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Abstract In recent years, Multi-Objective Evolution-
ary Algorithms (moeas) that consider diversity as an
objective have been used to tackle single-objective op-
timisation problems. The ability to deal with prema-
ture convergence has been greatly improved with these
schemes. However, they usually increase the number of
free parameters that need to be tuned. To improve re-
sults and avoid the tedious hand-tuning of algorithms,
the use of automated parameter control approaches that
are able to adapt parameter values during the course
of an evolutionary run are becoming more common
in the field of Evolutionary Computation (ec). This
research focuses on the application of parameter con-
trol approaches to diversity-based moeas. Two exter-
nal parameter control methods are investigated; a novel
method based on Fuzzy Logic and a recently proposed
Hyper-heuristic. These are compared to an internal con-
trol method that uses self-adaptation. An extensive com-
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parison of the three methods is carried out using a
set of single-objective benchmark problems of diverse
complexity. Analyses include comparisons to a wide-
range of schemes with fixed parameters and to a single-
objective approach. The results show that the fuzzy
logic and hyper-heuristic methods are able to find sim-
ilar or better solutions than the fixed parameter meth-
ods for a significant number of problems, with con-
siderable savings in computational resources and time,
whereas the self-adaptive strategy provides little ben-
efit. Finally, we also demonstrate that the controlled
diversity-based moea outperforms the single-objective
scheme in most cases, thus showing the benefits of solv-
ing single-objective problems through diversity-based
multi-objective schemes.

Keywords Parameter control · Fuzzy logic con-
trollers · Hyper-heuristics · Self-adaptation · Diversity
preservation · Benchmark problems

1 Introduction

Many real world problems require the application of
optimisation strategies. Several exact approaches have
been designed to deal with optimisation problems. How-
ever, exact methods are generally not a↵ordable for
many real world applications, meaning that a wide va-
riety of approximation algorithms have been developed
in an e↵ort to obtain good quality solutions in a limited
amount of time. Meta-heuristics are a family of approx-
imation techniques that have become popular for solv-
ing optimisation problems (Glover and Kochenberger,
2003). They are high-level strategies that guide a set of
heuristics in search of an optimum. Among them, Evo-
lutionary Algorithms (eas) (Eiben and Smith, 2003)
are one of the most popular strategies. These draw their
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inspiration from biological evolution and are population-
based algorithms.

eas have shown great promise for calculating solu-
tions to large and di�cult optimisation problems. How-
ever, in some problems, eas exhibit a tendency to con-
verge towards local optima, with the likelihood of this
occurrence depending on the shape of the fitness land-
scape (Caamaño et al, 2010). Several methods have
been designed with the aim of dealing with local optima
stagnation. The reader is referred to Črepinšek et al
(2013) for an extensive survey of diversity preservation
mechanisms. One of the strategies that has acquired
some popularity in recent years relies on using multi-
objective approaches to solve single-objective optimisa-
tion problems (Segura et al, 2013a). Several guidelines
for solving single-objective optimisation problems using
multi-objective methods have been proposed in the last
decades, with diversity-based moeas being one of the
most promising schemes (Abbass and Deb, 2003). In
this type of schemes a set of objectives is calculated for
each individual. The first one is the original objective
associated with the problem being solved. The remain-
ing objectives—most proposals consider only one ad-
ditional objective—are measures of the diversity. Some
definitions of the auxiliary objectives require specify-
ing additional parameters (Segura et al, 2013b). These
parameters have to be tuned in order to improve the
solutions obtained. However, Segura et al (2013b) have
pointed out that suitable values for these parameters
could depend on the problem to be solved and/or on
the stage of the optimisation procedure.

In order to define the configuration for an ea, sev-
eral components and/or parameters, such as the sur-
vivor selection mechanism and the variation and par-
ent selection operators, must be specified. In general,
the performance of an ea and consequently, the qual-
ity of the solutions obtained, are highly dependent on
these components and parameters. As a result, it is es-
sential that the parameters of an ea be properly set.
This task, however, remains one of the persistent grand
challenges in Evolutionary Computation (ec) (Eiben
and Smit, 2011).

Parameter setting strategies are commonly divided
into two categories: parameter tuning and parameter
control. In parameter tuning the objective is to iden-
tify the best set of values for the parameters of a given
ea, with the ea then being executed using these val-
ues, which remain fixed for the complete run. In con-
trast, the aim of parameter control is to design control
strategies that select the most suitable values for the
parameters at each stage of the search process while
the algorithm is executed. In single-objective optimisa-
tion, it has been empirically and theoretically demon-

strated that di↵erent values for the parameters might
be optimal at di↵erent stages of the optimisation pro-
cess (Srinivas and Patnaik, 1994; Bäck, 1992). In these
cases, it seems more appropriate to apply parameter
control strategies that enable the parameter values to
adapt or change during the course of an ea run. There-
fore, it is natural to apply parameter control methods
to moeas, and particularly, to diversity-based moeas.

In this paper we consider novel parameter control
strategies that can be combined with diversity-based
moeas, and apply them to a set of well-known single-
objective benchmark problems. The parameter control
strategies are in charge of controlling the additional pa-
rameter added in the auxiliary objective definition. We
consider external and internal methods of parameter
control. In relation to the former, we develop a novel
method of parameter control based on Fuzzy Logic, and
compare it to a Hyper-heuristic control method pro-
posed by the authors in Segura et al (2010). The exter-
nal control algorithms are also compared to a number
of variations on a method of internal control in which
the parameter to be adapted is incorporated into the
chromosome used to specify the problem, resulting in
self-adaptation through evolution.

The aim of this research is not to design a com-
plete state-of-the-art ea for continuous optimisation or
to compare our adaptive diversity-based moea to other
highly e�cient eas or meta-heuristics specifically de-
signed for continuous optimisation, which usually incor-
porate mechanisms to improve the solutions found. The
objective is, on the one hand, to compare our proposed
control method based on flcs against a well-established
control scheme based on hyper-heuristics and against
self-adaptation, and on the other hand, to show the
benefits of parameter control versus parameter tuning.
As a result, the contributions of this paper are:

– A novel external parameter control method based
on a fuzzy logic controller.

– Novel self-adaptive schemes to control the parame-
ters of a diversity-based moea.

– First application of parameter control techniques
based on fuzzy logic controllers and self-adaptation
to a diversity-based moea in which the parameters
of the auxiliary objective function are adapted.

– An extensive comparison of external versus inter-
nal methods of parameter control for diversity-based
moeas.

– A comparison of parameter control methods to fixed
parameters that highlights the benefit of parameter
control as opposed to parameter tuning.

– A comparison between the adaptive diversity-based
moea and a single-objective ea that shows the ad-
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vantages of using diversity-based multi-objective ap-
proaches to solve single-objective problems.

The paper is organised as follows. In Section 2, an
overview of the state of the art in parameter control in
eas is given. Section 3 provides some background on
fuzzy logic controllers and hyper-heuristics, which we
propose as parameter control methods. Section 4 ex-
poses the diversity-based moea applied herein and cov-
ers some background on related schemes. The proposed
parameter control methods are explained in Section 5
followed by a detailed analysis of the experimental re-
sults in Section 6. Finally, the conclusions and future
lines of work are given in Section 7.

2 State of the art of parameter control in

evolutionary algorithms

Finding the most suitable configuration of an ea is one
of the most challenging tasks in the field of Evolutionary
Computation (ec) (Eiben and Smith, 2003). In order
to completely define an instance of an ea, two types of
information are required (Bartz-Beielstein et al, 2010;
Maturana et al, 2009):

– Symbolic—also referred to as qualitative, categoric
or structure parameters—such as crossover, muta-
tion and selection operators.

– Numeric—also referred to as quantitative or beha-
vioural parameters—such as the population size, the
crossover and mutation rates.

For both kinds of parameters, the di↵erent elements
of the domain are known as parameter values, and a
parameter is instantiated by assigning it a value. The
main di↵erence between both types of parameters lies
in the size of their respective domains. Symbolic pa-
rameters, such as the crossover operator, have a finite
domain in which order is not established and a distance
metric is not defined. In contrast, numeric parameters,
such as the mutation rate, have an infinite domain in
which a distance metric and an order can be defined for
the values. Thus, optimisation and search methods can
readily be used to look for the appropriate values of the
numeric parameters of an ea. However, in the case of
symbolic parameters, as noted above, distance metrics
cannot be applied between two values, and therefore
optimisation schemes are not able to profit from the
definition of these types of metrics for setting such pa-
rameters. In this paper we focus on control methods for
numeric parameters.

The goal of parameter control is to design a control
strategy that selects the most suitable parameter values
to use at every stage of the search process. The ideas

of parameter control were first incorporated in early
research into eas (Davis, 1989; Rechenberg, 1973). Re-
cent research, however, has seen a marked increase in
proposals for methods to achieve parameter control in
eas (Lobo et al, 2007). In fact, control methods have
been successfully applied to a wide range of eas, such
as Evolution Strategies (es) (Kramer, 2010), Genetic
Algorithms (gas) (Fialho, 2010), and Di↵erential Evo-
lution (de) (Qin et al, 2009), among others. In order
to classify parameter control approaches, several tax-
onomies have been proposed. One of the most popular
classifications (Eiben et al, 2007) groups the mecha-
nisms according to various criteria. According to the
manner in which parameter values are changed, control
strategies can be classified as:

– Deterministic parameter control. Parameter val-
ues are altered by a deterministic rule without using
any feedback from the search process.

– Adaptive parameter control. Parameter values
are updated by a mechanism which uses some feed-
back from the search process. This mechanism is
externally supplied.

– Self-Adaptive parameter control. Parameters
are encoded into the chromosome and their values
are modified by the ea variation operators.

A change can a↵ect a gene, an individual, the whole
population, another component, or even the evaluation
function. Thus, another classification can be carried out
that takes into consideration the scope or level a↵ected
by the change.

Finally, we should note that a wide variety of ap-
proaches can be found in the literature, though most
research on parameter control is focused on the param-
eters of a ‘standard’ EA, i.e. the variation operators,
like the mutation or the crossover operators, the pop-
ulation size, or combinations of all three (Eiben et al,
2007; Bäck et al, 2000). In this paper we describe the ap-
plication of control techniques to parameters that adapt
the behaviour of the auxiliary objective function in a
diversity-based moea.

3 Techniques for parameter control:

background

In this section we provide background information on
two techniques that can be used to implement adaptive
parameter control, before describing our novel imple-
mentation of both in a later section.



4 Eduardo Segredo et al.

3.1 Fuzzy logic controllers

In recent years, our knowledge of the performance of
eas has significantly increased thanks to the large num-
ber of empirical analyses conducted over a wide range of
applications in di↵erent areas. It would be desirable to
profit from this human knowledge by encapsulating it
within an algorithm to automate the task of improving
the behaviour and the performance of eas. However,
this sort of knowledge is usually incomplete, imprecise,
and/or it is not well organised. Consequently, the ap-
plication of fuzzy logic-based methods would seem to of-
fer a promising approach for dealing with this kind of
knowledge.

One application of fuzzy logic is the design of Fuzzy
Logic Controllers (flcs). flcs can be used to define
control approaches in which the incorporation of hu-
man knowledge is performed intuitively. As was stated
by Herrera and Lozano (2003), an flc consists of the
knowledge base, the fuzzy inference engine, and the fuzzi-
fication and defuzzification interfaces. The knowledge
base is composed of two di↵erent parts, a data base,
which includes the definitions of the membership func-
tions of the linguistic terms for each input and output
variable, and a rule base constituted by the collection
of fuzzy control rules representing human knowledge.

The main benefit of using flcs to adapt the param-
eters of an ea is that the possible values that can be
assigned to a certain parameter are infinite, in contrast
to other techniques that can only use a finite number of
values. However, the main drawback is that flcs cannot
be directly applied to control the symbolic parameters
of an ea.

A considerable body of research on flcs and eas al-
ready exists (Fazzolari et al, 2013; Herrera and Lozano,
2003). For example, di↵erent eas have been used to
optimise the design of flcs for di↵erent applications
(Fazzolari et al, 2013; Rui et al, 2010; Lau et al, 2009;
Herrera, 2008). In this paper, however, we study the
reverse of this type of application and focus on the de-
sign of flcs that adapt the parameters of an ea, thus
providing an adaptive control technique that utilises
feedback from the search process. Several methods have
been proposed for controlling the parameters of an ea

by using an flc (Herrera and Lozano, 2003). The main
idea is to use an flc to calculate new parameter val-
ues by taking into consideration some combination of
performance metrics and current parameter values as
the input to the controllers. Some of the best known
variants of eas that use flcs in order to adapt their
parameters include gas (Varnamkhasti and Lee, 2012;
Yao et al, 2012; Liu and Liu, 2011; Im and Lee, 2008;

Herrera and Lozano, 2001). Some of these schemes are
described in what follows.

In Varnamkhasti and Lee (2012), an flc is used to
control several parameters of a ga, which is employed
to solve multi-dimensional knapsack problems. Partic-
ularly, the aim is to avoid premature convergence by
controlling the population diversity through the adjust-
ment of the crossover and mutation operators, as well
as their rates of application. In Yao et al (2012), an flc

is proposed to control the crossover and mutation rates
of a ga in order to mitigate the aforementioned con-
vergence issue. Another scheme based on the usage of
flcs was introduced by Im and Lee (2008), where the
parameters of the mutation, crossover, and parent selec-
tion operators of a ga are adapted. Finally, in Herrera
and Lozano (2001) a separate ga is used as an auto-
matic learning mechanism to generate the rule bases
belonging to an flc, which is responsible for adapting
the genetic operators of another ga. Thus, both gas
exert an influence on the other, adapting the genetic
operators by coevolution.

Some novel variants of eas, such as de, have also
been combined with flcs to control their internal pa-
rameters. For instance, Liu and Lampinen (2005) pro-
posed two flcs to adapt the mutation scale factor and
the crossover rate of a de approach.

The feature common to most of the research de-
scribed in the literature is that the flcs are designed
to adapt the parameters of the mutation or crossover
operators, the population size, or combinations of all
three (Herrera and Lozano, 2003). In addition, flcs
are usually tailor-made for a specific ea and/or param-
eters, and they only make use of a unique rule base. The
main novelties of the flc proposed herein are therefore
the following:

– The approach is general in that it can be used to
adapt di↵erent numeric parameters of di↵erent eas.

– The system proposed contains multiple rule bases.
A rule base is enabled at a certain time depending
on historical information extracted from the optimi-
sation process. This historical data is used to guide
the adjustment of the parameter being considered.

– It is the first time that an flc is used to control the
parameters of the auxiliary objective in a diversity-
based moea.

3.2 Hyper-heuristics

Hyper-heuristics can be defined as search methods or
learning mechanisms for selecting or generating heuris-
tics to solve computational search problems (Burke et al,
2010). Hyper-heuristics based on heuristic selection try
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to identify and select the most promising heuristics or
meta-heuristics—from a set of candidates—to solve a
particular instance of a problem. Alternatively, hyper-
heuristics based on heuristic generation aim to generate
heuristics automatically in order to solve a particular
instance of a problem. In addition, hyper-heuristics can
be further classified as online or o✏ine, in which the
former select or generate heuristics while solving an in-
stance of a problem, and the latter typically learn a
mapping between characteristics of a problem during
a training phase that can then be applied to new in-
stances. In this paper we consider only online and se-
lection hyper-heuristics. Thus, a hyper-heuristic can be
viewed as a method that iteratively chooses between a
set of candidate low-level heuristics or meta-heuristics
in order to solve an optimisation problem (Burke et al,
2003). The hyper-heuristic learns to carry out choices
while solving the optimisation problem at hand.

Hyper-heuristics operate at a higher level of abstrac-
tion than traditional heuristics because they have no
knowledge of the problem domain. The motivation be-
hind the approach is that, ideally, once a hyper-heuristic
is designed, several optimisation problems and/or in-
stances of a problem might be addressed by simply re-
placing the set of low-level heuristics or meta-heuristics.
As a result, the aim of using a hyper-heuristic is to raise
the level of generality at which the majority of current
heuristic approaches operate (Burke et al, 2003).

Hyper-heuristics are highly correlated to parame-
ter control approaches (Smit and Eiben, 2009). For in-
stance, the candidate low-level approaches might repre-
sent di↵erent configurations of the same meta-heuristic
with variations in the parameters being controlled. The
hyper-heuristic would then select the configuration with
the most appropriate set of parameters at each point in
the search. In fact, hyper-heuristics can be further clas-
sified as adaptive parameter control techniques if they
receive some kind of feedback from the search process.

Hyper-heuristics are independent of the methods
adapted, and therefore they can be designed to control
a wide range of approaches. In those cases where the
best configuration, in terms of performance, of the same
meta-heuristic varies depending on the current stage
of the optimisation process, the hyper-heuristics could
be used to select the most suitable configuration for
each stage. Thus, it seems reasonable to expect the re-
sults obtained by the hyper-heuristic to be better than
those obtained by any of the candidate low-level con-
figurations executed independently. Furthermore, the
use of a hyper-heuristic would permit low-level config-
urations to have variations in both their numeric and
symbolic parameters, thus providing a straightforward
mechanism for symbolic parameter control. However,

the main drawback of the hyper-heuristic approach is
the need to specify the set of candidate low-level con-
figurations. Moreover, since the size of the set of candi-
date low-level approaches is generally fixed and finite,
in the case of controlling numeric parameters, the num-
ber of possible values that can be assigned to the nu-
meric parameters is therefore also finite 1. Despite this,
hyper-heuristics have successfully been applied as adap-
tive parameter control techniques, both to benchmark
problems (Ren et al, 2012) and to real world applica-
tions (Segura et al, 2013c).

4 Diversity-based multi-objective evolutionary

algorithms

Multi-objective methods have been proposed with the
aim of optimising several objective functions simulta-
neously. Moreover, using multi-objective methods to
ensure proper diversity when solving single-objective
problems is a promising approach. As a result, the use of
diversity metrics to define additional objectives might
provide a proper balance between exploration and ex-
ploitation. For this reason, several studies have analysed
the use of moeas to promote diversity maintenance in
single-objective optimisation. As previously mentioned,
these schemes are based on defining a new set of ob-
jectives that provide measures of the diversity. Several
options have been proposed to define the auxiliary ob-
jectives (Greiner et al, 2007; Bui et al, 2005; To↵olo
and Benini, 2003). In fact, Segura et al (2013a) gives a
taxonomy to classify the di↵erent proposals.

In this work, we operate with genotypic measures
that consider the values of the genes in order to de-
fine the auxiliary objectives. One of the most popu-
lar auxiliary objectives was proposed by To↵olo and
Benini (2003). Specifically, it is calculated as the mean
Euclidean distance in the genotypic space to the re-
maining individuals in the population and it is called
the Average Distance to all Individuals (adi). Based
on these ideas, two new auxiliary objectives were de-
fined by Bui et al (2005). These are the Distance to the
Closest Neighbour (dcn) and the Distance to the Best
Individual (dbi) functions. Note that all of the above
auxiliary objectives have to be maximised.

An extension of the dcn scheme, called dcn-thr,
was proposed in Segura et al (2013b). It attempts to
limit the survival of very low quality individuals by us-
ing a threshold ratio th 2 [0, 1], which has to be specified
by the user. A threshold v is used to penalise individuals

1 Although a recent publication attempts to address this
with a hyper-heuristic that is able to adapt the parameters
of the low-level heuristics (Ren et al, 2012).
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that have low quality with respect to the original objec-
tive function by assigning an auxiliary objective value
equal to 0 to said individuals. If bestObjectiveV alue

is the original objective value of the best individual in
the population, and shift is a value that ensures that
bestObjectiveV alue� shift � 0 throughout the entire
optimisation procedure, then the threshold value v—for
a minimisation problem—can be defined as:

v =
(bestObjectiveV alue � shift)

th
+ shift (1)

After v is calculated, all individuals whose origi-
nal objective value is higher than v—for a minimisa-
tion problem—have the value of their auxiliary objec-
tive assigned to 0. For the remaining individuals, their
auxiliary objective is calculated as the dcn, i.e. the Eu-
clidean distance in the genotypic space to the closest in-
dividual. Consequently, individuals that are not able to
achieve the specified threshold are penalised. In the spe-
cial case where th = 0, Equation 1 does not hold, and
therefore individuals are never penalised. Thus, dcn-
thr with th = 0 behaves like the dcn approach.

The dcn-thr approach was selected based on pre-
vious research by the authors described in Segura et al
(2013b), in which it was shown that the incorporation
of the threshold ratio th provided significant benefits
with respect to those schemes that did not make use of
it. However, the main drawback of the approach is that
the most appropriate value for this parameter depended
on the problem being solved. In addition, it was further
suggested by Segura et al (2013b) that the best value
of th is also dependent on the stage of the optimisation
process, and consequently th should be varied over the
course of a run. Therefore, the application of parameter
control techniques to automatically adapt this param-
eter ought to significantly improve both the behaviour
and the robustness of the diversity-based moea. Let us
consider this idea in detail.

In general, any moea can be used in combination
with the dcn-thr auxiliary objective. There exist a
large number of moeas described in the literature which
have shown good performance (Zhou et al, 2011). The
overall results obtained might be greatly improved upon
by carefully analysing the performance of di↵erentmoeas
in combination with the parameter control strategies
described herein. However, such a study is beyond the
scope of this research. Instead, and considering the pop-
ularity of the Non-dominated Sorting Genetic Algo-
rithm II (nsga-ii) (Deb et al, 2002), we have decided
to apply parameter control methods to this algorithm.
For a deeper insight into the behaviour of the nsga-ii

when combined with the dcn-thr scheme, the reader
is referred to Segura et al (2013b).

Algorithm 1 flc pseudocode
1: Initialisation: Generate sample values for the parameter th dis-

tributed uniformly in the range [0, 1] considering a certain value
� as the di↵erence between two consecutive samples

2: for (each generated sample value of the parameter th) do

3: Learning: Execute numGen generations of the diversity-
based moea with said value for the parameter th in order to
gather knowledge

4: end for

5: while (diversity-based moea stopping criterion is not satisfied)
do

6: Calculation of input variables. Set the values for the input
variables imp, var, th-in, best-th-in

7: Selection of the rule base. Select the most suitable rule base
considering the last k decisions carried out by the flc and the
scoring function shown in Equation 3.

8: Fuzzification. Transform the crisp values of the input vari-
ables to fuzzy sets using the fuzzification interface

9: Mamdani’s fuzzy inference. Apply the fuzzy operator and

(min), the implication method (min) and the aggregation
method (max) using the selected rule base to obtain the fuzzy
set of the output variable th-out.

10: Defuzzification: Transform the fuzzy set of the output vari-
able th-out to a crisp value �th using the defuzzification in-
terface (centroid method)

11: Parameter update: th = th + �th. The value of th is en-
closed in the range [0, 1]

12: Execution: Execute numGen generations of the diversity-
based moea with the new value of th

13: end while

In order to complete the definition of the diversity-
basedmoea some traditional components are used. Par-
ticularly, the parent selection mechanism is the well-
known Binary Tournament (Eiben and Smith, 2003),
while the variation operators are the Uniform Muta-
tion (um) (Eiben and Smith, 2003) and the Simulated
Binary Crossover (sbx) (Deb and Agrawal, 1995). Mu-
tation and crossover operators are applied with proba-
bilities pm and pc, respectively.

5 Parameter control methods

In this section we describe in detail the three parameter
control approaches that are evaluated in later sections.
The first two approaches—fuzzy logic controllers and
hyper-heuristics—provide an external control mecha-
nism for altering parameter th during the course of a
run. The final approach uses self-adaptation by incorpo-
rating the parameter into the chromosome that defines
the problem solution.

5.1 Fuzzy logic controllers

This section describes a novel flc introduced by the
authors to control the parameter th in the dcn-thr ap-
proach. Its main novelty lies in the incorporation of a
set of di↵erent rule bases that are enabled depending
on historical information extracted from the optimisa-
tion process. This historical data is used to guide the
adjustment of the parameter th. The pseudocode of the
flc is shown in Algorithm 1. It operates as follows:
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Fig. 1 Membership functions of the input and output variables

Firstly, the initialisation and learning stages—lines
1–4—are carried out. During the initialisation stage,
di↵erent sample values are generated for the parame-
ter th, distributing them uniformly within the range
[0, 1]. In order to generate them, a value � is consid-
ered as the di↵erence between two consecutive sam-
ples. Although � might be considered as a parameter
of the flc, it is assigned a fixed value regardless of
the optimisation problem. Then, in the learning stage,
the diversity-based moea explained in Section 4 is exe-
cuted for numGen generations for each of the generated
samples in order to gather su�cient information. Once
these two stages are complete, the flc infers the change
to be applied to the parameter th—lines 6–11—taking
into account the values of the input variables and the
rule base selected. Then, the diversity-based moea is
executed for numGen generations—line 12—with the
new value of th. Finally, this process is repeated un-
til the global stopping criterion of the diversity-based
moea is satisfied.

Note that Mamdani’s fuzzy inference method is used
for the fuzzy inference process—lines 9–11. In addition,
the fuzzy logic operator and

2 uses the minimum t-
norm, the implication method uses the minimum t-
norm, the aggregation method applies the maximum
s-norm and the centroid algorithm is applied as the de-
fuzzification method. All of these components were se-
lected because they are usually implemented together
with Mamdani flcs. It is important to note that zero-
order Takagi-Sugeno-Kang (tsk) flcs—where the lin-
guistic terms of the output variables are described using
a zero order (constant) function instead of membership
functions—were also implemented. These flcs use the
weighted average as the defuzzification method. Fur-
thermore, they do not require the use of an aggregation
method. The remaining components of the fuzzy in-
ference process were the same as those applied in the
Mamdani flcs exposed herein. The di↵erences between

2 Only the fuzzy logic operator and is used in the an-
tecedents of the fuzzy rules.

Mamdani and tsk flcs, however, were not statistically
significant. Consequently, only Mamdani flcs are con-
sidered in this paper.

The input variables of the flc are the following:

– imp. Calculated as the improvement in the original
objective value of the best individual achieved by
the diversity-based moea—line 12 of Algorithm 1—
during the latest numGen generations. This input
variable is normalised in order to delimit it to the
range [0, 1].

– var. A measure of the diversity of the population.
The higher its value the more diverse the popula-
tion. The calculation of this input variable with no
normalisation is shown in Equation 2. The values
of the decision variable i of individuals j and k are
given by xj [i] and xk[i]. The total number of de-
cision variables is represented by D and N is the
population size. The value of var⇤ is normalised to
enclose the variable var in the range [0, 1]:

var

⇤ =
D�1X

i=0

2

4
N�1X

j=0

"
xj [i] �

1

N
·
 

N�1X

k=0

xk[i]

!#2
3

5 (2)

– th-in. Defined as the current value of parameter th
within the range [0, 1].

– best-th-in. Defined as that value of parameter th

that has attained the maximum improvement in the
original objective value considering the last k values
of the parameter th inferred by the flc. Its value is
also in the range [0, 1].

Two di↵erent versions of the flc are applied. The
first one is named fuzzy-a and makes usage of the
input variables imp, var, and th-in. The second one
utilises the input variables imp, th-in, and best-th-

in, and it is called fuzzy-b. For both variants of the
flc, only one output variable is defined, called th-out,
which represents the increment or decrement to be ap-
plied to the parameter th in order to change its value.
The membership functions for both the input and out-
put variables are shown in Figure 1. Due to the compu-
tational simplicity and e�ciency advantages they o↵er,
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triangular-shaped membership functions were selected
for the input and output variables. The linguistic terms
represented by the memberships functions—from left to
right in Figure 1—are as follows:

– Input variables imp, var, and best-th-in: low (l),
med (m), and high (h).

– Input variable th-in: low (l), low-med-b (lmb),
low-med-a (lma), med (m), med-high-a (mha),
med-high-b (mhb), and high (h).

– Output variable th-out: neg-giant (ng), neg-

huge (nu), neg-high (nh), neg-med (nm), neg-
low (nl), zero (z), pos-low (pl), pos-med (pm),
pos-high (ph), pos-huge (pu), and pos-giant

(pg).

For each flc several rule bases are defined. The
reason for the use of several rule bases is that di↵er-
ent fuzzy rules will be applicable depending on the be-
haviour exhibited during the previous execution. For
instance, if the best results were historically obtained
by high values of the parameter th, the selected rule
base should promote the use of said high values. Every
rule base is composed of di↵erent if-then fuzzy rules.
The left-hand side of Table 1 shows one of the rule bases
defined for the fuzzy-a approach, while the right-hand
side shows another one for the fuzzy-b scheme. Only
the logic operator and is used in the antecedents of said
fuzzy rules. In general, every fuzzy rule considers three
input variables and one output variable. In cases where
a ‘-’ is shown, the corresponding fuzzy rule has no de-
pendency on the corresponding variable. The remaining
rule bases are not shown due to space constraints, but
are similar to those shown herein 3.

In order to select the most suitable set of rules, we
propose a novel scoring function. It uses a weighted
average that considers historical data on both the im-
provement in the original objective value and on the
degrees of membership of parameter th to each term
defined for the input variable th-in.

Equation 3 assigns a score to each linguistic term
i 2 [0, numTerms � 1]. After every execution of the
optimisation scheme—line 12 of Algorithm 1—the im-
provement achieved is entered into those vectors �[i] for
which the degree of membership of parameter th to the
linguistic term i is di↵erent from zero. In the same way,
said degree of membership is entered into vector �[i].
Hence, the term d denotes the number of items in the
vectors �[i] and �[i]. Additionally, the value of k is de-
fined as the amount of historical knowledge considered
by the flc, i.e. for each linguistic term, information on

3 The complete specifications for all of the rule bases de-
signed for both versions of the flc are available as online
supplementary material.

the last k improvements achieved is considered. Specif-
ically, for each linguistic term the equation represents
a weighted average of its improvements, where greater
importance is given to the last executions in which val-
ues of the controlled parameter have a high degree of
membership to the corresponding linguistic term. Thus,
the linguistic term i will be assigned a higher score if the
values of parameter th have larger degrees of member-
ship to said linguistic term, and if, at the same time,
the values of parameter th are able to achieve better
improvements in the original objective.

Note that if numTerms linguistic terms are defined
for the input variable th-in, numTerms rule bases have
to be implemented in order for the flc to work with the
proposed scoring function. Figure 1 shows that seven
linguistic terms are defined for the input variable th-

in, meaning seven di↵erent rule bases are implemented.
We tested di↵erent numbers of fuzzy rule bases and
found that the higher the number of rule bases, the
smoother the variations in the parameter th inferred
by the flc, and thus the steadier the flc. However,
when considering more than seven fuzzy rule bases, the
performance started to degrade somewhat, as it also
did with a lower number of fuzzy rule bases. Thus, we
opted for seven rule bases, as this yielded the best per-
formance for the flc. This fact also justifies the usage
of seven linguistic terms for the input variable th-in,
instead of using three linguistic terms as in the case
of the remaining input variables. For the remaining in-
put variables, three linguistic terms are used so as to
maintain the rule bases as simple as possible. Finally,
we should note that the di↵erent fuzzy rule sets were
obtained using expert knowledge.

score[i] =

min(k,d)X

j=1

�[i][d � j] · �[i][d � j] · (min(k, d) � j + 1)

min(k,d)X

j=1

�[i][d � j] · (min(k, d) � j + 1)

(3)

Once the scores are calculated, the linguistic term
with the maximum score is selected. This means that
those values of parameter th with a large enough de-
gree of membership to said linguistic term should yield
better performance than other values. Therefore, if the
linguistic term i is selected, rule base i is enabled. This
selected rule base is responsible for adapting the value
of parameter th so that it approaches the values repre-
sented by term i. For instance, assume that the current
value of the parameter th is 0.99 and the most suitable
rule base—considering the scoring function—is the one
represented by the linguistic term low of the input
variable th-in. This means that historically low values
of the parameter th have been able to provide good im-
provements to the original objective value. Thus, the
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Table 1 Rule bases of the fuzzy-a (left-hand side) and fuzzy-b (right-hand side) schemes

Rules Inputs Output
id th-in imp var th-out

1 l l l nl

2 l l m nl

3 l l h pl

4 l m - z

5 l h - z

6 lmb l - nm

7 lmb m - nl

8 lmb h - z

9 lma l - nh

10 lma m - nl

11 lma h - z

12 m l - nu

13 m m - nl

14 m h - z

15 mha l - ng

16 mha m - nl

17 mha h - z

18 mhb l - ng

19 mhb m - nl

20 mhb h - z

21 h l - ng

22 h m - nl

23 h h - z

Rules Inputs Output
id th-in imp best-th-in th-out

1 l l - pg

2 l m - pl

3 l h - z

4 lmb l - pg

5 lmb m - pl

6 lmb h - z

7 lma l - pg

8 lma m - pl

9 lma h - z

10 m l - pu

11 m m - pl

12 m h - z

13 mha l - ph

14 mha m - pl

15 mha h - z

16 mhb l - pm

17 mhb m - pl

18 mhb h - z

19 h l l nl

20 h l m nl

21 h l h pl

22 h m - z

23 h h - z

rule base to be applied in this case is precisely the one
shown in the left-hand side of Table 1, considering the
approach fuzzy-a. Taking into account a fuzzy set for
the variable imp, which has a large degree of member-
ship to the term low, since th-in—with value 0.99—is
represented by a fuzzy set with a large degree of mem-
bership to the term high, the output fuzzy set—the
one corresponding to the output variable th-out—will
have a large degree of membership to the linguistic term
neg-giant (ng). Consequently, the value of the param-
eter th will be considerably decreased so that it will
tend towards lower values.

5.2 Hyper-heuristics

An extension of the hyper-heuristic approach to param-
eter control first described by Vink and Izzo (2007) is
implemented in order to control the parameter th in
the dcn-thr approach. This hyper-heuristic has been
successfully applied in previous papers (Segura et al,
2013b; Segura, 2012) and is based on using a scoring
strategy and a selection strategy for selecting the most
appropriate low-level configuration of the approach to
be executed. A candidate low-level configuration in this
case refers to an instance of the diversity-based moea

described in Section 4 with a particular setting for the
variable th of the auxiliary objective dcn-thr (all other
parameters of the algorithm remaining constant). Once
a strategy is selected, it is executed until a local stop-
ping criterion is achieved. Afterwards another low-level
configuration is selected and executed. the final popu-
lation of the last low-level configuration used becomes

the initial population of the new low-level configuration.
This process continues until a global stopping criterion
is satisfied. The low-level configuration that must be
executed is selected as follows.

First, the scoring strategy assigns a score to each
low-level configuration. This score estimates the im-
provement that each low-level configuration can achieve
starting from the currently obtained set of solutions.
In order to calculate this estimate, the previous im-
provements on the original objective value achieved by
each configuration are used. The improvement (�) is
defined as the di↵erence, in terms of the original objec-
tive value, between the best achieved individual and the
best initial individual. Assuming a configuration conf

which has been executed j times, the score is calcu-
lated as a weighted average of its latest k improvements
(Equation 4).

s(conf) =

min(k,j)X

i=1

(min(k, j) + 1 � i) · �[conf ][j � i]

min(k,j)X

i=1

i

(4)

In Equation 4, �[conf ][j�i] represents the improve-
ment achieved by configuration conf in execution num-
ber j � i. Depending on the value of k, the adapta-
tion level of the hyper-heuristic, i.e. the total amount
of historical knowledge that the hyper-heuristic consid-
ers in order to perform its decisions, can be varied. The
weighted average assigns a greater importance to the
latest executions.

The score s(conf) is used to calculate a probability
of selecting a particular low-level configuration. How-
ever, the stochastic behaviour of the low-level meta-
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heuristics involved may lead to variations in the results
they obtain. As a result, the probability calculation
also enables a fraction of selections based on a random
scheme. This is implemented as follows. Specifically, the
hyper-heuristic can be tuned by means of a parameter
�, which represents the minimum selection probability
that should be assigned to a low-level configuration. If
nh is the number of low-level configurations involved,
a random selection following a uniform distribution is
performed in � · nh percentage of the cases. Therefore,
the probability of selecting each configuration conf is
defined as shown in Equation 5.

prob(conf) = � + (1 � � · nh) ·

2

666664

s(conf)
nhX

i=1

s(i)

3

777775
(5)

Two di↵erent schemes based on this hyper-heuristic are
applied in this paper.

– The first one is a probabilistic version—hh-prob—
in which the selection probability is proportional to
the score s(conf) (Equation 5).

– The second one is an elitist version—hh-eli—which
always selects the low-level configuration with the
maximum score s(conf), in addition to the mini-
mum random selections performed for each config-
uration.

5.3 Self-adaptation

In order to enable the parameter th to undergo self-
adaptation, it is encoded within the chromosome, where
it is subjected to mutation and crossover operators that
change its value during the optimisation process. This
relies on the premise that better values of the parame-
ter th will produce better individuals, which in turn will
have more opportunities to survive, and consequently
propagate these improved parameter values. This is “the
idea of the evolution of evolution” (Eiben et al, 2007).
In the case of self-adaptive approaches to parameter
control, the selection and variation operators of the ea

are responsible for changes in the parameter values, i.e.
the updating mechanism that adapts the parameters is
implicit. This di↵erentiates the method from the previ-
ously described flcs and hyper-heuristics in which the
adaptation mechanism is external to the ea used.

Figure 2 shows the chromosome of an individual
that considers the self-adaptation of the parameter th.
For an individual representing a solution to a problem
with D decision variables, the values x[i], i 2 [0, D � 1]
represent these decision variables. Three novel versions
of the self-adaptive approach are proposed herein:

Fig. 2 Chromosome of the self-adaptive approaches

– self-a. The value of the parameter th of the best in-
dividual in the population—the one with the lowest
original objective value—is applied at each genera-
tion to calculate the auxiliary objective value of all
individuals.

– self-b. The mean value of the parameter th con-
sidering all individuals in the population is used in
each generation to calculate the auxiliary objective
value of every individual.

– self-c. The corresponding encoded value of the pa-
rameter th is applied to each individual in each gen-
eration in order to calculate its own auxiliary objec-
tive value.

In regard to the taxonomy discussed in Section 2, which
considers the scope a↵ected by the change, self-a and
self-b act at the population level, while self-c acts at
an individual level. Thus, the encoding of the parameter
th into the chromosome can be interpreted in di↵erent
ways, supplying di↵erent algorithm variants in which
the scope of the parameter varies.

6 Experimental evaluation

In this section, the experiments conducted with the
diversity-based moea and the parameter control ap-
proaches presented in Sections 4 and 5 are described.

Experimental method Both the diversity-based moea

and the parameter control approaches were implemented
using metco (León et al, 2009) (Meta-heuristic-based
Extensible Tool for Cooperative Optimisation). Tests
were run on a debian gnu/linux computer with four
amd

R� opteron TM (model 6164 he) at 1.7 ghz and
64 gb ram. The compiler was gcc 4.6.3, while the
flcs were implemented using the fuzzylite 3.1 library
(Rada-Vilela, 2013). As all experiments used stochas-
tic algorithms, each execution was repeated 32 times.
Comparisons were performed by applying the follow-
ing statistical analysis. First, a Shapiro-Wilk test was
conducted in order to check whether the values of the
results followed a normal (Gaussian) distribution or
not. If so, the Levene test checked for the homogene-
ity of the variances. If samples had equal variance, an
anova test was done. Otherwise, a Welch test was
performed. For non-Gaussian distributions, the non-
parametric Kruskal-Wallis test was used to compare
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Table 2 Parameterisation of the diversity-based moea

Parameter Value Parameter Value
Stopping criterion (F1–F19) 2.5 · 106 evals. Stopping criterion (Rotated) 3 · 106 evals.
Population size N (F1–F19) 5 individuals Population Size N (Rotated) 50 individuals
Mutation rate pm 1/D Crossover rate pc 1

Table 3 Parameterisation of the fuzzy-a and fuzzy-b fuzzy logic controllers

Parameter Value Parameter Value
Number of generations (numGen) 5 · 102 Di↵erence among samples (�) 0.1
Number of linguistic terms (numTerms) 7 Historical knowledge (k) 5

Table 4 Parameterisation of the hh-eli and hh-prob hyperheuristics

Parameter Value Parameter Value
Local stopping criterion (generations) 5 · 102 Minimum selection rate (�) 0.1
Number of low-level configs. (nh) 6 Historical knowledge (k) 5

the medians of the algorithms. A significance level of
5% was considered.

Problem set Experiments were carried out using a set
of 19 single-objective benchmark problems—f1–f19—
proposed by Lozano et al (2011). The set defines a num-
ber of scalable continuous optimisation problems that
combine di↵erent properties involving the modality, the
separability, and the ease of optimisation dimension by
dimension. In the current work, D—the number of vari-
ables of these problems—was fixed to 500. Addition-
ally, another experiment was carried out using a set of
9 rotated problems—f4–f6, f9–f11, and f14–f16—
proposed by Tang et al (2009). In this case, D was fixed
to 1,000 decision variables. In what follows, we will re-
fer to these problems as r4–r6, r9–r11, and r14–r16

to di↵erentiate them from the above benchmarks.

Parameters The experiments conducted used a com-
mon parameterisation for the diversity-based moea and
the di↵erent parameter control schemes. Table 2 shows
the parameterisation of the diversity-based moea de-
scribed in Section 4. In the case of the f1–f19 bench-
marks, the population size was fixed to 5 individu-
als since, in previous research carried out by the au-
thors (Segura et al, 2013b), it was shown that the ap-
plication of diversity-based moeas with said popula-
tion size to those problems provided the best results in
terms of the error achieved at the end of the executions.
Other research has also demonstrated the suitability of
eas with small population sizes to solving certain high-
dimensional benchmarks (Olguin-Carbajal et al, 2013).
In the case of the rotated problems, the population size
was fixed to 50 individuals in order to better deal with
premature convergence issues. Finally, the stopping cri-
terion was fixed in keeping with the suggestions given

in Lozano et al (2011) for the f1–f19 benchmarks, and
in Tang et al (2009) for the rotated problems.

The parameterisations of the di↵erent parameter
control approaches are shown in Tables 3 and 4, for
the flcs and the hyper-heuristics, respectively. The pa-
rameter values of the control methods—minimum se-
lection rate, historical knowledge, number of low-level
configurations, number of linguistic terms, etc.—were
the same regardless of the problem in question. This
means that the control approaches proposed herein are
robust, since for a wide range of test cases, promising
results can be obtained without changing these parame-
ter values. Thus, the parameters of the control methods
do not place additional burdens on the configuration of
the diversity-based moea. Note also that thehh-eli and
hh-prob hyper-heuristics were applied using six low-
level configurations (nh = 6). Generally, and based on
previous work by the authors, a high number of low-
level configurations involve a decrease in the quality
of the solutions obtained because the hyper-heuristic is
not able to carry out the right decisions when a large set
of candidate configurations is defined. That is why we
selected six low-level configurations instead of assign-
ing a larger value to the parameter nh. The only dif-
ference among the low-level configurations is the value
assigned to the parameter th. The values are distributed
uniformly in the range [0, 1]. Thus, the low-level con-
figurations are defined with values 0, 0.2, 0.4, 0.6, 0.8,
and 1 for the parameter th.

Describing the parameterisation of the self-adaptive
parameter control approaches is not necessary. Since no
additional parameters are defined for them, their pa-
rameterisation is the same as in the case of the diversity-
based moea (Table 2).

Finally, a single-objective ea (Single-EA) was also
applied to study whether the controlled diversity-based
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Table 5 Mean original objective value of best approaches after 5e5 evaluations

Problem Best Self-Adaptive HH-Eli HH-Prob Fuzzy-A Fuzzy-B Single-EA
F1 -4.478003e+02 -4.478371e+02 -4.474119e+02 -4.483882e+02* -4.481555e+02 -4.428261e+02
F2 -3.976507e+02 -4.002689e+02* -3.995730e+02 -3.977567e+02 -3.984597e+02 -3.896465e+02
F3 7.860950e+03 6.307528e+03* 6.892168e+03 7.114925e+03 7.206458e+03 6.795756e+03
F4 -2.788402e+02 -3.106858e+02* -3.054929e+02 -3.050468e+02 -3.054261e+02 -2.794897e+02
F5 -1.798369e+02 -1.798284e+02 -1.798023e+02 -1.798794e+02 -1.798873e+02* -1.792260e+02
F6 -1.399212e+02 -1.399205e+02 -1.399115e+02 -1.399267e+02 -1.399412e+02* -1.396095e+02
F7 3.740799e-01 2.928847e-01 3.744123e-01 2.395465e-01* 2.492768e-01 2.654012e+00
F8 3.570116e+05 3.664986e+05 3.720928e+05 3.563382e+05* 3.647259e+05 4.502028e+05
F9 2.968789e+02 2.957150e+02 3.014180e+02 2.928711e+02 2.866811e+02* 4.386443e+02
F10 1.812262e+00* 2.249266e+00 2.478268e+00 2.140365e+00 1.893920e+00 1.188721e+01
F11 2.949134e+02* 3.035599e+02 3.073306e+02 2.963466e+02 2.999489e+02 4.407029e+02
F12 4.009808e+01 3.308254e+01* 3.481530e+01 3.874683e+01 3.827866e+01 1.034016e+02
F13 1.017289e+04 3.860397e+03 4.409750e+03 7.421083e+03 8.632196e+03 3.837678e+03*

F14 4.569614e+01 3.072660e+01* 3.281441e+01 3.343408e+01 3.537184e+01 5.682281e+01
F15 4.122504e+00 2.468268e+00* 2.646807e+00 3.470253e+00 3.276949e+00 4.448329e+00
F16 1.114501e+02 9.613186e+01* 1.033108e+02 1.109923e+02 1.092793e+02 2.064661e+02
F17 2.689799e+03 1.287036e+03* 1.564690e+03 2.383842e+03 2.068250e+03 1.454827e+03

F18 5.346952e+01 5.112424e+01 5.419024e+01 4.860644e+01* 5.111202e+01 7.809513e+01
F19 2.062142e+00 1.619345e+00* 1.982881e+00 2.149803e+00 2.119459e+00 4.531929e+00

moea o↵ers any benefits with respect to said single-
objective optimiser when solving single-objective prob-
lems. It was selected since it is very similar to the
diversity-based moea considered herein and because it
provided the best results for the majority of the f1–

f19 benchmark problems in previous research carried
out by the authors (Segura et al, 2013b). Said single-
objective approach applies an elitist-based generational
survivor selection mechanism, i.e. all parents, except
the fittest one, are discarded and replaced by the new
o↵spring for the next generation. The remaining com-
ponents and parameters were the same as those defined
for the diversity-based moea (Section 4 and Table 2).

In order to carry out a fair comparison among the
control approaches, all of the methods are run consider-
ing the same amount of function evaluations, as shown
in Table 2 (stopping criterion). One of the main goals of
this work is to validate diversity-based moeas, as well
as the di↵erent control approaches proposed herein to
control their parameters, by applying them to a set of
well-known single-objective benchmarks. It would be
interesting, however, to also apply the aforementioned
schemes to more complex real-world applications, a sig-
nificant number of which have execution times that are
highly correlated to the number of function evaluations.
Since the evaluation of an individual is the most time-
consuming part of the entire optimisation scheme, the
remaining operations that it must perform are insignif-
icant in terms of the time invested. As a result, in this
paper the comparisons carried out only consider the
number of function evaluations.

6.1 Analysis of parameter control schemes over a short
evaluation timeframe

In the first experiment, the various control approaches
are applied to the parameter th of the diversity-based

moea in order to solve each of the benchmark functions
f1–f19. The main aim of this study is to analyse the
performance of the di↵erent parameter control schemes
over a relatively short period of 5 · 105 evaluations of
the objective functions. Table 5 shows for each bench-
mark function the mean of the original objective value
achieved by the di↵erent parameter control approaches
after 5 ·105 evaluations. In the case of the di↵erent ver-
sions of the self-adaptive approach only the data for the
scheme which reached the lowest mean of the original
objective value after 5 · 105 evaluations is shown. Fur-
thermore, the results obtained by the single-objective
ea are also shown. The schemes whose data is shown
in bold with an asterisk obtained the lowest mean of
the original objective value. It is important to note that
these approaches exhibited statistically significant dif-
ferences when compared to the control methods whose
data is not shown in bold, based on the statistical proce-
dure described earlier in this section. If the data from
several approaches are shown in bold without an as-
terisk, then those schemes did not exhibit statistically
significant di↵erences versus those which obtained the
lowest mean of the original objective value. We note the
following observations:

– One or both of the fuzzy-a and fuzzy-b flcs ob-
tained a statistically significant lower mean with re-
spect to the original objective than the remaining
approaches in four problems: f1 and f5–f7.

– One or both of the hh-eli and hh-prob hyper-
heuristics obtained a statistically significant lower
mean for the original objective value than the re-
maining schemes in six problems: f2–f4, f12, f15,
and f16.

– In five problems—f8–f10, f14, and f18—there
were no statistically significant di↵erences between
the two types of external controllers.
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– The self-adaptive approaches and the single-objective
ea did not provide any statistically significant ad-
vantage on their own in any of the benchmarks.

Thus, following a short evaluation period, the hyper-
heuristic-based schemes, and in particular the hh-eli

approach, appear better able to adapt the parameter
th than the parameter control approaches based on
flcs and self-adaptation. This could be due to the fact
that the hyper-heuristic-based methods only have to se-
lect the most suitable value for the parameter th from
amongst a finite set of candidate values that coarsely
span the parameter space. In contrast, the flcs are able
to select from an infinite range of possible values. Thus,
given only a short learning period, the hyper-heuristics
outperform the other methods as they are able to ex-
ploit existing values that may lie close to the optimal
ones, rather than having to explore the space for suit-
able values. As a result, the methods based on hyper-
heuristics are able to provide better solutions than the
flcs in the short term for a larger number of problems.

With respect to the self-adaptive approaches, al-
though they did not outperform either of the other con-
trol approaches, for some problems they were able to
achieve the same quality level as the other parameter
control methods. In the case of problem f19, they out-
performed the flcs together with the hyper-heuristics,
and in the case of problem f11, they outperformed the
hyper-heuristics together with the flcs.

Finally, in regard to the single-objective ea, it was
outperformed by the diversity-based moea adapted by
the di↵erent control methods in the majority of test
cases, except for the f13 and f17 benchmarks, where it
did not exhibit statistically significant di↵erences from
the hh-eli hyper-heuristic.

6.2 Analysis of parameter control schemes over a long
evaluation time frame

In this section, the parameter control schemes are anal-
ysed over a longer evaluation period of 2.5 · 106 evalua-
tions, i.e. at the end of the executions, considering the
f1–f19 benchmark functions. Hence, Table 6 shows the
same information as Table 5, but for 2.5 · 106 evalua-
tions. We observe the following:

– One or both of the fuzzy-a and fuzzy-b flcs ob-
tained a statistically significant lower mean with re-
spect to the original objective value than the re-
maining approaches in four problems: f3, f7, f12,
and f14.

– One or both of the hh-eli and hh-prob hyper-
heuristics obtained a statistically significant lower

mean for the original objective value than the re-
maining schemes in two problems: f2 and f4.

– In twelve problems, there were no statistically sig-
nificant di↵erences between the two types of exter-
nal controllers: f1, f5, f6, f8–f11, f13, f15, f16,
f18, and f19.

– The self-adaptive approaches, as well as the single-
objective ea, did not provide any statistically sig-
nificant advantage on their own in any of the bench-
marks.

It is clear that given a long enough evaluation time,
the parameter control methods become less distinguish-
able. In the long evaluation period, the external method
does not exhibit any significant di↵erences for 12 cases,
compared to 5 cases in the short evaluation period. It
is also clear that given a longer running time, the flcs
are able to provide the best results in a higher num-
ber of problems than hyper-heuristics. Regarding the
self-adaptive approaches, as in the short term, again
they did not provide any benefit for any benchmark
in the long term, and in fact were outperformed by
the flcs and hyper-heuristic-based control schemes in
every problem, except for the f8 function. Something
similar happened in the case of the single-objective ea,
which was outperformed by the diversity-based moea

adapted by the di↵erent control schemes in almost every
case, except for the f5 and f17 benchmark functions.

6.3 Comparison and analysis between short and long
evaluation periods

It is illuminating to compare the change in performance
in the methods applied to each of the problems un-
der the two di↵erent evaluation scenarios, short-term
and long-term. We define the winning method as the
approach that outperforms each of the other schemes
(statistically significant). Thus, the winner is either self-
adaptation, hyper-heuristic, flc, Single-EA or none if
no single method di↵ers statistically from all of the
others. If we then examine the change in the winning
method as we switch from short-term to long-term eval-
uation, the following observations can be made:

– For eleven problems—f2, f4, f7–f11, f13, and
f17–f19—changing the length of the evaluation pe-
riod has no impact on the winning control method.

– For five problems—f1, f5, f6, f15, and f16—
while there is a clear winner in the short-term eval-
uation experiment, there is no significant di↵erence
between methods when evaluated over a longer time
period.

– For two problems—f3 and f12—the best method
switches from the hyper-heuristic in the short-term
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Table 6 Mean original objective value of best approaches after 2.5e6 evaluations

Problem Best Self-Adaptive HH-Eli HH-Prob Fuzzy-A Fuzzy-B Single-EA
F1 -4.499892e+02 -4.499992e+02* -4.499988e+02 -4.499988e+02 -4.499992e+02* -4.499972e+02
F2 -4.341193e+02 -4.350975e+02* -4.349620e+02 -4.340944e+02 -4.341680e+02 -4.277183e+02
F3 1.427243e+03 1.807100e+03 1.718612e+03 1.282274e+03* 1.547327e+03 1.909534e+03
F4 -3.299951e+02 -3.300000e+02* -3.299999e+02 -3.299998e+02 -3.299998e+02 -3.299943e+02
F5 -1.799766e+02 -1.799713e+02 -1.799836e+02 -1.799717e+02 -1.799792e+02 -1.799904e+02*

F6 -1.399978e+02 -1.399990e+02 -1.399988e+02 -1.399991e+02* -1.399991e+02* -1.399971e+02
F7 7.065683e-03 4.597348e-03 5.994893e-03 2.057316e-03* 2.533643e-03 4.233317e-02
F8 1.668117e+05 1.676752e+05 1.690159e+05 1.624589e+05* 1.706433e+05 2.224828e+05
F9 3.248838e+01 1.681051e+01 2.372986e+01 1.617945e+01 1.613916e+01* 7.367794e+01
F10 3.394049e-03 2.852807e-04* 3.736034e-04 5.373773e-04 3.173994e-04 2.169285e-03
F11 3.371631e+01 1.598078e+01* 2.490122e+01 1.728919e+01 1.728853e+01 7.274837e+01
F12 9.409282e-01 9.932408e-01 1.060437e+00 5.706366e-01* 5.746609e-01 9.932672e+00
F13 1.948127e+03 1.782808e+03 1.290099e+03* 1.473589e+03 1.581966e+03 1.723598e+03
F14 3.839717e-01 1.958826e-01 3.125988e-01 1.418254e-01 1.371941e-01* 2.531747e+00
F15 1.514281e-02 6.026768e-03* 7.459278e-03 6.769493e-03 6.590881e-03 2.802138e-02
F16 3.635383e+00 2.254722e+00 3.054237e+00 2.237479e+00 2.185866e+00* 2.561759e+01
F17 8.514682e+02 5.468047e+02 5.769930e+02 7.511799e+02 5.339560e+02 5.256555e+02*

F18 3.500672e+00 1.813913e+00* 2.260901e+00 2.039246e+00 1.859091e+00 1.106717e+01
F19 5.165002e-03 9.889879e-04 1.524792e-03 1.077074e-03 9.886900e-04* 6.212275e-03

evaluation to the flcs in the long-term evaluation
experiment.

– For one problem—f14—while there is no signifi-
cant di↵erence in method in the short term, the flc
emerges as the best method in the long term.

These results suggest that the coarse-grained ap-
proach of the hyper-heuristic, which defines a fixed set
of possible values for the parameter th spread uniformly
across the full range of possible values, provides su�-
cient variety to this parameter to yield high-quality re-
sults in most problems. The results also suggest that
the flcs select similar values to those already defined
by the hyper-heuristics and that the problems are rel-
atively robust to the exact value of th over a certain
interval. This is evidenced by the fact that in 5 prob-
lems, the performance of the hyper-heuristic and flcs
converged given a long enough evaluation time. In ad-
dition, for 12 test cases the hyper-heuristics and flcs
did not present statistically significant di↵erences at the
end of the executions.

For 3 problems—f3, f12, and f14—the flc emerged
as the winner in the long term, while either the hyper-
heuristic was the clear winner or no method dominated
in the short term. This suggests that these problems are
particularly sensitive to the parameter th, and that the
flc is able to find a value that yields better results,
one that is not present in any of the hyper-heuristic
configurations.

To summarise, the most appropriate parameter con-
trol approach depends on the optimisation problem be-
ing solved. However, for the majority of test cases, flcs
or hyper-heuristics can be applied to obtain promising
results, whereas the self-adaptive approaches are not
able to provide any advantage over the other control
methods when adapting the parameter th. The results
appear to substantiate the statement made in Eiben
et al (2007): “self-adaptive methods are e�cient meth-

ods when applicable ... but are outperformed by clever
adaptive methods”. Finally, we should note that the ad-
vantages of using diversity-based moeas to solve single-
objective problems are proven, since the diversity-based
moea adapted by the di↵erent control approaches was
able to statistically outperform the single-objective ea

in most problems.

6.4 Comparison of parameter control methods to fixed
parameters

The parameter control methods applied herein adapt
the value of the parameter th during the course of an
evolutionary run; thus, a single run of the optimisa-
tion algorithm may utilise many di↵erent values over
the entire run. In this section, we assess the benefit of
adapting the value of the parameter over the course of
the run as opposed to simply choosing a single value
that remains fixed throughout. The latter approach re-
quires a suitable value for th to be defined; we define
21 di↵erent configurations of the diversity-based moea

with the parameterisation shown in Table 2 for the f1–
f19 functions. Every configuration di↵ers only in the
value of th. The 21 values of th tested are distributed
uniformly in the range [0, 1].

Figure 3 shows the mean of the original objective
value achieved after 2.5 ·106 evaluations by the parame-
ter control approaches and by the diversity-based moea

executed within a range of fixed values of the parameter
th—fixed—for several of the benchmark functions 4.
The conclusions drawn from the plots shown can be
generalised as follows. Observing the plots, at least one
of the parameter control methods was able to obtain

4 Due to space constraints, the graphics for every problem
are not shown but are available as online supplementary ma-
terial.
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Fig. 3 Mean objective value achieved by the parameter control methods and by the diversity-based moea executed with fixed
values of the parameter th

either similar or better results than any fixed configu-
ration of the fixed approach in 12 of the 19 problems,
namely in problems f3, f6, and f16 shown in Figure 3,
as well as in benchmarks f1, f4, f7, f10, f12–f15, and
f19. Thus, it appears that the majority of benchmarks
benefitted from an approach in which th can be varied
during the course of the run and an optimal fixed value
of th cannot be found.

On the other hand, in 7 of the 19 test cases—f2,

f5, f8, f9, f11, f17, and f18—some configurations
of the fixed scheme yielded better results than the pa-
rameter control approaches, suggesting that there exists
some fixed value for the parameter th that is adequate
during the whole optimisation process. An alternative
explanation, however, might lie in the fact that adapt-
ing th may improve the algorithm but that the changes
in the values of the parameter th take place so fast
that parameter control approaches are not able to de-
tect the changes at the rate required. In this case, fix-
ing the parameter to a suitable value produces more
robust behaviour in the diversity-based moea. Despite
this fact, the results obtained by the control techniques
were close to those provided by the best configurations
of the fixed approach for this set of 7 problems.

It is crucial to note that finding a suitable fixed
value for th required 21 separate runs of the optimisa-
tion algorithm. These results, however, are compared

to a single run of the parameter control methods. Con-
sequently, in addition to the fact that the parameter
control methods obtain high quality solutions for most
of the problems, the savings in computational resources
and time required to produce a good solution are sig-
nificant across all problems.

In order to quantify these savings, we conducted an
additional analysis that relied on Run-Length Distribu-
tions (rlds) (Hoos and Stützle, 2005). rlds show the
relationship between the success rate and the number
of evaluations needed to achieve it, where the success
rate of a particular approach is defined as its probabil-
ity of achieving a certain quality level. In this case, we
fix the quality level as the highest median of the origi-
nal objective value achieved by the considered schemes
at the end of the executions, i.e. at 2.5 ·106 evaluations.

We further calculate the percentage of evaluations—
p—saved by a certain scheme as compared to the ap-
proach that required the largest number of evaluations.
This is calculated using Equation 6, where the number
of evaluations performed by the scheme considered is
denoted by numEvals, and maxEvals is the largest
number of evaluations performed by any approach, for
a particular benchmark function.

p =

✓
1 �

numEvals

maxEvals

◆
· 100 (6)
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Table 7 Maximum number of evaluations needed to achieve the specified quality level and percentage of evaluations saved
by each approach

Problem Best Self-Adaptive HH-Eli HH-Prob Fuzzy-A Fuzzy-B Best Fixed
F1 2.45e+06 36.73% 30.61% 38.78% 40.82% 42.86%

F2 2.50e+06 6.00% 6.00% 2.50e+06 2.50e+06 20.00%

F3 16.00% 4.00% 2.50e+06 34.00% 22.00% 22.00%
F4 12.50% 39.58% 31.25% 33.33% 39.58% 2.40e+06
F5 6.67% 42.22% 2.25e+06 46.67% 53.33% 53.33%

F6 2.40e+06 27.08% 18.75% 37.50% 31.25% 50.00%

F7 2.50e+06 16.00% 8.00% 42.00% 36.00% 44.00%

F8 2.00% 2.00% 2.00% 10.00% 2.50e+06 12.00%

F9 2.50e+06 24.00% 12.00% 24.00% 24.00% 28.00%

F10 2.50e+06 32.00% 30.00% 36.00% 42.00% 28.00%
F11 2.50e+06 28.00% 12.00% 26.00% 22.00% 28.00%

F12 6.00% 6.00% 2.50e+06 32.00% 28.00% 34.00%

F13 2.50e+06 72.00% 64.00% 54.00% 52.00% 80.00%

F14 2.50e+06 26.00% 20.00% 28.00% 32.00% 14.00%
F15 2.50e+06 18.00% 12.00% 16.00% 14.00% 20.00%

F16 2.50e+06 16.00% 8.00% 16.00% 18.00% 10.00%
F17 2.50e+06 72.00% 68.00% 46.00% 48.00% 82.00%

F18 2.50e+06 24.00% 12.00% 16.00% 24.00% 28.00%

F19 2.50e+06 28.00% 20.00% 28.00% 30.00% 26.00%
Mean 2.27% 27.35% 18.66% 29.70% 29.31% 32.75%

The results are shown in Table 7. For each bench-
mark problem, the table gives the actual number of
evaluations needed by the method that requires the
highest number to reach a 50% success rate. In every
other column, the percentage of evaluations saved by
the corresponding method is shown. In order to calcu-
late the values, in the case of the self-adaptive control
scheme, the approach which obtained the lowest mean
of the original objective at the end of the executions
was used. The single value of th that was found to be
optimal in the experiments with the fixed values was
also used. Data in bold highlights the approaches that
were able to save the highest number of evaluations for
each problem. Finally, the last row shows the mean per-
centage of saved evaluations for all the test cases.

Note that for the majority of benchmarks, the self-
adaptive approach invested the highest number of eval-
uations to achieve a 50% success rate. The fixed scheme
provided the greatest savings in evaluations in 13 bench-
mark functions. However, it is important to note that in
order to find the appropriate value of th with which to
run this experiment, 21 separate configurations had to
be executed in order to select the best value for this pa-
rameter. This represents a significant hidden cost that
is not apparent in this table. In contrast, the parame-
ter control methods based on flcs and hyper-heuristics
saved the largest number of evaluations in 8 test cases
and required only a single run of the algorithm. In 6
of these 8 test cases, the fuzzy-b scheme provided the
largest savings.

We should mention that the size of the savings in the
case of the control approaches was also significant for
the 13 test cases in which the fixed scheme provided
the greatest savings. For instance, for the function f1,
the fixed approach resulted in 42.86% fewer evalua-
tions, while the fuzzy-b scheme saved 40.82%. This

fact is also evidenced by the mean percentages of saved
evaluations. The flcs obtained mean percentages that
were quite close to the mean percentage of the fixed

scheme. This demonstrates the advantages of using the
proposed control approaches versus searching for a fixed
value for the parameter th.

6.5 Evaluation of the control schemes with rotated
problems

In the last experiment, the di↵erent control approaches
are applied to the parameter th of the diversity-based
moea in order to solve the rotated problems r4–r6,
r9–r11, and r14–r16. Since in this work the adapted
scheme is a diversity-based moea, it would be interest-
ing to evaluate how said approach preserves diversity
through its application to this set of rotated problems.
Table 8 shows the same information as Tables 5 and 6.
In this case, the self-adaptive approach is not shown
because it did not provide any advantage in previous
experiments.

Note that flcs and hyper-heuristics did not present
statistically significant di↵erences between them in any
of the problems except for the r4 benchmark, where
the hyper-heuristics outperformed the flcs. Moreover,
we should note that for most of the benchmarks, the
diversity-based moea controlled by flcs and hyper-
heuristics yielded better results than those given by the
single-objective ea. Only in problems r9 and r15 did
the latter not present statistically significant di↵erences
with the former. Hence, the ability of the controlled
diversity-based moea to preserve a proper diversity in
a set of solutions is demonstrated once more when com-
pared to a single-objective approach.
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Table 8 Mean original objective value of best approaches after 3e6 evaluations for the rotated problems

Problem HH-Eli HH-Prob Fuzzy-A Fuzzy-B Single-EA
R4 1.046444e+13* 1.168228e+13 1.310206e+13 1.272722e+13 1.798935e+13
R5 3.888834e+08* 4.090134e+08 3.934412e+08 4.033390e+08 4.812920e+08
R6 1.878252e+07 1.883079e+07 1.861230e+07 1.860600e+07* 1.966962e+07
R9 4.364128e+08 4.400282e+08 4.349376e+08 4.348749e+08* 4.544174e+08

R10 6.725422e+03 6.671020e+03 6.619248e+03* 6.694242e+03 6.877248e+03
R11 1.985014e+02 1.978129e+02* 1.983303e+02 1.985502e+02 2.021087e+02
R14 6.711666e+08 6.606917e+08 6.522639e+08* 6.638463e+08 8.095365e+08
R15 1.314203e+04* 1.324957e+04 1.326517e+04 1.325826e+04 1.332292e+04

R16 3.967718e+02 3.966346e+02 3.957723e+02* 3.961348e+02 3.993650e+02

In addition we should mention that for some of the
rotated problems, the adaptive diversity-based moea

was able to provide better results than those given by
certain schemes that were specifically designed for said
problems, such as a Di↵erential Evolution approach
based on a neighbourhood search that promotes in-
tensification with specialised mechanisms (Wang et al,
2010).

7 Conclusions and future work

Meta-heuristics are a set of approximation techniques
that have shown promising performance when solving
optimisation problems, although they often su↵er from
premature convergence, resulting in only local optima
being found. In an e↵ort to address this drawback,
diversity-basedmoeas can be applied to single-objective
problems, but this introduces a potential weakness by
increasing the number of algorithm parameters that
need to be tuned. Appropriate parameter setting is now
recognised as a critical part of any meta-heuristic de-
sign. Parameter tuning approaches attempt to find an
optimal set of parameters that remain fixed for the du-
ration of the optimisation procedure. In contrast, pa-
rameter control approaches attempt to adapt the values
of a parameter during the course of the optimisation,
based on the assumption that di↵erent values are ap-
propriate at di↵erent points in the search.

In this paper, we investigate the application of pa-
rameter control approaches to adapt the parameters
of a diversity-based moea when it is applied to solve
single-objective optimisation problems. Specifically, we
attempt to control the parameter th of the auxiliary ob-
jective function dcn-thr. We present a novel parame-
ter control method based on fuzzy logic, and compare
this to a previous method introduced by the authors
that is based on hyper-heuristics. The main di↵erence
between the two methods lies in the fact that the hyper-
heuristic approach demands that a fixed set of poten-
tial values for the parameter be pre-defined by a user,
whereas the fuzzy logic approach is able to select any
value within a range. These two methods of externally
controlling the parameter are further compared to self-

adaptation of the parameter through encoding in the
chromosome. Additionally, the adaptive diversity-based
moea is also compared to a single-objective ea of sim-
ilar characteristics.

Extensive testing on a wide set of benchmark func-
tions revealed that both the hyper-heuristic and fuzzy
logic methods are able to obtain results that are similar
to or better than those obtained using a fixed param-
eter. Moreover, the savings in computational resources
and time provided by both types of control schemes
are significant, as it is not necessary to search for suit-
able values of th over multiple experiments. The fact
that better results are obtained in many of the prob-
lems compared to the fixed methods also highlights
that there is an advantage in adapting the parame-
ter over the course of the run, i.e. through parameter
control rather than parameter tuning. On the contrary,
self-adaptive approaches did not provide any advantage
over the other control strategies considered in terms of
quality or length of time invested. Finally, we should
note that the benefits of using the adaptive diversity-
based moea to solve single-objective problems were also
proven, as this method was able to outperform the
single-objective ea used as the comparison approach
in the majority of test cases. In fact, the results at-
tained by the controlled diversity-based moea for some
of the rotated problems were better than those provided
by certain algorithms specifically designed to deal with
said rotated problems, even though we did not incor-
porate specialised components to deal with these prob-
lems.

The flc proposed is novel in its use of parameter
control, and furthermore in its use of multiple rule bases
depending on feedback from the optimisation proce-
dure. To the best of our knowledge, this is the first
time an flc has been used to control the parameters of
the auxiliary objective of a diversity-based moea. How-
ever, the method has a more general applicability and
could be used to control other numeric parameters of
other meta-heuristics in the future, including the multi-
objective field. If instead of using the original objective
value, the value of the input variable imp is given by
some multi-objective performance metric, the flc can
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be applied to control the parameters of multi-objective
algorithms. On the other hand, since the di↵erent rule
bases were obtained through expert knowledge, it would
be interesting to apply some kind of automatic learn-
ing mechanism in order to obtain the di↵erent fuzzy
rule sets. This might improve the performance of the
flcs.

Since our diversity-based approach does not make
use of an intensification procedure and since said inten-
sification schemes usually provide significant benefits,
the fact that our diversity-based approach obtained bet-
ter results than some specialised schemes is surprising
and a clear indication of its promising behaviour. Con-
sequently, the interactions between intensification pro-
cedures and diversity-based schemes should be analysed
in the future. Finally, it would be interesting to apply
our control proposals to adapt the parameters belong-
ing to state-of-the-art algorithms that have provided
the best results for the benchmarks considered herein.

Acknowledgements This work was supported by the ec

(feder) and the Spanish Ministry of Science and Innovation
as part of the ’Plan Nacional de i+d+i’, with contract num-
ber tin2011-25448. The work of Eduardo Segredo was funded
by grant fpu-ap2009-0457. The work was also funded by the
hpc-europa2 project (project number: 228398) with the sup-
port of the European Commission – Capacities Area – Re-
search Infrastructures.

References

Abbass HA, Deb K (2003) Searching under multi-
evolutionary pressures. In: Proceedings of the Fourth
Conference on Evolutionary Multi-Criterion Opti-
mization, Springer-Verlag, pp 391–404
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1 Rule bases for the fuzzy logic controller fuzzy-a

Table 1 Rule base number 0 (left-hand side) and rule base number 1 (right-hand side)

Rules Inputs Output

id th-in imp var th-out

1 l l l nl

2 l l m nl

3 l l h pl

4 l m - z

5 l h - z

6 lmb l - nm

7 lmb m - nl

8 lmb h - z

9 lma l - nh

10 lma m - nl

11 lma h - z

12 m l - nu

13 m m - nl

14 m h - z

15 mha l - ng

16 mha m - nl

17 mha h - z

18 mhb l - ng

19 mhb m - nl

20 mhb h - z

21 h l - ng

22 h m - nl

23 h h - z

Rules Inputs Output

id th-in imp var th-out

1 l l - pm

2 l m - pl

3 l h - z

4 lmb l l nl

5 lmb l m nl

6 lmb l h pl

7 lmb m - z

8 lmb h - z

9 lma l - nm

10 lma m - nl

11 lma h - z

12 m l - nh

13 m m - nl

14 m h - z

15 mha l - nu

16 mha m - nl

17 mha h - z

18 mhb l - ng

19 mhb m - nl

20 mhb h - z

21 h l - ng

22 h m - nl

23 h h - z
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Table 2 Rule base number 2 (left-hand side) and rule base number 3 (right-hand side)

Rules Inputs Output
id th-in imp var th-out

1 l l - ph

2 l m - pl

3 l h - z

4 lmb l - pm

5 lmb m - pl

6 lmb h - z

7 lma l l nl

8 lma l m nl

9 lma l h pl

10 lma m - z

11 lma h - z

12 m l - nm

13 m m - nl

14 m h - z

15 mha l - nh

16 mha m - nl

17 mha h - z

18 mhb l - nu

19 mhb m - nl

20 mhb h - z

21 h l - ng

22 h m - nl

23 h h - z

Rules Inputs Output
id th-in imp var th-out

1 l l - pu

2 l m - pl

3 l h - z

4 lmb l - ph

5 lmb m - pl

6 lmb h - z

7 lma l - pm

8 lma m - pl

9 lma h - z

10 m l l nl

11 m l m nl

12 m l h pl

13 m m - z

14 m h - z

15 mha l - nm

16 mha m - nl

17 mha h - z

18 mhb l - nh

19 mhb m - nl

20 mhb h - z

21 h l - nu

22 h m - nl

23 h h - z

Table 3 Rule base number 4 (left-hand side) and rule base number 5 (right-hand side)

Rules Inputs Output

id th-in imp var th-out

1 l l - pg

2 l m - pl

3 l h - z

4 lmb l - pu

5 lmb m - pl

6 lmb h - z

7 lma l - ph

8 lma m - pl

9 lma h - z

10 m l - pm

11 m m - pl

12 m h - z

13 mha l l nl

14 mha l m nl

15 mha l h pl

16 mha m - z

17 mha h - z

18 mhb l - nm

19 mhb m - nl

20 mhb h - z

21 h l - nh

22 h m - nl

23 h h - z

Rules Inputs Output

id th-in imp var th-out

1 l l - pg

2 l m - pl

3 l h - z

4 lmb l - pg

5 lmb m - pl

6 lmb h - z

7 lma l - pu

8 lma m - pl

9 lma h - z

10 m l - ph

11 m m - pl

12 m h - z

13 mha l - pm

14 mha m - pl

15 mha h - z

16 mhb l l nl

17 mhb l m nl

18 mhb l h pl

19 mhb m - z

20 mhb h - z

21 h l - nm

22 h m - nl

23 h h - z
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Table 4 Rule base number 6

Rules Inputs Output

id th-in imp var th-out

1 l l - pg

2 l m - pl

3 l h - z

4 lmb l - pg

5 lmb m - pl

6 lmb h - z

7 lma l - pg

8 lma m - pl

9 lma h - z

10 m l - pu

11 m m - pl

12 m h - z

13 mha l - ph

14 mha m - pl

15 mha h - z

16 mhb l - pm

17 mhb m - pl

18 mhb h - z

19 h l l nl

20 h l m nl

21 h l h pl

22 h m - z

23 h h - z
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2 Rule bases for the fuzzy logic controller fuzzy-b

Table 5 Rule base number 0 (left-hand side) and rule base number 1 (right-hand side)

Rules Inputs Output

id th-in imp best-th-in th-out

1 l l l nl

2 l l m pl

3 l l h pl

4 l m - z

5 l h - z

6 lmb l - nm

7 lmb m - nl

8 lmb h - z

9 lma l - nh

10 lma m - nl

11 lma h - z

12 m l - nu

13 m m - nl

14 m h - z

15 mha l - ng

16 mha m - nl

17 mha h - z

18 mhb l - ng

19 mhb m - nl

20 mhb h - z

21 h l - ng

22 h m - nl

23 h h - z

Rules Inputs Output

id th-in imp best-th-in th-out

1 l l - pm

2 l m - pl

3 l h - z

4 lmb l l nl

5 lmb l m pl

6 lmb l h pl

7 lmb m - z

8 lmb h - z

9 lma l - nm

10 lma m - nl

11 lma h - z

12 m l - nh

13 m m - nl

14 m h - z

15 mha l - nu

16 mha m - nl

17 mha h - z

18 mhb l - ng

19 mhb m - nl

20 mhb h - z

21 h l - ng

22 h m - nl

23 h h - z
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Table 6 Rule base number 2 (left-hand side) and rule base number 3 (right-hand side)

Rules Inputs Output
id th-in imp best-th-in th-out

1 l l - ph

2 l m - pl

3 l h - z

4 lmb l - pm

5 lmb m - pl

6 lmb h - z

7 lma l l nl

8 lma l m pl

9 lma l h pl

10 lma m - z

11 lma h - z

12 m l - nm

13 m m - nl

14 m h - z

15 mha l - nh

16 mha m - nl

17 mha h - z

18 mhb l - nu

19 mhb m - nl

20 mhb h - z

21 h l - ng

22 h m - nl

23 h h - z

Rules Inputs Output
id th-in imp best-th-in th-out

1 l l - pu

2 l m - pl

3 l h - z

4 lmb l - ph

5 lmb m - pl

6 lmb h - z

7 lma l - pm

8 lma m - pl

9 lma h - z

10 m l l nl

11 m l m z

12 m l h pl

13 m m - z

14 m h - z

15 mha l - nm

16 mha m - nl

17 mha h - z

18 mhb l - nh

19 mhb m - nl

20 mhb h - z

21 h l - nu

22 h m - nl

23 h h - z

Table 7 Rule base number 4 (left-hand side) and rule base number 5 (right-hand side)

Rules Inputs Output
id th-in imp best-th-in th-out

1 l l - pg

2 l m - pl

3 l h - z

4 lmb l - pu

5 lmb m - pl

6 lmb h - z

7 lma l - ph

8 lma m - pl

9 lma h - z

10 m l - pm

11 m m - pl

12 m h - z

13 mha l l nl

14 mha l m nl

15 mha l h pl

16 mha m - z

17 mha h - z

18 mhb l - nm

19 mhb m - nl

20 mhb h - z

21 h l - nh

22 h m - nl

23 h h - z

Rules Inputs Output
id th-in imp best-th-in th-out

1 l l - pg

2 l m - pl

3 l h - z

4 lmb l - pg

5 lmb m - pl

6 lmb h - z

7 lma l - pu

8 lma m - pl

9 lma h - z

10 m l - ph

11 m m - pl

12 m h - z

13 mha l - pm

14 mha m - pl

15 mha h - z

16 mhb l l nl

17 mhb l m nl

18 mhb l h pl

19 mhb m - z

20 mhb h - z

21 h l - nm

22 h m - nl

23 h h - z



A fuzzy logic controller applied to a diversity-based moea 7

Table 8 Rule base number 6

Rules Inputs Output

id th-in imp best-th-in th-out

1 l l - pg

2 l m - pl

3 l h - z

4 lmb l - pg

5 lmb m - pl

6 lmb h - z

7 lma l - pg

8 lma m - pl

9 lma h - z

10 m l - pu

11 m m - pl

12 m h - z

13 mha l - ph

14 mha m - pl

15 mha h - z

16 mhb l - pm

17 mhb m - pl

18 mhb h - z

19 h l l nl

20 h l m nl

21 h l h pl

22 h m - z

23 h h - z



Soft Computing manuscript No.
(will be inserted by the editor)

A fuzzy logic controller applied to a diversity-based
multi-objective evolutionary algorithm for single-objective
optimisation

Eduardo Segredo · Carlos Segura · Coromoto León · Emma Hart

Received: date / Accepted: date

E. Segredo · C. León
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Problem F19

Best Self-Adaptive
HH-Eli

HH-Prob
Fuzzy-A
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Fixed


