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Abstract— Incomplete and inaccurate information of network
topology and line parameters affects state monitoring, analy-
sis, and control of active distribution networks. To solve this
issue, this article proposes a method for identifying distribution
network topology and line parameters using the measurements
obtained from smart meters (SMs) and microphasor measure-
ment units (μPMUs) installed at various locations in a distrib-
ution network. A data-driven approach was developed, which
uses a probabilistic method (unscented Kalman filter (UKF)
based) and a deterministic method (Newton Raphson (NR) based)
iteratively for accurate identification of network topology and
parameters. The impact of the measurement noise with SMs and
μPMUs is analyzed, and the acceptable noise levels are quantified.
The impact of the identification algorithm on the network state
estimation is examined. Moreover, optimal installation locations
of the μPMU equipment are identified based on the estimation
accuracy of the algorithm. The method is validated on bench-
marked IEEE 33-bus and IEEE 123-bus test systems, while the
impact of the renewable power injections at the different network
nodes is studied as well. The qualitative and quantitative analysis
is performed over the state-of-the-art methods, to highlight the
effectiveness of the proposed methodology.

Index Terms— Active distribution network, microphasor
measurement unit (μPMU), parameter identification, smart
meters (SM), topology identification.

I. INTRODUCTION

SMART meters (SMs) and microphasor measurement units
(μPMUs) are being increasingly deployed in distrib-

ution networks for improved monitoring and control [1].
μPMUs offer multiple benefits to distribution network opera-
tors (DNOs), by facilitating an efficient and reliable network
operation with increased penetration of renewable energy
sources and unpredictable operating scenarios associated with
connecting more active prosumers [2]. Various functions of
the DNO, such as distributed state estimation, network plan-
ning, connection of renewable energy sources, and optimal
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network operation, require accurate network topology and
line parameter information [3]. The network operator may
refer to the blueprint, and however, due to incomplete and
inaccurate information in the distribution network, the true
topology and real line parameters may be unavailable or
vary significantly compared to the blueprint [4]. This could
significantly affect the state estimation and operation of the
distribution network [5].

A. Related Work

To obtain the network topology information,
Mayo-Maldonado et al. [7] developed a framework that
uses the measurements data from μPMUs installed at
various buses in a network. This framework, along with the
topology estimation framework proposed by Deka et al. [8],
is successful in the estimation of distribution network
topology as well as the event detection (such as faults
and line outages). However, these methods are not able to
estimate the line parameters of each of the branches in the
network. Moreover, the topology estimation is affected by
an excessive penetration of renewable energy because of the
renewable-derived uncertainty due to their stochastic nature
(e.g., randomness generated by a gust of wind) and the lack
of measurements associated with them in the distribution
network. These frequently manifest as non-Gaussian noise
in the measurements at the renewable penetrated buses in
the network [6]. To tackle the noise in the measurements,
He et al. [6] developed a hybrid framework methodology for
topology identification, which proved robust under excessive
penetration of renewable energy. While these methods are
successful in determining the network topology, they lack
providing the information of the exact branch parameters
(e.g., line conductances and susceptances). With a view of
providing complete network information, Gupta et al. [9] and
Wehenkel et al. [10] have come up with methodologies for
the estimation of topology as well as the branch parameters.
Nevertheless, these methods are highly dependent on prior
knowledge of the topology configuration. Notably, for the
same purpose, expectation–maximization-based technique is
proposed by Yu et al. [11], and sparse recovery-based
techniques are proposed by Jafarian et al. [12] and
Babakmehr et al. [13], while the data-driven techniques
are also reported by Dua et al. [14].

Without any prior information of the topology, a novel
Lasso-based algorithm is demonstrated by Ardakanian et al.
[15]. This algorithm works well for estimating both topology
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TABLE I

COMPARISONS BETWEEN EXISTING METHODS

and line parameters using μPMUs. However, an exhaustive
number of data samples are required with high accuracy,
and the algorithm is prone to erroneous results under the
presence of biases in the measurements. An improvement
adaptive Lasso is therefore proposed by the same authors
(Ardakanian et al. [16]) to overcome the issue, and never-
theless, the identification performance is still affected as the
regularization coefficient plays a vital role in the nonconvex
optimization.

To use achieve the topology identification objective, using
solely the SM measurements data, Zhang et al. [17] reported
Newton Raphson (NR)-based iterative method. This is an
excellent approach for balanced distribution networks. How-
ever, the method diverges if the initial condition is far away
from the actual solution. Liang et al. [18] and Liao et al.
[19] investigated power flow matching-based methods for
topology detection using the SM measurements, which are
able to identify the topology of medium voltage networks
accurately. To deal with data quality issues and filter out the
measurement noises effectively, Zhao et al. [20] investigated
the deep belief network surrogate model for distribution net-
work topology detection. This method achieved high topology
identification accuracy while maintaining robustness to miss-
ing data and measurement noise under high renewable power
penetration levels. Without any prior knowledge of network,
Zhenyu et al. [21] identified distribution network topology
and line impedances using SM data, while including mul-
tiple distributed generation units in the network. Further-
more, data-driven techniques for topology detection using the
SM measurements data are reported by Pappu et al. [22] and
Liao et al. [23], and however, the line parameters are not
estimated.

B. Contributions

The approaches for the network topology identification in
the distribution networks discussed in Section I-A use either
μPMUs at all the buses or SMs at all the buses. However,
μPMUs may not be installed at every bus due to high costs,
while measurements from SMs could contain missing data and
errors [24]. In a practical distribution network, the measure-
ments data from both SMs and μPMUs may be available for
the network operator. Therefore, the identification techniques
using only μPMU measurements are less practical, while
the techniques that rely only on SM measurements may fail
when the measurements are inaccurate. Consequently, it is
important to develop a method that could utilize both SM

and μPMU measurements for accurate network topology and
parameters identification in a distribution network, comple-
mented by some pseudo measurements. Some researchers, e.g.,
Shah and Zhao [25] and Ma and Wu [26], have contemplated
a topology identification strategy using μPMU and SM mea-
surements, and however, they lack the analysis of the method’s
impact on the state estimation when applied to a practical
distribution network. Moreover, the methods are sensitive to
measurement noise and do not consider the evaluation of the
optimal locations for μPMUs installation. Jiang et al. [27]
and Hai et al. [28] developed algorithms for optimal location
of PMUs in context of identifying the network fault events.
It is necessary to develop an algorithm for optimal location
of μPMUs in context of obtaining an accurate estimation
of network topology. A summary of comparison of the key
existing methods on the network identification approaches
is reported in Table I. In light of the discussion, the new
contributions of this work are highlighted as follows.

1) A new method has been developed to accurately identify
the distribution network topology information as well as
the line parameters using the Kalman filtering method
and NR based method iteratively.

2) Contrast to the various existing methods, this method
leverages the measurements from both SMs and
μPMUs, and thus, it offers an alternative to the network
operator to choose μPMU measurements from the buses
where SM data are missing or vice versa.

3) Moreover, the impact of various measurement errors
on the identification algorithm, as well as the
state-estimation performance run by the network opera-
tor, is analyzed and reported here.

4) Considering that μPMUs are expensive equipment com-
pared to SMs, the critical points are evaluated for
installation of μPMUs, which improves the method’s
accuracy.

5) Finally, the impact of the renewable power injection
at certain network buses on the presented identifica-
tion algorithm is also analyzed. Excellent identification
results are observed, within 3% of the average error
magnitude.

The rest of this article is organized as follows. Section II
sets up the problem statement description. The complete
framework for the network identification is reported in
Section III. Section IV demonstrates the performance of the
algorithm on an IEEE test system, with illustrative results.
Finally, the conclusions are made in Section V.
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II. PROBLEM FORMULATION

This work aims at precisely estimating the network topol-
ogy information and the line parameters, which are uniquely
determined by three sources of measurement information.
The first source comes from the SMs installed at different
buses in the network. The measurements from SM include
the voltage magnitude, active power injection, and reactive
power injection at a given bus. The second source of infor-
mation comes from the μPMUs installed at a few buses,
which include the voltage phasor information at a bus and
optional current phasor information of the current flow in
a line. The third source of information comes from some
pseudo measurements of active and reactive power injections
at certain buses where the SMs are not installed, considered
with less accuracy (with error from ∼30% to 50% of the nom-
inal value [29]). The different measurements are modeled as
follows.

First, the information from the SMs, i.e., active power
injection, reactive power injection, and the voltage magni-
tude at bus “i” at a specified instant “k,” can be written
as

Pi (k) = Pi,n + w
p
i ; E

��
w

p
i

�2
�

= σ 2
L P2

i,n (1a)

Qi (k) = Qi,n + w
q
i ; E

��
w

q
i

�2
�

= σ 2
L Q2

i,n (1b)

|Vi |(k) = |Vi |n + wV
i ; E

��
wV

i

�2
�

= σ 2
V |Vi |2n (1c)

where “Pi,n” and “Qi,n” are the nominal (true) active and
reactive power values in per unit (p.u.), respectively, “w p

i ”
and “wq

i ” represent the corresponding measurement noises
in p.u., and σL (unitless) is the measurement uncertainty
(usually 0.01−0.02 in case of SMs [24]). In case of pseudo
measurements, σL holds a higher value, of about 0.3−0.5 [29].
Similarly, |Vi |n represents the nominal value of voltage mag-
nitude in p.u. and σV (unitless) represents its corresponding
measurement uncertainty.

The measurements information from possible μPMUs that
measure both the magnitude and the phase of voltage phasor
at some buses and current phasor of the current flow in some
lines at bus “i” at a specified instant “k” is

|Vi |(k) = |Vi |n + wV
i ; E

��
wV

i

�2
�

= σ 2
PMU|Vi |2n (2a)
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where |Vi |n , θi,n , and |Ii j |n represent the nominal value of
voltage magnitude, voltage angle, and current flow in the line
connecting buses “i” and “ j” in p.u., while σμPMU (unitless)
represents the μPMU measurement uncertainty, which is a
constant value depending on the μPMU technology (usually
about 10−3−MU−4 [29]). In the context of voltage magnitude
measurements that are available with both SM and μPMUs
at certain nodes, the μPMU measurements are considered due
to high accuracy. With these different measurements in hand,
mathematically, the work aims at finding the topology and line
parameters (line conductances and susceptances) that best fit

the following problem for each dataset for “n” buses:

Pi = |Vi |
n�

j=1

��Vj

���Gi j cos θi j + Bi j sin θi j
�

(3a)

Qi = |Vi |
n�

j=1

��Vj

���Gi j sin θi j − Bi j cos θi j
�
. (3b)

In (3), “Pi ” and “Qi ” are the active and reactive power
injections of bus “i” in p.u., respectively, “|Vi |” is the corre-
sponding voltage magnitude in p.u., while “Gi j ,” “Bi j ,” and
“θi j” represent the per-unit line conductance, the per-unit line
susceptance, and the voltage angle difference, respectively.
As these parameters contain all the information about the
topology of the network, this work is targeted at finding the
optimal “Gi j” and “Bi j ” of all the lines.

III. NETWORK IDENTIFICATION FRAMEWORK

This section describes the methodology for network identifi-
cation, organized in three subsections. Section III-A describes
a way to obtain the approximate conductances and suscep-
tances of the network. Section III-B makes use of these
approximate values and iteratively solves the probabilistic
(using the unscented Kalman filter (UKF)-based method)
and the deterministic (using the NR-based method) set of
equations, to obtain more accurate conductances and suscep-
tances. Section III-C proposes a method for finding optimal
installation locations of costly μPMUs, based on the mean
square errors in the estimated conductances and susceptances.

A. Obtain Approximate Conductance and Susceptance
Matrices Associated With SM Nodes

Initially, the approximate conductances and susceptances are
obtained, to serve as a good initial condition to the iterative
problem discussed in the subsequent Section III-B. First, a
regression problem is solved, which uses the active power
injection, reactive power injection, and the voltage magnitude
at each bus, obtained from SMs. Later, some μPMU measure-
ments are utilized to obtain the better approximations.

1) Obtain Approximate Conductance and Susceptance
Matrices Through Regression: Initially, the active and reactive
power injections as shown in (3) are reformulated as follows:

�
Pi

|Vi |
Qi

|Vi |
	T

=



G#
i1 G#

i2 . . . G#
in

B#
i1 B#

i2 . . . B#
in

�⎡
⎢⎢⎢⎣

|V1|
|V2|
...

|Vn|

⎤
⎥⎥⎥⎦ (4)

where

G#
i j = �

Gi j cos θi j + Bi j sin θi j
�

B#
i j = −�

Gi j sin θi j − Bi j cos θi j
�
. (5)

Considering that the SMs are installed at “r” buses (r ∈ n)
and a total number of “K ” consecutive data samples, it is
possible to write the following expressions:�

PVK�
r×K

= �
G#�

r×n

�
VK�

n×K
(6a)�

QVK�
r×K

= �
B#�

r×n

�
VK�

n×K
. (6b)
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The matrices in (6) are reported as follows:

�
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...
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B#
r1 · · · B#

rn

⎤
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VK� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

|V1|(1) |V1|(2) · · · |V1|(K )
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...
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|Vn|(1) |Vn|(2) · · · |Vn|(K )
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. (7c)

The vector [VK] includes the voltage magnitudes of all
the buses. In this context, the voltage magnitudes at the grid
supply point are considered as an approximate replacement
for the voltage magnitudes of the buses where the SMs are
not installed. This approximation is valid since the voltage
magnitude difference between the grid supply point and any
node in the distribution network is usually smaller than
5%–10% [25]. Thus, from the available measurement datasets
of [PVK], [QVK], and [VK], the approximate [G#] and [B#]
matrices are obtained from (6) to (7) as

�
G#

� = �
PVK��

VK�T
��

VK��
VK�T

�−1
(8a)�

B#� = −�
QVK��

VK�T
��

VK��
VK�T

�−1
. (8b)

In case the SMs are installed at all the buses (i.e., r = n),
then the [G#] and [B#] matrices obtained from (8) give
the approximate information corresponding to all the lines.
However, in case SM data are missing at some buses
(i.e., r < n), the same procedure is still followed using
the pseudo measurements of active and reactive power injec-
tions that are considered at the rest of “r − n” buses. For
further denoising of [G#] and [B#] matrices, the following

optimization problem is solved [16]:

min
���

PVK� − �
G#��VK���

2

s.t.
�
G#

� = �
G#

�T
&

�
G#

���
ND ≤ 0 (9a)

min
���

QVK� + �
B#��VK���

2

s.t.
�
B#� = �

B#�T
&

�
B#���

ND ≥ 0. (9b)

The constraints in (9) are valid since the [G#] and [B#]
matrices are symmetric and the nondiagonal elements of [G#]
matrix ([G#]|ND) are negative, while the nondiagonal elements
of [B#] matrix ([B#]|ND) are positive. Besides, in an n-bus
distribution network, the ratio of the nondiagonal element with
the corresponding diagonal element is usually greater than
“1/(n− 1),” and therefore, the nondiagonal elements in [G#]
and [B#] with lesser ratio are made zero.

2) Utilization of μPMU Measurements to Obtain Better
Approximations: Being costly equipment, μPMUs are usually
installed at only a few selected buses, which are small in
number in comparison to SMs. The μPMU measurements
obtained from certain buses are used to further improve
the approximations obtained from the previous step using
a Bayesian linear state estimator. The voltage angles are
assumed zeros initially, at all the buses. The voltage phasors
of all buses are given as

V̄K = VK. (10)

For “p” number of buses where μPMUs are installed

V̄K
PMU = VK

PMU
� θK

PMU (11)

VK
PMU =

⎡
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|Vm+1|(1) |Vm+1|(2) · · · |Vm+1|(K )
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...
...
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...��Vm+p
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(12a)
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θ(1)
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θ
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...
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. (12b)

From (2), (10), and (11)

V̄K
PMU = CMV̄K + wV

i
� wθ

i (13)

E

��
wV

i /|Vi |n
�2

�
= E

��
wθ

i

�2
�

= σ 2
PMUIM. (14)

In (13), “C M” is a matrix whose lth row has all zeros
except for the mth entry, which is set to one. In practice,
“C M” is a selection matrix that associates the μPMU mea-
surement “V̄K

PMU” with the corresponding voltage vector “V̄K.”
An appropriate voltage phasor estimate is then obtained by
solving the following Bayesian linear state estimator:

V̂K = V̄K + K
�
V̄K

PMU − CM V̄K�
(15)

K = �0CT
M

�
CM�0CT

M + 2
���V (1)

1

���2
σ 2

PMUIM

�−1

(16)
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where “�0” is the error covariance matrix of nominal voltage
phasors. The voltage phasor estimate (15) gives information of
both magnitudes and the phase angles at all the “K ” instants.
Finally, the approximate “Gi j ” and “Bi j” are obtained from
the [G#] and [B#] matrices as

Gi j = �
G#

i j cos θi j − B#
i j sin θi j

���
(i, j∈n)

(17a)

Bi j = �
G#

i j sin θi j + B#
i j cos θi j

���
(i, j∈n)

. (17b)

B. Obtain More Accurate Conductances and Susceptances

In order to obtain more accurate conductances and suscep-
tances using the initial approximations obtained from (17),
an UKF-based probabilistic method and NR-based determinis-
tic method are iteratively invoked. This is explained as follows.

1) Obtaining the Initial Estimates in a Probabilistic Way:
The probabilistic method gives the refined estimates of g,
b, and θ , which serve as a convenient starting point for
the deterministic approach in the succeeding step. The UKF-
based probabilistic approach is employed here, using the
measurements obtained from SMs as well as μPMUs. Initially,
the state matrix and the measurement matrix are formulated
as

α(k) = �
g b θ (k)

�T
(18)

β(k) =
�

P(k) Q(k) |V |(k) I (k)
f θ

(k)
M

�
(19)

where α(k) and β(k) denote the state matrix and the mea-
surement matrix, respectively, for the kth sample, with k =
1, 2, . . . , K . The vectors “g” and “b” in the state matrix
correspond to the nonzero elements “Gi j ” and “Bi j” matrices,
respectively, while “θ (k)” is the vector that contains the voltage
angles of all the buses at the kth instant, and the rest of the
vectors associated with the measurement matrix are given as
follows:

P (k) =
�

P(k)
i

�
i∈[1,n]

; Q(k) =
�

Q(k)
i

�
i∈[1,n]

(20a)

|V |(k) =
����V (k)

i

����
i∈[1,n]

; θ
(k)
M =

�
θ

(k)
i

�
i∈[m,m+p]

(20b)

I (k)
f =

����I (k)
i j

����
i, j∈[m,m+p]

. (20c)

In (20), as mentioned earlier, for the measurements of
active and reactive power at unknown buses, the pseudo
measurements are considered (with high error covariances).
Similarly, for the voltage magnitude measurements, the mea-
surements associated with the buses with μPMUs as well as
SMs are considered in (19). Moreover, “I f ” corresponds to the
magnitude of current flow in a line between buses “i” and “ j ,”
for which to be considered only if the buses to which the line
is connected are known, as explained earlier. The measurement
matrix is thus given as follows:

H
�
α(k)

�
=

�
P (k) Q(k) |V |(k) I (k)

f θ
(k)
M

�
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≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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��Vj
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|Vi |
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�������

i∈[1,n]���V (k)
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������
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(k)
i

���
i∈M��

G2
i j +B2
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��
|Vi |2+

��Vj

��2−2|Vi |
��Vj
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������
i∈M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

The subscript “calc” in (21) indicates the calculated values
of the measurements. The measurement matrix is assumed
with finite noise vector, associated with finite Gaussian noise
in each of the measurements, i.e.,

β(k) = H
�
α(k)

� + υ(k) (22)

where υ(k) is a white noise with covariance “Rk ,” which con-
tains the covariances associated with the errors in SM, μPMU,
and pseudo measurements. Given an initial state estimate α(k)

(with dimension “L”), having a covariance matrix given by
P (k)

α , initially, sigma points are generated as [30]

A(k)
0 = α̂(k)

A(k)
i = α̂(k) +

�
(L + λ)P (k)

α,i ; i = 1, 2, . . . , L

A(k)
i = α̂(k) −

�
(L + λ)P (k)

α,i ; i = L + 1, . . . , 2L (23)

where “λ” (=(μ2 − 1)L) is a scaling parameter and “μ” is a
small positive value that determines the spread of the sigma
points. These sigma vectors are then propagated through the
nonlinear function (H ) as

B(k)
i = H

�
A(k)

i

�
; i = 0, 1, 2, . . . , 2L . (24)

The vector α(k) (which consists of the estimates of g, b,
and θ) is then estimated for the (k + 1)th instant (which
is used as the initial condition for deterministic approach in
Section III-B.2) as

α̂(k+1) =
2L�
i=0

W (m)
i A(k)

i +G(k)

�
β(k) −

2L�
i=0

W (m)
i A(k)

i

�
. (25)

In (25), “G” is the Kalman gain, which is evaluated as [30]

G(k) =
�

P (k)
αβ

��
P (k)

ββ

�−1
(26a)

P (k)
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Fig. 1. Flowchart of the proposed algorithm.

“W (m)
i ” and “W (c)

i ” are weights, which are defined as

W (m)
0 = λ/L + λ; W (m)

i = W (c)
i

���
i=1,...,L

= 0.5/L + λ

W (c)
0 = λ/(L + λ) + �

1 − μ2 + γ
�

(27)

where γ is incorporated to account for the prior knowledge of
the distribution of α(k) (here, γ is set to 2) [29]. The average
of the estimated values of “g” and “b” for all the samples is
considered as an initial start for the deterministic approach.

2) Obtain the Final Estimates Using in a Deterministic Way:
An NR-based deterministic method is carried out to obtain the
final accurate values of the conductances and susceptances.
As a well-known fact, the NR method is prone to diverge
(thereby causing large errors in the solution) in case the initial
conditions are far apart from the true values. The approximate
estimates as obtained from Section III-A might provide initial
condition, which is far apart from the true values, due to the
errors in the SM and pseudo measurements. Therefore, the
estimates of g, b, and θ (with vector α(k)) evaluated in
the previous step serve as a convenient initial condition for
carrying forward the NR method. As reported in Fig. 1, the
algorithm uses these two steps in an iterative way, i.e., step-1
is repeated before each step-2 iteration, while the estimates of
step-2 are in-turn used in step-1. These iterations are carried
out until the time NR converges. The convergence criterion
is chosen as the sum of squares of the deviation between the
measured and calculated values of active and reactive powers

is smaller than a threshold (γ ). As per the NR theory [17],
the following expression is formulated:

�
�PK

�QK

	
=

⎡
⎢⎢⎣

∂P
∂ g

∂P
∂b

∂P
∂θ

∂Q
∂ g

∂Q
∂b

∂Q
∂θ

⎤
⎥⎥⎦

⎡
⎣ �g

�b
�θ

⎤
⎦ (28)

where (29), as shown at the bottom of the page.
The change in the active and reactive powers matrix on the

left-hand side of (28) corresponds to the change between the
measured values and the values calculated using the previous
step estimates. The formulation (28) is then solved using

�
�g �b �θ

�T =

⎡
⎢⎢⎣

∂P
∂ g

∂P
∂b

∂P
∂θ

∂Q
∂ g

∂Q
∂b

∂Q
∂θ

⎤
⎥⎥⎦

†�
�PK

�QK

	
. (30)

In (30), “† ” represents the pseudoinverse of the matrix. For
the evaluation of the elements in the Jacobian matrix in (30),
the pseudo inverse, and the threshold for convergence, the
reader is directed to [17]. Update of the matrix with g, b,
and θ is then performed at each iteration as�

g b θ
�T

new =�
g b θ

�T +�
�g �b �θ

�T
. (31)

g, b, and θ thus obtained from (31) are fed as an initial
condition for carrying out the Kalman filtering process in
step-1. During the iteration, the branches with sufficiently
small conductances and susceptances are considered as
wrongly identified ones, and thus, a certain value (μ) is
set as a topology modification threshold. Whenever a branch
is less than this threshold, a scan for topology change is
done [17] and the NR iteration is reconducted, while the
precision of the voltage angle estimation is enhanced in each
iteration using a pseudo power flow performed with the known
states and measurement values. The complete methodology is
highlighted in a flowchart in Fig. 1.

C. Evaluation of the Optimal Locations of the μPMUs

The optimal μPMU installation locations are evaluated
based on the mean square errors in the estimated values of
the conductances and susceptances. The performance metric
considered is the averages mean square error (AMSE) aver-
aged over the number of branches, which is defined as

AMSE(M) =
���� 1

m

�m

x=1
E


����
�

gx

bx

	
true

−
�

gx

bx

	
est

����
2
�
. (32)

In (32), the matrix [gx bx]T
est is the estimated branch con-

ductance and susceptance by the proposed algorithm, and the
matrix [gx bx]T

true depicts the true values of the conductances
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Fig. 2. Illustration of the interfacing between the MatPower package and the MATLAB coder function.

and susceptances, while “m” is the total number of branches in
the network. This corresponds to the average prediction error.
Using (32), the placement problem can be identified as

Pop = argminAMSE(P) (33)

AMSEop(P) = AMSE(Pop(P)) (34)

where “Pop” is the optimal placement set of the μPMUs, with
the number of μPMUs in a set fixed to the desired number
of μPMUs. However, (33) is a combinatorial problem with its
solution time-consuming when large grids are considered. For
this reason, greedy μPMU placement procedure as reported in
Algorithm 1 based on the sequential addition of one μPMU
at a time could provide the fast performance.

Algorithm 1 Optimal Placement of μPMUs
Initialize: Pop(0) := ∅, Ps(0) := {1, 2, . . . , P}
for x = 1 : m do
p∗(x) = min p∈Ps(x−1) AM SE(Pop(x − 1) ∪ p)
Pop(x) = Pop(x − 1) ∪ p∗(x)
Ps(x) = Ps(x − 1)p∗(x)
AM SEop(x) = AM SEop(Pop(x))
end for

IV. RESULTS AND DISCUSSION

For validation purposes, the benchmarked IEEE 33-Bus and
IEEE-123 bus distribution networks are considered and the
MATLAB1 software used for the simulation purpose while
interfacing it with the MatPower toolbox package, as shown
in Fig. 2. The input information for the MatPower is depicted
as it processes measurement data, including voltage pha-
sors, current phasors, and active and reactive powers. This
measurement dataset is processed in the MATLAB coder to
accomplish the identification objectives. The salient points are
illustratively shown in Fig. 2. A schematic of the benchmarked
IEEE 33-Bus distribution network is shown in Fig. 3, with the

1Trademark.

Fig. 3. Schematic of the IEEE 33-bus distribution network.

SMs and μPMUs installed at different buses in the network,
with the standard 12.66-kV and 100-MVA base values. The
load data to assign loads at different buses of the network are
generated using the hourly load data taken from the Ireland
residents [31]. The data of a set of residents are grouped and
assigned to each of the 32 buses (excluding the reference
bus). The hourly data are linearly interpolated to have a
data sampling time of every 6 min, which is equivalent to
240 samples for one day (i.e., “K” in (6) is 240). After the
load data are assigned at different time instances of a day,
the corresponding SM and μPMU measurements are recorded.
The measurements from SM and μPMU at different buses,
with various noise levels, are then used as an input to the
identification algorithm. The results with various test cases are
simulated and presented here, to highlight the performance of
the proposed algorithm.

Initially, the performance of the algorithm was evaluated
considering only SM measurements with the Gaussian distrib-
ution error of 1% in the power measurements (i.e., the devia-
tions in SM power measurements scatter in ±3% three-sigma
region) and 0.01% voltage magnitude error. Fig. 4 graphically
reports the identification error of the algorithm. The expression
of Fig. 4 is explained as follows.
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Fig. 4. Network identification error of the algorithm for IEEE 33 bus.

The bus admittance matrix for 33-bus system has a size of
33 × 33, thereby a total of 1089 elements. The estimation error
(i.e., magnitude of the difference between the true admittance
matrix and the admittance matrix estimated from the presented
algorithm) of each element is quantified as per its error
magnitude. These error magnitudes are represented as varying
shades of the blue color, as shown in the colorbar in Fig. 4,
where thicker shade of blue color represents less error, while
the lighter shade represents more error. Accordingly, errors
of different elements in the 33 × 33 admittance matrix are
plotted in large square box with 33 × 33 mini-squares. The
error magnitude is represented by the color from the colorbar.
As it can be observed, most of the mini-square boxes have
thicker shades of blue color, proving almost negligible error
in the estimation of the admittance matrix elements. Even
those of a few mini-squares, which have some lighter shades
of the blue color, have a maximum per-unit identification error
magnitude as less as 0.16. Therefore, it can be concluded
that the estimation with presented identification algorithm is
accurate. Consequently, the estimation error in conductances
and susceptances of each of the 37 branches is observed low,
as shown in Fig. 5(a). The mean of the percentage error (MPE)
over all the branches in the network is as low as 2.2%
for conductance and 1.8% for susceptance. However, with
increase of the noise levels to 5% Gaussian distribution error
in active and reactive power measurements, the MPE values
increase significantly to 22.5% and 15.8% for conductance and
susceptance, respectively, as shown in Fig. 5(b). It may be
noted that the results correspond to the mean values obtained
over 100 Monte Carlo simulation runs.

Moreover, to demonstrate the capability of the presented
framework on large systems, the IEEE 123-bus system is
used to demonstrate the efficacy of the presented framework.
Fig. 6(a) shows the schematic of the benchmarked IEEE
123-bus test system. As explained earlier, the Irish load
data [31] are used and assigned at different time instances
of a day, and the corresponding SM measurements at various
buses are obtained, while the Gaussian distribution error
of 1% in the power measurements is then added to the
SM measurements data. Fig. 6(b) shows the network iden-
tification error of the algorithm, where most of the mini-
square boxes (123 × 123) have thicker shades of blue color

Fig. 5. Mismatch between the estimated and true conductances and
susceptances in IEEE 33-bus network, with Gaussian distribution error in
SM power measurements as (a) 1% and (b) 5%.

with negligible estimation error. Even those of a few mini-
squares, which have some lighter shades, have a maxi-
mum per-unit identification error magnitude as less as 0.18.
Thus, the framework exhibits satisfactory performance for the
IEEE 123-bus benchmarked network, thereby depicting its
scalability for the large test system.

A. Impact of Measurement Noise in SMs

The impact of measurement noise in SMs is further analyzed
here. The impact of different noise levels in SM measurements
is reported in Figs. 7 and 8. Fig. 7 shows how the estimation
error of the branch susceptance varies for all the 37 branches,
with increasing noise levels in the SM power measurements.
The mean of the estimation errors in the line susceptances
of all the branches, i.e., the MPE values, for different SM
noise levels, is reported in Fig. 8(a) as red line, along with the
MPE values of the conductance, is also reported as the blue
line. To clearly understand the impact of these line parameter
errors on the state estimation (usually conducted by the DNO),
a least-square-based state estimation of the network is per-
formed, using the method in [32], with the estimated values of
“g” and “b,” instead of the true values. A detailed description
is reported in the Appendix, highlighting the principle of the
state estimation method used with the estimated values of
“g” and “b” and the hybrid measurements. The errors in
the estimated voltage magnitudes and estimated angles are
observed, with different noise levels in SM measurements. The
mean of the estimated voltage magnitude error and the angle
error of the 33 buses is plotted in Fig. 8(b). It is noted that the
available SM measurements are provided as the measurement
data input to the state estimation algorithm. From Fig. 8(b),
it can be observed that the errors in the estimated states
are increasing as the errors in the estimated conductances
and susceptances increase. In a distribution network state
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Fig. 6. (a) Schematic of the IEEE 123-bus distribution network. (b) Network
identification error of the algorithm for IEEE 123-bus.

Fig. 7. Estimation error in each of the branches for various levels of noise
in the SM power measurements.

estimation, the voltage magnitude error of up to 3% and
the voltage angle error up to 0.03 radians are considered
acceptable [33], and therefore, the Gaussian distribution error

Fig. 8. Impact of noise in SM measurements. (a) MPE variation in “g” and
“b” with various levels of noise in the SM measurements. (b) Impact of “g”
and “b” errors on the network state estimation.

in SM power measurements (i.e., 3%) is marked in Fig. 8(b).
The partitioned region is thus pointed out in Fig. 8(a) and (b),
depicting that the measurement noise of up to 3% error in
power measurements is acceptable. In case the noise levels go
higher or there is missing SM data at certain buses, then the
μPMUs need to be installed at different locations, as discussed
next.

B. Impact of Measurement Noise in μPMUs Along With
Noisy SM Measurements

Similar to the analysis performed with only SM measure-
ment noise variation as in Fig. 8(a) and (b), an analysis is
performed with the noise variation in the μPMU measure-
ments coupled with noisy SM power measurements. It is
considered that the μPMUs are installed at eight locations
as highlighted in Fig. 3 (the chosen locations are the same as
in [14]), while SMs are assumed absent at these locations.
However, the pseudo measurements are considered at the
locations where the SMs are absent, i.e., with high Gaussian
error in the power measurements of 25%, while the SM power
measurements at the rest of the buses are with 2% error.
Fig. 9(a) and (b) shows the analysis with both μPMU and
SM measurement noises. It can be seen in Fig. 9(a) and (b)
that, with 2% Gaussian distribution error in the SM power
measurements, as the Gaussian distribution error in the μPMU
voltage and current phasor measurements increases, the algo-
rithm’s performance is affected, and the measurements within
0.18% error are observed to be acceptable values. Moreover,
it is observed that the number of iterations (i.e., the value
of “it” in Fig. 1) for convergence of the algorithm increases
as the noise in the μPMU measurements increases, as shown
in Fig. 10.
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Fig. 9. Analysis of the noise in both μPMU and SM measurements.
(a) MPE variation in “g” and “b” with variation in μPMU measurements
noise. (b) Impact of “g” and “b” errors on the network state estimation.

Fig. 10. Iterations for the convergence of the algorithm with different μPMU
phasor measurement errors.

C. Impact of Renewable Power Injection on the
Identification Results

The impact of the injection of renewable power at various
buses in the network on the network identification algorithm
is analyzed here. The renewable energy sources are coupled at
certain buses (3, 8, 14, 25, 30, and 31) to study the impact of
its stochastic nature on topology identification. The injected
renewable power at these buses has been varied from zero to
the nominal load power values at these buses. The graphical
illustration of an identification error of admittance matrix is
analyzed in Fig. 11. The expression of Fig. 11 is explained as
follows.

The bus admittance matrix has a total of 33 × 33 elements
for the 33-bus system. The estimation error (i.e., magnitude
of the difference between the true admittance matrix and the
admittance matrix estimated from the presented algorithm)
with each of these elements is quantified as per its error
magnitude. Thereby, it consists of 33 × 33 mini-square boxes.
Before the connection of renewable energy sources, these
error magnitudes are represented as varying shades of the
green color, as depicted in the left-side colorbar in Fig. 11,
where the thicker shade of green color represents less error,
while the lighter shade represents more error. Most of the
areas in the heat map are in green (i.e., related to left bar
representation), which indicates that identification error is low
under the nominal operating scenarios.

TABLE II

MPE OF CONDUCTANCES AND SUSCEPTANCES WITH DIFFERENT
PMU LOCATIONS AND GAUSSIAN DISTRIBUTION

ERRORS IN MEASUREMENT

The right colorbar, however, represents a maximum change
in estimation error upon the renewable power injection. The
colors corresponding to this right colorbar are reflected as
circles associated with each of 33 × 33 elements with varying
radius. The radius of these circles varies with the color shades
of right colorbar, and it represents the impact of renewable
upon the particular element in the error matrix. For example,
element (29, 29) has a red color circle with smaller radius,
while the element at (2, 2) has a lighter shade circle with large
radius. This implies that, upon the connection of renewables,
the algorithm estimation accuracy is more prone to affect the
parameters (“g” and “b”) estimation of the lines connected
to bus-2 more than bus-29. Thus, it can be observed from
the right-hand bar since it has the maximum per-unit change
of estimation error magnitude of only 0.06, the change in
identification error is very low even upon renewable power
injection at certain buses. As Kalman filter is an iterative algo-
rithm, the presented algorithm provides excellent identification
even under the presence of renewable power sources. Hence,
the presented algorithm effectively accomplishes the topology
identification objectives for the given network.

D. Impact of μPMUs Installation Locations

Fig. 12(a) shows the impact of the μPMU installation
locations on the estimation error in “g” and “b.” A total
of six μPMUs are considered here and their different instal-
lation locations were selected out of the eight previously
mentioned locations. The impact of errors in “g” and “b”
with different μPMU locations is reported in Table II, along
with their impact upon increasing the noise in μPMU phasor
measurements (while keeping 2% Gaussian distribution error
as a noise in SM power measurements). Table II shows the
error variation, considering a total of six μPMUs as well as
seven μPMUs. From the procedure highlighted in III-C, the
optimal μPMU locations with six μPMUs are identified as
{16, 17, 18, 22, 31, 33}, while the optimal μPMU locations
with seven μPMUs are identified as {16, 17, 18, 22, 30,
31, 33}. The variation of estimation errors in “g” and “b”
with this optimal configuration is shown in Fig. 12(a), and
the corresponding impact on the state estimation algorithm
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Fig. 11. Performance of the presented method under renewable power
penetration.

Fig. 12. Impact of different locations with six μPMUs. (a) MPE variation of
“g” and “b.” (b) Impact of “g” and “b” errors on the network state estimation.

is reported in Fig. 12(b). From Fig. 12(a), it is observed
that as the Gaussian distribution error in the μPMU phasor
measurements increases, the estimation error in “g” and “b”
increases, while different configurations exhibit different MPE
values. From Fig. 12(b), it is observed that the error of up to 0.
1% is acceptable, in case six μPMUs installed at their optimal
locations.

Another test case is considered, where the possible μPMU
locations are not constrained to the set of eight locations
highlighted in Fig. 3. The possible μPMU locations are
chosen from all the 33 buses while assuming that one μPMU
is present at the main substation reference bus (which is
a practical consideration for active distribution networks).

Fig. 13. Effect of a different number of μPMUs installed at their optimal
locations.

TABLE III

NUMBER OF PMUS WITH CORRESPONDING OPTIMAL LOCATIONS

The optimal locations for a different number of μPMUs
are then identified using Algorithm 1, and the corresponding
locations are reported in Table III. Moreover, Fig. 13 shows
the variation in MPE values of “g” and “b,” with a different
number of μPMUs, when they are installed at these optimal
locations, with Gaussian distribution noise of μPMU phasor
measurements and SM power measurements set to 0.01% and
2%, respectively. It is observed that as the number of μPMU
locations increases, the MPE values in “g” and “b” reduce
significantly.

E. Comparative Performance With Presence of Gaussian
Noise in μPMU and SM Measurements

Fig. 14 shows the comparative performance to validate
the effectiveness of the presented method over an existing
method [16] based on a benchmarked IEEE 33-bus net-
work. The Gaussian distribution error in μPMU measurements
of 0.01% is considered in both approaches, while a total of
six μPMUs (at their optimal locations) are considered for
the presented approach. Fig. 14(a) and (b) shows the iden-
tification error between the estimated and the true admittance
matrix using the existing method and the presented method,
respectively. As shown in Fig. 14(b), noticeable reduction of
the identification error between the estimated and the true
admittance matrix is achieved using the presented approach.
The individual “g” and “b” estimation errors are also reported
in Fig. 14(c). Fig. 14(c) (top panel) shows that an estimation
error of branch parameters using the existing method is
obtained up to 4.5%, which may lead to erroneous results
while performing the state estimation. However, the presented
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Fig. 14. Comparative performance under the presence of the Gaussian noise in μPMU measurements. Network identification with (a) state-of-the-art
algorithm [16], (b) presented algorithm, and (c) estimation error in branch parameters using the state-of-the-art algorithm [16] (top) and the presented
algorithm (bottom).

Fig. 15. Comparative performance in the presence of the Gaussian noise in SM measurements data. (a) Identification error in the estimated branch parameters
with the state-of-the-art algorithm [17]. (b) Identification error in the estimated branch parameters with the presented algorithm.

TABLE IV

COMPARISON OF ATTRIBUTES WITH THE EXISTING WORK

algorithm limits an identification error within 2.5%, as shown
in Fig. 14(c) (bottom panel). Moreover, Fig. 15(a) and (b)
shows the response of the topology identification using the
state-of-the-art framework [17] with noisy SM measurements
data (the Gaussian distribution error of 2% in the SM power
measurements). Since work [17] does not consider μPMUs,
the data corresponding to the μPMU measurements are not
utilized in this algorithm. However, the presented algorithm
is able to improve the estimation using the μPMU mea-
surements. The tracking performance of branch parameters
with algorithm [17] is shown in Fig. 14(a). It is observed
that the parameter estimation error is bounded within 4%,
as shown in Fig. 15(a), while the improved performance

of network identification using the presented framework is
shown in Fig. 15(b). The advantage of the hybrid method
is that when the given network has data received from SMs
and μPMUs, an improved update of the state variables from
the UKF can be obtained, which means that the improved
network identification can be obtained by leveraging data from
various resources and scalable for large network. In addition,
the proposed algorithm has better convergence as the initial
conditions are made closer to the solution by UKF iteration.
Thus, the tracking performance of branch parameters is shown
in Fig. 15(b), where the error is accomplished within 2.5%.
Finally, to highlight the contribution of the presented work,
a comparison of different attributes with several key state-of-
the-art studies on network identification is reported in Table IV.

V. CONCLUSION

Knowledge of the distribution system topology is crucial
for most control applications and diagnostics, yet the infor-
mation is often outdated in practice. This article explored
a methodology for topology and parameter identification of
distribution networks, which uses the measurements from SMs
and μPMUs. The SM measurements include active power,
reactive power, and voltage magnitude measurements at dif-
ferent buses, while the μPMU measurements give information
of the voltage and current phasors associated with their instal-
lation locations. The modeling of these measurements with
their errors is depicted. The network identification framework
is reported in three main steps. First, the measurements from
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SMs and μPMUs are utilized to obtain the approximate values
of susceptances and the conductances of each line. Second,
an UKF-based probabilistic approach is used, which uses the
measurements at different time instants, to provide convenient
initial conditions for the NR method for the third step. The
third step solves for accurate “g” and “b,” in a deterministic
manner. Results for the benchmarked IEEE 33-bus and IEEE
123-bus networks are presented. The identification results with
noisy measurements are presented, where the impact of mea-
surement noises from both SMs and μPMUs are considered.
Moreover, the impact of μPMU locations on the identification
algorithm is analyzed and the algorithm is able to identify
the optimal locations under different cases. A significant
improvement in the topology estimation accuracy is observed
when the μPMU measurements are utilized at the buses with
missing/erroneous SM data. The improvement in estimation
accuracy is observed to be proportional to the number of
μPMUs installed, while it is also observed to be dependent on
the installation locations. Solely with the Gaussian distribution
error of 1% in SM power measurements in the IEEE 33-bus
network, it is observed that the MPE in conductance is as low
as 2.2% and that of susceptance is as low as 1.8%. With a
state estimation analysis, it is observed that up to the error of
2% in the SM power measurements is acceptable for accurate
network identification. Moreover, while considering limited
SM measurements with the power measurements error of 2%,
the acceptable limit of the Gaussian distribution error in the
μPMU measurements from certain buses is observed to be
0.18%, for accurate network identification. It is also observed
that the MPE in “g” and “b” decreased with the increase in
μPMU locations, while the error is least with the optimal
μPMU locations. Finally, the impact of the renewable power
injection at certain buses is reported, while the comparative
performance with some existing methods is also analyzed.
The accurate identification results of the proposed approach
under various test conditions show the viability and good
performance of the approach for practical implementation
purposes.

The future work can include the following research direc-
tions. Currently, the algorithm assumes that the power mea-
surements received from the SMs from various locations have
some measurement noise, and however, the effect of corrupt
measurements (e.g., arising due to some phase misidentifi-
cation) is not tackled. Even the μPMUs occasionally send
corrupt data that are not suitable for identification. To tackle
these issues, contemplations on appending some machine
learning-based algorithms with the presented approach will be
one of the future directions. Furthermore, the investigations
to develop efficient algorithms for identifying the admittance
matrix of radial distribution network with fewer measurement
nodes and perform the sensitivity analysis of the identification
results in nonstationary measurement errors.

APPENDIX

The least-square-based state estimation of the network is
performed, with the estimated values of “g” and “b,” instead
of the true values. The method is briefly highlighted as
follows. The measurement vector consists of the measure-
ments from SMs, as well as the measurements from μPMUs.

The vector of the SM measurements “[z1]” can be formulated
as nonlinear functions of the state vector as

[z1] = h1(x) + [α1] (35)

while “ α1” denotes the measurement error vector with covari-
ance [“W1”]. Jacobian of h1 is evaluated as

H1(x) = ∂h1

∂x
. (36)

The weighted least-squares solution with given initial state
vector (“xk”) and the measurements “[z1]” is evaluated as

xk+1 = xk + G1(xk)
�
HT

1 W−1
1

�
[z1 − h1(xk)] (37)

where G1(xk) = [HT
1 (xk)W−1

1 H1(xk)]−1. The appended
measurement vector is obtained by appending the μPMU
phasor measurements vector (“[z2]”), which is given by

z = �
z1 z2

�T = �
h1(x) h2(x)

�T + �
α1 α2

�T
. (38)

In (35) and (38), “h1” and “h2” are nonlinear functions of
the network states dependent on the estimated “g” and “b”
parameters with the relation as highlighted in [32]. “α2”
denotes the measurement error vector with covariance [“W2”]
corresponding to the μPMU measurements. The correspond-
ing Jacobian matrix is evaluated as

H2(x) = ∂h2

∂x
. (39)

Finally, the weighted least-squares solution with given initial
state vector ([xk]) and the measurements vector “[z],” is
obtained as

xk+1 = xk + G(xk)
�
HT

1 W−1
1

�
[z1 − h1(xk)]

+ G(xk)
�
H T

2 W−1
2

�
[z2 − h2(xk)] (40)

where

G(xk) = �
HT

1 (xk)W−1
1 H1(xk) + H T

2 (xk)W−1
2 H2(xk)

�−1
.

(41)

Thus, using the weighted least-squares solution, the errors in
the estimated state vector (i.e., estimated voltage magnitudes
and estimated angles at each bus) are observed. Since the solu-
tion is dependent on the network parameters, the estimation
errors in voltage magnitudes and angles are reported with the
estimated “g” and “b” parameters obtained from the proposed
network identification algorithm.
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