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A B S T R A C T   

Water transparency, commonly measured as Secchi disk depth (SDD), is essential for describing the optical 
properties of coastal waters. We proposed a regional linear corrected SDD estimation model based on the North 
Sea Mathematical Models for GOCI and the mechanical model developed by Lee et al. (2015) in the Jiaozhou 
Bay. Combined with the multiple variable linear regression analysis, the diurnal SDD variations of the bay inside 
and the bay mouth are controlled by the solar zenith angle (SZA) and tides. The bay outside mainly varies with 
SZA. From GOCI observations between 2011 and 2021, wind force influenced the entire area on the inner-annual 
SDD variations. It exhibits an increasing trend in the inter-annual dynamics, which was more stable inside the 
bay with an annual increase of 0.035 m, and air temperature was the most significant contribution. However, 
human activities cannot be ignored in causing water environment changes.   

1. Introduction 

As the transitional waters between ocean and land, the marine 
environment and ecosystem in the coastal water are easily affected by 
land, sea, and human development activities (Shanmugam et al., 2011), 
and the optical properties of water bodies are very complex (Ibrahim 
et al., 2018). As a common indicator of water quality evaluation (Aas 
et al., 2014), Water transparency quantified by Secchi disk depth (SDD) 
has been widely used in various countries for the management and 
monitoring of coastal water environments (Holland, 1993). Due to the 
simplicity and low cost, the SDD measurement plays a vital role in 
coastal hydrodynamic changes (Taillie et al., 2020), a load of water 
nutrients (Paerl et al., 2006), suspended sediments (Testa et al., 2019), 
and phytoplankton biomass (Kukushkin, 2014), and the primary pro-
ductivity of underwater ecosystem (Gattuso et al., 2006). However, field 
measurement consumes a lot of workforce and material resources. The 
obtained data are discrete in time and space and have poor synchroni-
zation, which cannot meet the needs of real-time dynamic and long-term 
continuous observation of water bodies. Satellite remote sensing pro-
vides extensive area coverage in real-time with a short access cycle and 

has become an essential means of water transparency monitoring 
(Alparslan et al., 2007; Dekker and Peters, 1993; N. Li et al., 2019). 

The observation of water by satellite remote sensing technology is 
mainly carried out by polar orbit satellites equipped with optical sen-
sors, such as Moderate Resolution Imaging Spectroradiometer (MODIS) 
(Harma et al., 2001; Menken et al., 2006; Ritchie et al., 1990), Landsat 
(Harrington et al., 1992; Lymburner et al., 2016; Pardo-Pascual et al., 
2012), Sentinel-2 (Qing et al., 2021; Wang and Atkinson, 2018), etc. In 
the mid-latitudes, the repeated observation periods of satellites for the 
same region are at least half or one day, some reaching 16 days, which is 
far from meeting the demand for short-term dynamic observations of the 
coastal area. Compared with polar orbit satellites, geostationary orbit 
satellites can cover nearly a third of the Earth's area, achieve continuous 
observation of the same place and significantly improve the ability to 
monitor and evaluate coastal marine dynamics. In 2010, South Korea 
launched the world's first geostationary orbit ocean color satellite called 
Communication, Ocean & Meteorological Satellite (COMS). The earth 
synchronous ocean color imager (GOCI) boarded on COMS can obtain 
eight hourly observations every day that increased cloudless observation 
frequency. It covers the Bohai Sea, the Yellow Sea, and part of the East 
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China Sea. It provides support for the SDD dynamic observation in 
coastal waters of China and the monitoring of related short-term marine 
phenomena (Doxaran et al., 2014), such as tides (Choi et al., 2014) and 
sea surface currents (Chen et al., 2019a). 

In previous studies, the monitoring of the dynamic changes of water 
transparency in China has mainly focused on ecosystems of oceans 
(Chen et al., 2019b; He et al., 2017), inland lakes (Liu et al., 2021; Liu 
et al., 2020; Shen et al., 2020; Song et al., 2020), and rivers (Zhao et al., 
2011). In terms of the driving factors of SDD spatial-temporal variation, 
the spatial distribution is related to the significant differences in water 
depth (Liu et al., 2020; Yin et al., 2021a) and altitude (Wang et al., 
2020). From the time series perspective, the water components, such as 
chlorophyll-a, suspended particulate, and chromophoric dissolved 
organic matter, are the main factors causing underwater light penetra-
tion (Jia et al., 2018; Mao et al., 2018; Wu et al., 2009). The diurnal 
variation is primarily affected by the solar zenith angle (Mao et al., 
2018) and tidal current (Shi et al., 2011). Seasonal and interannual 
variations are related to water stability dynamics (Bai et al., 2020; Kim 
et al., 2015; Mao et al., 2018) caused by multiple changes in runoff 
sediment (Ren et al., 2018; Zhao et al., 2021), wind speed (Shi et al., 
2018; Zeng et al., 2020), rainfall (Li et al., 2021; Zhang et al., 2021), air 
temperature (Yin et al., 2021b; Zhang et al., 2014; Zhou et al., 2019), sea 
surface temperature (He et al., 2017), and average sunshine (Zhang 
et al., 2018), and combined effected by human activities such as gross 
domestic product (Wang et al., 2020), silt dredging (Jing et al., 2019), 
and water conservancy projects (Ren et al., 2018). However, the 
research on the contribution of each driving factor to SDD dynamic 
changes is not sufficient. 

Water transparency variations are closely related to environmental 
conditions (Olmanson et al., 2008). We selected Jiaozhou Bay, a typical 
bay in northern China, to study the dynamic change mechanism of SDD 
in coastal waters. Only Yin et al. found that water depth and wind speed 
were essential factors affecting the spatial distribution and annual 
change of SDD in Jiaozhou Bay (Yin et al., 2021a). Then, how do 
environmental factors affect the SDD variations in coastal waters? What 
environmental factors have more extraordinary relative contributions to 
daily, monthly, and interannual variations, respectively? These are very 
important for studying the dynamic change mechanism of SDD in 
coastal waters. In this study, based on the in situ measurements, we 

derived the multi-temporal and spatial scale SDD variations in Jiaozhou 
Bay from GOCI data between 2011 and 2021 and studied the relative 
contribution of each environmental factor, such as wind speed, rainfall, 
and air temperature, to the SDD dynamic change. 

2. Data and methods 

2.1. Study area 

Jiaozhou Bay (36.06◦–36.25◦N, 120.10◦–120.37◦E) is located in 
Qingdao City on the south coast of the Shandong Peninsula of China. It 
connected with the Yellow Sea with the line between Tuandaotou and 
Xuejiadao and covered an area of 343.09 km2. The average water depth 
is 7 m, and the shallow water area of 0–5 m accounts for 52.7% (Zhao 
et al., 2015), as shown in Fig. 1. The part on the east side is the granite 
low and gentle hilly bank. The north and northwest sides are sandy and 
muddy tidal flats formed by the sedimentation of seasonal rivers of Dagu 
River, Baisha River, and Yanghe that account for about 29.5% of the 
total area. The flood period of the rivers above concentrated in July, 
August, and September. It is a warm temperate monsoon climate zone, 
with northwesterly winds in Winter and southeasterly winds in Summer. 
The tide is a typical semi-diurnal. With the development of surrounding 
industries, Jiaozhou Bay and the adjacent Qingdao coastal waters have 
also become the main receptor for the discharge of land-based pollutants 
along the coastal area of Qingdao. Affected by coastal industrial pollu-
tion and sewage, it is easy to lead to poor water quality and concen-
trations rise of nutrient salts, and red tides are prone to occur (Xiao et al., 
2007). The Jiaozhou Bay Sea-crossing Bridge constructed in 2011 has 
changed the original hydrodynamic environment of the sea area to a 
certain extent. 

2.2. In-situ measurements 

From 2016 to 2017, we conducted field surveys with the clear days 
and better sea conditions in Jiaozhou Bay. We obtained 30 sets of 
samples, including sea surface remote sensing reflectance spectrum and 
corresponding SDD. The hand-held Global Positioning System device 
recorded the locations (latitude and longitude) sampling sites. SDD is 
measured by a white disk that descended into the seawater until it 

Fig. 1. The Jiaozhou Bay (JZB) bathymetry map overlaid with all sampling sites, meteorological station, and tidal station. The bathymetric data come from the 
ETOPO1–1 Arc-Minute Global Relief model. The subset study areas S1, S2, and S3 located at JZB inside, JZB mouth, and JZB outside, respectively, are outlined in the 
black box. 
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disappeared out of sight for this dataset. Referring to NASA's ocean 
optics protocols for biogeochemical and bio-optical measurements, we 
analyzed the synchronous collection of sea surface water samples in the 
laboratory and obtained the chlorophyll-a concentration (Chl-a), total 
suspended solids concentration (TSM), and absorption coefficient of 
chromophoric dissolved organic matter (CDOM) (Mueller et al., 2003). 
In addition, three cruises during 2018 were taken from the Jiaozhou Bay 
Marine Ecosystem Research Station (http://jzb.cern.ac.cn/) and got 24 
sets of Secchi disk depth data. The location of all sampling sites is shown 
in Fig. 1, and the cruises covered four seasons in the year, as listed in 
Table 1. 

According to the observation geometry with a zenith angle of 45◦ and 
an azimuth angle of 135◦ (Mobley, 1999), the upward radiance of the 
sea surface water (Lsw(λ,0+)), the sky light radiance (Lsky(λ,0+)), and 
the upward radiance of the reference panel (Lp(λ,0+)) are measured 
with high sensitivity spectrometer QE Pro (Ocean Insight Inc.). It has 
1024 channels between 195.0 nm to 955.0 nm. To ensure the quality of 
spectral data, each parameter at the sampling sites is taken 50 times 
measurements that spanning at least one wave cycle. In the case of 
avoiding direct solar reflection, ignoring or avoiding water surface 
bubbles, the remote sensing reflectance (Rrs) is derived: 

Rrs(λ) =
ρp(λ)

(
Lsw(λ, 0+) − r × Lsky(λ, 0+)

)

πLp(λ, 0+)
(1)  

where ρp(λ) is the direction-hemispheric reflectance of the standard 
diffuse reflector, r is the reflectance of the air-water interface. After the 
process of dark noise correction, air-water interface reflectance deter-
mination, and abnormal data removal, the remote sensing reflectance 
spectrum above the sea surface are calculated from Eq. (1) and then 
resampled to simulate the GOCI equivalent remote sensing reflectance 
spectra of each waveband according to the spectral response function of 
GOCI sensor. This study used 23 of 30 samples matching the measured 
Rrs data. 

2.3. GOCI data collection and processing 

The remote sensing dataset we used in this study is GOCI Level 1B 
data from 1 April 2011 to 31 March 2021, downloaded from Korea 
Ocean Satellite Center (KOSC http://kosc.kiost.ac.kr/). Each daily GOCI 
data collected is centered at 412, 443, 490, 555, 660, 680, 745, and 865 
nm, with a spatial resolution of 500 m and high-temporal frequency 
(eight observations from 8:16 to 15:16 in local time at a frequency of 1 
h). Using GOCI Data Processing System (GDPS, Version 2.0) distributed 
by KOSC, L1B data are browsed and cropped. As for complex properties 
of turbid coastal water in Jiaozhou Bay, the Management Unit of the 
North Sea Mathematical Models (MUMM) embedded in GDPS software 
is used for atmospheric correction. It replaced the assumption of the zero 
radiance in the near-infrared band in the open ocean sea surface with the 
spatial homogeneity in the aerosol reflectivity and the water-leaving 
reflectivity of the study area (Ruddick et al., 2000). We use this model 
to generate a Level 2 remote sensing reflectance product in this study. 
When performing spatial-temporal matching with the in-situ dataset, the 
time window of GOCI images is ±0.5 h, and the spatial window is 3 
pixels × 3 pixels. 

He et al. (2021) demonstrated that the Level 2 sea surface water- 
leaving radiance products obtained by GDPS performed well at obser-
vation times of 02, 03, and 04, but less so at observation times of 00, 01, 
05, 06, and 07 with the relative error to the field measurements 
exceeding 100%, which is not acceptable in the process of data use (He 
et al., 2021). Therefore, when studying the variations in the time series 
of months and years, we only select the daily observation time data of 
02, 03, and 04 to be included in the statistical analysis. 

2.4. Environmental and socio-economic data 

Meteorological data of Qingdao coastal area were recorded by 
Qingdao meteorological station (Fig. 1), such as 24-hour average wind 
speed (m/s), daily cumulative precipitation (mm), and air temperature 
(◦C). These data during 2011 and 2020 were obtained from the China 
Meteorological Data Service Center (http://data.cma.cn/) and pro-
cessed to different time scales. Notably, precipitation is accumulated by 
month and year, and wind speed and air temperature are averaged by 
month and year. Hourly tidal height data were provided by the National 
Marine Data and Information Service (http://global-tide.nmdis.org. 
cn/). The yearly statistical data of industrial wastewater discharged 
(10,000 tons) between 2011 and 2019 were extracted from the Qingdao 
statistical yearbook. The Grade I and II waters proportion data during 
2015 and 2019 was simultaneously obtained. 

2.5. SDD retrieval models 

To exactly represent the physical processes of sighting of a disk in a 
waterbody by human eyes, the new underwater visibility theory 
developed by Lee et al. (2015) (hereafter called Lee_2015 model) is used 
to estimate the visibility in the vertical direction (Lee et al., 2015). It is 
modeled with the diffuse attenuation coefficient (Kd) and corresponding 
Rrs and expressed as follows: 

SDDLee =
1

2.5Min(Kdtr)
ln
(
|0.14 − Rrstr|

0.013

)

(2)  

where Min(Kd
tr) is the minimum Kd in the visible waveband (412, 443, 

490, 555, 660, 680 nm) of the GOCI sensor, Rrs
tr is the remote sensing 

reflectance corresponding to the waveband with the minimum Kd value. 
The diffuse attenuation coefficient Kd at each waveband of GOCI can be 
obtained from the semi-analytical model of the inherent optical prop-
erties (particularly for total absorption and backscattering coefficients) 
of the water column and solar zenith angle developed by Lee et al. 
(2005, 2013). Thus, the key to retrieving water transparency is to obtain 
total absorption (a) and backscattering coefficients (bb) of the water 
from the GOCI Level 2 product. In this study, we adopted the quasi- 
analytical algorithm (QAA, version 6.0) to derive a and bb of the 
water when accurate Rrs data are available (Lee et al., 2002). 

In contrast with empirical methods, the semi-analytical models 
generally do not require in-situ measurement data to recalibrate the 
inversion model. Previous field survey dataset in coastal and open wa-
ters of China and the USA with SDD values ranging between ~0.1 and 
30 m has proved an excellent performance of the Lee_2015 model with 
an absolute difference of ~18%. Therefore, the Lee_2015 model appears 
robust enough without re-parameterization of the model coefficients 
when applied to various satellite remote sensing data. Because of the 
complex properties of turbid coastal water in Jiaozhou Bay, it is unlikely 
to be optimal for all regions, and it becomes necessary to introduce an 
empirical relation into the Lee_2015 model (Feng et al., 2019). The 
linear correction equation is as follows: 

SDDcorr = a0 × SDDLee+ a1 (3)  

where a0 and a1 are the slope and intercept of the linear equation. 

Table 1 
Summary of field surveys to measure ocean properties in this study.  

Season Cruise Number of Samples 

Rrs SDD Chl-a TSM CDOM 

Spring 16 May 2017 15  15 15 15 15 
9 March 2018 –  8 – – – 

Summer 20 June 2018 –  8 – – – 
Autumn 2 November 2016 15  15 15 15 15 
Winter 12–13 December 2018   8 – – – 
Total  30  54 30 30 30  
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2.6. Regression analysis and accuracy assessment 

Regression analysis is a statistical process used to evaluate the rela-
tionship between the independent variable X and the dependent variable 
Y. The linear trend obtained from the least square fitting is used for the 
single variable regression of the observational factors change with time 
(Bradley et al., 2007). Multiple variable linear regression (MVLR) is 
applied to compare the relative contributions of different parameters in 
water transparency variation (Forootan et al., 2016). When using 
multivariate statistical analysis, it is necessary to quantify each variable 
into a unified unit to standardize all variables, including the dependent 
variable, normalize each variable matrix to the [0,1] range, and then 
perform linear regression. The regression coefficient obtained can show 
the importance of the corresponding independent variable, and the ab-
solute value of the coefficient reflects the degree of influence (relative 
contribution) of the independent variable X on the dependent variable Y. 
It is expressed as: 

y = b0 + b1x1 + b2x2 +⋯+ bkxk + ε (4)  

where b0…bk are regression parameters, ε is the random error. In 
regression analysis, P-value from the t-test is used to test the significance 
of each regression parameter in the regression model. 

Due to limited numbers of SDD samples matched with GOCI images, 
we adopt the leave-one-out cross-validation (LOOCV) method to verify 
the performance of the model developed by the linear fitting relation-
ship (Feng et al., 2015). The LOOCV method takes all samples but one 
sample data to train the model and use the leaving one to perform the 
accuracy of the inversion model assessment. All samples of the matches 
were looped to get the regression coefficient of each cross-validation 
model. The weighted average of the error size between the measured 
and estimated value is used to get the final regression model. Compared 
with the traditional method of randomly dividing the original sample 
into training data sets and test set according to a certain proportion, the 
LOOCV method has the highest representativeness of the samples. It 
eliminated the potential impact of outliers in the limited sample data set 
on the algorithm's accuracy through cumbersome calculation. 

As to evaluate the accuracy of the atmospheric correction and 
inversion model, three statistical parameters, including the determina-
tion coefficient (R2), root means square error (RMSE), and mean abso-
lute percentage error (MAPE) are used in this study. The equations are as 
follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
xest,i − xmea,i

)2

/

N

√
√
√
√ (5)  

MAPE =
1
N

∑N

i=1

(⃒⃒xest,i − xmea,i
⃒
⃒

xmea,i

)

× 100% (6)  

where, xest,i is the estimated value from GOCI observation, xmea,i is the 
corresponding matched field measured value; N is the number of 
matched samples between the data of GOCI derived and in-situ 
measured. 

3. Results 

3.1. Water components characteristics 

The field survey carried out on 2 November 2016 and 16 May 2017 
included both water transparency and water component parameters 
data from all the survey measurements. The in-situ data of these two 
days was selected to obtain the variations of water quality in Jiaozhou 
Bay, including the chlorophyll-a concentration (mg/m3), the suspended 
particulate matter concentration (mg/L), and the absorption coefficient 
of colored soluble organic matter at 400 nm (m− 1). All these parameters 
can be used as an indicator standard to measure the eutrophication 

condition of the water. As shown in Table 2 of the summary of the data 
of two days, SDD ranged from 0.7 m to 2.5 m, Chl-a concentration 
ranged from 0.785 mg/m3 to 5.190 mg/m3, TSM concentration was 
varied between 1.6 mg/L and 45.3 mg/L, and aCDOM(400) has coverage 
of 0.162–0.553 m− 1. Referring to the classification of water body types 
by the water component coefficients, the results in Table 2 indicate that 
the water body of Jiaozhou Bay is approximately a low, moderate turbid 
water (1 < TSM < 50) (Yu et al., 2019), and the eutrophic state is 
oligotrophic (Chl-a < 10 mg/m3, aCDOM(400) < 1 m− 1) (Shang et al., 
2021). Through the correlation analysis between the daily measured and 
all the statistical results of the two days, SDD and three water compo-
nents are both negatively correlated. The increased concentration of 
each water component will significantly reduce the light transmittance 
of the water layer and the vertical visibility. Among them, statistics of 
two field surveys show that the total correlation between TSM and SDD 
was the highest (R = − 0.576), followed by Chl-a (R = − 0.483), and 
CDOM was the lowest (R = − 0.411), but the correlation coefficients 
obtained by the three were not much different. It shows that the water 
transparency of Jiaozhou Bay is greatly affected by the suspended 
sediment in the water. Suspended sediment may come from a seasonal 
influx of runoff, terrigenous sediment brought in by precipitation, and 
sediment resuspension at the bottom of the water body caused by wind 
force on the sea surface. 

3.2. Validation using field measurements 

3.2.1. Performance of atmospheric correction 
In the time window of ±0.5 h, the scatter plot of the Rrs data between 

the atmospheric correction result from the GOCI L1B data by the GDPS 
MUMM module and the equivalent waveband data of the in-situ 
measured are presented in Fig. 2. The corresponding statistical results 
are shown in Table 3. 

As shown in Fig. 2, the atmospheric correction performance of the 
MUMM model is good, and the amplitude of each Rrs waveband is 
relatively consistent with the measured data. From Table 3, the blue 
waveband (412, 443, and 490 nm) is better and obtains better R2 sta-
tistics (R2 > 0.6), the green waveband (555 nm) is a little weaker (R2 =

0.40), and the red waveband (660 nm and 680 nm) is poor (R2 = 0.18). 
In comparison, the near-infrared waveband (745 nm) has increased (R2 

= 0.47), but the deviation is more significant (RMSE = 0.0048 sr− 1, 
MAPE = 58.04%), and the fitting degree of all the above wavebands is 
statistically significant (P-value < 0.05). Since the atmospheric correc-
tion results in the 865 nm band have a low correlation (R2 < 0.1) and 
insignificant trend (P-value > 0.05) with the measured data, they are not 
shown in the scatterplot. After taking the obtained fitting slopes and 
intercepts of each waveband, the Rrs data from GOCI derived was line-
arly corrected as the input of the subsequent inversion model. 

3.2.2. Adjustment of SDD algorithm 
After inputting the GOCI-corrected Rrs data into the QAA algorithm 

and the Lee_2015 model, their SDD output was compared with the 
matched field-measured SDD values. The LOOCV method is used with 
the matching samples to cross-validate the linear fitting model. The 
LOOCV results are shown in a scatter plot of measured and estimated 
SDD, as shown in Fig. 3. The scatter plot data are distributed on both 
sides of the 1:1 line. Most data (32 of 38) are distributed within the 
±10% RE line, and a small part of the data locates between the ±10% RE 
line and the ±20% RE line. From accuracy assessment, it exhibits high 
R2 (R2 = 0.76) and low deviation (RMSE = 0.36 m, MAPE = 21.28%). It 
indicated that the linear correction model has a high accuracy of SDD 
values with the field-measured. After LOOCV method, the Lee_2015 
model is linearly corrected, and fitting coefficients are a1 = 0.893, a2 =

0.614. 
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3.3. SDD variations in Jiaozhou Bay mapped by GOCI data 

3.3.1. Spatial pattern 
From the GOCI products from 1 April 2011 to 31 March 2021, the 

SDD spatial distribution map of the entire study area was obtained after 
atmospheric correction and model inversion, as shown in Fig. 4. From 
the spatial distribution of the annual average and standard deviation 
images, the overall transparency of the sea area is low (0–4 m). It shows 
a gradually increasing trend from the inside to the outside of the bay. 
The variance varies from 0 to 2 m. The water depth in the coastal area 
inside the bay is generally less than 10 m, and the water transparency is 
low. The northern part of the bay is a typical breeding area, rich in 
organic matter, and industrial pollution and domestic sewage along the 

northwest and east coasts of the bay bring rich nutrients to the bay. The 
nutrient of the seawater is lower on the sea surface than on the bottom 
layer and significantly higher inside the bay than outside the bay (Ren 
et al., 1999). Due to the large water depth in the central area of the bay 
and the bay mouth, the water bodies frequently exchange between the 
bay inside and outside, so the water transparency here is high. The 
transparency of some areas outside the bay is not as high as that at the 
bay mouth, mainly attributed to the strong scattering characteristics of 
the coastal water. 

3.3.2. Diurnal variation 
We selected three days of GOCI images on 22 March, 28 April, and 29 

April, and accumulated 24 SDD images at different times through 

Table 2 
Descriptive statistics and correlation analysis between Secchi disk depth and water components were measured in-situ. Here, SD is standard deviation, CV is coefficient 
of variation, and correlation statistics refers specifically to the Pearson correlation coefficient between two datasets.  

Date Statistics SDD (m) Chl-a (mg/m3) TSM (mg/L) aCDOM(400) (m− 1) 

2 November 2016 Min-Max 1.10–2.50 0.785–5.190 1.600–11.200 0.184–0.553 
Average ± SD 1.77 ± 0.36 1.887 ± 1.435 5.680 ± 2.579 0.308 ± 0.110 
CV 0.205 0.761 0.457 0.356 
Correlation – − 0.432 − 0.431 − 0.393 

16 May 2017 Min-Max 0.70–2.00 1.910–4.130 3.400–45.300 0.162–0.460 
Aver ± SD 1.14 ± 0.43 3.169 ± 0.712 21.837 ± 16.352 0.327 ± 0.087 
CV 0.375 0.225 0.748 0.267 
Correlation – − 0.395 − 0.626 − 0.551 

Total correlation  – − 0.483 − 0.576 − 0.411  

Fig. 2. Scatterplots of GOCI retrieved remote sensing reflectance (Rrs) using GDPS MUMM module versus the waveband equivalent of the in situ Rrs. (For inter-
pretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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remote sensing inversion, as shown in Figs. 5–7. Subplot (a) to (h) shows 
the daily spatial distribution of water transparency from 8:16 to 15:16 
local time in the Jiaozhou Bay. Under the hourly observation of the 
GOCI sensor, the water transparency in Jiaozhou Bay changes every day, 
and it shows a trend of low in the morning and evening and high at noon 
in the entire sea area. Low-transparency areas (SDD < 1.5 m, shown as 
red patches) gradually shrink into the bay inside before 12:16 at noon 
(subplot (a)–(d)), high-transparency areas (SDD > 2.5 m, shown as blue 
patches) gradually expand out of the bay after 12:16 at noon. Water 
transparency is directly related to the penetration characteristics of light 
in water, so water transparency hourly observations from the GOCI 
sensor are inevitably affected by the solar zenith angle (SOLZ) (H. Li 
et al., 2019). It varies significantly from early morning to later after-
noon, detailed with the highest in the early morning and later afternoon 
and the lowest at noon, which is exactly opposite with the change of 
water transparency. The tidal current in the Qingdao coastal area is a 
regular semi-diurnal tidal current (Li et al., 2014). Because of the 
shallow water depth in the coastal zones, the water exchanges caused by 
the tide fluctuation will directly lead to the variation of water compo-
nents in different water layers. Affected by the solar zenith angle and 
tides, the changes in different regions of the Jiaozhou Bay are not the 
same. To further quantify the diurnal variations in different regions, we 
selected three representative areas, namely, the JZB inside (S1), the JZB 
mouth (S2), and the JZB outside (S3), respectively, to statistics the 8- 
hour changes of the GOCI-derived SDD, and to compare them with the 
daily solar zenith angle and tidal height, as shown in subplot (i). 

From the tidal information of each day, we found that the low water 
(54 cm) took place at 10:30 AM on 22 March 2020, after which the tidal 
height began to rise. The high water on April 28 and 29 was 8:00 AM and 
8:50 AM, respectively. After that, the tides fell for 6.5 h and then reached 
the lowest tides, which was almost the last time of the GOCI observation 
of the day. We can qualitatively analyze the influence on water trans-
parency variations through the changes of tidal height and the solar 
zenith angle at each moment of these three days. Comparing the daily 
change curves of water transparency, the peak value in the bay outside 
(S3) approximately coincides with the time of the minimum value of the 
solar zenith angle. Whether in the period of tides rising or falling or low 
water occurring at noon, the water transparency in the bay outside still 
reaches the maximum value around 12:16 AM. It shows that the water 
transparency in the bay outside is mainly affected by the solar zenith 
angle. 

Table 3 
Statistical results for GOCI-retrieved Rrs values obtained from the GDPS MUMM 
module (independent variable) and the waveband equivalent of the in-situ Rrs 
(dependent variable). The slope and intercept give a linear relationship between 
the changes in the independent and dependent variables above.  

Wavelength 
(nm) 

R2 RMSE 
(sr− 1) 

MAPE 
(%) 

Slope Intercept P- 
value  

412  0.78  0.0017  20.98  0.684  0.0023  <0.01  
443  0.75  0.0016  18.57  0.791  0.0019  <0.01  
490  0.61  0.0023  18.92  0.779  0.0026  <0.01  
555  0.40  0.0038  24.42  1.167  − 0.0041  <0.01  
660  0.18  0.0028  27.08  0.898  0.0008  <0.05  
680  0.18  0.0017  37.06  0.596  0.0018  <0.05  
745  0.47  0.0048  58.04  3.171  − 0.0029  <0.01  
865  0.04  0.0523  74.94  − 23.201  0.0989  >0.05  

Fig. 3. Scatter plot of field-measured and estimated SDD matching in Jiaozhou 
Bay computed by the leave-one-out cross-validation (LOOCV) method. 

Fig. 4. The spatial distribution image of annual average (a) and corresponding standard deviation (b) of Secchi disk depth (SDD) data from GOCI-derived from 1 
April 2011 to 31 March 2021. 

Y. Zhou et al.                                                                                                                                                                                                                                    



Marine Pollution Bulletin 180 (2022) 113815

7

As for the variations of the bay mouth, what increased with the solar 
zenith angle in the early morning of 22 March, reaching the maximum 
value at 9:16 AM, and then gradually decreased in the period of the tide 
falling. However, the solar zenith angle still fell, and the tidal height 
began to rise slowly after 10:30 AM. Under the dual action of the solar 
zenith angle and the tide, there was a brief rise at 13:16 and a rapid 
decline. On April 28 and 29, the GOCI observation time was basically 
during the period of the falling tide. Although the tidal height kept 
falling, the water transparency did not decline during the morning. 

In the case of the bay inside, the water transparency decreased 
slightly at 9:16 AM on 22 March, then raised slowly during the morning, 
and reached a peak value at 13:16. Although the solar zenith angle is no 
longer the lowest value of the day, the tidal height is at the time of rapid 

rise. On 28 April, the peak value appeared at 10:16 AM, and it has been 
decreasing since then. On 29 April, the transparency slowly increased to 
11:16 AM and then reduced. Compared to the environmental condition 
of 28 and 29 April, the solar zenith angle is nearly the same, but only the 
time of high water on the two days differed by 50 min. So, the different 
observation time of peaks value that appeared inside the bay may be 
caused by the difference in tidal height. Due to the shallow water depth 
in this area, when a low tidal height level happens, lower than 200 cm, 
the water transparency dynamics may be controlled by the tide to a great 
extent than the solar zenith angle. 

Multiple linear regression analysis was used to quantitatively 
analyze the relative contribution of solar zenith angle and tide to the 
change of transparency in each region, as shown in Table 4. The absolute 

Fig. 5. Hourly sea surface GOCI-derived SDD on 22 March 2020 from 8:16 to 15:16. The last panel shows 8-hour variations of GOCI-derived SDD at three regions 
around JZB and their comparisons with diurnal solar zenith angel and tidal height. Region S1, S2, and S3 are located at JZB inside, JZB mouth, and JZB outside, 
respectively. Tidal height data were from the National Marine Data Information Center. 
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value of the regression coefficient was used to judge the relative 
contribution of each factor. After statistical analysis, the regression co-
efficients of the solar zenith angle in the bay outside (S3) are the largest 
of the three, which also shows to a certain extent that the main effect 
factor of the transparency variations in the bay outside is the solar zenith 
angle. The regression coefficients of the solar zenith angle and tidal 
height obtained from the bay mouth (S2) and the bay inside (S1) cannot 
determine which factors have the most significant contribution. There-
fore, the changes in water transparency in these two areas are affected 
by the combined effect of the solar zenith angle and the tidal height. 
According to the above analysis inside the bay, the contribution of tides 
on variations of water transparency of this region is more significant. 

3.3.3. Monthly variations 
Fig. 8 shows monthly mean SDD variations of JZB inside (region S1), 

JZB mouth (region S2), and JZB outside (region S3) from 2011 to 2021. 
From the monthly SDD average values in various regions, there is little 
change in each month at the bay inside, and the peak value is reached in 
May. The bay mouth and outside area showed prominent variation 
characteristics of higher in Summer (June to August) and lower in 
Winter (December to February). The peak value occurs in May at the bay 
mouth, in August at the bay outside, and the minimum took place in 
December. It means that the entire area of Jiaozhou Bay is in the lowest 
water transparency in Winter, which is related to the highest solar zenith 
angle compared with other seasons. For the variation of monthly 
average water transparency, the range is 1.74–2.62 m at the bay inside, 
1.5–3.6 m at the bay mouth, and 1.2–4.0 m at the bay outside. 

The dynamic changes of water transparency are closely related to the 
seasonal changes of meteorological factors on the sea surface. According 
to the statistical data of the average wind speed, cumulative 

Fig. 6. Same as Fig. 5, but for 28 April 2020.  
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precipitation, and air temperature of each month, the wind speed is 
higher than 3.5 m/s from November to April and lower in another 
month. The rainfall is more in summer (174 mm in July and 135 mm in 
August), and lower in other months (lower than 70 mm). The air tem-
perature is high in Summer (28.18 ◦C in August) and low in Winter 
(0.73 ◦C in January). Fig. 9 shows the single-factor correlation analysis 
of the monthly average SDD in each region with each meteorological 
factor. The monthly SDD is negatively related to wind speed and positive 
with precipitation and air temperature. In contrast, SDD at the bay 
mouth and inside had a higher correlation with air temperature, while 
SDD at the bay outside had a slightly stronger correlation with precip-
itation. According to the regression coefficient from the multivariate 
linear analysis listed in Table 5, the absolute value of the regression 
coefficient of the wind speed obtained in each area is the largest, and the 
trend is significant (P-value < 0.05). It shows that wind force generally 

makes the most significant contribution to the monthly variation of 
water transparency in the entire Jiaozhou Bay area. 

3.3.4. Inter-annual variations 
Taking the entire sea area inside of the bay mouth as the area of 

Jiaozhou Bay inside, and the area outside the bay mouth as the sea area 
outside the bay, the long-term variations of the annual average SDD 
values of the two areas were statistically analyzed during 2012 and 2020 
when full data in all months was available, as shown in Fig. 10(a). 
Related influence factors are presented in Fig. 10(b) and (c), including 
meteorological factors (wind speed, cumulative precipitation, and air 
temperature) and human activities (industrial wastewater discharged 
and the proportion of Grade I and II waters). 

In general, the water transparency of the entire Jiaozhou Bay has 
shown an increasing trend from 2012 to 2020. The rising trend of 

Fig. 7. Same as Fig. 5, but for 29 April 2020.  
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Jiaozhou Bay inside was stable (R2 = 0.794, P-value = 0.001) with an 
annual increase of about 0.035 m, which was consistent with the 
changing trend of the proportion of Grade I and II waters recorded in the 
statistical yearbook of Qingdao, as shown in Fig. 10(c). The water 
transparency of the Jiaozhou Bay outside also increased, but it was not 
significant (R2 = 0.093, P-value = 0.423). Compared with the annual 
average wind speed data and cumulative precipitation, the inter-annual 
variation is relatively close, but the correlation with the SDD inter- 
annual dynamics is not high. As seen in Fig. 10(b), compared with 
2012, both the precipitation and wind speed decreased in 2013, but the 
decreasing extent in precipitation was more significant, and the trans-
parency only decreased slightly. The relative contribution of rainfall to 
the reduction of transparency is larger. Compared with 2015, both wind 
speed and precipitation increased in 2016, but the water transparency 
still decreased. Currently, the relative contribution of wind speed is 
slightly more significant. From a comprehensive analysis, wind speed 
and precipitation can affect changes in water transparency variations, 

but they are not the main factors affecting long-term changes. The 
annual mean air temperature data from 2011 to 2020 show a particular 
increase, coinciding with SDD dynamics. Combined with the multiple 
linear regression analysis results given in Table 6, the relative contri-
bution of air temperature is the largest in the entire Jiaozhou Bay area. 
Still, not all the regression trend of each region is statistically significant 
(P-value > 0.05). Compared with the variations in water transparency 
driven by meteorological factors, we cannot ignore human activities in 
the changes in the water environment. From the total industrial pollu-
tion discharge from 2011 to 2019 (Fig. 10(c)), the industrial wastewater 
discharged in Qingdao City has been decreasing year by year, which is 
conducive to the improvement of water quality along the Jiaozhou Bay 
and the promotion of a virtuous circle of the ecological environment in 
the bay. 

4. Discussion 

4.1. Uncertainties of the remotely sensed SDD 

In this study, the remote sensing reflectance products obtained from 
atmospheric correction of GOCI images are used to estimate the water 
transparency of Jiaozhou Bay. For remotely sensed SDD, the uncertainty 
mainly comes from two aspects: the performance of the atmospheric 
correction model and the application of the inversion model. We use 
field measured Rrs data to correct the result from the atmospheric 
correction and take the measured SDD to calibrate the Lee_2015 model. 
The algorithm calibrated based on the Lee_2015 model uses the mini-
mum Kd value of the visible light range and the remote sensing reflec-
tance of the corresponding waveband to participate in the calculation. 
The minimum Kd value in the Jiaozhou Bay area is concentrated in the 
blue bands. From Fig. 2, the remote sensing reflectance data in the blue 
wavebands fit well with the measured (R2 > 0.6). By linear correction 
with the measured Rrs data, it can make the estimate of SDD relatively 

Table 4 
Multiple linear regression is applied to determine the relationships between the 
SDD dynamics and the influence factors around three regions. Referring to Eq. 
(4), b0, b1, and b2 are regression parameters, x1 and x2 correspond to the solar 
zenith angle and tidal height, respectively.  

Date Region Multiple linear regression 

b0 b1 b2 R2 P-value 

22 March 2020 S1  1.008  − 0.390  − 0.486  0.703  <0.05 
S2  0.940  0.103  − 0.869  0.825  <0.01 
S3  1.093  − 0.512  − 0.493  0.910  <0.01 

28 April 2020 S1  0.644  − 0.677  0.541  0.945  <0.01 
S2  0.815  − 0.864  0.330  0.992  <0.01 
S3  0.877  − 0.856  0.218  0.970  <0.01 

29 April 2020 S1  0.764  − 0.794  0.395  0.986  <0.01 
S2  0.906  − 0.859  0.118  0.984  <0.01 
S3  1.038  − 0.849  − 0.197  0.965  <0.01  

Fig. 8. Monthly SDD variations of JZB inside (a), JZB 
mouth (b), and JZB outside (c). Each boxplot chart in-
cludes the minimum, maximum, median, first quartile, 
third quartile, outliers, and mean value (red square). Each 
boxplot's right is a normal distribution of current month 
data from 2011 to 2021, including the distribution range 
of the scatter points (black dots) and the standard distri-
bution curve (cyan lines). (For interpretation of the ref-
erences to color in this figure legend, the reader is 
referred to the web version of this article.)   
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accurate. It is worth noting that there is still high uncertainty in the 
GOCI atmospheric correction under high solar zenith angle conditions 
(Li et al., 2020). In addition, due to the strong scattering of suspended 
particles in turbid water, the Kd value may be overestimated when 
applying the QAA model, resulting in an underestimation of SDD 
(Bowers et al., 2020). The SDD estimated seems to be generally lower 
than the field measured value (Fig. 3), and the correlation between the 
two data groups can be used to correct the SDD estimation. 

The uncertainty of the remotely sensed SDD may also be caused by 
the accumulated systematic errors from the quality of the field mea-
surement dataset and the estimation model of the optical parameters of 
the water body. Many semi-analytical models are applied to estimate the 
inherent optical properties of the water, such as QAA_v5 (Lee et al., 
2009), QAA_M14 (Mishra et al., 2014), QAA_V (Joshi and D'Sa, 2018), 
and QAA_hybrid (Jiang et al., 2019), and many empirical and semi- 
analytical models are used to obtain Kd from satellite remote sensing 
observations (Cao et al., 2014; Chen et al., 2015; Lee et al., 2005). 
Therefore, we need more field-measured data in the future to evaluate 
and verify the validity and applicability of remote sensing inversion 
models in Jiaozhou Bay. 

4.2. Driving force for SDD variations 

4.2.1. Water components 
In the coastal waters, the changes in water transparency can reflect 

the changes in the aquatic ecological environment and terrestrial input. 
The penetration and attenuation of light underwater are closely related 
to the water optical components (chlorophyll a, suspended particulate 
matter, chromophoric dissolved organic matter). Due to the significant 
weight difference of each optical component in different water bodies, 
water transparency is the combined effect of all water components on 
underwater light (Gattuso et al., 2006). 

As a good indicator of marine phytoplankton biomass and primary 
productivity, the empirical relationship between chlorophyll-a and 

water transparency is primarily determined by the covariation between 
chlorophyll-a concentration and total suspended particles (Tilzer, 
1988). The biomass of phytoplankton directly affects the attenuation of 
light in water and reduces solar radiation penetration, manifesting as a 
decrease in water transparency. The increase of suspended particulate 
concentration in water will enhance the diffusion of underwater light 
and change the spectral quality of the underwater light field (Brewin 
et al., 2015). Especially in turbid coastal and inland waters, the atten-
uation of light in water is mainly contributed by the high scattering 
characteristics of suspended particles (Sun et al., 2009; Sun et al., 2010). 
As a light absorption substance, the CDOM absorption in the range of 
blue light will inhibit the photosynthesis of phytoplankton, especially in 
coastal and estuary waters with high turbidity and high organic matter 
content. Moreover, these optical components do not change the under-
water light field independently. Such as, the sedimentation and trans-
portation of inorganic particles hinder the circulation of nutrients, and 
the high suspension of particulate substances in water also brings about 
the high carrying of nutrients (Hakanson and Blenckner, 2008), which 
also impairs the photosynthesis of phytoplankton to some extent. 

4.2.2. Solar zenith angle and tide 
Observation geometry under time change impacts the ocean color 

remote sensing detection of geostationary orbit marine satellites. 
Because there is a strong negative correlation between SDD and Kd, and 
Kirk found a positive correlation between Kd and SOLZ (Kirk, 1984), 
particularly obvious in clear water. Relative to the water inside the bay, 
the water transparency at the bay mouth and outside are clearer and 
easier to be affected by SOLZ. The size of the solar zenith angle directly 
reflects the change of solar height, that is, the change of light propa-
gation length in water (Pitarch, 2020). It is worth noting that when the 
solar zenith angle is less than 50◦, the variation of atmospheric param-
eters is slight. When the solar zenith angle is greater than 50◦, the 
relative deviation caused by the angle of the blue light band increases 
rapidly, which directly leads to the worst performance of the atmo-
spheric correction model in the early morning and late morning. In 
comparison, the relative deviation of other bands begins to increase 
rapidly only after the solar zenith angle is greater than 60◦, which is 
caused by the high reflectivity of turbid water in these bands (Sun et al., 
2017). From Figs. 5–7, we can see the information of solar zenith angles 
at different times. On 22 March, the degree of solar zenith angles 
observed by GOCI at 8:16, 9:16, and 15:16 in Jiaozhou Bay was greater 
than 50◦. On April 28 and 29, the degree of solar zenith angles observed 
in the morning and evening (8:16 and 15:16) was greater than 50◦, 
which may also be an essential factor causing the low transparency in 
the early morning and late evening from model inversion. 

The tidal current is the primary source of water power. The effect of 
tide on the water environment is manifested in promoting sediment 
transport and nutrient cycling, intensifying vertical mixing of the water 

Fig. 9. The relationship between the monthly SDD of region S1, S2, and S3 and monthly mean meteorological factors, including wind speed (a), cumulative pre-
cipitation (b), and air temperature (c) from 2011 to 2021. The dashed line represents the trend of the fitted monthly variation. 

Table 5 
Multiple linear regression is applied to determine the relationships between the 
monthly SDD dynamics of each region (S1, S2, and S3) and the influence of 
meteorological factors around three areas. In Eq. (4), b0, b1, b2, and b3 are 
regression parameters, x1, x2, and x3 correspond to the wind speed, cumulative 
precipitation, and air temperature, respectively.  

Region Multiple linear regression 

b0 b1 b2 b3 R2 P-value 

S1  0.284  0.469  − 0.068  0.437  0.661  0.027 
S2  0.272  0.478  − 0.022  0.429  0.747  0.008 
S3  0.313  0.343  0.187  0.237  0.688  0.020  
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body, and driving the resuspension of bottom particles (Cheng et al., 
2016). The tidal current in Jiaozhou Bay is mainly reciprocating flow 
with high rising tide velocity, low falling tide velocity, corresponding 
short rising tide time, and long falling tide time (Li et al., 2014). In the 
flow process of pollutants from the coast and runoff and nutrients in the 
aquaculture area, the eddy mixing of seawater dominates (Liu et al., 

2005). The water depth in the bay is shallow, and pollutants and nu-
trients drift along the tidal current direction, so the short-term dynamic 
change of water transparency at the bay inside is driven by the tidal 
current. 

It is worth noting that water depth has the most significant impact on 
water transparency in coastal waters. The change of tidal height directly 
affects the change of water depth in coastal waters. The shallower water 
depth area is located at the bay mouth or the estuary of runoff. With the 
increase of wind speed, the bottom water vortex with rich nutrients is 
agitated to rise, which supports the growth of phytoplankton. The 
seabed silt is accessible to resuspension under the influence of waves and 
currents so that the concentration of suspended particles is increased. 
Compared with coastal waters, the water characteristics of each water 
layer in open oceans with deep waters are relatively stable, and the 
water transparency is less driven by wind force. 

4.2.3. Meteorological factors 
Meteorological factors causing the change of water quality factor 

concentration in water, such as wind speed, rainfall, and air tempera-
ture, can indirectly lead to the dynamic change of water transparency. 

Fig. 10. Long-term trends in the annual mean GOCI- 
derived SDD values of Jiaozhou Bay inside (red his-
togram) and Jiaozhou Bay outside (blue histogram) 
from 2012 to 2020 (a), and variations of related 
meteorological factors (wind speed, cumulative pre-
cipitation, and air temperature) (b) and human ac-
tivities (industrial wastewater discharged and the 
proportion of Grade I and II waters) (c). The dashed 
line represents the trend of the fitted interannual 
variation from 2011 to 2020. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the web version of this article.)   

Table 6 
Multiple linear regression is applied to determine the relationships between the 
long-term SDD dynamics of Jiaozhou Bay inside and Jiaozhou Bay outside and 
the influence factors. In Eq. (4), b0, b1, b2, and b3 are regression parameters, x1, 
x2, and x3 correspond to the wind speed, annual cumulative precipitation, and 
air temperature, respectively.  

Region Multiple linear regression 

b0 b1 b2 b3 R2 P- 
value 

Inside of Jiaozhou Bay  − 0.279  0.592  0.117  0.935  0.697  0.091 
Outside of Jiaozhou 

Bay  
0.418  0.078  0.111  0.015  0.014  0.994  
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Wind forces can drive the resuspension of substances at the bottom of 
the water body and increase the concentration of suspended particulate 
matter in the water body, which plays an essential role in the coastal 
waters and inland lakes (Capuzzo et al., 2015). According to the scatter 
plot analysis in Fig. 9, SDD was significantly positively correlated with 
rainfall and air temperature in terms of seasonal variation of SDD. 
Increased precipitation transports land-based sediment and nutrients to 
coastal waters through rivers, but the filtering of turbid waters by sur-
rounding vegetation seems to counteract these effects on water trans-
parency and dilute the original coastal turbid waters (Hou et al., 2017). 
Precipitation mainly affects seasonal changes in transparency but con-
tributes less to long-term changes over many years (Song et al., 2015). It 
can be seen from Fig. 8 that the changing trend of transparency in each 
season is consistent with that of air temperature. In the past 30 years, the 
air temperature in Jiaozhou Bay has risen gently, which has brought 
about an increase in sea surface temperature (Zhang et al., 2019). All 
that enhanced the photosynthesis of phytoplankton and accelerated the 
absorption of nutrients in the water. From the results of multiple vari-
able linear regression in Table 5, the relative contribution of air tem-
perature to the long-term change of water transparency in Jiaozhou Bay 
was the largest, but not significant (P-value > 0.05). 

4.2.4. Human activities 
Human activities have an essential impact on the water environment 

dynamics in Jiaozhou Bay. Compared with the bay outside, the water 
transparency at the bay inside shows a stable increasing trend year by 
year (Fig. 10). Yin et al. noted that changes in water transparency were 
mainly concentrated in coastal areas and relatively small in the central 
region (Yin et al., 2021a). That is because coastal areas are more sus-
ceptible to human activities, and the most direct manifestation is the 
discharge of industrial wastewater. According to the statistical yearbook 
of Qingdao from 2011 to 2019, the total discharge of industrial waste-
water scaling by 10,000 tons decreased from 1122.975 in 2011 to 
577.999 in 2019. It is shown that the improvement of water quality in 
the Qingdao coastal area is noticeable, and the proportion of Grade I and 
II waters increased from 81.3% in 2015 to 98.8% in 2019. 

In addition, since the completion of the Jiaozhou Bay Bridge in early 
2011, it has affected the hydrodynamic environment of Jiaozhou Bay 
and further blocked the spread of sea ice to the south, resulting in serious 
ice accretion in the northern bay (Huang et al., 2019). The piles of the 
cross-sea bridge weaken the hydrodynamic environment on the north 
side of the bridge, changing the convective diffusion of suspended solids 
and sediment transport, and blocking the transport of seasonal fresh-
water from runoff to the open ocean. It would improve the water 
transparency of the bay but aggravate the ice condition in Winter. 

5. Conclusion 

In this study, we evaluate the performance of the MUMM atmo-
spheric correction model embedded in GDPS and the Lee_2015 model 
that is applied to remotely sensed SDD in the Jiaozhou Bay. The results 
from these two models are corrected using the in situ measured data to 
improve the accuracy of SDD estimation results. It shows that the Rrs 
data obtained from the atmospheric correction model is highly corre-
lated with the measured data in the blue light band, and the R2 between 
the SDD correction model and the measured data reaches 0.75. The 
calibration model generates the hourly SDD map to study the region's 
multi-temporal and spatial scale change of characteristics. The multiple 
variable linear regression model quantifies the relative contribution of 
environmental factors to the SDD changes. 

It is found that GOCI is adequate for effective mapping the short-term 
SDD distributions in the Jiaozhou Bay. Hourly maps show that the 
diurnal variations of SDD at the bay inside and the bay mouth are 
affected by the combined effect of the solar zenith angle and tides, but 
the solar zenith angle is the main factor to influences the SDD outside the 
bay. In the entire bay, monthly SDD variations vary with wind force, and 

an increasing trend is shown in the inter-annual dynamics, among which 
a clear rising trend in the bay of an annual increase of 0.035 m. Although 
the relative contribution of air temperature on the long-term SDD 
changes is the largest, human activities also play an essential part in 
changing the water environment at the study site. 

Due to the complex optical properties of Class II water bodies, more 
in situ measurement data needs to be supplemented. Meanwhile, the 
calibration of satellite products for high solar zenith angle observations 
in the early morning and late afternoon requires further research to 
improve the accuracy of remote sensing dynamics monitoring. 
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Alparslan, E., Aydöner, C., Tufekci, V., Tüfekci, H., 2007. Water quality assessment at 
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