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Abstract: Embarked from the practical conditions of small samples in time-invariant and time-variant
uncertainties, a complete non-probabilistic analysis procedure containing uncertainty quantification,
uncertainty propagation, and reliability evaluation is presented in this paper. Firstly, the Grey
systematic approach is proposed to determine the boundary laws of static intervals and dynamic
interval processes. Through a combination of the policies of the second-order Taylor expansion and
the smallest parametric interval set, the structural response histories via quantitative uncertainty
results are further confirmed. Additionally, according to the first-passage idea from classical random
process theory, the study on the time-dependent reliability measurement on the basis of the interval
process model is carried out to achieve a more elaborate estimation for structural safety during its
whole life cycle. A numerical example and one experimental application are eventually discussed for
demonstration of the usage and reasonability of the methodology developed.

Keywords: uncertainty quantification and propagation; the time-dependent reliability; the Grey
systematic approach; the second-order Taylor expansion; the smallest parametric interval set; the
first-passage idea

1. Introduction

Uncertainties originate from material, manufacturing, and measurement, and the
specific nature is always ubiquitous in engineering applications. Quantifying and control-
ling the uncertainty influences on structural responses is significant to ensure the system
performance under complex working conditions. Probability-based approaches have been
most extensively utilized to tackle uncertainty issues and in recent decades, many classi-
cal reliability models are well established, such as the most probable failure point (MPP)
models and simulation models. MPP models include the first-order reliability method [1]
and the second-order reliability method [2], etc. The simulation models include the Monte
Carlo method and the importance sampling method [3–5], etc. However, in view of insuffi-
cient uncertain information, it seems difficult to obtain precise probability distributions for
some imprecise parameters. Thus, the structural reliability evaluation derived from the
probability theory is limited in practical engineering, and thereby alternative categories
focusing on non-probabilistic analytic methods are investigated. The original work was
carried out by Ben-Haim and Elishakoff in the early 1990s [6,7]. Further development was
carried out by Wang et al. [8,9], Guo et al. [10], Jiang et al. [11,12], and Du et al. [13] in
recent years.

Nevertheless, most of the current methodologies corresponding to structural uncer-
tainty analysis and reliability estimation are investigated on the premise of given uncertain
parametric features (e.g., assumed probability density function or interval bounds for uncer-
tainties), starting from uncertainty quantification (UQ) analysis by engineering sample infor-
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mation. Several strategies based on statistical theory, including point estimation [14], max-
imum likelihood estimation [15,16], hypothesis testing [17,18], Bayesian method [19–21],
etc. are presented to deal with the above UQ problems, but they generally require adequate
data from experiments to determine the statistical characteristics of uncertain parameters
so that a weak practicability is inevitable.

Under such circumstances, the structural uncertainty analysis based on insufficient
samples, particularly the set-theoretical UQ analysis, has gradually attracted more and more
attention from scientists and engineers [22]. In late 1960s, Schweppe [23] first proposed
an integral concept of ellipsoidal modeling, quantifying uncertain parameters within
an ellipsoid. Elishakoff et al. [6,24] introduced a minimum-volume parallelepiped for
uncertainty buckling analysis. Durieu et al. [25] characterized uncertainty by defining
two measurements of the ellipsoid, namely, the volume and the sum of the squares of its
semi-axes when dealing with parametric identification problems. Wang et al. [26] improved
the minimum volume criterion in [24], and further developed the convexity method as well
as the interval method for static mechanics. Jiang et al. [27] presented a unified method
with regard to the correlation analysis as implementation of the classical set theory, and
thus the difficulties in multidimensional uncertainty quantification could be tackled to
some extent.

However, the uncertain structure in practical applications always exhibits obvious
time-varying characteristics because of some comprehensive reasons, including material
property degeneration, environmental variations, and dynamic load processes, etc. How
to guarantee the high reliability level during a system life-cycle under static and dynamic
mixed uncertainties remains a big challenge [28]. In view of this, some progresses with
regard to the fields of structural time-dependent reliability assessment have been made
and reported. For example, Andrieu et al. proposed a PHI2 method with random pa-
rameters and stochastic processes for solving Rice’s classical formulas [29]; Li and Chen
established a probability density evolution model for dynamic response calculation and
risk evaluation [30]; a reliability assessment method based on upcrossing rates was pro-
posed by Du et al. [31] for the function generator mechanism; and the importance sampling
method for the reliability evaluation was conducted by Jia and Wu [32] and Dey and
Mahadevan [33]. Other methodologies investigated included the Markov Chain method,
and the Monte Carlo method, etc. [34].

As the literature survey reveals, two difficulties for dealing with static and dynamic
uncertainty issues have to be confronted: (1) The study on structural UQ and propagation
analysis with consideration of the time-dependency effects, especially in the cases of limited
samples, is rare indeed. (2) Compared with the traditional time-independent reliability
methods, the theoretical basis of the non-probabilistic time-dependent reliability evaluation
is insufficient, and thus fewer research results have been achieved up to now.

To overcome the above-mentioned problems, an integral analysis containing uncer-
tainty quantification, uncertainty propagation, and structural time-dependent reliability
evaluation is performed in this study via limited uncertainty samples. The remainder
of this paper is organized as follows: First, the improved Grey mathematical model is
established for determination of interval variables and interval processes subjected to
original sample data (as is stated in Section 2). Second, the calculation of uncertain dynamic
responses, which consist of bounds information and auto-correlation features, are respec-
tively achieved by combining the state-space transformation and the second-order Taylor
expansion (as is demonstrated in Section 3). Section 4 introduces the first-passage approach
into the non-probabilistic time-dependent reliability analysis. Two examples (a numerical
case and an experimental test) are shown to prove the effectiveness of the present method
with some conclusions.
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2. Bounds Determination of Time-Invariant and Time-Variant Uncertainties under
Insufficient Samples

In practical engineering, there widely exists multi-source uncertainties from time-
invariant and time-variant aspects, and hence the reliable description about all uncertainty
issues is indeed the base and premise of detailed analysis and a fine design for structural
problems. Obviously, compared with the difficulties in obtaining uncertainty distribu-
tion laws (large sample demand), the knowledge of boundaries properties is more easily
achieved. In view of the shortage of the sample size, the UQ analysis on the basis of interval
mathematics has given rise for concern recently [35]. In this section, embarking from the
limited static and dynamic sample data, a new quantitative methodology based on the
improved Grey system theory is presented to reasonably determine the lower and upper
boundaries of uncertainties in mechanics.

2.1. Basics of Static and Dynamic Interval Models

In order to better conduct uncertainty quantification research, the basic concept and
main characteristics of static and dynamic interval models are firstly stated.

(a) With regard to static uncertain parameters (such as geometric dimensions and
material properties, etc.), the interval vector consisting of uncertain parameters denoted by
x can be expressed as

x ∈ xI =
[

xI
1, xI

2, . . . , xI
m

]T
(1)

and

xi ∈ xI
i =

[
xL

i , xU
i

]
, i = 1, 2, . . . , m (2)

where m is the total amount of static uncertain parameters and the subscript ‘I’ stands for
the interval set. The subscripts ‘L’ and ‘U’ stand for the lower and upper bounds of the
interval, respectively. Namely

xL =
[

xL
1 , xL

2 , . . . , xL
m

]T
and xU =

[
xU

1 , xU
2 , . . . , xU

m

]T
(3)

As per the interval mathematics, Equation (1) can also be rewritten as

xI =
[
xL, xU

]
= [xc − xr, xc + xr] = xc + xr ◦Ψ (4)

where the Hadamard operator ‘◦’ stands for multiplying the corresponding elements in
two vectors, and the vector Ψ = [Ψ1, Ψ2, . . . , Ψm]

T is an m-dimensional standard interval
set with Ψi ∈ [−1, 1]. Hence, the center value vector xc and the radius vector xc can be
written as

xc = (xc
i ) =

(xU + xL)

2
and xr = (xr

i ) =
(xU − xL)

2
, i = 1, 2, . . . , m (5)

(b) Apart from the static uncertainties, the time-variant uncertainties (e.g., the change
of environmental conditions and the deviation of dynamic excitations) should also be taken
into account for practical applications. Under such circumstances, the interval process
model is then applied to quantify the time-varying uncertainty items. Here, the definition
of an interval process is expounded. Considering an uncertain process expressed as{

y(t) ∈ yI(t), t ∈ [0, T]
}

, one implementation y(tj) for each time instant tj, (j = 1, 2, . . .)
belongs to yI(tj), and for n selected times t1, t2, . . . , tn, the joint distribution domain of n
intervals yI(t1), yI(t2), . . . , yI(tn) are formed as a hyper-rectangular domain.
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Certainly, for an n-dimensional time-varying uncertainty problem, a common vector
format is also obtained by

y(t) ∈ yI(t) =
[
yI

1(t), yI
2(t), . . . , yI

n(t)
]T

(6)

As revealed by the definition, yL(t) and yU(t) can be taken as the vectors of lower and
upper boundary histories of y(t), and hence the mean process vector yc(t) and the radius
process vector yr(t) are respectively given by

yc(t) =
yU(t) + yL(t)

2
and yr(t) =

yU(t)− yL(t)
2

(7)

For convenience, we can define the variance process vector Dy(t) as

Dy(t) = yr(t) ◦ yr(t) (8)

Obviously, once yc(t) and yr(t) are known, the properties of all the interval processes
within a specific time can be well reflected. However, unlike the case of static uncertainty,
Equations (7) and (8) cannot handle the correlation problem between two interval variables
in terms of the process yk(t) (k = 1, 2, . . . , n) at different times t1 and t2. Enlightened
by the random process theories, the auto-covariance function Covyk (t1, t2), as well as
the auto-correlation coefficient function ρyk (t1, t2), should be further defined and satisfy
the condition

ρyk (t1, t2) =
Covyk (t1, t2)√

Dyk (t1) ·
√

Dyk (t2)
(9)

In accordance with the above definitions, once the characteristics of both the interval
vector x and the interval process vector y(t) are determined, the features of the static and
dynamic uncertainties can be acquainted as well. Therefore, obtaining valid solutions for
Equations (1)–(9), particularly, precisely calculating the bounds of x and y(t) under limited
sample data, is what UQ analysis is mainly concerned with.

2.2. General Procedure of the Grey System Theory

As stated in Section 2.1, the key to interval UQ analysis is to obtain accurate bounds
information from insufficient samples, and thus to conduct the subsequent work of uncer-
tainty propagation and reliability analysis. In this section, the Grey systematic approach in
number theory, which regards uncertain static and dynamic parameters as Grey quantities
constantly changing in certain scopes, is employed to deal with mechanical uncertainty
issues. It does not treat the sample research in the view of finding statistical rules, but
also adopts data processing operations to restructure the original rough data to regularly
sequence and then gain the bounds information of uncertainties.

Now, take the static case as an example. Suppose a group of measured experimental
data corresponding to one specific uncertain variable xi is listed as

Xi = {xi(l), l = 1, 2, . . . , m1} (10)

where Xi is the sample set of interval variable xi including m1 data point. Arrange the
sequence Xi in turn from small to big, and hence an updated sequence X(1)

i is obtained by

X(1)
i =

{
x(1)i (1), x(1)i (2), . . . , x(1)i (m1)

}
(11)
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where x(1)i (l) ≤ x(1)i (l + 1), l = 1, 2, . . . , m − 2. By accumulating the calculation of the
sequence in Equation (11), one can obtain the new form of the data list as

X(2)
i =

{
x(2)i (l), l = 1, 2, . . . , m1

}
=
{

x(2)i (1), x(2)i (2), . . . , x(2)i (m1)
}

=
{

x(1)i (1), x(1)i (1) + x(1)i (2), . . . , x(1)i (1) + x(1)i (2) + · · ·+ x(1)i (m1)
} (12)

The definition 
∆i(l) =

x(2)i (m1)
m1

· l − x(1)i (l)
∆max

i = max(∆i(l))
si = ci ·

∆max
i
m1

, l = 1, 2, . . . , m1 (13)

ci, named as the Grey constant coefficient, is generally given by empirical cognition
based on statistical knowledge and si is a quantitative estimation of uncertainty of data Xi,

which embodies the deviation effect of xi. If the mean value is derived by xi =
1

m1

m1
∑

l=1
x(1)i (l),

the UQ result obtained by the Grey model can be eventually taken as

xi ∈
[

xL
i , xU

i

]
= [xi − 3s, xi + 3s] (14)

Obviously, in terms of dynamic uncertainty problems, the available sample curves for
Yk(t) = {yk(t, 1), yk(t, 2), . . . , yk(t, n1)} may be degenerated into sample points
Yk(tj) =

{
yk(tj, 1), yk(tj, 2), . . . , yk(tj, n1)

}
by time discretization operations, and thus

the aforementioned Grey system approach can be directly adopted to obtain the bounds
information of the interval process yk(t).

2.3. Feasible Implementation

Considering that the value of the Grey constant coefficient ci in Equation (13) is indeed
determined by uncertainty samples themselves, a feasible parameter estimation method via
limited data set Xi has to be implemented. The motivation procedures are summarized as:

(i) Extraction of data xi(1), xi(2), . . . , xi(l) from original sample set Xi, and definitions
of the following characteristic quantities by

σi(l − 1) =

√√√√ 1
l − 1

[
xi(l∗)−

1
l

l

∑
l∗=1

xi(l∗)

]2

, l = 2, 3, . . . , m1 (15)

and 
∆i(l∗) =

x(2)i (l)
l · l∗ − x(1)i (l∗)

∆max
i (l − 1) = max(∆i(l∗))

di(l − 1) = ∆max
i (l−1)

l−1

, l∗ = 1, 2, . . . , l (16)

where σi(l − 1) is the sample standard deviation based on the statistical theory.
(ii) Traversal of each value of l from 2 to m1, and establishment of two vectors related

to the data sequences by

Σi = [σi(1), σi(2), . . . , σi(m1 − 1)]T and Di = [di(1), di(2), . . . , di(m1 − 1)]T (17)

(iii) Acquirement of the accumulating sequences of Equation (17) referred by
Equations (11) and (12), i.e., Σi → Σ

(2)
i and Di → D(2)

i .
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(iv) Construction of the least-square estimation model for fitting the equation shaped
like Σ

(2)
i = ci ·D

(2)
i , and determination of the optimal estimation ĉi by

ci → ĉi =

((
D(2)

i

)T
·D(2)

i

)−1
·
(

D(2)
i

)T
· Σ(2)

i (18)

As discussed earlier, the Grey constant coefficient ci can be finally confirmed by
the insufficient sample data to provide necessary input condition for solving si, as is
shown in Equation (13). Moreover, considering that in some typical cases, the errors in
measurement or from an inherent system may be inevitable during the sample extraction
process; therefore, the way to eliminate the gross error needs to be explored as well (referred
by [36]). To sum up the foregoing comprehensive analysis, the uncertainty bounds for
interval variable xi are available. Similarly, the processes of the lower and upper bounds
subjected to the time-varying uncertain parameter yk(t) can be rationally represented.

3. Dynamic Response Analysis by Utilizing the Interval Quantitative Results

In this section, the time-invariant and time-variant quantitative results obtained by
the presented Grey mathematical model will be imposed into the uncertainty propagation
analysis for structural dynamics. The interval process model with regard to the structural
response can be established based on two aspects of research work: On one hand, the
knowledge of the response bound histories is acquired by the Taylor expansion method;
on the other hand, the auto-correlation information is ascertained by the optimization
technique derived from the minimum envelope idea. In a word, this section actually serves
as a connecting link between the preceding UQ analysis and the following time-dependent
reliability calculation.

3.1. Uncertainty Estimation with the Series Expansion Approach

Consider the following differential equation of motion about a general dynamical
system with r degree as {

M
..
u(t) + P

.
u(t) + Ku(t) = F(t)

u(t0) = u0,
.
u(t0) =

.
u0

(19)

where M = (mij) ∈ Rr×r, P = (pij) ∈ Rr×r, K = (kij) ∈ Rr×r are the mass, damping,
and stiffness matrices, respectively, F(t) = ( fi(t)) ∈ Rr×1 means the external load vector,
u(t),

.
u(t),

..
u(t) ∈ Rr×1 are the response vectors of displacement, velocity and acceleration,

and u(t0) and
.
u(t0) are the corresponding initial conditions.

When the uncertainty influences are taken into consideration, the elements either in
constitutive matrixes (M, P, and K) or in external excitation vector F(t) may be valued
by the quantitative results of uncertainties x and y(t). In this study, the fluctuation of
inherent structural parameters lies on the static uncertainty items, whereas the dispersion
of loading conditions is derived from the integration of both static and dynamic issues.
Thus, Equation (19) can be rewritten as

M(x) · ..
u(x, y(t), t) + P(x) · .

u(x, y(t), t) + K(x) · u(x, y(t), t) = F(x, y(t), t) (20)

In point of fact, the uncertainty propagation problem can be stated as: Input the
quantitative models of structural and loading uncertainties as cited in Section 2 (from
original samples), and seek a set Γ ∈ Rr+1 of response being consistent with Equation (20),
where Γ is the feasible domain of the known vector x and y(t), i.e.,

Γ =


u(x, y(t), t) : M(x) · ..

u(x, y(t), t) + P(x) · .
u(x, y(t), t)

+K(x) · u(x, y(t), t) = F(x, y(t), t),
xi ∈ xI

i =
[
xL

i , xU
i
]
, i = 1, 2, · · · , m

yk(t) ∈ yI
k(t) =

[
yL

k (t), yU
k (t)

]
, k = 1, 2, · · · , n

 (21)
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The set Γ is usually an irregular region, which is difficult to determine accurately.
With the concept of interval mathematics, the aim is to find a time-varying hyper-rectangle
containing the set Γ as closely as possible. According to Equations (1) and (6), it can be
noted that the dynamic response u(t) can also be given as a format of interval process, i.e.,

u(t) ∈ uI(x, y(t), t) =
[
uL(x, y(t), t), uU(x, y(t), t)

]
(22)

or the component form

ui(t) ∈ uI
i (t) =

[
uL

i (x, y(t), t), uu
i (x, y(t), t)

]
, i = 1, 2, . . . , r (23)

For the purpose of obtaining a quick solution for Equations (22) and (23), denote the
terms used in structural vibration theory, by describing a state vector with

qstate(t) =
[
u(x, y(t), t),

.
u(x, y(t), t)

]T (24)

Then, the mathematical formulation in Equation (20) can also be expressed in the
state-space representation, as defined by

.
qstate(t) = A(x) · qstate(t) + B(x) · F(x, y(t), t)

qoutput(t) = C(x) · qstate(t) + D(x) · F(x, y(t), t) (25)

where qoutput(t) =
..
u(x, y(t), t) is the output vector, and

A(x) =
[

0 I
−M−1(x) ·K(x) −M−1(x) · P(x)

]
, B(x) =

[
0

M−1(x)

]
C(x) =

[
−M−1(x) ·K(x) −M−1(x) · P(x)

]
, D(x) = M−1(x)

(26)

In order to efficiently and precisely obtain the bounds of the response interval, the
second-order Taylor expansion is utilized here, in which the state matrix A(x) and the
input matrix B(x) are approximately represented as

Φ(x) = Φ(xc + xr ◦Ψ)

≈ Φ(xc) +
m
∑

i=1

∂Φ(xc)
∂xi
· xr

i+
1
2

m
∑

i1,i2=1

∂2Φ(xc)
∂xi1

∂xi2
·xr

i1
· xr

i2
= Φ(xc) + δΦ (27)

where δ means an operator for description of the perturbation quantity. Analogously,
combined with the time discretization strategy, the external load vector F(tj) under instant
tj = j∆t can be expressed by

F
(
x, y(tj), tj

)
≈ F

(
xc, yc(tj), tj

)
+

m
∑

i=1

∂F(xc,yc(tj),tj)
∂xi

· xr
i+

n
∑

k=1

∂F(xc,yc(tj),tj)
∂yk(tj)

· yr
k(tj)

+ 1
2

m
∑

i1,i2=1

∂2F(xc,yc(tj),tj)
∂xi1

∂xi2
·xr

i1
· xr

i2
+ 1

2

n
∑

k1,k2=1

∂2F(xc,yc(tj),tj)
∂yk1

(tj)∂yk2
(tj)
·yr

k1
(tj) · yr

k2
(tj)

= F
(
xc, yc(tj), tj

)
+ δF(tj)

(28)

Obviously, it can also be defined as

qstate(tj) ≈ qstate
(
xc, yc(tj), tj

)
+ δqstate(tj) (29)

When substituting Equations (27)–(29) together with Equation (25), we have

.
qstate

(
xc, yc(tj+1), tj+1

)
+ δ

.
qstate(tj+1) = [A(xc) + δA] ·

[
qstate

(
xc, yc(tj), tj

)
+ δqstate(tj)

]
+[B(xc) + δB] ·

[
F
(
xc, yc(tj), tj

)
+ δF(tj)

] (30)
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Then, the following expressions can be obtained by ignoring the high order items, namely,

.
qstate

(
xc, yc(tj+1), tj+1

)
= A(xc) · qstate

(
xc, yc(tj), tj

)
+ B(xc) · F

(
xc, yc(tj), tj

)
(31)

and

δ
.
qstate(tj+1) = A(xc) · δqstate(tj) + δA · qstate

(
xc, yc(tj), tj

)
+B(xc) · δF(tj) + δB · F

(
xc, yc(tj), tj

) (32)

With the precise time integration method, qstate(x
c, yc(t), t) and δqstate(t) can be

explicitly reconstructed. According to the natural interval extension, in Equation (29)
we obtain

qI
state(x, y(t), t) = qstate(x

c, yc(t), t) + ∆qI
state(t) (33)

where ∆qI
state(t) = [−|δqstate(t)|, |δqstate(t)|]. Ultimately, the lower and the upper bounds

of the response intervals may be arrived at by

uL(x, y(t), t) = u(xc, yc(t), t)− |δu(t)| and uU(x, y(t), t) = u(xc, yc(t), t) + |δu(t)| (34)

where the value of the perturbation item δu(t) lies on the iterative calculations deduced by
the foregoing Equations (24)–(33).

3.2. Correlation Representation Achieved by Novel Optimization-Based Strategy

As per the statements discussed in Section 3.1, the uncertainty bounds of the dynamic
responses ui(t), i = 1, 2, . . . , r can be obtained, and indeed it can be regarded as interval
processes. However, based on the definitions of the time-variant interval model cited in
Section 2.1, the characteristics of the auto-correlation between ui(t1) and ui(t2) should be
confirmed as well. In view of this, this study employs a novel optimization method based
on the conception of the smallest parametric interval set to deal with this correlation issue.

(a) Firstly, the common method for determining the smallest ‘box’ (i.e., one hyper-
rectangle in essence) containing multi-dimensional sample data is investigated. Consider-
ing the case that the uncertain parameters αi (i = 1, 2, . . . , s) constitute an s-dimensional
parametric space with limited information containing S sample points, namely,
α
(S)
i = {ai(1), αi(2), . . . , αi(S)}, the expression of the transformation matrix thus reads as

T(θ) = (δ1, δ2, · · · , δs) (35)

where θ = (θi) (i = 1, 2, . . . , s− 1) is the vector of rotation angles relative to the original
coordinate, and

δj =

{
0j−2

~
δj

}
(36)

where 0j−2 means a column vector with j− 2 zero items, and
~
δj is deduced by

~
δj =


−sinθj−1

cosθj−1cosθj
...

cosθj−1sinθj · · · sinθs−2cosθs−1
cosθj−1sinθj · · · sinθs−2sinθs−1

 (37)
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Each element of the original sample set α
(S)
i will be transferred to β

(S)
i with the trans-

formation matrix T(θ) (from α-space to β-space). With the aim of determining the smallest
interval set to envelope all the samples, the s-dimensional ‘box’ should be examined by

|β− βc| ≤ βr (38)

where the center vector βc =
(

βc
1, βc

2, · · · , βc
s
)T and the semi-axis vector βr =

(
βr

1, βr
2, · · · , βr

s
)T.

The components βc
i and βr

i are given by

βc
i =

1
2

(
max

S

(
β
(S)
i

)
+ min

S

(
β
(S)
i

))
and βr

i =
1
2

(
max

S

(
β
(S)
i

)
−min

S

(
β
(S)
i

))
(39)

Then, the hyper-volume of the ‘box’ in Equation (38) is calculated by

Vhyper =
s

∏
i=1

(2βr
i )

s (40)

which is a function of the rotation angles θi. The best interval set or the hyper-rectangle
among all possible boxes should be the one that envelopes all the given sample points with
the minimum volume, namely,

V∗hyper = min
θ*

Vhyper(θ1, θ2, . . . , θs−1) (41)

To rapidly solve the optimization formulas as shown in Equation (41), either the gradi-
ent algorithm based on sensitivity information or the intelligent algorithm using population
evolution has to be attached. After the minimum V∗hyper is obtained by optimization, the
optimal design parameters θ∗i can reflect the correlation between the uncertain parameters
αi and αi+1.

(b) In fact, for the interval process ui(t), the correlation properties between ui(t1) and
ui(t2) with any instant times t1 and t2 make sense. The above optimization procedure can
be carried out by following steps:

(i) By utilizing the orthogonal test design under available static and dynamic uncertainty data,
take all the sample combinations into deterministic differential equation as shown in Equation (19),
and then acquire the set of response curves u(S)

i (t) = {ui(t, 1), ui(t, 2), . . . , ui(t, S)}.
(ii) Assume a sufficiently small increment ∆t, and conduct the time-discretization

operation to obtain

u(S)
i (t1) = {ui(t1, 1), ui(t1, 2), . . . , ui(t1, S)} (42)

and

u(S)
i (t2) = {ui(t2, 1), ui(t2, 2), . . . , ui(t2, S)} (43)

where t1 = j1∆t and t2 = j2∆t (j1, j2 = 1, 2, . . .).
(iii) Construct a two-dimensional rectangle space (ui(t1) − ui(t2)) generated from

Equations (42) and (43), and obtain the smallest rotary rectangular domain (as shown in
Figure 1) according to Equation (41), with rotation angel θ∗i (t1, t2) and the two semi-axes
βr

i (t1) and βr
i (t2).
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Figure 1. The novel optimization-based strategy for determination of the smallest rotary rectangular domain.

(iv) According to the smallest interval set, the auto-covariance function Covui (t1, t2)
can be given by

Covui (t1, t2) =

(
βr

i (t1)
)2 −

(
βr

i (t2)
)2

3
· sin θ∗i (t1, t2) · cos θ∗i (t1, t2) (44)

Similarly, referred by Equation (9), the auto-correlation coefficient function ρui (t1, t2) reads

ρui (t1, t2) =
Covui (t1, t2)

|δui(t1)| · |δui(t2)|
(45)

(v) By traversing all the response components ui(t), the auto-correlation characteristics
of the interval process vector u(t) are eventually gained.

In summary, this section presents an integral process of uncertainty propagation
analysis via limited time-invariant and time-variant sample data. It is noted that the
reliability estimation will be expounded on the basis of the dynamic response results.
Therefore, the more precisely we can obtain the bounds properties as well as the auto-
correlation descriptions of ui(t), the more reliable safety evaluation will be achieved. In fact,
the work in Sections 2 and 3 provides the necessary data entry condition for the following
structural time-dependent reliability analysis under circumstances of missing information.

4. Non-Probabilistic Time-Dependent Reliability Assessment

For the structural safety, the comparison between the actual performance ui(t) and the
criteria value ucr

i (t) over the analyzed time [0, T] are usually of more concern. Nevertheless,
once the uncertainty factors originating from insufficient samples are taken into account,
traditional deterministic analysis or the time-invariant probabilistic reliability theory may
not be feasible. In view of this, we further define the non-probabilistic time-dependent
reliability index as

Rs(T) = 1− Pf (T) = Pos
{
∀t ∈ [0, T] : min

i≤r
[gi(t, u(t)) = ucr

i (t)− ui(t)] > 0
}

(46)

where Rs(T) and Pf (T) are the measurements of safety and failure, respectively, Pos{·}
means the possibility of a specific event, min

i≤r
[·] represents the minimum, and gi(t, u(t))

stands for the time-varying limit state.
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It is extremely hard to obtain the analytical solution of Equation (46) in general. To
solve this problem, some approximation methods should be used. Based on the classical
first-passage theory in random process, Equation (46) can be translated by

Rs(T) = 1− Pf (T) = 1−max
i≤r

[
Pos
{
(gi(0, u(0)) < 0) ∪

(
N+

i (0, T) > 0
)}]

(47)

where max
i≤r

[·] represents the maximum, gi(0, u(0)) means the initial state, and N+
i (0, T) > 0

denotes the number of upcrossings of zero-value by the processes gi(t, u(t)) from the safe
domain to the failure domain during [0, T].

The basic simplification in the first-passage theory is that the crossing from the non-
failure into the failure domain at each moment is regarded as independent from others.
Under such circumstances, Rs(T) arrives at

Rs(T) = 1− Pf (T) = 1−max
i≤r

[
Posi(0)−

N

∑
j=1

PI(Ei,j)

]
, N =

T
∆t

(48)

where Posi(0) means the possibility of failure at the initial moment t = 0 and PI(Ei,j) is the
possibility index of the event Ei,j, which can be expressed as gi((j− 1)∆t, u((j− 1)∆t)) > 0
∩gi(j∆t, u(j∆t)) ≤ 0.

It is obvious that the possibility index PI(Ei,j) in Equation (48) depends on the inter-
ference of the limit-state functions (gi((j− 1)∆t) > 0 and gi(j∆t) ≤ 0) and the feasible
rectangular domain generated from gi((j− 1)∆t) and gi(j∆t). The possibility index of
Ei,j is defined as the ratio of the interference area to the feasible rectangular area after
normalization, i.e.,

PI(Ei,j) = Pos{gi((j− 1)∆t, u((j− 1)∆t)) > 0∩ gi(j∆t, u(j∆t)) ≤ 0} =
Ainterference

Atotal

∣∣∣∣
i,j

(49)

Figure 2 embodies the novel solution method, in which

gc
i (t, u(t)) = ucr

i (t)− uc
i (t), gr

i (t, u(t)) = ur
i (t), ρgi ((j− 1)∆t, j∆t) = ρui ((j− 1)∆t, j∆t) (50)

Substitution of Equation (49) into Equation (48) yields

Rs(T) = 1−max
i≤r

[
Posi(0)−

N

∑
j=1

Ainterference

Atotal

∣∣∣∣
i,j

]
(51)

As mentioned above, to form the limited samples, the entire theoretical contents
from quantization and propagation of static and dynamic uncertainties to structural safety
estimation based on non-probabilistic time-dependent reliability have been expounded (as
shown in Figure 3). In the next two sections, the effectiveness of the proposed method will
be proven by numerical and experimental examples.
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Figure 2. The diagram for calculating the possibility index of Ei,j.

Figure 3. Flowchart of the proposed uncertainty analysis and time-dependent reliability approach.

5. Numerical Example

In this section, the provided approach is used to solve a practical engineering prob-
lem (the safety prediction of the laminated composite plates) under limited static and
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dynamic uncertainty information. Firstly, uncertainty quantification (UQ) analysis via
actual experimental samples (insufficient static samples of material properties E1, E2, ν12,
and G12), as well as virtual simulation data (few time-variant history curves for description
of the uncertain dynamic load F(t)), is conducted to determine the boundary rules of
input parameters. The uncertainty propagation analysis for acquisition of the lower and
upper bounds of allowable load (FL

allow(t) and FU
allow(t)) is then carried out by virtue of the

quantified results. As per the uncertainty features of F(t) (the bounds and the correlation
characteristics) and the calculated response result Fallow(t), the time-dependent reliability
estimation is eventually accomplished, and the comparisons based on the Monte Carlo
method are involved to prove the validity and effectiveness of the investigated study. For
details, see the subsequent statements.

5.1. Cases of Time-Invariant and Time Variant Uncertainty Quantification Analysis

As the necessary input conditions for the subsequent reliability assessment of the
composite laminates, the achievement of the quantitative study with limited sample data is
of great importance. Here, a total of two cases, namely, the static one under 16 groups of
actual experimental samples corresponding to the engineering constants E1, E2, ν12, and G12
of T300/QY8911 (as listed in Table 1, which is referred by [26]) and the dynamic one under
six groups of virtual simulation histories subjected to external excitation F(t) (as shown in
Figure 4, which is modified by [37,38]) are analyzed by utilizing the improved Grey system
theory as above discussed. For ease of understanding, we take the longitudinal elastic
modulus E1 as an example, and its specific quantification procedure is summarized below.

Table 1. Experimental data of the engineering constants for T300/QY8911.

No. E1(GPa) E2(GPa) v12 G12(GPa) E1(GPa) No. E1(GPa) E2(GPa) v12 G12(GPa)

1 129.20 9.34 0.28 5.23 9 132.19 9.07 0.30 4.85
2 131.59 9.53 0.33 4.97 10 132.00 9.73 0.35 5.00
3 130.63 9.08 0.33 5.16 11 130.39 9.21 0.34 5.34
4 132.01 9.34 0.33 5.15 12 128.28 8.67 0.33 4.98
5 131.04 8.94 0.34 5.15 13 135.30 9.18 0.32 5.13
6 120.61 9.04 0.33 4.81 14 137.33 9.28 0.33 5.25
7 127.69 8.99 0.32 5.11 15 141.69 10.73 0.31 5.47
8 133.65 9.36 0.35 5.08 16 126.91 9.39 0.33 5.45

Figure 4. Cont.
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Figure 4. Six groups of virtual simulation histories subjected to external excitation F(t) (Case (a–d)).

In accordance with Equations (10) and (11), the experimental data points of E1 can be
listed as

E(1)
1 =

{
E(1)

1 (1), E(1)
1 (2), . . . , E(1)

1 (16)
}

= {120.61, 126.91, 127.69, 128.28, 129.20, 130.39, 130.63, 131.04,
131.59, 132.00, 132.01, 132.19, 133.65, 135.30, 137.33, 141.69}

(52)

After the accumulation, the above sequence will be expressed as E(2)
1 , i.e.,

E(2)
1 = {120.61, 247.52, 375.21, 503.49, 632.69, 763.08, 893.71, 1024.75,

1156.34, 1288.34, 1420.35, 1552.54, 1686.19, 1821.49, 1958.82, 2100.51}
(53)

Substituting Equation (53) into Equation (13) yields

∆max
E1

= max
(
∆E1(l)

)
= max

(
E(2)

1 (16)
16

· l − E(1)
1 (l)

)
= 25.505 (54)

In terms of Equations (15)–(17) cited in Section 2.3, we further obtain

ΣE1 =
[
σE1(1), σE1(2), . . . , σE1(15)

]T

= [4.4548, 3.8821, 3.5529, 3.4179, 3.4378, 3.3984, 3.3640,
3.3556, 3.3536, 3.3225, 3.2893, 3.3647, 3.5616, 3.9061, 4.6844]T

(55)

and

DE1 =
[
dE1(1), dE1(2), . . . , dE1(15)

]T

= [1.5750, 1.4867, 1.3156, 1.1856, 1.1400, 1.1180, 1.1339,
1.1599, 1.1846, 1.1819, 1.1835, 1.2188, 1.2744, 1.3632, 1.5941]T

(56)

After a second accumulation and substitution of Equations (55) and (56) together with
(18), the optimal estimation ˆcE1 reads as

cE1 → ˆcE1 =

((
D(2)

E1

)T
·D(2)

E1

)−1
·
(

D(2)
E1

)T
· Σ(2)

E1
= 2.8361 (57)

Thus, the quantitative interval can be given as
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E1 ∈
[

EL
1 , EU

1

]
=

[
E1 − 3 · ˆcE1 ·

∆max
E1

16
, E1 + 3 · ˆcE1 ·

∆max
E1

16

]
= [117.7189, 144.8448] GPa (58)

The detailed process for quantifying the uncertainty of E1 is exhibited by the presented
approach. Moreover, all bounds results with reference to other static uncertain variables
(E2, ν12, and G12), as well as the dynamic load history F(t), can be also obtained via the
limited samples, as shown in Table 2 and Figure 5; Figure 5 also manifests the change
trend of the Grey constant coefficient cF(t). Apparently, the quantified results will be ap-
plied into the following composite structures for response calculation and time-dependent
reliability estimation.

Table 2. Quantification results for static uncertainty characteristics E1 E2, ν12, and G12.

The Grey
Constant

Coefficient

The Mean
Value

The Lower
Bound

The Upper
Bound

E1 cE1 = 2.8361 Ec
1 = 131.2819 EL

1 = 117.7189 EU
1 = 144.8448

E2 cE2 = 2.7582 Ec
2 = 9.3050 EL

2 = 8.1233 EU
2 = 10.4867

v12 cν12 = 2.6793 νc
12 = 0.3263 νL

12 = 0.2754 νU
12 = 0.3771

G12 cG12 = 2.5181 Gc
12 = 5.1456 GL

12 = 4.5625 GU
12 = 5.7287

Figure 5. Quantification results for dynamic uncertainty characteristics F(t) (Case (a)–(d)).

5.2. Cases of Time-Dependent Reliability Evaluation via Available Quantified Results

Here, a 12-layer composite laminates plate [θ/θ/θ − θ/− θ/− θ]sym under one con-
centrated load in the geometric center with four clamped supported sides is studied. The
length l and width b of the plate are l = b = 120mm, with a thickness of t = 0.3mm
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for each lamina. The material of the lamina is transversely isotropic with a density of
ρ = 1.38× 103kg/m3. Table 3 shows the basic strength variables of this composite plate, in
which the strength degeneration index is defined as α(t) (t ∈ [0, T], T = 20 years).

Table 3. Basic strength variables of the laminated composite plate (unit: GPa).

Xt Xc Yt Yc S

1.5372× α(t) 1.7221× α(t) 0.0444× α(t) 0.2139× α(t) 0.1024× α(t)
in which α(t) = exp(−0.005t) (t ∈ [0, T], T = 20 years).

In common deterministic analysis, the key point of the first-layer failure judgment
relies on solving the allowable load Fallow, which can be confirmed by finite element
analysis. In this problem, each lamina is divided into 2500 elements. Therefore, there are
30,000 elements for the whole plate (as shown in Figure 6), which may guarantee a high
accuracy result. According to the Tsai–Wu strength criterion, Fallow can be obtained from

Fallow = min(Fi, T)
s.t. F1(T) · σ1(Fi, T) + F2(T) · σ2(Fi, T) + F11(T) · σ2

1 (Fi, T) + F22(T) · σ2
2 (Fi, T)

+F66(T) · τ2
12(Fi, T) + 2F12(T) · σ1(Fi, T) · σ2(Fi, T) = 1

(59)

where F1(T) = α(T) ·
(

1
Xt
− 1

Xc

)
, F2(T) = α(T) ·

(
1
Yt
− 1

Yc

)
, F11(T) =

α(T)
Xt ·Xc

, F22(T) =
α(T)
Yt ·Yc

,

F66(T) =
α(T)

S2 , F12(T) = − α(T)
2
√

Xt ·Xc ·Yt ·Yc
, Fi means the failure load of the ith lamina, σ1(Fi, T),

σ2(Fi, T), and τ12(Fi, T) are the longitudinal normal stress, the transverse normal stress,
and the shear stress under Fi and T, respectively.

Figure 6. The composite laminated plate for numerical example.

Nevertheless, once the uncertainties, which exist in material properties, are considered
(from the quantitative results in Table 2), it will be more complicated to solve Equation (59),
and the allowable load Fallow will be converted into an interval process, rather than a
specific value any more. In such circumstances, the proposed uncertainty propagation
method cited in Section 3.1 can be directly adopted by a combination of the finite difference
conceptions and the interval mathematics, and the fast boundary solutions with changing
ply angle θ are given. Figure 7 summarizes some results of FL

allow(t) and FU
allow(t) under

typical cases of θ. Thus, associated with the previous quantified interval process F(t), the
safety measurement of this composite laminate becomes

Rs(T) = Pos{∀t ∈ [0, T] : g(Fallow(t), F(t)) = Fallow(t)− F(t) > 0} (60)

where the time independency effect of the limit state g(Fallow(t), F(t)) lies in the co-
relationship of the interval process F(t), in essence. With the help of the novel optimization-
based strategy in this study, the auto-correlation coefficient function ρF((j− 1)∆t, j∆t) can
be determined by the sample curves in Figure 4. Figure 8 shows the details. Therefore,
associated with the above uncertainty quantification and propagation results, the presented
non-probabilistic time-dependent reliability assessment can be eventually executed, as
shown in Table 4 and Figure 9. For comparison purposes, the classical probability method



Appl. Sci. 2022, 12, 5389 17 of 25

based on the Monte Carlo simulations (1,000,000 samples) is also employed to verify the
feasibility and rationality of our work, as is demonstrated in Figure 10.

Figure 7. Time history results of FL
allow(t) and FU

allow(t) under typical cases of θ.

Figure 8. The auto-correlation coefficient function ρF((j− 1)∆t, j∆t) obtained by the novel
optimization-based strategy (Case (a)–(d)).
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Table 4. Non-probabilistic time-dependent reliability results versus different values of ply angel θ.

Rs(t) Rs(t≤14) Rs(t=15) Rs(t=16) Rs(t=17) Rs(t=18) Rs(t=19) Rs(T)θ

θ = 15◦ 1 0.9997 0.9704 0.9223 0.8998 0.8394 0.8185
θ = 30◦ 1 1 1 0.9993 0.9913 0.9871 0.9771
θ = 45◦ 1 1 1 0.9910 0.9757 0.9526 0.9338
θ = 60◦ 1 0.9918 0.9855 0.9528 0.9398 0.9039 0.8370

Figure 9. Non-probabilistic time-dependent reliability results versus different values of ply angel θ.

Figure 10. The reliability results comparison of the composite laminates plate between the proposed
method and the Monte Carlo method.

5.3. Discussions on the Results

Synthesizing the computational results of the laminate composite example, the follow-
ing points can be inherited:

(1) From the aspect of uncertainty quantification, the quantitative results derived from
the Grey systematic theory (with respect to either the static variables E1, E2, ν12, G12,
or the dynamic process f (t)) may better envelop the initial data, as is embodied in
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Table 2 and Figure 5. Moreover, as an improvement for the traditional Grey model,
the way of determination of the Grey constant coefficients is a more precise treatment
for UQ analysis under small sample limitations. Indeed, it will, to a certain degree,
avoid undesirable interval extension effects by using the relationship of the topological
locations among all the sample points/curves.

(2) From the point of uncertainty propagation, the developed methodology combined
with the state-space transformation and the second-order Taylor expansion may ef-
fectively calculate FL

allow(t) and FU
allow(t), although the factors of material dispersion

(as summarized in (1)), the material degeneration α(t), and the changing ply patterns
(θ = 15◦, 30◦, 45◦, 60◦) are all taken into account. Furthermore, it should also be
indicated that, compared with metal structures, the uncertainty influences in com-
posite structures are much more obvious, and the mechanical performances under
different ply angels θ vary even more (if θ = 45◦ → FL

allow(T) = 1651.85 N , but if
θ = 60◦ → FL

allow(T) = 1161.12 N ).
(3) From the prospect of safety estimation, the time-dependent reliability obtained by the

present analytical method matches the one derived from the Monte Carlo method, as
we expected (the accuracy verification). However, there are two aspects that should be
stressed: For one thing, the results on the basis of former non-probabilistic method are
a little more conservative because of fewer assumptions made about the quantified
uncertainties (based on the engineering practice). Furthermore, the accuracy of the
reliability results from the Monte Carlo method greatly depends on the amount of
samples (1,000,000 samples in the example), which means a computation-intensive
and time-consuming situation has to be faced (the superiority of efficiency).

6. Test Verification

In order to verify the practicability of the proposed method in practical engineering,
one more experiment for a specific cantilever beam under active vibration control is pro-
vided. As is shown in Figure 11, a constant-amplitude sine load is applied to the free
end of the cantilever beam. For available reduction of the displacement response (the
absolute value of the displacement response should be no more than ucr = 12.5 mm), active
control force is required. The details of the beam are: the elastic modules E = 70 GPa,
Poisson’s ratio ν = 0.3, and cross-section area A = 100π mm2. Additionally, five cases of
the geometric length L = 400 mm→ 404 mm are investigated.

Figure 11. The active control test of the cantilever beam structure.

In this experiment, the close-loop response of the cantilever beam structure is obtained
by the semi-physical simulation platform dsPACE, which contains a master computer, a
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prototype, a Input/Output (I/O) system, a DS1103 controller board, and test software Con-
trolDesk, as shown in Figure 12 to monitor the close-loop response of the controlled beam.

Figure 12. The diagram of the semi-physical simulation platform dsPACE.

Considering that there will be many unknown factors, e.g., noise, assembly errors,
signal delays, etc. which can influence the results of the close-loop response during the
whole experiment, the reliability estimation of the controlled performances is particularly
necessary. Therefore, the following process is performed: (1) 35 sets of real experiment
samples of close-loop responses u(t)|L are measured and recorded. (2) Five initial sets
of response data are chosen to conduct the presented UQ and calculate the correlation
properties ρu|L((j− 1)∆t, j∆t). (3) Associated with the critical response value, the time-
varying limit-state function g(t) = u(t)|L − ucr is obtained, and the non-probabilistic
time-dependent reliabilities of five different cases are respectively calculated (T = 4 s).
(4) With the aim of calibration, the other 30 sets of samples are used to generate more virtual
data (additional 1,000,000 samples in this test), and statistical reliability results are obtained
and compared with the ones obtained by the provided method.

In accordance with the above procedures, the uncertainty analysis and time-dependent
reliability evaluation of the cantilever beam are well launched under limited experimental
sample curves. Figures 13 and 14 show the detailed solution and comparison results. The
conclusions in accuracy and effectiveness are similar to the aforementioned numerical
examples. Moreover, the reliability calculated by the two methods decreases with the
increase of the beam length L. Indeed, the increasing L may enlarge the sensitivity level of
close-loop responses with respect to uncertainties, and has an adverse impact on reliability.

Figure 13. Cont.
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Figure 13. Uncertainty analysis results for the controlled response u(t)|L (L = 401 mm, 402 mm,
403 mm, 404 mm, 405 mm). (a)—5 samples of the controlled response u(t)|L, (b)—Bounds results of
u(t)|L obtained by the Grey model, (c)—auto-corelation coefficient of u(t)|L.

Figure 14. The reliability results comparison of the cantilever beam between the proposed method
and the Monte Carlo method.

7. Conclusions

As is known to all, uncertainties widely exist in practical engineering, so that more
and more attention has been paid to uncertain structural analysis and design in recent
decades. Nevertheless, most of the current studies mainly focus on uncertainty issues (the
uncertain response prediction and the structural reliability evaluation) with predetermined
parametric descriptions, such as the assumed probability density functions or the given
interval bounds for characterizing the uncertain parameters, instead of regarding the uncer-
tainty sample data as the starting point to conduct the subsequent research. Additionally,
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due to the complexity of multi-source uncertainties in mechanics, which commonly contain
time-invariant and time-variant uncertain factors simultaneously, traditional methods of
static response analysis and probabilistic reliability assessment may not be feasible anymore
with insufficient uncertainty information of discrete sample points/curves.

In view of the aforementioned statements, this study presents an integral analytical
procedure containing the UQ, the uncertainty propagation, and the time-dependent relia-
bility estimation under small-scale static and dynamic measurements. The improved Grey
mathematical theory is firstly introduced to confirm the boundary laws of uncertainties
with the help of the time-invariant and time-variant data, and the topology relations among
all the sample locations determine the value of the Grey constant coefficient. Through the
quantified bounds results, the dynamic responses can be modeled by interval processes
and then calculated by a combination of techniques, such as the second-order Taylor ex-
pansion (calculation of the response bounds), as well as the smallest parametric interval
set (characteristics of the time dependency). Enlightened by the first-passage theory in
random process, the non-probabilistic time-dependent reliability is further defined and
analytically solved for realization of the risk estimation of real time-varying structural
systems. The rationality and effectiveness of the investigated approach are eventually
verified by numerical examples and experimental applications.

Certainly, the purpose of this paper is not to replace other uncertain analysis methods
in response computation and reliability measurement. We only wish to propose a possible
alternative way when inadequate data is available. It can be concluded that the methods of
the uncertainty analysis depends on the type and amount of available data.
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Nomenclature

Symbols
x The vector of interval uncertain variables x ∈ xI =

[
xI

1, xI
2, . . . , xI

m
]T

Ψ Ψ = [Ψ1, Ψ2, . . . , Ψm]
T is a standard interval set with Ψi ∈ [−1, 1]

y The vector of uncertain process y(t) ∈ yI(t) =
[
yI

1(t), yI
2(t), . . . , yI

n(t)
]T

tj The time instant
Dy(·) The variance process vector of y
Covyk (t1, t2) The auto-covariance function of the process yk(t) at different times t1 and t2
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ρyk (t1, t2) The auto-correlation coefficient of the process yk(t) at different times t1 and t2
Xi The group of measured experimental data Xi = {xi(l), l = 1, 2, . . . , m1}
X(1)

i Arranging X in turn from small to big asX(1)
i =

{
x(1)i (1), x(1)i (2), . . . , x(1)i (m1)

}
c The Grey constant coefficient
s The quantitative evaluation to uncertainty of data Xi
M The mass matrix
P The damping matrix
K The stiffness matrix
F(t) The external load vector
u(t) The response vector of displacement
.
u(t) The response vector of velocity
..
u(t) The response vector of acceleration
u(t0) The initial condition of displacement
.
u(t0) The initial condition of velocity
Γ The feasible domain of the known vector x and y(t)
qstate The state vector of the state-space
.
qstate Derivative of the state vector respect to time
δ The operator for description of the perturbation quantity
T(·) The transformation matrix
θ The vector of rotation angles θ = (θi) (i = 1, 2, . . . , s− 1)

α
(S)
i The original sample set

β
(S)
i The sample set after the transformation

Vhyper The hyper-volume of the “box”
V∗hyper The minimum value of Vhyper

θ∗i The optimal design parameters of V∗hyper
∆t The time increment
Rs(T) The measurements of safety
Pf (T) The measurements of failure
Pos{·} The possibility of a specific event
min
i≤r

[·] The minimum

gi(t, u(t)) The time-varying limit state
max
i≤r

[·] The maximum

gi(0, u(0)) The initial state of gi(t, u(t))
N+

i (0, T) > 0 The number of upcrossings of zero-value by the compound process gi(t, u(t)),
from safe domain to the failure domain within [0, T]

Posi(0) The possibility of failure when time t equals to zero
PI(·) The possibility index of an event
Counters
i i = 1, 2, . . . , m; m is the total number of static uncertain parameters
j j = 1, 2, . . . , n; n is the total number of time instant
k k = 1, 2, . . . , n; n is the total number of time instant
l l = 1, 2, . . . , m1; m1 is the total number of data points
Superscripts
(·)I The interval set
(·)U The upper bound
(·)L The lower bound
(·)c The center value
(·)r The radius
(·) The mean value
Subscripts
(·)j Count quantity
(·)k Count quantity
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