

Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/150423/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Gray, Emily, Richards, Charlotte, Gormley, Alex, Richmond, Rebecca C., Vincent, Emma E., Dudding, Tom, Thomas, Steven J., Ness, Andrew R. and Gormley, Mark 2022. An update on oral cavity cancer: epidemiological trends, prevention strategies and novel approaches in diagnosis and prognosis. Community Dental Health Journal file

Publishers page:

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies.

See

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

information services gwasanaethau gwybodaeth

1	An update on oral cavity cancer: epidemiological trends, prevention
2	strategies and novel approaches in diagnosis and prognosis
3	
4	Authors: Emily Gray ¹ , Charlotte Richards ² , Alex Gormley ¹ , Rebecca C Richmond ³ , Emma E
5	Vincent ^{3,4} , Tom Dudding ^{1,3} , Steven J Thomas ¹ , Andrew R Ness ⁵ , Mark Gormley* ^{1,3}
6	
7	Affiliations:
8	1. University of Bristol Dental Hospital and School, University of Bristol, Bristol, Lower
9	Maudlin Street, Bristol BS1 2LY.
10	
11	2. School of Dentistry, Cardiff University, Heath Park, Cardiff, CF14 4XY.
12	
13	3. MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School,
14	University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN.
15	
16	4. Translational Health Sciences, Bristol Medical School, University of Bristol, Dorothy
17	Hodgkin Building, Whitson Street, Bristol, BS1 3NY.
18	
19	5. University Hospitals Bristol and Weston NHS Foundation Trust, NIHR Bristol
20	Biomedical Research Centre, Upper Maudlin Street, Bristol, BS2 8AE.
21	
22	* Corresponding author: <u>mark.gormley@bristol.ac.uk</u>
23	
24	Keywords: Mouth Neoplasms; Oral Cancer; Squamous Cell Carcinoma; Epidemiology; Risk
25	Factors; Survival; Therapeutics.

- 26 Abstract

In the UK, the overall incidence of oral cavity cancer continues to rise, with an increase of around 60% over the past 10 years. Many patients still present with advanced disease, often resulting in locoregional recurrence and poor outcomes, which has not changed significantly for over four decades. There may also be changes in aetiology emerging, given the decline of smoking in developed countries. Therefore, new methods to better target prevention, improve screening and to detect recurrence are needed. High-throughput 'omics' technologies appear promising for future individual-level diagnosis and prognosis. However, given this is a relatively rare cancer with significant intra-tumour heterogeneity and variation in patient response, reliable biomarkers have been difficult to elucidate. From a public health perspective, implementing these novel technologies into current services would require substantial practical, financial and ethical considerations. This papers reviews the latest evidence on epidemiological trends in oral cavity cancer to help identify at risk groups, population-based approaches for prevention, in addition to cutting-edge developments in the diagnosis and prognosis of this disease.

51 Introduction

52

Head and neck cancer which includes the oral cavity is the 7th most common cancer globally, 53 54 accounting for more than 660,000 new cases and 325,000 deaths each year. In the UK, the 55 overall incidence of oral cavity cancer continues to rise, with an increase of around 60% over 56 the past 10 years (Cancer Research UK (CRUK), 2015; Warnakulasuriya, 2009). Globally, 57 incidence and mortality remain higher among males, with 150,000 more cases and 70,000 58 more deaths worldwide reported in males compared to females. Despite this however, the 59 data suggests an increasing trend in oral cavity cancer amongst women and a decreasing 60 trend for men in Europe and the United States (Miranda-Filho and Bray, 2020; Sung et al., 61 2021). The highest age-standardised incidence rates (per 100,000 person-years) for oral 62 cavity cancer are in Melanesia, namely Papua New Guinea (males= 22.2; females= 11.9), 63 South Central Asia (males= 13.3; females= 4.6)) and Eastern Europe (males= 9.2; females= 64 1.9) (Sung et al., 2021).

65

66 Ninety-percent of all malignant tumours which arise from the mucosal epithelium of the oral 67 cavity are squamous cell carcinomas (OSCC) (Vigneswaran and Williams, 2014). The 68 definition of oral cancer often varies between studies, with many combining oral and 69 oropharyngeal cancer subsites, although differences in the aetiology, management and 70 response to treatment means they should be considered as distinct disease entities (Conway, 71 2018; Thomas et al., 2018). Therefore, the term oral cancer in the context of this review will 72 focus only on cancer of the oral cavity. In addition to registries, the use of International 73 Classification of Diseases (ICD-10) codes C00-C06 (World Health Organization (WHO), 74 2016), has helped standardise the collection and curation of cancer data (Table 1). The 75 highest risk sites include lateral border of tongue and floor of mouth.

76 < Table 1 near here >

77

78 **Risk factors for oral cavity cancer**

79

80 In developed countries, OSCC rarely occurs in people who neither smoke nor consume 81 alcohol (Pelucchi et al., 2006). Both smoking and alcohol are well-established as carcinogens 82 with sufficient evidence in OSCC, according to the International Agency for Research on 83 Cancer (Cogliano et al., 2011). Tobacco use both on its own and jointly with alcohol 84 increases the risk of OSCC (Fig.1) (Hashibe et al., 2009; Rothman and Keller, 1972). Ethanol 85 is oxidised to acetaldehyde, which has a direct carcinogenic effect and moreover alcohol may 86 act as a 'solvent' for tobacco carcinogens, which are thought to bathe high-risk sites such as 87 the floor of mouth (Homann et al., 1997). More recently it has been suggested that alcohol 88 alone has an independent effect on OSCC risk, which may have been underestimated in 89 previous observational analyses (Gormley et al., 2020). Higher alcohol consumption (of more 90 than 3 drinks per day) over only a few years also appears to increase risk (Conway, 2018). 91 92 Betel chewing, gutka and use of smokeless tobacco occurs mostly in South Central Asian 93 countries, where rates of OSCC continue to be some of the highest in the world (Fig.1) 94 (Asthana et al., 2019; Miranda-Filho and Bray, 2020). Throughout India, Pakistan and Sri 95 Lanka, tobacco is usually combined with areca nut wrapped with other ingredients in a betel 96 leaf to form a quid which is chewed. Gutka for example, is a combination of areca nut, slaked 97 lime, paraffin, and catechu along with tobacco. In countries such as Papua New Guinea, 98 tobacco is not chewed with the areca nut, betel inflorescence, or slaked lime, which are-often 99 added separately (Gupta and Warnakulasuriya, 2002; Thomas and MacLennan, 1992). One 100 meta-analysis showed an increased risk of oral cancer with exposure to betel quid without

tobacco in non-smokers (Thomas *et al.*, 2007). However, tobacco smoking is common across
these populations, making it difficult to determine the independent effects of these agents
(Fig.1).

104

105 Human papilloma virus (HPV), thought to be sexually transmitted (Heck et al., 2010; Hobbs 106 et al., 2006), also increases OSCC risk (Fig.1). In developed countries such as the USA the 107 proportion of oropharyngeal cancer attributed to HPV is 60-70% (Chaturvedi et al., 2013), 108 whereas the aetiological fraction for oral sites is reported to be as low as 3% (Farsi et al., 109 2015; Gillison et al., 2015). Within the Head and Neck 5000 cancer study, the risk factors of 110 those people with OSCC differed from those with laryngeal and oropharyngeal tumours. 111 They were generally younger (43% < 60 years old), more likely to be female (38%), less 112 likely to smoke (25% never smokers) and no more likely to have performed oral sex (Thomas 113 et al., 2018). Worryingly, these data suggest an emerging and distinct clinical entity of 114 unknown aetiology.

115

116 < Figure 1 near here >

117

Less well established risk factors as shown in **Table 2** include, a family history of oral cavity cancer (Negri *et al.*, 2009), lower body mass index (BMI) (Lubin *et al.*, 2011), a diet lacking in fruit and vegetables (Chuang *et al.*, 2009), type 2 diabetes (Tseng *et al.*, 2014), poor oral health (Hashim *et al.*, 2016), socio-economic status, lower educational attainment and occupation (Conway *et al.*, 2021). While the relationships here may be confounded by smoking and drinking behaviour, further research to establish the value of these potentially modifiable risk factors is required.

126 < **Table 2** near here >

127

128 Strategies for prevention

129

130 Delay in OSCC diagnosis is often associated with increased disfigurement and poorer 131 survival rates (Gómez et al., 2009), dropping to 50% or below for advanced-stage 3 or 4 132 disease (Gigliotti et al., 2019; Warnakulasuriya, 2009). Forty to sixty percent of head and 133 neck cancer patients still present with advanced disease, a figure which has not decreased for 134 over four decades, despite marginally higher survival rates (McGurk et al., 2005). Cervical 135 lymph node metastasis occurs in up to 40% of patients with OSCC, leading to loco-regional 136 recurrence (Fan et al., 2011). In response to the guidance for improving head and neck cancer 137 outcomes in the UK, many providers have moved towards a centralised or 'hub and spoke' 138 model, with higher numbers of patients being treated by a smaller number of specialised units 139 (Stafford *et al.*, 2016).

140

141 Given the high recurrence and poor survival rates, OSCC is considered a major public health 142 issue (Macpherson, 2018). Multiple population-based and individual-level approaches have 143 been implemented in an attempt to both prevent the disease and to diagnose OSCC earlier 144 (Ford and Farah, 2013; Macpherson, 2018). The effect of such interventions are complex, 145 with oral examination screening of high-risk groups appearing to be more effective in areas 146 of high disease prevalence, compared to low (Sankaranarayanan et al., 2005). Ford and Farah 147 (2013) found that those in lower socioeconomic groups at increased risk of OSCC, are likely 148 to be poor dental attenders, which further reduces the efficacy of this approach. Moreover, 149 the COVID-19 pandemic has decreased access to general dental services, resulting in a 150 decline in oral cancer referrals to secondary care and prolonged waiting times. A recent call

151 has been made for long-term investment in public health programmes and transformation of 152 the dental commissioning pathways targeted at those most in need (Stennett and Tsakos, 153 2022). Public awareness campaigns (such as e.g., Mouth Cancer Action Month) can be used 154 to improve symptom recognition, promote self-examination and awareness of risk factors 155 (Austoker et al., 2009; Macpherson, 2018). Previous studies have suggested that while the 156 association between smoking and OSCC is publicly recognised, more could be done to 157 increase awareness around the risk of alcohol (Monteiro et al., 2016; Posorski et al., 2014). 158 Smoking cessation and brief alcohol interventions can be performed chairside by dentists, 159 however funding, time and training are often quoted as barriers which need to be addressed 160 (McAuley et al., 2011). Ongoing trials such as the ENHANCE-D (ENHANCing smoking 161 cEssation interventions in Dentistry) study, will help evaluate and evidence the impact of 162 primary care dental professionals providing smoking cessation interventions such as Nicotine 163 Replacement Therapy (NRT) or e-cigarettes (Holliday, 2022). Better collaboration, education 164 and training of the wider healthcare team is key and the UK General Dental Council 165 advocates continual professional development in oral cancer. Further training requirements 166 for primary medical practitioners could help ensure appropriate urgent referrals are made for 167 both malignant and potentially malignant oral conditions (Rodgers et al., 2007). 168 169 Novel approaches to establishing oral cavity cancer diagnosis and prognosis 170 171 The 'gold standard' approach for diagnosing OSCC is via clinical examination and a

definitive incisional biopsy, sometimes with adjunctive panendoscopy, fine needle aspiration
cytology, or imaging. Toluidine blue stain and chemiluminescence can aid diagnosis, but are
not sensitive or specific enough to be used alone (Kim *et al.*, 2021) Computed tomography

175 (CT), positron emission tomography (PET) scans, ultrasound or magnetic resonance imaging
176 (MRI) are often employed to investigate local or regional spread.

177

178 Oral carcinogenesis is a complex process, in which multiple genetic events occur which alter 179 the normal functions of both oncogenes and tumour suppressor genes, resulting in increased 180 cell proliferation, loss of cell cohesion and potential for metastasis (Williams, 2000). Given 181 there is significant intra-tumour heterogeneity (Weinstein et al., 2013), as well as differences 182 in environmental exposures to carcinogens and variation in patients' response (possibly as a 183 result of genetic predisposition, metabolic, or epigenetic factors), a precision medicine 184 approach has been proposed (Garraway et al., 2013; Sankar and Parker, 2017). With the 185 evolution of high-throughput 'omics' technologies, researchers are now focusing on the development of new diagnostic and prognostic biomarkers for the disease. However, 186 187 implementing these would clearly require substantial practical, financial and ethical 188 considerations as we will discuss (D'Adamo et al., 2021).

189

190 Changes in the genetic and epigenetic profile which may aid risk prediction and

191 prognostication

192

Germline genetics refers to the genetic code inherited from parents, and is found in every healthy cell in the body. Subtle variation in this genetic code, across populations, can alter anything from how quickly we metabolise alcohol to how quickly we feel hungry. The largest genome-wide association study (GWAS) of oral cavity cancer risk (n= 2,990 cases and n= 6,585 controls) set out to identify these subtle variations across the genome that relate to OSCC risk. The study identified two new regions on chromosome position 2p23.3 (rs6547741, *GPN1*) and 9q34.12 (rs928674, *LAMC3*), in addition to known cancer-related

200 loci, 9p21.3 (rs8181047, *CDKN2B-AS1*) and 5p15.33 (rs10462706, *CLPTM1L*).

201 Polymorphisms within alcohol-related genes including alcohol-dehydrogenase 1B (ADH1B;

4q23, rs1229984) were also implicated in OSCC susceptibility (Lesseur *et al.*, 2016).

203 Genetic variants near other alcohol-metabolising genes, rs1573496 (ADH7), rs1042758

204 (ADH1C) and rs4767364 (ALDH2) have also been associated with oral cavity cancer (McKay

205 et al., 2011). Findings such as these could help inform future risk prediction and targeted

206 prevention strategies for certain high-risk patient groups.

207

208 The effect of epigenetic changes in blood have also been explored in OSCC patients. DNA 209 methylation (DNAm) is a form of epigenetic modification involving the addition of methyl 210 groups at cytosine-phosphate-guanine (CpG) sites, which influence gene expression (Dawson 211 and Kouzarides, 2012; Hulls et al., 2020). Many genes have presented an altered methylation 212 profile in OSCC, including galanin (GAL), which has been reported to modulate perineural 213 invasion in head and neck cancer (Russo et al., 2018; Scanlon et al., 2015). Further studies 214 have revealed that blood-based DNAm predictors of smoking, alcohol consumption, body 215 mass index (Langdon et al., 2020), ageing (Beynon et al., 2020), and inflammation 216 (Ambatipudi et al., 2018), are predictive of all-cause mortality among participants with head 217 and neck cancer.

218

Tumour level changes which may help identify targets for predicting survival or treatment
response

221

Somatic mutations are mutations detected in the tumour tissue by genotyping resections orbiopsies. The Cancer Genome Atlas (TCGA) program has sequenced and molecularly

224 characterised OSCC tumour samples, with the most frequently mutated genes shown in Fig.2

225 (Weinstein et al., 2013). This project demonstrated that the vast majority of HPV-negative 226 OSCC have TP53 loss-of-function mutations and CDKN2A inactivation, consistent with 227 previous findings. TP53 is a tumour suppressor gene which encodes for protein p53, regarded 228 as the "guardian of the genome", because of its role in promoting apoptosis and prohibiting 229 the cell cycle, but these occur in almost every type of cancer, with reported frequency ranging 230 from 38%-50% (Olivier et al., 2010). CDKN2A codes for two proteins, including p16INK4 231 which acts as a tumour suppressor by regulating the cell cycle (El-Naggar et al., 1997). While 232 less prevalent in oral cavity compared to oropharyngeal cancer, the presence of HPV that 233 overexpresses p16 can be of significance in younger patients, particularly those without 234 established risk factors (Kerawala et al., 2016; Lingen et al., 2013). Overexpression of 235 epidermal growth factor receptor (EGFR) in OSCC has been associated with recurrent or 236 metastatic disease (Kerawala et al., 2016) and multiple successful trials (Bonner et al., 2006; 237 Bourhis et al., 2006) have used cetuximab in combination with radiotherapy, when 238 conventional treatment has failed. Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) 239 expression has also been associated with poor prognosis in OSCC (Maruse et al., 2018). 240 Immunotherapy which harnesses the patient's own immune system to combat cancer, has 241 resulted in the development of monoclonal antibodies which target PD-1 (Ferris et al., 2016; 242 Ferris et al., 2018).

243

244 < Figure 2 near here >

245

Whole-exome sequencing of tumour tissue is a transcriptomics approach which centres on
the protein-coding regions of the genome. This technique revealed *NOTCH1* mutations in
OSCC, which appears to function as a tumor suppressor gene, rather than an oncogene in this
tumour type (Agrawal *et al.*, 2011; Stransky *et al.*, 2011). Other transcriptome profiling

250	techniques such as RNA-Seq could play a future role in clinical diagnostics and in
251	determining individual genetic response to treatment (Kukurba and Montgomery, 2015; van
252	Hooff et al., 2012). Initial studies have also suggested that metabolomic, proteomic and
253	lipidomic profiling using mass spectrometry techniques may be collectively beneficial in
254	identifying molecular mechanisms and signalling pathways in OSCC, but clear patterns have
255	not yet emerged (Dickinson et al., 2020; Schaaij-Visser et al., 2010; Yonezawa et al., 2013).
256	This could be due to small sample sizes (given that OSCC is a relatively rare cancer) and
257	significant intra-tumour heterogeneity. Furthermore, whether the same DNA methylation
258	signals identified in blood are also present in tumour tissue or saliva, which are more
259	proximal to the disease of interest and easier to obtain, representative of those found in
260	tumour tissue requires further investigation (Lim et al., 2016).
261	
262	Liquid biopsies to improve early detection
263	
264	As conventional biopsies are limited by the area of tissue sampled usually following visual
265	inspection, so called 'liquid biopsies' detecting circulating tumour cells (CTCs), circulating
266	tumour DNA (ctDNA), circulating tumour RNA (ctRNA), proteins or exosomes from blood
267	or saliva could enhance cancer detection (Babji et al., 2019). This could be particularly
268	beneficial in posterior regions of the oral cavity, oropharynx, or in cases of unknown primary
269	tumour. Liquid biomarkers could also allow for the 'real-time' monitoring of tumour
270	progression or personalised therapeutic responses, however again, a reproducible panel of
271	sensitive and specific profiles for these biomarkers has not yet been established (Lousada-
272	Fernandez et al., 2018).
273	

274 Considerations for implementing precision medicine services

276 The UK NHS Long Term Plan focuses on prevention and proposes investment in genomic 277 testing and early detection for cancer (Department of Health & Social Care, 2019). However, 278 implementing these services presents many challenges. Firstly, costs can range from £50 per 279 individual for GWAS panels, to over £500 for whole genome sequencing. Another area of 280 concern is that it that whole exome or genome testing often yields extensive, irrelevant 281 information. Correct processing and interpretation of the results would require workforce 282 training to correctly identify relevant variants, again with significant associated costs 283 (Simpson et al., 2019). Given the current state of underfunding for NHS dentistry and the 284 healthcare service as a whole, this may be difficult to justify (British Dental Association, 285 2022). The way in which 'big genetic data' is stored requires advanced computing 286 infrastructure not currently in place across the NHS, which would need future investment. 287 Secure handling of results from genomic testing to protect patient confidentiality is essential, 288 as all genetic data is unique and potentially identifiable (Molnár-Gábor and Korbel, 2020). 289 Other ethical dilemmas in genomic medicine, include that of consent and patient access to 290 data (Conboy, 2020). When incidental discoveries arise which are outside of dental expertise, 291 e.g., carrier status for disease, patients may need to referral onto geneticists for diagnosis and 292 counselling, adding complexity to the pathway. Whilst clinicians have a duty of candour, the 293 disclosure of genetic information can also lead to psychological distress or anxiety (Himes et 294 al., 2017).

295

296 Strategies for clinical follow-up

297

Follow-up after treatment aims to detect OSCC recurrence, as early detection is the key
determinant of successful, curative salvage treatment. Current UK guidelines recommend

300 clinical review of oral cancer patients every 2 months for the first two years post-treatment, 301 then 3-6 monthly for the next three years. Most (91%) of UK clinicians follow patients up for 302 a minimum of 5 years, with a significant proportion (35%) for 10 years or longer (Joshi et al., 303 2010), but the current strategy is inadequate (Kothari et al., 2011). An increase in OSCC 304 cases in combination with higher survival rates is leading to an increasing number of oral cancer survivors who require follow-up, placing significant pressure on current resources. As 305 306 there are no tumour biomarkers which reliably identify OSCC recurrence, surveillance 307 therefore relies on clinical examination and conventional imaging, but their efficacy in 308 asymptomatic patients is poor. A study of head and neck cancer in asymptomatic patients, 309 attending routine follow-up, detected only 1 recurrence in every 99 consultations (Pagh et al., 310 2013). Unfortunately, routine follow-up detects most disease recurrence at a late stage, with 311 only a small proportion of these patients suitable to receive salvage 312 treatmentsurgery. Furthermore, patient's quality of life is impacted by a fear of cancer 313 recurrence often triggered by forthcoming medical appointments (Mutsaers et al., 2016). The 314 inadequacy of the current follow-up strategy is being addressed in ongoing trials. 315 PETNECK2 is investigating patient-initiated follow-up, with low risk head and neck cancer 316 patients having a PET-CT scan one year after finishing treatment. If no cancer is detected, 317 they will be receive nurse-led education about what symptoms of recurrent cancer to look out 318 for, and an 'open urgent appointment' which guarantees clinical review within 2 weeks if 319 they develop symptoms, instead of regular clinic visits (Lorenc et al., 2022). 320 321 Conclusion

322

Recent epidemiological trends in OSCC suggest a potential change in aetiology, with rising
numbers of younger patients who do not have the established risk factors, including tobacco

325 use and alcohol. The role of less established risks such as BMI, diet, oral health, socio-326 economic status, occupation, and family history (genetics) warrant further investigation, as 327 they could play a contributing role in this disease. Going forward, both conventional and 328 genetic epidemiology could help in identifying high-risk groups to target with prevention 329 strategies. While the evidence is clear for smoking, betel quid/ gutka and smokeless tobacco 330 cessation, more emphasis should be placed on alcohol reduction in future cancer control 331 policies, given its potential independent effect as shown using genetic techniques. Delayed 332 presentation contributes to poor overall survival in OSCC, with low levels of public 333 awareness associated strongly with social and economic determinants of health. Improved 334 public awareness campaigns, greater access and support to attend services, as well as better 335 informed primary care personnel are needed (Macpherson, 2018). Advancements in high-336 throughput 'omics' technologies appear promising for individual-level diagnosis and 337 prognosis in OSCC. However, reproducible profiles for such biomarkers remain to be 338 elucidated. This is likely due to the lower prevalence of OSCC compared with other cancers, 339 in addition to significant intra-tumour heterogeneity and variation in patient response. Cancer 340 registries linked to large datasets such as UK Biobank, in addition to consortia which bring 341 together larger numbers of accurately phenotyped and genotyped OSCC cases offer the best 342 possibility of such biomarker development. Given the considerable practical, financial and 343 ethical costs involved with precision medicine, this may be difficult to justify and implement 344 at present and the focus is currently on early detection using new follow-up strategies. For the 345 meantime therefore, genomic testing remains funded within the context of academic research. 346 347 348

References

352	Agrawal, N., Frederick, M.J., Pickering, C.R., Bettegowda, C., Chang, K., Li, R.J., Fakhry,
353	C., Xie, T.X., Zhang, J., Wang, J., Zhang, N., El-Naggar, A.K., Jasser, S.A.,
354	Weinstein, J.N., Treviño, L., Drummond, J.A., Muzny, D.M., Wu, Y., Wood, L.D.,
355	Hruban, R.H., Westra, W.H., Koch, W.M., Califano, J.A., Gibbs, R.A., Sidransky, D.,
356	Vogelstein, B., Velculescu, V.E., Papadopoulos, N., Wheeler, D.A., Kinzler, K.W.
357	and Myers, J.N. (2011): Exome sequencing of head and neck squamous cell
358	carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154-1157.
359	Ambatipudi, S., Langdon, R., Richmond, R.C., Suderman, M., Koestler, D.C., Kelsey, K.T.,
360	Kazmi, N., Penfold, C., Ho, K.M., McArdle, W., Ring, S.M., Pring, M., Waterboer,
361	T., Pawlita, M., Gaunt, T.R., Davey Smith, G., Thomas, S., Ness, A.R. and Relton,
362	C.L. (2018): DNA methylation derived systemic inflammation indices are associated
363	with head and neck cancer development and survival. Oral Oncology 85, 87-94.
364	Asthana, S., Labani, S., Kailash, U., Sinha, D.N. and Mehrotra, R. (2019): Association of
365	Smokeless Tobacco Use and Oral Cancer: A Systematic Global Review and Meta-
366	Analysis. Nicotine Tob Res 21, 1162-1171.
367	Austoker, J., Bankhead, C., Forbes, L.J.L., Atkins, L., Martin, F., Robb, K., Wardle, J. and
368	Ramirez, A.J. (2009): Interventions to promote cancer awareness and early
369	presentation: systematic review. British Journal of Cancer 101, S31-S39.
370	Babji, D., Nayak, R., Bhat, K. and Kotrashetti, V. (2019): Cell-free tumor DNA: Emerging
371	reality in oral squamous cell carcinoma. Journal of oral and maxillofacial pathology :
372	<i>JOMFP</i> 23 , 273-279.

373	Beynon, R.A., Ingle, S.M., Langdon, R., May, M., Ness, A., Martin, R., Suderman, M.,
374	Ingarfield, K., Marioni, R., McCartney, D., Waterboer, T., Pawlita, M., Relton, C.,
375	Smith, G.D. and Richmond, R. (2020): Epigenetic biomarkers of ageing are predictive
376	of mortality risk in a longitudinal clinical cohort of individuals diagnosed with
377	oropharyngeal cancer. medRxiv, 2020.2002.2004.20020198.
378	Bonner, J.A., Harari, P.M., Giralt, J., Azarnia, N., Shin, D.M., Cohen, R.B., Jones, C.U., Sur,
379	R., Raben, D., Jassem, J., Ove, R., Kies, M.S., Baselga, J., Youssoufian, H., Amellal,
380	N., Rowinsky, E.K. and Ang, K.K. (2006): Radiotherapy plus cetuximab for
381	squamous-cell carcinoma of the head and neck. N Engl J Med 354, 567-578.
382	Bourhis, J., Rivera, F., Mesia, R., Awada, A., Geoffrois, L., Borel, C., Humblet, Y., Lopez-
383	Pousa, A., Hitt, R., Vega Villegas, M.E., Duck, L., Rosine, D., Amellal, N., Schueler,
384	A. and Harstrick, A. (2006): Phase I/II study of cetuximab in combination with
385	cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic
386	squamous cell carcinoma of the head and neck. J Clin Oncol 24, 2866-2872.
387	British Dental Association (2022): Urgent action needed as millions miss out on NHS
388	dentistry. From https://bda.org/news-centre/press-releases/Pages/Urgent-action-
389	needed-as-millions-miss-out-on-NHS-dentistry.aspx.
390	Cancer Research UK (CRUK) (2015): Mouth cancer rates are increasing, but why? From
391	https://scienceblog.cancerresearchuk.org/2015/11/13/mouth-cancer-rates-are-
392	increasing-but-
393	why/#:~:text=Overall%20the%20rates%20of%20tongue,a%20year%20in%20the%20
394	<u>UK</u> .

395	Chaturvedi, A.K., Anderson, W.F., Lortet-Tieulent, J., Curado, M.P., Ferlay, J., Franceschi,
396	S., Rosenberg, P.S., Bray, F. and Gillison, M.L. (2013): Worldwide Trends in
397	Incidence Rates for Oral Cavity and Oropharyngeal Cancers. Journal of Clinical
398	<i>Oncology</i> 31 , 4550-4559.
399	Chuang, S.C., Jenab, M., Heck, J., Olshan, A., Bencko, V., Schantz, S., Curado, M.P., Mates,
400	D., McClean, M., Daudt, A., Franceschi, S., Zaridze, D., Koifman, S., Lazarus, P.,
401	Herrero, R., Fabianova, E., Luigino, D.M., Zhang, Z.F., Muscat, J., Talamini, R.,
402	Rudnai, P., Fernandez, L., Lissowska, J., Menezes, A., Levi, F., Hayes, R.,
403	Benhamou, S., Eluf-Neto, J., Boccia, S. and Matos, E. (2009): Diet and the risk of
404	head and neck cancer: A pooled analysis in the INHANCE consortium. Cancer
405	Research 69.
406	Cogliano, V.J., Baan, R., Straif, K., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F.,
407	Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L. and Wild,
408	C.P. (2011): Preventable exposures associated with human cancers. J Natl Cancer
409	Inst 103, 1827-1839.
410	Conboy, C. (2020): Consent and Privacy in the Era of Precision Medicine and Biobanking
411	Genomic Data. American Journal of Law & Medicine 46, 167-187.
412	Conway, D.I., Hovanec, J., Ahrens, W., Ross, A., Holcatova, I., Lagiou, P., Serraino, D.,
413	Canova, C., Richiardi, L., Healy, C., Kjaerheim, K., Macfarlane, G.J., Thomson, P.,
414	Agudo, A., Znaor, A., Brennan, P., Luce, D., Menvielle, G., Stucker, I., Benhamou,
415	S., Ramroth, H., Boffetta, P., Vilensky, M., Fernandez, L., Curado, M.P., Menezes,
416	A., Daudt, A., Koifman, R., Wunsch-Filho, V., Yuan-Chin, A.L., Hashibe, M.,
417	Behrens, T. and McMahon, A.D. (2021): Occupational socioeconomic risk
418	associations for head and neck cancer in Europe and South America: individual

419	participant data analysis of pooled case-control studies within the INHANCE
420	Consortium. Journal of Epidemiology and Community Health 75, 779-787.
421	Conway, D.I., Purkayastha, M., Chestnutt, I. G. (2018): The changing epidemiology of oral
422	cancer: definitions, trends, and risk factors. British Dental Journal 225, 867-873.
423	D'Adamo, G.L., Widdop, J.T. and Giles, E.M. (2021): The future is now? Clinical and
424	translational aspects of "Omics" technologies. Immunology & Cell Biology 99, 168-
425	176.
426	Dawson, M.A. and Kouzarides, T. (2012): Cancer epigenetics: from mechanism to therapy.
427	<i>Cell</i> 150 , 12-27.
428	Department of Health & Social Care (2019): The NHS Long Term Plan. From
429	https://www.longtermplan.nhs.uk/publication/nhs-long-term-plan/.
430	Dickinson, A., Saraswat, M., Joenväärä, S., Agarwal, R., Jyllikoski, D., Wilkman, T.,
431	Mäkitie, A. and Silén, S. (2020): Mass spectrometry-based lipidomics of oral
432	squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid
433	metabolism — A Pilot study. Translational Oncology 13, 100807.
434	El-Naggar, A.K., Lai, S., Clayman, G., Lee, J.K., Luna, M.A., Goepfert, H. and Batsakis, J.G.
435	(1997): Methylation, a major mechanism of p16/CDKN2 gene inactivation in head
436	and neck squamous carcinoma. Am J Pathol 151, 1767-1774.
437	Fan, S., Tang, QL., Lin, YJ., Chen, WL., Li, JS., Huang, ZQ., Yang, ZH., Wang, Y
438	Y., Zhang, DM., Wang, HJ., Dias-Ribeiro, E., Cai, Q. and Wang, L. (2011): A
439	review of clinical and histological parameters associated with contralateral neck

440 metastases in oral squamous cell carcinoma. *International journal of oral science* 3,
441 180-191.

442	Farsi, N.J., El-Zein, M., Gaied, H., Lee, Y.C., Hashibe, M., Nicolau, B. and Rousseau, M.C.
443	(2015): Sexual behaviours and head and neck cancer: A systematic review and meta-
444	analysis. Cancer Epidemiol 39 , 1036-1046.
445	Ferris, R.L., Blumenschein, G., Fayette, J., Guigay, J., Colevas, A.D., Licitra, L., Harrington,
446	K., Kasper, S., Vokes, E.E., Even, C., Worden, F., Saba, N.F., Iglesias Docampo,
447	L.C., Haddad, R., Rordorf, T., Kiyota, N., Tahara, M., Monga, M., Lynch, M., Geese,
448	W.J., Kopit, J., Shaw, J.W. and Gillison, M.L. (2016): Nivolumab for Recurrent
449	Squamous-Cell Carcinoma of the Head and Neck. New England Journal of Medicine
450	375 , 1856-1867.
451	Ferris, R.L., Blumenschein, G., Jr., Fayette, J., Guigay, J., Colevas, A.D., Licitra, L.,
452	Harrington, K.J., Kasper, S., Vokes, E.E., Even, C., Worden, F., Saba, N.F.,
453	Docampo, L.C.I., Haddad, R., Rordorf, T., Kiyota, N., Tahara, M., Lynch, M.,
454	Jayaprakash, V., Li, L. and Gillison, M.L. (2018): Nivolumab vs investigator's choice
455	in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-
456	term survival update of CheckMate 141 with analyses by tumor PD-L1 expression.
457	<i>Oral Oncol</i> 81 , 45-51.
458	Ford, P.J. and Farah, C.S. (2013): Early detection and diagnosis of oral cancer: Strategies for
459	improvement. Journal of Cancer Policy 1, e2-e7.
460	Garraway, L.A., Verweij, J. and Ballman, K.V. (2013): Precision oncology: an overview. J
461	<i>Clin Oncol</i> 31 , 1803-1805.

462	Gigliotti, J., Madathil, S. and Makhoul, N. (2019): Delays in oral cavity cancer. International
463	Journal of Oral and Maxillofacial Surgery 48, 1131-1137.
464	Gillison, M.L., Chaturvedi, A.K., Anderson, W.F. and Fakhry, C. (2015): Epidemiology of
465	Human Papillomavirus-Positive Head and Neck Squamous Cell Carcinoma. J Clin
466	Oncol 33 , 3235-3242.
467	Gómez, I., Seoane, J., Varela-Centelles, P., Diz, P. and Takkouche, B. (2009): Is diagnostic
468	delay related to advanced-stage oral cancer? A meta-analysis. Eur J Oral Sci 117,
469	541-546.
470	Gormley, M., Dudding, T., Sanderson, E., Martin, R.M., Thomas, S., Tyrrell, J., Ness, A.R.,
471	Brennan, P., Munafo, M., Pring, M., Boccia, S., Olshan, A.F., Diergaarde, B., Hung,
472	R.J., Liu, G., Davey Smith, G. and Richmond, R.C. (2020): A multivariable
473	Mendelian randomization analysis investigating smoking and alcohol consumption in
474	oral and oropharyngeal cancer. Nat Commun 11, 6071.
475	Grossman, R.L., Heath, A.P., Ferretti, V., Varmus, H.E., Lowy, D.R., Kibbe, W.A. and
476	Staudt, L.M. (2016): Toward a Shared Vision for Cancer Genomic Data. New
477	England Journal of Medicine 375 , 1109-1112.
478	Gupta, P.C. and Warnakulasuriya, S. (2002): Global epidemiology of areca nut usage. Addict
479	<i>Biol</i> 7 , 77-83.
480	Hashibe, M., Brennan, P., Chuang, S.C., Boccia, S., Castellsague, X., Chen, C., Curado,
481	M.P., Dal Maso, L., Daudt, A.W., Fabianova, E., Fernandez, L., Wunsch-Filho, V.,
482	Franceschi, S., Hayes, R.B., Herrero, R., Kelsey, K., Koifman, S., La Vecchia, C.,
483	Lazarus, P., Levi, F., Lence, J.J., Mates, D., Matos, E., Menezes, A., McClean, M.D.,
484	Muscat, J., Eluf-Neto, J., Olshan, A.F., Purdue, M., Rudnai, P., Schwartz, S.M.,

485	Smith, E., Sturgis, E.M., Szeszenia-Dabrowska, N., Talamini, R., Wei, Q.Y., Winn,
486	D.M., Shangina, O., Pilarska, A., Zhang, Z.F., Ferro, G., Berthiller, J. and Boffetta, P.
487	(2009): Interaction between Tobacco and Alcohol Use and the Risk of Head and Neck
488	Cancer: Pooled Analysis in the International Head and Neck Cancer Epidemiology
489	Consortium. Cancer Epidemiology Biomarkers & Prevention 18, 541-550.
490	Hashim, D., Sartori, S., Brennan, P., Curado, M.P., Wünsch-Filho, V., Divaris, K., Olshan,
491	A.F., Zevallos, J.P., Winn, D.M., Franceschi, S., Castellsagué, X., Lissowska, J.,
492	Rudnai, P., Matsuo, K., Morgenstern, H., Chen, C., Vaughan, T.L., Hofmann, J.N.,
493	D'Souza, G., Haddad, R.I., Wu, H., Lee, Y.C., Hashibe, M., Vecchia, C.L. and
494	Boffetta, P. (2016): The role of oral hygiene in head and neck cancer: results from
495	International Head and Neck Cancer Epidemiology (INHANCE) consortium. Annals
496	of oncology : official journal of the European Society for Medical Oncology 27, 1619-
497	1625.
498	Heck, J.E., Berthiller, J., Vaccarella, S., Winn, D.M., Smith, E.M., Shan'gina, O., Schwartz,
499	S.M., Purdue, M.P., Pilarska, A., Eluf-Neto, J., Menezes, A., McClean, M.D., Matos,
500	E., Koifman, S., Kelsey, K.T., Herrero, R., Hayes, R.B., Franceschi, S., Wunsch-
501	Filho, V., Fernandez, L., Daudt, A.W., Curado, M.P., Chen, C., Castellsague, X.,
502	Ferro, G., Brennan, P., Boffetta, P. and Hashibe, M. (2010): Sexual behaviours and
503	the risk of head and neck cancers: a pooled analysis in the International Head and
504	Neck Cancer Epidemiology (INHANCE) consortium. International Journal of
505	<i>Epidemiology</i> 39 , 166-181.
506	Himes, P., Kauffman, T.L., Muessig, K.R., Amendola, L.M., Berg, J.S., Dorschner, M.O.,
507	Gilmore, M., Nickerson, D.A., Reiss, J.A., Richards, C.S., Rope, A.F., Simpson,
508	D.K., Wilfond, B.S., Jarvik, G.P. and Goddard, K.A.B. (2017): Genome sequencing

- and carrier testing: decisions on categorization and whether to disclose results of
 carrier testing. *Genet Med* 19, 803-808.
- 511 Hobbs, C.G., Sterne, J.A., Bailey, M., Heyderman, R.S., Birchall, M.A. and Thomas, S.J.
- 512 (2006): Human papillomavirus and head and neck cancer: a systematic review and
 513 meta-analysis. *Clinical Otolaryngology* **31**, 259-266.
- 514 Holliday, R. (2022): ENHANCE-D Study. From
- 515 <u>https://blogs.ncl.ac.uk/northerndentres/currentprojects/enhance-d-study-expression-</u>
 516 of-interest/.
- 517 Homann, N., Karkkainen, P., Koivisto, T., Nosova, T., Jokelainen, K. and Salaspuro, M.
- 518 (1997): Effects of acetaldehyde on cell regeneration and differentiation of the upper
 519 gastrointestinal tract mucosa. *J Natl Cancer Inst* **89**, 1692-1697.
- 520 Hulls, P.M., de Vocht, F., Bao, Y., Relton, C.L., Martin, R.M. and Richmond, R.C. (2020):
- 521 DNA methylation signature of passive smoke exposure is less pronounced than active 522 smoking: The Understanding Society study. *Environ Res* **190**, 109971.
- Joshi, A., Calman, F., O'Connell, M., Jeannon, J.P., Pracy, P. and Simo, R. (2010): Current
 Trends in the Follow-up of Head and Neck Cancer Patients in the UK. *Clinical Oncology* 22, 114-118.
- Kerawala, C., Roques, T., Jeannon, J.P. and Bisase, B. (2016): Oral cavity and lip cancer:
 United Kingdom National Multidisciplinary Guidelines. *The Journal of laryngology and otology* 130, S83-S89.

529	Kim, D.H., Song, E.A., Kim, S.W. and Hwang, S.H. (2021): Efficacy of toluidine blue in the
530	diagnosis and screening of oral cancer and pre-cancer: A systematic review and meta-
531	analysis. Clinical Otolaryngology 46, 23-30.
532	Kothari, P., Trinidade, A., Hewitt, R.J.D., Singh, A. and O'Flynn, P. (2011): The follow-up of
533	patients with head and neck cancer: an analysis of 1,039 patients. Eur Arch
534	<i>Otorhinolaryngol</i> 268 , 1191-1200.
535	Kukurba, K.R. and Montgomery, S.B. (2015): RNA Sequencing and Analysis. Cold Spring
536	Harbor protocols 2015 , 951-969.
537	Langdon, R., Beynon, R.A., Ingarfield, K., Marioni, R.E., McCartney, D.L., Martin, R.M.,
538	Ness, A.R., Pawlita, M., Waterboer, T., Relton, C., Thomas, S.J. and Richmond, R.C.
539	(2020): Epigenetic prediction of complex traits and mortality in a cohort of
540	individuals with oropharyngeal cancer. Clin Epigenetics 12, 58.
541	Lesseur, C., Diergaarde, B., Olshan, A.F., Wunsch, V., Ness, A.R., Liu, G., Lacko, M., Eluf-
542	Neto, J., Franceschi, S., Lagiou, P., Macfarlane, G.J., Richiardi, L., Boccia, S.,
543	Polesel, J., Kjaerheim, K., Zaridze, D., Johanson, M., Menezes, A.M., Curado, M.P.,
544	Robinson, M., Ahrens, W., Canova, C., Znaor, A., Castellsague, X., Conway, D.I.,
545	Holcatova, I., Mates, D., Vidensky, M., Healy, C.M., Szeszenia-Dbrowska, N.,
546	Fabianova, E., Lissowska, J., Grandis, J.R., Weissler, M.C., Tajara, E.H., Nunes,
547	F.D., de Carvalho, M.B., Thomas, S., Hung, R.J., Peters, W.H.M., Herrero, R.,
548	Cadoni, G., Bueno-De-Mesquita, H.B., Steffen, A., Agudo, A., Shangina, O., Xiao,
549	X.J., Gaborieau, V., Chabrier, A., Anantharaman, D., Boffetta, P., Amos, C.I., Mckay,
550	J.D. and Brennan, P. (2016): Genome-wide association analyses identify new
551	susceptibility loci for oral cavity and pharyngeal cancer. Nature Genetics 48, 1544-
552	1550.

553	Lim, Y., Sun, C.X., Tran, P. and Punyadeera, C. (2016): Salivary epigenetic biomarkers in
554	head and neck squamous cell carcinomas. Biomark Med 10, 301-313.
555	Lingen, M.W., Xiao, W., Schmitt, A., Jiang, B., Pickard, R., Kreinbrink, P., Perez-Ordonez,
556	B., Jordan, R.C. and Gillison, M.L. (2013): Low etiologic fraction for high-risk
557	human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol 49, 1-8.
558	Lorenc, A., Wells, M., Fulton-Lieuw, T., Nankivell, P., Mehanna, H., Jepson, M. and Team,
559	P.R. (2022): Clinicians' Views of Patient-initiated Follow-up in Head and Neck
560	Cancer: a Qualitative Study to Inform the PETNECK2 Trial. Clinical oncology
561	(Royal College of Radiologists (Great Britain)) 34, 230-240.
562	Lousada-Fernandez, F., Rapado-Gonzalez, O., Lopez-Cedrun, JL., Lopez-Lopez, R.,
563	Muinelo-Romay, L. and Suarez-Cunqueiro, M.M. (2018): Liquid Biopsy in Oral
564	Cancer. International journal of molecular sciences 19, 1704.
565	Lubin, J.H., Muscat, J., Gaudet, M.M., Olshan, A.F., Curado, M.P., Dal Maso, L., Wünsch-
566	Filho, V., Sturgis, E.M., Szeszenia-Dabrowska, N., Castellsague, X., Zhang, Z.F.,
567	Smith, E., Fernandez, L., Matos, E., Franceschi, S., Fabianova, E., Rudnai, P., Purdue
568	M.P., Mates, D., Wei, Q., Herrero, R., Kelsey, K., Morgenstern, H., Shangina, O.,
569	Koifman, S., Lissowska, J., Levi, F., Daudt, A.W., Neto, J.E., Chen, C., Lazarus, P.,
570	Winn, D.M., Schwartz, S.M., Boffetta, P., Brennan, P., Menezes, A., La Vecchia, C.,
571	McClean, M., Talamini, R., Rajkumar, T., Hayes, R.B. and Hashibe, M. (2011): An
572	examination of male and female odds ratios by BMI, cigarette smoking, and alcohol
573	consumption for cancers of the oral cavity, pharynx, and larynx in pooled data from
574	15 case-control studies. Cancer Causes Control 22, 1217-1231.

575	Macpherson, L.M.D. (2018): Raising awareness of oral cancer from a public and health
576	professional perspective. British Dental Journal 225, 809-814.

577 Maruse, Y., Kawano, S., Jinno, T., Matsubara, R., Goto, Y., Kaneko, N., Sakamoto, T.,

- 578 Hashiguchi, Y., Moriyama, M., Toyoshima, T., Kitamura, R., Tanaka, H., Oobu, K.,
- 579 Kiyoshima, T. and Nakamura, S. (2018): Significant association of increased PD-L1
- and PD-1 expression with nodal metastasis and a poor prognosis in oral squamous cell

581 carcinoma. International Journal of Oral and Maxillofacial Surgery 47, 836-845.

582 McAuley, A., Goodall, C.A., Ogden, G.R., Shepherd, S. and Cruikshank, K. (2011):

583 Delivering alcohol screening and alcohol brief interventions within general dental 584 practice: rationale and overview of the evidence. *British Dental Journal* **210**, E15-585 E15.

McGurk, M., Chan, C., Jones, J., O'Regan, E. and Sherriff, M. (2005): Delay in diagnosis and
its effect on outcome in head and neck cancer. *Br J Oral Maxillofac Surg* 43, 281284.

589 McKay, J.D., Truong, T., Gaborieau, V., Chabrier, A., Chuang, S.-C., Byrnes, G., Zaridze,

- 590 D., Shangina, O., Szeszenia-Dabrowska, N., Lissowska, J., Rudnai, P., Fabianova, E.,
- 591 Bucur, A., Bencko, V., Holcatova, I., Janout, V., Foretova, L., Lagiou, P.,

592 Trichopoulos, D., Benhamou, S., Bouchardy, C., Ahrens, W., Merletti, F., Richiardi,

- 593 L., Talamini, R., Barzan, L., Kjaerheim, K., Macfarlane, G.J., Macfarlane, T.V.,
- 594 Simonato, L., Canova, C., Agudo, A., Castellsagué, X., Lowry, R., Conway, D.I.,
- 595 McKinney, P.A., Healy, C.M., Toner, M.E., Znaor, A., Curado, M.P., Koifman, S.,
- 596 Menezes, A., Wünsch-Filho, V., Neto, J.E., Garrote, L.F., Boccia, S., Cadoni, G.,
- 597 Arzani, D., Olshan, A.F., Weissler, M.C., Funkhouser, W.K., Luo, J., Lubiński, J.,
- 598 Trubicka, J., Lener, M., Oszutowska, D., Schwartz, S.M., Chen, C., Fish, S., Doody,

599	D.R., Muscat, J.E., Lazarus, P., Gallagher, C.J., Chang, SC., Zhang, ZF., Wei, Q.,
600	Sturgis, E.M., Wang, LE., Franceschi, S., Herrero, R., Kelsey, K.T., McClean, M.D.,
601	Marsit, C.J., Nelson, H.H., Romkes, M., Buch, S., Nukui, T., Zhong, S., Lacko, M.,
602	Manni, J.J., Peters, W.H.M., Hung, R.J., McLaughlin, J., Vatten, L., Njølstad, I.,
603	Goodman, G.E., Field, J.K., Liloglou, T., Vineis, P., Clavel-Chapelon, F., Palli, D.,
604	Tumino, R., Krogh, V., Panico, S., González, C.A., Quirós, J.R., Martínez, C.,
605	Navarro, C., Ardanaz, E., Larrañaga, N., Khaw, KT., Key, T., Bueno-de-Mesquita,
606	H.B., Peeters, P.H.M., Trichopoulou, A., Linseisen, J., Boeing, H., Hallmans, G.,
607	Overvad, K., Tjønneland, A., Kumle, M., Riboli, E., Välk, K., Voodern, T., Metspalu,
608	A., Zelenika, D., Boland, A., Delepine, M., Foglio, M., Lechner, D., Blanché, H., Gut,
609	I.G., Galan, P., Heath, S., Hashibe, M., Hayes, R.B., Boffetta, P., Lathrop, M. and
610	Brennan, P. (2011): A Genome-Wide Association Study of Upper Aerodigestive
611	Tract Cancers Conducted within the INHANCE Consortium. PLOS Genetics 7,
612	e1001333.
613	Miranda-Filho, A. and Bray, F. (2020): Global patterns and trends in cancers of the lip,
614	tongue and mouth. Oral Oncology 102, 104551.
615	Molnár-Gábor, F. and Korbel, J.O. (2020): Genomic data sharing in Europe is stumbling-
616	Could a code of conduct prevent its fall? EMBO molecular medicine 12, e11421-
617	e11421.
618	Monteiro, L.S., Warnakulasuriya, S., Cadilhe, S., Sousa, D., Trancoso, P.F., Antunes, L.,
619	Salazar, F. and Pacheco, J.J. (2016): Oral cancer awareness and knowledge among
620	residents in the Oporto city, Portugal. Journal of Investigative and Clinical Dentistry
621	7, 294-303.

622	Mutsaers, B., Jones, G., Rutkowski, N., Tomei, C., Séguin Leclair, C., Petricone-Westwood,
623	D., Simard, S. and Lebel, S. (2016): When fear of cancer recurrence becomes a
624	clinical issue: a qualitative analysis of features associated with clinical fear of cancer
625	recurrence. Support Care Cancer 24, 4207-4218.
626	Negri, E., Boffetta, P., Berthiller, J., Castellsague, X., Curado, M.P., Dal Maso, L., Daudt,
627	A.W., Fabianova, E., Fernandez, L., Wünsch-Filho, V., Franceschi, S., Hayes, R.B.,
628	Herrero, R., Koifman, S., Lazarus, P., Lence, J.J., Levi, F., Mates, D., Matos, E.,
629	Menezes, A., Muscat, J., Eluf-Neto, J., Olshan, A.F., Rudnai, P., Shangina, O.,
630	Sturgis, E.M., Szeszenia-Dabrowska, N., Talamini, R., Wei, Q., Winn, D.M., Zaridze,
631	D., Lissowska, J., Zhang, ZF., Ferro, G., Brennan, P., La Vecchia, C. and Hashibe,
632	M. (2009): Family history of cancer: pooled analysis in the International Head and
633	Neck Cancer Epidemiology Consortium. International Journal of Cancer 124, 394-
634	401.
635	Olivier, M., Hollstein, M. and Hainaut, P. (2010): TP53 mutations in human cancers: origins,
636	consequences, and clinical use. Cold Spring Harbor perspectives in biology 2,
637	a001008-a001008.
638	Pagh, A., Vedtofte, T., Lynggaard, C.D., Rubek, N., Lonka, M., Johansen, J., Andersen, E.,
639	Kristensen, C.A., von Buchwald, C., Andersen, M., Godballe, C., Overgaard, J. and
640	Grau, C. (2013): The value of routine follow-up after treatment for head and neck
641	cancer. A national survey from DAHANCA. Acta Oncol 52, 277-284.
642	Pelucchi, C., Gallus, S., Garavello, W., Bosetti, C. and La Vecchia, C. (2006): Cancer risk
643	associated with alcohol and tobacco use: focus on upper aero-digestive tract and liver.
644	Alcohol research & health : the journal of the National Institute on Alcohol Abuse
645	and Alcoholism 29 , 193-198.

Posorski, E., Boyd, L., Giblin, L.J. and Welch, L. (2014): Oral Cancer Awareness Among
Community-Dwelling Senior Citizens in Illinois. *Journal of Community Health* 39,
1109-1116.

649 Rodgers, J., Macpherson, L.M., Smith, G.L., Crighton, A.J., Carton, A.T. and Conway, D.I.

650 (2007): Characteristics of patients attending rapid access clinics during the West of

- 651 Scotland Cancer Awareness Programme oral cancer campaign. *Br Dent J* 202, E28;
 652 discussion 680-681.
- Rothman, K. and Keller, A. (1972): The effect of joint exposure to alcohol and tobacco on
 risk of cancer of the mouth and pharynx. *J Chronic Dis* 25, 711-716.
- Russo, D., Merolla, F., Varricchio, S., Salzano, G., Zarrilli, G., Mascolo, M., Strazzullo, V.,
 Di Crescenzo, R.M., Celetti, A. and Ilardi, G. (2018): Epigenetics of oral and
 oropharyngeal cancers. *Biomedical reports* 9, 275-283.
- Sankar, P.L. and Parker, L.S. (2017): The Precision Medicine Initiative's All of Us Research
 Program: an agenda for research on its ethical, legal, and social issues. *Genet Med* 19,
 743-750.
- Sankaranarayanan, R., Ramadas, K., Thomas, G., Muwonge, R., Thara, S., Mathew, B. and
 Rajan, B. (2005): Effect of screening on oral cancer mortality in Kerala, India: a
 cluster-randomised controlled trial. *Lancet* 365, 1927-1933.
- 664 Scanlon, C.S., Banerjee, R., Inglehart, R.C., Liu, M., Russo, N., Hariharan, A., van Tubergen,
- E.A., Corson, S.L., Asangani, I.A., Mistretta, C.M., Chinnaiyan, A.M. and D'Silva,
- 666 N.J. (2015): Galanin modulates the neural niche to favour perineural invasion in head
- and neck cancer. *Nature Communications* **6**, 6885.

668	Schaaij-Visser, T.B., Brakenhoff, R.H., Leemans, C.R., Heck, A.J. and Slijper, M. (2010):
669	Protein biomarker discovery for head and neck cancer. J Proteomics 73, 1790-1803.
670	Simpson, S., Seller, A. and Bishop, M. (2019): Using the Findings of a National Survey to
671	Inform the Work of England's Genomics Education Programme. Frontiers in genetics
672	10 , 1265-1265.
673	Stafford, F., Ah-See, K., Fardy, M. and Fell, K. (2016): Organisation and provision of head
674	and neck cancer surgical services in the United Kingdom: United Kingdom National
675	Multidisciplinary Guidelines. The Journal of laryngology and otology 130, S5-S8.
676	Stennett, M. and Tsakos, G. (2022): The impact of the COVID-19 pandemic on oral health
677	inequalities and access to oral healthcare in England. British Dental Journal 232, 109-
678	114.
679	Stransky, N., Egloff, A.M., Tward, A.D., Kostic, A.D., Cibulskis, K., Sivachenko, A.,
680	Kryukov, G.V., Lawrence, M.S., Sougnez, C., McKenna, A., Shefler, E., Ramos,
681	A.H., Stojanov, P., Carter, S.L., Voet, D., Cortés, M.L., Auclair, D., Berger, M.F.,
682	Saksena, G., Guiducci, C., Onofrio, R.C., Parkin, M., Romkes, M., Weissfeld, J.L.,
683	Seethala, R.R., Wang, L., Rangel-Escareño, C., Fernandez-Lopez, J.C., Hidalgo-
684	Miranda, A., Melendez-Zajgla, J., Winckler, W., Ardlie, K., Gabriel, S.B., Meyerson,
685	M., Lander, E.S., Getz, G., Golub, T.R., Garraway, L.A. and Grandis, J.R. (2011):
686	The mutational landscape of head and neck squamous cell carcinoma. Science 333,
687	1157-1160.
688	Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F.

689 (2021): Global cancer statistics 2020: GLOBOCAN estimates of incidence and

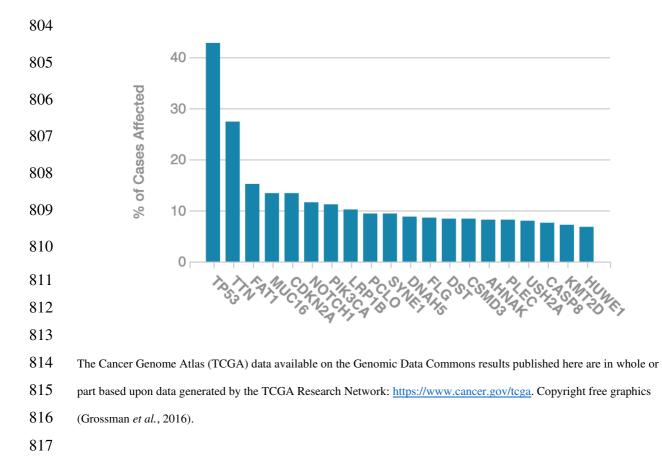
- 690 mortality worldwide for 36 cancers in 185 countries. *CA: A Cancer Journal for*691 *Clinicians*.
- Thomas, S.J., Bain, C.J., Battistutta, D., Ness, A.R., Paissat, D. and Maclennan, R. (2007):
 Betel quid not containing tobacco and oral cancer: A report on a case–control study in
 Papua New Guinea and a meta-analysis of current evidence. *International Journal of Cancer* 120, 1318-1323.
- Thomas, S.J. and MacLennan, R. (1992): Slaked lime and betel nut cancer in Papua New
 Guinea. *Lancet* 340, 577-578.
- Thomas, S.J., Penfold, C.M., Waylen, A. and Ness, A.R. (2018): The changing aetiology of
 head and neck squamous cell cancer: A tale of three cancers? *Clinical Otolaryngology*43, 999-1003.
- Tseng, K.S., Lin, C., Lin, Y.S. and Weng, S.F. (2014): Risk of head and neck cancer in
 patients with diabetes mellitus: a retrospective cohort study in Taiwan. *JAMA Otolaryngol Head Neck Surg* 140, 746-753.
- van Hooff, S.R., Leusink, F.K., Roepman, P., Baatenburg de Jong, R.J., Speel, E.J., van den
- 705Brekel, M.W., van Velthuysen, M.L., van Diest, P.J., van Es, R.J., Merkx, M.A.,
- 706 Kummer, J.A., Leemans, C.R., Schuuring, E., Langendijk, J.A., Lacko, M., De Herdt,
- 707 M.J., Jansen, J.C., Brakenhoff, R.H., Slootweg, P.J., Takes, R.P. and Holstege, F.C.
- 708 (2012): Validation of a gene expression signature for assessment of lymph node
- metastasis in oral squamous cell carcinoma. *J Clin Oncol* **30**, 4104-4110.
- Vigneswaran, N. and Williams, M.D. (2014): Epidemiologic trends in head and neck cancer
 and aids in diagnosis. *Oral and maxillofacial surgery clinics of North America* 26,
 123-141.

713	Warnakulasuriya, S. (2009): Global epidemiology of oral and oropharynge	al cancer. Oral
714	<i>Oncol</i> 45 , 309-316.	

- 715 Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K.,
- 716 Shmulevich, I., Sander, C. and Stuart, J.M. (2013): The Cancer Genome Atlas Pan-
- 717 Cancer analysis project. *Nature Genetics* **45**, 1113-1120.
- Williams, H.K. (2000): Molecular pathogenesis of oral squamous carcinoma. *Molecular Pathology* 53, 165-172.
- 720 World Health Organization (WHO) (2016): World Health Organization (WHO): International
- statistical classification of diseases and related health problems (10th ed.). From
 <u>https://icd.who.int/browse10/2019/en#/</u>.
- 723 Yonezawa, K., Nishiumi, S., Kitamoto-Matsuda, J., Fujita, T., Morimoto, K., Yamashita, D.,
- 724 Saito, M., Otsuki, N., Irino, Y., Shinohara, M., Yoshida, M. and Nibu, K. (2013):
- Serum and tissue metabolomics of head and neck cancer. *Cancer Genomics*
- 726 *Proteomics* **10**, 233-238.
- 727
- 728
- 729

- 731
- 732
- 733
- 734
- _
- 735
- 736

737 Tables


Table 1. International Classification of Diseases (ICD-10) codes for oral cavity cancer

	Main site	ICD-10 Code
	Malignant neoplasms of lip	C00
	Malignant neoplasm of base of tongue	C01
Ma	lignant neoplasm of other and unspecified part of tongue	C02
	Malignant neoplasm of gum	C03
	Malignant neoplasm of floor of mouth	C04
	Malignant neoplasm of palate	C05
Mal	ignant neoplasm of other and unspecified parts of mouth	C06
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

Table 2. Less well established risk factor associations for oral cavity cancer

Risk factor	Level of exposure	Odds risk (95% CI) for	Reference
		oral cancer	
Family history	Oral cavity cancer in first degree relatives	OR 1.53 (1.11, 2.11)	(Negri et al., 2009)
BMI	<18.5	OR 2.58 (2.00, 3.40)	(Lubin et al., 2011)
Diet	Vegetable intake (4 th vs 1 st quartile)	OR 0.69 (0.61, 0.79)	(Chuang <i>et al.</i> , 2009)
	Fruit intake (4 th vs 1 st quartile)	OR 0.46 (0.38, 0.56)	
Type 2 Diabetes Mellitus	History of diabetes vs no diabetes	OR 1.74 (1.47, 2.06)	(Tseng et al., 2014)
Oral health / hygiene	<5 missing teeth vs \ge missing teeth	OR 0.69 (0.64, 0.76)	(Hashim et al., 2016)
	No gum disease vs gum disease	OR 0.83 (0.77, 0.89)	-
	Annual dentist vs < once a year	OR 0.82 (0.76, 0.89)	-
-	Daily toothbrushing vs <once a="" day<="" td=""><td>OR 0.81 (0.75, 0.88)</td><td>-</td></once>	OR 0.81 (0.75, 0.88)	-
Socioeconomic factors	Low educational attainment	OR 1.85 (1.60, 2.15)	(Conway et al., 2021)
	Low vs high income	OR 2.41 (1.59, 3.65)	-
	Low vs high occupational SES	OR 1.84 (1.47, 2.31)	(Conway et al., 2021

771	Figures
772	
773	Figure 1. Established risk factor associations for oral cavity cancer
774	
775	Oral cavity cancer
776	Tobacco alone vs never (Hashibe et al., 2009)
777	Gutka user versus never (Asthana et al., 2009)
778	
779	Pan tobacco/ areca nut + lime + tobacco (Asthana et al., 2009)
780	Betel quid without tobacco in non-smokers (Thomas et al., 2007)
781	Alcohol alone vs never (Hashibe et al., 2009)
782	Combined tobacco and alcohol use (Hashibe et al., 2009)
783	
784	Six or more lifetime sexual partners vs one (Heck et al., 2010)
785	HPV-16 positive vs negative (Hobbs et al., 2006)
786	1 3 10 OR (95%CI)
787	
788	Figure adapted from results taken from the largest pooled analyses by Hashibe et al. (2009), Asthana et al. (2019), Thomas et
789	al. (2007), Heck et al. (2010) and Hobbs et al. (2006). Error bars represent 95% confidence intervals (95%CI).
790 791 792 793 794 795 796 797 798 799 800 801 802	

Figure 2. Distribution of the most frequently mutated genes in oral squamous cell carcinoma