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Abstract

Timber gridshell structures, such as the Multihalle for the federal garden festi-

val in Mannheim or the Downland Museum, have been the result of a creative-

generative process that indissolubly ‘welded’ the structural contribution to that of

form exploration. The challenging design and construction issues have typically

been addressed and resolved in several inventive but tedious steps and still till

now, form-finding and erection of timber gridshells present difficulties that require

radical solutions. In this regard, this paper aims to provide a series of novel steps

to address some of the main design and construction issues that are associated

with ‘actively-bent’ timber gridshell structures. First, the main characteristics of

the construction process of timber gridshells are described and the basic theoret-

ical concepts for its numerical simulation, through Dynamic Relaxation method,

are introduced. Second, a practical method for sizing the laths’ cross-section is

presented. Third, a new erection technique for timber gridshells is proposed and

applied to the construction of a full scale (prototype) structure, the Toledo grid-

shell 2.0. Fourth, a new bracing system for the same structure, which was built at

the Faculty of Architecture, University of Naples Federico II in June-July 2014, is

explained and discussed. The paper also highlights the need for further application

to validate the techniques explained here, with particular attention being paid for

the construction of large scale free-form structures.
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1. Issues of post-formed timber gridshells

The term ‘active-bending’ refers to those structural systems in which a curved

geometry is obtained through bending of elastic elements. It does not define a

structural typology in itself. Rather, it groups different design approaches of con-

structing through bending. A detailed categorization is provided in [1] where a5

synoptic table relates forms and geometries to such approaches. In this paper, fo-

cus is only given to the particular construction system of gridshells - pre-assembled

flat quadrilateral grids of straight and continuous elastic rods, which are subse-

quently post-formed, that is to say bent, into doubly-curved form-resistant shells

(see, for instance, Trio gridshell in Figure 1). In fact, the doubly-curved — initially10

flat — gridshell, undergoes extentional (in-plane) deformations as a combination

of the rods’ bending and shear deformation of the initially square quadrilaterals.

Such a ‘pantograph kinematics’ is prevented to occur at completion of the erection

process by diagonal bracing systems, triangulating the quadrangular grid geome-

try. A review of relevant post-formed gridshell projects can be found in [2]. The15

described construction method generates structural forms by using standardised

connection systems, such as single-bolts [3, 4] or clamping plates and devices [5, 6].

However, such a repeatable and feasible solution has still to deal with the definition

of the gridshell form, as well as with the design of an erection technique to bend

the starting shape. This means that both theoretical and practical issues can only20

be addressed through a preliminary form-finding procedure and simulation of the

erection, or forming, process.

In addition to this, the assessment of a ‘feasible’ size for the cross-section of

bending members has to be performed. For instance, for a bent rod made of an

elastic material with a given modulus of elasticity and strength, we have that the25

higher the curvature to be reached, the lower the allowed thickness of the rod will

be. However, such a thickness might not be sufficient to provide the necessary

structural performance. In the design of the Mannheim timber gridshell for the

federal garden festival [3] this issue was brilliantly overcame with a double-layer

system of overlapping timber laths. Compared to a single-layer system with equiv-30
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alent cross-sectional area, this solution allowed for tighter curvatures to be reached.

Thus, at completion of the bending process, the sliding between overlapping laths

was restrained hence greatly increasing the bending stiffness of the built-up mem-

ber. Regardless of the number of layers, the allowable cross-section, still needs to

be assessed for each and every single lath, especially at early/conceptual design of35

the structural form.

Figure 1: Trio gridshell in Lecce, Italy 2010 (CMMKM Architettura e Design): (a) Scale model

of the flat grid; (b) Post-formed grid with diagonals bracing.

2. A theoretical model

The form of actively-bent structural systems cannot be chosen a priori. Rather,

it will have to comply with the equilibrium of external (shaping) forces and internal

reactions due to material and geometric stiffnesses. Accordingly, as for other kind40

of lightweight systems, as for instance tension structures [7] or reciprocal structures

[8] some sort of preliminary form finding procedure is required.

Assuming, in first instance, the seeking of the post-formed gridshell geometry

as a simulation of the construction process by means of Finite Element (FE) pro-

cedures, thus representing the geometry as a finite set P of nodes having nodal45

coordinates p̄i in the Cartesian space:

P = {p̄1 . . . p̄i . . . p̄m} ; p̄i = [x y z] (1)

and a connectivity list E storing the node’s indexes of the jth beam-element’s end
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nodes (1,2):

E = {e1 . . . ej . . . en} ; ej = {i1, i2} (2)

then, the form finding problem is reduced to solve the following system of equations:

50

Kx = f (3)

where the vector of nodal displacements x from the unstressed initial position,

corresponding, in our case, to the flat mat geometry, is obtained as function of

the system stiffness matrix K and the vector of applied nodal forces f shaping the

grid:

x = K−1f (4)

In the ‘general’ case of small displacements theory, a linear relation is assumed55

between the displacement vector x and the load vector f and the problem is com-

plied by computing the matrix K (Direct Stiffness Method [9]) according to the

initial unstressed geometry. Such an approach is clearly unacceptable to simu-

late the large displacements involved in the forming process of elastic gridshells.

Therefore, an iterative technique is required. The ‘dominant’ method in structural60

engineering for solving the system of non-linear equations (3) is known as the Tran-

sient Stiffness Method (TSM). As noted by Lewis [7] the method ‘...evolved from

the conventional, small displacement theory’, in that of keeping a linear relation be-

tween the vector of nodal forces and corresponding nodal displacements. However,

unlike in the small displacements theory, the vector load is applied incrementally so65

that, the linearised displacements are ‘corrected’ and the stiffness matrix ‘updated’

at each increment (Full Newton-Raphson) in order to minimize the residual error

(vector of out-of-balance forces) occurring as a consequence of the linearisation.

Applications of the TSM for the form finding of post-formed timber gridshells (by

means of Abaqus commercial software) are reported in [10, 11] (see Figure 1). In70

these, the simulation of the forming process allowed to find the gridshell geometry

as well as assessing the resulting bending stress field, to be used as basis for the

dimensioning of cross-section of the laths.

Clearly, a simulation of the forming process requires to know in advance the

cutting pattern of the flat mat, corresponding to the initial unstressed geometry, as75

well as a vector of the external applied forces (or imposed displacements) needing

to shape the mat according to the desired doubly curved shape we are looking
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for. For instance, according to Harris et al. [5] to design the Downland gridshell,

physical scale modelling was used to determine the vector of boundary conditions

for the form finding model, while the flat mat was (a priori) established to have80

a rectangular contour perimeter (cutting pattern). Without doubt, a form finding

procedure allowing to find the grid cutting pattern as well (according to a desired

final shape) would be preferable to a ‘mere’ simulation of the construction process.

An effort to define a ‘comprehensive’ approach to the form finding of post-formed

gridshells can be found in [12, 13, 14, 15, 16, 17]. In these, the main highlight is85

the use of a reference surface (acting basically as a form-work) on which ‘forcing’

the elastic grid to be bent. Then, in a second analysis step, the grid geometry

exceeding the reference surface is removed from the analysis (a cutting pattern is

so found) as well as the reference surface, thus, boundary constrains are added to

the system and, at equilibrium convergence, the system settles down in its final90

static equilibrium. Clearly, in order to perform the described method, the initial

mat geometry (node list P) will have to lie on the reference surface, meaning that,

unlike for a mere simulation of the forming process (where initial and unstressed

geometries are coinciding) the initial geometry, at starting of the non-linear analysis

will likely be far enough from static equilibrium to be intractable by TSM schemes95

(lack of numerical convergence). Accordingly, an explicit Finite Element procedure,

such as the Dynamic Relaxation (DR) may be more suitable to be implemented in

form finding frameworks expecting the use of a reference surface.

2.1. Dynamic Relaxation Method: basic concepts

The DR is an iterative time-stepping marching scheme, according to which, the100

original system of non-linear Eqs. (3) is transformed into a system of equations

of motion by introducing lumped nodal masses and viscous damping forces [18]

needed to allow the system reaching a rest configuration:

Ma + Cv + Kx = f (5)

where M and C are (diagonal) mass and damping matrices respectively, while a

is the list of nodal accelerations and v the list of nodal velocities. Expressing Eq.105

(5) at time t in the form:

Ma t + Cv t = Rt (6)
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with R representing the list of out-of-balance (residual) nodal forces as resultant of

applied loads f and member’s internal reactions Kx , the nodal displacements can

be computed at each time increment by integration of the acceleration and velocity

terms. Since the stiffness matrix K in Eq. (6) disappeared, the system can be110

solved at a node-by-node level (this is a characteristic feature of the DR method,

making it particularly appealing for parallel computing schemes [19]). Therefore, a

general time marching scheme can be written for the generic ith node. Adopting for

instance the Euler forward integration scheme [20]: according to Newton’s second

law of motion, the acceleration term ā for the ith node in the Cartesian space at115

time t+ ∆t is:

āt+∆t
i =

R̄ti
m

(7)

with m the (fictitious) lumped mass. Therefore, the velocity projected at time

t+ ∆t will be:

v̄t+∆t
i = cv̄ti + āt+∆t

i ∆t (8)

with c the viscous damping term. Finally, the nodal displacement (hence the

position) is:120

x̄t+∆t
i = v̄t+∆t

i ∆t ; p̄t+∆t
i = p̄ti + x̄t+∆t

i (9)

Regardless of the adopted numerical integration method, an essential task in any

DR scheme is the computing of the nodal out-of-balance force R̄i at each time

increment, which is obtained as vector summation of the external applied force P̄i

plus internal reactions (for effect of the deformed state at time t) of the n◦ elements

surrounding the ith node:125

R̄ti = P̄i +

n◦∑
j=1

F̄ tj (10)

For cables or struts behaviour-like, F̄ t will be only a function of the element’s axial

stiffness and shortening/elongation state at time t. Such kind of DR formulations

are used for instance for the analysis of pre-stressed cable networks [21] or the

form finding of funicular shell/dome structures [22]. On the other hand, for the

simulation of elastically flexible members (as in our case) free body shear forces, due130

to the element’s bending stiffness, need to be taken into account in the calculation

of F̄ t [23].

Mostly, the DR method is implemented by only considering three degrees of

freedom (DoFs) corresponding to the translational components in the Cartesian
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space. Despite considering only translational DoFs, DR procedures that efficiently135

simulate mechanical properties usually associated to rotational DoFs (flexural and

torsional stiffnesses) have been proposed [23, 24]. In general, the theoretical as-

sumptions, upon which these DR formulations are built, require limitations for the

cross-sectional geometry or the ‘natural’ (unstressed) geometry of the members1.

For this reason, a more comprehensive DR formulation (not restricted to the afore-140

mentioned limitations) with six DoFs is adopted, i.e. for the study-case described

in Section 4.1.

2.1.1. Dynamic Relaxation with Six DoFs per node

Developments of beam-element with six DoFs and their resolution by DR

scheme date back to [25, 26]. In more recent developments [17, 27] mainly based145

on the work of Williams, (which derivation can be found in [28]) a local reference

frame {x̄i, ȳi, z̄i} describing the element’s cross-section orientation, is assumed at

each beam’s end nodes (i1, i2). Indicating with L0, A, Ix, Iy, J , E and G re-

spectively: the element’s unstressed length, cross-sectional area, second moments

of area, torsional constant, Young’s and shear moduli: the reaction forces and mo-150

ments at each end of the beam-element, needed for the computing of the residuals,

are computed at each time increment as follow [17]:

f = {Kt
A + KB} · d (11)

where:

f =



N

Mx,1

Mx,2

My,1

My,2

Mϕ


; d =



1

θx,1

θx,2

θy,1

θy,2

ϕ


(12)

1Let us consider the simple case of a straight beam submitted to a torque. There is no way to

simulate the torsion by only taking into account the nodal displacements - They remain null.
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Kt
A = EAe



1/L0 0 0 0 0 0

2/15 −1/30 0 0 0

2/15 0 0 0

2/15 −1/30 0

2/15 0

Symmetric 0


(13)

155

KB =
1

L0



0 0 0 0 0 0

4EIx 2EIx 0 0 0

4EIx 0 0 0

4EIy 2EIy 0

4EIy 0

Symmetric GJ


(14)

Noting that: the stiffness matrix KB is only function of material properties and

unstressed geometry of the beam, whilst Kt
A takes into account the contribution

due to geometric stiffness, as a function of the element’s shortening/elongation

and bowing (e) at each increment of time. The element’s local scalar reactions

provided by f in Eq. (11) are then transformed in global reaction forces F̄1, F̄2160

and moments M̄1, M̄2 in the Cartesian space, thus obtaining the (global) free body

shear reactions, missing at a local reference frame level. The global reactions forces

and moments so obtained are summed up (see Eq. (10)) for each node according

to the corresponding surrounding elements, therefore obtaining the residual force

R̄ti and residual moment H̄t
i at the ith node. Accordingly, the orientation of static165

equilibrium for the local frame {x̄i, ȳi, z̄i} is sought (in analogy with the position of

static equilibrium of the ith node: Eqs. (7 - 9)) by assuming a system of lumped

moments of inertia  (rotational masses):

āt+∆t
i =

H̄t
i


(15)

with āi indicating, this time, the pseudo-vector of rotational acceleration of the

local frame around the global (Cartesian) directions.170

For a more detailed description of the introduced DR formulation with Six

DoFs adopted for this study, the reader is referred to [17, 29].
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Figure 2: Single-node cylindrical joint: (a) Unloaded configuration; (b) Deformed configuration;

(c) Decomposition of P̄ in a parallel and an orthogonal component relative to the joint rotational

axis.

2.1.2. Cylindrical joints

The presence of a local frame orientation at a node-level,2 consents to simulate

complex coupling systems, such as cylindrical joints, by modelling only one node175

per connection (see Figure 2). Cylindrical joints are important connection systems

used for post-formed gridshells (see Figure 8). For a detailed description of the

numerical implementation, the reader is referred to [17], here we only validate the

single-node cylindrical joint model by means of numerical experiment: Two rods

are joined together at their common node by means of cylindrical joint. Then, one180

of the rods is clamped at its start node while, a vertical load P̄ of say 15 kN is

applied at the end-node of the other rod, as shown in Figure 2a. Material and

geometric properties are those given in [17]. Sufficient condition, for validation of

the joint’s functioning is making sure that: no torque occurs around the joint’s

rotational axis at equilibrium convergence.185

2In the Direct/Transient Stiffness Methods, a local reference frame is, in general, assumed at

a element-level.
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Figure 3: Time history of the out-of-balance torque d|P̄‖α| around the joint rotational axis

Indicating with ȳi2 the joint’s rotational axis at time t, and α the corresponding

normal plane, the applied load P̄ can be decomposed in two vectors:

P̄ = P̄ t⊥α + P̄ t‖α (16)

Although magnitude and direction of load remain unchanged throughout the anal-

ysis, the joint’s rotational axis does not. In fact, at initial configuration (Figure

2a) we have that ȳi2 is aligned to P̄ , meaning that P̄ t=0
‖α = 0̄ thus no rotation oc-190

curs. However, as soon as the clamped rod starts bending and bowing (Figure 2b)

the alignment between the vector load P̄ and the joint rotational axis is lost, thus

P̄ t‖α > 0̄ and a rotation is triggered. In order for the system to reach a static equi-

librium, sufficient condition is the nullification of the out-of-balance torque around

the joint rotational axis:195

d|P̄‖α| ≈ 0 (17)

where, P̄‖α can be computed at each time-step as:

P̄ t‖α = P̄ − P̄ t⊥α ; P̄ t⊥α =
(
P̄ · ȳti2

)
ȳti2 (18)

while the arm d at time t can be computed as the shortest distance between two

skew lines [30]:

dt =

(
p̄ti2 − p̄

t
i1

)
·
(
P̄ t‖α × ȳ

t
i2

)
∣∣∣P̄ t‖α × ȳti2∣∣∣ (19)
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Noting that Eq. (19) may provide negative values for dt, depending on the orien-

tation of the P̄‖α vector at time t.200

According to the described set up, the time history of the out-of-balance torque

d|P̄‖α| has been computed hence shown in Figure 3 as function of the time incre-

ment: As it can be seen, Eq. (17) is eventually fulfilled at the completion of the

analysis.

3. Computing the allowable cross-section205

As mentioned in the introduction: combined bending, arising for effect of the

forming process, generates normal stress which imposes the cross-sectional size, of

the single upper/lower laths, to be designed according to a certain domain’s limit.

In order to design the allowable cross-sectional height h of a member subject to

bending moment M , the following linear relation can be applied:210

hallowable =
2I

M
fm (20)

with fm the material’s bending strength. By expressing the bending moment in

terms of curvature, Eq. (20) becomes:

hallowable =
2

Eκ
fm (21)

with the curvature κ measured on the deformed geometry, obtained by assuming

an initial guessing value for h. Accordingly, Eq. (21) states that, the curvature is

only function of the assigned boundary displacements. While such an assumption215

remains valid for small displacements, in case of large displacements, the curvature

is function of h as well. In other words, when updating the value of h as from Eq.

(21), a change of κ will occur as well, as a result of the updated bending stiffness

of the member. Of course, Eq. (21) can be applied iteratively, by considering the

updated curvature values at each iteration, up to a point for which the residual220

error becomes small enough to be neglected. A more detailed description for the

suggested method, is given in the following Section.

3.1. Theory

In order to implement the described process, the ratios of combined bending

stress need to be calculated at completion of the form finding analysis for the entire225
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Figure 4: Local system orientation for the buit-up cross-section.

element set E. According to Eurocode 5 Part 1-1 [31] (EC5) the following (EC5

6.11 and 6.12) relations apply for combined bending:

σx
fm

+ km
σy
fm
≤ 1 ; km

σx
fm

+
σy
fm
≤ 1 (22)

therefore by assuming a limit stress ratio = 1 and introducing a modification factor

(km = 0.7 for rectangular cross sections [32]) to take into account the effects of

variations in material properties and stress redistribution.3 The bending stress σx230

and σy are computed according to the local system orientation shown in Figure 4:

σx =
h|Mx|

2Ix
; σy =

b|My|
2Iy

(23)

Noting that, here we are only interested in assessing the thickness of the single lath

to avoid breakages during the forming process, since, sliding between upper/lower

laths is allowed at this stage of the construction. Accordingly, Ix and Iy in Eq. (23)235

relate to the cross-section of the single lath. Nevertheless, the required bending

strength/stiffness of the built-up cross-section, in terms of load carrying capacity of

the structure, can be provided in a second design stage, by sizing the thickness of the

shear blocks (distance between upper/lower laths) which is directly proportional

to the moment of area of the built-up cross-section.240

Indicating with σ6.11
j and σ6.12

j the bending stress ratios of the jth element as

from Eqs. (22), we assume that, for a given post-formed geometry, as obtained

from the form finding analysis, the maximum stress ratios σ6.11
max and σ6.12

max of the

whole element set E:

σmax = max {σ1 . . . σj . . . σn} (24)

3In fact, timber shows a plastic behaviour under compression, while a brittle failure mode

occurs under tension [33].
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can be represented by the values of two functions, whose argument h was set to a245

certain value hn:

g(hn) = σ6.11
max ; q(hn) = σ6.12

max (25)

Therefore, our aim is computing the value hallowable of the variable h such that

one of the two g(hn) and q(hn) is ≈ 1 while the other one is less than the unity.

Substituting Eqs. (23) into Eqs. (22) and rearranging, Eqs. (25) become:

g(h) = max

(
h|Mx|j
2Ixfm

+ km
b|My|j
2Iyfm

− 1

)

q(h) = max

(
km

h|Mx|j
2Ixfm

+
b|My|j
2Iyfm

− 1

) (26)

with fm a bending strength limit value. Accordingly, the problem is reduced to250

find the roots of the following system:

hallowable = min

{
h→ g(h) = 0

h→ q(h) = 0
(27)

which can be numerically solved by Newton-Raphson method: expressing the sec-

ond moments of area in Eqs. (26) in terms of h and b, the following recurrence

equation is obtained:

hn+1 = min



hn − g(hn)(
∂g

∂hn

)

hn − q(hn)(
∂q

∂hn

) =

= min


max

[
1

|Mn
x |j

(
(hn)3fmb

6
−

(hn)2km|Mn
y |j

b

)]

max

[
1

km|Mn
x |j

(
(hn)3fmb

6
−

(hn)2|Mn
y |j

b

)]

(28)

Noting that the subscript j refers to the generic element’s index (see Eq. (2)) while255

the superscript ‘n’ refers to the nth analysis step (not to be confused with the size n

of the element set E). A graphical representation of the iterative method is shown

in Figure 5.
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Figure 5: Newton-Raphson method for computing the allowable lath’s thickness.

4. Toledo Gridshell 2.0

The theory described above was applied to a practical application in the forming260

process simulation and cross-sectional sizing of the Toledo 2.0, a post-formed timber

gridshell built in 2014, the most recent of a series of 13 similar structures which have

been designed and built by the research group gridshell.it.4 A description of the

construction phases and their simulation by the six DoFs DR method is described

in here, together with a brief report on the method’s application for cross-sectional265

sizing detailed in section 3.

4.1. Construction process

The structures by gridshell.it have been constructed in the following steps:

1. Assembling the flat grid of macro-moduli, which is placed and joined together

on-site.270

2. Deforming the flat grid to reach the final structural form by means of laths

bending and relative rotation.

3. Restraining the boundary edges of the gridshell.

4. Placing the diagonal bracing system to ensure in-plane stiffness.

5. Tightening of the connection bolts to reach the final rigidity; (during the275

deforming phase, the bolts are kept untighten to allow the cylindrical hinge

mechanism of the connections).

4gridshell.it is a research group based in Naples (Italy) led by Sergio Pone. Research partners

are: Sofia Colabella, Bianca Parenti, Daniele Lancia.
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Figure 6: Toledo gridshell 2.0 in Naples, Italy 2014. Simulation of the forming process by DR: (a

- e) The corner nodes are restrained on rollers while the central nodes are pulled up by pre-stressed

cable-elements; (f) The cable-elements are ‘disabled’ from the analysis and additional horizontal

trust is added to the corner nodes by means of pre-stressed cables.

Structural form of such gridshells can be obtained by using different tools and

methods: from physical to numerical and hybrid ones. For the Toledo 2.0 it was

used the Gridshell Form Finding Tool (GFFT) [34]: a computer application imple-280

mented within the plug-in for visual scripting Kangaroo [35] which is a commercial

application based on the (explicit) resolution methods explained in Section. 2.1

The construction process of the Toledo 2.0 is based on the‘up-ward’ method.

As for the Multihall in Mannheim [3], the flat mat was first assembled on ground

and then forced to reach its final shape by means of ad-hoc machineries: As shown285

in Figures 6 and 7, eight central nodes of the gridshell were pulled up through a

system made of pulleys placed on top of a scaffolding tower (placed at the centre

of the flat grid) together with four cables for nautical use and four hand hoists.

The grid was pulled up to a point for which the bracing system of the scaffolding

tower, interfering with the grid, could not be avoided any further. At this stage,290

the interfering braces were temporary removed and reassembled in a new position

underneath the grid. Once the final height of the gridshell was reached, two extra

cross cables and hoists were added at the external nodes to provide horizontal trust,

thus allowing to reach the desired shape (see Figures 6f and 7d).
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Figure 7: Toledo gridshell 2.0. Construction process: (a - c) The central nodes are pulled up by

means of cables; (d) Additional horizontal trust is added to the corner nodes in order to reach the

final shape.

The Toledo 2.0 was a successful test to ‘tune’ this experimental forming pro-295

cess, which we call: ‘pull-up’ method [2]. At completion of the bending process, the

structural form was checked against the numerical analogue by electronic theodo-

lite equipment, in a joint work with a research group affiliated to ‘Suor Orsola

Benincasa’ University of Naples.

It is to be noted that the scaffolding tower assured safe working conditions300

during the whole erection process, by preventing sudden collapse of the grid — for

example, due to unexpected breakage of a cable — and also allowing to conduct

most of the operations from outside the grid footprint. The use of a localised

support (tower) as a trust to pull-up the grid, opens up new possibilities for the

construction of large span gridshells, i.e. by providing a ‘discrete’ system of fixed-305

height scaffolding towers, in contrast to more expensive ‘continuous’ systems of
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adjustable scaffolding. Further investigation needs to be carried on this particular

aspect.

4.2. Diagonal bracing system

With the Toledo 2.0 there has also been the opportunity to experiment a new310

bracing system, consisting of the prefabrication of ‘sticks’ and ‘diagonals’, assem-

bled every second quad of the grid. Short ‘sticks’ of timber were assembled at each

nodal connection as a further layer (in addition to the ‘usual’ four) between the

second and the third layer so that the first, second, fourth and fifth layers corre-

sponded to the structural laths while the the middle (third) layer corresponded to315

the sticks (see Figure 8). The ‘diagonals’ were then lined up to the second and

fourth layers, thus resembling a cross in between some of the quadrangles of the

primary grid, (Figure 8b) eventually obtaining a chessboard-like pattern as shown

in Figure 10.

Unlike the flat mat, in the formed gridshell each brace has a different length.320

In order to speed up the production/assembling, the numerical model was used

to post-rationalise the bracing system by grouping the diagonals into only five

(standardised) lengths and the sticks into three different lengths, thus assuring an

overlapping distance (between sticks and diagonals) ranging from 70 to 120 mm.

Figure 8: Toledo gridshell 2.0. Bracing system: (a) Construction detail; (b) Detail of the joint

between sticks and diagonals.

17



Figure 9: Four-point bending tests to assess the characteristic bending strength [11].

4.3. Cross-sectional design325

The method described in Section 3 was applied in relation to the design of

the Toledo 2.0 gridshell. Bending strength (fm) and elastic modulus (E) were set

in accordance to preliminary experimental investigations on the same white spruce

timber, supplied for the realization of the Toledo gridshell 1.0 [11]. The value of fm

to consider in Eq. (28) was set equal to the characteristic bending strength value330

fm,k = 32 N/mm2 obtained by preliminary bending tests on small, clear specimens,

(see Figure 9) carried out in accordance to BS EN 408 guidelines [36]. A report

of the test campaign is provided in [11]. The preliminary tests on small/clear

specimens, were followed by visual inspection of the whole laths supply, in order

make sure that ‘defect-free’ lath specimens were paced in correspondence of those335

regions of the flat mat where higher curvatures were expected to occur.

At completion of the forming process simulation, as described in Section 4.1,

pinned restrains were added to the corner nodes and the iterative procedure for

finding of the allowable thickness was performed. The moment reactions Mx and

My needed for the calculation of the stress ratios (Eqs. (22)) were derived at the340

centroid of each element by applying the moment-curvature relations:

Mx = κxEIx ; My = κyEIy (29)

with the curvature values κx and κy obtained from the element’s shape function.

A report of the iterative process is given in Table 1: as it can be seen, despite

an ‘exaggerated’ initial guessing value of 100 mm, chosen for the lath’s thickness,
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Table 1: Summary of the iterative method for computing of the allowable lath’s thickness.

Analysis Step Lath’s thickness (h) [mm] Max. bending stress ratiosa

σ6.11
max σ6.12

max

1st 100.00 3.03 2.32

2nd 26.34 1.01 0.94

3rd 25.76 1.00 0.94

4th 25.68 1.00 0.94
abased on Eqs. (26)

after only three iterations, the method provided an allowable value for h = 25.76345

mm, corresponding to a maximum stress ratio of 1.0 with an order of accuracy

up to the second decimal place. This suggests that the residual forces, arising for

effect of the change in thickness (when passing from the analysis step n to the

analysis step n+1) are so small that a single step may be enough to computing a

‘reasonable’ accurate value for the allowable thickness h: Inserting Eqs. (29) into350

Eqs. (23 - 22), Eq. (28) can be rewritten in terms of curvature values as:

hallowable = min


max

[
1

|κx|j

(
2fm
E
− kmb|κy|j

)]

max

[
1

km|κx|j

(
2fm
E
− b|κy|j

)] (30)

A final consideration is due in here with regard to the stresses induced by

applied loads. Established that, external loads will act on the structure only ‘after’

the shear blocks have been inserted: the increase in bending stiffness, provided by

these, needs to be taken into account when computing the load-induced stresses. In355

fact, the two overlapping laths will behave as a single, built-up, member. A model

to simulate such a coupled behaviour is provided for instance in [29], according to

which, the normal stresses at the external fibre of the built-up member (due to

bending of the members for effect of applied loads) are obtained as summation of

bending stress of the single lath plus another term due to the presence of shear360

blocks.

Furthermore, the stresses induced by applied loads will have to be combined

with the pre-stress field induced by the forming process. In reality, the pre-stress

field will reduce over time, as consequence of relaxation of timber under the effect of
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permanent displacements (that is to say: the forming process). Relaxation/creep365

of timber are phenomena leading to a reduction in strength and stiffness over

time, as a result of accumulation of ‘damages’ at a cellular level. Such a complex

material behaviour requires rheological (e. g. viscoelastic) models in order to be

numerically simulated, however, a simplified but effective approach is ‘allowed’ by

the EC5 [31] with regard to curved laminated beams. According to this, the pre-370

stress induced by the forming process can be ‘neglected’ when performing stress

verification analyses of the structure under effect of applied loads (the gridshell

geometry is assumed as being ‘stress-free’) but providing a reduced value for the

design bending strength, which has to be scaled down by the following kr factor:

0.76 < kr 6 1 (31)

Such a reduction factor will be a function of the lath’s thickness and curvature375

(see Eq. (6.49) of EC5). Noting that: the EC5 allowance in neglecting the pre-

stresses, only applies to the design task of carrying out stress verification analyses,

whereas, if applied e.g. to buckling analyses, such an assumption may lead to an

overestimation of the structure’s global stability: In facts, it has been analytically

and numerically demonstrated as the influence of pre-stress has a negative (low-380

ering) effect on the critical buckling load of elastically bent arches [37, 38] and

gridshells [39].

5. Conclusions

In this paper, the main theoretical and practical issues relating to a particular

type of actively-bent system, (post-formed timber gridshells) have been described.385

In particular, the basic theoretical concepts to perform efficient form-finding and

design/simulation of the construction (erection) process, have been illustrated, as

well as a practical method for the sizing of the laths’ cross-section.

The generalised six DoFs Dynamic Relaxation method adopted in here, allowed

to efficiently simulate the ‘full’ mechanical behaviour of actively bent frameworks,390

made of elastic (timber) rods with rectangular cross-section, therefore overcoming

the limitations usually associated with reduced DoFs formulations of rods, aimed to

be solved by DR methods. As already pointed out in a previous paper [17]: thanks

to its explicit ‘nature’, the adopted method allows for form-finding analyses to be
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performed in conditions of initial gross deformations, as well as simulations of the395

forming process in which, hyper-elastic elements can be accounted for simulating

systems of pulling cables, without having to deal with numerical convergence issues

(provided a stable mass/time-increment ratio). The method also allowed to simu-

late complex coupling systems, such as cylindrical joints, in a very simple way, by

assuming only one node per connection, hence validating its accuracy by defining400

in here a benchmark numerical test (Section 2.1.2).

A second, major point addressed in here, regarded the development of a method

for ‘automatic’ design of the laths’ cross-sectional size. Starting from the theoret-

ical assumption that, for a given deformed configuration, (outcome of imposed

boundary displacements) a non-linear relation occurs between the thickness of the405

deformed (bent) laths and the curvature field along the laths’ centerline (hence

the corresponding bending stress field): an iterative procedure, based on Newton-

Raphson method, has been developed to compute the allowable thickness of the

laths’ cross-sections, such that the highest bending stress/strength ratio turns out

to be equal to the unity. An opportunity to test the described iterative method410

came out with the construction of a full scale prototype (the Toledo 2.0) in which,

the non-linear nature of the thickness/curvature relationship was shown to be neg-

ligible. In facts, as reported in Table 1, the thickness values converged to an

‘optimum’ (allowable) value so rapidly to suggest the use of a linear expression

(see Eq. (30)) for the determination of the allowable thickness.415

The realization of the Toledo 2.0 (Figure 10) provided also the opportunity to

experiment a novel bracing system, contemplating the use of two diagonal braces

for each second quad of the grid, therefore having a chessboard-like pattern, with

stiffened and non-stiffened quads alternating each other. If one brace per quad had

been fitted on the total amount of quads, it would have presumably required the420

same amount of material. Nevertheless, by having two timber braces crossing each

other, with a fastener (bolt) at their intersection (see Figure 8a) allowed to reduce

the effective length of elastic buckling, thus obtaining a theoretical buckling load

(of the braces under compression forces) four times higher than the one obtainable

with a single brace of equal cross-section.425

Further applications are needed to validate the techniques explained here, with

a particular attention to design and construction of large scale, free-form structures.

21



Figure 10: Toledo timber gridshell 2.0. Completed structure (Photos courtesy - Daniele Lancia).
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