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Abstract 
 

It is shown that approximate analytical representations of the Blasius function 

may be developed by using the error function, ),(axerf  for positive constant a, as 

a basic compact approximate form for the derivative of the Blasius function, that 

is, the dimensionless velocity profile for the Blasius problem. This compact 

approximate analytical representation of the Blasius velocity function is then 

refined by the addition, following Savaş [13], of another parameter, to obtain 

further approximate analytical representations of the Blasius function. 
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1. Introduction 
 

In boundary layer theory, the Blasius function, ),(xF  with x a dimensionless 

distance, is the solution of the nonlinear ordinary differential equation (ODE) [3] 
 

                                             0)()(
2

1
)(  xFxFxF                                       (1.1) 

with the boundary/initial conditions 
 

                                            1)(  ;0)0()0(  FFF                                   (1.2) 
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Recently, there has been a considerable interest (see, for example, [2, 6, 8–17]) in 

approximate analytical representations of )(xF  and, hence, approximate solutions 

of the initial/boundary-value problem represented by (1.1) and (1.2). In this paper, 

we reinvestigate the approximate analytical representation of )(xF  and present 

new uniform (valid for ),0[ x ) analytical approximations of )(xF  based on the 

error function [4] and the ideas of Savaş [13]. 

      Rather than deal with (1.1)/(1.2) directly, it is technically easier to deal with 

the dimensionless velocity [3] ),()( xFxf   that is, the nonlinear ODE 
 

                                                        0
2

1
 fFf                                             (1.3) 

 

along with the boundary/initial conditions 
 

                                                   1)(  ,0)0(  ff                                           (1.4) 
 

Then, given ),()( xFxf   we have [1] 
 

                                                      
x

duufxF

0

)()(                                            (1.5) 

 

and an approximation to )()( xFxf   leads to an approximation to )(xF  via 

(1.5). 

      The ‘reduced’ problem (1.3)/(1.4) proves more tractable than (1.1)/(1.2) as the 

velocity profile )()( xFxf   is well known [1, 3] and of a ‘convenient’ shape for 

the development of families of analytical approximations to )()( xFxf   using 

the trial function (or, more generally, trial functions) approach [1], the choice of 

trial function(s) being dictated by a knowledge of the general shape of the solution 

curve to the problem in question [1]. The trial function approach has the further 

advantage [1] of being as elementary or compact as possible: in this work all the 

trial functions for )(xf  are based on a single function the error function [4], 

although the ‘fitting’ of the trial function(s) to the details of (1.3)/(1.4) requires 

free parameters to be present in the trial function(s) (which will be introduced as 

required below). 

      To implement the trial function approach, it is handy to have certain basic data 

available which has been taken from references [3, 9] and is presented in Table 1. 

 

Symbol Definition Numerical Value 

  )0(F   0.33205733621519630 
 

B ))(( xxFLim
x




 
 

1.7207876575205038 

 

Table 1. Basic Properties of the Blasius Function [3, 9]. 
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      The body of the paper is arranged as follows. As mentioned already, the 

initial/boundary-value problem for )()( xFxf   ‘dictates’ the basic approximate 

trial function and so, in section 2, we concentrate our attention on various initial  

standard possibilities involving consideration of the error function, ),(axerf  for 

positive constant a, as an approximate analytical solution of (1.3)/(1.4); hence, 

through (1.5), we obtain various approximate analytical solutions of (1.1)/(1.2) 

also. Next, in section 3, we adapt some ideas of Savaş [13] to our particular 

starting format, ).(axerf  Specifically [13], we introducing another free parameter 

into the functional form, ),(axerf  of the analytical approximation to )()( xFxf 

and obtain various improved approximate fits to )(xf  and, via (1.5) again, ).(xF  

The paper concludes, in section 4, with a brief discussion of the current results 

along with a comparison with the approaches and results of other similar attempts 

at producing approximate analytical representations of the Blasius function [13]. 

Note that we quote our results to four decimal places (at most); further, we 

concentrate on quoting the results for ).(xF  

 

2. The Basic Error Function Approximation Scheme 

 

In this section we consider the simplest form of our trial function, that is, for 

positive constant ,a  we consider as a trial function for )()( xFxf   
 

                                                     )()( axerfxft                                               (2.1) 
 

On examination, it is apparent that )()( axerfxft   satisfies both of the conditions 

(1.4), while, following (1.5), integration shows that [4] 

 

                            
a

axxerf
a

e
duufxF

xax

tt


1
)()()(

22

0




                        (2.2) 

 

which satisfies the additional initial condition (from (1.1)) 0)0( tF  and has, also, 

the correct asymptotic functional form (see Table 1, row two). 

      The nub of the problem, then, is to find a satisfactory means of determining 

the parameter .a  In regards to this, we note that, from (2.1)  
 

                                                 


a
Ff tt

2
)0()0(                                             (2.3) 

 

which means that we may essentially assume the value of ,a via (2.3) and the 

given value of )0(F   in Table 1. Otherwise, we must provide a ‘not-unreasonable’ 

method for determining a  independent of the known value of ).0(F   
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      To begin with, as it is the simplest way to manufacture an approximation to 

the Blasius function, we assume we have (from row one, Table 1) for our first trial 

function )()( 11 xFxf    
 

                                            332057.0)0()0( 11  Ff                                        (2.4) 
 

So, from (2.3) and (2.4), we have 294278.0
2000000

332057



a  and our first trial 

function becomes 
 

                                               )()(
2000000

332057
1 xerfxf


                                        (2.5) 

 

when, from (1.5) or (2.2) 
 

                                            
x

duuerfxF

0
2000000

332057
1 )()(


                                  (2.6) 

 

The results of evaluating the approximation (2.6) for a fixed set of values of x is 

compared with the ‘exact’ (figure of speech) numerical results [7] in Table 2. 

      The other approaches to determining a  depend on the manipulation of the 

residual of (1.3), that is [1] 

 

                                                 tttt fFfaxR 
2

1
),(                                         (2.7) 

 

      So, our second possibility is to collocate (2.7), following reference [1], by 

requiring 0),(),( 2  axRaxRt  when ./2ln ax   In other words, we must 

determine a  in )()(2 axerfxf   such that 

               0)()(
2

1
)(

2

1
),(

0

2222 













  axferduauerfaxferfFfaxR

x

      (2.8) 

 

when ./2ln ax   The numerical solution to this second problem is 3010484.0a  

and so 
 

                                              )3010484.0()(2 xerfxf                                       (2.9) 
 

when, from (1.5) or (2.2) 
 

                                            
x

duuerfxF

0

2 )3010484.0()(                               (2.10) 

 

The approximate analytical expression (2.10) is compared with the approximation 

(2.6) and the ‘exact’ numerical results [7] in Table 2. 
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      Moving on, our next approach is to determine (numerically) a value of a  in 

)()(3 axerfxf   uniformly, in other words determine a  such that ([5], unit weight) 

 
 

                                       0)
2

1
(),(

0 0

3333  
 

dxfFfdxaxR                          (2.11) 

 

 

The numerical solution to this third problem is ,3217971.0a  so that 

 
 

                                                )3217971.0()(3 xerfxf                                   (2.12) 
 

 

when, from (1.5) or (2.2) 
 

                                              
x

duuerfxF

0

3 )3217971.0()(                             (2.13) 

 

The approximate expression (2.13) is compared with the approximations (2.6) and 

(2.10), along with the ‘exact’ numerical results [7], in Table 2. 

      The fourth and final scheme we consider to determine a  and )()(4 axerfxf   

is the method of least squares, where we find (numerically) a value of a  in 

)()(4 axerfxf   such that (see, for example, [10]) 

 
 

                                0)],([),(2),(

0

44

0

2
4 












dxaxR

a
axRdxaxR

a
             (2.14) 

 

 

with .
2

1
),( 4444 fFfaxR   Solving (2.14) numerically gives  3174155.0a  and 

 

                                              )3174155.0()(4 xerfxf                                     (2.15) 

 
 

is our fourth approximate velocity profile, so that, from (1.5) or (2.2) 

 
 

                                           
x

duuerfxF

0

4 )3174155.0()(                                (2.16) 
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x )(1 xF  )(2 xF  )(3 xF  )(4 xF  ‘Exact’ [7] 

0 

0.4 

0.8 

1.2 

1.6 

2.0 

2.4 

2.8 

3.2 

3.6 

4.0 

4.4 

4.6 

4.8 

5.0 

5.2 

5.4 

5.6 

5.8 

6.0 

6.4 

6.8 

7.0 

7.4 

8.0 

10 
 

20 
 

100 
 
 

0 

0.0265 

0.1053 

0.2342 

0.4100 

0.6283 

0.8841 

1.1722 

1.4872 

1.8242 

2.1785 

2.5462 

2.7340 

2.9239 

3.1156 

3.3088 

3.5033 

3.6989 

3.8953 

4.0925 

4.4885 

4.8861 

5.0853 

5.4842 

6.0833 

8.0828 

  18.0830 

  98.0830 
 

0 

0.0271 

0.1077 

0.2394 

0.4187 

0.6411 

0.9013 

1.1938 

1.5129 

1.8537 

2.2112 

2.5816 

2.7705 

2.9614 

3.1540 

3.3480 

3.5432 

3.7393 

3.9363 

4.1339 

4.5305 

4.9285 

5.1278 

5.5270 

6.1263 

8.1259 

  18.1260 

  98.1260 
 

0 

0.0290 

0.1149 

0.2551 

0.4453 

0.6799 

0.9530 

1.2580 

1.5889 

1.9400 

2.3063 

2.6838 

2.8757 

3.0692 

3.2640 

3.4600 

3.6568 

3.8543 

4.0524 

4.2510 

4.6490 

5.0480 

5.2476 

5.6472 

6.2469 

8.2468 

  18.2470 

  98.2470 
 

0 

0.0286 

0.1134 

0.2518 

0.4397 

0.6718 

0.9422 

1.2447 

1.5732 

1.9223 

2.2869 

2.6630 

2.8543 

3.0473 

3.2417 

3.4373 

3.6338 

3.8311 

4.0290 

4.2274 

4.6252 

5.0240 

5.2236 

5.6231 

6.2227 

8.2226 

  18.2230 

  98.2230 
 

 

0 

0.0266 

0.1061 

0.2379 

0.4203 

0.6500 

0.9223 

1.2310 

1.5691 

1.9295 

2.3057 

2.6924 

2.8882 

3.0853 

3.2833 

3.4819 

3.6809 

3.8803 

4.0799 

4.2796 

4.6794 

5.0793 

5.2792 

5.6792 

6.2792 

8.2792 

18.2792 

98.2792 
 

 

 

Table 2. Uniform Approximations to )(xF  based-on ).()( axerfxf   
                        

The approximate expression (2.16) is compared with the approximations (2.6), 

(2.10) and (2.13), along with the ‘exact’ numerical results [7], in Table 2 again. 

      A careful look through the results presented in Table 2 shows that, while ‘out’ 

somewhat at the start of the interval, the approximations (2.13) and (2.16) soon 

‘pick-up’ and appear to present an overall better ‘fit’ to the problem. A brief dis-

cussion of the form of the functions leading to Table 2 is presented in Section 4. 
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3. Improving on the Basic Error Function Approximation 

 

In this section we first adopt an idea of Savaş [13] and interpolate a second 

parameter into our error function trial function. Specifically, we introduce a 

second parameter, ,n  through the new Blasius velocity trial solution  
 

                                               nn
nt axerfxf

1

)]]([[)(                                          (3.1) 

 
 

The trial function (3.1) satisfies the conditions (1.4). To see that (3.1) can be made 

to satisfy the condition on the first derivative ( 332057.0)0()0(  ntnt Ff ) 

also, we determine the values of the parameters a  and n  by following the lead of 

Savaş [13] by expanding (3.1) for ‘small’ values of x  to get 

 
 

                                        


























n

ax
axxf

n
n

nt
3

)(2
)(

12
1


                               (3.2) 

 
 

which we compare with the first couple of terms of the known Maclaurin 

expansion of the Blasius velocity function [13] (  is given in Table 1)  

 
 

                                                42

24

1
)( xxxf                                             (3.3) 

 
 

      Still following Savaş [13], we compare (3.2) with (3.3) and we choose (with  

error) ,2/3n  so that 3063674.0a , which gives us our fifth trial function, from 

(3.1), as 
 

                                        3

2

2

3

5 )]]3063675.0([[)( xerfxf                                   (3.4) 
 

 

so that, from (1.5) or (2.2) 
 

                                    
x

duuerfxF

0

3

2

2

3

5 )]]3063675.0([[)(                               (3.5) 
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x )(5 xF  )(6 xF  )(7 xF  )(xFS  )(xFSI  

  0 

  0.4 

  0.8 

  1.2 

  1.6 

  2.0 

  2.4 

  2.8 

  3.2 

  3.6 

  4.0 

  4.4 

  4.6 

  4.8 

  5.0 

  5.2 

  5.4 

  5.6 

  5.8 

  6.0 

  6.4 

  6.8 

  7.0 

  7.4 

  8.0 

  10 

  20 

 100 
 

 

0 

0.0266 

0.1061 

0.2380 

0.4207 

0.6510 

0.9245 

1.2351 

1.5758 

1.9393 

2.3186 

2.7080 

2.9050 

3.1031 

3.3018 

3.5010 

3.7006 

3.9003 

4.1002 

4.3001 

4.7000 

5.1000 

5.3000 

5.7000 

6.3000 

8.3000 

    18.3000 

    98.3000 
 

 

          0 

0.0266 

0.1061 

0.2377 

0.4195 

0.6483 

0.9193 

1.2267 

1.5636 

1.9233 

2.2991 

2.6858 

2.8817 

3.0790 

3.2770 

3.4758 

3.6750 

3.8744 

4.0741 

4.2739 

4.6738 

5.0737 

5.2737 

5.6737 

6.2737 

8.2737 

18.2737 

98.2737 
 

 

         0 

0.0266 

0.1064 

0.2384 

0.4208 

0.6502 

0.9220 

1.2300 

1.5676 

1.9277 

2.3040 

2.6909 

2.8870 

3.0843 

3.2824 

3.4812 

3.6804 

3.8799 

4.0796 

4.2794 

4.6793 

5.0792 

5.2792 

5.6792 

6.2792 

8.2792 

18.2792 

98.2792 
 

 

           0 

   0.0266 

   0.1061 

   0.2378 

   0.4195 

   0.6478 

   0.9174 

   1.2220 

   1.5546 

   1.9086 
  

    2.2783 

   2.6588 

   2.8520 

   3.0466 

   3.2425 

   3.4392 

   3.6367 

   3.8348 

   4.0334 

   4.2323 

   4.6308 

   5.0300 

   5.2297 

   5.6294 

   6.2292 

   8.2290 

 18.2290 

  98.2290 
 

 

              0 

       0.0266 

       0.1063 

       0.2385 

       0.4217 

       0.6527 

       0.9265 

       1.2366 

       1.5755 

       1.9359 

       2.3114 

       2.6968 

       2.8921 

       3.0885 

       3.2859 

       3.4840 

       3.6826 

       3.8815 

       4.0808 

       4.2803 

       4.6797 

       5.0794 

       5.2793 

       5.6792 

       6.2792 

       8.2791 

     18.2791 

     98.2791 
 

 

Table 3. Uniform Approximations to )(xF  based-on (3.1) and (3.8). 

 

The results for the approximate Blasius function (3.5) are presented in Table 3.  

      We see from Table 3 that, while )(5 xF  is an advance on the previous four 

approximations, there is still room for further improvement and if we continue to 

follow Savaş [13], we find that this is indeed feasible. First, we remind ourselves 

that Savaş’s approximate Blasius velocity function [13] 
 

                                         3

2

2

3

)]]33206.0[tanh([)( xxfS                                    (3.6) 
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leading to the approximate Blasius function 
 

                                        
x

S duuxF

0

3

2

2

3

)]]33206.0[tanh([)(                             (3.7) 

 

was obtained [13] using the same argument leading to (3.4), but starting with the 

trial function 

                                               nn
St axxf

1

)]][tanh([)(                                         (3.8) 
 

instead of (3.1). Using a somewhat heuristic argument, rather than one based on 

general principles [13], Savaş’s improved his approximation (3.6) to the Blasius 

velocity function and obtained 

                                         5

3

3

5

)]]33245.0[tanh([)( xxfSI                                   (3.9) 
 

leading to 
 

                                       
x

SI duuxF

0

5

3

3

5

)]]33245.0[tanh([)(                           (3.10) 

 

The approximation (3.10) is indeed, a significant improvement over the original, 

equation (3.7) [13]. Values of )(xFS  and )(xFSI  are presented in Table 3. 

      In a similar manner to Savaş [13], we may also search for another simple 

rational exponent  n (other than 2/3 ) for (3.1) and hope to determine a value of  a 

to go along with it. We find, after a bit of experimentation, that setting 5/7n  in 

(3.1), while leaving 3063674.0a  isn’t too bad an approximation. However, if 

we examine (3.2) we see that 

                                              aFf
n

ntnt

1

2
)0()0( 











                                (3.11) 

 

and we investigate leaving 5/7n  in (3.1), while solving for a  using (3.11) with 

5/7n and the value of  )0()0( Ff  from row one of Table 1. Following 

this route, we find that ,304610.0a  so that our next (our sixth) approximate 

velocity function is  

                                            7

5

5

7

6 )]]30461.0([[)( xerfxf                                 (3.12) 
 

with the corresponding approximate Blasius function given by 

                                         
x

duuerfxF

0

7

5

5

7

6 )]]30461.0([[)(                            (3.13) 
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      In fact, if we investigate further, we find (numerically) that (3.12) and (3.13) 

can be further ‘improved’ (uniformly) to  
 

                                          7

5

5

7

7 )]]305584.0([[)( xerfxf                                 (3.14) 
 

and 
 

                                      
x

duuerfxF

0

7

5

5

7

7 )]]305584.0([[)(                             (3.15) 

 

The results corresponding to (3.13) and (3.15) are also given in Table 3. 

 

4. Discussion and Conclusions 

 

The compact (based on a single function) analytical approximations to the Blasius 

velocity function, and hence the Blasius function itself, have obvious strengths 

and weaknesses. To make this clearer, we first note that the general expression for 

the type of compact analytical approximate velocity presented here and in [13] is 
 

                                                       nnax

1

)]]([[                                                  (4.1) 
 

with )()( xerfx   used in this paper and )tanh()( xx   used by Savaş [13]. The 

basic strength of expression (4.1) lies in its simplicity, with only two parameters   

( n  and a ) to be determined once an appropriate choice of )(x  has been made. 

On the other hand, it is just this simplicity that limits the accuracy of the compact 

analytical approximation: there is limited room for manoeuvre. Having said that, 

it is still surprising that such close fits to the actual solution to the Blasius problem 

can be obtained. Furthermore, the compact analytical approximations to the 

Blasius problem presented here have the added merit of being uniform approx-

imations, valid along the entire half-line ;0x  this is no mean feat. Indeed, the 

error in )(7 xF  lies within %3.0  of the ‘exact’ solution presented in Table 2, while 

that of )(xFSI  lies within %5.0  of the same, along the entire half-line. 

      Other types of compact analytical approximations to the Blasius problem are 

possible, but based, instead, on rational functions (see, for example [2, 11]); as 

these are of a different character to equation (3.1), we gloss over them and turn 

back the consideration of equation (3.1) itself.  

      Finally, following Savaş [13] yet again, with a little patience and some further 

numerical investigation, we can further refine our format and determine that 
 

 

                                       405.1

1

405.1
8 )]]3054.0([[)( xerfxf                                 (4.2) 
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and 
 

                                    
x

duuerfxF

0

405.1

1

405.1
8 )]]3054.0([[)(                            (4.3) 

 

provide even better uniform analytical approximations to the Blasius problem, 

with the uniform error in (4.3) being better than %.13.0  The main difference 

between (3.15) and (4.3) occurs at the start of the interval, ,20  x  where (4.3) 

is a much better fit than (3.15); after this (3.15) is slightly the better fit. (Savaş 

[13] encountered a similar phenomenon in his more extensive analysis also.) The 

observation that (4.3) is a better fit than (3.15) over the interval 20  x  is 

reinforced by the fact that (from (3.11)) 3328.0)0(8 F  gives the closest estimate 

(overall) to 3321.0)0( F  (from Table 1), a difference of less than %.22.0  
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