 

performance.  

1.2 Aims and Objectives 
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Current web site evaluation methods are able to determine how easy a site is to use and can 

even gauge the potential level of user acceptance and satisfaction a site promotes. However, 

this research is focused on the affiliate advertising domain where performance is measured 

by how well a campaign goal is fulfilled. More often than not, the campaign goal involves 

the generation of revenue or brand awareness for the retailer. Therefore, this Thesis aims  

To explore the correlation between web site evaluation metrics and 

the real-world performance of a publisher on an affiliate advertising 

campaign. 

In order to achieve this aim, three questions have been defined to further focus the research. 

1.2.1 Measuring Real-World Publisher Performance  

The ability to derive a single measurement of the actual level of publisher performance on a 

campaign based upon individual features of the publisher’s site could prove be a powerful 

tool for affiliate programme managers. In order to meet the aim of this Thesis, the first 

research question must first be considered: 

Q1. How can a site’s real-world performance be measured and reported in 

such a way that a comparison between the site’s health and business 

performance can be drawn? HealthScore Calculation 

 

In order to explore the correlation between web site evaluation metrics and publisher 

performance, a set of significant web site features must first be identified. Any data related 

to these features must then be extracted from the publisher sites in order to calculate a score 

for each feature. These scores can then be used to test each of the features to determine 

their suitability in measuring overall publisher performance. Finally, a method must be 

devised that allows for the combination of the individual scores of the features that have 

been deemed suitable indicators of publisher performance into a single overall 

measurement for the publisher. This overall measurement will be referred to as a 

publisher’s HealthScore for the remainder of this thesis. Completing this process will assist 

with answering the second research question: 

Q2. Can scores derived from the various features of a publisher web site be 

combined in order to create a useful overall measurement of the site’s health? 

1.2.2 HealthScore Validation 

Once the HealthScore of a publisher site health has been calculated, the correlation between 



4 

 

the site’s health and the business performance of that publisher can then be tested. The 

exploration of that correlation is directly related to the aim of this Thesis and will also help 

to answer the main research question: 

Q3. How well can the HealthScore construct defined by this research be used 

as an indication of publisher performance on an advertising campaign? 

1.3 Contribution 

The work presented in this thesis contributes to the field of knowledge by presenting 

evidence of the existence of a correlation between the feature scores used to evaluate a 

publisher’s web site and that publisher’s business performance on a related affiliate 

advertising campaign. In order to show this correlation, this Thesis presents six web site 

evaluation metrics  created  using ideas and concepts from previous related literature. The 

metrics defined are URL Similarity, Visibility, URL Relevance, Broken Links, Broken 

Images and Blacklist Check. A custom-built web crawler examined over 4,000 web sites 

and extracted the data required to test the suitability of these features in measuring potential 

publisher performance.  

Using this data, the system calculated a score for each of the six features which were then 

used to compute a single HealthScore. This HealthScore is a new method of evaluating 

potential real-world publisher performance on an affiliate advertising campaign. 

In order to determine how each of the features and the HealthScore related to the real-world 

performance of the publishers, a measurement of performance had to be defined. Using the 

metrics of number of sales and number of click-throughs, the system was able to calculate a 

performance score for the 234 publisher sites for which performance data was available. 

With a measurement of performance now available, a comparison could be made between 

HealthScore and performance of each of the sites. Out of the 234 publisher sites that had 

associated performance data, the methods defined in this Thesis were used to correctly 

predict the performance of 137 (59%) of the sites. 

The system used to collect and analyse the data presented in this thesis is also a 

contribution to knowledge. This system is an automated and repeatable evaluation process 

for affiliate advertising publisher sites.  
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1.4 Thesis Structure 

This section lays out the structure for the remainder of this thesis. Chapter 2 describes the 

search of the literature surrounding interactive system evaluation and affiliate advertising in 

order to work towards the answering the three research questions. Chapter 3 presents the 

methodology used in the initial selection of web site features to be examined as well as the 

scoring method used for each of the web site features and concludes with an explanation of 

how the HealthScore and campaign performance scores are calculated for each of the 

publisher sites. Chapter 4 discusses the systems and processes involved in the gathering of 

feature data from the publisher sites as well as the initial observations regarding the sites 

themselves, the network data and the data collected from the publisher sites. Chapter 5 

presents the results of the experiments involving the web site features and the comparison 

of the HealthScore against real-world advertising campaign performance data. Finally, 

Chapter 6 offers conclusions, a summary and critical appraisal of the research and then 

suggests areas for future research. 
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2 Literature Review 

2.1 Introduction 

This chapter presents a brief overview of the affiliate advertising value chain. The overview 

introduces the main players and discusses the issues faced by each. Following this 

introduction, comes a discussion surrounding three types of affiliate advertising 

programmes commonly employed on the Internet today. These include: pay-per-mille 

(PPM), pay-per-click (PPC) and pay-per-action (PPA). After describing affiliate 

advertising, this chapter reviews the relevant current criteria commonly used to evaluate the 

quality of interactive systems including web sites and web applications. The review also 

includes a discussion of a selection of the various techniques used to evaluate these criteria. 

Following that review is a discussion surrounding web analytics and how they relate to the 

different metrics and techniques used in this research to measure publisher performance. 

Finally, the chapter concludes with a brief overview of two related forms of affiliate fraud: 

Impression Spam and Click Spam along with several mitigation techniques employed to 

combat these types of fraud. 

2.2 Online Advertising 

There is currently a multitude of techniques being used to advertise and sell products 

online; however, this thesis is generally concerned with a sub-set of the online advertising 

industry known as affiliate advertising. Affiliate advertising is a performance-driven 

industry that offers incentives for individuals and companies to earn an income from 

advertising goods and services on behalf of retailers. Affiliate advertising is one of the 

fastest growing online marketing tactics with a 16.7% annual growth rate, which is 

predicted to hold up through 2016. This growth even outpaces the current top performer in 

online advertising, paid search [1]. 

As a consequence of the recent growth of this market, the global number of participants 

grows rapidly day-by-day. While speaking with a large unnamed affiliate network with a 

strong presence in the UK, the team learned that the network receives 60-70 new publisher 

applications per day and currently boasts a portfolio of over 60,000 active publishers. As 
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the number of publishers enrolled in these programmes continues to grow, it becomes 

extremely difficult for programme managers to keep up with the evaluation of the publisher 

sites on the campaigns they manage. 

2.2.1 Key Players 

In nearly every type of affiliate advertising programme, four key players exist: the user or 

customer, the publisher or affiliate, the affiliate network and the advertiser. A fifth player 

has also begun to break onto the scene: the digital marketing agency. There are also some 

cases in which the advertisers will create an in-house affiliate department to look after their 

own affiliate advertising programme without the help of an affiliate network or digital 

marketing agency, but these cases are few and are often reserved for very large advertisers 

such as Google, Amazon and eBay. 

Industry professionals tend to use different terms for the various key players depending on 

where in the industry they work. These names below may be used interchangeably 

throughout the rest of this thesis. 

2.2.1.1 The User or Customer 

The user or customer is generally a normal Internet user looking to complete a purchase 

online or to sign up for an online service. According to a recent Forrester survey, 55% of 

respondents indicated that they look for deals or voucher codes related to an online 

transaction they wish to complete, while 32% said that they often begin their online 

shopping session by visiting a publisher site. The survey also found that these users visit an 

average of three different publisher sites before purchasing to ensure they have found the 

best deal available [1]. The results of the survey indicate that the primary goal of users is to 

save money on their online purchases. Several authors in the field have found that users 

prefer and will more often user publisher sites that are highly usable [4] [5] [6]. 

Although the research presented in this Thesis does not directly address the primary goal of 

users to save money, a publisher that has access to the HealthScore calculate by this system 

would be able to make changes that positively affect the usability of their site and thus 

improving the user’s experience. 

2.2.1.2 The Publisher or Affiliate 

The publisher, or affiliate, is an individual or company that earns commission on purchases 
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made by customers that they have directed to the advertiser’s site. Commission rates vary 

between advertising campaigns, but the campaigns examined in this Thesis generally had a 

majority of the publishers earning 3-5% commission on a relatively new campaign. Some 

programmes varied the amount of commission paid depending on previous experience with 

a publisher, and occasionally rewarded high-performing publishers with a higher 

commission rate. Forrester reported that commission from affiliate networks continued to 

be the biggest spend in affiliate advertising through 2012 [1]. 

Publishers participate in affiliate advertising programmes to earn revenue for influencing 

users to complete various actions on their site. These actions benefit an advertiser in some 

way, and that advertiser then pays commission to the publisher. Hasan, Morris and Probets 

found that users satisfied with their browsing session on a site were more likely to return 

[7]. In order to increase their revenues, publishers are continually looking to improve their 

sites as sites with low usability have been linked to revenue loss [8] [9]. The system 

presented in this Thesis directly relates to helping publisher solve this problem by 

highlighting the strengths and weaknesses of a publisher’s site in regards to overall health. 

With this knowledge, a publisher should be well equipped to improve their site’s usability  

and increase their uptake and sales volume [6]. 

2.2.1.3 The Affiliate Network 

Affiliate networks such as Webgains, OMG, TradeDoubler, Affiliate Window, Buy.at and 

Commission Junction act as intermediaries between the advertisers and the publishers. The 

affiliate networks usually provide advertisers with a management dashboard and other tools 

that allow them to quickly view the statistics for their advertising campaigns as well as edit 

the details of their campaign.  

The affiliate networks help publishers by making it easier to locate and sign up for 

advertising campaigns that are relevant to their web sites. The networks also usually 

provide the publisher with statistics related to how well their site is performing, similar to 

the dashboard offered to the advertiser.  

Aside from offering tools and information to help both advertisers and publishers to 

manage their campaigns more effectively, the affiliate network also handles billing the 

advertisers and paying the commission due to the publishers. For their services, the affiliate 

networks take a small percentage from both the publishers and advertisers with some 
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networks also charging a recurring access fee to advertisers in order to use the management 

dashboard and other tools. The only direct benefit to affiliate networks from this research is 

related to the long tail of an affiliate advertising campaign, which often includes a large 

percentage of the publishers on that campaign [3]. By reviewing the various feature scores 

of the publishers on a campaign, it may be possible for an affiliate network to identify the 

common factor amongst long tail publishers in order to help boost the effectiveness of those 

sites. 

2.2.1.4 The Advertiser or Merchant 

The advertiser or merchant is the retailer that actually sells the goods or provides the 

services being advertised by the publishers. Advertisers can range from large companies 

like Tesco or ASDA down to small businesses run from someone’s home. Some advertisers 

will hire a member of staff specifically to act as their programme manager in charge of 

running their affiliate programme. Their role generally involves recruiting publishers and 

ensuring that their site content is appropriate for the advertising campaigns. However, with 

the increase in size and complexity of advertising campaigns, advertisers have begun to 

outsource these responsibilities to third-party companies such as digital marketing agencies, 

and the role of the affiliate manager in these advertisers has shifted to acting as a liaison 

between the advertiser and the agency. Some of the larger advertisers such as Google, 

Amazon and eBay have gone as far as to skip the use of an advertising network and their 

in-house affiliate advertising departments deal directly with their publishers. 

Pricewaterhouse Cooper (PwC), along with the UK branch of the Internet Advertising 

Bureau (IAB), have recently published a report related to online performance marketing in 

the UK. The report found that in the UK alone there are 3,000-4,000 advertisers spending a 

total of £814 million on advertising in this market with the finance sector doing 45% of the 

spending and online retailers being the next highest spenders at 20%  [10]. 

2.2.1.5 The Digital Marketing Agency or Outsourced Programme Management 

(OPM) Company 

Digital marketing agencies offer their clients a range of services dealing with brand 

management, online marketing and some also offer affiliate programme management. It is 

this last role that is referred to when digital marketing agencies are mentioned throughout 

the remainder of this thesis.  
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When an advertiser hires a digital marketing agency or OPM to manage their affiliate 

programme, the agency generally takes on the role of managing the publishers and dealing 

with the affiliate networks on behalf of the advertiser. The role played by the agency will 

generally include services such as providing advertising content to the publishers, recruiting 

new publishers to the campaign, auditing publisher performance throughout the campaign, 

managing the billing process and tracking sales/leads using the tools provided by the 

affiliate networks as well as various third-party programmes.  

The digital marketing agencies involved in the studies presented in this Thesis conduct 

periodic reviews of the affiliate sites in the campaigns they are managing. These reviews 

are a method of auditing publisher performance and also allow the agency to ensure that the 

site conforms to their terms and conditions as well as those of the various affiliate networks 

and advertisers involved. The agencies indicated that publisher site reviews are often 

manual and time consuming, leading to the agency conducting spot checks on a subset of 

the publisher sites rather than reviewing each page on all of the publisher sites. 

This research presents a methodology that would allow the agencies to conduct their 

periodic reviews in an automated, repeatable and unbiased manner. The automation of the 

review process could greatly improve the speed and frequency of the periodic reviews and 

also allow the agencies to get a more complete overview of the health of a publisher site 

due to the crawler analysing every page rather than the random selection of pages that the 

human evaluator would choose. 

2.2.2 Types of Online Advertising 

Vakratsas & Ambler define advertising as a means of influencing a customer to purchase 

the advertised product over a competitor’s product or products [11]. The traditional method 

of achieving this goal has been through bombarding print, television and radio with 

advertisements in order to maximize the effective reach of the advertising message. 

Effective reach refers to the amount of people who are exposed to the advertisement and 

the goal of maximising this reach is to greatly increase the potential that people from the 

target demographic will see or hear the advertisement and will be influenced to purchase 

the product [12].  

As the world becomes increasingly reliant on the Internet, advertisers selling products and 

services are moving from more conventional advertising mediums and turning toward the 



11 

 

Internet as a means of reaching a much wider and diverse audience. These advertisers are 

also becoming increasingly open to the idea of third party publishers advertising those 

products and services on their behalf [13].  

In the past, most large advertisers had a few agents, distributors and resellers with whom 

they maintained personal relationships that were managed at a one-to-one level. However, 

the Internet enables this activity to be undertaken on a much larger scale and the 

predominant example of this is reflected in online advertising.  

There are two major types of online advertising discussed in this thesis: display advertising 

and paid search. The main focus of this research is on display advertising, but a brief 

overview of paid search is also presented for completeness. 

2.2.2.1 Display advertising 

Display advertising generally includes a banner or other form of clickable advertisement 

that contains more than simply text, although a simple text link can also be used. There are 

several different types of display advertising programmes available to publishers including: 

a) Pay-per-mille (PPM) 

Pay-per-mille programmes use a unit of measurement called an impression which is 

registered when a unique user views an advertisement on the publisher’s web site. In these 

programmes, the advertiser pays the publisher a set fee for every 1,000 impressions [14]. 

The PPM model of affiliate advertising is the most closely related to traditional advertising 

in other mediums such as television, print and radio. In a PPM programme, the 

advertisement may be shown to uninterested parties and therefore a portion of the 

advertising spend is wasted.  

b) Pay-per-click (PPC) 

In a pay-per-click programme, publishers display an advertisement for the products or 

services of the advertiser and the advertiser pays a small amount to the publisher for every 

click on the advertisement. These programmes can often generate clicks by users outside of 

the target audience which could result in a low conversion rate and wasted advertising 

spend [15]. Another problem that has become common in PPC campaigns is that the 

publishers will often use advertising content that is geared toward enticing users to click on 

the advertisement rather than properly explaining the goods or services for sale [16]. This is 
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likely because the publisher earns money based on the number of click-throughs to the 

advertiser’s site and does not need to be concerned with whether the user will buy a product 

or service. 

c) Pay-per-action (PPA) 

In a pay-per-action programme, publishers are paid based upon attracting users to the 

publisher’s site to complete a conversion. A conversion is an action from a set of pre-

agreed actions that the advertiser considers to be favourable. Conversions can be actions 

such as completing a purchase at the advertiser’s site, signing up for a newsletter, or may 

even include applying for a credit card or similar financial product [17]. 

The benefit for the advertiser in using the PPA model of affiliate advertising is that, in 

theory, the advertiser is only paying for the advertising that directly results in a favourable 

outcome [17]. Although the PPA model can result in fewer conversions for a publisher, the 

programmes examined during this study started at a 3-5% commission for new publishers 

which could net an effective publisher a substantial amount of commission on a PPA 

programme. 

Throughout the remainder of this thesis, when affiliate advertising is mentioned, the focus 

will be primarily on the PPA model of affiliate advertising unless specifically stated. 

2.2.2.2 Paid Search 

Paid search, while not technically grouped in with affiliate advertising, often works similar 

to a PPC campaign. Search engines are in the unique position of knowing exactly what 

product or service the user is looking for, and that information allows them to flourish in 

this model of online advertising. Both advertisers and publishers use paid search to drive 

traffic to their sites.  

In paid search, site owners pay for a spot in the sponsored search results for their choice of 

keywords and each click-through sent from the search engine costs the site owner a small 

amount of money. The amount of money per click may be a flat-rate agreed upon between 

the site owner and search provider, or it may involve real-time bidding on keywords based 

upon parameters set up by the site owner beforehand. The method of bidding varies 

between search providers, and some providers offer several options on how to bid for 

keywords [18]. However, the mechanics of how keyword bidding in paid search works are 
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beyond the scope of this thesis. 

The Internet Advertising Bureau (IAB) have reported that paid search programmes grew by 

6.8% from the first half of 2008 into 2009 to £1.06 Billion, which accounts for 60% of the 

total online advertising expenditure [19]. As such, it would be interesting to see if the 

results of this study extend to the realm of paid search. 

2.2.3 How it works 

Despite their subtle differences, all of the models of affiliate advertising that have been 

discussed throughout this section can be described using Figure 2.1. In general, the 

publisher is responsible for attracting users to their web site. Once a user has arrived on the 

publisher’s site, the publisher will have a banner advertisement or some other method of 

promoting the advertiser’s products and services. In a PPM type programme, the publisher 

will have earned a small amount of money simply from showing the advertisement to the 

user. 

 

Figure 2.1 Affiliate Advertising Overview 

In any other type of programme, the publisher will need to provide a reason for the user to 

click on the link to the advertiser’s site. This may be compelling content or it may even be 

something useful to the customer such as a discount code. Once the user has navigated to 

the advertiser’s site, most current implementations will place a tracking cookie onto the 

user’s system. This cookie will be used by the advertiser and the affiliate network to 

determine which publisher sent the user to the advertiser’s site so that the correct publisher 

is credited with any commission earned. The cookie will remain on the user’s system for a 

pre-determined amount of time that can vary from campaign to campaign in order to credit 

the publisher even if the use does not make a purchase immediately. In a PPC campaign, 

Web Traffic 
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Affiliate Network / Agency 
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         £ 
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the publisher would earn a small amount of money for sending the user through to the 

advertiser’s site.  

Although the user is now on the advertiser’s site, the publisher will not have earned any 

commission yet on a PPA programme. Once the user has completed a specific action such 

as making a purchase or signing up for a service or newsletter, the publisher referred to by 

the user’s tracking cooking will then be credited with the conversion and finally earn 

commission  [20]. 

As one can imagine, it can be difficult to drive traffic to a publisher website, and getting the 

traffic is only half of the battle. In order to get that elusive conversion, the publisher must 

keep their site updated with fresh, interesting information [21] as well as performing 

routine maintenance to check for things such as broken links that may occur when external 

content is taken down or moved to a new location. Because of the effort required to stay on 

top of the affiliate advertising game, digital marketing agencies and networks have been 

battling with the issue of affiliate advertising campaigns having a large percentage of their 

publishers that have very few conversions each month. These publishers are said to be a 

part of the long tail of affiliate advertising. While these publishers may not perform very 

well individually, the sheer number of them on a typical programme can account for 20-

30% of the revenue per month in some cases [22]. 

2.2.4 Common Industry Performance Metrics 

One of the major issues with traditional advertising is that it is very difficult to determine if 

advertising efforts are being wasted or are actually bringing new customers to a business 

[23]. The major benefit of online advertising versus advertising on traditional media like 

print, radio and television is that it is much easier to collect accurate statistics as to how the 

users are viewing and interacting with advertisements. This interaction is measured using a 

variety of metrics, the most important of which are introduced below. 

2.2.4.1 Impressions 

There are two main ways in which advertisements are seen by users: pulled advertisements 

are those advertisements that have been requested by the user’s browser, and pushed 

advertisements are those that have been sent to the user via correspondence such as a 

newsletter or e-mail list [14]. 

As a metric, the number of impressions is the measurement of how many times a particular 
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advertisement has been seen by a unique user. An impression is counted regardless of 

whether a user interacts with, or even pays attention to an advertisement [15].   

2.2.4.2 Click-through Rate (CTR) 

When a publisher presents an advertisement or a link to an advertiser’s site to the user, the 

user can either choose to ignore the advertisement and continue browsing or the user can 

choose to click-through to the advertiser’s site. In the case of a user clicking on the link, a 

click-through is registered for the publisher.  

One of the various metrics used by networks and agencies to determine how well a 

publisher is performing is the ratio of clicks to impressions. This measurement is the 

publisher’s click-through rate (CTR) [17]. 

While CTR is commonly used to evaluate how well a particular campaign is performing, 

Dalessandro et al. found in a recent study [16] that this measurement alone is a poor 

method of determining publisher success. The authors concluded that a user clicking on an 

advertisement is not highly correlated with that user making a purchase at the advertiser’s 

site. The authors have also suggested that the industry move away from using creative 

designed simply to entice users to click on advertisements and move toward creative that 

explains the products or services offered by the advertiser, and thus genuinely interests the 

user in visiting the advertiser’s site [16]. 

2.2.4.3 Conversion Rate (CR) 

A conversion is recorded when a user completes one or more specified actions on the 

advertiser’s sites. These actions are generally constrained to those which provide the 

advertiser either with direct revenue as is the case with the user making a purchase, or 

information that can lead to revenue generation as can be the case when a user provides 

personal details when signing up to an advertiser’s service such as newsletter or e-mail list. 

Conversion rate is one of the most common performance metrics used to determine 

publisher performance on an advertising campaign. The conversion rate is the ratio of 

clicks generated by the publisher to the number of conversions generated by the publisher 

[15].  

2.2.4.4 Cost-per-revenue (CPR) 

Cost-per-revenue is one of the performance metrics in the world of affiliate advertising that 
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is closely related to a metric from traditional advertising. Like return on investment (ROI), 

this metric considers not only the number of conversions but also how much revenue those 

conversion have generated. Using this metric, advertisers are able see exactly how much it 

costs for a particular publisher site or advertising channel to generate one dollar [24]. Due 

to not having access to the revenue data necessary to compute the CPR for the sites 

examined, this study was unfortunately unable to use CPR as a performance measure. 

2.2.4.5 Bounce Rate 

Unlike the other metrics described in this section which all consider a higher score to be 

better, a lower bounce rate is considered to be better. A bounce is defined as a site visit that 

ends immediately after a user visits the landing page and does not interact with anything 

else on the site. The Bounce Rate is measured as the percentage of all visits that are 

bounces [25]. A user will generally bounce if the landing page does not display the 

information that the user expected to find on the site, but may also produce a bounce when 

accidentally clicking on an incorrect link in a search engine or other web portal and then 

clicking back when the mistake has been realised. Performance data related to bounce rate 

was not available during this study, and so it could not be used as a measurement of 

performance. 

2.2.5 Analytics 

While measuring the performance of a site is useful to publishers, collecting information 

about the site’s users and being able to predict their behaviour are crucial to maximising a 

site’s advertising potential  [26].  

As the affiliate advertising industry grows, it is becoming a more competitive environment 

with publishers and advertisers bidding against each other for keywords in paid search 

campaigns in their struggle to attract the same demographic of customers. Analytics have 

long been used in traditional advertising to both understand the consumer as well as to help 

formulate a coherent marketing strategy, and the competitive nature of affiliate advertising 

has caused the use of complex analytics to infiltrate the online advertising environment as 

well [27].  

There are two general methods of retrieving analytics data: log file mining and page-

tagging [28]. Both of these approaches can be adapted to the affiliate advertising industry 

and, in that context, these approaches share the same goal: understanding how and why a 
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user’s experience ends in either a conversion or non-conversion. The original methods of 

collecting web analytics relied on log file analysis. In this method, parsing the log files can 

reveal information about web site visitors [28]. This information can include metrics such 

as: 

 The last page a visitor viewed on the site or the exit page [29] [30] 

 The search terms that lead the user to the site [29] [30] 

 The referring site [29] [30] 

 The first page the visitor saw on the site or the entry page [29] [30] 

 Any errors that occurred during the site visit [29] 

 The path that the user took through the site [29] 

 Information about the operating system and browser of the user [29] 

 The time the user spent on the site [30] 

 

While log file analysis was able to provide a wealth of information, there were inaccuracies 

created by this method [28]. For example, counting unique visitors is difficult using log file 

analysis due to the widespread use of NAT technology on the Internet. 

The issues with log file analysis helped to usher in the next generation of web analytics: 

page-tagging [28]. In a page-tagging system, code is inserted into the pages of a web site in 

order to gather statistics about visitors and traffic patterns [31]. Page-tagging is considered 

to be far more accurate than log file analysis because cookies allow the system to more 

accurately determine unique visitors and web crawlers do not activate the scripts on the 

page and therefore are not logged [15].  

Advanced tools and services based on the page-tagging techniques such as Google 

Analytics allow users to view detailed statistics about how visitors interact with their site 

and to compare the benefits of traffic from different sources against one another [32]. The 

information provided about these visitors and the way they interact with the site can help a 

publisher to recognise which traffic sources bring high-quality traffic and which sources 

bring traffic that rarely converts despite the publisher’s best efforts [33]. Another service 

that uses page-tagging is Amazon’s Alexa. The main difference between Google Analytics 

and Alexa is that the data analysis one by Alexa is searchable on the web and available for 

all to see [34].  Both Google Analytics and Alex have also evolved to user techniques 

beyond simple page tagging. Google Analytics relies on anonymous usage data sent to the 

service by users of the Chrome internet browsers and Alexa boasts that data is collected 
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from a variety of browser extensions [34]. This usage information allows both services to 

estimate traffic data even for sites that have not implemented their page tagging techniques. 

The use of web analytics is not limited simply to examining visitor behaviour. Interest in 

using analytics to predict future customer behaviour and segmenting the market based upon 

the results has been increasing amongst retailers [35]. Segmenting a market involves 

separating the existing and potential customers into a variety of groups based on several 

criteria. Segmenting the market allows a publisher to tailor his or her efforts to appeal to 

each individual segment in a unique way [36]. This extra effort can lead to an improved 

click-through rate for a site, meaning increased revenue for the publisher [37]. This 

increased revenue can be attributed to the use of techniques such as personalised landing 

pages based upon the search query that brought the user to the site [38]. 

Strategies to segment the market in affiliate advertising tend to revolve around an analysis 

of the referral keywords that brought the user to the site. Early research in the field used 

search engine logs in an attempt to categorise intent through analysing which links were 

clicked for each query [39, 40]. However, several studies on contextual advertising have 

found that personalised landing pages based upon the user’s short-term search and 

browsing behaviour rather than simply the final search result that directed the user to the 

site can lead to an increase in click-through-rate [41, 37, 38].  

Another aspect of understanding the consumer is to understand the user experience. 

Engaging the users of a web site can lead to a more enjoyable experience which increases 

the chance that the user is more likely to return to the site in the future [42, 43]. Returning 

customers are less likely to bounce, and also tend to spend more time on the site [7]. 

Web analytics can provide a vast amount of information that is essential to improving a site 

through gaining an understanding of the site’s users. The downside to analytics is that 

completing this type of analysis requires a heightened level of access to the web servers 

hosting the site content. In order to set up a system like this, one would need the ability to 

access the log files of the web servers, modify the code of the pages on a site, or to find 

willing participants to install a third party program that will conduct the monitoring.  

2.2.6 Impression Spam 

As outlined in section 2.2.2.1, a publisher in a PPM programme earns commission for 

every 1,000 impressions of an advertisement. One method of defrauding this type of 
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programme is known as impression spam. Impression spam involves sending requests for 

pages that contain advertisements that users will never see, or that are simply being sent to 

inflate the number of impressions. As these advertisements are not reaching actual users, 

advertisers should not be charged for these impressions [44]. 

The most basic method of sending these requests is users manually refreshing pages, but 

that type of impression spam is low-tech and is relatively easy to detect compared to using 

impressions generated through malware. In 2010, Click Forensics discovered a piece of 

malware that opened a new browser window called a pop-under because it is opened under 

the currently active window. In this pop-under window advertising banners were rotated 

every 10-15 minutes and aside from simply displaying ads that the user was unlikely to see 

due to the pop-under window being covered by the active browser window, the malware 

would also click on these ads occasionally. This malware was earning revenue for 

malicious publishers through both impression spam and click spam [45]. 

Impression spam not only drains advertiser’s budgets, but can also drastically reduce the 

CTR of the publisher by inflating the number of impressions without changing the number 

of clicks unless used in conjunction with click spam techniques. This can be detrimental to 

a publisher on any type of campaign, other than PPM, as some campaigns measure 

performance based upon CTR. An artificially inflated amount of impressions can cause the 

publisher to appear to be performing worse than they would without the impression spam, 

and so impression spam may be tempting to use against competing publishers. 

2.2.7 Click Spam 

In order to earn a commission in a PPC programme, publishers must rely on users clicking 

on their advertisements. In some cases, these clicks may originate from sources other than 

legitimate users. Clicks with an illegitimate source are often referred to as invalid clicks, 

and affiliate networks have proprietary detection techniques in order to filter out these 

invalid clicks so that advertisers are not charged for them. In the cases that an invalid click 

is detected after an advertiser has been billed, the network will issue a refund.  

When one of these invalid clicks is issued with malicious intent, it is considered click fraud 

or click spam and can be used by malicious publishers in order to artificially inflate the 

number of clicks registered on their ads without providing any additional benefit to the 

advertiser [46]. While it is impossible to know the intent of the user or agent that has 
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clicked an advertisement with 100% certainty, methods have been developed to identify 

invalid clicks versus accidental double clicks, or other inadvertent sources of invalid clicks. 

These methods generally look at several aspects of a user’s visit such as how many pages 

on the site were viewed, how many paid clicks are from the same IP address, whether the 

user has a tracking cookie, how quickly the user is able to traverse the pages of a site and 

several other aspects of the visit [47].  

In the event that an invalid click is detected, the user is still directed to the requested site 

even though the click is not charged to the advertiser. This is done because it may be the 

case that a legitimate user’s click was mistakenly marked as invalid and preventing a 

redirection to the advertiser’s site would create a poor user experience for the potential 

customer, and could also cause a loss of revenue for the advertiser. 

There are several non-malicious scenarios in which a click may be marked as invalid [44]: 

 Some web crawlers may inadvertently request content that would result in a click, 

and these clicks are often caught and marked invalid. 

 Some users may accidentally click more than once on an advertisement by double-

clicking as they would when opening an application. Most tracking algorithms in 

place will recognise this behaviour and mark the excess clicks as invalid. 

Click fraud is thought to be a common occurrence, although according to Click Forensics 

the click fraud rate across the 300 advertising networks they monitored in Q4 2010 was 

down to 19.1% from 22.3% the previous quarter [48]. It has also been reported that 

programmes in which the advertiser’s cost per click is a flat rate that is known to the 

publisher had more fraud than programmes that involved keyword bidding in which the 

publisher did not have direct prior knowledge of the price per click [49]. 

Publishers are not the only members of the affiliate advertising chain that can have 

malicious intent. Malicious advertisers may purposefully use click spam in order to drain a 

competitor’s paid search advertising budget for the day to gain control over high value 

search keywords [44]. The reasoning behind this type of click fraud is two-fold: 

1. Deplete the competitor’s advertisement budget without giving them any 

conversions, and therefore causing them to lose out on potential revenue for the day. 
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2. Increase the likelihood that conversions that may have gone to the competitor will 

instead go to the malicious advertiser as they are generally bidding on the same 

keywords. 

No matter which malicious party is committing the fraud, the methods are generally the 

same. The most basic form of click spam involves users purposely clicking on an 

advertisement link with no intention of completing a purchase. This can be achieved with 

just the individual publisher clicking on advertisement links, but this method of click spam 

is easily detected by advertising networks and will classify all clicks from that user as 

invalid if detected. In order to avoid detection, the user would either need to wait a set 

period of time between clicks to defeat the detection algorithms as Li, Zeng and Wang 

observed [49] or use an anonymising proxy service such as Tor to repeatedly change their 

IP address, making the fraudster appear to be multiple users [50]. 

While it is possible for a single person to generate a significant amount of traffic in one 

day, the major players in click-spam are actual businesses with professional looking web 

sites. These companies derive profit from paying other people to visit publisher sites and 

complete conversion actions as well as earning revenue from advertisements on their 

company site. The programmes run by these companies are generally referred to as pay-to-

click (PTC) or pay-to-read (PTR) and the terms are often used interchangeably. The 

distributed nature of these programmes makes it very difficult for affiliate networks to 

distinguish the actions of users on these programmes from legitimately interested users 

[49]. 

The users that take part in these programmes are paid a small amount per action, and the 

PTR company pockets the remainder. These actions range from simply visiting websites 

that display PPM banners, to clicking on PPC ads and filling in surveys on PPA sites. Many 

of these sites even offer affiliate programmes of their own in which users can refer others to 

the PTR site. The referring user will then earn a very small amount of revenue each time 

the referred user completes a task [51, 52].  

Another popular method of producing click spam is through the use of botnets specifically 

designed to click on the author’s ads, also known as clickbots. With this method, the 

fraudster must first amass a collection of infected computers, or bots, on different networks 

that are preferably unrelated and distributed geographically to help disguise the clicks with 
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legitimate click traffic [53]. Once the botnet has enough infected computers, the bot master 

simply instructs each computer to visit the publisher page and complete any action or 

actions that will earn revenue. This method presents the same problem as the PTR/PTC 

sites in that the infected computers may be distributed throughout the world, and the clicks 

are often difficult to filter out from real clicks. 

There are also a number of ways to coerce users into clicking on advertisement links 

without their knowledge. This is known as forced click or cookie stuffing, and can be 

accomplished in multiple ways. Often in a PPA campaign, the publisher’s site will place a 

cookie on a user’s machine which is then read by the advertiser’s site to determine which 

publisher is entitled to the commission is the user converts. Malicious publishers have 

found various methods of putting these cookies on a user’s machine without user 

interaction and these methods can often overwrite legitimate cookies, thus denying other 

publishers commission that they have rightfully earned [20].  

Gandhi, Jakonsson and Ratkiewicz were able to create a snippet of JavaScript code that 

would automatically register as a click when a page with the script on it was loaded [54]. 

This attack could be present in a malicious publisher’s page, a legitimate page to which the 

malicious publisher has gained access, an e-mail message or even a forum post. Once the 

content is viewed, the exploit will have taken place completely invisible to the user. In 

order to avoid detection, the exploit was designed to only register clicks for a random 

percentage of visits [54].  

The JavaScript code used in the attack exploited a popular method of cookie stuffing by 

creating an invisible iFrame which the malicious publisher site used to load the advertiser’s 

page without the user requesting it. In fact, the user could not even see the contents of the 

advertiser’s site as they were loaded in the invisible iFrame [55, 56].  

Another method of forcing clicks out of users is through the use of malware. The malware 

used in this type of fraud can come from a variety of sources, but two common sources are 

drive-by-downloads and fake anti-virus software. Drive-by-downloads are pieces of 

malware that are downloaded and installed without requesting the user’s permission or 

requiring any user interaction [57]. This type of malware is dangerous because users often 

do not know they are infected. On the other hand, the user must install fake anti-virus 

software willingly in most cases. The fake anti-virus infection sites play upon the user’s 
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fear of downloading a virus or other malware by popping up a message that the computer is 

already infected and that the software can clean the computer if installed immediately. Li, 

et al. discovered a fake anti-virus campaign in 2011 that included 24 advertising networks 

and 84 fake anti-virus sites which were rotated to avoid being detected. The authors noted 

that when the website was accessed, there was an advertisement displayed as well as an 

invisible iFrame which started the redirect chain used in this attack which included Google 

as well as DoubleClick, although these entities were very likely unaware of their 

inadvertent involvement in the scam [56]. 

In 2012, the FBI uncovered and took down a large-scale affiliate fraud scheme in 

Operation Ghost Click. The operation is regarded as the largest cyber takedown in history 

as the fraudsters had earned $14 million over the course of four years [58, 59, 60]. Alrwais, 

et al. conducted testing on the attack infrastructure before it was taken down by the FBI and 

have created an in-depth report that offers a unique insight into how the attacks were 

conducted [61]. According to the authors, the attack changed the DNS settings on a user’s 

machine to point them toward attacker-controlled DNS servers in Eastern Europe. When an 

infected user visited a legitimate publisher page and requested one of their advertisements, 

the attackers DNS server would instead send back one of the attacker’s advertisements. Not 

only did this earn revenue for the attackers, but it also took revenue away from the 

publisher site that user was actually visiting. This technique also made it look as though the 

invalid clicks were coming from legitimate publishers [61]. 

2.2.8 Mitigation Techniques 

The most common mitigation technique employed against click fraud is a direct traffic 

measurement technique known as clickstream analysis [62]. Clickstream analysis takes an 

in-depth look at the incoming clicks and uses a set of heuristics to look for conditions 

known to be associated with click spam [63]. One popular form of detection is searching 

the clickstream for duplicate clicks in a process the industry knows as de-duplication or 

simply de-duping [64]. Although not all duplicate clicks originate from fraudulent means, 

this research is only concerned with those duplicate clicks that are fraudulent.  

Several techniques exist for de-duping, the majority of which rely on Bloom Filters.  A 

bloom filter is a data structure that can be used to test whether or not an object is in a set. 

Bloom filters work well for detecting duplicate click data because they cannot generate 
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false negatives. In the context of detecting duplicate clicks, this means that a classic bloom 

filter-based implementation should mark every duplicate present [64]. One downfall of 

classic bloom filters is that there is a possibility of false positives which means that due to 

hash collisions, a unique click may be marked as a duplicate. 

More recent work has begun to use modified versions of bloom filters in order to make 

them more efficient in this field. Zhang and Guan have introduced an algorithm they call 

Group Bloom Filters (GBF) in order to significantly reduce the memory requirement when 

compared to classic Bloom Filters in certain cases [65]. In the event that the GBF algorithm 

would still use many memory operations, the authors have also introduced an algorithm 

called timing Bloom Filters (TBF). The TBF algorithm introduces timing information that 

allows for stale or expired data to be removed in order to conserve memory [65]. 

Wei et al. proposed another version of bloom filters designed to reduce RAM requirements 

known as Detached Counting Bloom filter Array (DCBA)  [66]. Each DCBA is an array of 

Detached Counting Bloom Filters (DCBF), which are essentially Bloom Filters that are 

associated with a counter that can be offloaded to a disk when full. One of the benefits of 

this algorithm is that the DCBA only needs to keep 10% of the elements in RAM, and yet 

retains 95% of its searching performance. 

Hybrid detection systems use a combination of rule and anomaly-based methods, and often 

include both real-time “online” detection that attempt to classify a click based solely on a 

small amount of clickstream data as well as “offline” detection that is able to take 

advantage of the vast amount of data that networks store across multiple advertising 

campaigns [44]. Google has revealed that both rule and anomaly-based systems play a 

major part of their infrastructure despite being secretive about how their detection systems 

actually work [67]. 

Another method of combating the rising number of malicious publishers is to prevent them 

from joining a programme in the first place. Edelman outlines that it may be possible to 

prevent up to 71% of affiliate fraud by preventing malicious publishers from joining an 

affiliate programme altogether. He found that if an advertiser pays their publishers in 

arrears with compensation to offset the extra time before payment is received, there exists a 

certain point at which it is no longer profitable for fraudsters, or bad-type agents as he calls 

them, to participate in the programme [68]. Unfortunately, according to a more recent 
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survey of over 450 affiliates, 57% of good-type affiliates decide whether to join an affiliate 

programme based upon how often the programme pays out [13]. With the majority of 

affiliates basing their preference of programme on how soon they can start earning, it may 

be difficult for the first few networks that start extending that waiting period as it may 

decrease the number of good affiliates an advertiser or affiliate network can attract unless 

Edelman’s solution is adopted en masse amongst the top affiliate networks. 

Another interesting prevention mechanism involves displaying fake or bluff advertisements 

in programmes that automatically choose which advertisements to display [69]. In general, 

the method for choosing which advertisement to display on a page is to examine several 

factors that make up a user “profile”. These factors vary from network to network, but 

generally take into account things such as keywords for the web page, information gleaned 

about the user from cookies on their machine, referring page, etc.  

The bluff advertisements make use of this same user profile information, and are inserted 

on pages where they are highly unlikely to be clicked because the displayed text is totally 

unrelated to the user profile. This type of advertisement should only receive a high number 

of clicks from automated click-bots or poorly trained humans on PTR/PTC programmes. If 

a user clicks on a high number of these advertisements, the user is marked as suspicious 

`and their click activity can then be manually reviewed offline. A second type of bluff 

advertisement designed to target botnets with built-up user profiles contains specialized 

text, but is randomly displayed rather than targeted at the user profile. The authors feel that 

only a malicious user would click a large number of this type of bluff advertisement as a 

genuine user is unlikely to click a large number of unrelated advertisements [69]. 

Another method of click fraud prevention to be proposed is the idea of clickable 

CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans 

Apart) [70]. In this system, a user must complete a simple Turing test [71] before being 

redirected to the publisher’s site. The example described by the authors showed pictures of 

cats and dogs and asks the user to click on a specific animal. This system works because the 

pictures are already manually classified for use by Petfinder.com, which provides access to 

their database in return for a link to adopt a pet being placed under the CAPTCHA. It was 

shown that 99.6% of the time, a human user was able to solve the CAPTCHA in less than 

30 seconds while computers attempting to solve the same type of CAPTCHA had a 
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significantly lower success rate of around 1/54,000. The authors also suggest that while 

users may become frustrated by text-based CAPTCHAs, that clicking on pictures of cats 

and dogs is a more enjoyable experience and as such should not put users off using sites 

that employ this clickable CAPTCHA system [72].  

2.3 Interactive System Evaluation 

Companies and individuals often have a goal in mind when creating interactive systems 

such as web sites and web applications. One of the goals often involves the generation of 

revenue either directly through online sales, indirectly through raising brand awareness or 

in the case of online advertising, through earning commission by directing users to a 

retailer's site [16]. Unfortunately, as Dingli and Mifsud point out, although the importance 

of usability in these systems has been widely noted by academics and usability 

professionals, businesses often overlook the evaluation of the factors associated with good 

usability during the development process [73]. 

2.3.1 Measuring Website Success 

Determining the best method of measuring the success of information systems has been a 

long-standing question, but in 1992 DeLone and McLean published their Information 

Systems (IS) success model (which will be referred to as the D&M success model for the 

remainder of this thesis) which has been widely referenced since [74]. The D&M success 

model introduced a multi-dimensional concept of IS success [75] which has since been 

updated to account for the explosion of e-commerce. The new model depicts IS success as a 

combination of system quality, information quality, service quality, system use (or intent to 

use), user satisfaction and net benefits [74] although the authors do note that the definition 

of success may vary depending on the business sector and purpose for the system [75].  

An example of varying measurements of success lies with Google. Contrary to almost 

every other web site, the goal of Google’s main search portal is to ensure that visitors to the 

site leave as quickly as possible [76]. To that end, many of the features of the D&M success 

model do not apply to the Google page, and so a range of evaluation metrics with 

weightings tailored to the individual website being evaluated is needed to accommodate 

different web strategies and the features associated with determining success.  

Phippen, Sheppard and Furnell maintain that some success measures relating specifically to 
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e-commerce have generally included measuring criteria such as return on investment (ROI), 

profitability, effectiveness, reliability, utility or competitive advantage [27].  

In a study similar to the research presented in this Thesis, Lee and Kozar attempted to 

match user rankings of business website to the performance of the businesses [77]. The 

authors distributed surveys asking a group of online customers and a group of 

managers/designers to rank websites based upon information quality, system quality, 

service quality, and vendor specific quality. These four factors were then divided further 

into 14 sub-factors. In order to measure the business performance of sites, Lee and Kozar 

used the COMPUSTAT financial database to look up the Return on Assets (ROA) and 

Return on Equity (ROE) for each of the companies. The authors found that site preference 

rankings determined by the users closely matched the business rankings of the site with 

only a few exceptions [77]. 

2.3.1.1 Usability and Accessibility 

There are several dimensions common throughout the different approaches to interactive 

system evaluation, but usability and accessibility are often near the top of the list as two of 

the most important measurements in this area [4] [5]. One definition of site or application 

usability is  the ease with which a new or unfamiliar user can efficiently use the product 

without prior specific instruction [78].  

As Dingli and Mifsud point out, the academic and professional community have long 

recognised the need for these evaluations [79, 80, 73, 8, 81]. Nielsen and Norman [4] found 

that users are much more likely to leave an e-commerce site in favour of a competing site 

than they would in a brick-and-mortar store because the “cost” of switching e-commerce 

sites is relatively low when compared to the same cost in a physical store. This low cost of 

switching sites can lead to a loss of revenue, which both Ruiz-Rodriguez and Montero et al. 

attribute, at least partially, to poor site usability [8, 9]. Unfortunately, it seems as though the 

commercial sector has not fully realised the vast importance of usability evaluation yet 

[82]. 

Websites that rate highly for usability have been shown to have a better chance of 

increasing their uptake and volume of sales [6], which means more revenue for the 

publisher, advertising network and any third party agencies involved in managing the 

advertising campaign. 
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Awareness of the inaccessibility of sites currently on the web is on the rise [83], and 

legislators have begun stepping up to help work toward a more accessible Internet [84]. A 

site can be considered accessible if it can be used by people with disabilities to the same 

extent that it can by those without disabilities [85].  

2.3.1.2 Content, Design and Information Quality  

Aside from usability, it is no surprise that website content has been ranked as being of 

utmost importance when evaluating the quality of a website [86, 87]. In affiliate 

advertising, the majority of publisher sites are driven mainly by their content. Users visit 

these sites expecting a variety of content that can be accessed through text, graphics and 

multimedia [88]. Loiacono, Goodhue and Chen argue that the information must also be 

useful and entertaining as they found these to be the most important predictors of a user’s 

intent to return to a site. They also found that without the addition of new content, the 

information on a publisher site can become stale and offers no incentive for users to return 

[21]. This is a major issue in affiliate advertising as publishers stand the best chance at 

earning revenue by increasing the frequency with which users visit and use the site as well 

as improving overall user satisfaction [7].  

Additionally, the presence of high-quality content on a publisher’s site may entice other site 

owners to provide a link to the site or for a search engine spider to index the site based on 

the content found when crawling. A link from another site enables the users of that site to 

easily find and visit the publisher, and more visits create more opportunities for 

conversions.  

The content of a site is not the only important factor as Lavie and Tractinsky noted; the 

aesthetics of a site could also be a major contributor to user satisfaction [89]. Zhang and 

von Dran also found that users often considered attractiveness to be an important factor of a 

site’s quality [90]. 

2.3.1.3 Usage and Navigation 

When measuring the success of an e-commerce system, many researchers agree that system 

use is a necessary part of a good measurement due to customer use being primarily on a 

voluntary basis [75, 91, 92, 93, 88, 74]. The D&M success model states that customer 

satisfaction will have a positive effect on customer usage [75] and it has been shown that 

ease of use is an important aspect to customer satisfaction and site quality [94, 87].  
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One way to improve the ease of use of a site and retain customers is to ensure that the site 

layout is well organised with a consistent look and feel to the navigation systems of each 

page [88]. This consistency of navigation as well as a good search facility can also 

contribute to a user’s ability to easily find pertinent sections of a site, which users tend to 

consider highly when ranking a site’s quality [88]. Sites lacking easy to use navigation 

systems that require a lot of scrolling or give the user no indication of where they are in 

relation to the home page are likely to increase the time required to complete tasks and user 

frustration [95], both of which can to lead to dissatisfaction and lower a user’s perception of 

site quality. 

2.3.2 Categorising Evaluation Approaches 

Depending on what aspects of a web site are being evaluated, there are various approaches 

employed that examine different web site features, although some of the approaches do 

include features that overlap. In this thesis, the approaches discussed will be categorised 

based upon the way with which usability evaluation methods (UEMs) have been 

categorised in the literature. Nielsen originally described four categories of UEMs: 

automatic, empirical, formal and informal. Nielsen dismissed the automatic and formal 

methods based upon the state of the art in usability evaluation at the time. The technology 

available then was a major limiting factor for the automatic method and the formulas used 

in formal evaluation were difficult to apply and did not scale well [96]. In Nielsen’s 

definition, empirical tests involved the use of actual end-users to test the system being 

evaluated and informal methods were based upon the general experience and knowledge of 

an expert evaluator rather than the complex formulas used in the formal methods [96]. 

In a paper discussing the methods with which UEMs had previously been compared against 

one another, Gray and Salzman propose that a more general two-category classification that 

defines a UEM as either analytical or empirical would suffice. The author’s definition of an 

empirical UEM coincided with Nielsen’s previous definition in that empirical UEMs 

consisted of a range of techniques often simply referred to as user testing. The authors 

defined an analytical UEM as a method that utilises one of the many techniques developed 

to assist an expert evaluator in examining a site such as heuristic evaluation, or cognitive 

walkthrough, among others that will be discussed in more depth later in this section [97]. 

In this thesis, however, the three categories of evaluation methods described by Hasan, 
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Morris and Probets have been adopted because the categories defined by the authors 

encompass all of the previously described classifications and they are also applicable across 

the various other types of evaluations described in this chapter as well as usability: user-

based, evaluator-based and tool-based [7]. These categories very closely resembled those 

described by Nielsen [96], but focus more on the subject that is conducting the evaluation 

rather than the method used in the evaluation. 

2.3.3 User-Based Evaluations 

User-based evaluation methods rely on the reactions and feelings of users that share the 

same qualities and traits as those that will eventually become actual users of the finished 

system [78]. Two of the most common user-based methods in practice include surveys and 

laboratory testing. 

2.3.3.1 Surveys 

Surveys can be used in order to judge user perception of a product as well as to evaluate a 

specific aspect of usability [98]. A popular example of a survey used for usability 

evaluation is the System Usability Score (SUS) developed by John Brooke. The SUS is an 

instrument containing 10 items on a five point Likert scale anchored on “Strongly 

Disagree” (1) and “Strongly Agree” (5) that was designed to provide a high-level overview 

of site usability from a subjective viewpoint. The oddly numbered items are worded in a 

positive manner while the even numbered items are negatively worded in order to ensure 

that participants are kept alert whilst filling out the survey [99]. The full description of the 

SUS as well as how to calculate a score using the instrument can be seen in Appendix A. 

Although the SUS was designed to provide a high-level subjective view of system 

usability, Borsci, Federici and Lauriola as well as Lewis and Sauro independently 

discovered through factor analysis that the SUS actually has two items that are helpful in 

determining Learnability as well as usability [100] [101]. According to the British Standard  

BS ISO/IEC 25010:2011, learnability is a subset of usability that indicates how well the 

system helps a user learn how to use it properly [102]. 

Another popular survey, Loiacono, Watson & Goodhue’s WebQual instrument, measures 

web site quality based upon a user’s intent to return to the site. This instrument was 

developed from a combination of the Theory of Reasoned Action and the Technology 

Acceptance Model [103]. The WebQual instrument measures 36 items in 12 categories 
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using a 7-point Likert scale anchored on “Strongly Disagree” (1) and “Strongly Agree” (7). 

Like the SUS instrument, WebQual also includes negatively worded items in order to keep 

participants alert. The items of WebQual have been shown to positively relate to a 

customer’s intent to re-use a company’s web site, and the authors noted that usefulness, 

entertainment and response time were the primary indicators of site quality [21]. This is 

important in affiliate advertising because returning users tend to spend more time on a site 

[7] making conversions more likely. 

2.3.3.2 Laboratory Testing (User Testing) 

The second, but most common user-based evaluation method is laboratory testing. This 

method, often referred to as simply user testing is generally accepted as the method with the 

most bearing on product improvement [104, 105].  Traditionally, laboratory testing 

involves recruiting suitable participants to attend a testing session at a lab set up with video 

and audio recording equipment as well as a computer with the ability to capture the screen, 

mouse movements and key presses [73]. Some labs have even been outfitted with 

equipment to track eye movement to record user attention and area of focus on the screen 

during the test [106]. The users are asked to complete a set of tasks using the system being 

tested, usually while using the think-aloud method to verbalise their thoughts and actions as 

they complete the tasks [107]. When utilising this method, researchers have found that the 

level of instructions given during the explanation of the think-aloud process may cause the 

user to become more reactive. Giving explicit instructions about what to vocalise (i.e. 

expectations and reactions to events) rather than simply instructing the users to vocalise 

their internal thoughts may have an effect on the reliability of the information gathered by 

causing reactivity in the user. That is, explicit instructions caused a change in the cognitive 

process of the user, which can affect task performance [108]. Chi et al. found that this 

change in thinking could cause an increase task performance regarding learning tasks [109] 

while Chin and Schooler found that verbal overshadowing, or decreased task performance, 

may occur [110].  Either of these effects can be considered negative in the context of web 

site testing. Zhao, McDonald and Edwards explain that due to the change in the thinking 

process from that of the typical user, an increase in task performance may lead to missing 

usability issues or to the assigning of severity levels that are not useful. The authors also 

explain that verbal overshadowing may cause an increase in false positives, which are 

designated as issues of low-severity that do not have any bearing on actual site usability 
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[111]. 

While conducting multiple rounds of testing have shown to be the most effective approach 

to laboratory testing [105, 112], the equipment required to construct a laboratory and the 

travel costs for both testers and evaluators has made the cost of these tests prohibitive. In 

order to mitigate this high cost, Nielsen has suggested several cost saving methods that 

could be employed in order to allow for more frequent testing throughout the development 

cycle. The largest cost savings come from the recommendation to not use video recording 

equipment [113]. Rowley proposed that a mobile evaluation lab that could be taken to the 

testers might also be used to reduce costs [114] and Krug suggested that the lab and expert 

evaluator are not even necessary if the testing budget does not allow for these luxuries 

[115]. In fact, Khanum et al. noticed that children were more vocal in a field setting rather 

than a laboratory setting when using the think-aloud process [116] which suggests that 

doing away with the lab may have more benefits than simply cost savings. The study only 

focused on children, and so the authors were unable to determine whether this observation 

extends to other age groups. However, Balikrishnan et al. used the think-aloud method with 

a group of elderly users (65+ years old) with one of the three participants preferring to 

complete the activities in his home while the other two travelled to the researchers. The 

authors noted that all three of the participants had difficulty vocalising their thoughts while 

concentrating on the testing activities, but did not specify whether setting seemed to have 

any effect on the level of the participant’s difficulties with vocalisation [117].  

When designing a user testing session, two main issues must be considered: participant 

selection and task selection. When selecting participants for a laboratory test, it is best to 

select a group that is representative of the actual end users of the system. Dumas suggests 

doing this by creating a user profile that categorises the system users as closely as possible 

[105]. Krug, on the other hand, suggests that almost anybody with an understanding of the 

web can be used for testing a site if it means that the time and budget saved looking for 

participants that fit very specific user profile will allow for more rounds of testing [115]. 

Aside from the selection of appropriate testers, the number required has been a hotly 

contested issue in the field since the inception of user testing [118]. Virzi originally 

suggested that four to five participants were able to find 80% of the usability problems of a 

system and that adding more was unlikely to uncover significantly more problems. He also 

noted that the major problems were likely to be found with the first few testers anyway 
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[119]. Nielsen agrees that three to five participants were sufficient to identify 70% - 80% of 

the usability issues [120]. Hwang and Salvendy argue, however, that 10 (plus or minus two) 

participants were needed to detect 80% of the usability issues [121]. It has also been 

suggested that the number of testers required actually depends on the probability of 

detecting a usability problem in the system under test. Schmettow [122] explains that 

systems with issues that occur less frequently or involve complex steps to reproduce will 

require more testers to achieve the detection rates given by Nielsen and Virzil. In order to 

determine the number of testers needed, Lewis suggested that the discovery rate of usability 

problems should be calculated in order to estimate the sample size needed to discover most 

of the issues with a particular system [123].  

The second issue to consider in regards to user testing is the selection of the tasks that the 

users will be asked to carry out. Dumas laid out a set of guidelines regarding the selection 

of these tasks [98]: 

 Tasks must reflect an action that a normal user would want to carry out on the 

system. 

 Tasks selected should consist of basic tasks that would be repeated frequently 

during normal use in order to test the core functionality of the system. 

 Tasks should probe potential problem areas of the system. 

 Tasks selected should be designed to explore the interface as fully as possible. 

 Tasks that may be new to users or that may disrupt normal use patterns should make 

up some of the chosen tasks. 

These tasks generally consist of asking users to find specific products on the site, complete 

the majority of a purchase, find information, use the search functionality and to initiate the 

process of sending feedback to the company [124, 125]. 

In the work done by Hasan, Morris and Probets, the authors found that user-based testing 

did not identify as many issues as evaluator-based testing, but all of the errors identified by 

user-based testing were considered to majorly affect the site usability and overall user 

experience in a negative way [7]. When compared to evaluator-based methods, user-based 

methods are considered to be better at detecting a lack of clear feedback, poor help facilities 

[126, 127], functionality issues, learnability issues [126, 127, 81], navigation issues and the 

use of technical jargon [81]. 
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2.3.4 Evaluator-Based Evaluations 

Evaluator-based methods rely on human evaluators following a set of guidelines in order to 

manually assess the quality of a site. There are several common evaluator-based methods 

including heuristic evaluation [128], cognitive walkthrough [107, 129], and techniques such 

as MiLE+ that use a set of heuristics combined with user-testing methods [130]. Evaluator-

based methods came about because laboratory testing was too expensive, which led website 

designers to simply guessing as to the usability of their systems. These guesses were not 

always accurate and so experts in the field developed a method of testing that could be 

implemented quicker and for less cost than the traditional empirical user testing that had 

been the norm [131, 126, 81, 132]. 

2.3.4.1 Heuristic Evaluation 

The first and most popular evaluator-based method discussed is heuristic evaluation [133]. 

In a heuristic evaluation, an evaluator inspects the interface of the system being tested and 

judges how well it conforms to a set of usability guidelines, or heuristics [128]. The various 

sets of guidelines followed in heuristic evaluations have been designed and refined by 

experts throughout the years [128, 131, 134, 135, 136]. Although many sets of heuristics 

exist, the majority of popular guidelines generally include categories such as ease of use, 

information quality, navigation and organisation, functionality and security [87, 78, 7, 103]. 

Once the set of guidelines to follow has been selected, the tests are then often performed by 

usability experts [6], although there has been success in having non-expert users follow the 

heuristics in order to evaluate a site as well [87]. Like user testing, heuristic evaluation is 

designed to be an iterative process that should be completed throughout various stages of 

the development lifecycle of a site in order to maximise the efficiency [137]. In fact, Allen 

et al. have successfully used heuristic evaluation on a set of screen shots of web pages in 

order to test the usability of a site [138] which could be done using screen mock-ups before 

development has even begun.  

Hasan, Morris and Probets found that heuristic testing was able to find more issues than 

user testing, however the majority of these issues were considered minor in their role in 

disrupting the site’s usability and overall user experience [7]. The issues more often 

detected by heuristic evaluation generally consisted of technical issues such as the load 

delay when accessing the site with a browser [88, 126, 127, 139], appearance or layout 

issues, inconsistency problems [126, 127, 139] and issues with security and privacy as well 
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as compatibility [133]. The large number of minor issues found by heuristic evaluation has 

been noted as one of the major criticisms of the approach. Critics of heuristic evaluation 

argue that these minor issues may actually be false alarms, or false positives, representing 

usability problems that do not affect usability or perception of site quality for normal users 

of the system [140, 132]. 

2.3.4.2 Cognitive Walkthrough 

The next evaluation method to discuss is cognitive walkthrough [141]. The first version of 

the cognitive walkthrough method is based upon CE+, the cognitive learning theory 

developed by Polson & Lewis [141]. The CE+ model has three main components: problem 

solving, learning, and execution. The model chooses an action based upon how well that 

action fits with the current goal, then analyses the results of the action. If the result is not 

considered to have been successful in getting closer to the goal, the system marks it to be 

undone. All completed actions are recorded no matter whether their outcome is successful 

or not. This is done so that the outcome can be re-used by the execution component if the 

model encounters a similar situation in the future [141]. 

The second iteration is based upon the same general principles as the first, but in testing the 

first version, Lewis et al. found that only 50% of the observed errors had actually been 

uncovered [142]. After some refinement, the authors published the second version of 

cognitive walkthrough which Polson et al. describe as “a precisely specified procedure for 

simulating a user's cognitive processes as the user interacts with an interface in an effort to 

accomplish a specific task” [107]. Cognitive walkthrough is based upon the design 

walkthrough technique that is commonly employed in software development as a cheaper 

alternative to user testing. Cognitive walkthrough is designed to be used earlier in the 

development cycle than heuristic evaluation and can be used properly by either the system 

developers or usability specialists [129].  

 Like user testing, cognitive walkthrough is task-specific in that a group of tasks designed 

to test the core functionality of the system are selected for the evaluator to inspect. The 

cognitive walkthrough process, which is made up of a preparation and evaluation phase, is 

guided by a printed form containing questions designed to walk the evaluator through the 

inspection without requiring the user to have an advanced understanding of the cognitive 

psychology on which the method is based [107].  
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In the preparation phase, the tasks that will be tested are chosen. Polson et al. recommend 

choosing tasks that are composed of basic sub-tasks that users of a well-constructed system 

would be able to complete.  For each task to be tested, the initial state of the interface, the 

actions that will be needed to complete the task and the goals of the user are noted by the 

evaluator on a sheet similar to the one shown in Figure 2.2.  

Cognitive Walkthrough Start-up Sheet 

Interface ___________________________________________________________ 

Task Evaluator(s) ____________________________________________________ 

Task Description: Describe the task from the point of view of the first-time user. Include 

any special assumptions about the state of the system assumed when the user begins work. 

Action Sequence: Make a numbered list of the atomic actions that the user should perform 

to accomplish the task. 

Anticipated Users: Briefly describe the class of users who will use this system. Note what 

experience they are expected to have with systems similar to this one, or with earlier 

versions of this system. 

User's Initial Goals: List the goals the user is likely to form when starting the task. If there 

are other likely goal structures list them, and estimate for each what percentage of users are 

likely to have them. 

Figure 2.2 Abbreviated Cognitive Walkthrough Instruction Sheet (Source: [107]) 

The user’s initial goals section of the form is meant to capture the goals that the user is 

actually likely to have based upon the initial interface states and background knowledge of 

a typical user of the system rather than the goals that the developer thinks the user should 

have. 

Once the sheet has been filled in with the appropriate information, the evaluation phase of 

the walkthrough can begin. This phase involves a three part form that can be found in 

Appendix B. Essentially, the evaluator completes each step of the task and predicts how the 

changes in the state of the interface will affect the user’s goals and what percentage of users 

will be unable to successfully complete that step based upon the information available on 

the interface and the typical user’s background knowledge. The evaluator also records the 

differences in what the user would expect to happen and the feedback actually given by the 
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system in each step of the tasks [143].   

Cognitive walkthrough has been critiqued for being an awkward and cumbersome process, 

which was confirmed by several reviews of the system [114, 129, 144, 145]. In response to 

the criticisms, the authors released a simplified third version of the method. In this version, 

the evaluator answers four relatively simple questions at each step of a task: 

1. Will the user try to achieve the right effect? 

2. Will the user notice that the correct action is available? 

3. Will the user associate the correct action with the effect that user is trying to 

achieve? 

4. If the correct action is performed, will the user see that progress is being made 

toward solution of the task? 

Mahatody et al. note that several reviewers have critiqued the third version of cognitive 

walkthrough by saying that although the technique was easy to learn and apply, it was still 

tedious in practice [146, 147, 148, 149, 150].  

2.3.4.3 Streamlined Cognitive Walkthrough (SCW) 

Spencer noted that when used on software projects with large teams, that even the 

simplified third version of cognitive walkthrough was difficult to apply and did not 

consistently provide good results for three main reasons [151]: 

1. The amount of time required to answer the four questions for each step of a task 

and to process the large amount of data produced was simply too much as 

development teams are generally on very tight schedules.  

2. The evaluation session often led to long design discussions in an attempt to fix the 

problems discovered.  

3. Developers would sometimes become defensive about design decisions rather than 

work toward fixing the usability problems. 

Spencer suggested the Streamlined Cognitive Walkthrough (SCW) in order to work toward 

solutions to these issues. The first phase of SCW is conducted similarly to the preparation 

phase of cognitive walkthrough in that an appropriate task for the user to complete must be 

chosen. Once the tasks have been defined, the second phase involves briefing the 

evaluation team on each member’s specific role as well as defining what should and should 

not happen in the evaluation phase in order to avoid wasting time with re-designs or 
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defensive developers. Phase three is the inspection phase and is similar to the second phase 

of cognitive walkthrough, but replaces the four questions with only two [151]: 

1. “Will the users know what to do at this step?” 

2. “If the users do the right thing, will they know that they did the right thing and are 

making progress towards their goal?” 

After the inspection has finished, phase four involves noting down any issues discovered 

and the final phase is fixing those issues. 

Although the SCW method adds additional phases onto the already cumbersome cognitive 

walkthrough method, Spencer reports completing an evaluation on a new Integrated 

Development Environment (IDE) with an eight member team in two and a half hours 

spread over two sessions that were separated by a week. The first session took just 90 

minutes with the first 20 minutes devoted to the preparation phase. In this session, the team 

managed to cover 32 actions and uncovered 24 usability issues without defending previous 

design choices. In phase four, it was decided that 14 of the problems discovered were 

down to users not possessing the level of required knowledge, while the remaining 10 were 

due to a lack of system feedback to completed user actions. The author notes that 11 design 

ideas were also recorded (but not discussed) during the walkthrough and that six of the 11 

design ideas were possible solutions to issues discovered during the walkthrough. Only the 

first session was covered in the report by the author, and so data is not available about the 

findings of the second session [151]. 

2.3.5 Tool-Based Evaluations 

Tool-Based evaluation methods generally involve models, predictive tools and tools to 

conduct remote user testing. 

2.3.5.1 Models 

The models used in tool-based evaluations are similar to the formal usability methods 

described by Nielsen [96] and generally attempt to provide measurements of user 

performance without actually involving the users [7].  This can be accomplished through 

the use of processes like GOMS (Goals, Operators, Methods and Selection rules) [152]. 

GOMS is a system of breaking down user interactions into the most basic actions, or 

Operators as they are called in GOMS, in order to work toward user Goals. In GOMS and 

the variants developed over the years [153], high-level user Goals are divided into sub-
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goals that are then in turn divided into further sub-goals until a user could reasonably 

complete the resulting action at which point it is considered an Operator. John and Kieras 

have created examples related to using a word processor to explain the difference between 

Goals and Operators [153]. In their example, the overarching goal is EDIT-MANUSCRIPT 

which is divided into sub-goals of MOVE-TEXT, DELETE-PHRASE, and INSERT-WORD. 

These sub-goals can be further broken down into Operators such as MOVE-CURSOR, 

CLICK-MOUSE-BUTTON, and HIT-DELETE-KEY. The authors also note that not all 

systems will require such a fine level of detail, and some may have stopped with the 

original group of sub-goals as the Operators depending on the expected level of knowledge 

of the typical system user [153].  

2.3.5.2 Predictive Tools 

Ivory’s Web TANGO [154] is an automated usability evaluation platform that assists 

inexperienced and non-professional web developers with creating sites that do not suffer 

from poor design. The tool, which the authors refer to as a “quality checker” that they liken 

to the spell check functionality in a word processor, uses metrics such as word count, link 

count and graphics percentage. Human evaluators have previously manually ranked the 

websites used and the system attempts to predict the ranks that the humans have given to 

the sites. The first version of Web TANGO was a proof-of-concept implementation capable 

of achieving a predictive accuracy of 63% [155]. For the second version of the Web 

TANGO platform, the authors added more metrics and support for site classifications and 

the system was able to predict the rankings of sites with 94% accuracy when the sites were 

divided into their respective categories (community, education, finance, health, living and 

services) [156]. 

Similar to the Web TANGO system, Li and Yamada developed an automated platform to 

predict the rank that users were likely to give to a web site. The authors collected data from 

over 700 web sites across multiple online site ranking services. These sites use reviews sent 

by users in order to rank web sites. Using this system, Li and Yamada were reliably able to 

predict the rough site rank for sites in five out of seven categories [157].  

Rank prediction is not the only goal of tool-based evaluation methods. There are several 

tools that focus on the prediction of the path that a user is likely to take through a web site.  

Web Criteria’s SiteProfile utilises a model called Max that is based on GOMS. Max 
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browses a site in an attempt to perform a given task in order to simulate user testing [158]. 

Max does not exhibit typical user behaviour in all aspects, which has led to some criticism 

[159], but the agent attempts to browse as much of the site as necessary in order to 

complete the given task [160]. Lynch, Palmiter and Tilt reported that the accessibility 

values computed by Max matched the data from user tests in 8 out of 10 cases. While not 

conclusive, the authors were hopeful that future testing would show the same trends when 

using more sites [158]. 

The InfoScent evaluator, like Max, attempts to automatically predict the path a user is 

likely to take through a site. Unlike Max, the InfoScent Evaluator uses Latent Semantic 

Analysis (LSA) to match links on a website with a user’s goal. LSA is a technique from the 

field of natural language processing that can be used to analyse how the terms in a corpus 

relate to that corpus [161]. The InfoScent Evaluator also incorporates the Information 

Foraging Theory, which says that users will choose their path through a web site based 

upon clues presented regarding the content on the other side of a link [162]. In order to rank 

the links, the evaluator looks at clues such as URL, alt text for graphical links and link text 

and then uses LSA to determine which link is most closely related to the user’s goal. Links 

that match the user’s goal closely are said to have a high Information Scent, and the 

evaluator chooses the link with the highest information scent and then starts the process 

over on the new page until the user’s goal is reached. A study on the effect of information 

scent used eye-tracking to determine the influence of scent on a user’s information seeking 

behaviour. The study found that when users were looking at pages with high information 

scent they felt more confident about which link would help them reach their goal [163]. 

Using the concept of Information Scent, the Bloodhound simulator [164] creates a matrix of 

the probability that a user with a specific search goal will click each of the links on a site. 

The simulator then employs the Information Scent Absorption Rate (ISAR) algorithm in 

order to simulate a user’s path through a website when looking for that specified search 

goal. After the simulation, the system then produces a usability report for the site detailing 

how easily the requested information was able to be found. In testing, the Bloodhound 

system strongly correlated with user trial results in a third of the cases and moderately 

correlated in roughly another two thirds, with only a small portion of cases having a weak 

correlation [164].   
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The Cognitive Walkthrough for the Web (CWW) evaluation method is an automation of a 

user testing method but it also fits into the category of a prediction tools due to its use of 

LSA in order to compute the similarity between a user’s search goal and the text of each 

link and heading on a web page [165]. While the principle of goal driven exploration from 

cognitive walkthrough is the basis for CWW, the model has been changed from the CE+ 

model [141] to Comprehension-based Linked model of Deliberate Search (CoLiDeS) [166]. 

As mentioned, CWW uses latent semantic analysis to estimate the similarity between the 

headings and links of a site and a pre-written user goal. This is accomplished with a two-

step process: first, a page is divided into sub-regions and the algorithm attempts to select 

the most appropriate sub-region required to complete the task. The second step involves 

choosing the correct widget in that sub-region to complete the action. In order to pick the 

correct region and widget, CWW has modified the second question from cognitive 

walkthrough and split it into two parts as follows [165]:   

a. “Will the user connect the correct sub region of the page with the goal using 

heading information and her understanding of the sites page layout 

conventions?” 

b. “Will the user connect the goal with the correct widget in the attended to sub 

region of the page using link labels and other kinds of descriptive 

information?”  

2.3.5.3 Remote User Testing 

As previously mentioned, the main problem with user testing in a lab setting is that it is 

expensive. The high cost coupled with rapid development times, frequent changes 

throughout the development cycle and tight deadlines that do not allow for frequent re-

evaluations can cause development teams to skip testing all together [167]. These problems 

are exacerbated when developing a website due to geographically separated target 

audiences, a wide range of cultural and language differences as well as rapidly developing 

technology that continuously changes the way sites behave. Christos suggests that under 

these conditions, the high cost of laboratory testing becomes even more prohibitive and the 

results of those tests become less relevant [168]. 

Remote user testing is an attempt to work toward a solution for these problems [169, 170, 

171, 172, 173]. The remote nature of this evaluation method offers quite a few benefits 
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[168]: 

 It is easier to reach a culturally and geographically diverse group of users, opening 

the evaluation to a worldwide audience 

 It is useful in testing systems developed for hard-to-reach or de-centralised groups 

that would otherwise be very difficult to meet with in person. 

 No travelling means a potentially large savings on travel and lodging costs. 

 Users are able to take part in evaluations in a more realistic environment. Khanum 

and Trivedi saw increased verbalisation in child participants in a field setting when 

compared to the lab [116]. 

 The lower cost overhead creates the potential for including more participants in the 

study, making it more likely that a wider range of user types are involved in testing. 

Of course, there are also negative aspects of having the evaluators physically separated 

from participants. Christos mentions thee of the major drawbacks as being [168]: 

 It may be more difficult for the evaluator and participant to build a mutual 

understanding and trust due to the relatively limited ability to communicate with 

one another during the evaluation. 

 While software exists that makes it relatively easy to clearly capture the 

participant’s verbalisations, screen contents, mouse clicks and other technical 

aspects of the evaluation, being physically separated makes it more difficult for the 

evaluator to assess the user’s facial expressions and other non-verbal cues. 

 Having access to such a diverse pool of participants may bias the results due to the 

social and cultural context of an international audience. 

In a paper detailing a study of think-aloud usability testing in Denmark, China and India, 

Clemmensen et al. elaborate on the final point regarding cultural bias. The authors found 

that when the evaluator and participants were from different demographics (culture, 

geographic region, age and even gender in some cases), the results of usability tests could 

be negatively affected [174]. 

Despite the drawbacks, West and Lehman noted that in their comparative study, there was 

no difference in the levels of task success and task satisfaction between remote and 

laboratory based testing. The authors did notice a minor difference in the time taken on 

tasks and the likelihood of participants giving up on a frustrating task, but noted that these 
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differences were deemed to be insignificant [173]. The authors postulate that these 

differences may be the result of the users being in a more relaxed testing environment. 

West and Lehman also explained that although written comments from the users allowed 

the evaluator to identify usability errors that ended in task failure, the results were not as 

comprehensive as when the evaluator and participant were in the same location [173]. 

2.4 Conclusions 

This chapter has introduced some of the key website features that distinguish a low-quality 

web site from a high-quality web site. Due to the relative ease of switching from one e-

commerce site to another [4], usability is often touted as being of the utmost importance [4] 

[5] as sites that are considered more usable tend to see an increase in sales [6]. In recent 

years, researchers and web designers have begun to realise that usability of a site is 

important for all users, including those with diverse abilities [175]. This realisation has lead 

designers and academics to examine the accessiblity of websites more closely [176] [177]. 

Another important aspect of running a successful e-commerc site is the retention of 

customers. User satisfaction and perception of site quality have been shown to increase on 

sites with pleasing aesthetics [89] and clean, consistent navigation [88] systems, and 

customers that feel satisfied by their use of the publisher’s site are more likely to return [7]. 

Knowing what qualities make a site appealing to users is only half of the problem. 

Evaluating the quality of these metrics has been approached in differing ways throughout 

the years. In this research, the various approaches to website evaluation have been sorted 

into user-based, evaluator-based or tool-based categories depending on what entity makes 

the final judgement of website quality. These categories were adopted from research on 

usability evaluation done by Hasan, Morris and Probets [7] because although they were 

designed for a usability study, they can extended to the other key website features discussed 

in this thesis. 

User-based testing methods generally gather the opinions and feelings of users about a 

specific site. The collective opinions of these users can then be analysed in order to 

evaluate the quality of that site. Although several methods exist, most generally measure 

features in categories such as ease of use, information quality, navigation & organisation, 

functionality, security and several other related web site features [87, 78, 7, 103]. 
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Approach Advantages Disadvantages Examples 

User-based 

 SUS [99] shown to 
determine usability and 

learnability [100] [101] 

 WebQual [103] items 
positively relate to 
customer re-use 

 Think-aloud [107] gives 
the evaluator first-hand 
glimpse of user 

experience 

 Errors identified by 
user-based methods 

generally major [7] 

 Requires input from 
multiple users 

 Generally does not 
identify as many errors 
as evaluator-based 
methods [7] 

 Laboratory equipment is 
expensive [113] [114] 
[115] 

 Overt instructions in 
think-aloud can cause 
false-positives [111] 

 Surveys (SUS, 
WebQual) 

 Laboratory 
Testing (Think-
aloud method) 

Evaluator-based 

 Cheaper than user-based 

testing [81] [126] [131] 
[132] 

 Generally identifies 
more errors than user-

based methods [7] 

 Cognitive Walkthrough 
is usable by developers 

or specialists [129] 

 Streamlined cognitive 
walkthrough is a less 

cumbersome version of 
cognitive walkthrough 
[151] 

 Errors identified by 

heuristic evaluation 
methods generally 
minor [7] and sheer 

number could be 
overwhelming [132] 
[140] 

 Cognitive Walkthrough 
is a cumbersome 
process [114] [144] 

[145] 

 Heuristic 

Evaluation 

 Cognitive 
Walkthrough 

 Streamlined 

Cognitive 
Walkthrough 

Tool-based 

 Does not require user 
involvement [7] 

 Can be automated [154] 
[157] [158] [161] [164] 

 Web TANGO predicted 
site ranking with 94% 

accuracy [156] 

 Li and Yamada reliably 
predicted rough site rank 

for five out of 7 
categories [157] 

 Max computed 
accessibility values that 

matched user data in 
eight out of 10 cases 

[158] 

 Remote user testing 
allows for user testing in 
a more realistic 

environment [116] 

 Max criticised for not 
accurately mimicking 

typical user behaviour 
[159] 

 Remote user testing 

may make it more 
difficult for the 
participant and 

evaluator to understand 
each other [168] 

 Demographic 

differences between the 
evaluator and 
participants can 

negatively affect 
usability test results 
[174] 

 Models (GOMS, 
Max) 

 Predictive 
(WebTango, Li 
and Yamada) 

 Remote user 
testing 

Table 2.1 Advantages and disadvantages of the three approaches 

Despite the comparatively high cost of user-based testing methods, they remain popular in 

practice as they have a tendency to be more effective than evaluator-based methods. That 
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is, some researchers have concluded that user-based testing generally does not produce as 

many false positives [140, 132]. 

Although some have been critical of the possibility of false positives with evaluator-based 

methods, they generally excel at discovering more technical issues with a site than user-

testing [88, 126, 127, 139]. These evaluation methods have also been noted to be especially 

suited to discovering issues with system appearance and layout, inconsistency [126, 127, 

139] security and privacy as well as compatibility [133]. 

Several tool-based evaluators were also introduced in this chapter. These ranged from 

formal models such as GOMS [152] to several automated solutions designed to predict user 

behaviour [165, 158, 161], predict site performance [154] or to check a site’s conformance 

to a set of guidelines [73]. 

In the Web TANGO system, sites were crawled and several features were examined in an 

attempt to predict the ranks that were given to the sites by human evaluators [154]. The first 

version evaluated only 11 features and was able to accurately predict the site ranks between 

67-80% of the time [155]. The second version, however, examined 157 features and was 

able to achieve an accuracy of 94% when sites were classified into their respective page 

types [156]. 

The concept of remote user testing combines the effectiveness of user testing with the 

automation and ease of use of tool-based methods. Remote user testing was created to  

work towards a solution to many of the issues with laboratory based testing [168]. 

The correlation of the evaluation metrics examined in this research will be in the context of 

affiliate advertising. The affiliate advertising value chain typically consists of the customer, 

the publisher, the affiliate network, the advertiser and an outsourced programme manager 

(OPM). The affiliate networks help to organise these key players as they work together in 

an effort to drive customer traffic and sales to advertisers through a publisher’s site. For 

their effort, publishers can be paid either based upon the number of times an advertisement 

is shown (PPM), the number of clicks the advertisement receives (PPC) or the number of 

customers that perform one of several actions that have been pre-agreed between the 

advertiser and publisher (PPA). The OPM generally acts as a liaison between the advertiser 

and the publisher as well as helping to add value to the campaign through the creation of 

advertisement creative and other content for the publisher’s sites.  
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The OPM is also responsible for finding and managing publishers for the advertising 

campaign. In order to determine which publishers are performing well, the OPM will 

typically look at the statistics collected by the affiliate network along with those from third-

party tools. These statistics can include site-level metrics such as the number of 

impressions, click-through-rate, conversion rate and cost-per-revenue. Some OPMs and 

publishers may also use services such as Google Analytics to collect page-level metrics 

such as bounce rate in order to better understand why a page is performing either poorly or 

well. 

In the next chapter, the website features to be used in the evaluation of affiliate advertising 

sites along with the methodology developed for crawling publisher sites in order to extract 

data related to these features will be introduced. 
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3 Research Methodology 

3.1 Introduction 

This chapter will begin by introducing the feature selection process. This is followed by the 

definitions of the currently implemented features along with the methodology involved in 

calculating their scores and a hypothesis about how each feature relates to campaign 

performance. In order to judge each site, these scores are combined to calculate a site’s 

overall HealthScore, which is then compared to the real-world performance of the site. The 

chapter concludes by detailing the process behind the calculation of the HealthScore and 

performance score. 

3.2 Research Design 

Many affiliate networks provide programme managers with access to a suite of tools 

designed to collect and display performance information for each of the publisher sites on 

their advertising campaigns. Generally, this information is collected through direct traffic 

measurement techniques such as clickstream analysis [62] and page-tagging techniques like 

web beacons [178]. The networks use the information gathered from these traffic 

measurement techniques to calculate performance metrics such as click through rate and 

conversion rate and will sometimes also include revenue-based metrics such as cost per 

revenue. Due to a lack of access to revenue data for the campaigns analysed, the 

examination of any metrics based on revenue are unfortunately beyond the scope of this 

work. 

While page-tagging techniques, such as web beacons, are generally one of the ways that 

networks use to track the commission earned by publishers [179], this research focuses on 

the examination of information readily available to the surfer agent which does not 

currently have access to traffic measurement data. Readily-available information is used so 

that a HealthScore can be calculated for a site for which there may be no historical data 

available due to the site being a recent or even potential future addition to the advertising 

campaign. The site’s HealthScore can later be compared against the business performance 

measurement data supplied by the affiliate networks to gauge success. 
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The methodology followed during this research has been informed by previous work 

related to the evaluation of interactive systems, especially of web sites. Traditionally the 

majority of web site evaluations have been conducted manually using various techniques 

such as having users fill out a survey [99, 180]. Another popular evaluation technique 

consists of evaluators that are either experts [92, 90] or experienced web users [78, 87] 

completing a pre-determined task using the site while verbalising their actions and thought 

process [141].  An alternative to these methods is to have an expert follow a set of rules or 

guidelines in order to discover faults with the site [128]. Lastly, the evaluation may even 

consist of a combination of these methods [165]. The data collected from the observations 

and surveys can then be analysed to determine the quality of the site being tested. 

The study presented in this thesis utilised automated data collection and analysis 

techniques. However, unlike previous automated methods [154, 157] the main concern was 

not with predicting how well a site would be ranked by human evaluators. This research 

was concerned with how the features of a site correlate to the real-world performance of the 

publisher through an overall HealthScore calculated from the scores of the various features 

on the publisher site. 

None of the instruments used in the previous literature has been adopted in its entirety 

because, as Li and Yamada point out, an automated solution is better suited to measure 

objective features rather than the subjective features found in more traditional manual 

methods [157]. Although not taken directly from previous instruments, the features 

designed for use in this research were inspired by the those described in previous literature. 

A summary of the origins of the currently implemented features used in this study can be 

seen in Table 3.1. 

In order to fulfil the aim of this thesis, the real-world performance of a publisher’s site must 

also be calculated. In their study, Lee and Kozar used information from the COMPUSTAT 

database to compute the ROA and ROE of the companies running the sites which they were 

examining. While the financial success of a company is certainly a good measurement of 

success, it would be very difficult, if not impossible, to obtain the same information for the 

majority of publishers in affiliate advertising. Instead, I have calculated a performance 

score for each publisher based on performance metrics supplied by the digital marketing 

agencies running the campaigns being analysed. Section 3.3.4 further expands upon the 
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creations and use of the performance score. 

Feature Rationale From the paper Origin 

URL 

Similarity 

Typo-squatting hurts advertiser 

brand and earns unwarranted 

commission for a publisher. 

Represents typo-squatting  [9] 

Often a characteristic of a 

malicious page 

[181] 
[182] 

URL 

Relevance 

Users will click more often on a 

search result that they consider 

better or that they prefer. More 

clicks give more chances for 

conversions, which increases site 

performance. 

Search captions built using the 

URL relevant to the query are 

better. Better captions are 

clicked more. 

[183] 

Users prefer descriptive, static 

URLs over non-descript, 

dynamic URLs 

[184] 

Static URLs have an advantage 

in click-through rates because 

users can easily read the URLs 

[185] 

Broken Links 

Broken links make sites incomplete, 

unprofessional, and possibly 

malicious. Users are likely not to 

trust these. 

Incomplete sites rank lower than 

complete. Incompleteness 

defined in part by broken links. 

[186] 

Broken links decrease site 

trustworthiness. 
[187] 

Broken links  promote a poor 

user experience 
[35] 

Broken 

Images 

Broken images make sites 

incomplete, unprofessional, and 

possibly malicious. Users are likely 

not to trust these sites. 

Incomplete sites rank lower than 

complete. Incompleteness 

defined in part by broken 

images. 

[186] 

Broken images decrease site 

trustworthiness. 
[187] 

Broken images promote a poor 

user experience 
[35] 

Blacklisted 

Chrome, Firefox and Safari issue a 

warning when visiting. User trust is 

a major factor in purchasing. 

Security and trust promote user 

acceptance. 
[26] 

Successful e-commerce sites are 

those that users trust. 
[92] 

A large portion of Russian sites 

in a counterfeit affiliate 

programme appeared in 

blacklists, indicating that they 

may have been previously used 

in SPAM activities 

[188] 

Visibility 

Top 10 results are the most 

important, but even at top 100, only 

10 sites had a non-zero score. 

Originally planned to do paid 

search, but research indicated 

organic was clicked MUCH more 

often. 

Out of 8m clicks, 94% on top 10 

results [189] 

Out of 1.4bn searches, 94% 

clicked organic [190] 

Out of 1.5bn searches, 95% 

clicked organic [191] 
Table 3.1 Origin of Framework Features 
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3.2.1 Initial Features 

The process of selecting the initial list of features was conducted in two phases. Phase one 

of the feature selection process involved compiling a list of features that were hypothesised 

to be possible indicators of a publisher site’s performance. After examining the features in 

previous studies, 41 features separated into four distinct groups were initially proposed. The 

high-level groups were Content, Security, Technical and Design and the full listing of the 

features is included in Appendix D. 

3.2.2 Refining the Feature Set 

The initial list of features was shared with a mix of computing researchers as well as the 

employees of a digital marketing agency located in Scotland. Feedback from these 

individuals indicated that several of the features were very closely related or worded in 

such a way that they were difficult to understand. In order to correct these issues, the 

feature categories were re-defined, several of the features were combined and others were 

renamed in order to more clearly convey what the feature was designed to measure. 

 Once the features were more clearly defined, the list of features to be implemented was 

narrowed down to six features representing a balance between content, security and 

usability type features. A list of 11 features to be investigated further in future work was 

also created.  

3.3 Dimensions and Features 

The six features present on the final feature list were originally inspired from previous 

instruments or ideas presented throughout the literature. This section presents the 

justification for including each of the final features below. Following that is a description of 

how each of the feature scores including the HealthScore and the performance score are 

calculated.  

In order to present the final metric scores in a more human readable format and to promote 

the ability to easily compare feature values, I have designed a set of requirements that each 

of the features to be included in this instrument must meet: 
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r1. Any information needed to calculate a score for the feature must be readily 

available to the various gathering agents either on the publisher site or from an 

open-source repository of some kind.  

r2. The final score of a feature must be an integer in the range of 0-100 inclusive with 

zero being the worst possible score and 100 being the best. Any features measuring 

values outside of this range must undergo processing to bring the values into the 

acceptable range. 

r3. It must be possible to automate the data collection and analysis processes required 

to calculate the final score of a feature. This requirement does not include the 

automation of any set up processes conducted before the analysis is undertaken for a 

campaign.  

In the proof-of-concept implementation of the data collection system used throughout this 

research, several of the features required manual intervention in either the data collection or 

analysis processes which does not strictly comply with the above requirements. In choosing 

between following the above rules or implementing more features in the timeframe allotted 

to development, I felt that the inclusion of more features was an acceptable reason to 

deviate from the requirements. Each of the features included in the current version of the 

implementation is also capable of being automated in future versions of the data collection 

and analysis systems as described further in Section 6.5. 

Each of the features described in this thesis, including those features that have been planned 

but have not yet been implemented, belong to a high-level category designed to separate the 

features into logical groups. These categories exist in order to better classify the features in 

an effort to aid the user in understanding what the features measure and how they relate to 

each other. Along with this high-level category, each of the features is also assigned a 

modified version of the Implementation Level defined by Dingli and Mifsud to represent 

how easily the feature could be translated into a guideline that could be interpreted by their 

framework (Dingli & Mifsud, 2011). In this research, the Implementation Level score 

refers to how easily a feature could be implemented in a manner that fulfils the feature 

requirements laid out in this section. The meanings of the three possible values for 

implementation level are presented in Table 3.2. 
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Implementation Level Meaning 

Green 

This feature can be implemented, and will meet all 

requirements. 

The parameters of this feature are easily measureable. 

Amber 

This feature will be more difficult to implement. 

One of the requirements may not be currently met, but with 

some additional work, all requirements can be met. 

Red 

This feature is not currently implemented as the technology 

required to meet all requirements is advanced well beyond 

the scope of this work. 

This feature is listed solely for informational purposes so 

that users can manually check the feature if desired. 

Table 3.2 Implementation Level Meanings 

3.3.1 Domain Analysis 

This category is focused around analysing data related specifically to the domain. This 

could include things such as the URL for the site, information about the software being 

used to host a site, physical location of the server, or how well the site ranks on search 

engines.  

3.3.1.1 URL Similarity (Amber) 

Malicious users will often register a domain name that is similar to, or is a misspelling of 

the URL of a popular site. The owner of the newly registered domain will then create a web 

page designed to display a large amount of related ads, serve up malware or sometimes 

show a duplicate of the genuine page in order to trick users into entering login credentials 

[181]. These sites are usually visited when a user mistypes the proper URL for the 

advertiser, meaning the user already intended to visit the advertiser and the publisher has 

not genuinely contributed to sending the user there and should not receive commission on 

any purchases made. This practice, known as typo-squatting [181, 9], is generally against 

the terms and conditions of affiliate networks. 

In the current implementation of the framework used in this study, each publisher URL is 
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manually examined to determine whether it is similar to that of the advertiser’s URL. If it 

is, a score of zero is awarded while a score of 100 indicates a unique URL. In the future, 

techniques similar to those used in the detection of phishing URLs may prove useful in 

implementing the measurement of this feature in an automated fashion in order to comply 

with requirement r3 [192, 182]. 

H1. The use of typo-squatting techniques will negatively affect campaign 

performance. 

In looking at two case studies, the percentage of direct visits was below 25% in each case 

(18.09% and 24.9% respectively) meaning that less than 25% of visitors arrived at the site 

without clicking a link on another site such as a search engine or web portal [32, 193]. 

Assuming this holds true for most sites, the majority of customers do not type in a website 

address when visiting a site, which would limit the exposure customers have to sites using 

typo-squatting techniques to attract traffic. For these reasons, it is hypothesised that 

publisher sites that use typo-squatting to attract traffic will not perform as well as publisher 

sites that follow the terms and conditions. 

3.3.1.2 Visibility (Green) 

The visibility feature was designed to capture how well a publisher site performs in a 

search for the various keywords associated with an advertising campaign. In the current 

implementation, this feature has its own agent assigned to collect the organic search results 

for the given keywords. The organic search results were initially targeted over sponsored 

results based on findings by Jerath, Ma and Park that showed 95% of the 1.5 million clicks 

they examined in February 2011 were on organic results [191]. In June 2011, Nielsen 

examined 1.4 billion searches and found that only 6% of those users chose a paid result, 

meaning the other 94% of potential customers chose an organic search result [190]. 

The visibility agent is given a list of keywords associated with the campaign, which the 

agent then uses to search Google, Bing and Yahoo! for each of these campaign keywords. 

The agent saves the top 100 results and then checks the URL of each publisher page to see 

if that URL is within those search results. The Chitika affiliate network reported that out of 

8 million clicks sent to their network by Google in May of 2010, 95% of the traffic was 

sent from the first ten search results [194]. In an updated study covering the week of May 

21
st
 2013 through May 27

th
 2013, Chitika reported 92% of the traffic generated to their 



54 

 

network from Google was from the first ten search results [195]. Limiting the calculation to 

the first ten results would severely lower the number of publisher sites that received a non-

zero score. In order to allow for more sites to earn points in this metric, the visibility agent 

search range was expanded to include the top 100 results rather than simply the top ten. I 

hypothesised that a site that has a good visibility in organic search results for keywords 

directly related to the campaign is not only easier for users to find, but will also be seen by 

users to be well-aligned with their search goals and therefore will perform better than those 

sites with lower visibility.  

H2. Having a good visibility score will positively affect campaign performance. 

For an example of how the visibility score works, two fictitious companies have been 

created. These companies are the advertiser, RoadGrip Tires (RGT) and their top publisher 

“Mudder’s Heaven”, which is a blog site run by an off-road enthusiast. RGT has the 

following five keywords associated with the campaign as determined by the programme 

manager: 

1. Tires 

2. Heavy-duty tires 

3. Snow tires 

4. Off-road 

5. Four Wheeling 

 

  {
         

     
 

Equation 3.1 Visibility Score Calculation 

The visibility agent searches Google, Bing and Yahoo! for the organic search results of the 

keywords associated with the RGT campaign and saves the top 100 results for each. In 

order to calculate the score for a keyword, the agent checks where the publisher’s site ranks 

( ) in the search results for that keyword and converts the ranking into a score ( ) ranging 

from zero (not present) to 100 (first search result) using Equation 3.1. This conversion from 

  to   is done to reverse the order of the search engine rankings to remain compliant with r2 

and to give the 100
th

 search result a score of 1 which is the lowest score that a site 

appearing in the results can receive. For this example, Table 3.3 shows the rank for each 

keyword in the search results for the publisher Mudder’s Heaven while Table 3.4 shows the 
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visibility score calculated from these results.  

Mudder's Heaven       

Keyword Google Bing Yahoo! 

Tires 10 15 7 

Heavy-duty tires 5 3 0 

Snow tires 0 0 0 

Off-road 5 35 10 

Four Wheeling 1 8 15 

 Table 3.3 Mudder’s Heaven Keyword Rank ( ) Example 

 

Mudder's Heaven       

Keyword Google( ) Bing( ) Yahoo!( ) 

Tires 91 86 94 

Heavy-duty tires 96 98 0 

Snow tires 0 0 0 

Off-road 96 66 91 

Four Wheeling 100 93 86 

AVERAGE (        ) 76.6 68.6 54.2 

SCORE 67     

 Table 3.4 Mudder’s Heaven Visibility Score ( ) Example 

Once   has been calculated for each of the keywords, the average of the scores is then 

calculated for each search engine (        ) as shown in Table 3.4. These search engine 

scores can then be used to calculate the overall Visibility score for each publisher’s site, 

which is the weighted average of the search engine scores as shown in Equation 3.2. 

Because the weighted average is used, it is possible to assign weights (  ,   ,   ) to each 

of the individual search engines if the user wishes. The ability to weight individual search 
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engines may be important for cases in which the results of one search engine may be 

preferred for a particular campaign, but this study did not prefer one search engine over 

another and so the weight of each has been set to one, resulting in the formula behaving as 

a simple average. 

(     )  (     )  (     )

(        )
 

Equation 3.2 Calculating the Overall Visibility Score 

3.3.1.3 URL Relevance (Green) 

The thinking behind the URL relevance feature is that a publisher site that is easy to find 

and identify should result in better performance than one that is difficult to recognise. This 

thinking is partially based on findings from a study to determine the influence that search 

captions have on user search behaviour. Clarke et al. found that in order to create the most 

useful search captions, URLs containing search terms should be chosen in order to 

highlight the relationship to the search query [183].  

In a second study that also helped in the formulation of the URL Relevance feature, 

Katsanos, Tselios and Avouris examined the effect that links with strong information scent, 

those that are closely related to the search goal, had on user information-seeking behaviour. 

The authors found that links with a high information scent made users feel more confident 

about their link choices. As part of the information scent calculation, the URL address of a 

link was examined to determine relevance to the user’s search goal [163]. While the URL 

was not the only contributing factor in determining strength of a link’s information scent, it 

is a reasonable assumption that a URL that is seen to be closely related to a user’s goal is 

likely to create that same confidence. Yang and Gerasoulis also found that users preferred a 

URL to be static and descriptive over a confusing and dynamic URL [184]. Because the 

keywords used to score the URL Relevance feature are derived from the campaign goals, it 

is hypothesised that sites with a high URL Relevance score will be seen to be well-aligned 

with the customer’s goal, and will lead to more clicks which creates more opportunities for 

conversions and is likely to lead to a higher performing publisher.  

H3. The presence of campaign keywords in a publisher URL will positively affect 

campaign performance. 

Before being able to calculate a score for this feature, the campaign keywords defined by 
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the affiliate programme manager were examined and broken down into single words. I then 

assigned a value to each word based upon how well the it fit with the overall goal of the 

specific campaign examined. Keywords highly related to the campaign goal as originally 

defined by the programme manager were given high values between 40 and 50, with more 

generic keywords describing the business sector of the advertiser given lower scores 

between 20 and 30. In order to account for the large number of users that specifically 

search for deals on publisher sites before making online purchases [1], terms describing 

popular types of super affiliates (i.e. voucher, cash back, and so on) were given low values 

of five. Terms related to super affiliates that were also found in the keywords (discount, 

etc.) were given a slightly higher value of 10. 

The process of calculating a score for this feature is done in two steps: 

1. Points are assigned to each site based upon the highest scoring keyword present in 

the URL. 

2. Half points are then awarded to a site for each unique keyword thereafter for up to 

two additional keywords. 

By only awarding points for a maximum of three unique keywords, even a URL containing 

three keywords worth the maximum amount of points would score    (      )  

(      )      and would still be in the range set out in requirement r2. 

In practice, an excel formula was set up to examine the URLs for each keyword and to 

assign points to each site based only upon the highest scoring keyword. I then manually 

examined the URLs to assign the half points. While the semi-manual nature of this feature 

does not currently fulfil the automation requirement (r3), it is possible to fully automate the 

score calculation of this feature, leaving only the setup as a manual process, which is not a 

violation of r3. 

3.3.2 Content Analysis 

This category relates to the actual content of the pages on a site. These metrics help the user 

of the system to get a better understanding of what is actually present on a site including 

text, pictures, video and other media. 

3.3.2.1 Broken Link Analysis (Green) 

A broken link is a hyperlink on a publisher's site that cannot be properly resolved and 

results in an error, the most common of which is known as a 404 error. These broken links 
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can cause customer frustration and loss of trust [186, 187] or a poor user experience if the 

user attempts to navigate the site using any of the broken links [35]. All of these scenarios 

may lead to a loss of conversions as frustrated or untrusting users are more likely to switch 

to using another publisher's site [4]. Therefore it is hypothesised that the presence of broken 

links on a publisher site will lower the site’s performance on an advertising campaign. 

H4. The presence of broken links on a site will negatively affect site performance. 

In order to calculate the broken link score, the surfer agent keeps track of any link that 

cannot be properly resolved (  ) as well as the total number of links found while crawling 

each publisher’s site (  ). The broken link score is the proportion of working links to the 

total number of links on the publisher’s site. In order to comply with requirement r2, the 

resulting percentage is multiplied by 100 to bring the score into the range of 0-100 

inclusive as shown in Equation 3.3. 

(
     
  

)      

Equation 3.3 Broken link score calculation 

3.3.2.2 Broken Image Analysis (Green) 

A broken image is an image on a publisher’s site that cannot be displayed properly. This is 

usually because the image file is not present in the location referenced in the web page’s 

code. While a broken image is technically a specific kind of broken link, broken images 

have a different effect on the user experience than broken links. Unlike broken hypertext 

links, broken images are obvious when viewing a page and create a poor user experience 

[35] due to the site appearing incomplete or unprofessional [196]. This, in turn, may lead to 

a loss of conversions due to user frustration and loss of trust [186, 187]. This frustration 

and loss of trust can ultimately lead to a loss of revenue because trust is an essential 

component of user satisfaction [26]. It has also been shown that unsatisfied users may 

switch to using another web site as the cost is much lower than in a brick-and-mortar store 

[4]. Therefore, it is hypothesised that the presence of broken images on a publisher site will 

lower its campaign performance. 

H5. The presence of broken images on a site will negatively affect site performance.  

In order to calculate the broken image score, the surfer agent keeps track of any image that 

cannot be properly resolved (  ) as well as the total number of images found while crawling 
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the publisher’s site (  ). The broken image score is the proportion of working images to the 

total image count on the site. In order to comply with requirement r2, the resulting 

percentage is multiplied by 100 to bring the score into the range of 0-100 inclusive as 

shown in Equation 3.4. 

(
     
  

)      

Equation 3.4 Broken Image Analysis 

3.3.2.3 Blacklist Check (Green) 

The blacklist check in the current implementation of the framework is a measurement 

conducted by the Site Info agent which is described further in Section 4.2.2. The agent 

checks the Google Safe Browsing and Malware Domain List blacklist services to determine 

if any of the publisher sites are present on the lists. The Blacklist Check is a binary score 

meaning that if a site has a page on either blacklist the site receives a score of zero, 

otherwise the site will receive a perfect score of 100 for this feature. 

H6. Being on a blacklist will negatively impact a publisher site’s campaign 

performance. 

In an examination of publishers involved with the Tower of Power (TowPow), an affiliate 

advertising programme best known for dealing in herbal remedies and counterfeit products, 

Kamari, Ghaemi and Mccoy discovered that a large portion of the Russian domains from 

that network were listed on an e-mail SPAM blacklist feed. The authors speculate that the 

domains may have been previously used in SPAM activities, and were added to the feed 

when those activities were detected [188]. With known-malicious spammers re-using their 

domains for affiliate advertising, a blacklist check is essential in determining the 

HealthScore of a publisher. As of May 2013, Chrome, Firefox and Safari combined hold 

66.3% of the browser market share [197], and all three of these browsers issue a very 

blatant warning to any user attempting to browse to a site on the Google Safe Browsing 

blacklist. A warning regarding malicious content appearing on three of the major web 

browsers should cause a decrease in traffic to an affected publisher’s site. Less traffic 

means fewer chances for conversions to happen and so I hypothesise that appearing on a 

blacklist will cause a drop in a publisher’s performance. 

3.3.3 Publisher HealthScore Calculation 
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Once the individual feature scores for a publisher’s site have been computed, they can then 

be used to calculate the HealthScore for that site. In order to be consistent with the rest of 

the system described in this thesis, I have also created a set of requirements for the 

publisher’s HealthScore to follow: 

r1. The final HealthScore must take individual feature weights into account when being 

calculated. 

r2. If a user wishes to ignore a particular feature, the calculation of the final 

HealthScore should allow for this without requiring a change in the formula or 

underlying system code. 

r3. The final HealthScore must be in the range of 0-100 inclusive. 

The publisher site’s final HealthScore is the weighted average of the individual feature 

scores and is calculated as shown in Equation 3.5. The weighted average is used because it 

fulfils all three of these requirements for any number of   features. 

The requirement (r1) to allow for feature weights is based on advice given by Agarwal and 

Venkatesh who noted that not all features will be equally important when evaluating sites 

belonging to different contexts [87]. The weighted average allows for each feature to have a 

different weight based on the requirements for a specific campaign and allows for a feature 

to be disabled by setting the weight to zero and cancelling it out of the equation.  

In order to properly calculate the HealthScore for a site, some assumptions must first be 

met. Each individual feature score, denoted as   , is assumed to be in the range of 0-100 

inclusive in order to comply with the feature requirements. The weight of a feature, denoted 

as    , is assumed to be in the range of 0-10 inclusive to avoid giving any one feature a 

disproportionate effect on the HealthScore. Each feature score is multiplied by the 

corresponding weight for that feature and then the products are all added together. The 

HealthScore is kept within the range specified in r3 by dividing the sum of the weighted 

scores by the sum of the weights. 

∑ (      )
 
   

∑ (  )
 
   

 

Equation 3.5 Publisher HealthScore calculation for n features 
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Figure 3.1 Structure of the Publisher Score Instrument 

H7. A site with a good HealthScore is also likely to be classified as a good performer. 

H8. A site with a poor HealthScore is also likely to be classified as a poor performer. 

As shown in Figure 3.1, the HealthScore is a combination of the individual features of each 

of the high-level dimensions, some of which are designed to indicate “Good” performance 

and some to indicate “Poor” performance. Therefore, it is hypothesised that the 

HealthScore will be capable of indicating either level of publisher performance. 

3.3.4 Publisher Performance Calculation 

The initial plan to determine how well a publisher site was performing on the campaign 

was to use the conversion rate measurement discussed in section 2.2.4.3. The conversion 

rate is the proportion of sales to clicks for a publisher site, and it was originally felt that this 

metric would fairly and accurately capture the real-world publisher performance on the 

advertising campaign. However, after working with the data for a short time, it became 

apparent that using the conversion rate would be problematic. There were several issues 

with the conversion rate measurement that led to the creation of the performance score: 

1. The conversion rate could sometimes lead to high volume publishers being unfairly 

penalised when compared to very low volume publishers (Example #1).  

2. Occasionally more sales than clicks were recorded in the affiliate network data 
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(section 4.3.1) which caused a conversion rate that was above 100% (Example #2).  

3. The conversion rate does not allow for sales and clicks to be weighted differently 

depending on the goal of the advertising campaign (Example #3). 

In order to combat the issues inherent in the conversion rate measurement, the performance 

score was created. The performance score calculation uses the sales and clicks just like 

conversion rate calculation, but uses a weighted average of the two metrics, similar to the 

HealthScore (Equation 3.5) in order to address the issues encountered with the conversion 

rate.  

For the advertising campaign used in this study, it was decided that the number of sales was 

far more important than the number of clicks, and that the weight of the number of clicks 

should be limited to prevent publishers with sheer click volume from rising above sales 

leaders in the performance rankings. These decisions led to the sales being weighted at five 

while the clicks were weighted at one.  

Because the performance score calculation uses the same equation as the HealthScore, it is 

bound to follow the same requirements (section 3.3.3). In order to comply with those 

requirements, there is some pre-processing that needs to be done in order to scale the 

number of sales and clicks to be within the range of 0-100 inclusive. This is done by 

calculating the percent rank of each click and sale meaning that the scaled values for these 

measurements are dependent on how many clicks or sales the other publishers on the 

campaign have received. This method of scaling brings the values into the acceptable range 

laid out in r3, and also allows for the publishers to be quickly compared to one another. For 

an example of how this scaling works, see Table 3.5.   

In order to fully explain the advantages of using the performance score over the simple 

conversion rate, a number of example scenarios have been created. All of the example 

scenarios refer to Table 3.5. 
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Item 
Raw 
clicks 

Raw  
sales 

Scaled 
clicks 

Scaled 
sales 

CR Performance 
Swap 
Weights 

1 1 1 9 27.00 100 24.00 12.00 

2 10000 1000 63.00 72.00 10 70.50 64.50 

3 2 1 27.00 27.00 50 27.00 27.00 

4 100 1 45.00 27.00 1 30.00 42.00 

5 1000000 1000 90.00 72.00 0.1 75.00 87.00 

6 1 1000 9 72.00 100000 61.50 19.50 

7 1000 0 54.00 9 0 16.50 46.50 

8 10000 0 63.00 9 0 18.00 54.00 

9 2 2 27.00 54.00 100 49.50 31.50 

10 10000 458 63.00 63.00 4.58 63.00 63.00 
 Table 3.5 Performance Score Example 

3.3.4.1 Example 1 

A publisher from the long tail with only a single click and a single sale (item one in the 

example table) would have a conversion rate of 100% while a publisher with 10,000 clicks 

and 1,000 sales (item two in the example table) has undoubtedly earned more revenue and 

brand recognition for an advertiser, yet is listed as only having a 10% conversion rate. 

Using the conversion rate as a measure of performance in this situation would indicate that 

the first publisher is outperforming the second by a large amount, although further 

inspection reveals that this is not true. Using the performance score, the site with 1,000 

sales will always have a higher score than the site with one sale.  

3.3.4.2 Example 2 

Affiliate network data that has not been recorded properly (section 4.3.1) may cause 

conversion rates to be reported at above 100%, whereas the performance score uses scaled 

clicks and sales, and so the score will still be a sane value for performance even on sites 

with more sales than clicks recorded as shown with the sixth item of Table 3.5. 

3.3.4.3 Example 3 

In working closely with several digital marketing agencies in Scotland, I found that it is 

sometimes the case that advertising campaigns are primarily interested in raising brand 

awareness with revenue generation as secondary focus. Simply changing the weights for 

sales and clicks allows for the performance score to measure this shift in priority as shown 

in the last column of the example table. In this case, the weights were swapped so that the 

number of clicks is weighted at five and the number of sales is weighted at one although 
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either of the weights can be set anywhere in the range of 0-10 inclusive. 

3.4 Conclusion 

This chapter introduced the methodology behind the feature selection process including the 

justification for the selection of the six implemented features. Each of the features belongs 

to one of two high-level categories: domain analysis or content analysis.  

In order to rate each site, a score for each of these feature must be calculated and that 

process was outlined along with the presentation of a hypothesis as to how each feature will 

relate to the site’s real-world performance.  

The domain analysis feature group includes URL similarity, visibility and URL relevance. 

The URL similarity feature was designed in order to identify publishers using typo-

squatting techniques [181]. The visibility feature score is based upon how well a site ranks 

for the organic search results for the campaign keywords. Organic search results were 

chosen as it has been shown that most users choose organic results when searching [191]. It 

has been suggested that when a site has a URL that includes terms from the search query, 

that URL should appear in the search caption in order to highlight the result’s relationship 

to the user’s search [183]. This thinking has been extended to test whether the presence of 

campaign keywords in the URL will affect publisher performance with the URL relevance 

feature. 

The content analysis group contains broken link analysis, broken image analysis and 

blacklist check. Sites that have broken images and broken links on them can appear to be 

unfinished or unprofessional to users [196].  This feeling can lead to user dissatisfaction, 

which can then lead to a loss of revenue for the publisher [186, 187]. The broken link and 

broken image features take this into account and report the proportion of working links and 

images on a site. When attempting to visit a site on the Google Safe Browsing blacklist, 

Chrome, Firefox and Safari warn the user that the site they are attempting to visit is 

potentially dangerous. This warning is likely to deter potential customers from trusting the 

site, which is sure to lead to a loss of revenue as trust is a key component to user 

satisfaction [26]. 

An overall HealthScore was calculated using the weighted average of the scores of the six 

website features tested for each of the publishers in order to create a value that could be 
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compared against the publisher’s campaign performance. This calculation was described 

along with how the real-world performance for each publisher was calculated in this study. 

In the next chapter, the systems and processes used to gather the data needed to calculate 

the website feature scores will be presented. The chapter will also cover some initial 

observations regarding the quality and availability of the data as well as the experimental 

set up needed to test the hypotheses presented in this chapter. 
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4 Data Gathering and Trial 

Analysis 

4.1 Introduction 

This chapter presents a cloud-based platform used in the data gathering and analysis phases 

of this research. The platform housed several virtual machines, each responsible for a 

different sub-system of the overall website evaluation framework, and was created in order 

to provide an automated method of gathering the data required in order to compute the 

feature scores and HealthScore for a publisher’s site. The chapter will also explain the 

processes employed by the various sub-systems in order to capture that information. From 

there, some initial observations related to the data gathered will be discussed. This 

discussion is followed by the experimental setup that is required in order to test the 

hypotheses presented in the previous chapter. 

4.2 Framework Components 

The data gathering and analysis platform is logically segmented into the four independent 

subsystems shown in Figure 4.1 on page 67. The hardware used to host the Virtual Machine 

(VM) instances that would make up the system included five DELL PowerEdge servers, 

four of which had a 3.1 GHz CPU and 16 GB of RAM with the fifth being used as a 

controller and having a 3.1 GHz CPU and 8GB of RAM. The hardware was hosted off-site 

at a local cloud provisioning company. 

The data gathering portion of the platform deployed for use in this study consisted of one 

VM allocated 8 CPUs and 8192 MB of RAM (of which an average 7.60 GB was in use at 

any time) to double as the controller and database subsystems. There were also 60 VMs, 

each allocated a single CPU and 512 MB of RAM (of which an average of 420 MB was in 

use at any given time with each agent taking up around 80 MB), for the agents. It is 

uncertain what the unit “CPU” represents in terms of GHz as the VM instances were 

provisioned using the hosting company’s cloud management software, however the 

instances of the Agent subsystem had an average CPU utilisation of 40% and the combined 



67 

 

Controller and Database subsystem instance had an average of 20% CPU utilisation. 

 

  

 

Figure 4.1 Cloud-based Data Gathering and Analysis Platform Overview 

All of the VM instances were running Microsoft Windows Server 2008, and each of the 

smaller instances comprising the Agent subsystem had a copy of the manager, surfer, 

visibility and site info agents installed. This was done to simplify the process of creating 

new scanner instances as required based upon the current workload.  

4.2.1 Controller Subsystem 

The controller subsystem deals with managing/balancing the workload for individual agents 

and consists of three elements: 

1. Job Pool: This details the jobs that are already allocated to individual agents and 

jobs that are awaiting allocation.  

2. Scheduler: The scheduler calculates which website is next in the queue for 

evaluation. The scheduler is configurable and any modification to the schedule will 

not disrupt the operations of the overall system. 
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3. Agent Controller: This utility starts, pauses, and changes the type of the active 

agent. This controller also allows the core engine administrator to manually stop the 

agents if necessary. 

4.2.2 Agent Subsystem 

This subsystem consists of software programs written in C# that are tasked with gathering 

the required information for each of the features on individual websites. The number and 

types of agents that can be implemented at this layer is both flexible and extensible. 

Inclusion of new agents or modifications to existing agents will have minimal impact on 

currently deployed agents or other subsystems in the core engine. Therefore, any future 

upgrades to this subsystem would not require extensive downtime of the overall system. 

The four agents that were implemented for this study were: 

1. Agent Manager: This agent checks the next job in the job pool and chooses which 

agent should be assigned that job. 

2. Surfer Agent: This agent is the main workhorse of the entire system. The surfer 

agent crawls individual websites, gathering data present on them. The surfer agent 

uses the Fiddler2 proxy server in order to capture browsing sessions while browsing 

the site it has been assigned. This agent mimics a (human) user in discovering how 

a website will represent itself to potential customers. In order to mimic the 

behaviour of a human, the crawler spawns an instance of the Firefox browser and 

directs the browser to render the pages of the site to be scanned. 

The crawling scheme implemented for the Surfer Agents is breadth first with a limit 

of 5000 pages per website per scan. Although each Surfer Agent is limited in the 

number of pages on a site it will scan per pass, all of the pages of each site are 

present in the job pool and will be picked up and scanned by an agent in time. I 

imposed this limit in order to speed up the process of calculating initial scores for 

each of the sites. Future versions of the surfer agent may be designed to crawl in a 

more intelligent manner similar to browsing agents like Max [158]. Multiple agents 

with various crawling techniques in order to simulate different user types would 

also be an interesting addition to future versions. Techniques that take advantage of 

LSA, similar to those used by the InfoScent Evaluator [161] and the Bloodhound 

project [164], in order to more closely emulate a user seeking information are 

particularly interesting. 
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3. Visibility Agent: The visibility of an affiliate corresponding to a campaign is an 

important feature for the prediction of publisher performance. As the functionality 

of this agent is fundamentally different to that of the surfer agent, it has been 

implemented as a separate agent. The operation of this agent is outlined in more 

depth in section 3.3.1. 

4. Site Info Agent: This agent is tasked with searching open source repositories and 

discovering the supplementary information related to a website required to calculate 

a score for the Blacklist Check feature. Features not yet implemented such as 

Content Relevance, Digital Certificate Evaluation and Readability Analysis will 

also have the data they require collected by this agent.  

4.2.3 Database Subsystem 

The database subsystem stores all the data gathered from online open source repositories 

and publisher websites by the various agents from the Agent subsystem. The subsystem 

uses a MS SQL database designed to store individual elements related to a website in a 

manner that allows searching without time-consuming computations and a logical relation 

to the respective websites so that tracking any changes/modifications to them is easily 

detectable. Indexing and the free text search feature allow for fast searches to be performed 

on the data stored in the Core database. In addition to gathering data regarding individual 

websites, statistics related to the platform utilisation are stored in a separate Stats database. 

This includes the performance, data generation, network usage, and memory usage of the 

core engine in order to allow for the effective tuning of the system. 

4.2.4 Analysis Subsystem 

The main aim of this research is to determine what features make good indicators as to 

whether a publisher will be a “Good” or “Poor” performer. In order to meet that aim, a 

significant amount of data must be processed in order to calculate the scores for each 

feature. The VM instance used to house the Analysis subsystem consisted of a single CPU 

and 2048 MB of RAM. Unfortunately, usage statistics were not recorded for this 

subsystem, and so the average RAM and CPU utilisation cannot be reported. 

The score calculator for the features consisted of several purpose-built C# programmes 

each designed to calculate the scores of a single feature and to record the score in the Core 

database. For an in-depth explanation on how each of the feature scores was calculated, see 
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section 3.3. It is envisioned that future iterations of the score calculator will be a single 

programme capable of reading rules from a set defined outside of the code to allow for 

more extensibility. This method is similar to KWARESMI, described by Beirekdar, 

Vanderdonckt and Noirhomme-Fraiture [198]. KWARESMI is a method for expressing 

usability guidelines in a high-level language for use in automated usability evaluation 

systems. 

4.3 Initial Observations 

In order to calculate a score for each of the six web site features, the Surfer Agent, 

Visibility Agent and Site Info Agent gather data from each of the publisher sites. The 

Surfer Agent is responsible for gathering data found on the site through crawling while the 

Site Info and Visibility agents gather data about the site from external sources such as 

blacklist providers and search engines. Whilst crawling a site, the Surfer Agent gathers a 

significant amount of data beyond what is currently being used to calculate the various 

feature scores and the HealthScore. The feature calculations that have yet to be 

implemented will be able to make use of that extra data in order to evaluate more features 

and increase the accuracy of the system without needing to re-crawl sites as the information 

has already been gathered. 

4.3.1 Affiliate Network Data 

The data used to calculate real-world performance for the publishers was supplied by 

various digital marketing agencies. These agencies retrieved the data from the affiliate 

network systems, and based upon the non-uniformity of the data from each network, it does 

not appear to have undergone any additional processing by the agency and is likely straight 

from the network systems.  

The most pronounced of the limitations encountered throughout the study were related to 

the performance data. Although there were over 4,000 sites scanned, the availability and 

completeness of the performance data limited the number of sites that were usable in the 

study to 234 sites.  

In looking at the performance data, it seemed as though some of the networks had the 

capability to report a plethora of performance metrics while other networks reported only 

the bare minimum needed to evaluate performance. It is unclear if the data sets from 
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networks C and D were incomplete or if the agency only reported the minimum amount of 

information required to compute a performance score. It is possible that the data was 

purposely limited to the bare minimum necessary in order to save time as some agencies 

reported having to be manually copy and paste the data from the network systems due to 

the lack of an export feature. The full list of measurement capabilities for each network 

based upon the data received is summarised in Table 4.1.  

Measure Network A Network B Network C Network D 

Average Order Value   x     

Number of Clicks x x x x 

Commission Rate   x     

Commission Earned x x     

Commission Level   x     

Cookie Length   x     

Cost Per Mille (CPM) x       

Conversion Rate (CR) x x     

Click-through-rate (CTR) x       

Declined  Average Order Value   x     

Declined  Commission   x     

Declined  Number of Sales   x     

Declined Value   x     

Earning Per Click (EPC) x       

Number of Impressions x x x   

Number of Leads x   x   

Sale Amount x x     

Number of Sales x x x x 

Table 4.1 Affiliate Network Measurements 

While there are a large variety of performance metrics listed for networks A and B, most of 

the fields for a majority of the publishers were blank or seemingly recorded incorrectly. For 

example, there were several cases of a publisher with zero impressions and hundreds or 

thousands of sales. The implication of this is that any metrics calculated using these fields 

(i.e. CPM or CTR) were calculated incorrectly. One publisher is listed as having 2801 

clicks and only 285 Impressions resulting in a reported click-through-rate of 983%. 

Luckily, it appears as though the networks are more diligent with the recording of the 
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number of clicks and the number of sales as these are the values used in the calculation of 

the publisher performance scores, and they passed basic sanity checks for all networks.  

There were two networks that appear to keep their customer data separate from the 

performance data. This was evidenced by the fact that the spread sheets with the 

performance data had publisher IDs on them which then had to be matched up with a 

separate spread sheet containing customer data in order to find the publisher’s URL. While 

this in itself does not cause any major issues, the lists were often inconsistent and had 

different numbers of publishers on them, and several publishers with performance data did 

not appear on the customer sheet which made it impossible to find the URLs for those 

publishers. 

It also appears that some affiliate networks store data about each site in the campaign 

separately while others keep data about each publisher, merging the data from all of the 

publisher’s sites and making it impossible to determine which of the publisher’s sites was 

responsible for the performance reported. When designing future versions of the 

framework, these differences should be taken into consideration. 

In talking with various affiliate networks at the outset of this research, it was noted almost 

unanimously that each publisher was vetted before being added to the system. When 

looking at the data, however, this was not evident. Several of the URL fields contained 

either no URL or the URL of the advertiser rather than a publisher’s site. There were also 

several occasions where the URL field contained multiple URLs, but this may have been 

done purposely in cases where the publisher uses multiple sites for one advertising 

campaign. 

4.3.2 Sites 

Before adding the publisher sites to the job pool and sending the agents to gather data, 24 

surfer agents were deployed on local machines at the University for testing purposes. The 

agents were given a subset of the publisher sites to crawl and were observed in action. This 

was done in order to spot any potential issues with the agents that may have been difficult 

to detect when the scanners were moved to the virtual machine instances that had to be 

accessed through remote desktop. 

Several of the sites crawled during the test scans were domain parking pages full of 

advertisements. Others instantly redirected the user to another domain or even to the 
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advertiser’s site in a few cases. Unfortunately, the crawler does not record the address of 

pages like these and so the team was only able to inform the digital marketing agencies 

about a small number of sites that were witnessed exhibiting these behaviours.  

Other times, the URL appeared to be that of the publisher’s corporate site rather than the 

site being used to advertise the products and services of the campaign. Many digital 

marketing agencies and affiliate networks claim to audit publisher sites for compliance with 

network and advertiser terms and conditions, yet the site URL is not present in the affiliate 

network’s system. These issues point toward the difficulties faced by affiliate networks and 

OPMs related to the continual auditing of publisher sites. 

4.3.3 Crawler 

Several sites highlighted issues with the design of the custom web crawler. For instance, 

when encountering calendars the crawler would continuously page through the calendar 

day by day until manually stopped by a researcher. This resulted in some sites being listed 

as having millions of pages and wasting valuable crawling time. In order to stop this, the 

crawler was changed to ignore objects that appeared to be calendars and an initial scan limit 

of 5,000 pages per session was added to the surfer agent. 

Several of the publisher sites were unable to be crawled. These sites will be referred to as 

null sites for the remainder of this thesis. There are three main reasons that a site may be 

classified as a null site: 

1. The site was unreachable when the web crawler attempted to visit. These sites were 

manually added back onto the end of the job pool so they would be tried again at a 

later time to rule out temporary outages or routing issues. 

2. If a site immediately redirected the crawler to a different domain, the crawler did 

not attempt to crawl any further. This limitation is built into the crawler and is 

discussed in further depth below. 

3. Any single page site that was could be identified as a temporary parking page was 

classified as null as these pages do not offer any value to the customer. 

In the cases where a site was classified as a null site due to an immediate redirect to an 

external domain, the crawler halted and requested the next job. This behaviour was 

purposely built into the surfer agent as the agent only concerns itself with a single domain 

at a time. This was done in order to prevent it from running off and attempting to crawl the 
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whole of the Internet when following links to other domains. This also serves to ensure that 

all traffic captured in a single session belongs to only one site in order to properly calculate 

the feature scores for that site without including content from external domains. This 

practice appeared to be most commonly used to redirect a publisher’s old URL to a new site 

being used for the same campaign. Presumably, the publisher used this tactic to avoid 

having to contact all of the agencies and networks to update each of their addresses.  

This behaviour should be taken into consideration when future iterations of the surfer agent 

are being designed. The surfer agent should also be made to keep track of those sites which 

are parking pages, offline or simply redirects especially those that instantly redirect to the 

advertiser’s page as those pages add no value to the network and should be manually 

reviewed by the programme manager. The ability to handle calendars and other similar 

objects should also be integrated into the surfer agent.  

4.3.4 Feature Data 

After the crawlers were moved to the cloud-based VMs and had finished collecting the 

data, I quickly checked over the values to ensure that the data seemed valid. During these 

checks, I made several observations regarding the various web site features of the 

publishers related to Company_A.  

4.3.4.1 Broken Links 

Based upon the ever-changing nature of the Internet and the relatively low level of 

knowledge needed to create a publisher site, I expected that several of the sites would 

struggle with broken links. Surprisingly, on 62% of the sites crawled, less than 1% of the 

links on the site were broken. With 39% of all sites having no broken links on them at all. 

The high level of performance in regards to maintaining links on the publisher sites was not 

something that I had expected to see. 

4.3.4.2 Broken Images 

Like broken links, I expected that several of the publishers would struggle with broken 

images on their sites, albeit to a lesser degree than broken links as a broken image is much 

easier to spot with an untrained eye. Most browsers display a broken image as a large red 

‘X’ or other obvious placeholder which is difficult to miss when a publisher reviews their 

site. However, 89% of the sites for Company_A had no broken images on the site at all 

with 97% of the site having only 1% broken images. 
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4.3.4.3 Blacklist Check  

Due to the low frequency with which publisher sites are audited and the large workload of 

programme managers, it was expected that a small amount of sites that had been blacklisted 

would make it onto the advertising campaigns. However, none of the sites related to 

Company_A appeared on either of the blacklists checked. 

While this is certainly good for the advertiser, agency and affiliate network running 

Company_A’s campaign, it unfortunately means that the effectiveness of this feature could 

not be tested in this case study. 

4.3.4.4 URL Similarity 

The URL Similarity check was done manually, and like the blacklist check, none of the 

sites related to Company_A had a problem with this feature. There was a publisher for 

Company_B that had seven sites on the campaign with URLs that matched the advertiser’s 

URL almost exactly, but unfortunately these sites had incomplete performance data and 

could not be included in the analysis. These sites were, however, reported to the digital 

marketing agency for manual review.  

Unfortunately the effectiveness of the Blacklist Check feature was unable to be determined 

in this study as no sites with complete performance data had a score below 100.  

4.3.4.5 Visibility 

While designing the visibility feature, it was envisioned as possibly having the most 

bearing on real-world performance. Unfortunately, it was not anticipated that so many of 

the sites would receive a zero score for visibility. Only 10 sites (4%) received a score above 

zero for this feature, which indicates that the algorithm may need to be tweaked in order to 

perform a more complete analysis. 

4.3.4.6 URL Relevance 

The URL Relevance feature was expected to be another strong indicator of publishers with 

good performance. It was expected that a small portion of the sites would have keywords in 

the URL due to there being a limited number of combinations of campaign keywords that 

would make sense in a website address. It is also likely that a portion of the publishers use 

the same site for multiple advertising campaigns and so those publishers will choose a more 

generic URL. As expected, 45% of the sites related to Company_A had a score below 10 

for URL relevance. 
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4.3.4.7 HealthScore  

The HealthScore is created by combining the scores from each of the features discussed 

above. I expected that the HealthScores would show a large cluster toward the bottom with 

a smaller cluster at the top and a relatively low number of sites spread between them. This 

theory was based upon the large number of low performing publishers that typically make 

up the long tail of an affiliate advertising campaign [3].  

However, there was not a cluster of scores near the bottom end of the scale, and this can be 

attributed to the surprisingly high performance of the sites in the broken links and broken 

images categories. 

4.3.4.8 Performance Scores 

The original plan to measure real-world performance of the publishers was to use the 

conversion rate metric as that is what the digital marketing agencies I was working with 

generally used as a measurement of performance on their campaigns. However, it soon 

became clear that there were publisher sites, especially in the long tail, with a single click 

and a single sale. These sites would skew the numbers with 100% conversion rates and 

presumably low revenue for the advertisers. In order to mitigate this unfair advantage, 

rather than using the number of sales and number of clicks to calculate the conversion rate, 

the weighted average of these numbers was used as a measure of performance (section 

3.3.4). 

It would have been interesting to include the click-through-rate in this calculation but 

unfortunately, the unreliable reporting of impression data by either the networks or the 

digital marketing agencies made this impossible. 

4.4 Experimental Setup 

This research has defined and implemented six features to be included in the calculation for 

the publisher’s HealthScore. In order to determine how the features relate to the 

performance score, the differentiation between a “Good” and “Poor” scores must first be 

made. The values chosen to be tested for these thresholds were based upon the range of 

scores for each feature. 

Nine confusion matrices were created for each of the features using the three performance 

score thresholds and the three feature score thresholds. Using the confusion matrices, the 
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follow values were calculated for each test [199]: 

 Precision  

 True Positive Rate (Sensitivity) 

 False Positive Rate  

 True Negative Rate (Specificity) 

 False Negative Rate 

 Accuracy  

Precision refers to the proportion of sites that were classified as having a “Good” feature 

score that are also “Good” performers. The precision is the most important of the calculated 

values for the features in this study, and the precision for both the “Good” and the “Poor” 

classifications has been calculated.  

The sensitivity, or the true positive rate, identifies the proportion of sites that are “Good” 

performers that were also labelled as having a “Good” feature score and the specificity, or 

true negative rate, is the proportion of sites that are “Poor” performers and were also 

labelled as having a “Poor” feature score. The sensitivity and specificity are important 

measures, but none of the individual features are designed to capture all of the “Good” or 

“Poor” publishers. The sensitivity and specificity measurements are therefore more 

important in regards to the HealthScore as that construct is meant to identify as many of the 

“Good” or “Poor” publishers as possible. Finally, the accuracy is the proportion of the total 

number of correct predictions (“Good” and “Poor”).  

The results with the best combination of measurements along with the corresponding 

confusion matrix for each feature can be seen in chapter 5, while the full list of confusion 

matrices and measurements can be found in Appendix E. 

4.5 Conclusions 

This chapter described the physical and logical cloud-based platform used to host the 

virtual machines that housed the various sub-systems responsible for data collection and 

analyses. The surfer agent is responsible for gathering data from the publisher sites while 

the visibility and site info agents gather related information from external sources such as 

search engines and blacklists. I also suggested implementing feature analysis rules in a 

high-level language like KWARESMI [198].  
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Upon receiving and examining the campaign performance data from the digital marketing 

agencies, it was apparent that the different networks relied upon varying types of 

performance metrics. As can be seen in Table 4.1, the amount of data reported from 

network C and network D was much sparser than that from either of the other two 

networks. All of networks reported the number of sales and the number of clicks, which 

allowed those values to be included in the calculation of the publisher’s performance score 

created to represent the business performance of a publisher. 

Although it seemed as though some of the networks were able to calculate several 

performance metrics, some of the data, such as the number of impressions, was missing or 

inaccurately recorded (Section 4.3.1). Throughout the crawling process there were issues 

with missing or malformed publisher URLs as well as several sites that were blatantly 

malicious or did not follow the terms of service for the network or advertisers. I reported 

my findings to the digital marketing agencies responsible for the affected campaigns.  

After the surfer agent had collected the data from the publisher sites, several observations 

were noted during a manual sanity check of the data. Out of the six website features 

currently implemented, only four were able to be tested in this study as every site received 

a perfect score for both the URL Similarity and Blacklist Check features. With every site 

scoring a perfect score, I was unable to determine the relationship between these two 

features and the real-world performance of the publishers. Without knowing how either of 

these features affects publisher performance, it was not possible to determine an 

appropriate weight for them and so the weights on these features were set to zero when 

calculating the HealthScore. As described in section 3.3.3, this effectively turns these 

features off without needing to modify the HealthScore equation. 

Once the data was collected and the feature scores had been calculated, it was necessary to 

determine which sites were to be labelled as “Good” or “Poor” performers for each of the 

features as well as for campaign performance. In order to do this, three threshold values 

were chosen for the performance score and three were chosen for each feature. Confusion 

matrices were created for each of the nine permutations of these thresholds, and the best fit 

was determined for each feature by choosing the matrix that had the best corresponding 

positive and negative precision. 

The next chapter will focus on the reporting and evaluation of the results of these tests 
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along with the threshold chosen for each feature. A discussion of the implications of the 

results along with a critical analysis of the methodology and design decisions made 

throughout the research process will follow.   
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5 Evaluation 

5.1 Introduction 

This chapter describes the data collected from the publisher sites in more depth and then 

presents an overview of the findings. After that, an analysis of the results related to the 

performance score, each of the features and the overall HealthScores is presented. This 

analysis includes the confusion matrix corresponding to the chosen threshold for that 

feature along with the statistics derived from that confusion matrix. A full list of the 

confusion matrices produced in the tests for each feature can be found in Appendix E.  

5.2 Affiliate Advertising Trial Overview 

Although the trial conducted originally involved four advertisers, three of the advertisers 

had mostly incomplete performance data available. As such, it was not possible to conduct 

a meaningful evaluation of the performance of the publishers related these three advertisers. 

Only Company_A had enough performance data available to make a comparison between 

the publisher health and performance. 

Even without the accompanying performance data for a majority of the sites, the sites for 

each of the advertisers were added to the job pool and a HealthScore was calculated for 

them using the methodology laid out in chapter 3. Overall, more than 4,000 publisher sites 

were scanned using the cloud-based infrastructure and custom purpose-built web-crawling 

agents described in section 4.2. The data gathering phase of the trial was conducted over 

the span of 20 days with an actual uptime of approximately 260 hours. During this time, the 

surfer agents gathered approximately 1.1TB of data from over 5.6 million pages. A score 

for each of the six features was then calculated from the analyses of more than 39.5 million 

content elements (such as links, images, HTML tags, and so on).  

5.2.1 Data  

Of all of the advertisers originally involved in the trial, Company_A had the largest set of 

URLs by far. The digital marketing agency that manages the advertising campaign in 

question at Company_A was able to provide 89 campaign keywords related to the goals of 

the campaign along with 2,224 URLs belonging to publisher sites that were enrolled on the 



81 

 

campaign at the time of the study. From these URLs, 523 were unable to be crawled by the 

surfer agents and were classified as null sites. 

Although the system crawled and scored 1701 sites related to Company_A, adequate 

performance data was only available for 234 of the sites. More than one agency reported 

having to manually extract the performance data from the affiliate network system by 

copying and pasting the values into a spread sheet. Due to the time-consuming nature of 

extracting the data by personnel at the digital marketing agency, at least one agency only 

extracted performance data related to affiliates deemed to be active. In doing this, that 

agency effectively removed the performance data belonging to a large portion of their long 

tail and greatly reduced the number of sites usable from their campaign. 

5.2.2 Findings/Results Overview 

The data collected from the publisher sites was analysed to create scores for six features: 

broken links, broken images, visibility and URL relevance, URL similarity and blacklist 

check. Table 5.1 shows that out of 234 publisher sites, 68% (158 sites) scored well for the 

broken link category meaning that 32% (76 sites) had broken links present on the site. It 

can also be seen that 98% (229 sites) had no broken images on the sites. In terms of 

visibility, only 4% (10 sites) received a non-zero score and 44% (104 sites) had URLs 

containing campaign keywords. Fortunately for Company_A, the publishers and the digital 

marketing agencies involved, none of the sites had addresses that were considered to be 

typo-squatting URLs and none were on either of the blacklists checked. Unfortunately for 

this study, this meant the correlation between real-world performance of a publisher and the 

URL Similarity and Blacklist Check features was unable to be explored in this study. 

Company_A Overview Count Percent 

Sites Scanned 234 100% 

Broken Links (Good) 158 68% 

Broken Images (Good) 229 98% 

Visibility (Good) 10 4% 

URL Relevant (Good) 104 44% 

URL Similarity (Good) 234 100% 

Blacklist Check (Good) 234 100% 

Table 5.1 Overview of Company_A Scan Findings 
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5.3 Performance Score Analysis 

The measurement that was originally slated for use in determining the campaign 

performance of a publisher was that publisher’s conversion rate. However, there were 

several issues associated with using the conversion rate (section 3.3.4) which prompted the 

creation of the performance score. 

In looking at the distribution of performance scores shown in Figure 5.1, about 12% of the 

sites (28 sites) have a performance score between zero and five. This cluster of very low 

scores can most likely be attributed to those publishers forming the long tail of the 

campaign as explained in section 2.2.3. Other than these long tail publishers, the remainder 

of the performance scores are spread out relatively evenly and there does not appear to be 

any other major clusters of scores. 

In order to use the performance score in comparisons with the feature scores and the 

HealthScore, it was necessary to determine where the cut-off between “Good” performers 

and “Poor” performers would lie along the range of scores. In order to determine the best 

value, three different performance thresholds were tested in the experiments conducted on 

each of the features. The values used corresponded to the cut-off for the top 75% of the 

scores (24.45), the mathematical mean (48.04) and the cut-off for the top 25% of the scores 

(73.39). The best balance between precision of “Good” and “Poor” feature scores 

corresponded with a performance threshold equal to the mean performance score for every 

feature tested. The other two thresholds were rejected because with the population balanced 

more heavily toward either “Poor” or “Good”, there were generally too few sites on the 

opposite side to properly test the performance of the individual features. Therefore, any site 

with a performance score above 48.04 is considered a “Good” performer and any site with a 

performance score at or below 48.04 is considered to be a “Poor” performer. 
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Figure 5.1 Performance Frequency Distribution 

Measure Performance 

Count 234 

Min 0.47 

1st Quartile 24.45 

2nd Quartile 48.24 

3rd Quartile 73.39 

Max 99.5 

Mean 48.04 

Median 48.24 

Threshold 48.04 

# above 119 

# below 115 
Table 5.2 Company_A Performance Statistics 

After segmenting the population at the chosen threshold, it can be seen in Table 5.2 that 

119 (51%) of the sites had scores that put them into the “Good” performer category and the 

remaining 115 (49%) sites were put into the “Poor” performer category. 

5.4 Visibility Analysis 

In the context of affiliate advertising, it makes sense that sites appearing high on search 

engine results for the keywords of an advertising campaign should be the best performing 

publishers as those sites should get the most exposure to visitors looking for specifically 

what is offered by the advertiser. Only 10 sites (4%) received a score above zero as shown 

in Table 5.3. I attribute this failing to the overly complex method of calculating the 
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visibility score and discuss methods of improving this feature in Section 6.2.1. 

Measure Visibility 

Count 234 

Min 0 

1st Quartile 0 

2nd Quartile 0 

3rd Quartile 0 

Max 2 

Mean 0.06 

Median 0 

Threshold 0.00 

# above 10 

# below 224 
Table 5.3 Company_A Visibility Statistics 

The extremely low number of non-zero scores for the visibility feature forced the threshold 

to be set at zero meaning that any site scoring more than zero is considered to have “Good” 

visibility and any site scoring zero is considered to have “Poor” visibility. 

While the implementation of the visibility feature is not perfect, Table 5.4 shows a 

Precision of 0.7 which means that out of the limited number of sites with a good visibility 

score, 70% (7) were also good performers. If the trend holds when there are more sites with 

positive visibility, then this feature could be a strong indicator of good performance. 

Looking at Table 5.4, however, it can be seen that the sheer number of sites with a zero 

score has led to a false negative rate of 94%, meaning that out of all the sites that performed 

well, 94% (112) have a score of zero for the visibility feature. This means that a visibility 

score of zero does not mean that a site is any less likely to be a “Good” performer. In fact, 

the precision for the “Poor” sites was 50% meaning that the predictive power for “Poor” 

performers is no better than a random guess. 

Measure Value   

TP (Sensitivity) 0.06 

 FP 0.03   

TN (Specificity) 0.97   

FN 0.94   

Precision (Good/Poor) 0.70 0.50 

Accuracy 0.51   
Table 5.4 Visibility Calculations 

Despite the small number of sites with a non-zero score, the precision of the feature was 
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relatively high at 70%. Giving the visibility feature a weight of 2.5 for means that the sites 

appearing in the search results for campaign keywords are given a boost in HealthScore and 

those not ranking within the results examined are only given a minor penalty. 

5.5 URL Relevance Analysis 

The idea behind the URL Relevance feature is that hopefully a potential customer 

encountering a publisher site with a URL containing campaign keywords is likely view that 

site as being well aligned with their goal (section 3.3.1), and is more likely to click on it. 

In looking at the frequency distribution for the URL Relevance feature shown in Figure 5.2, 

the most noticeable trend is that 38% (88) sites have scored between zero and five for the 

URL Relevance Feature. This large cluster of sites on the lowest end of the score range 

may be due to publishers using sites that were designed for use across multiple campaigns 

and so the URLs are not overly specific to any single campaign. A cluster of sites at the low 

end of a feature’s score range may also be explained by those sites being in the long tail of 

the advertising campaign. The second aspect of the feature scores highlighted in the 

frequency distribution is that no site scored above the 50 to 55 range. This is not an 

unexpected trend considering that in order to score above a 50 in the URL Relevance 

feature two campaign keywords must be present in the URL  (section 3.3.1) and URLs that 

contain too many of the keywords may not actually make sense to a user.   
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Figure 5.2 Frequency Distribution of the URL Relevance Feature 

In order to determine the proper cut-off between sites with a “Good” URL Relevance score 

and those with a “Poor” URL Relevance score, three different threshold values were tested. 

These values were the median score (10), the mean score (13.52) and the cut-off for the top 

25% of scores (23.13). Testing these three values against the three performance scores 

yielded nine confusion matrices which can be seen in Appendix F. The tests revealed that 

the threshold corresponding to the 3
rd

 quartile provided the best balance of statistics. 

Therefore, any site with a URL Relevance score in the top 25% (greater than 23.13) is 

considered to have earned a “Good” score in the feature while any site with a score in the 

bottom 75% (less than or equal to 23.13) is considered to have a “Poor” URL Relevance 

score. This puts 58 sites in the “Good” category with 176 in the “Poor” category as shown 

in Table 5.5. The confusion matrix in Figure 5.3 corresponds to this chosen threshold. 

Performance \ Relevance Poor Good 

Poor 100 15 

Good 76 43 

Figure 5.3 URL Relevance Confusion Matrix (Relevance Threshold: 23.13) 
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Measure URL Relevance 

Count 234 

Min 0 

1st Quartile 0 

2nd Quartile 10 

3rd Quartile 23.13 

Max 52.5 

Mean 13.52 

Median 10 

Threshold 23.13 

# above 58 

# below 176 
Table 5.5 URL Relevance Statistics 

The precision of the URL Relevance feature came out at .74 for “Good” performers and .57 

for “Poor” performers as seen in Table 5.6. This means that in regards to sites that were 

deemed to have a good URL relevance score, 74% also achieved a good performance score 

while 57% of the sites with poor URL relevance were also categorised as poor performers.  

Measure Value   

TP (Sensitivity) 0.36 

 FP 0.13   

TN (Specificity) 0.87   

FN 0.64   

Precision (Good/Poor) 0.74 0.57 

Accuracy 0.61   

Table 5.6 URL Relevance Calculations 

Having achieved a precision of 74%, the URL Relevance feature is still not perfect. Like all 

of the individual features, it was unable to capture all of the “Good” performers by itself. In 

fact, of all the “Good” performers, only 37% also have a “Good” URL Relevance score. 

This is expected as it should not be necessary to have keywords in a site’s URL to perform 

well on an advertising campaign, but those sites that do may have a small advantage as 

users may have an easier time recognising what content should be on the publisher’s site 

[163]. 

Having performed as expected in the good feature score category as well as being above 

50% in the poor feature score category, the weighting of the URL Relevance feature was 
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set to a weight of three as this puts slightly more significance behind the feature than the 

visibility metric. This was deemed an appropriate setting for the weight of this feature as 

the URL Relevance feature had the highest precision for “Good” sites while still 

maintaining above a 50% precision for “Poor” sites. 

5.6 Broken Link Analysis 

Broken links can be a source of user frustration or mistrust of a publisher’s site, both of 

which can lead to a loss of revenue [186, 187]. The frequency distribution in Figure 5.4 

shows that 74% (172) of publisher sites on the campaign for Company_A scored between 

95 and 100 for broken links. With a majority of the sites being so healthy, picking a 

threshold was more difficult for this feature with the cut-off between “Good” and “Bad” 

broken link score likely to be quite high. Indeed, after testing the cut-off for the top 75% 

(95), the median score (99) and just above the top 75% cut-off (96), 96 came out with the 

best balance of statistics. The confusion matrix corresponding with this threshold is 

depicted in Figure 5.5. 

 

Figure 5.4 Frequency Distribution of Broken Link Scores 



89 

 

Performance \ Link Poor Good 

Poor 41 74 

Good 30 89 

Figure 5.5 Broken Link Confusion Matrix (Link Threshold: 96) 

After segmenting the sites based upon the chosen threshold, 70% (163 sites) of the sites are 

classified as having a “Good” score for broken links and 30% (71) of the sites are classified 

as having “Poor” broken links scores as shown in Table 5.7.  

Measure Links 

Count 234 

Min 0 

1st Quartile 95 

2nd Quartile 99 

3rd Quartile 100 

Max 100 

Mean 92.51 

Median 99 

Threshold 96.00 

# above 163 

# below 71 
Table 5.7 Broken Link Statistics 

The cluster of sites with high scores means that there were several sites with a “Good” 

feature score that are actually “Poor” performers on the campaign as with the other 

features. This high number of false positives is confirmed in Table 5.8 which also shows 

that despite the high number of false positives, 55% of the sites with a “Good” feature score 

were also “Good” performers. Even more interesting than that, however, is the fact that out 

of all of the sites with a “Poor” broken link score, 58% were also “Poor” performers. 

Having a “Poor” broken link score appears to be a weak indicator of being a “Poor” 

performer. Because of this, the weight for broken links is set to one meaning that the score 

is not given any extra preference when calculating the HealthScore, but that it is still 

considered in the calculation. 
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Measure Value   

TP (Sensitivity) 0.75   

FP 0.64   

TN (Specificity) 0.36   

FN 0.25   

Precision (Good/Poor) 0.55 0.58 

Accuracy 0.56   

Table 5.8 Broken Link Measurements 

5.7 Broken Image Analysis 

Broken images on a publisher’s site can cause users to view the site as incomplete or 

unprofessional which may lead to a loss of revenue due to user frustration or mistrust of the 

site [186, 187]. For this particular campaign, that does not seem to be an issue as the broken 

image scores are heavily clustered with 98% (230) of the sites scoring between 95 and 100.  

 

Figure 5.6 Frequency Distribution for Broken Image Scores 

With the vast majority of the sites on the campaign scoring so high, the thresholds that 

would normally be tested were all calculated at 100 as show in Table 5.9. In order to find a 

threshold that worked well, more tests were run than with the other features. The thresholds 
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tested were the mean score (98.57) and the integers between 95 and 99. The mean down 

through 96 all yielded the same results, and the best were found when using 99 as the cut-

off. This meant that having a single broken image on a site would cause the site to be 

classified as “Poor” in regards to broken links.  

Measure Images 

Count 234 

Min 0 

1st Quartile 100 

2nd 
Quartile 100 

3rd Quartile 100 

Max 100 

Mean 98.57 

Median 100 

Threshold 99.0 

# above 210 

# below 24 
Table 5.9 Broken Image Statistics 

Even with a threshold of 99, it can be seen in the confusion matrix in Figure 5.7 that a very 

small portion of sites fall into the “Poor” category. In fact, only 24 sites (10%) had any 

broken images on them at all with the remaining 210 sites (90%) having no broken images. 

Performance \ Image Poor Good 

Poor 17 98 

Good 7 112 

Figure 5.7 Broken Image Confusion Matrix (Image Threshold: 99) 

Despite the false positives that can be seen in Table 5.10, out of the sites assigned a “Good” 

image score, 53% were classified as having good campaign performance. While this does 

not suggest that having a “Good” score for broken images is a particularly strong indicator 

of a site that will perform well, out of sites with a poor image score 71% also had poor 

performance. This suggests that having a poor image score may in fact be a relatively 

strong indicator of a site that may perform poorly. 
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Measure Value   

TP (Sensitivity) 0.94   

FP 0.85   

TN (Specificity) 0.15   

FN 0.06   

Precision 

(Good/Poor) 0.53 0.71 

Accuracy 0.55   

Table 5.10 Image Score Calculations 

Due to the increased performance of the broken image feature in cases of “Poor” 

performers, it was decided that this feature should receive more weight than the broken 

links feature when calculating the HealthScore. In order to minimise the effect of the 

relatively poor performance in regards to “Good” performers, the weight for the broken link 

feature was set at two.  

5.8 HealthScore Analysis 

The HealthScore construct is a combination of the various feature scores weighted based 

upon the experimental results presented so far in this chapter. 

  

Figure 5.8 Frequency Distribution for the HealthScores 
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In looking at the frequency distribution shown in Figure 5.8, it can be seen that 87% (203) 

of the sites have a HealthScore between 55 and 65. This is most likely due to the fact that 

the scores for the features are very similar to each other, especially those for the broken 

links and broken images features. The lack if variety in feature scores has served to create a 

lack of variety in the HealthScore as well.  

In determining the cut-off between a site with a “Good” HealthScore and one with a “Poor” 

HealthScore, the median (54.7), mean (54.8) and cut-off for the top 25% (57.4) were tested 

as possible thresholds. Of the three possible threshold values tested, the median presented 

the best balance between precision and the ability to capture the majority of the “Good” and 

“Poor” performers. As can be seen in Table 5.11, this choice put 57 publishers into the 

“Good” HealthScore category while 177 publishers were put into the “Poor” HealthScore 

category. The confusion matrix corresponding to this threshold can be seen in Figure 5.9. 

Measure HS 

Count 234 

Min 34.78 

1st Quartile 52.09 

2nd Quartile 54.70 

3rd Quartile 57.39 

Max 65.78 

Mean 54.81 

Median 54.70 

Threshold 57.39 

# above 57 

# below 177 
Table 5.11 HealthScore Statistics 

Performance \ HealthScore Poor Good 

Poor 69 46 

Good 51 68 
Figure 5.9 HealthScore Confusion Matrix (HealthScore Threshold: 54.69)  

The calculations shown in Table 5.12 indicate that 60% of publishers with a good 

HealthScore also performed well on the advertising campaign, and 58% of publishers with 

a poor HealthScore were also poor performers. Unlike the individual features, the 

HealthScore should be capable of properly classifying the majority of “Good” and “Poor” 

performers and out of all the “Good” performers, 57% were also classified as having 

“Good” health while 60% of all the “Poor” performers were classified as having “Poor” 
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health. 

Measure Value   

TP (Sensitivity) 0.57   

FP 0.4   

TN (Specificity) 0.6   

FN 0.43   

Precision (Good/Poor) 0.6 0.58 

Accuracy 0.59   
 Table 5.12 HealthScore Calculations 

These findings suggest that the HealthScore developed in this thesis may be a good 

indicator of how well a publisher might be able to perform when matched with an 

appropriate advertising campaign. For a further discussion of the results for each of the 

features and the HealthScore, see chapter 6. 

5.9 Conclusion 

This chapter presented the results of the experiments conducted on a study involving four 

active affiliate advertising campaigns. The various digital marketing agencies in charge of 

managing the campaigns were able to share over 4,000 publisher URLs in total, but only 

Company_A had enough associated performance data to complete a proper evaluation of 

the currently implemented features. The digital marketing agency for Company_A had 

2,224 publisher site addresses on file, and after the agents attempted to crawl the sites, 523 

of the sites were unable to be scanned. Out of the remaining 1,701 sites, performance data 

was only available for 234 of them and those sites correspond to the results described in 

this chapter. 

The study consisted of evaluating the performance of six features: broken links, broken 

images, visibility, URL relevance, URL similarity, and blacklist check. The weights for the 

URL similarity, and blacklist check features were set to zero in order to disable them after 

discovering that all of the sites had received a perfect score in these two features, making it 

impossible to gauge their relationship to real-world performance. 

The broken link and broken image features were better at identifying weak performers than 

they were at identifying good performers. In the case of sites scoring poorly in the broken 

image feature, 71% were also “Poor” performers on the advertising campaign in 

comparison to 53% of sites scoring well in the broken image feature also being “Good” 
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performers. In regards to the broken link feature, 58% of the sites with “Poor” broken link 

scores were also “Poor” performers and of those with a good broken link score, 55% were 

also “Good” performers. 

The visibility feature managed to achieve a high precision for identifying “Good” 

performers. While only a very small number of sites (10) received a visibility score above 

zero, 70% (seven) of those sites were also “Good” performers on the campaign. However, 

the visibility feature is unable to detect “Poor” performers any better than a random guess. 

This is a strong indication that a site with a visibility score above zero is likely to perform 

well, but that a good visibility score is certainly not required in order to perform well. 

Further testing should be conducted in order to ensure that this trend also applies to data 

sets with a larger number of sites with non-zero visibility scores.  

In regards to the URL Relevance feature, 74% of sites with a “Good” score were also 

“Good” performers while 57% of sites with a “Poor” URL Relevance score were also 

“Poor” performers. 

Individually, the feature scores are not designed to provide an absolute prediction of how a 

site may perform, but the HealthScore combines the features into a single score in order to 

allow for this prediction. Out of the sites that had “Good” HealthScores, 60% were also 

“Good” performers on the campaign. The percentage of sites with a “Poor” HealthScore 

that were also “Poor” campaign performers was slightly lower at 58%.  

Unlike the individual scores, the HealthScore should be able to classify a majority of the 

“Good” and “Poor” sites. Out of all of the publisher sites, the HealthScore was correctly 

able to identify 57% of all of the “Good” performers and 60% of all of the “Poor” 

performers and had an overall accuracy of 59%. 

While this level of performance does suggest that the HealthScore is able to correctly 

classify a majority of publisher sites, there is still room for improvement. Unfortunately, 

when using data from a real campaign, it is not possible to control the distribution of 

performance amongst the publishers of the campaign. The experiments should be repeated 

with more campaigns in order to see if the results extend beyond this campaign, especially 

to those with a wider variety of performance amongst the publishers.  

The next chapter will discuss the conclusions drawn from this research along with the 

limitations of the methodology used and present a further discussion on the implications of 
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the results presented in this chapter. It will also present several paths that this research 

could take in the future in order to further explore the automated evaluation of potential 

publisher performance. 
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6 Conclusions and Future Work 

6.1 Introduction 

In this chapter, the final conclusions that have been drawn from the work discussed 

throughout the rest of the thesis are presented. Section 6.2 discusses the concept of using 

web site features as indicators of potential site performance while section 6.3 presents the 

validation of the HealthScore construct. Section 6.4 offers a summary of the three research 

questions along with a critical appraisal of the progress of answering them. Finally, the 

chapter concludes with section 6.5 presenting the path for future work. 

6.2 Website Features as indicators of potential 

performance 

The first objective set in order to achieve the aim of exploring the correlation between web 

site features and business performance of a publisher on an advertising campaign was 

related to the selection of those features that may be suitable for use in predicting the 

performance of a publisher. 

In order to determine which web site features would be examined as potential indicators of 

performance in an affiliate advertising context, an initial list of features that were likely to 

be important had to be identified. Chapter 2 details the thorough review of the current 

academic and professional literature surrounding the different methodologies of evaluating 

interactive systems, such as web sites, in various contexts. The literature covered user-

based testing, evaluator-based testing and tool-based testing techniques as well as a 

plethora of website and affiliate advertising success measurements. Once a list of features 

was created, the list was refined from the original 41 features to a more manageable set of 

17 web site features. Although there are 17 features defined, time constraints limited the 

number of features chosen for implementation to just six. The other 11 features that have 

yet to be implemented can be found in Appendix F. The six currently implemented website 

features are visibility, URL relevance, URL similarity, broken link analysis, broken image 

analysis and blacklist check. After crawling the sites for data related to these six features, 

the blacklist check and URL similarity features yielded a perfect score for all 234 sites 
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making it impossible to determine the effect of these features on publisher performance. As 

such, the weights for these two features were set to zero which effectively eliminated them 

from the HealthScore calculation. 

It should be noted that the individual feature scores are not meant to be a complete picture 

of overall site performance, but rather the level of health of that individual feature. It is 

through the combination of the various feature scores that the predictive power is realised. 

DeLone echoes this sentiment and points out the need for a “comprehensive success 

construct” rather than a simple measurement for system success [74].  For example, a site 

with enough broken links to receive a “Poor” feature score will not necessarily be a “Poor” 

performer on the advertising campaign. The presence of broken links is likely to reduce the 

publisher’s performance, but does not automatically make the publisher fall into the “Poor” 

performance category. The reporting of the feature score makes it possible for users to see 

that there are broken links on the site that could be fixed in order to improve the 

performance of the publisher.  

Each of the four remaining features underwent a series of experiments in order to determine 

the best threshold value to differentiate between sites being classified as having a “Good” 

or “Poor” score for that feature. After a threshold was chosen, each of the four features was 

able to achieve a precision above 50% in both “Good” and “Poor” predictions, but none of 

the features were without faults. 

6.2.1 Visibility 

The visibility feature was born from the idea that the keywords associated with an 

advertising campaign will be well aligned with the goals of a customer likely to convert. It 

follows that a publisher site that ranks well in organic search for those keywords is also 

well aligned with the customer’s goals, and should attract more conversions. 

However, as can be seen in section 3.3.1, only ten (4%) publisher sites received a non-zero 

visibility score. Visibility was essentially transformed into a binary feature meaning that 

any non-zero score was considered a “Good” feature score. Out of all of the sites with any 

visibility score, 70% were also “Good” performers. On the other hand, the feature only 

identified 6% of the entire population of “Good” performers. While this is a very low 

percentage, remember that the individual features are designed to give a complete picture of 

the publisher’s performance. These numbers point towards the fact that a site does not need 
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to rank well on organic search for the campaign keywords in order to perform well but 

those that do are likely to be “Good” performers. This trend fits with the hypothesis made 

in regards to the visibility score. 

H2. Having a good visibility score will positively affect campaign performance. 

In order to improve the overall detection rate of the visibility score, there is a need to re-

examine the process with which the score is calculated. Rather than combining the results 

for all of the keywords, it would be interesting to investigate: 

 Checking more search results or possibly even more search engines to see if more 

matches can be found. 

 Pruning the keyword list to remove any words that no site ranks for in order to 

remove keywords that may have been poorly chosen. 

 Automatically mining the campaign keywords from the advertiser’s web site similar 

to a simplified version of the process used by the search engines to rank the 

publisher sites, and may improve the results. This would help to remove the 

subjectivity introduced when determining which keywords were most closely rated 

to the campaign.  

 Weighting the search engines based upon either preference of the programme 

manager or which search engine has previously sent the most high-quality traffic to 

the sites on the advertising campaign. 

 Calculating the final visibility score using only the keywords that rank for each 

individual site to avoid adding zeros to the calculation when a site does not rank for 

a keyword. This would ensure that the only sites to receive a score of zero would be 

those that do not rank for any of the campaign keywords, in which case a zero is 

more appropriate. 

6.2.2 URL Relevance 

The URL Relevance score is based around similar thinking to that behind the visibility 

feature: sites that are well aligned with a customer’s goals are likely to attract high-quality 

traffic. A site with campaign keywords in the URL is clearly identifying its relevance to 

that campaign, and relevance is a part of the D&M success model [74].  

Like visibility, URL Relevance was able to achieve a high precision. Out of all of the sites 
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with a “Good” URL Relevance score, 74% were also “Good” performers and out of those 

with “Poor” URL Relevance, 57% were “Poor” performers. Compared to visibility, URL 

Relevance was able to identify a slightly higher percentage of all of the “Good” performers 

with 36%. This is still not very high, but does point toward a publisher’s site with keywords 

in the URL being likely to be “Good” performer, but that it is not a necessity. This trend 

fits with the hypothesis formed in regards to URL Relevance. 

H3. The presence of campaign keywords in a publisher URL will positively affect 

campaign performance. 

One issue with the calculation of the URL Relevance feature score is that adding a set 

amount per keyword creates clusters of scores as can be seen in Figure 6.1. 

 

 

Figure 6.1 URL Relevance Feature Score Clusters 

As mentioned in the previous section, it would be interesting to investigate the effects of 

using automatically mined phrases from the advertiser’s web site as the campaign keywords 

and using the frequency of appearance of each to rank them. Not only would this help to 

remove some of the subjectivity from the process, but it would also allow the URL 

relevance feature to be more automated as the only manual step left would be the validation 

of the mined keywords to be conducted in co-operation with the programme manager.  
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6.2.3 Broken Link Analysis 

A site with broken links can leave users with an impression that the site is unfinished or 

that the publisher is unprofessional, both of which are likely to negatively influence user 

satisfaction, trust and purchasing behaviour. 

Of all the sites with broken links, 57% are “Poor” performers. However, of all “Poor” 

performers, only 36% had a “Poor” broken link score. Thus, having broken links is not a 

requirement of a “Poor” performer, but that having broken links may be a weak indicator 

that a site is a “Poor” performer. This trend fits with the hypothesis formed in regards to 

broken links. 

H4. The presence of broken links on a site will negatively affect site performance. 

The broken link feature seems as though it performs as expected, but the relatively small 

percentage of sites with a “Poor” broken link score (32%) may introduce bias. Evaluating 

the performance of sites with a more varied degree of broken links may produce different 

results. There is not much that can be done to change the broken link calculations in order 

to help improve the accuracy, but even as a weak indicator it is still an important feature 

even if it is only used to help publishers maintain sites by pointing out broken links on their 

site. 

6.2.4 Broken Image Analysis 

Like broken links, broken images can make a site feel incomplete and unprofessional and 

cause a user to be dissatisfied with the publisher’s site. 

Of all the sites with broken images, 70% are “Poor” performers. Like broken links, 

however, of all “Poor” performers, only 15% had a “Poor” broken image score. Thus, this 

feature seems to indicate that a site with broken images is likely to also be a “Poor” 

performer, but even “Poor” performers may have no problem with broken images. This 

trend follows the hypothesis in regards to broken images.  

H5. The presence of broken images on a site will negatively affect site performance.  

The large number of publishers with very high scores in this feature may be due to the fact 

that broken images are usually displayed as a square with a large red ‘X’ or other easy to 

recognise indicator designed to make it easy to spot when reviewing. It would follow then 

that these errors mostly go unnoticed by those publishers that do not have either the time or 
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the inclination to review the publisher site regularly. This lack of time or motivation may 

also be indicative of the level of effort put into the creation of the site in the first place or 

the promotion of the site and may lead to poor campaign performance. 

While the precision of this feature is quite high, there were only 24 (7%) sites with any 

broken images. This means that, like the broken links feature, there may be some bias 

introduced due to the extremely low number of “Poor” scores.  

There is not much that can be done to change the broken image feature in order to improve 

the accuracy, but even as a weak indicator it is still an important feature even if it is only 

used to help publishers maintain sites by pointing out broken images on their site. 

6.3 HealthScore Validation 

The second main objective of this research was related to the possibility of measuring the 

potential performance of a publisher site in a way that could be validated. In order to 

achieve this objective, such a measurement was created.   

The ability to calculate a HealthScore for a publisher in order to predict the business 

performance of that publisher has the potential to drastically change the way the affiliate 

advertising industry audits existing publishers and screens potential additions to a 

campaign. The main difficulty lies in the validation of the HealthScores assigned to the 

publisher sites as these must be compared against some measurement of actual site 

performance. Previously, system use has been found to be a good measurement of system 

success [75, 91, 92, 93, 88], and in the D&M success model system use includes the 

number of visits and number of sales [74] which are very similar to the two measurements 

used in this research to create the publisher’s performance score: the number of clicks and 

the number of sales.  

While the individual feature scores are not designed to be completely indicative of 

publisher performance, the HealthScore was created to use those scores to derive a 

measurement that was capable of predicting a publisher’s performance on a suitably 

matched campaign. Before being able to validate the HealthScore construct, the 

measurement of publisher success must first be defined. 

6.3.1 Performance Score 

The idea behind the performance score is to measure the real-world performance of the 
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publisher’s site in a manner similar to Lee and Kovar’s attempt at matching user rankings 

of business websites to actual business performance. This study was done using the 

corporate sites of major companies and comparing user web site preference to offline 

business performance of the companies. Even though the business performance being 

measured was that of the entire company and not necessarily constrained to e-commerce, 

the authors found that user’s preference rankings closely matched that of business 

performance (with the exception of two sites being swapped) [77].  

The original plan to measure a publisher’s level of performance on the campaign in this 

study was to use the conversion rate measurement. This number is simply the ratio of 

unique visitors to the number of conversions as presented in Section 2.2.4.3, which are 

similar to two of the measurements used in the D&M success model for the system use 

dimension. While the conversion rate was originally thought to be an adequate measure of 

performance, after working with the data for a short time, it became apparent that there 

were several issues with using conversion rate as the sole unit of performance measurement 

(section 3.3.4).  

In order to combat these issues, the weighted average of the number of conversions and the 

number of clicks was calculated in a similar manner to that of the HealthScore equation 

(Equation 3.5) to form the publisher’s performance score. The number of conversions was 

given a higher weight than the number of clicks as a sale is guaranteed revenue while a 

click or visit only gives the possibility of revenue.  

In order to determine how each of the features relate to a site’s campaign performance, the 

performance score was used to classify each of the sites as either a “Good” or “Poor” 

performer in relation to the advertising campaign. During the experiments conducted on the 

features, three performance score thresholds were also examined to find the best fit. The 

best balance between “Good” and “Poor” precision for each of the features occurred when 

using the mean performance score (48.04) as the threshold.  

In examining the distribution of “Good” and “Poor” conversion rates, there were 112 

publishers listed on either side creating an exact 50/50 split. With the new performance 

score, there are 119 “Good” performers and 115 “Poor” performers meaning the 

distribution has not changed significantly, but the publishers with a single click and a single 

sale no longer come out as the top performers. 
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6.3.2 HealthScore  

Individually, the previously mentioned features help to highlight potential issues of a 

publisher’s site, but they are not meant to provide a complete picture of potential publisher 

performance when looking at the various feature scores by themselves. The HealthScore is 

the combination of all of the features, and is meant to give a quick, easy to interpret 

indication as to how a publisher should perform on a suitably matched advertising 

campaign. 

Despite the small range of HealthScores, out of all the publisher sites with a “Good” 

HealthScore, 60% were also “Good” performers and out of those with a “Poor” 

HealthScore, 58% were “Poor” performers.  

H7. A site with a good HealthScore is also likely to be classified as a good performer. 

H8. A site with a poor HealthScore is also likely to be classified as a poor performer. 

Unlike the individual features, two hypotheses were made regarding the HealthScore and 

the trend in the HealthScore performance appears to support both of the hypotheses. 

6.4 Summary and Critical Appraisal 

The main aim of this research was to explore the correlation between the web site 

evaluation features of a publisher site and that publisher’s performance on an affiliate 

advertising campaign. In order to fulfil this aim, three questions were defined.  

Q1. How can a site’s real-world performance be measured and reported in 

such a way that a comparison between the site’s health and business 

performance can be drawn?  

 

The first question relates to the ability to measure the real-world performance of a 

publisher’s site. Section 2.2.4 explains that out of the digital marketing agencies that 

provided data for this research, the majority use conversion rate as a major indication of 

publisher performance. However, using the conversion rate presented several issues that are 

highlighted along with specific examples in Section 3.3.4. To alleviate those issues, the 

performance score incorporates the same two factors are combined to calculate the 

conversion rate (number of clicks and the number of sales), but allows for them to be 

assigned an individual weight. This weighting allowed the number of sales to be prioritised 

over the number of clicks. While the use of the performance score helped to solve some of 
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the issues encountered with the conversion rate, more work should be done surrounding the 

validation of this new measurement of performance. If revenue data were available for the 

publishers, it would be possible to compare each publisher’s performance score to their 

revenue earned. 

Q2. Can scores derived from the various features of a publisher web site be 

combined in order to create a useful overall measurement of the site’s health? 

 

The second question is surrounding the selection of the appropriate features to be used in 

achieving the aim of this thesis. The four features that yielded results represent a start in 

creating a measurement of publisher site health for use as a predictor of campaign 

performance. While these four features all achieved scores that supported their respective 

hypotheses and have served well as a proof-of-concept implementation, there is work yet to 

be done in order to verify if the trends hold true for larger data sets from other publishers 

and networks. Having a group of publisher sites with a more varied range of campaign 

performance may have provided a better test environment for the feature evaluations. It was 

not possible to control for this in this particularly study as the experiments were completed 

using real performance data rather than examples created in the lab. This means that in the 

future, very large data sets may be necessary in order to get a good mix of performance 

scores or a method of fabricating publisher sites with realistic associated performance data 

would need to be created. There is also room for improvement with the addition of more 

implemented features. Having more feature scores included in the calculation of the 

HealthScore would have likely contributed to the HealthScore being a more accurate 

measurement of publisher performance. 

Q3. How well can the HealthScore construct defined by this research be used 

as an indication of publisher performance on an advertising campaign? 

 

The third, and main research question was concerned with how well the HealthScore 

functioned as a measurement of prediction and how this would be validated. The results 

from the comparison of the HealthScores and performance scores are a promising start, but 

there is still work to be done before it can be conclusively declared as a good indicator of 

real-world publisher performance. The HealthScore was able to achieve a precision of 60% 

on predictions of “Good” performers and a precision of 58% on “Poor” performers with an 

overall accuracy of 59%. This means that while the HealthScore was able to predict which 

classification a publisher falls into a majority of the time, there is still much room for 
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improvement. The first version of Ivory’s Web TANGO system was able to achieve an 

accuracy of 67-80% with 11 features [155]. However, upon improving the existing features 

and adding more to total 157, the system was able to achieve a 94% accuracy [156].  

The research presented in this thesis serves to show that predicting a publisher’s real-world 

performance using web site evaluation metrics from the publisher’s site is a possibility. 

With the implementation of more features and refinement of the algorithms behind the 

calculation of current feature scores, I feel that the predictive power of the system presented 

in this thesis, like Ivory’s, will increase. 

6.5 Future Work 

The work presented in this thesis has several areas where improvements could be made 

such as the re-working of the calculations for some of the web site features, the addition of 

new metrics and the examination of sources beyond the publisher’s site. 

6.5.1 Feature score improvements 

While all four of the features implemented in this appear to fulfil the hypotheses set for 

them, the features were not without fault. None of the features achieved a sensitivity or 

specificity above 50%, which means that none of the individual features was able to 

classify more than half of all the “Good” or “Poor” performers into the correct category. 

While the features are not meant to be able to classify all of the publishers on their own, 

having features that are able to identify a larger proportion of “Good” or “Poor” performers 

will help to improve the accuracy of the HealthScores predictions. One method of 

improving this accuracy is through improving the algorithms behind the currently 

implemented features. The Visibility and URL Relevance features achieved the highest 

precisions for predicting “Good” performers, but more testing is required before being able 

to conclusively say that either of these features can be used in the creation of a strong 

predictor of “Good” performers.  

In regards to the visibility feature, there are simply not enough sites with non-zero scores to 

determine if the trends shown in this study will extend beyond this data set. Visibility was 

also the only feature that was completely incapable of helping to predict a “Poor” 

performer. In order to improve the overall detection rate of the visibility score, there is a 

need to re-examine the process with which the score is calculated. Currently, the visibility 
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score is calculated based upon how well a site ranks on several search engines for all of the 

campaign keywords. In the study conducted on Company_A there were 89 campaign 

keywords and it is likely that many of the publisher sites only ranked for small number of 

them, if any at all. It would be interesting to investigate how well the visibility score would 

work if keywords that returned no results for any sites were pruned from the list or if the 

score was calculated only from the rankings of keywords that the site actually had a rank. 

The current method of having the keywords selected and ranked by the programme 

manager runs the risk of introducing a significant amount of bias, which could possibly 

account for the very low visibility scores. The concept of automatically mining the 

campaign keywords from the advertiser’s web site would be an interesting path to examine 

in future research regarding this feature. Incorporating a method similar to Latent Semantic 

Analysis (LSA) to determine which keywords are important to the advertiser may better 

capture the spirit of the campaigns and help to improve the result by removing some of the 

subjectivity.  

As for the URL Relevance feature, a list of keywords that are more closely related to the 

campaign would likely help to boost the number of sites scoring positively in this metric. 

The use of a technique such as LSA would also benefit the URL Relevance feature by 

providing a method of computing the appropriate weights for the individual keywords 

based upon actual relevance to the advertiser’s site. Currently, the keywords are weighted 

by a person, which does not provide the same level of granularity that using the actual 

keyword relevance would allow. The similarity in keyword weighting creates scores that 

are similar to one another, and causes feature score clumps as shown in Figure 6.1.   

As outlined in Section 3.3, each feature must adhere to a set of three rules, the last of which 

required that it is possible to automated to data collection and analysis needed to calculate a 

score for the feature. While implementing the analysis system used in this research, a 

concession was made regarding the URL Similarity feature in that the automation was not 

implemented. In order to complete that automation of this feature, it may be helpful to look 

at some of the techniques used in spell checking solutions. Huang, Murphey and Ge 

developed a system capable of detecting and correcting typographical errors related 

specifically to the automotive domain [200]. The authors pointed out that domain specific 

typo identification is different than the normal spell checking process in word processing 
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software due to the large number of self-defined words that may be commonly used in a 

specific domain. Using the automatically mined keyword list would provide a campaign 

specific knowledge base that could then be used to examine the URLs of the publisher sites 

and find misspellings of campaign specific words (namely organisation name) in order to 

automate the URL similarity feature check. 

Along with automating this measurement, it may also prove useful to extend the feature. 

The main idea behind the URL Similarity feature is to detect malicious sites that are using 

typosquatting to take advantage of the target organisation’s brand name. Extending the 

feature to include anti-phishing techniques would likely be more useful than simply 

detecting if the target organisation’s name is present in the URL. Studies have found that 

metrics such as a large number of sub-domains, a longer than normal URL and a shorter 

than normal domain name are common in phishing URLs [192] [182]. Apart from 

examining the URL, Banerjee, Rahman and Faloutsos also discovered that phishing sites 

rely heavily on http redirects in order to fool anti-phishing tools. The network-layer 

behaviour of these sites is significantly different from that of a non-malicious site and 

allows the authors to identify malicious sites with a high degree of accuracy [201]. 

Extending the feature to include considerations such as these would likely lead to a much 

more robust feature in future versions of the analysis system. The URL Relevance feature 

also included a manual component when it came to calculating the scores for the feature. 

The formula used to calculate this feature score awards a site full points for the first 

campaign keyword that appears in the URL and half points for up to two additional unique 

keywords. Rather than taking the time to write and test a complete program or excel 

formula to assign the half points, I chose to go with the quicker option of manually 

assigning the half points. This is a simple task to automate, but the feature is currently in 

violation of the automation rule because of this time saving compromise. 

While the rule related to feature automation does not include any set up required prior to 

data gathering, the URL Relevance feature would likely benefit from some automation in 

that area as well. This feature currently relies on a list of campaign keywords supplied by 

the campaign manager from either the advertiser or the digital marketing agency. If the 

system were to use web content mining techniques in order to extract key ideas form the 

advertiser’s site, it may be possible to automate the production of the campaign keyword 

list. Turney and Pantel describe a concept called the bag of words hypothesis, which comes 
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from the field of information retrieval, as stating that the frequency of words in a document 

often indicates the relevance of those words to the document [202]. Following on this 

principle, using the frequency of terms on the advertiser’s site may produce a list of 

keywords that could both replace the manually produced list and provide insight to the 

advertiser into the messages conveyed by their site. Implementing this level of automation 

for the URL Relevance feature may lead to a more robust metric in future implementations 

of the analysis system. 

6.5.2 Additional features 

The performance of the HealthScore shows that the features used to calculate it do not 

cover all of the characteristics that are able to determine publisher site performance. Like 

the first version of Ivory’s Web TANGO [154], the research presented in this thesis could 

benefit greatly from the addition of more features incorporated into the HealthScore 

calculation as well as more publisher sites with accompanying performance data. In order 

to change the way that a feature score is calculated or to add new features, the underlying 

code for the existing agents must be changed. More extensibility with a database to store 

and retrieve rules written in a high-level language like KWARESMI would make it easier 

to test more features in the future [198]. During feature refinement phase of this research, 

eleven features were identified that were unlikely to be implemented in the allotted 

development time. Those features, which are listed below, have been classified into the 

categories of domain analysis, content analysis, campaign compatibility, terms and 

conditions and site profile.   

6.5.2.1 Domain Analysis 

a) Digital Certificate Evaluation (Green) 

The digital certificate evaluation feature includes several checks related to a site’s digital 

certificate that are envisioned as being implemented into the site info agent. It has not been 

decided if the various checks will be combined to create a single score as was done with the 

visibility score, or if they will be counted individually to avoid the possibility of having a 

large number of poorly scoring sites like the visibility feature. An improperly issued 

certificate, an expired certificate, or a certificate from an unknown or non-credible authority 

could pose a serious technical risk to the user. 

The checks will include: 
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 Credibility: Is the authority that issued the certificate a known-good Certificate 

Authority? 

 Validity: Is the certificate still valid, or has it expired? 

 Domain Mismatch: Was the certificate issued to the correct domain? 

6.5.2.2 Content Analysis 

a) Content Relevance (Amber) 

The content relevance feature is designed to determine how well a publisher site fits in with 

an advertising campaign based upon the content being relevant to the campaign. A feature 

based upon relevance is trivial for a human reviewer to evaluate, as has been done in 

several previous evaluation instruments [87, 27, 203, 204, 205]. However, when attempting 

to automatically evaluate content relevance in order to comply with feature requirement r3, 

the problem becomes difficult.  

The automation of this feature has not been fully defined as of yet, but current thinking is 

that the agent would use an approach similar to that employed by the visibility agent.  The 

agent tasked with measuring this feature would take the list of campaign keywords defined 

by the affiliate manager and use a technique such as Latent Semantic Analysis (LSA) in 

order to rank the relevance of the site in a manner similar to Cognitive Walkthrough for the 

Web (CWW) [165] . Of course, some thought would need to be exercised in preventing 

abuse as once malicious publishers have learned which algorithm is being used, keyword 

stuffing could become a problem. This abuse is likely to be detectable using spam detection 

techniques similar to those used by Ntoulas et al. [206]. 

Because LSA and the anti-abuse techniques of this feature are beyond the scope of this 

thesis, and because keyword stuffing is a real problem that already happens, this feature has 

not been implemented yet. 

b) Link Analysis (Amber) 

The link analysis feature is an extension to the broken links feature. The extension 

envisioned is likely to use the techniques and methods from CWW [165] in order to 

determine how relevant the links on a page are to the content of the page. Irrelevant links 

will subtract from the feature score. This feature has not yet been fully defined as LSA is 

beyond the scope of this thesis. 
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6.5.2.3 Campaign Compatibility 

This group of features refers to how compatible the website is with the advertising 

campaign to which it belongs. 

a) Sector Classification (Amber) 

It is envisioned that future versions of the framework will have various business sector 

profiles that have been built, allowing the system to attempt to categorise the site being 

scanned into the appropriate business sector. Li and Yamada [157] and Ivory, Sinha and 

Hearst [156] have had promising results when the sites being scanned have been split up 

into their proper categories.  

b) Target Demographic (Red) 

This relates to the intended audience for a website. If the site is selling maternity supplies, it 

is likely the target demographic would include groups such as families. If a site is focused 

on a specific area of academic research, then the audience is likely to be people educated 

about that research area. Each of these sites should contain very different advertisements in 

order to reach the maximum amount of interested parties. The technology to support this 

type of automated content analysis is beyond the scope of this work, and so this feature has 

not been implemented. 

6.5.2.4 Terms & Conditions 

This category refers to the terms and conditions set down by the affiliate network, the 

advertiser and/or the digital marketing agency. The features in this category generally exist 

to ensure that these terms and conditions are being followed. 

a) Invisible Elements (Amber) 

In future versions of the framework, this feature will provide insight into the elements on a 

page that are not visible to the user. There are several reasons that some elements may not 

be visible to the user ranging from images that are being used as spacers instead of using 

CSS, web beacons used to keep track of visitor statistics, up to invisible iFrames that can be 

used to invisibly load an advertiser’s page and earn commission for a malicious publisher. 

6.5.2.5 Site Profile 

This category relates to what type of website is being scanned and who the target audience 

is for that site. The category also contains features that are designed to measure how stale 
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the information contained on the site is, based upon how frequently the site is updated. 

a) Insecure Protocol Use (Amber) 

When transferring sensitive user information such as real name, address, billing 

information and other personally identifying information, it is of the utmost importance to 

use secure protocols. When a web site fails to use secure transfer protocol, this sensitive 

information is sent in clear-text making it much more susceptible to being intercepted by a 

malicious third party. 

Each page of a site would need to be analysed to search for semantic clues to determine if it 

was asking for any sensitive information. When such a page is found, the surfer agent 

should ensure that the page is using HTTPS. If a site contained pages that failed to protect 

sensitive user information, it would receive a zero no matter how many such pages are 

discovered, as only one unsecured page is needed to leak damaging information. If no such 

pages are found, the site is given a score of 100. 

b) Site Size (Green) 

The size of a site is calculated by the Surfer Agent during the course of the web crawl. 

Fiddler2 is capable of breaking down the site size by content-type of which text/HTML and 

text/plain are used to calculate the site size in Bytes. This feature corresponds roughly to 

the indexable text size feature used by Li and Yamada in their automated approach [157]. 

In the implementation used for this study, this information was not extracted and so was not 

examined. In order to make use of this information in the future, pre-processing would need 

to be done in order to meet the requirement of being in the range of 0-100 inclusive. 

c) Load Time (Green) 

The loading time for each page is recorded by the web crawler and the average is taken to 

represent the loading time for a publisher site. The load time feature has been used in 

several previous instruments (Cao2004) (Muylle2004) [27]. Long wait times when loading 

a page can cause customer frustration and possibly even a loss of conversions due to 

customers switching to another site. In 2009, Shopzilla reported that a site redesign dropped 

the average load times from 7 seconds to 2 seconds. This drop in latency was accompanied 

by a 7-12% increase in conversions [207]. 

In the implementation used in this study, the load time data was not extracted and therefore 
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could not be examined. 

d) Readability Analysis (Red) 

This Usability Analysis feature refers to the readability of a web site. In order to determine 

this, the scanner will use the same methods as those employed in Microsoft Word when 

ranking the readability of a document. These methods include the Flesch-Kincaid 

readability scale for determining the reading level of the content of a site and a spelling and 

grammar check.  

e) Update Frequency (Amber) 

The measure of the freshness of web content is important because a site that is not updated 

frequently could indicate an abandoned or poorly maintained site [21]. This feature is the 

only one currently defined for the framework that cannot be effectively measured on the 

first crawl of a publisher site. It is envisioned that the surfer agent will create a hash from 

the code used on each site and once a site has been crawled once, the surfer agent will 

compare the hashes to see if the content has changed on subsequent crawls. A change in 

content will be counted as an update. 

6.5.3 Beyond the Publisher’s Site 

From the evaluation that was part of the original motivation for this research, it was noted 

that several inconsistencies were present in the customer information of the affected 

affiliate network [2]. An additional feature designed to seek out these anomalies may 

enable the automated flagging of accounts for a closer inspection by an employee. The 

system might be able to draw upon research related to typical anomaly detection system 

such as an anti-virus or an anomaly-based Intrusion Detection System (IDS).  The addition 

of a feature such as this could be the beginning of a security dimension. Keeping track of a 

publisher’s risk score in conjunction with the already implemented web site tests could give 

an indication of not only potential performance, but also whether or not the affiliate is 

genuine, malicious or undetermined. In the case of malicious or undetermined, the case 

could be moved to the fraud team of the affiliate network for further investigation. 
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Appendix A The System 

Usability Scale (SUS) 

The SUS is a 10-item instrument designed as a quick and dirty usability scale. The 10 items 

are: 

1. I think that I would like to use this system frequently. 

2. I found the system unnecessarily complex. 

3. I thought the system was easy to use. 

4. I think that I would need the support of a technical person to be able to use this 

system. 

5. I found the various functions in this system were well integrated. 

6. I thought there was too much inconsistency in this system. 

7. I would imagine that most people would learn to use this system very quickly. 

8. I found the system very cumbersome to use. 

9. I felt very confident using the system. 

10. I needed to learn a lot of things before I could get going with this system. 

The items are rated on a five point Likert scale anchored from “Strongly Disagree” (1) and 

“Strongly Agree” (5). A question with no answer is given a score of three, which is right in 

the middle of the scale. In order to calculate a score using the SUS, the score for each item 

must first be determined in the following manner: 

 For the odd numbered items (1,3,5,7,9): The score is the item number minus one. 

 For the even numbered items (2,4,6,8,10): The score is five minus the item number. 

Once the contribution from the individual items has been determined, sum the contributions 

and multiple that sum by 2.5. This will yield a rough usability score between zero and 100, 

giving an overview of subjective usability of the system being tested. 
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Appendix B Cognitive 

Walkthrough Form 

Cognitive Walkthrough For A Step 

Task ___________________________   Action #_____________ 

1.Goal structure for this step. 

1.1. Correct goals. What are the appropriate goals for this point in the interaction? 

Describe as for initial goals. 

1.2. Mismatch with likely goals. What percentage of users will not have these goals, based 

on the analysis at the end of the previous step? Check each goal in this structure against 

your analysis at the end of the previous step. Based on that analysis, will all users have the 

goal at this point, or may some users have dropped it or failed to form it? Also check the 

analysis at the end of the previous step to see if there are unwanted goals, not appropriate 

for this step, that will be formed or retained by some users. (% 0 25 50 75 100) 

2. Choosing and executing the action. 

Correct action at this step: _ 

2.1. Availability. Is it obvious that the correct action is a possible choice here? If not, what 

percentage of users might miss it? (% 0 25 50 75 100) 

2.2. Label. What label or description is associated with the correct action?  

2.3. Link of label to action. If there is a label or description associated with the correct 

action, is it obvious, and is it clearly linked with this action? If not, what percentage of 

users might have trouble? (% 0 25 50 75 100) 

2.4. Link of label to goal. If there is a label or description associated with the correct 

action, is it obviously connected with one of the current goals for this step? How? If not, 

what percentage of users might have trouble? Assume all users have the appropriate goals 

listed in section 1. (% 0 25 50 75 100) 

2.5. No label. If there is no label associated with the correct action, how will users relate 
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this action to a current goal? What percentage might have trouble doing so? (% 0 25 50 75 

100) 

2.6. Wrong choices. Are there other actions that might seem appropriate to some current 

goal? If so, what are they, and what percentage of users might choose one of these? (% 0 25 

50 75 100) 

2.7. Time-out. If there is a time-out in the interface at this step does it allow time for the 

user to select the appropriate action? How many users might have trouble? (% 0 25 50 75 

100) 

2.8. Hard to do. Is there anything physically tricky about executing the action? If so, what 

percentage of users will have trouble? (% 0 25 50 75 100) 

3. Modification of goal structure. Assume the correct action has been taken. What is the 

system's response? 

3.1. Quit or backup. Will users see that they have made progress towards some current 

goal? What will indicate this to them? What percentage of users will not see progress and 

try to quit or backup? (% 0 25 50 75 100) 

3.2. Accomplished goals. List all current goals that have been accomplished. Is it obvious 

from the system response that each has been accomplished? If not, indicate for each how 

many users will not realize it is complete. 

3.3. Incomplete goals that look accomplished. Are there any current goals that have not 

been accomplished, but might appear to have been based on the system response? What 

might indicate this? List any such goals and the percentage of users will think that they 

have actually been accomplished. 

3.4. "And-then" structures. Is there an "and-then" structure, and does one of its subgoals 

appear to be complete? If the subgoal is similar to the supergoal, estimate how many users 

may prematurely terminate the "and-then" structure. 

3.5. New goals in response to prompts. Does the system response contain a prompt or cue 

that suggests any new goal or goals? If so, describe the goals. If the prompt is unclear, 

indicate the percentage of users who will not form these goals. 

3.6. Other new goals. Are there any other new goals that users will form given their 
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current goals, the state of the interface, and their background knowledge? Why? If so, 

describe the goals, and indicate how many users will form them. NOTE that these goals 

mayor may not be appropriate, so forming them may be bad or good. 

Table B.1 Cognitive Walkthrough Form 
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Appendix C Feature Origins 
Table C.1 Origin of Framework Features 
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Appendix D Initial Features 

Risk Name Category 

MM-001 Broken Image Content 

MM-002 Broken Links Content 

MM-003 Certificate Credibility Security 

MM-004 CGI/PERL Integration Technical 

MM-005 Click jacking Security 

MM-006 Contact Details Present Content 

MM-007 Cookie Stuffing Security 

MM-008 Cookies Security 

MM-009 Cross-fertilisation of sites Technical 

MM-010 CSS Style Integration Design 

MM-011 Cyclical/Reciprocal Links Technical 

MM-012 DNS Registration Info Technical 

MM-013 Duplicate Data on Site Content 

MM-014 External Copy and Paste Content 

MM-015 Externally Hosted Content Content 

MM-016 Forced Click Security 

MM-017 Hosting Server Software Technical 

MM-018 Incomprehensible Content Content 

MM-019 Inappropriate Links Content 

MM-020 Invisible Frames Content 

MM-021 Invisible Image Content 

MM-022 Irrelevant Content Content 

MM-023 Jump/Doorway Page Content 

MM-024 Like jacking Security 

MM-025 Link Depth Content 

MM-026 Link Farm Content 

MM-027 Link Manipulation Technical 

MM-028 Link Obfuscation Technical 

MM-029 Load Time Content 

MM-030 Loaded Images Technical 

MM-031 Multiple Affiliate Links Content 

MM-032 Old Server Software Technical 

MM-033 Old Technology Technical 

MM-034 Original Layout Design 

MM-035 Payment page is not SSL Security 

MM-036 Remote Region Hosting Technical 
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MM-037 Template Used Design 

MM-038 Text defined with graphics Content 

MM-039 Valid Certificate Security 

MM-040 Webpage Uptime Technical 

MM-041 Word Template Used Design 
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Appendix E Full Results 

Broken Links 

24.45 95 
  

24.45 96 
  

24.45 97 
 Perf \ Link Poor Good 

 
Perf \ Link Poor Good 

 
Perf \ Link Poor Good 

Poor 20 38 
 

Poor 25 33 
 

Poor 26 32 

Good 42 134 
 

Good 46 130 
 

Good 50 126 

           TP (Sensitivity) 0.76   
 

TP (Sensitivity) 0.74   
 

TP (Sensitivity) 0.72   

FP 0.66   
 

FP 0.57   
 

FP 0.55   

TN (Specificity) 0.34   
 

TN (Specificity) 0.43   
 

TN (Specificity) 0.45   

FN 0.24   
 

FN 0.26   
 

FN 0.28   

Precision (Good/Poor) 0.78 0.32 
 

Precision (Good/Poor) 0.8 0.35 
 

Precision (Good/Poor) 0.8 0.34 

Accuracy 0.66   
 

Accuracy 0.66   
 

Accuracy 0.65   

 

48.04 95 
  

48.04 96 
  

48.04 97 
 Perf \ Link Poor Good 

 
Perf \ Link Poor Good 

 
Perf \ Link Poor Good 

Poor 34 81 
 

Poor 41 74 
 

Poor 43 72 

Good 28 91 
 

Good 30 89 
 

Good 33 86 

           TP (Sensitivity) 0.76   
 

TP (Sensitivity) 0.75   
 

TP (Sensitivity) 0.72   

FP 0.7   
 

FP 0.64   
 

FP 0.63   

TN (Specificity) 0.3   
 

TN (Specificity) 0.36   
 

TN (Specificity) 0.37   

FN 0.24   
 

FN 0.25   
 

FN 0.28   

Precision (Good/Poor) 0.53 0.55 
 

Precision (Good/Poor) 0.55 0.58 
 

Precision (Good/Poor) 0.54 0.57 

Accuracy 0.53   
 

Accuracy 0.56   
 

Accuracy 0.55   
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73.39 95 
  

73.39 96 
  

73.39 97 
            

Perf \ Link Poor Good 
 

Perf \ Link Poor Good 
 

Perf \ Link Poor Good 

Poor 45 131 
 

Poor 53 123 
 

Poor 57 119 

Good 17 41 
 

Good 18 40 
 

Good 19 39 

           TP (Sensitivity) 0.71   
 

TP (Sensitivity) 0.69   
 

TP (Sensitivity) 0.67   

FP 0.74   
 

FP 0.7   
 

FP 0.68   

TN (Specificity) 0.26   
 

TN (Specificity) 0.3   
 

TN (Specificity) 0.32   

FN 0.29   
 

FN 0.31   
 

FN 0.33   

Precision (Good/Poor) 0.24 0.73 
 

Precision (Good/Poor) 0.25 0.75 
 

Precision (Good/Poor) 0.25 0.75 

Accuracy 0.37   
 

Accuracy 0.4   
 

Accuracy 0.41   

 

Broken Images 

24.45 95 
  

24.45 98.6 
  

24.45 99 
 Performance \ Image Poor Good 

 
Performance \ Image Poor Good 

 
Performance \ Image Poor Good 

Poor 1 57 
 

Poor 2 56 
 

Poor 7 51 

Good 3 173 
 

Good 3 173 
 

Good 17 159 

           TP (Sensitivity) 0.98   
 

TP (Sensitivity) 0.98   
 

TP (Sensitivity) 0.9   

FP 0.98   
 

FP 0.97   
 

FP 0.88   

TN (Specificity) 0.02   
 

TN (Specificity) 0.03   
 

TN (Specificity) 0.12   

FN 0.02   
 

FN 0.02   
 

FN 0.1   

Precision (Good/Poor) 0.75 0.25 
 

Precision (Good/Poor) 0.76 0.4 
 

Precision (Good/Poor) 0.76 0.29 

Accuracy 0.74   
 

Accuracy 0.75   
 

Accuracy 0.71   
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48.04 95 
  

48.04 98.6 
  

48.04 99 
 Performance \ Image Poor Good 

 
Performance \ Image Poor Good 

 
Performance \ Image Poor Good 

Poor 2 113 
 

Poor 3 112 
 

Poor 17 98 

Good 2 117 
 

Good 2 117 
 

Good 7 112 

           TP (Sensitivity) 0.98   
 

TP (Sensitivity) 0.98   
 

TP (Sensitivity) 0.94   

FP 0.98   
 

FP 0.97   
 

FP 0.85   

TN (Specificity) 0.02   
 

TN (Specificity) 0.03   
 

TN (Specificity) 0.15   

FN 0.02   
 

FN 0.02   
 

FN 0.06   

Precision (Good/Poor) 0.51 0.5 
 

Precision (Good/Poor) 0.51 0.6 
 

Precision (Good/Poor) 0.53 0.71 

Accuracy 0.51   
 

Accuracy 0.51   
 

Accuracy 0.55   

 

73.39 95 
  

73.39 98.6 
  

73.39 99 
 Performance \ Image Poor Good 

 
Performance \ Image Poor Good 

 
Performance \ Image Poor Good 

Poor 3 173 
 

Poor 4 172 
 

Poor 20 156 

Good 1 57 
 

Good 1 57 
 

Good 4 54 

           TP (Sensitivity) 0.98   
 

TP (Sensitivity) 0.98   
 

TP (Sensitivity) 0.93   

FP 0.98   
 

FP 0.98   
 

FP 0.89   

TN (Specificity) 0.02   
 

TN (Specificity) 0.02   
 

TN (Specificity) 0.11   

FN 0.02   
 

FN 0.02   
 

FN 0.07   

Precision (Good/Poor) 0.25 0.75 
 

Precision (Good/Poor) 0.25 0.8 
 

Precision (Good/Poor) 0.26 0.83 

Accuracy 0.26   
 

Accuracy 0.26   
 

Accuracy 0.32   
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Visibility 

24.45 0.1 
  

48.04 0.1 
  

73.39 0.1 
 

Performance \ Visibility Poor Good 
 

Performance \ 
Visibility Poor Good 

 
Performance \ Visibility Poor Good 

Poor 55 3 
 

Poor 112 3 
 

Poor 169 7 

Good 169 7 
 

Good 112 7 
 

Good 55 3 

           TP (Sensitivity) 0.04   
 

TP (Sensitivity) 0.06   
 

TP (Sensitivity) 0.05   

FP 0.05   
 

FP 0.03   
 

FP 0.04   

TN (Specificity) 0.95   
 

TN (Specificity) 0.97   
 

TN (Specificity) 0.96   

FN 0.96   
 

FN 0.94   
 

FN 0.95   

Precision (Good/Poor) 0.7 0.25 
 

Precision (Good/Poor) 0.7 0.5 
 

Precision (Good/Poor) 0.3 0.75 

Accuracy 0.26   
 

Accuracy 0.51   
 

Accuracy 0.74   

 

 

URL Relevance 

24.45 10 
  

24.45 13.5 
  

24.45 23.1 
 Perf \ Relevance Poor Good 

 
Perf \ Relevance Poor Good 

 
Perf \ Relevance Poor Good 

Poor 38 20 
 

Poor 38 20 
 

Poor 51 7 

Good 92 84 
 

Good 92 84 
 

Good 125 51 

           TP (Sensitivity) 0.48   
 

TP (Sensitivity) 0.48   
 

TP (Sensitivity) 0.29   

FP 0.34   
 

FP 0.34   
 

FP 0.12   

TN (Specificity) 0.66   
 

TN (Specificity) 0.66   
 

TN (Specificity) 0.88   

FN 0.52   
 

FN 0.52   
 

FN 0.71   

Precision (Good/Poor) 0.81 0.29 
 

Precision (Good/Poor) 0.81 0.29 
 

Precision (Good/Poor) 0.88 0.29 

Accuracy 0.52   
 

Accuracy 0.52   
 

Accuracy 0.44   
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48.04 10 
  

48.04 13.5 
  

48.04 23.1 
 Perf \ Relevance Poor Good 

 
Perf \ Relevance Poor Good 

 
Perf \ Relevance Poor Good 

Poor 72 43 
 

Poor 72 43 
 

Poor 100 15 

Good 58 61 
 

Good 58 61 
 

Good 76 43 

           TP (Sensitivity) 0.51   
 

TP (Sensitivity) 0.51   
 

TP (Sensitivity) 0.36   

FP 0.37   
 

FP 0.37   
 

FP 0.13   

TN (Specificity) 0.63   
 

TN (Specificity) 0.63   
 

TN (Specificity) 0.87   

FN 0.49   
 

FN 0.49   
 

FN 0.64   

Precision (Good/Poor) 0.59 0.55 
 

Precision (Good/Poor) 0.59 0.55 
 

Precision (Good/Poor) 0.74 0.57 

Accuracy 0.57   
 

Accuracy 0.57   
 

Accuracy 0.61   
 

73.39 10 
  

73.39 13.5 
  

73.39 23.1 
 Perf \ Relevance Poor Good 

 
Perf \ Relevance Poor Good 

 
Perf \ Relevance Poor Good 

Poor 100 76 
 

Poor 100 76 
 

Poor 136 40 

Good 30 28 
 

Good 30 28 
 

Good 40 18 

           TP (Sensitivity) 0.48   
 

TP (Sensitivity) 0.48   
 

TP (Sensitivity) 0.31   

FP 0.43   
 

FP 0.43   
 

FP 0.23   

TN (Specificity) 0.57   
 

TN (Specificity) 0.57   
 

TN (Specificity) 0.77   

FN 0.52   
 

FN 0.52   
 

FN 0.69   

Precision (Good/Poor) 0.27 0.77 
 

Precision (Good/Poor) 0.27 0.77 
 

Precision (Good/Poor) 0.31 0.77 

Accuracy 0.55   
 

Accuracy 0.55   
 

Accuracy 0.66   
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HealthScore 

24.45 54.7 
  

24.45 54.8 
  

24.45 57.4 
 Perf \ HealthScore Poor Good 

 
Perf \ HealthScore Poor Good 

 
Perf \ HealthScore Poor Good 

Poor 38 20 
 

Poor 39 19 
 

Poor 54 4 

Good 82 94 
 

Good 94 82 
 

Good 123 53 

           TP (Sensitivity) 0.53   
 

TP (Sensitivity) 0.47   
 

TP (Sensitivity) 0.3   

FP 0.34   
 

FP 0.33   
 

FP 0.07   

TN (Specificity) 0.66   
 

TN (Specificity) 0.67   
 

TN (Specificity) 0.93   

FN 0.47   
 

FN 0.53   
 

FN 0.7   

Precision (Good/Poor) 0.82 0.32 
 

Precision (Good/Poor) 0.81 0.29 
 

Precision (Good/Poor) 0.93 0.30 

Accuracy 0.56   
 

Accuracy 0.52   
 

Accuracy 0.46   
 

48.04 54.7 
  

48.04 54.8 
  

48.04 57.4 
 Perf \ HealthScore Poor Good 

 
Perf \ HealthScore Poor Good 

 
Perf \ HealthScore Poor Good 

Poor 69 46 
 

Poor 74 41 
 

Poor 102 13 

Good 51 68 
 

Good 59 60 
 

Good 75 44 

           TP (Sensitivity) 0.57   
 

TP (Sensitivity) 0.5   
 

TP (Sensitivity) 0.37   

FP 0.4   
 

FP 0.36   
 

FP 0.11   

TN (Specificity) 0.6   
 

TN (Specificity) 0.64   
 

TN (Specificity) 0.89   

FN 0.43   
 

FN 0.5   
 

FN 0.63   

Precision (Good/Poor) 0.6 0.58 
 

Precision (Good/Poor) 0.59 0.56 
 

Precision (Good/Poor) 0.77 0.58 

Accuracy 0.59   
 

Accuracy 0.57   
 

Accuracy 0.62   
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73.39 54.7 
  

73.39 54.8 
  

73.39 57.4 
 Perf \ HealthScore Poor Good 

 
Perf \ HealthScore Poor Good 

 
Perf \ HealthScore Poor Good 

Poor 91 85 
 

Poor 102 74 
 

Poor 137 39 

Good 29 29 
 

Good 31 27 
 

Good 40 18 

           TP (Sensitivity) 0.5   
 

TP (Sensitivity) 0.47   
 

TP (Sensitivity) 0.31   

FP 0.48   
 

FP 0.42   
 

FP 0.22   

TN (Specificity) 0.52   
 

TN (Specificity) 0.58   
 

TN (Specificity) 0.78   

FN 0.5   
 

FN 0.53   
 

FN 0.69   

Precision (Good/Poor) 0.25 0.76 
 

Precision (Good/Poor) 0.27 0.77 
 

Precision (Good/Poor) 0.32 0.77 

Accuracy 0.51   
 

Accuracy 0.55   
 

Accuracy 0.66   
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Features 
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