
applied
sciences

Article

A Local Search-Based Generalized Normal Distribution
Algorithm for Permutation Flow Shop Scheduling

Mohamed Abdel-Basset 1, Reda Mohamed 1, Mohamed Abouhawwash 2,3,* , Victor Chang 4 and S. S. Askar 5

����������
�������

Citation: Abdel-Basset, M.;

Mohamed, R.; Abouhawwash, M.;

Chang, V.; Askar, S.S. A Local

Search-Based Generalized Normal

Distribution Algorithm for

Permutation Flow Shop Scheduling.

Appl. Sci. 2021, 11, 4837. https://

doi.org/10.3390/app11114837

Academic Editor: Emanuel Guariglia

Received: 1 April 2021

Accepted: 22 May 2021

Published: 25 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Faculty of Computers and Informatics, Zagazig University,
Zagazig 44519, Egypt; mohamedbasset@zu.edu.eg (M.A.-B.); redamoh@zu.edu.eg (R.M.)

2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3 Department of Computational Mathematics, Science, and Engineering (CMSE), College of Engineering,

Michigan State University, East Lansing, MI 48824, USA
4 Artificial Intelligence and Information Systems Research Group, School of Computing, Engineering and

Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK; V.Chang@tees.ac.uk
5 Department of Statistics and Operations Research, College of Science, King Saud University,

Riyadh 11451, Saudi Arabia; saskar@ksu.edu.sa
* Correspondence: abouhaww@msu.edu

Abstract: This paper studies the generalized normal distribution algorithm (GNDO) performance for
tackling the permutation flow shop scheduling problem (PFSSP). Because PFSSP is a discrete problem
and GNDO generates continuous values, the largest ranked value rule is used to convert those
continuous values into discrete ones to make GNDO applicable for solving this discrete problem.
Additionally, the discrete GNDO is effectively integrated with a local search strategy to improve
the quality of the best-so-far solution in an abbreviated version of HGNDO. More than that, a new
improvement using the swap mutation operator applied on the best-so-far solution to avoid being
stuck into local optima by accelerating the convergence speed is effectively applied to HGNDO to
propose a new version, namely a hybrid-improved GNDO (HIGNDO). Last but not least, the local
search strategy is improved using the scramble mutation operator to utilize each trial as ideally
as possible for reaching better outcomes. This improved local search strategy is integrated with
IGNDO to produce a new strong algorithm abbreviated as IHGNDO. Those proposed algorithms
are extensively compared with a number of well-established optimization algorithms using various
statistical analyses to estimate the optimal makespan for 41 well-known instances in a reasonable
time. The findings show the benefits and speedup of both IHGNDO and HIGNDO over all the
compared algorithms, in addition to HGNDO.

Keywords: generalized normal distribution optimization algorithm; permutation flow shop schedul-
ing; makespan; local search strategy

1. Introduction

The permutation flow shop scheduling problem (PFSSP) is a critical problem that
needs to be solved accurately and effectively to minimize the makespan criteria. The
solution to this problem involves finding the near-optimal permutation of n jobs to be
processed in a set of m machines sequentially that will minimize the makespan required,
even completing the last job in the last machine [1]. This problem has significant utilization
in several fields, especially in industries such as computing designs, procurement, and
information processing. According to its significant effectiveness and its nature, which
is normally classified as nondeterministic polynomial time (NP)-hard [1–6], several tech-
niques of exact, heuristic, and meta-heuristic properties have been extensively employed
for solving this problem. Some of them will be surveyed in the rest of this section.

Exact methods such as linear programming [7] and branch and bound [8] could fulfill
the optimal value for the small-scale problem, but for medium-scale and large-scale prob-
lems, their performance degrades significantly, in addition to increasing exponentially the

Appl. Sci. 2021, 11, 4837. https://doi.org/10.3390/app11114837 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2846-4707
https://orcid.org/0000-0002-8012-5852
https://orcid.org/0000-0002-1167-2430
https://doi.org/10.3390/app11114837
https://doi.org/10.3390/app11114837
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114837
https://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/11/11/4837?type=check_update&version=4

Appl. Sci. 2021, 11, 4837 2 of 24

computational cost. Therefore, the heuristics algorithms have been designed to overcome
this expensive computational cost and high dimensionality. Involving the heuristic algo-
rithms, the Nawaz-Enscore-Ham (NEH) algorithm employed by Nawaz et al. [9] for solving
PFSSP could be the most effective heuristic algorithm, and their results are comparable with
the meta-heuristic algorithms [10–13], which are being used for solving several optimiza-
tion problems in a reasonable time. Broadly speaking, the image segmentation problem
is an indispensable process in image processing fields, so several image segmentation
methods have been suggested such as clustering, fractal-wavelet techniques [14–20], region
growing, and thresolding; Among those techniques, the threshold-based segmentation
technique is the most effective due to the metaheuristic algorithms which could segment
the images based on this technique with high accuracy [21].

The particle swarm optimization (PSO)-based memetic algorithm (MA) [22], namely
PSOMA, has been proposed for tackling the PFSSP as an attempt to find the near-optimal job
permutation that minimizes the maximum completion time. In detail, to adapt the PSOMA
for solving the PFSSP, the authors used a ranked order rule to convert the continuous
values produced by the standard algorithms into discrete ones. In addition, to improve
the quality and diversity of the initialized solutions, the NEH algorithm has been used.
Furthermore, to balance between the exploration and exploitation operators, a local search
operator has been used to be applied on some solutions selected using the roulette wheel
mechanism with a specific probability. Ultimately, to avoid being stuck into local minima,
PSOMA used the simulated annealing with multiple neighborhood search strategies. It
is worth mentioning that the local search has been used with the PSO for tackling several
optimization problems, and this confirms that the local search has a significant influence
on the performance after integration; some of those works are comprehensive learning
PSO with a local search for multimodal functions [23], PSO with local search [24], and
many others [2,25–29].

The cuckoo search-based memetic algorithm (HCS) [30] has been adapted using the
largest ranked values rule for tackling the PFSSP. Besides, HCS used the NEH algorithm to
initialize the population to fulfill better quality and diversity. Furthermore, this algorithm
used a fast local search to accelerate the convergence speed in an attempt to improve its
exploitation algorithm. This algorithm was compared with a number of optimization
algorithms: hybrid genetic algorithm (HGA), particle swarm optimization with variable
neighborhood search, and the differential-evolution-based hybrid algorithm (HDE) on four
benchmark instances to see its efficacy.

The hybrid discrete artificial bee colony algorithm (HDABC) [31] has been adapted for
tackling the PFSSP. In HDABC, the initialization step was achieved based on the Greedy
Randomized Adaptive Search Procedure (GRASP) with the NEH algorithm to include
better quality and diversity. After that, the discrete operators such as insert, swap, GRASP,
and path relinking are used to generate new solutions. Ultimately, a local search strategy
has been applied to improve the quality of the best-so-far solution as an attempt to improve
the searchability of HDABC. HDABC has been extensively compared with a number of the
algorithms: ant colony system (ACS), PSO embedded with a variable neighborhood search
(VNS) (PSOVNS), PSOMA, and HDABC.

Xie, Z., et al. [32] developed a hybrid teaching learning-based optimization (HTLBO)
for tackling the PFSSP. Due to the continuous nature of the teaching-learning-based op-
timization, the largest ranked value rule is used to make it applicable to the PFSSP. In
addition, HTLBO used simulated annealing as a local search to improve the quality of
the obtained solutions. The differential evolution-based memetic algorithm (ODDE) [33]
has been adapted using the largest ranked value rule for tackling the PFSSP. ODDE in the
initialization step used the NEH algorithm to initialize the solutions with a certain quality
and diversity. In ODDE, an approach based on the diversity of the population was used to
tune the crossover rate, in addition to accelerating the convergence speed of the algorithm
using the opposition-based learning. Finally, ODDE used a local search strategy to avoid
being stuck into local minima by improving the best-so-far solution.

Appl. Sci. 2021, 11, 4837 3 of 24

The whale optimization algorithm integrated with a local search-ability on the best
solution and mutation operators have been suggested by Abdel-Basset, M., et al. [34] to
propose a new variant, namely HWA, for tackling PFSSP. Broadly speaking, HWA used
the NEH algorithm in the initialization step to create 10% of the populations with a certain
diversity and quality as an attempt to avoid being stuck into local minima for reaching
better outcomes. Afterward, to make WOA applicable to the PFSSP, the LRV rule was
used to make the solutions generated by it relevant to this problem. Furthermore, it was
integrated with two operators to improve the diversity for avoiding being stuck into the
local minima problem: swap mutation and insert-reversed block. Finally, to accelerate
the convergence speed toward the optimal solution and avoid being stuck in the local
minimum, it was integrated with a fast local search strategy on the best-so-far solution.

In [35], Mishra developed a discrete Jaya optimization algorithm for tackling the
PFSSP. Because the standard Jaya algorithm has been adapted for tackling the continuous
optimization problem that is contradicted to the PFSSP, which is normally classified as a
discrete one, the largest order value rule was used to convert those continuous values into
discrete ones relevant to the PFSSP. This discrete Jaya algorithm was verified on a set of
well-known benchmarks and compared extensively under various statistical analyses with
hybrid genetic algorithm (HGA, 2003), hybrid differential evolution (HDE, 2008), hybrid
particle swarm optimization (HSPO, 2008), teaching-learning based optimization (TLBO,
2014), and hybrid backtracking search algorithm (HBSA, 2015) that are not up to date, and
its performance with the recent optimization algorithms published over the last three years
are unknown.

The whale optimization algorithm (WOA) [36] improved using the chaos map and
then integrated with the NEH algorithm has been proposed for tackling the PFSSP. In
detail, the NEH algorithm and the largest ranked values rule are used in the initialization
step of the chaos WOA (CWA) to initialize the solutions in better quality. After that, CWA
used the chaotic maps to avoid being stuck into local minima and accelerate convergence
speed by assisting two other operators: cross operator and reversal-insertion to improve
its exploration capability. Ultimately, CWA used the local search strategy to improve
the quality of the best-so-far solution to improve the exploitation capability of CWA.
This algorithm was observed using various benchmarks and compared with various
optimization algorithms to check its superiority.

Further, a new discrete multiobjective approach based on the fireworks algorithm
(DMOFWA) has been recently proposed for solving the multi-objective flow shop schedul-
ing problem with sequence-dependent setup times (MOFSP-SDST); this approach was
abbreviately called DMOFWA [37]. Inside this approach, two various machine learn-
ing techniques have been integrated: The first one called opposition-based learning was
used to improve the exploration operator of the standard algorithm to avert entrapment
into local minima, and the second one is the clustering analysis and was used to cluster
fireworks individuals.

To overcome expensive computational costs and local minima problems that might
suffer from most of the above-described algorithms, we developed a novel discrete opti-
mization algorithm to tackle the PFSSP in a reasonable time compared to some existing
techniques. Recently, a new optimization algorithm, namely generalized optimization algo-
rithm (GNDO), based on the normal distribution theory, has been developed by Zhang [38]
for tackling the parameter extraction problem of the single diode and double diode photo-
voltaic models. Due to its high ability to estimate the parameter values that minimize the
error rate between the measured I-V curve and the estimated I-V curve, in this paper, we
try to observe its performance for tackling the PFSSP. In order to make GNDO applicable to
the PFSSP classified as a discrete problem contradicted by the continuous problems tackled
using the standard GNDO, the largest ranked value (LRV) rule is used to convert those
continuous values into job permutations adequate to solve the PFSSP. Furthermore, this
discrete GNDO using the LRV rule is integrated with a local search strategy to avoid being
stuck into local minima for reaching better outcomes; this version is named a hybrid GNDO

Appl. Sci. 2021, 11, 4837 4 of 24

(GNDO). In another attempt to improve the quality of HGNDO, it was integrated with the
swap mutation operator applied on the best-so-far solution as another attempt to promote
the exploitation capability for reaching better outcomes; this version was abbreviated
as HIGNDO. Finally, to improve the quality of the solutions, the local search strategy is
improved using the scramble mutation operator and then integrated with HIGNDO to
produce a new version named IHGNDO. The proposed algorithms, HGNDO, HIGNDO,
and IHGNDO, are verified using 41 well-known instances widely used in the literature
and compared with a number of the recent well-established algorithms to verify their
efficacy using various performance metrics. The experimental results affirm the superior-
ity of IHGNDO and HIGNDO over the other algorithms in terms of standard deviation,
computational cost, and makespan. Generally, our contributions in this work include
the following:

• Develop GNDO using the LRV rule for PFSSP.
• Improve GNDO using the swap mutation operator to avoid being stuck into local minima.
• Enhance the local search strategy using the scramble mutation operator for accelerating

the convergence speed toward the near-optimal solution.
• Integrate the improved local search strategy and the standard one with the improved

GNDO and GNDO for tackling the PFSSP.
• The experimental findings show that IHGNDO and HIGNDO are better in terms of

standard deviation and computational cost and final accuracy.

This work is organized as follows: Section 2 explains the PFSSP; Section 3 describes the
standard generalized normal distribution optimization algorithm; Section 4 explains the
proposed algorithm; Section 5 includes the results and discussion; and Section 6 illustrates
our conclusions and future work.

2. Description of the Permutation Flow Shop Scheduling Problem

Assuming that n jobs are running sequentially over m machines in the permutation
flow that will minimize the makespan, this problem is known as the permutation flow
shop scheduling problem (PFSSP). The makespan is measured using time units such as
seconds, milliseconds, etc. Therefore, to solve this problem, the best permutation c∗ that
will minimize the makespan of execution of the last job on the last machine must be
accurately extracted. In general, the following points summarize the PFSSP: (1) on each
machine, each job jb|b = 1, 2, 3, , n could run just once, where n is the number
of jobs; (2) just a job could be executed on a machine iz|z = 1, 2, 3,, m at a time
with processing time PT, where m is the number of machines; (3) each job jb will have
a completion time c on a machine vz, and this time is symbolized as c(jb, iz); (4) each
job has a processing time comprised of the set-up time of the machine and the running
time; and (5) each job takes a time of 0 when starting. Mathematically, PFSSP could be
modeled as follows:

c(j1, i1) = PTj1, i1 (1)

c(jb, i1) = c(jb−1, i1) + PTjb , i1 , b = 2, 3, 4, , n (2)

c(j1, iz) = c(jb, iz−1) + PTj1, iz , z = 2, 3, 4, , m (3)

c(jb, iz) = max(c(jb−1, iz), c(jb, iz−1)) + PTjb , iz , b = 2, 3, 4, , n, z = 2, 3, 4,, m (4)

In our work, the objective function used by the suggested algorithm to evaluate each
solution is described as follows:

f
(→

j i

)
= c(jb, iz) (5)

where
→
j i is the jobs permutation of the ith solution. This objective function will be used to

evaluate each permutation extracted by the algorithms, and the one with less makespan is
considered the best.

Appl. Sci. 2021, 11, 4837 5 of 24

3. Standard Algorithm: Generalized Normal Distribution Optimization

Zhang [38] developed a new optimization algorithm based on the normal distribution
theory to tackle the parameter estimation problem of Photovoltaic models: single diode
model and double diode model; this algorithm is called generalized normal distribution
optimization (GNDO). The mathematical model of GNDO is extensively described in the
rest of this section.

3.1. Exploitation Operator

This operator is utilized to search extensively around the best-so-far solution X∗ to
check if there are better solutions as an attempt to accelerate the convergence speed. In
GNDO, this operator is designed based on searching around the mean µi of X∗, the current
ith solution Xi

t, and the mean M of all solutions at generation t calculated according to
Equation (8); µi is computed using Equation (7). After that, GNDO exploits the solutions
around this mean using a step size computed according to Equation (9) to generate a new
trial solution Ti

t using Equation (6) having the following characteristics: accelerating the
convergence speed in addition to improving the quality of the solutions. Ti

t is carried over
to the next generation if its objective value is better than the objective of Xi

t.

Ti
t = µi + δi × η, ∀ i = 1 : N (6)

µi = (Xi
t + X∗ + M)/3.0 (7)

M =
∑N

i=1 Xi
t

N
(8)

δi =

√
1
3

[
(Xi

t − µ)2 + (X∗ − µ)2 + (M− µ)2)
]

(9)

η =

{ √
−log(

1

ℷ 1)× cos(2π

1

ℷ 2), r1 ≤ r2√
−log(

1

ℷ 1)× cos(2π

1

ℷ 2 + π), r1 > r2
(10)

r1, r2,

1

ℷ 1, and

1

ℷ 2 are four numbers generated randomly at the interval between 0 and 1.

3.2. Exploration Operator

However, µi may be local minima, and subsequently searching around it is futile
to improve the quality of the solutions. Therefore, the exploration operator is used to
explore the search space as much as possible to avoid being stuck into local minima. In
mathematical terms, this operator is formulated as follows:

Ti
t = Xi

t + β× (|

1

ℷ 3| × v1) + (1− β)× (|

1

ℷ 4| × v2) (11)

1

ℷ 3 and

1

ℷ 4 are two randomly generated numerical values based on the standard normal
distribution; β is a random number created between 0 and 1. v1 and v2 are generated
as follows:

v1 =

{
Xi

t − Xa1
t, i f f

(
Xi

t) ≤ f
(
Xp1

t)
Xa1

t − Xi
t, otherwise

(12)

v2 =

{
Xa2

t − Xa3
t, i f f

(
Xp2

t) ≤ f
(
Xp3

t)
Xa3

t − Xa2
t, otherwise

(13)

a1, a2, and a3 are three indices selected randomly from the population, such that
a1 6= a2 6= a3 6= i. The exploration and exploitation operators are randomly swapped in
the optimization process.

4. The Proposed Work

In this section, the steps of initialization, swap mutation and scramble mutation
operators, and improved local search that comprise the proposed algorithms will be
discussed in detail within this section.

Appl. Sci. 2021, 11, 4837 6 of 24

4.1. Initialization

In the beginning, N solutions with n dimensions for each one are generated and
initialized with distinct integers generated randomly between 0 and n. After that, those
solutions will be evaluated, and the one with less makespan will be carried over to the
next generation as the best-so-far solution. The ending to this phase considers starting the
optimization process used to optimize the initial solutions to generate new better ones.
However, unfortunately, the updated solutions generated by GNDO are continuous, not
discrete, as required for the PFSSP, so the largest ranked value (LRV) is used to convert the
continuous values generated by GNDO into a job permutation. The LRV sets the largest
value in the updated solution as the first order of a job permutation and the second-largest
value as the second one. Table 1 presents a simple example to illustrate the LRV rule for
generating the job permutation from an updated solution Ti

t.

Table 1. Representation of the updated solution Ti
t.

Position, Job 0 1 2 3 4 5 6

Position, Ti
t 0.1 0.5 0.8 0.2 0.6 0.7 0.9

Job, TTi
t 6 4 1 5 3 2 0

4.2. Swap Mutation Operator

This mutation operator is extensively used for solving the permutation problem by
swapping the values of two positions selected randomly from the solution. In the proposed
algorithm, this operation is applied on the best-so-far solution 0.1 times to search for other
solutions with a smaller makespan than the current best-so-far. Figure 1 gives an example
about the swap mutation operator, where Figure 1a shows the order of the positions before
using this mutation operator, while Figure 1b shows the order after swapping the value in
the third position with the values in the seventh position.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 6 of 24

𝑎1, 𝑎2, and 𝑎3 are three indices selected randomly from the population, such that 𝑎1 𝑎2 𝑎3 𝑖. The exploration and exploitation operators are randomly swapped in
the optimization process.

4. The Proposed Work
In this section, the steps of initialization, swap mutation and scramble mutation op-

erators, and improved local search that comprise the proposed algorithms will be dis-
cussed in detail within this section.

4.1. Initialization
In the beginning, N solutions with n dimensions for each one are generated and ini-

tialized with distinct integers generated randomly between 0 and n. After that, those so-
lutions will be evaluated, and the one with less makespan will be carried over to the next
generation as the best-so-far solution. The ending to this phase considers starting the op-
timization process used to optimize the initial solutions to generate new better ones. How-
ever, unfortunately, the updated solutions generated by GNDO are continuous, not dis-
crete, as required for the PFSSP, so the largest ranked value (LRV) is used to convert the
continuous values generated by GNDO into a job permutation. The LRV sets the largest
value in the updated solution as the first order of a job permutation and the second-largest
value as the second one. Table 1 presents a simple example to illustrate the LRV rule for
generating the job permutation from an updated solution 𝑇 .

Table 1. Representation of the updated solution 𝑇 .

Position, Job 0 1 2 3 4 5 6
Position, 𝑇 0.1 0.5 0.8 0.2 0.6 0.7 0.9

Job, 𝑇𝑇 6 4 1 5 3 2 0

4.2. Swap Mutation Operator
This mutation operator is extensively used for solving the permutation problem by

swapping the values of two positions selected randomly from the solution. In the pro-
posed algorithm, this operation is applied on the best-so-far solution 0.1 times to search
for other solutions with a smaller makespan than the current best-so-far. Figure 1 gives an
example about the swap mutation operator, where Figure 1a shows the order of the posi-
tions before using this mutation operator, while Figure 1b shows the order after swapping
the value in the third position with the values in the seventh position.

Figure 1. Depiction of the swap mutation operator.

Figure 1. Depiction of the swap mutation operator.

4.3. Scramble Mutation Operator

In this operator, two positions are randomly picked, and the jobs between those two
positions are shuffled and inserted again, as depicted in the following table (Table 2).

Table 2. Scramble mutation operator.

0 1 2 3 4 5 6 7 8 9

Appl. Sci. 2021, 9, x FOR PEER REVIEW 7 of 24

4.3. Scramble Mutation Operator

In this operator, two positions are randomly picked, and the jobs between those two

positions are shuffled and inserted again, as depicted in the following table (Table 2).

Table 2. Scramble mutation operator.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

4.4. Improved Local Search Strategy (ILSS)

Additionally, in this work, a local search strategy is used to explore the solutions

around the best-so-far solution for finding better solutions. This strategy will try accord-

ing to a specific probability LSP each job in the best-so-far solution in all positions within

this best solution to find a permutation with better makespan than the current best-so-far

one. This strategy is used with the best-so-far solution without the others because the best-

so-far solution might be so close to the optimal solution and need only simple changes to

fulfill this optimal solution. This local search is integrated with the improved GNDO using

the swap mutation operator to generate a version for tackling PFSSP, abbreviated as HI-

GNDO. In addition, in some cases, small changes may consume a large number of itera-

tions without any benefit, so, in this research, a new addition to this LSS is made to make

more changes to the best-so-far solution in the hope of finding a better solution. This ad-

dition is based on using the scramble mutation operator additionally with the LSS to ex-

plore more permutations. This improved local search strategy is abbreviated as ILSS, and

its steps are listed in Algorithm 1. In Algorithm 2, the steps of improved GNDO (IGNDO)

using the swap mutation operator hybridized with the LSS without the scramble mutation

operator are extensively described to produce a version for tackling PFSSP known as HI-

GNDO. A new version using ILSS with IGNDO is developed to verify the efficacy of our

improvement to the LSS for reaching better outcomes. This version is abbreviated as IH-

GNDO and is depicted in Figure 2.

Algorithm 1 Improved LSS (ILSS)

Input: 𝑋∗

1. For I = 1: n

2. 𝑋 = 𝑋∗

3. For j = 1: n

4. 𝑟: create a random number between 0 and 1.

5. If(r < LSP)

6. 𝑋𝑗 = 𝑋𝑖
∗

7. Applying scramble mutation operator on 𝑋

8. Calculate the fitness of 𝑋.

9. Update 𝑋∗ if 𝑋 is better.

10. End if

11. End for

12. End for

Return 𝑋∗

0 1 2 3 4 5 6 7 8 9

4.4. Improved Local Search Strategy (ILSS)

Additionally, in this work, a local search strategy is used to explore the solutions
around the best-so-far solution for finding better solutions. This strategy will try according
to a specific probability LSP each job in the best-so-far solution in all positions within
this best solution to find a permutation with better makespan than the current best-so-far
one. This strategy is used with the best-so-far solution without the others because the

Appl. Sci. 2021, 11, 4837 7 of 24

best-so-far solution might be so close to the optimal solution and need only simple changes
to fulfill this optimal solution. This local search is integrated with the improved GNDO
using the swap mutation operator to generate a version for tackling PFSSP, abbreviated
as HIGNDO. In addition, in some cases, small changes may consume a large number of
iterations without any benefit, so, in this research, a new addition to this LSS is made to
make more changes to the best-so-far solution in the hope of finding a better solution. This
addition is based on using the scramble mutation operator additionally with the LSS to
explore more permutations. This improved local search strategy is abbreviated as ILSS,
and its steps are listed in Algorithm 1. In Algorithm 2, the steps of improved GNDO
(IGNDO) using the swap mutation operator hybridized with the LSS without the scramble
mutation operator are extensively described to produce a version for tackling PFSSP known
as HIGNDO. A new version using ILSS with IGNDO is developed to verify the efficacy of
our improvement to the LSS for reaching better outcomes. This version is abbreviated as
IHGNDO and is depicted in Figure 2.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 9 of 24

Figure 2. The steps of the IHGNDO algorithm.

5. Results and Comparisons
In our experiments, the proposed algorithms are extensively validated on three

benchmarks commonly used in the literature: (1) the first dataset is called the Carlier da-
taset, having eight instances with a number of jobs ranging between 7 and 14, and a num-
ber of machines at the interval between 4 and 9 [39]; (2) the second is the Reeves dataset
with 21 instances, where the number of machines and the number of jobs ranges between
20 and 75, and 5 and 20, respectively [40]; and (3) finally, the third one is known as the
Heller and involves two instances with a number of jobs ranging between 20 and 100, and
a number of machines of 10, respectively [41]. Those datasets are taken from [42] with
some characteristics about the number of jobs and machines, and the best-known
makespan 𝑧∗ in Table 3. Furthermore, the proposed algorithms are extensively com-
pared with a number of the well-established optimization algorithms: sine cosine algo-
rithm (SCA) [43], slap swarm algorithm (SSA) [44], whale optimization algorithm (WOA)
[34], genetic algorithm (GA), equilibrium optimization algorithm (EOA) [45], marine
predators optimization algorithm (MPA) [42], and a hybrid tunicate swarm algorithm
(HTSA) [46] integrated with the local search strategy to ensure a fair comparison and ver-
ify their efficacy in terms of six performance metrics: average relative error (ARE), worst
relative error (WRE), best relative error (BRE), an average of makespan (Avg), standard
deviation (SD), and computational cost (Time in milliseconds (ms)). BRE indicates how
far the best-obtained solution 𝑍 is close to the best-known solution and is formulated
using the following formula: 𝐵𝑅𝐸 = |𝑍∗ − 𝑍 |𝑍∗ (14)

Meanwhile, WRE calculated using the next equation is a metric used to assess the
remoteness between the worst-obtained makespan 𝑍 and the best known.

Figure 2. The steps of the IHGNDO algorithm.

Appl. Sci. 2021, 11, 4837 8 of 24

Algorithm 1 Improved LSS (ILSS).

Input: X∗

1. For I = 1: n
2. X = X∗

3. For j = 1: n
4. r : create a random number between 0 and 1.
5. If(r < LSP)
6. Xj = X∗i
7. Applying scramble mutation operator on X
8. Calculate the fitness of X.
9. Update X∗ if X is better.
10. End if
11. End for
12. End for

Return X∗

Algorithm 2 HIGNDO.

Input: N, tmax

1. t = 0
2. Initialization phase.
3. While t < tmax
4. For i = 1 : N
5. Create a number α randomly between [0, 1].
6. Create a number α1 randomly between [0, 1].
7. If α > α1
8. Calculate M using Equation (8)
9. Calculate µi, δi, and η

10. Calculate Ti
t using Equation (6).

11. If f (Ti
t) < f

(
Xi

t)
12. Xi

t = Ti
t

13. End If
14. Else
15. Compute Ti

t according to Equation (11).
16. If f (Ti

t) < f
(
Xi

t)
17. Xi

t = Ti
t

18. End If
19. End If
20. For j = 1 : 0.1 ∗ n
21. T: Applying the swap mutation on the best-so-far solution.
22. If f (T) < f (X∗)
23. X∗ = T
24. End If
25. End for
26. Applying algorithm 1 without Line 7.
27. End For
28. t ++;
29. End while

Output: return X∗

5. Results and Comparisons

In our experiments, the proposed algorithms are extensively validated on three bench-
marks commonly used in the literature: (1) the first dataset is called the Carlier dataset,
having eight instances with a number of jobs ranging between 7 and 14, and a number of
machines at the interval between 4 and 9 [39]; (2) the second is the Reeves dataset with
21 instances, where the number of machines and the number of jobs ranges between 20

Appl. Sci. 2021, 11, 4837 9 of 24

and 75, and 5 and 20, respectively [40]; and (3) finally, the third one is known as the Heller
and involves two instances with a number of jobs ranging between 20 and 100, and a
number of machines of 10, respectively [41]. Those datasets are taken from [42] with some
characteristics about the number of jobs and machines, and the best-known makespan z∗ in
Table 3. Furthermore, the proposed algorithms are extensively compared with a number of
the well-established optimization algorithms: sine cosine algorithm (SCA) [43], slap swarm
algorithm (SSA) [44], whale optimization algorithm (WOA) [34], genetic algorithm (GA),
equilibrium optimization algorithm (EOA) [45], marine predators optimization algorithm
(MPA) [42], and a hybrid tunicate swarm algorithm (HTSA) [46] integrated with the local
search strategy to ensure a fair comparison and verify their efficacy in terms of six perfor-
mance metrics: average relative error (ARE), worst relative error (WRE), best relative error
(BRE), an average of makespan (Avg), standard deviation (SD), and computational cost
(Time in milliseconds (ms)). BRE indicates how far the best-obtained solution ZB is close to
the best-known solution and is formulated using the following formula:

BRE =
|Z∗ − ZB|

Z∗
(14)

Table 3. Description of Carlier, Heller, Reeves instances.

Name n m Z* Name n m Z* Name N m Z* Name n m Z*

Hel1 20 10 516 Car07 7 7 6590 Rec13 20 15 1930 Rec29 23 15 2287

Hel2 100 10 136 Car08 8 8 8366 Rec15 20 15 1950 Rec31 50 10 3045

Car01 11 5 7038 Rec01 20 5 1247 Rec17 20 15 1902 Rec33 50 10 3114

Car02 13 4 7166 Rec03 20 5 1109 Rec19 30 10 2017 Rec35 50 10 3277

Car03 12 5 7312 Rec05 20 5 1242 Rec21 30 10 2011 Rec37 75 20 4951

Car04 14 4 8003 Rec07 20 10 1566 Rec23 30 10 2011 Rec39 75 20 5087

Car05 10 6 7720 Rec09 20 10 1537 Rec25 30 15 2513 Rec41 75 20 4960

Car06 8 9 8505 Rec011 20 10 1431 Rec27 30 15 2373

Meanwhile, WRE calculated using the next equation is a metric used to assess the
remoteness between the worst-obtained makespan Zw and the best known.

WRE =
|Z∗ − Zw|

Z∗
(15)

Regarding ARE, it is used to show the relative error with respect to the average
makespan values within 30 independent runs and the best-known one. Mathematically,
ARE is modeled as follows.

ARE =

∣∣Z∗ − ZAvg
∣∣

Z∗
(16)

The algorithms used in our experiments after integrating local search are named
a hybrid SCA (HSCA) [43], a hybrid SSA (HSSA) [44], a hybrid WOA (HWOA) [34], a
hybrid GA (HGA), a hybrid EOA (HEOA) [45], a hybrid MPA (HMPA) [42], and a hybrid
TSA (HTSA) [46]. Regarding the parameters of those algorithms, they were assigned
after extensive experiments. The EOA has two parameters: a1 (exploration factor) and
a2 (exploitation factor), which are needed to be accurately estimated, and after several
experiments for extracting their optimal values, we note that all observed values for a2 were
significantly converged; therefore, it is set to 1 as used in the standard algorithm; a1, which
is responsible for the exploration operator, is assigned a value of 2 estimated after several
experiments, pictured in Figure 3a. The SSA is self-adaptive algorithm since it does not have
parameters to be assigned before beginning the optimization process; on the other hand,
the HSCA has one parameter called a responsible for deterimining where the algorithm
will search for the near-optimal solution, and the value to this parameter was set to 3, as
shown in Figure 3b. The HMPA has one parameter P called the scaling factor, and it is set in

Appl. Sci. 2021, 11, 4837 10 of 24

our experiment as cited in the standard algorithm because we found that these parameters
have no effect on the performance of the algorithm while solving this problem. Finally,
the HTSA has two effective parameters, namely xmax and xmin, representing the initial
and subordinate speeds for social interaction and are assigned to 1 and 2, as described in
Figure 3c,d which depict the outcomes of their tuning using various values. The HGA used
a value of 0.02 and 0.8 for both the mutation and crossover probabilities, as recommended
in [40]. All algorithms were executed under those parameters 30 independent times
within the same environment with a maximum of iteration and population size: 200
and 50, respectively.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 11 of 24

(a) Tunning for the parameter 𝑎1of HEOA (b) Tunning for the parameter 𝑎 of HSCA

(c) Tunning for the parameter 𝑥𝑚𝑖𝑛 of HTSA (d) Tunning for the parameter 𝑥𝑚𝑎𝑥 of HTSA

Figure 3. Parameters tunning under Car01 instance.

5.1. Comparison under Carlier

This section validates the performance of the algorithms on the Carlier instances to

show the readers the efficacy of each one. Each algorithm is run 30 independent times on

each instance out of eight instances of the Carlier dataset, and then the various perfor-

mance metrics are calculated and presented in Table 4, which shows the superiority of

IHGNDO, HIGNDO, and HGNDO on most test cases. Broadly speaking, IHGNDO could

reach the best-known value for all instances and fulfill a value of 0 for ARE, WRE, BRE,

and SD, in addition to its outperformance in the time metric for two instances. Meanwhile,

HIGNDO could fulfill the best-known values of seven instances within all independent

runs while failing incoming true the best-known value for Car04 instance in all runs. In

addition, HIGNDO could be the best for the time metric in five instances. Generally, IH-

GNDO could occupy the first rank for the makespan metric and the second rank after

HIGNDO in terms of the CPU time. Additionally, Figure 4 presents the average of ARE,

WRE, and BRE on all instances, which shows that IHGNDO could occupy the first rank

for WRE and ARE, while it is competitive with the others in terms of WRE. Regarding SD,

an average of makespan, and time metrics depicted in Figure 5, HIGNDO comes in the

first rank before IHGNDO for the time metric; IHGNDO could be the best for time and

Avg metrics. Ultimately, Figures 6–8 compare the makespan values obtained by the dif-

ferent algorithms based on the boxplot. Those figures show the superiority of IHGNDO

in terms of the average makespan. From the above analysis, IHGNDO could achieve pos-

itive outcomes reasonably, which makes it a strong alternative to the existing algorithms

developed for tackling the PFSSP.

Figure 3. Parameters tunning under Car01 instance.

5.1. Comparison under Carlier

This section validates the performance of the algorithms on the Carlier instances to
show the readers the efficacy of each one. Each algorithm is run 30 independent times on
each instance out of eight instances of the Carlier dataset, and then the various performance
metrics are calculated and presented in Table 4, which shows the superiority of IHGNDO,
HIGNDO, and HGNDO on most test cases. Broadly speaking, IHGNDO could reach the
best-known value for all instances and fulfill a value of 0 for ARE, WRE, BRE, and SD, in
addition to its outperformance in the time metric for two instances. Meanwhile, HIGNDO
could fulfill the best-known values of seven instances within all independent runs while
failing incoming true the best-known value for Car04 instance in all runs. In addition,
HIGNDO could be the best for the time metric in five instances. Generally, IHGNDO
could occupy the first rank for the makespan metric and the second rank after HIGNDO
in terms of the CPU time. Additionally, Figure 4 presents the average of ARE, WRE, and

Appl. Sci. 2021, 11, 4837 11 of 24

BRE on all instances, which shows that IHGNDO could occupy the first rank for WRE and
ARE, while it is competitive with the others in terms of WRE. Regarding SD, an average
of makespan, and time metrics depicted in Figure 5, HIGNDO comes in the first rank
before IHGNDO for the time metric; IHGNDO could be the best for time and Avg metrics.
Ultimately, Figures 6–8 compare the makespan values obtained by the different algorithms
based on the boxplot. Those figures show the superiority of IHGNDO in terms of the
average makespan. From the above analysis, IHGNDO could achieve positive outcomes
reasonably, which makes it a strong alternative to the existing algorithms developed for
tackling the PFSSP.

Table 4. Comparison of carlier instances.

Instances Algorithm Z* BRE WRE ARE ZAvg Time(MS) SD Z* BRE WRE ARE ZAvg Time(MS) SD

Car01

IHGNDO

7038

0.0000 0.0000 0.0000 7038.0000 0.0077 0.0000

Car04 7720

0.0000 0.0000 0.0000 7720.0000 0.0558 0.0000

HIGNDO 0.0000 0.0000 0.0000 7038.0000 0.0078 0.0000 0.0000 0.0131 0.0014 7731.1667 0.0636 30.1575

HGNDO 0.0000 0.0000 0.0000 7038.0000 0.0079 0.0000 0.0000 0.0131 0.0028 7741.9000 0.1949 36.3129

HMPA 0.0000 0.0000 0.0000 7038.0000 0.0192 0.0000 0.0000 0.0039 0.0011 7728.4000 1.0569 10.1114

HWOA 0.0000 0.0000 0.0000 7038.0000 0.0052 0.0000 0.0000 0.0039 0.0015 7731.4333 0.1961 11.6152

HEO 0.0000 0.0195 0.0011 7045.9000 0.0091 29.9426 0.0000 0.0135 0.0048 7756.7000 0.2393 37.5501

HSCA 0.0000 0.0456 0.0043 7068.2667 0.0830 76.6159 0.0000 0.0486 0.0076 7778.6667 0.4299 104.3537

HSSA 0.0000 0.0617 0.0048 7072.1000 0.0079 107.6947 0.0000 0.0486 0.0078 7780.0000 0.0668 72.7736

HTSA 0.0000 0.0997 0.0395 7315.6667 0.3338 286.3707 0.0000 0.1124 0.0334 7977.8333 0.6940 255.2532

HGA 0.0000 0.0169 0.0018 7050.6000 0.0105 29.1692 0.0000 0.0153 0.0099 7796.1000 0.6052 40.0161

Car02

IHGNDO

7166

0.0000 0.0000 0.0000 7166.0000 0.0200 0.0000

Car05 8505

0.0000 0.0000 0.0000 8505.0000 0.0134 0.0000

HIGNDO 0.0000 0.0000 0.0000 7166.0000 0.0151 0.0000 0.0000 0.0000 0.0000 8505.0000 0.0192 0.0000

HGNDO 0.0000 0.0000 0.0000 7166.0000 0.0152 0.0000 0.0000 0.0076 0.0008 8511.5000 0.0713 19.5000

HMPA 0.0000 0.0293 0.0010 7173.0000 0.3175 37.6962 0.0000 0.0540 0.0070 8564.4333 0.5601 101.8279

HWOA 0.0000 0.0000 0.0000 7166.0000 0.0224 0.0000 0.0000 0.0076 0.0003 8507.1667 0.0552 11.6679

HEO 0.0000 0.0293 0.0078 7222.0000 0.0980 92.8655 0.0000 0.0396 0.0076 8569.7000 0.1632 78.3812

HSCA 0.0000 0.1136 0.0347 7414.6000 0.2283 344.7938 0.0000 0.0770 0.0223 8694.8667 0.5217 190.9799

HSSA 0.0000 0.1231 0.0183 7297.4333 0.0313 262.8529 0.0000 0.0366 0.0109 8597.9667 0.0492 95.4919

HTSA 0.0000 0.1749 0.0788 7730.5333 0.4812 420.7919 0.0000 0.1250 0.0461 8897.4000 0.8095 345.5301

HGA 0.0000 0.0293 0.0063 7211.1000 0.1966 84.1088 0.0000 0.0582 0.0084 8576.1667 0.4249 115.9747

Car03

IHGNDO

7312

0.0000 0.0000 0.0000 7312.0000 0.0953 0.0000

Car06 6590

0.0000 0.0000 0.0000 6590.0000 0.0067 0.0000

HIGNDO 0.0000 0.0000 0.0000 7312.0000 0.0455 0.0000 0.0000 0.0000 0.0000 6590.0000 0.0051 0.0000

HGNDO 0.0000 0.0074 0.0027 7331.8000 0.2018 26.0223 0.0000 0.0000 0.0000 6590.0000 0.0067 0.0000

HMPA 0.0000 0.0254 0.0073 7365.2000 1.3745 42.6375 0.0000 0.0478 0.0089 6648.5333 0.1175 81.3858

HWOA 0.0000 0.0074 0.0042 7342.6000 0.2496 26.7589 0.0000 0.0000 0.0000 6590.0000 0.0206 0.0000

HEO 0.0000 0.0150 0.0090 7378.0667 0.2009 37.8919 0.0000 0.0347 0.0067 6634.3333 0.0380 63.7377

HSCA 0.0000 0.1002 0.0146 7418.7333 0.4578 174.9874 0.0000 0.0347 0.0125 6672.4667 0.4517 77.5735

HSSA 0.0000 0.1265 0.0180 7443.3000 0.0630 184.0828 0.0000 0.0247 0.0062 6631.1667 0.0329 53.6452

HTSA 0.0000 0.1570 0.0631 7773.0667 0.6972 401.4574 0.0000 0.0900 0.0313 6796.0333 0.7878 180.7279

HGA 0.0000 0.0150 0.0084 7373.6667 0.6146 38.4598 0.0000 0.0437 0.0098 6654.2667 0.6137 67.0020

Car04

IHGNDO

8003

0.0000 0.0000 0.0000 8003.0000 0.0139 0.0000

Car07 8366

0.0000 0.0000 0.0000 8366.0000 0.0111 0.0000

HIGNDO 0.0000 0.0000 0.0000 8003.0000 0.0082 0.0000 0.0000 0.0000 0.0000 8366.0000 0.0063 0.0000

HGNDO 0.0000 0.0000 0.0000 8003.0000 0.0146 0.0000 0.0000 0.0000 0.0000 8366.0000 0.0070 0.0000

HMPA 0.0000 0.0014 0.0000 8003.3667 0.1111 1.9746 0.0000 0.0225 0.0009 8373.7000 0.1041 34.3581

HWOA 0.0000 0.0000 0.0000 8003.0000 0.0205 0.0000 0.0000 0.0000 0.0000 8366.0000 0.0085 0.0000

HEO 0.0000 0.0112 0.0004 8006.0000 0.0479 16.1555 0.0000 0.0135 0.0008 8372.8000 0.0484 25.6013

HSCA 0.0000 0.0659 0.0068 8057.3667 0.1228 151.0125 0.0000 0.0634 0.0092 8443.0333 0.2099 146.8188

HSSA 0.0000 0.0947 0.0115 8095.0000 0.0291 212.0660 0.0000 0.0000 0.0000 8366.0000 0.0167 0.0000

HTSA 0.0000 0.1369 0.0485 8390.7667 0.4935 366.4514 0.0000 0.0865 0.0233 8560.8333 0.4741 228.3998

HGA 0.0000 0.0000 0.0000 8003.0000 0.1037 0.0000 0.0000 0.0069 0.0008 8372.9667 0.1663 17.8783

Appl. Sci. 2021, 11, 4837 12 of 24
Appl. Sci. 2021, 9, x FOR PEER REVIEW 13 of 24

Figure 4. Comparison in terms of BRE, ARE, and WRE on Carlier instances.

Figure 5. Comparison in terms of time, SD, and Avg on Carlier instances.

Figure 6. Boxplot for Car03 instance.

BRE
ARE
WRE

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.001 0.003 0.001 0.005 0.014
0.010

0.045

0.006

0.000 0.002 0.004
0.023

0.002
0.022

0.069 0.064

0.123

0.023

Algorithms

time

SD
Avg

0
1000

2000

3000

4000

5000

6000

7000

8000

IHGNDO HIGNDO HGNDO HMPA HWA HEO HSCA HSSA HTSA HGA

0.032 0.022 0.065 0.458 0.072 0.106 0.313 0.037 0.596 0.342

0.00 3.77 10.23 38.75 6.26 47.77 158.39 123.58 310.62
49.08

7588 7589 7594 7612 7593 7623 7694 7660 7930
7630

Algorithms

Figure 4. Comparison in terms of BRE, ARE, and WRE on Carlier instances.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 13 of 24

Figure 4. Comparison in terms of BRE, ARE, and WRE on Carlier instances.

Figure 5. Comparison in terms of time, SD, and Avg on Carlier instances.

Figure 6. Boxplot for Car03 instance.

BRE
ARE
WRE

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.001 0.003 0.001 0.005 0.014
0.010

0.045

0.006

0.000 0.002 0.004
0.023

0.002
0.022

0.069 0.064

0.123

0.023

Algorithms

time

SD
Avg

0
1000

2000

3000

4000

5000

6000

7000

8000

IHGNDO HIGNDO HGNDO HMPA HWA HEO HSCA HSSA HTSA HGA

0.032 0.022 0.065 0.458 0.072 0.106 0.313 0.037 0.596 0.342

0.00 3.77 10.23 38.75 6.26 47.77 158.39 123.58 310.62
49.08

7588 7589 7594 7612 7593 7623 7694 7660 7930
7630

Algorithms

Figure 5. Comparison in terms of time, SD, and Avg on Carlier instances.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 13 of 24

Figure 4. Comparison in terms of BRE, ARE, and WRE on Carlier instances.

Figure 5. Comparison in terms of time, SD, and Avg on Carlier instances.

Figure 6. Boxplot for Car03 instance.

BRE
ARE
WRE

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.001 0.003 0.001 0.005 0.014
0.010

0.045

0.006

0.000 0.002 0.004
0.023

0.002
0.022

0.069 0.064

0.123

0.023

Algorithms

time

SD
Avg

0
1000

2000

3000

4000

5000

6000

7000

8000

IHGNDO HIGNDO HGNDO HMPA HWA HEO HSCA HSSA HTSA HGA

0.032 0.022 0.065 0.458 0.072 0.106 0.313 0.037 0.596 0.342

0.00 3.77 10.23 38.75 6.26 47.77 158.39 123.58 310.62
49.08

7588 7589 7594 7612 7593 7623 7694 7660 7930
7630

Algorithms

Figure 6. Boxplot for Car03 instance.

Appl. Sci. 2021, 11, 4837 13 of 24Appl. Sci. 2021, 9, x FOR PEER REVIEW 14 of 24

Figure 7. Boxplot for Car05 instance.

Figure 8. Boxplot for Car06 instance.

5.2. Comparison under Reeves
In this subsection, the proposed algorithms will be verified on the Reeve instances to

verify their efficacy and compared to some state-of-the-art algorithms to show their supe-
riority. After running and calculation, various metrics values are introduced in Tables 5
and 6 to observe the performance of the algorithms. Observing those tables shows the
superiority of the proposed algorithms: IHGNDO, HIGNDO, and HGNDO for most per-
formance metrics in most test cases. To confirm that, Figures 9 and 10 are presented to
show the average of each performance metric on all instances in the Reeves benchmark;
those figures elaborate the superiority of HIGNDO over the others in terms of BRE, ARE,
and Avg makespan, while IHGNDO could outperform in terms of SD and come in the six
ranks for the time metric. Since the proposed algorithms could outperform the others in
terms of final accuracy in a reasonable time, they are a strong alternative to the existing
algorithms adapted for tackling the same problem. In addition, Figures 11–19 show the
boxplot of the makespan values obtained by various algorithms on the instances from
reC01 to reC17, which confirm the superiority of IHGNDO and HIGNDO in comparison
to the others.

Figure 7. Boxplot for Car05 instance.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 14 of 24

Figure 7. Boxplot for Car05 instance.

Figure 8. Boxplot for Car06 instance.

5.2. Comparison under Reeves
In this subsection, the proposed algorithms will be verified on the Reeve instances to

verify their efficacy and compared to some state-of-the-art algorithms to show their supe-
riority. After running and calculation, various metrics values are introduced in Tables 5
and 6 to observe the performance of the algorithms. Observing those tables shows the
superiority of the proposed algorithms: IHGNDO, HIGNDO, and HGNDO for most per-
formance metrics in most test cases. To confirm that, Figures 9 and 10 are presented to
show the average of each performance metric on all instances in the Reeves benchmark;
those figures elaborate the superiority of HIGNDO over the others in terms of BRE, ARE,
and Avg makespan, while IHGNDO could outperform in terms of SD and come in the six
ranks for the time metric. Since the proposed algorithms could outperform the others in
terms of final accuracy in a reasonable time, they are a strong alternative to the existing
algorithms adapted for tackling the same problem. In addition, Figures 11–19 show the
boxplot of the makespan values obtained by various algorithms on the instances from
reC01 to reC17, which confirm the superiority of IHGNDO and HIGNDO in comparison
to the others.

Figure 8. Boxplot for Car06 instance.

5.2. Comparison under Reeves

In this subsection, the proposed algorithms will be verified on the Reeve instances to
verify their efficacy and compared to some state-of-the-art algorithms to show their superi-
ority. After running and calculation, various metrics values are introduced in Tables 5 and 6
to observe the performance of the algorithms. Observing those tables shows the superiority
of the proposed algorithms: IHGNDO, HIGNDO, and HGNDO for most performance
metrics in most test cases. To confirm that, Figures 9 and 10 are presented to show the
average of each performance metric on all instances in the Reeves benchmark; those figures
elaborate the superiority of HIGNDO over the others in terms of BRE, ARE, and Avg
makespan, while IHGNDO could outperform in terms of SD and come in the six ranks for
the time metric. Since the proposed algorithms could outperform the others in terms of
final accuracy in a reasonable time, they are a strong alternative to the existing algorithms
adapted for tackling the same problem. In addition, Figures 11–19 show the boxplot of the
makespan values obtained by various algorithms on the instances from reC01 to reC17,
which confirm the superiority of IHGNDO and HIGNDO in comparison to the others.

Appl. Sci. 2021, 11, 4837 14 of 24

Table 5. Comparison on the Reeve instances—(reC01–reC23).

Inst Algorithm Z* BRE WRE ARE ZAvg Time(MS) SD Inst Z* BRE WRE ARE ZAvg Time(MS) SD

reC01

IHGNDO

1247

0.0000 0.0016 0.0016 1248.9333 0.6132 0.3590

reC13 1930

0.0031 0.0249 0.0116 1952.3333 0.8099 12.3216

HIGNDO 0.0000 0.0032 0.0015 1248.8667 0.6007 0.7180 0.0026 0.0212 0.0122 1953.5000 0.8224 10.1415

HGNDO 0.0000 0.0144 0.0026 1250.2667 0.9136 3.3559 0.0052 0.0430 0.0196 1967.8000 0.9858 17.7696

HMPA 0.0016 0.0265 0.0065 1255.1000 2.4415 8.9976 0.0093 0.0425 0.0191 1966.7667 2.6874 14.5709

HWOA 0.0016 0.0465 0.0047 1252.8333 1.1080 10.3765 0.0026 0.0415 0.0166 1962.0000 1.4368 17.8419

HEO 0.0016 0.0634 0.0133 1263.6333 0.3845 19.3503 0.0067 0.0974 0.0307 1989.1667 0.3930 31.0656

HSCA 0.0000 0.1291 0.0112 1260.9667 0.8572 35.4847 0.0016 0.1528 0.0450 2016.8000 0.9266 93.9260

HSSA 0.0016 0.1588 0.0401 1296.9667 0.1210 63.0611 0.0083 0.0383 0.0232 1974.7667 0.1342 15.1738

HTSA 0.0016 0.1764 0.0640 1326.8000 1.0840 89.2007 0.0026 0.1741 0.0594 2044.6333 1.1585 125.2979

HGA 0.0016 0.0634 0.0117 1261.5333 0.9869 19.5699 0.0088 0.0440 0.0231 1974.5667 1.2510 18.9520

reC03

IHGNDO

1109

0.0000 0.0018 0.0011 1110.2000 0.4757 0.9798

reC15 1950

0.0056 0.0200 0.0118 1973.0667 0.8296 6.4028

HIGNDO 0.0000 0.0027 0.0013 1110.4667 0.5128 1.0873 0.0067 0.0308 0.0125 1974.4667 0.8251 9.7151

HGNDO 0.0000 0.0036 0.0013 1110.4000 0.7720 1.1431 0.0026 0.0400 0.0172 1983.6000 0.9996 18.6683

HMPA 0.0000 0.0216 0.0035 1112.8333 2.4883 5.8085 0.0082 0.0426 0.0230 1994.9333 2.6970 23.7079

HWOA 0.0000 0.0090 0.0013 1110.4333 0.7880 1.9093 0.0036 0.0426 0.0195 1988.1000 1.4496 21.4357

HEO 0.0000 0.0911 0.0124 1122.7000 0.3519 19.8899 0.0118 0.0923 0.0298 2008.1667 0.3997 32.4860

HSCA 0.0000 0.1623 0.0361 1149.0667 0.8191 57.8653 0.0051 0.1369 0.0295 2007.5000 0.9629 49.8108

HSSA 0.0018 0.1587 0.0314 1143.8000 0.1230 55.4403 0.0108 0.1246 0.0314 2011.3000 0.1352 40.7015

HTSA 0.0000 0.1659 0.0768 1194.2000 1.0001 67.7655 0.0056 0.1441 0.0634 2073.6667 1.1775 103.7662

HGA 0.0000 0.0379 0.0091 1119.1000 0.8489 11.2141 0.0082 0.0508 0.0266 2001.8000 1.2887 25.2645

reC05

IHGNDO

1242

0.0024 0.0024 0.0024 1245.0000 0.6343 1.9746

reC17 1902

0.0000 0.0484 0.0225 1944.7000 0.8176 17.6921

HIGNDO 0.0024 0.0113 0.0027 1245.3667 0.6424 1.9746 0.0000 0.0389 0.0245 1948.5333 0.8119 15.7623

HGNDO 0.0024 0.0113 0.0044 1247.5000 0.8638 3.8536 0.0079 0.0705 0.0319 1962.7000 1.0376 25.6621

HMPA 0.0024 0.0217 0.0060 1249.4000 2.2647 6.5605 0.0105 0.0715 0.0337 1966.0667 2.9044 26.5806

HWOA 0.0024 0.0113 0.0063 1249.8333 0.9428 4.3134 0.0000 0.0436 0.0302 1959.4333 1.3958 16.1734

HEO 0.0024 0.0217 0.0102 1254.7000 0.3134 8.7527 0.0131 0.0615 0.0364 1971.2000 0.3743 20.4163

HSCA 0.0024 0.0902 0.0178 1264.1333 0.7352 33.1831 0.0047 0.1456 0.0397 1977.4333 0.8843 57.9555

HSSA 0.0024 0.1272 0.0241 1271.9000 0.1013 45.6350 0.0110 0.0589 0.0341 1966.9000 0.1288 22.1696

HTSA 0.0024 0.1449 0.0401 1291.8000 0.9273 54.0724 0.0131 0.1887 0.0838 2061.4667 1.0997 108.3872

HGA 0.0024 0.0250 0.0061 1249.6000 0.8465 7.5745 0.0179 0.0657 0.0369 1972.1333 1.1925 22.5961

reC07

IHGNDO

1566

0.0000 0.0115 0.0070 1576.9333 0.6078 8.4929

reC19 2017

0.0436 0.0645 0.0514 2120.7000 1.6120 9.2273

HIGNDO 0.0000 0.0115 0.0039 1572.0667 0.5225 8.4456 0.0407 0.0649 0.0515 2120.8000 1.5874 10.9891

HGNDO 0.0000 0.0115 0.0053 1574.3667 0.6376 8.7349 0.0446 0.0709 0.0516 2121.0667 1.9258 11.9022

HMPA 0.0000 0.0383 0.0112 1583.4667 2.3519 10.6356 0.0471 0.1715 0.0613 2140.7000 3.5589 43.3083

HWOA 0.0000 0.0115 0.0053 1574.2333 0.9048 8.4565 0.0436 0.0704 0.0538 2125.4333 2.4811 14.5113

HEO 0.0013 0.0383 0.0160 1591.1000 0.3607 15.4561 0.0471 0.0788 0.0655 2149.0333 0.5302 14.6708

HSCA 0.0000 0.1277 0.0272 1608.5333 0.8516 60.5286 0.0456 0.2152 0.0820 2182.3000 1.2905 112.9936

HSSA 0.0000 0.0383 0.0153 1590.0000 0.1187 13.4313 0.0545 0.2181 0.0767 2171.7000 0.2010 77.7321

HTSA 0.0000 0.1750 0.0684 1673.1000 1.1179 97.7628 0.0491 0.2583 0.1413 2302.0667 1.5909 159.0463

HGA 0.0000 0.0230 0.0110 1583.3000 1.1020 7.7981 0.0530 0.0912 0.0680 2154.2333 1.5769 19.2036

reC09

IHGNDO

1537

0.0000 0.0241 0.0068 1547.4000 0.5749 11.7774

reC21 2011

0.0174 0.0224 0.0189 2049.0000 1.6123 2.2361

HIGNDO 0.0000 0.0325 0.0065 1547.0667 0.5424 13.5153 0.0174 0.0194 0.0187 2048.5333 1.5865 1.9276

HGNDO 0.0000 0.0390 0.0085 1550.1000 0.7766 14.3256 0.0174 0.0214 0.0185 2048.1333 2.0050 2.2470

HMPA 0.0000 0.0410 0.0201 1567.9000 2.4736 16.1211 0.0174 0.0254 0.0192 2049.7000 3.7467 2.7221

HWOA 0.0000 0.0416 0.0176 1564.0000 1.1298 16.4033 0.0104 0.0194 0.0186 2048.3333 2.5842 3.5056

HEO 0.0085 0.0885 0.0251 1575.5667 0.3463 21.1624 0.0174 0.0363 0.0238 2058.7667 0.5330 10.2524

HSCA 0.0065 0.1516 0.0387 1596.4333 0.8261 66.8265 0.0174 0.1914 0.0344 2080.1667 1.2679 92.3263

HSSA 0.0072 0.1314 0.0308 1584.2667 0.1162 40.1355 0.0194 0.1875 0.0395 2090.3667 0.2040 91.4033

HTSA 0.0000 0.1913 0.0501 1614.0333 1.0061 89.8719 0.0174 0.1994 0.0864 2184.6667 1.5538 156.4899

HGA 0.0007 0.0416 0.0222 1571.1667 1.0296 15.5844 0.0174 0.0537 0.0266 2064.5333 1.5350 17.1692

Appl. Sci. 2021, 11, 4837 15 of 24

Table 5. Cont.

Inst Algorithm Z* BRE WRE ARE ZAvg Time(MS) SD Inst Z* BRE WRE ARE ZAvg Time(MS) SD

reC11

IHGNDO

1431

0.0000 0.0210 0.0070 1441.0000 0.6339 8.4735

reC23 2011

0.0050 0.0234 0.0120 2035.0333 1.6254 12.0706

HIGNDO 0.0000 0.0356 0.0091 1444.0667 0.5742 13.0024 0.0045 0.0338 0.0131 2037.2667 1.5891 14.7827

HGNDO 0.0000 0.0314 0.0153 1452.8333 0.8737 11.5126 0.0050 0.0264 0.0141 2039.4333 1.8821 14.7912

HMPA 0.0000 0.0894 0.0175 1456.1000 2.1720 23.8039 0.0060 0.0363 0.0220 2055.2333 3.4993 14.7098

HWOA 0.0000 0.0594 0.0176 1456.2333 1.1155 18.7664 0.0035 0.0318 0.0165 2044.1333 2.4370 16.3477

HEO 0.0049 0.0587 0.0240 1465.3000 0.3542 21.4043 0.0154 0.0467 0.0298 2070.9667 0.5241 16.7381

HSCA 0.0000 0.1600 0.0378 1485.0667 0.7505 72.6443 0.0050 0.1611 0.0278 2066.8667 1.2726 70.7327

HSSA 0.0000 0.1593 0.0273 1470.0333 0.1148 49.8233 0.0104 0.1785 0.0418 2095.1333 0.1994 77.4277

HTSA 0.0000 0.1824 0.0733 1535.9333 0.9973 108.4789 0.0080 0.2004 0.0755 2162.8667 1.5456 149.6422

HGA 0.0000 0.0496 0.0249 1466.6000 0.9958 18.7183 0.0050 0.0383 0.0266 2064.5667 1.5332 16.6046

Table 6. Comparison on the Reeve instances—(reC25-reC41).

Inst Algorithm Z* BRE WRE ARE ZAvg Time(MS) SD Inst Z* BRE WRE ARE ZAvg Time(MS) SD

reC25

IHGNDO

2513

0.0092 0.0342 0.0220 2568.2667 1.8688 16.9232

reC35 3277

0.0000 0.0000 0.0000 3277.0000 1.1526 0.0000

HIGNDO 0.0131 0.0390 0.0259 2577.9667 1.8352 17.1065 0.0000 0.0000 0.0000 3277.0000 0.9999 0.0000

HGNDO 0.0123 0.0390 0.0240 2573.2667 2.0970 19.5276 0.0000 0.0000 0.0000 3277.0000 0.6110 0.0000

HMPA 0.0139 0.0493 0.0319 2593.2000 3.8974 22.4179 0.0000 0.0034 0.0005 3278.7667 3.6242 3.7299

HWOA 0.0064 0.0458 0.0270 2580.8667 3.0302 21.6791 0.0000 0.0000 0.0000 3277.0000 1.2182 0.0000

HEO 0.0163 0.0505 0.0373 2606.6333 0.5912 21.3690 0.0000 0.0275 0.0026 3285.6333 0.9912 16.8750

HSCA 0.0107 0.1675 0.0493 2637.0000 1.4448 118.6139 0.0000 0.1202 0.0047 3292.5333 1.6490 70.4134

HSSA 0.0111 0.0517 0.0362 2604.0667 0.2289 23.8005 0.0000 0.1428 0.0148 3325.4000 0.4445 125.6247

HTSA 0.0147 0.1823 0.0729 2696.1000 1.7504 155.5443 0.0000 0.1385 0.0607 3476.0333 2.6465 199.8649

HGA 0.0171 0.0505 0.0348 2600.3333 1.8883 19.7017 0.0000 0.0284 0.0029 3286.6667 2.6794 16.4100

reC27

IHGNDO

2373

0.0088 0.0388 0.0220 2425.1667 1.8698 17.2937

reC37 4951

0.0297 0.0562 0.0448 5172.7667 17.3840 31.6698

HIGNDO 0.0097 0.0367 0.0191 2418.3333 1.8362 18.8279 0.0250 0.0578 0.0410 5154.2333 17.8260 34.6763

HGNDO 0.0105 0.0641 0.0222 2425.6000 2.1352 28.8335 0.0218 0.0523 0.0384 5141.0000 20.0077 41.1671

HMPA 0.0093 0.0426 0.0226 2426.5333 3.9037 17.9327 0.0382 0.0673 0.0495 5196.1333 13.1585 34.4710

HWOA 0.0088 0.0396 0.0197 2419.6667 3.0528 19.2238 0.0315 0.0529 0.0426 5161.7333 27.3170 31.0987

HEO 0.0147 0.0615 0.0303 2444.8667 0.5939 25.0941 0.0458 0.0766 0.0562 5229.4333 2.4868 35.6779

HSCA 0.0097 0.1774 0.0279 2439.1333 1.4628 67.6307 0.0307 0.2135 0.0681 5287.9667 6.5152 262.3587

HSSA 0.0139 0.1909 0.0364 2459.4667 0.2311 71.7378 0.0400 0.0755 0.0563 5229.8000 1.4355 42.7398

HTSA 0.0122 0.2174 0.0778 2557.7333 1.7549 192.4243 0.0372 0.2127 0.0757 5325.9000 7.3935 288.5887

HGA 0.0122 0.0590 0.0300 2444.2333 1.8881 24.9475 0.0404 0.0689 0.0562 5229.4667 7.4647 38.0059

reC29

IHGNDO

2287

0.0087 0.0468 0.0237 2341.1667 1.8542 22.1105

reC39 5087

0.0179 0.0352 0.0255 5216.5333 17.2536 20.5065

HIGNDO 0.0031 0.0704 0.0259 2346.3333 1.8314 33.3320 0.0090 0.0271 0.0188 5182.6667 18.4729 22.1891

HGNDO 0.0057 0.0503 0.0241 2342.1333 2.1269 25.1869 0.0094 0.0297 0.0208 5192.7333 20.9996 26.3438

HMPA 0.0144 0.0647 0.0319 2359.8667 3.8849 27.4733 0.0173 0.0472 0.0293 5235.8667 13.1493 39.1550

HWOA 0.0092 0.0582 0.0260 2346.5667 3.0756 28.2756 0.0132 0.0299 0.0202 5189.8667 27.4727 17.3661

HEO 0.0240 0.1552 0.0470 2394.4667 0.6039 54.5422 0.0283 0.0554 0.0406 5293.4000 2.5226 38.4106

HSCA 0.0153 0.2239 0.0772 2463.5000 1.4498 174.4799 0.0155 0.1928 0.0554 5368.9667 6.6178 299.1470

HSSA 0.0210 0.2147 0.0600 2424.1667 0.2285 125.7885 0.0348 0.2048 0.0575 5379.3667 1.4566 230.4488

HTSA 0.0149 0.2317 0.0726 2453.1000 1.7457 185.6707 0.0161 0.2058 0.0817 5502.6333 7.2613 387.9788

HGA 0.0162 0.0700 0.0359 2369.1000 1.8481 28.7557 0.0261 0.0499 0.0368 5274.1000 7.0018 28.4843

Appl. Sci. 2021, 11, 4837 16 of 24

Table 6. Cont.

Inst Algorithm Z* BRE WRE ARE ZAvg Time(MS) SD Inst Z* BRE WRE ARE ZAvg Time(MS) SD

reC31

IHGNDO

3045

0.0085 0.0276 0.0207 3108.0000 4.8699 18.6744

reC41 4960

0.0302 0.0569 0.0422 5169.2000 17.2578 31.5546

HIGNDO 0.0039 0.0276 0.0131 3084.9667 4.7237 19.3278 0.0252 0.0466 0.0368 5142.5667 18.9444 30.6884

HGNDO 0.0033 0.0276 0.0145 3089.2000 5.7295 24.3604 0.0204 0.0546 0.0359 5137.9333 20.3596 38.5650

HMPA 0.0151 0.0309 0.0245 3119.5000 6.4491 12.0796 0.0310 0.0575 0.0425 5170.6667 13.1488 34.8715

HWOA 0.0026 0.0348 0.0177 3098.9333 7.4365 26.6632 0.0236 0.0514 0.0373 5144.8667 27.8736 29.6533

HEO 0.0197 0.0525 0.0334 3146.8000 1.0823 20.8477 0.0369 0.0722 0.0527 5221.5333 2.4905 36.3187

HSCA 0.0154 0.1846 0.0547 3211.6000 2.6588 187.0270 0.0349 0.2119 0.0516 5216.0667 6.6015 151.4369

HSSA 0.0187 0.2125 0.0695 3256.5333 0.5026 203.7153 0.0399 0.0704 0.0549 5232.0667 1.4595 36.8953

HTSA 0.0138 0.1941 0.0663 3247.0000 3.1755 214.0903 0.0331 0.2407 0.0648 5281.2000 7.3321 276.2412

HGA 0.0223 0.0693 0.0342 3149.2000 3.0078 27.9552 0.0411 0.0774 0.0547 5231.3333 7.0161 35.3802

reC33

IHGNDO

3114

0.0058 0.0109 0.0084 3140.1333 4.8495 2.1868

HIGNDO 0.0000 0.0202 0.0085 3140.5000 4.7668 8.2735

HGNDO 0.0013 0.0202 0.0078 3138.3333 5.6585 11.2497

HMPA 0.0083 0.0202 0.0109 3147.9667 6.3048 13.6808

HWOA 0.0083 0.0083 0.0083 3140.0000 7.0735 0.0000

HEO 0.0071 0.0369 0.0160 3163.9000 1.0421 20.2227

HSCA 0.0013 0.1532 0.0190 3173.2000 2.6069 98.5341

HSSA 0.0039 0.1689 0.0250 3191.8667 0.4736 118.6611

HTSA 0.0022 0.1811 0.0923 3401.2667 3.0636 240.2365

HGA 0.0080 0.0466 0.0148 3160.0000 2.8183 24.0680
Appl. Sci. 2021, 9, x FOR PEER REVIEW 17 of 24

Figure 9. Comparison in terms of BRE, ARE, and WRE on Reeves instances.

Figure 10. Comparison in terms of time, SD, and Avg on Reeves instances.

Figure 11. Boxplot for reC01 instance.

BRE

ARE

WRE

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

IHGNDO HIGNDO HGNDO HMPA HWA HEO
HSCA HSSA

HTSA
HGA

0.0097 0.0078 0.0082 0.0119
0.0082 0.0154

0.0106 0.0148
0.0116 0.0142

0.0173 0.0165 0.0180 0.0232
0.0194 0.0301 0.0398 0.0393

0.0737

0.0282

0.028 0.030 0.034 0.048
0.036

0.065

0.165

0.139

0.191

0.053

Algorithms

Time

SD

Avg

0

500

1000

1500

2000

2500

3000

IHGNDO HIGNDO HGNDO HMPA HWA HEO
HSCA HSSA

HTSA
HGA

3.772 3.898 4.448 4.800 5.968 0.822 2.021 0.388 2.399
2.371

12.04 13.64 16.63 19.21 15.43 23.86 106.38
74.84 164.31

21.14

2507.76 2503.60 2505.97 2520.32 2509.26 2538.43 2561.20 2560.47 2638.39
2534.65

Algorithms

Figure 9. Comparison in terms of BRE, ARE, and WRE on Reeves instances.

Appl. Sci. 2021, 11, 4837 17 of 24

Appl. Sci. 2021, 9, x FOR PEER REVIEW 17 of 24

Figure 9. Comparison in terms of BRE, ARE, and WRE on Reeves instances.

Figure 10. Comparison in terms of time, SD, and Avg on Reeves instances.

Figure 11. Boxplot for reC01 instance.

BRE

ARE

WRE

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

IHGNDO HIGNDO HGNDO HMPA HWA HEO
HSCA HSSA

HTSA
HGA

0.0097 0.0078 0.0082 0.0119
0.0082 0.0154

0.0106 0.0148
0.0116 0.0142

0.0173 0.0165 0.0180 0.0232
0.0194 0.0301 0.0398 0.0393

0.0737

0.0282

0.028 0.030 0.034 0.048
0.036

0.065

0.165

0.139

0.191

0.053

Algorithms

Time

SD

Avg

0

500

1000

1500

2000

2500

3000

IHGNDO HIGNDO HGNDO HMPA HWA HEO
HSCA HSSA

HTSA
HGA

3.772 3.898 4.448 4.800 5.968 0.822 2.021 0.388 2.399
2.371

12.04 13.64 16.63 19.21 15.43 23.86 106.38
74.84 164.31

21.14

2507.76 2503.60 2505.97 2520.32 2509.26 2538.43 2561.20 2560.47 2638.39
2534.65

Algorithms

Figure 10. Comparison in terms of time, SD, and Avg on Reeves instances.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 17 of 24

Figure 9. Comparison in terms of BRE, ARE, and WRE on Reeves instances.

Figure 10. Comparison in terms of time, SD, and Avg on Reeves instances.

Figure 11. Boxplot for reC01 instance.

BRE

ARE

WRE

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

IHGNDO HIGNDO HGNDO HMPA HWA HEO
HSCA HSSA

HTSA
HGA

0.0097 0.0078 0.0082 0.0119
0.0082 0.0154

0.0106 0.0148
0.0116 0.0142

0.0173 0.0165 0.0180 0.0232
0.0194 0.0301 0.0398 0.0393

0.0737

0.0282

0.028 0.030 0.034 0.048
0.036

0.065

0.165

0.139

0.191

0.053

Algorithms

Time

SD

Avg

0

500

1000

1500

2000

2500

3000

IHGNDO HIGNDO HGNDO HMPA HWA HEO
HSCA HSSA

HTSA
HGA

3.772 3.898 4.448 4.800 5.968 0.822 2.021 0.388 2.399
2.371

12.04 13.64 16.63 19.21 15.43 23.86 106.38
74.84 164.31

21.14

2507.76 2503.60 2505.97 2520.32 2509.26 2538.43 2561.20 2560.47 2638.39
2534.65

Algorithms

Figure 11. Boxplot for reC01 instance.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 18 of 24

Figure 12. Boxplot for reC03 instance.

Figure 13. Boxplot for reC05 instance.

Figure 14. Boxplot for reC07 instance.

Figure 12. Boxplot for reC03 instance.

Appl. Sci. 2021, 11, 4837 18 of 24

Appl. Sci. 2021, 9, x FOR PEER REVIEW 18 of 24

Figure 12. Boxplot for reC03 instance.

Figure 13. Boxplot for reC05 instance.

Figure 14. Boxplot for reC07 instance.

Figure 13. Boxplot for reC05 instance.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 18 of 24

Figure 12. Boxplot for reC03 instance.

Figure 13. Boxplot for reC05 instance.

Figure 14. Boxplot for reC07 instance. Figure 14. Boxplot for reC07 instance.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 19 of 24

Figure 15. Boxplot for reC09 instance.

Figure 16. Boxplot for reC11 instance.

Figure 17. Boxplot for reC13 instance.

Figure 15. Boxplot for reC09 instance.

Appl. Sci. 2021, 11, 4837 19 of 24

Appl. Sci. 2021, 9, x FOR PEER REVIEW 19 of 24

Figure 15. Boxplot for reC09 instance.

Figure 16. Boxplot for reC11 instance.

Figure 17. Boxplot for reC13 instance.

Figure 16. Boxplot for reC11 instance.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 19 of 24

Figure 15. Boxplot for reC09 instance.

Figure 16. Boxplot for reC11 instance.

Figure 17. Boxplot for reC13 instance.

Figure 17. Boxplot for reC13 instance.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 19 of 24

Figure 15. Boxplot for reC09 instance.

Figure 16. Boxplot for reC11 instance.

Figure 17. Boxplot for reC13 instance.

Figure 18. Boxplot for reC15 instance.

Appl. Sci. 2021, 11, 4837 20 of 24

Appl. Sci. 2021, 9, x FOR PEER REVIEW 20 of 24

Figure 18. Boxplot for reC15 instance.

Figure 19. Boxplot for reC17 instance.

5.3. Comparison under Heller
Here, the proposed algorithms will be compared to the other algorithms under the

Heller instances. In Table 7, various performance metrics values are exposed that show
the superiority of IHGNDO in terms of ARE and 𝑍 for the Hel1 instance and compet-
itiveness with HIGNDO on Hel2 in terms of WRE, ARE, Time, SD, and 𝑍 . Furthermore,
for doing that, Figures 20 and 21 are exposed to show the average of WRE, ARE, SD, Time,
Avg makespan, and BRE; those figures showed that IHGNDO is the best in terms of ARE,
WRE, and Avg makespan; HIGNDO could be superior for Time and SD metrics; and all
algorithms are competitive for BRE metric. Figures 22 and 23 depict the boxplot of
makespan values produced in 30 independent runs on Hel1 and Hel2 using various opti-
mization algorithms. From those figures, it is concluded that IHGNDO is the best.

Table 7. Comparison on the Heller instances.

Inst Algorithm 𝒁∗ BRE WRE ARE 𝒁𝑨𝒗𝒈 Time(MS) SD Inst 𝒁∗ BRE WRE ARE 𝒁𝑨𝒗𝒈 Time(MS) SD

Hel1

IHGNDO

516

−0.0019 0.0000 −0.0005 515.7667 6.3275 0.4230

Hel2 136

0.0000 0.0074 0.0040 136.5333 0.6642 0.4819
HIGNDO −0.0019 0.0019 −0.0001 515.9333 7.0816 0.3590 0.0000 0.0074 0.0040 136.5333 0.5195 0.4819
HGNDO −0.0019 0.0058 −0.0001 515.9667 13.8456 0.7520 0.0000 0.0147 0.0059 136.8000 0.7227 0.5416
HMPA 0.0000 0.0058 0.0016 516.8333 12.3427 1.0355 0.0000 0.0294 0.0098 137.3333 2.3587 0.9428
HWOA −0.0019 0.0000 −0.0002 515.9000 7.5461 0.3000 0.0000 0.0147 0.0044 136.6000 0.7650 0.6110

HEO −0.0019 0.0174 0.0045 518.3333 3.2206 2.0221 0.0000 0.0368 0.0154 138.1000 0.3749 1.3503
HSCA −0.0019 0.1105 0.0180 525.2667 6.0083 20.0382 0.0000 0.1176 0.0137 137.8667 0.8138 3.5659
HSSA 0.0000 0.1105 0.0155 524.0000 2.0489 15.3188 0.0000 0.1397 0.0213 138.9000 0.1299 3.3101
HTSA −0.0019 0.1202 0.0470 540.2333 7.4086 27.0502 0.0000 0.1618 0.0551 143.5000 1.0492 8.4370
HGA −0.0019 0.0078 0.0028 517.4667 7.9189 1.4314 0.0000 0.0515 0.0162 138.2000 1.0993 1.4697

Figure 19. Boxplot for reC17 instance.

5.3. Comparison under Heller

Here, the proposed algorithms will be compared to the other algorithms under the
Heller instances. In Table 7, various performance metrics values are exposed that show
the superiority of IHGNDO in terms of ARE and ZAvg for the Hel1 instance and competi-
tiveness with HIGNDO on Hel2 in terms of WRE, ARE, Time, SD, and ZAvg. Furthermore,
for doing that, Figures 20 and 21 are exposed to show the average of WRE, ARE, SD,
Time, Avg makespan, and BRE; those figures showed that IHGNDO is the best in terms
of ARE, WRE, and Avg makespan; HIGNDO could be superior for Time and SD metrics;
and all algorithms are competitive for BRE metric. Figures 22 and 23 depict the boxplot
of makespan values produced in 30 independent runs on Hel1 and Hel2 using various
optimization algorithms. From those figures, it is concluded that IHGNDO is the best.

Table 7. Comparison on the Heller instances.

Inst Algorithm Z* BRE WRE ARE ZAvg Time(MS) SD Inst Z* BRE WRE ARE ZAvg Time(MS) SD

Hel1

IHGNDO

516

−0.0019 0.0000 −0.0005 515.7667 6.3275 0.4230

He12 136

0.0000 0.0074 0.0040 136.5333 0.6642 0.4819

HIGNDO −0.0019 0.0019 −0.0001 515.9333 7.0816 0.3590 0.0000 0.0074 0.0040 136.5333 0.5195 0.4819

HGNDO −0.0019 0.0058 −0.0001 515.9667 13.8456 0.7520 0.0000 0.0147 0.0059 136.8000 0.7227 0.5416

HMPA 0.0000 0.0058 0.0016 516.8333 12.3427 1.0355 0.0000 0.0294 0.0098 137.3333 2.3587 0.9428

HWOA −0.0019 0.0000 −0.0002 515.9000 7.5461 0.3000 0.0000 0.0147 0.0044 136.6000 0.7650 0.6110

HEO −0.0019 0.0174 0.0045 518.3333 3.2206 2.0221 0.0000 0.0368 0.0154 138.1000 0.3749 1.3503

HSCA −0.0019 0.1105 0.0180 525.2667 6.0083 20.0382 0.0000 0.1176 0.0137 137.8667 0.8138 3.5659

HSSA 0.0000 0.1105 0.0155 524.0000 2.0489 15.3188 0.0000 0.1397 0.0213 138.9000 0.1299 3.3101

HTSA −0.0019 0.1202 0.0470 540.2333 7.4086 27.0502 0.0000 0.1618 0.0551 143.5000 1.0492 8.4370

HGA −0.0019 0.0078 0.0028 517.4667 7.9189 1.4314 0.0000 0.0515 0.0162 138.2000 1.0993 1.4697Appl. Sci. 2021, 9, x FOR PEER REVIEW 21 of 24

Figure 20. Comparison in terms of BRE, ARE, and WRE on Heller instances.

Figure 21. Comparison in terms of time, SD, and Avg on Heller instances.

Figure 22. Boxplot for Hel1 instance.

BRE
ARE
WRE-0.02

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

IHGNDO HIGNDO HGNDO HMPA HWA HEO HSCA HSSA HTSA HGA

-0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 0.000
-0.001 -0.001

0.00210 0.0019 0.0029 0.00571
0.0021 0.0100 0.0158 0.0184

0.0511

0.0095

0.004 0.005 0.010 0.018
0.007

0.027

0.114 0.125
0.141

0.030

Time

SD
Avg

0

50

100

150

200

250

300

350

IHGNDO HIGNDO HGNDO HMPA HWA HEO HSCA HSSA HTSA HGA

0.452 0.429 0.647 0.989 0.456 1.686 11.802
9.314 17.744

1.451

5.00 3.80 7.28 7.35 4.16 1.80 3.41 1.09 4.23 4.51

326.20 326.23 326.38 327.08 326.25 328.22 331.57 331.45 341.87
327.83

Figure 20. Comparison in terms of BRE, ARE, and WRE on Heller instances.

Appl. Sci. 2021, 11, 4837 21 of 24

Appl. Sci. 2021, 9, x FOR PEER REVIEW 21 of 24

Figure 20. Comparison in terms of BRE, ARE, and WRE on Heller instances.

Figure 21. Comparison in terms of time, SD, and Avg on Heller instances.

Figure 22. Boxplot for Hel1 instance.

BRE
ARE
WRE-0.02

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

IHGNDO HIGNDO HGNDO HMPA HWA HEO HSCA HSSA HTSA HGA

-0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 0.000
-0.001 -0.001

0.00210 0.0019 0.0029 0.00571
0.0021 0.0100 0.0158 0.0184

0.0511

0.0095

0.004 0.005 0.010 0.018
0.007

0.027

0.114 0.125
0.141

0.030

Time

SD
Avg

0

50

100

150

200

250

300

350

IHGNDO HIGNDO HGNDO HMPA HWA HEO HSCA HSSA HTSA HGA

0.452 0.429 0.647 0.989 0.456 1.686 11.802
9.314 17.744

1.451

5.00 3.80 7.28 7.35 4.16 1.80 3.41 1.09 4.23 4.51

326.20 326.23 326.38 327.08 326.25 328.22 331.57 331.45 341.87
327.83

Figure 21. Comparison in terms of time, SD, and Avg on Heller instances.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 21 of 24

Figure 20. Comparison in terms of BRE, ARE, and WRE on Heller instances.

Figure 21. Comparison in terms of time, SD, and Avg on Heller instances.

Figure 22. Boxplot for Hel1 instance.

BRE
ARE
WRE-0.02

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

IHGNDO HIGNDO HGNDO HMPA HWA HEO HSCA HSSA HTSA HGA

-0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 0.000
-0.001 -0.001

0.00210 0.0019 0.0029 0.00571
0.0021 0.0100 0.0158 0.0184

0.0511

0.0095

0.004 0.005 0.010 0.018
0.007

0.027

0.114 0.125
0.141

0.030

Time

SD
Avg

0

50

100

150

200

250

300

350

IHGNDO HIGNDO HGNDO HMPA HWA HEO HSCA HSSA HTSA HGA

0.452 0.429 0.647 0.989 0.456 1.686 11.802
9.314 17.744

1.451

5.00 3.80 7.28 7.35 4.16 1.80 3.41 1.09 4.23 4.51

326.20 326.23 326.38 327.08 326.25 328.22 331.57 331.45 341.87
327.83

Figure 22. Boxplot for Hel1 instance.

Appl. Sci. 2021, 9, x FOR PEER REVIEW 22 of 24

Figure 23. Boxplot for Hel2 instance.

6. Conclusions and Future Work
As a new attempt to produce a new algorithm that could tackle the permutation flow

shop scheduling problem (PFSSP), in this paper, we investigate the performance of a novel
optimization algorithm, namely generalized normal distribution (GNDO), for solving this
problem. Due to the continuous nature of GNDO and the discreteness of PFSSP, the larg-
est ranked value (LRV) rule is used to make GNDO applicable for solving this problem.
In a new attempt to improve the performance of the discrete GNDO, a new version of
GNDO, namely a hybrid GNDO (HGNDO), is developed based on applying a local search
strategy to improve the quality of the optimal global solution. In addition, the GNDO has
an improvement by also applying the swap mutation operator on the best-so-far solution
to find better solutions, and this improvement is integrated with HGNDO to produce a
new version, namely HIGNDO. Finally, the scramble mutation operator is integrated with
the local search strategy to utilize each attempt done by this local search for improving
the best-so-far solution as much as possible; this local search is used with the improved
GNDO using the swap mutation operator to produce a strong version abbreviated as IH-
GNDO for tackling the PFSSP. To validate the performance of the algorithms accurately,
41 common instances used widely in the literature are employed. Additionally, to check
the proposed superiority, they are extensively compared with some well-established re-
cently-published optimization algorithms using various performance metrics. The find-
ings show that HIGNDO and IHGNDO could be superior in terms of standard deviation,
CPU time, and makespan. Those findings also show that IHGNDO is better than HI-
GNDO for most performance metrics, and this confirms the effectiveness of our improve-
ment to the local search strategy. Our future work involves applying those proposed al-
gorithms for tackling other types of the flow shop scheduling problem.

Author Contributions: Conceptualization, M.A.-B., R.M., and M.A.; methodology, M.A.-B., R.M.,
and M.A.; software, M.A.-B. and R.M.; validation, M.A., M.A.-B., R.M..; formal analysis, M.A.-B.,
R.M., and M.A.; investigation, S.S.A., V.C., and M.A.; resources, M.A.-B. and R.M.; data curation,
M.A.-B., R.M., and M.A.; writing—original draft preparation, M.A.-B., R.M., and M.A.; writing—
review and editing, S.S.A., V.C., and M. A.; visualization, M.A.-B., M.A., and R.M.; supervision,
M.A., M.A.-B., and S.S.A.; project administration, M.A.-B., R.M., and M.A.; funding acquisition,
S.S.A. All authors have read and agreed to the published version of the manuscript.

Funding: This project is funded by King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: The study did not involve humans or animals.

Informed Consent Statement: The study did not involve humans.

Figure 23. Boxplot for Hel2 instance.

Appl. Sci. 2021, 11, 4837 22 of 24

6. Conclusions and Future Work

As a new attempt to produce a new algorithm that could tackle the permutation flow
shop scheduling problem (PFSSP), in this paper, we investigate the performance of a novel
optimization algorithm, namely generalized normal distribution (GNDO), for solving this
problem. Due to the continuous nature of GNDO and the discreteness of PFSSP, the largest
ranked value (LRV) rule is used to make GNDO applicable for solving this problem. In a
new attempt to improve the performance of the discrete GNDO, a new version of GNDO,
namely a hybrid GNDO (HGNDO), is developed based on applying a local search strategy
to improve the quality of the optimal global solution. In addition, the GNDO has an
improvement by also applying the swap mutation operator on the best-so-far solution
to find better solutions, and this improvement is integrated with HGNDO to produce a
new version, namely HIGNDO. Finally, the scramble mutation operator is integrated with
the local search strategy to utilize each attempt done by this local search for improving
the best-so-far solution as much as possible; this local search is used with the improved
GNDO using the swap mutation operator to produce a strong version abbreviated as
IHGNDO for tackling the PFSSP. To validate the performance of the algorithms accurately,
41 common instances used widely in the literature are employed. Additionally, to check the
proposed superiority, they are extensively compared with some well-established recently-
published optimization algorithms using various performance metrics. The findings show
that HIGNDO and IHGNDO could be superior in terms of standard deviation, CPU time,
and makespan. Those findings also show that IHGNDO is better than HIGNDO for most
performance metrics, and this confirms the effectiveness of our improvement to the local
search strategy. Our future work involves applying those proposed algorithms for tackling
other types of the flow shop scheduling problem.

Author Contributions: Conceptualization, M.A.-B., R.M., and M.A.; methodology, M.A.-B., R.M.,
and M.A.; software, M.A.-B. and R.M.; validation, M.A., M.A.-B., R.M..; formal analysis, M.A.-B.,
R.M., and M.A.; investigation, S.S.A., V.C., and M.A.; resources, M.A.-B. and R.M.; data curation,
M.A.-B., R.M., and M.A.; writing—original draft preparation, M.A.-B., R.M., and M.A.; writing—
review and editing, S.S.A., V.C., and M.A.; visualization, M.A.-B., M.A., and R.M.; supervision, M.A.,
M.A.-B., and S.S.A.; project administration, M.A.-B., R.M. and M.A.; funding acquisition, S.S.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This project is funded by King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: The study did not involve humans or animals.

Informed Consent Statement: The study did not involve humans.

Data Availability Statement: We refer to data in the paper as following “The data sets used, can
be available online: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt”, accessed
1 March 2021, Brunel University London Subject: flowshop1.txt This file contains a set of 31 FSP test
instances. These instances were contributed to OR-Library by Dirk C. Mattfeld (email dirk@uni-
bremen.de) and Rob J.M. Vaessens (email robv@win.tue.nl). people.brunel.ac.uk.

Acknowledgments: Research Supporting Project number (RSP−2021/167), King Saud University,
Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sayadi, M.; Ramezanian, R.; Ghaffari-Nasab, N. A discrete firefly meta-heuristic with local search for makespan minimization in

permutation flow shop scheduling problems. Int. J. Ind. Eng. Comput. 2010, 1, 1–10. [CrossRef]
2. Ali, A.B.; Luque, G.; Alba, E. An efficient discrete PSO coupled with a fast local search heuristic for the DNA fragment assembly

problem. Inf. Sci. 2020, 512, 880–908.
3. Li, Y.; He, Y.; Liu, X.; Guo, X.; Li, Z. A novel discrete whale optimization algorithm for solving knapsack problems. Appl. Intell.

2020, 50, 3350–3366. [CrossRef]
4. Diab, A.A.; Sultan, H.M.; Do, T.D.; Kamel, O.M.; Mossa, M.A. Coyote optimization algorithm for parameters estimation of

various models of solar cells and PV modules. IEEE Access 2020, 8, 111102–111140. [CrossRef]

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt
http://doi.org/10.5267/j.ijiec.2010.01.001
http://doi.org/10.1007/s10489-020-01722-3
http://doi.org/10.1109/ACCESS.2020.3000770

Appl. Sci. 2021, 11, 4837 23 of 24

5. Fidanova, S. Hybrid Ant Colony Optimization Algorithm for Multiple Knapsack Problem. In Proceedings of the 2020 5th IEEE
International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, 1–3 December 2020.

6. Gokalp, O.; Tasci, E.; Ugur, A. A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment
classification. Expert Syst. Appl. 2020, 146, 113176. [CrossRef]

7. Tseng, F.T.; Stafford, E.F., Jr. New MILP models for the permutation flowshop problem. J. Oper. Res. Soc. 2008, 59, 1373–1386.
[CrossRef]

8. Madhushini, N.; Rajendran, C. Branch-and-bound algorithms for scheduling in an m-machine permutation flowshop with a
single objective and with multiple objectives. Eur. J. Ind. Eng. 2011, 5, 361–387. [CrossRef]

9. Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983,
11, 91–95. [CrossRef]

10. Al-Habob, A.A.; Dobre, O.A.; Armada, A.G.; Muhaidat, S. Task scheduling for mobile edge computing using genetic algorithm
and conflict graphs. IEEE Trans. Veh. Technol. 2020, 69, 8805–8819. [CrossRef]

11. Montoya, O.; Gil-González, W.; Grisales-Noreña, L. Sine-cosine algorithm for parameters’ estimation in solar cells using datasheet
information. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020.

12. Xiong, L.; Tang, G.; Chen, Y.C.; Hu, Y.X.; Chen, R.S. Color disease spot image segmentation algorithm based on chaotic particle
swarm optimization and FCM. J. Supercomput. 2020, 22, 1–15. [CrossRef]

13. Sharma, M.; Garg, R. HIGA: Harmony-inspired genetic algorithm for rack-aware energy-efficient task scheduling in cloud data
centers. Eng. Sci. Technol. Int. J. 2020, 23, 211–224. [CrossRef]

14. Berry, M.V.; Lewis, Z.V.; Nye, J.F. On the Weierstrass-Mandelbrot fractal function. Math. Phys. Sci. 1980, 370, 459–484.
15. Guariglia, E.J.E. Entropy and fractal antennas. Entropy 2016, 18, 84. [CrossRef]
16. Yang, L.; Su, H.; Zhong, C.; Meng, Z.; Luo, H.; Li, X.; Tang, Y.Y.; Lu, Y. Hyperspectral image classification using wavelet

transform-based smooth ordering. Int. J. Wavelets Multiresolut. Inf. Process. 2019, 17, 1950050. [CrossRef]
17. Guariglia, E.J.E. Harmonic sierpinski gasket and applications. Entropy 2018, 20, 714. [CrossRef]
18. Zheng, X.; Tang, Y.Y.; Zhou, J. A framework of adaptive multiscale wavelet decomposition for signals on undirected graphs. IEEE

Trans. Signal Process. 2019, 67, 1696–1711. [CrossRef]
19. Guariglia, E.; Silvestrov, S. Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on D′(C). In Engineering

Mathematics II; Springer: Berlin/Heidelberg, Germany, 2016; pp. 337–353.
20. Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. In Fundamental Papers in Wavelet

Theory; Springer: Berlin/Heidelberg, Germany, 1989; Volume 11, pp. 674–693.
21. Jia, H.; Lang, C.; Oliva, D.; Song, W.; Peng, X. Dynamic harris hawks optimization with mutation mechanism for satellite image

segmentation. Remote Sens. 2019, 11, 1421. [CrossRef]
22. Liu, B.; Wang, L.; Jin, Y.-H. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern.

Part B (Cybern.) 2007, 37, 18–27. [CrossRef]
23. Cao, Y.; Zhang, H.; Li, W.; Zhou, M.; Zhang, Y.; Chaovalitwongse, W.A. Comprehensive learning particle swarm optimization

algorithm with local search for multimodal functions. IEEE Trans. Evol. Comput. 2018, 23, 718–731. [CrossRef]
24. Chen, J.; Qin, Z.; Liu, Y.; Lu, J. Particle swarm optimization with local search. In Proceedings of the 2005 International Conference

on Neural Networks and Brain, Beijing, China, 13–15 October 2005.
25. Chen, R.-M.; Shih, H.-F.J.A. Solving university course timetabling problems using constriction particle swarm optimization with

local search. Algorithms 2013, 6, 227–244. [CrossRef]
26. Javidi, M.M.; Emami, N. A hybrid search method of wrapper feature selection by chaos particle swarm optimization and local

search. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 3852–3861. [CrossRef]
27. Moslehi, G.; Mahnam, M. A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm

optimization and local search. Int. J. Prod. Econ. 2011, 129, 14–22. [CrossRef]
28. Wan, C.; Wang, J.; Yang, G.; Gu, H.; Zhang, X. Wind farm micro-siting by Gaussian particle swarm optimization with local search

strategy. Renew. Energy 2012, 48, 276–286. [CrossRef]
29. Wang, L.; Singh, C. Reserve-constrained multiarea environmental/economic dispatch based on particle swarm optimization with

local search. Eng. Appl. Artif. Intell. 2009, 22, 298–307. [CrossRef]
30. Li, X.; Yin, M. A hybrid cuckoo search via Lévy flights for the permutation flow shop scheduling problem. Int. J. Prod. Res. 2013,

51, 4732–4754. [CrossRef]
31. Liu, Y.-F.; Liu, S.-Y. A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling problem. Appl. Soft

Comput. 2013, 13, 1459–1463. [CrossRef]
32. Xie, Z.; Zhang, C.; Shao, X.; Lin, W.; Zhu, H. An effective hybrid teaching–learning-based optimization algorithm for permutation

flow shop scheduling problem. Adv. Eng. Softw. 2014, 77, 35–47. [CrossRef]
33. Li, X.; Yin, M. An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity

measure. Adv. Eng. Softw. 2013, 55, 10–31. [CrossRef]
34. Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. A hybrid whale optimization algorithm based on local search strategy

for the permutation flow shop scheduling problem. Future Gener. Comput. Syst. 2018, 85, 129–145. [CrossRef]
35. Mishra, A.; Shrivastava, D. A discrete Jaya algorithm for permutation flow-shop scheduling problem. Int. J. Ind. Eng. Comput.

2020, 11, 415–428. [CrossRef]

http://doi.org/10.1016/j.eswa.2020.113176
http://doi.org/10.1057/palgrave.jors.2602455
http://doi.org/10.1504/EJIE.2011.042737
http://doi.org/10.1016/0305-0483(83)90088-9
http://doi.org/10.1109/TVT.2020.2995146
http://doi.org/10.1007/s11227-020-03171-8
http://doi.org/10.1016/j.jestch.2019.03.009
http://doi.org/10.3390/e18030084
http://doi.org/10.1142/S0219691319500504
http://doi.org/10.3390/e20090714
http://doi.org/10.1109/TSP.2019.2896246
http://doi.org/10.3390/rs11121421
http://doi.org/10.1109/TSMCB.2006.883272
http://doi.org/10.1109/TEVC.2018.2885075
http://doi.org/10.3390/a6020227
http://doi.org/10.3906/elk-1404-220
http://doi.org/10.1016/j.ijpe.2010.08.004
http://doi.org/10.1016/j.renene.2012.04.052
http://doi.org/10.1016/j.engappai.2008.07.007
http://doi.org/10.1080/00207543.2013.767988
http://doi.org/10.1016/j.asoc.2011.10.024
http://doi.org/10.1016/j.advengsoft.2014.07.006
http://doi.org/10.1016/j.advengsoft.2012.09.003
http://doi.org/10.1016/j.future.2018.03.020
http://doi.org/10.5267/j.ijiec.2019.12.001

Appl. Sci. 2021, 11, 4837 24 of 24

36. Li, J.; Guo, L.; Li, Y.; Liu, C.; Wang, L.; Hu, H. Enhancing Whale Optimization Algorithm with Chaotic Theory for Permutation
Flow Shop Scheduling Problem. Int. J. Comput. Intell. Syst. 2021, 14, 651–675. [CrossRef]

37. He, L.; Li, W.; Zhang, Y.; Cao, Y. A discrete multi-objective fireworks algorithm for flowshop scheduling with sequence-dependent
setup times. Swarm Evol. Comput. 2019, 51, 100575. [CrossRef]

38. Zhang, Y.; Jin, Z.; Mirjalili, S. Generalized normal distribution optimization and its applications in parameter extraction of
photovoltaic models. Energy Convers. Manag. 2020, 224, 113301. [CrossRef]

39. Carlier, J. Ordonnancements a contraintes disjonctives. Rairo-Oper. Res. 1978, 12, 333–350. [CrossRef]
40. Reeves, C.R. A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 1995, 22, 5–13. [CrossRef]
41. Heller, J. Some numerical experiments for an M× J flow shop and its decision-theoretical aspects. Oper. Res. 1960, 8, 178–184.

[CrossRef]
42. Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chakrabortty, R.K.; Ryan, M.J. A Simple and Effective Approach for Tackling

the Permutation Flow Shop Scheduling Problem. Mathematics 2021, 9, 270. [CrossRef]
43. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
44. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
45. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based

Syst. 2020, 191, 105190. [CrossRef]
46. Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm

for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]

http://doi.org/10.2991/ijcis.d.210112.002
http://doi.org/10.1016/j.swevo.2019.100575
http://doi.org/10.1016/j.enconman.2020.113301
http://doi.org/10.1051/ro/1978120403331
http://doi.org/10.1016/0305-0548(93)E0014-K
http://doi.org/10.1287/opre.8.2.178
http://doi.org/10.3390/math9030270
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.knosys.2019.105190
http://doi.org/10.1016/j.engappai.2020.103541

	Introduction
	Description of the Permutation Flow Shop Scheduling Problem
	Standard Algorithm: Generalized Normal Distribution Optimization
	Exploitation Operator
	Exploration Operator

	The Proposed Work
	Initialization
	Swap Mutation Operator
	Scramble Mutation Operator
	Improved Local Search Strategy (ILSS)

	Results and Comparisons
	Comparison under Carlier
	Comparison under Reeves
	Comparison under Heller

	Conclusions and Future Work
	References

