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ABSTRACT 

Purpose 
Moderately thick circular cylindrical shells are widely used as supporting structures or 

storage cavities in structural engineering, rock engineering, and aerospace engineering. 

In practical engineering, shells often work with micro-cracks or defects. The existence 

of micro-crack damage may result in the disturbance of dynamic behaviours and even 

induce accidental dynamic disasters. The free vibration frequency and mode are 

important parameters for the dynamic performance and damage identification analysis. 

In particular, stiffness weakening of the local damage region leads to significant 

changes in the vibration mode, which makes it difficult for the mesh generated in the 

conventional finite element method to capture a high-precision solution of the local 

oscillation. 

Design/methodology/approach 
In response to the above problems, this study developed an adaptive finite element 

method and a crack damage characterisation method for moderately thick circular 

cylindrical shells. By introducing the inverse power iteration method, error estimation, 

and mesh subdivision refinement technique for the analysis of finite element 

eigenvalue problems, an adaptive computation scheme was constructed for the free 

vibration problem of moderately thick circular cylindrical shells with circumferential 

crack damage. 

Findings 
Based on typical numerical examples, the established adaptive finite element solution 

for the free vibration of moderately thick circular cylindrical shells demonstrated its 

suitability for solving the high-precision free vibration frequency and mode of 

cylindrical shell structures. The any order frequency and mode shape of cracked 

cylindrical shells under the conditions of different ring wave numbers, crack locations, 

crack depths, and multiple cracks were successfully solved. The influences of the 

location, depth, and number of cracks on the disturbance of dynamic behaviours were 

analysed. 

Originality/value 
This study can be used as a reference for the adaptive finite element solution of free 

vibration of moderately thick circular cylindrical shells with cracks and lays the 

foundation for further development of a high-performance computation method 
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suitable for the dynamic disturbance and damage identification analysis of general 

cracked structures. 

KEYWORDS: moderately thick circular cylindrical shell; crack damage; free 

vibration; vibration disturbance; finite element method; mesh refinement 

ARTICLE CLASSIFICATION: Research paper 
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1. Introduction 

The dynamic analysis of structures and elastomers is an important basis for the study 

of structural earthquake resistance and rock-induced earthquakes (Ide et al., 2016; 

Chestler et al., 2017). As a supporting structure or storage cavity, the cylindrical shell 

is widely used in structural engineering, rock engineering, and aerospace engineering, 

and studying the dynamic characteristics of the structure, such as vibration, instability, 

and buckling, is of great significance for studying and judging its failure behaviour 

(Dey et al., 2017). Nondestructive experimental methods for computing the buckling 

load of imperfection-sensitive thin-walled structures are one of the most important 

techniques for the validation of new structures and numerical models of large-scale 

aerospace structures (Arbelo et al., 2014). In the study of structural dynamics, natural 

frequency and vibration mode are used as mechanical response parameters to analyse 

dynamic characteristics (Kang et al., 2003; Sivadas et al., 1994), and have become key 

research areas. These frequency and vibration modes are also regarded as eigenvalues 

and eigenfunctions of mathematical eigenvalue problems, which are solved. The 

circular cylindrical shell has, among other characteristics, clear force, symmetrical 

structure, and relatively simple manufacturing process (Qu et al., 2013). Therefore, the 

free vibration of a cylindrical shell has been of interest to many researchers 

(Weingarten, 2012). Consequently, an accurate analysis of the free vibration of circular 

cylindrical shells is highly valued in practice and research. At present, the traditional 

thin shell theory is often used to study shell problems. Based on the Kirchhoff–Love 

assumption (Love, 2013) and ignoring the transverse shear deformation, the theory 

introduces some errors to a shell structure with small shear stiffness (that is, prone to 

significant transverse shear deformation). In addition, it underestimates deflections and 

overestimates the frequencies (Hosseini-Hashemi et al., 2011). As many applications 

of toroidal shells are moderately thick or thick, it is imperative and desirable to 

establish effective theories appropriate for their analysis (Wang et al., 2011). In 

addition, the increased wall thickness of plate and shell structures in practical 

engineering is often beyond the application range of the thin-walled theory, and the 
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influence of transverse shear deformation should also be considered. This study 

introduced a moderately thick circular cylindrical shell. Compared with the thin shell 

free vibration theory, the moderately thick shell free vibration theory considers the 

influence of transverse shear deformation and moment of inertia, which makes the 

solution more reliable. 

Initial defects and factors such as high strength work and long-term use can 

damage the circular cylindrical shell structure, and cracks are one of the most common 

defects in most structures. Regarding the power characteristics of the structure, the 

presence of cracks reduces the original frequency and pushes the resonance band, 

causing structural vibration and stress strain aggravation, which increases the length of 

cracks. Cracks in a structural element in the form of initial defects within the material, 

or caused by fatigue or stress concentration, certainly impact the structural integrity 

(Dong et al., 2012). This creates a vicious circle that affects the reliability of the 

structure and directly threatens its safety. It is necessary to study the dynamic 

characteristics of a cracked structure, particularly the characteristics of free vibration. 

Therefore, in structural design and engineering applications it is important to study the 

mechanical properties of cracks and to clarify the ultimate bearing capacity of 

structures containing cracks. Cracks are one of the most common defects in engineering 

structures; their existence inevitably leads to a decrease in the ultimate bearing capacity 

of structures or components, and structural fractures will lead to significant economic 

losses (Wei et al., 2014).  

In the study of the vibration of cracked cylindrical shells, it is necessary to analyse 

the influence of different crack positions, sizes, and numbers. Compared with 

functionally graded beams with a single crack, beams with two or more cracks have 

lower frequency values (Aydin, 2013). To investigate the influences of the crack depth 

and position of each crack on the vibration mode and natural frequencies of a simply 

supported beam, the equation of motion was derived using Hamilton's principle and 

analysed using a numerical method (Yoon et al., 2007). To learn about the effects of 

the position and depth of each crack on the natural frequency of a simply supported 

double-cracked beam, a free vibration analysis of cylindrical shells with 
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circumferential stiffeners was also conducted (Jafari et al., 2006). To understand the 

free vibrations of circular cylindrical shells of piecewise constant thickness when 

circular cracks of constant length are controlled, an approximate method for the 

vibration analysis of stepped shells accounting for the influence of cracks located at 

the re-entrant corners of steps was presented (Jaan et al., 2010). To analyse the coupled 

vibration feature of a fluid-filled cylindrical shell with a circumferential surface crack, 

the effects of crack depth, crack location, and boundary conditions on the cylindrical 

shell’s modal power flow index were also analysed (Jin et al., 2018). To determine the 

effects of various geometric properties on the vibration and damping factors of circular 

cylindrical shells, an improved shell theory with shear deformation and rotatory inertia 

was used (Sivadas et al., 1994). To implement a straightforward computer simulation 

under different shell theories and boundary conditions, the Rayleigh–Ritz method was 

used to analyse the free vibration of a circular cylindrical shell on a dynamic model 

(Lee et al.，2015). To obtain solutions for the problem of free non-axisymmetric 

vibration of stepped circular cylindrical shells with cracks, the influence of circular 

cracks with constant depth on the vibration of the shell was prescribed with the aid of 

a matrix of local flexibility (Roots, 2014). Most research in the area of vibration 

analysis and crack detection of cracked structures has focused on beams (Yin et al., 

2013). To determine the effect of the development and propagation of cracks on 

cracked cylindrical shells with various parameters, the effect of a complete penetration 

non-propagating macro-crack damage on natural vibration frequencies and mode 

shapes was examined (Dehghani et al., 2008). However, there is a lack of research on 

the influence of vibration on the location, depth, number, and distribution of damage 

with annular cracks in cylindrical shells. If these problems are not clear, it is difficult 

to evaluate the vibration disturbance behaviour of cylindrical shells according to crack 

damage, and it is more difficult to further identify crack damage information according 

to vibration. 

Some theoretical methods, experiments, and numerical computations have been 

developed to study the free vibration of medium-thick cylindrical shells with cracks. 

To identify the crack location and depth, an approach was presented to analyse the 
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wave and vibrational power flow characteristics in cracked cylindrical shell structures 

(Zhu et al., 2007). To conduct a modal analysis of the vibration response of a cracked 

fluid-filled cylindrical shell, a high-order partial differential equation of thin shell 

motion was derived (Zheng, 2021). In the development of a research on the free 

vibration of medium-thick cylindrical shells, the dynamic stiffness method was 

introduced in the study of moderately thick circular cylindrical shells (Chen and Ye, 

2016; Chen and Zhang, 2006). The free vibration of cylindrical shells under 

homogeneous boundary conditions was studied based on the theory of Flugge (1973) 

and elastic thin shells (Wang and Huang, 2017). To study the effect of cracks on the 

natural frequencies and mode shapes of cracked beams, an exact approach for free 

vibration analysis of a non-uniform beam with an arbitrary number of cracks and 

concentrated masses was proposed (Li, 2001). To study the influence of a change in 

shell thickness on the distribution of its natural frequencies, the spline collocation 

method for finding the frequencies of free vibrations of circular closed cylindrical 

shells of variable thickness in the circumferential direction was introduced (Grigorenko 

et al., 2010). A holographic interferometry technique was used to determine the 

frequencies of the free vibrations of isotropic circular cylindrical shells (Grigorenko et 

al., 2011). To improve the computational efficiency and accuracy, a general framework 

was proposed to analyse the vibration of circular cylindrical shells, both in the case of 

linear and nonlinear vibrations (Pellicano, 2007). At present, there is a lack of a reliable 

and high-precision analysis of the frequency and mode of vibration of the disturbed 

mode of cylindrical shells with crack damage. 

For the numerical models and analysis of eigensolutions, the finite element 

method is widely used to solve the free vibration of moderately thick circular 

cylindrical shells with complex structures and boundary conditions. The adaptive 

algorithm for the finite element method has become an important method for 

optimising the mesh and improving the solution accuracy (Zienkiewicz and Zhu, 1992; 

Zienkiewicz, 2006; Bespalov et al., 2017; Wang, 2021). It mainly includes the p-

adaptive method (Arthurs et al., 2013) for improving the element order, h-adaptive 

method for increasing the mesh density (Wang, 2020b), and hp-adaptive method 
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(Gomez-Revuelto et al., 2012), which combines the above two methods. Through high-

performance computations, an adaptive analysis of the finite element method makes it 

possible to reliably solve challenging issues such as eigenvalue problems, damage, and 

fracture (Wang, 2020a; Wang et al., 2018a; Wang et al., 2019). An error analysis of 

local imperfections based on numerical solutions (Babuska and Rheinboldt, 1978; 

Babuska and Rheinboldt, 1979) was proposed, and the energy norm measurement 

method was used to compute the elements with the largest local imperfections. Oden 

and Ainsworth (Ainsworth and Oden, 1992; Ainsworth and Oden, 1993) also made 

significant contributions to the analysis of residual errors. In the study of the free 

vibration of cylindrical shells, the adaptive finite element method can effectively 

provide higher precision solutions for the analysis. To predict crack-induced natural 

frequency changes, an accurate and efficient method for analysing the vibration 

characteristics of cylindrical shells with a part-through crack was proposed (Yin et al., 

2013). The non-uniform mesh in a high-performance adaptive analysis process is a 

crucial factor for efficient computation, in which the minimum number of elements and 

optimised distribution of nodes are used to reduce the solution errors quickly and derive 

high-precision solutions (Arndt et al., 2010; Schillinger et al., 2011; Bao et al., 2012). 

The displacement superconvergent patch recovery method of finite elements (Wiberg 

et al., 1999a; Wiberg et al., 1999b; Wang et al., 2018b; Wang, 2020b) was proposed 

for establishing the mesh refinement procedure for computing high-precision modal 

shapes. The adaptive finite element method was used to analyse the free vibration of 

beams with multiple cracks and damage detection (Wang et al., 2018b). This study 

extends this method to the vibration disturbance problem of moderately thick circular 

cylindrical shells with crack damage.  

The remainder of this paper is organised as follows. In Section 2, we present the 

differential equations describing the free vibration of moderately thick circular 

cylindrical shell. The damage characterisation method for circumferential cracks in a 

circular cylindrical shell is introduced in Section 3. In Sections 4 and 5, the key 

techniques used in the adaptive analysis procedure, such as error estimation for 

eigenfunctions and h-version mesh refinement, are presented. Representative 

numerical examples are presented in Section 6 to demonstrate the performance of the 

proposed method and algorithm. Finally, the main conclusions are summarised in 

Section 7. 
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2. Differential equations describing the free vibration of moderately thick circular 

cylindrical shell 

The geometrical model, coordinate systems, and parameters describing the moderately 

thick circular cylindrical shell with circumferential cracks investigated in this study are 

shown in Figure 1. The rotation axis is denoted by ox . The local coordinate system at 

point A on the mid-plane is defined by  , where   points along the tangential 

direction of the meridian (the direction of the shell axis),   points along the 

tangential direction of the weft circle, and   points along the normal direction. There 

is a circumferential surface micro-crack in the cylindrical shell, which is located at 

length s along the rotation axis, and the depth of the crack is along the thickness of the 

shell. The five independent displacements of the shell are the linear displacements u, v, 

and w along the  ,  , and   directions, respectively, and the angular 

displacements   and   defined around the   and   directions, respectively. 

The radius of the middle shell surface is r, the section thickness is h, the shear stiffness 

correction factor of the section is  , the moment of inertia is J, the length is l, the 

elastic modulus of the material is E, the shear modulus is G, Poisson’s ratio is  , and 

density is  .   

Figure 1. Geometrical model, coordinate systems, and symbols describing a 
moderately thick circular cylindrical shell with circumferential crack. 

The governing differential equations of the free vibration of the shell are 
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where the prime mark () denotes the derivative with respect to the independent variable 

x , )1/( 2EhK  is the shell stiffness,   is the frequency, and n is the 

circumferential wave number. 

The eigenproblem solved in this study includes determining the eigenvalues  

and associated d
n  dimensional vector eigenfunctions T

n
xuxux

d
))(,...),(( 1)(u

Twvu ),,,,(    for the following system of second-order ordinary differential 

equations (ODEs) (Greenberg, 1991; Kurochkin, 2014): 

RuCuuBuALu  ,  bxa  , (2)

where L   is the differential operator, A  , B  , C , and R   are continuous dd nn   

matrix functions on ),( ba , and dn  = 5 is associated with the governing differential 

equations for the free vibration of the shell, as shown in Equation (1). Structural 

vibration problems were chosen to illustrate the possible physical interpretations of the 

equations. The corresponding structural natural frequencies (    ) and modes 

represent the eigenvalues and vector eigenfunctions, respectively. 

3. Damage characterisation method for circumferential cracks in circular 

cylindrical shell 

In this study, the damage defect characterisation and rotating spring techniques used to 

characterise the micro-crack in the beams (Wang, 2018b) are extended to this method 



Engineering Computations 

 10 / 36 

to implement damage characterisation in a cylindrical shell. As shown in Figure 2, the 

geometric model of the moderately thick circular cylindrical shell embedded a 

circumferential crack, in which the parameters    and   denote the normalised 

crack depth and location, respectively: 

haα / , (3a)

ls / , (3b)

where a  and s  are the absolute crack depth and location, respectively, and h  is 

the height of the shell. 

 

Figure 2. Damage characterisation for circumferential crack in circular cylindrical 

shell. 

The local domain around the micro-crack of the shell is shown in Figure 4. In the 

immediate region surrounding a single crack, the finite element containing the crack 

has two nodes with the degrees of linear and angular freedoms ),,,,(
jjjjj

wvu   and 

),,,,( 11111  jjjjj
wvu  , where the narrow crack is described with a width c  set at 

Tol.010  , where Tol   is the pre-specified error tolerance for both frequencies and 

modes. Using the weakened properties analogy to reflect the presence of cracks, the 

shell stiffness and moment of inertia at the crack are reduced as the crack deepens: 

)1/()(1 2  EhK
c

, (4a)

12
)(1 33 


bh

J
c

, (4b)

where cEI   and 
c

J   are the shell stiffness and moment of inertia at the crack c  , 

respectively, and b  is the width of the shell (the value is taken as 1 representing the 

unit width). 
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4. h-version mesh refinement method for eigensolutions of cracked circular 
cylindrical shell 

4.1. Finite element solutions 

The Lagrange interpolation formula provides a simple construct for higher-order shape 

functions that satisfy Equation (2). 

 
))()()()()()((

))()()()()()((
)(
)(

1121

1121

1 naaaaaaa
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ab
b ba

bp

a ξξξξξξξξξξ
ξξξξξξξξξξ

ξξ
ξξξl




















. (5)

The order of this polynomial is p = n − 1. Having chosen the end-node locations, the 

internal values of 
a
ξ   may be spaced in uniform increments. For one-dimensional 

elements, we can set (Zienkiewicz et al., 2015) 

    p

aa
lN   (6)

to define the shape functions. 
The weak form for the eigenproblems in the system of second-order ODEs, as 

defined in Equation (2), can be expressed as 

  0uRCuBvuAv  xTT d])([  , (7)

where v  is a trial function and   is the solution domain. The finite element model 

uses the conventional degree m  of polynomial elements. We let e denote a typical 

element with end-node coordinates 1x  and 2x  and with length h . We write the trial 

function on an element of degree m  as 

i

m

i i vNv  




1

1
, (8)

where iN  is an dd nn   shape function matrix defined by 

IN ii N ,  1...,,2,1  mi , (9)

where I is the dd nn   identity matrix. 

Using the conventional finite element method, the element stiffness and mass 

matrices ( eK  and eM , respectively) are computed and assembled to form the global 

stiffness and mass matrices K  and M , respectively. The finite element equation is 

then derived as an eigenvalue equation in the following matrix form: 

DMKD  , (10)
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where D  is the eigenfunction vector, and matrices K  and M  are independent of 

 . Based on the inverse iteration technique (Wang et al., 2018b), the eigensolutions 

of Equation (10) can be derived. 

4.2. Error estimation 

The superconvergent patch recovery displacement method was developed (Wiberg et 

al., 1999a; Wiberg et al., 1999b; Wang et al., 2018b; Wang, 2020b) to acquire the 

superconvergent displacements of the finite element solutions in static and dynamic 

problems. The displacements provided by this method can be applied to eigenfunctions. 

For example, if element e is a superconvergent computation element and elements e–1 

and e+1 are its neighbouring elements, all finite element nodes in patched elements e–

1, e, and e+1 are selected for the computation process. Further, the superconvergent 

displacements for element e can be computed as 





s

i

ii

r

i

h

ii xxx
1

*

1

* )()()( uNuNu , (11)

where r = 2 is the number of end nodes, s is the number of internal nodes, and iN  is 

the shape function matrix. Using high-order shape function interpolation, the 

polynomial order of the shape function is increased, r + s > m + 1. To optimise the 

superconvergent order )( 2mhO  for displacements at the end nodes, the displacement 

recovery field can be expressed for the finite element nodes as follows: 

Pa)(* xui ,   dni ,...,1 , (12)

where P   is the given function vector and a   can be determined by least-squares 

fitting for the coincidence of displacements at the end nodes in both the recovery and 

conventional finite element fields. The superconvergent displacements of the recovery 

field are used in Equation (11) to obtain the superconvergent solutions of element e. 

We use the following forms for the vector coefficients P  and a : 
 pxx ...1P ,  T

maaa ...21a  (13)

The value of a   was determined from the minimum value of the following 

functional, so that the product of P  and a , computed using Equation (12), matches 

the displacement values: 

 



n

j

jji xxu
1

* )()( aP ,   dni ,...,1 , (14)
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where n  is the node number of all elements patched together. 

The least-squares method applied to Equation (14) yields 

bAa 1 , (15)

with the coefficient matrices A and b defined as: 





n

j

j

T

j xx
1

)()( PPA , 



n

j

j

h

i

T

j xux
1

)()(Pb ,   dni ,...,1 . (16)

After a  is determined, the superconvergent solutions of the displacement of the 

piecewise elements are obtained from Equation (11). The estimated eigenvalue has a 

stationary value when all possible functions satisfying the essential boundary 

conditions are considered. These stationary values are the superconvergent eigenvalues. 

Furthermore, the superconvergent solutions of the displacements can be used in the 

Rayleigh quotient (Wilkinson, 1965; Wilkinson and Reinsch, 1971) to estimate the 

eigenvalue as 

),(
),(

**

**

*

uu
uu

b

a
 , (17)

where )(a  and )(b  are the strain and kinematic energy inner products, respectively. 

To determine whether the solution for the considered mesh meets the required tolerance 

condition, the error must satisfy the following condition: 
2122





 





  e

h nTol ** eue ,  (18)

where en  is the number of elements, and *e  is the error in the energy norm, as 

follows: 

 
2/1

**2/1*** d),( 



  xa TLeeeee ,  (19)

where huue -**  , and 
 
is the solution domain. 

4.3. Element subdivision and refinement 

Equation (18) can be rewritten as  

1 , (20)

where 
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e

*e
    with   

2122





 





  e

h nTole *eu . (21)

If Equation (20) is not satisfied, the corresponding element is subdivided into identical 

sub-elements by inserting interior nodes through h-refinement (Wang et al., 2018b; 

Wang, 2020b). These are computed using 

old
1

new hh m ,  (22) 

where newh  is the length of the sub-element and oldh  is the original length of element 

e. The above element subdivision approach was implemented as follows: 

  dn m ,min 1
new  , (23) 

where newn  is the number of sub-elements after element subdivision, the symbol     

denotes the ‘floor’ operator (i.e., the rounding down to the nearest integer), and d  is 

the limit needed to avoid too many redundant elements. Each element e that does not 

meet the pre-specified error tolerance threshold is uniformly subdivided by the h-

version mesh refinement. 

5. Global algorithm and procedure 

According to the finite element solution, error estimation, mesh subdivision, and 

refinement methods for free vibration of cylindrical shells with crack damage 

introduced above, the adaptive finite element algorithm for free vibration disturbance 

of moderately thick circular cylindrical shells with circumferential micro-crack 

damage can be established, as shown in Figure 3. First, the basic parameters including 

the micro-crack damage, physical parameters, circumferential wave numbers, initial 

mesh, and error tolerance should be provided. The procedure involves the following 

three basic processes:  

(1) Finite element model: Based on the circular cylindrical shell with 

circumferential cracks and damage characterisation method, the conventional 

finite element computation is performed based on the initial mesh. The finite 

element solutions (ωh, uh) under the current mesh were computed. 

(2) Error estimation: Based on the error estimation technique, the disturbance 

modes induced by crack damage can be evaluated. It should be noted that in the 

vicinity of crack damage, owing to the disturbance of the vibration mode, its 
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solution may produce significant errors. At the same time, the information on 

whether the error tolerance of each element is met is marked. 

(3) Mesh refinement: Element subdivision and optimisation around the local 

domain of crack damage. For the element whose error estimation does not meet 

the error tolerance condition, the mesh subdivision refinement method is used to 

subdivide it and obtain a new finite element mesh before returning to step (1). In 

the local domain of crack damage, owing to the large error, it may be necessary 

to introduce more subdivided elements. If all the elements meet the error 

tolerance condition, no subdivision is necessary, and the computation process is 

completed. Through the above adaptive process, the optimal mesh and high-

precision solution under the current eigenvalue order of the cylindrical shell with 

crack damage can be obtained when the vibration mode is disturbed, which is 

especially suitable for cylindrical shells with crack damage when the vibration 

mode is disturbed. 

 
Figure 3. Flow chart of the adaptive finite element algorithm and procedure for free 

vibration disturbance of moderately thick circular cylindrical shells with 

circumferential micro-crack damage.  
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6. Numerical examples 

This section presents some representative numerical examples to demonstrate the 

performance of the proposed method and algorithm, which were implemented in 

Fortran 90. The uncracked and cracked damage cases of moderately thick circular 

cylindrical shells were computed, and the reliability and accuracy of the method 

described herein were verified. The effects of different crack locations, crack depths, 

and number of multiple cracks on the free vibration disturbance were analysed. The 

program was run on a DELL Optiplex 380 Intel (R) Core (TM) 2.93 GHz desktop 

computer. The degree of element for mesh refinement is m = 3, the initial number of 

elements used in the computation procedure is ne = 2, and the stricter pre-specified 

error tolerance is Tol  = 610  . In this study, the mode error introduced in Section 4.2 

was used for solution estimation and control. The frequency was computed by the 

Rayleigh quotient, the error of which needs to be estimated. The relative error   

between the exact frequency   (i.e., the high-precision solutions from other methods) 

and the computed frequency h  was defined and used to analyse the precision of the 

solutions: 




 




1

h

. (24)

6.1. Example 1: Benchmarks for free vibration of circular cylindrical shell 

To verify the reliability and accuracy of the method proposed in this study, the free 

vibration frequency of a circular cylindrical shell without crack damage was computed 

under the condition of simple support at both ends. The basic geometric and physical 

parameters of the cylindrical shell are listed in Table 1. 

Table 1. Geometric and physical parameters of shell in Example 1. 

Parameters r  (mm) h  (mm) l (mm)   κ E  (GPa) ρ (kg·m-3) 

Values 148. 234 0. 508 298. 2 0. 285 5/6 203. 5 7846 

The method presented in this study was used to solve the first-order (k = 1) 
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solutions with different circumferential wave numbers n (n = 1–5). The computed 

frequency results are presented in Table 2. In previous studies (Chen and Ye, 2016; 

Sivadas and Ganesan, 1994), the dynamic stiffness method and the hybrid finite 

element method were used to solve the problem, respectively, based on the medium-

thick shell theory. It can be observed that the results in this study are in good agreement 

with those frequency solutions, which verifies the reliability of the method in solving 

the frequency of each order.  

Table 2. Computed frequencies Hz/ω  of shell in Example 1. Source: a Results from 

paper Chen and Ye (2016); b Results from Sivadas and Ganesan (1994).  

n  hω1  hω1
a hω1

b 

1 3270. 74 3270. 6 3270. 9 

2 1862. 12 1862. 0 1862. 1 

3 1101. 83 1101. 8 1101. 8 

4 705. 758 705. 9 705. 7 

5 497. 467 497. 5 497. 4 

 

Figure 4 shows the typical computed vibration modes and the corresponding final 

meshes on the horizontal x-axis for circumferential wave numbers n = 1. The 

components )( hhh wvu ,,   and )( hh  ,   of the first-order vibration mode with 

approaching magnitude are shown in Figures 4 (a) and 4 (b), respectively. It should be 

noted that to facilitate visual display and comparative analysis, the vibration mode 

results in this study were normalised (make the maximum vibration mode value 1), and 

the horizontal x-axis is also normalised in the vibration mode diagram (the horizontal 

coordinate axis x/l). It can be observed that the vibration mode changes sharply at both 

ends, and the relatively fine mesh is divided by the adaptive refinement method. The 

variation of the vibration mode is relatively gentle in the middle domain, and only 

sparse meshes are optimised and provided. The computation results of the medium-

thick cylindrical shell indicate that the adaptive strategy herein is accurate and reliable, 

and the mesh division is reflected in the error analysis and mesh division described 
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above. 

 
Figure 4. Example 1: computed vibration modes and corresponding final meshes 

for circumferential wave numbers n = 1. 

6.2. Example 2: Verification of frequency solutions of cracked circular cylindrical shell 

under variable circumferential wave numbers 

The effectiveness of the method proposed in this study for the analysis of cylindrical 

shells with crack damage was tested. The shell had a crack damage located at 3.0  

with a depth 6.0  . The solutions under different frequency orders and 

circumferential wave numbers were computed and discussed. The geometric and 

physical parameters of the shell are listed in Table 3.  

Table 3. Geometric and physical parameters of shell in Example 2. 

Parameters r  (mm) h  (mm) l (mm)  κ E  (GPa) ρ  (kg·m-3) 

Values 100 2 500 0.3 5/6 210 7850 

Using the proposed method, the frequencies and vibration modes of cracked 

cylindrical shells with different orders k (k = 1–3) and circumferential wave numbers 

n (n = 1–5) were solved. Table 4 lists the computed frequency solutions under various 

circumferential wave numbers. To solve the numerical example of the free vibration of 

a cylindrical shell with damage, the results were obtained using the conventional finite 

element method and the beam function and Soedel’s expression method (Yin and Lam, 

2013). For comparative analysis, the relative error between the frequency results of the 
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proposed method and the frequency result computed in the above study are listed in 

Table 4, which shows that the error is very small, verifying the effectiveness of the 

method in this study. At the same time, the results of the final adaptive mesh number 

e
n  for various cases are presented. 

Table 4. Computed frequencies of cracked circular cylindrical shell under variable 

circumferential wave numbers in Example 2. Source: a Results from paper Yin and 

Lam (2013). 

k n 

Conventional 
finite element 

method 
hω a 

Beam 
function and 

Soedel’s 
expression 

method hω a 

hω  Error 
(%) e

n  

1 3 509.10 510.54 511.47 0.18 85 

1 2 665.15 652.61 658.32 0.87 93 

1 4 766.54 767.28 769.66 0.31 88 

2 4 1061.98 1066.42 1065.26 0.11 110 

1 5 1199.35 1196.21 1197.84 0.13 91 

2 3 1229.20 1216.05 1221.25 0.43 111 

2 5 1332.13 1335.81 1338.43 0.20 113 

1 1 1598.83 1566.33 1548.92 1.11 106 

3 5 1678.17 1674.43 1678.04 0.22 157 

3 4 1703.03 1696.90 1687.82 0.53 161 

To illustrate the disturbance of the vibration mode caused by crack damage and 

the adaptive subdivision and refinement behaviour of the mesh, Figure 5 shows the 

representative computed vibration modes and corresponding final meshes for a circular 

wave number n = 3. It can be observed that in the domain around the crack damage, 

the vibration mode changes significantly, and there is a large deformation. In the 

domain around the crack, the adaptive procedure generates a very dense mesh to 

capture more refined vibration mode changes. 
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Figure 5. Example 2: computed vibration modes and corresponding final meshes 

for circumferential wave number n = 3. 

To show the disturbance effect of circumferential crack damage and 

circumferential wave number on spatial vibration modes, Figure 6 shows the spatial 

morphologies of the vibration modes for a circular wave number n = 3. When the 

circumferential wave number n is 3, there are multiple circumferential waves in the 

circumferential direction among the five vibration mode components. In the spatial 

local domain of the circumferential crack damage, the vibration mode fluctuates, which 

is most obvious in the components shown in Figure 6 (d). A non-uniform mesh was 

generated on the horizontal axis. According to the above analysis, dense meshes were 

used in the domain around the crack to solve the five vibration mode components 

simultaneously. 

(a) Vibration mode hu , k = 1, n = 3 (b) Vibration mode hv , k = 1, n = 3 
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(c) Vibration mode hw , k = 1, n = 3 (d) Vibration mode h , k = 1, n = 3 

 
(e) Vibration mode h, k = 1, n = 3 

Figure 6. Example 2: Spatial morphologies of vibration modes for circumferential 

wave number n = 3.  

To show the influence of different circumferential wave numbers and vibration 

orders on vibration modes and meshing, Figure 7 shows the representative results of 

the computed vibration modes and corresponding final meshes for different circular 

wave numbers. It can be observed from Figures 7 (a)–(d) that with the increase in the 

wave number of the circumferential vibration mode, the change in the vibration mode 

along the axial direction is not obvious, but the change in the circumferential vibration 

mode will show the increase in the wave number. It can be observed from Figures 7 

(e)–(f) that with the increase in vibration order, the change in vibration mode along the 

axial direction will become more complex and more circumferential wave numbers in 

the vibration modes will appear, which also makes the number of elements in the whole 

Deformation
around crack
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domain greater than in the first-order vibration mode described in Figures 7 (a)–(d). It 

can be concluded that the circumferential wave number of rotating shells (such as the 

circular cylindrical shell in this study) will not have a significant difference with respect 

to the mesh distribution owing to the symmetry of the vibration mode, but the change 

in the order of the vibration mode puts forward higher requirements for the number of 

elements in the whole region. The existence of crack damage makes it necessary to 

refine the local mesh to capture the disturbance change in the vibration mode. 
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Figure 7. Example 2: computed vibration modes and corresponding final meshes 

for different circumferential wave numbers. 

6.3. Example 3: Free vibration disturbance by crack location 

This example discusses the influence of the crack damage location on the vibration 

disturbance of a cylindrical shell. This example uses the model parameters of Example 

2 to change the crack damage location. The crack location   was changed from 0.1 

to 0.9 with an interval of 0.1. Table 5 lists the computed first-order frequencies for 

different crack locations. Here, the number of final adaptive elements e
n  used is also 

provided. Figure 8 shows the relationship between the computed frequency and crack 

location to show the frequency values at different crack damage locations. As can be 

observed, when the crack damage is at a symmetrical location (such as   = 0.2 and 

0.8), the same frequency value will appear owing to the structural symmetry of the 

shell. As indicated in Table 5, the same number of elements was used. At the same time, 

as shown in Figure 8, when the crack damage occurred at both ends of the cylindrical 

shell, the stiffness of the shell decreased the most, resulting in a relatively low 

frequency value. At this time, the stiffness of the shell changed significantly, and more 

elements were used than when the crack was located in the middle of the shell. 
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Table 5. Computed frequencies under different crack locations in Example 3. 

Figure 8. Example 2: Relationship between computed frequency and crack 
location. 

 

Figure 9 shows the computed vibration modes and corresponding final meshes for 

different crack locations 1.0  and 5.0 , respectively. It can be observed that 

the location of crack damage causes a corresponding disturbance to the vibration mode 

components, and the local subdivision and refinement domain of the mesh changes 

with the change in the vibration mode location of the crack damage disturbance. These 

results demonstrate the effectiveness of the adaptive mesh refinement method on free 

vibration disturbance by crack location. 

  hω  
e

n  

0.1 10107.48 106 

0.2 10112. 95 112 

0.3 10119.72 106 

0.4 10125.22 96 

0.5 10127.32 88 

0.6 10125.22 96 

0.7 10119.72 106 

0.8 10112.95 112 

0.9 10107.48 106 
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Figure 9. Example 3: Computed vibration modes and corresponding final meshes 

for different crack locations. 

6.4. Example 4: Free vibration disturbance by crack depth 

This example discusses the influence of the crack damage depth on the vibration 

disturbance of a cylindrical shell. This example uses the model parameters of Example 

2 to change the crack damage depth. The crack depth   was changed from 0.2 to 0.6 

with an interval of 0.2. Table 6 lists the computed first-order frequencies for different 

crack depths. Here, the number of final adaptive elements e
n  used is also provided. It 

can be observed that the change in crack damage depth changes the frequency slightly, 
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but the increase in the degree of crack damage increases the vibration mode disturbance 

and increases the number of required elements e
n . 

Table 6. Computed frequencies under different crack depths in Example 4. 

  
hω  

e
n  

0.2 10109.38 88 

0.4 10114.55 93 

0.6 10119.72 106 

 

Figure 10 shows the computed vibration modes and corresponding final meshes 

for different crack depths 2.0  and 4.0 , respectively. As can be observed, the 

depth of crack damage causes a corresponding disturbance of the vibration mode 

component, but the entire shape is basically the same as that in the different crack 

damage cases. The mesh distribution is basically the same in the entire domain, but it 

changes in the local domain of the crack damage disturbance mode. The deeper the 

crack damage is, the more severe the mode damage, and more elements are needed. 
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Figure 10. Example 4: computed vibration modes and corresponding final meshes 

for different crack depths. 

6.5. Example 5: Free vibration disturbance by number of multiple cracks 

This example discusses the influence of multiple-crack damage on the vibration 

disturbance of a cylindrical shell. This example uses the model parameters of Example 

2 to change the number and location of multiple cracks. The crack location   was 

0.3, 0.5, 0.7 (for three cracks) and 0.1, 0.3, 0.5, 0.7, 0.9 (for five cracks), respectively. 

Table 7 lists the computed frequencies for multiple cracks. Here, the number of final 

adaptive elements e
n  used is also provided. As can be observed, the change in the 

number and location of cracks changes the frequency slightly, but the increase in the 

number of cracks increases the vibration mode disturbance and increases the number 

of required elements e
n . Compared with 190 elements for the computation of three 

cracks in the shell, 276 elements are needed for five cracks in the shell. 

Table 7. Computed frequencies under multiple cracks in Example 5. 

c
n    hω1  e

n  

3 0.3, 0.5, 0.7 10158.66 190 

5 0.1, 0.3, 0.5, 0.7, 0.9 10165.32 276 

Figure 11 shows the computed vibration modes and corresponding final meshes 
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for different numbers of multiple cracks. Figures 11 (a) and (b) depict the vibration 

mode components under three-crack damage, while Figures 11 (c) and (d) show the 

vibration mode components under five-crack damage. It can be observed that the 

 

Figure 11. Example 5: computed vibration modes and corresponding final meshes 

for different numbers of multiple cracks. 

number and location of multiple-crack damage cause a corresponding disturbance to 

the vibration mode components, and the local subdivision and refinement domains of 

the meh changes with the change in the vibration mode location of the crack damage 

disturbance. The existence of multiple-crack damage causes multiple disturbances in 

the vibration modes of the shell, and hence more local domains need to be subdivided 
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and densified, resulting in a large number of elements in the global domain. These 

results show the reliability of the adaptive mesh refinement method in this study to the 

changes in mode shapes and modes under simultaneous multiple-crack damage. 

7. Conclusions 

In this study, an adaptive mesh refinement analysis of the finite element method for 

free vibration disturbance of moderately thick circular cylindrical shells with 

circumferential crack damage is implemented to derive the frequency solutions under 

variable circumferential wave numbers and discuss the free vibration disturbance by 

factors of crack damage, such as the location, depth, and number of cracks. The 

conclusions of this study can be summarised as follows.  
(1) An adaptive finite element method and crack damage characterisation method for 

moderately thick circular cylindrical shells are proposed. By introducing the 

inverse power iteration method, error estimation, and mesh subdivision 

refinement technique for the analysis of finite element eigenvalue problems, an 

adaptive computation scheme is constructed for the free vibration problem of 

moderately thick circular cylindrical shells with circumferential crack damage. 

(2) Typical numerical examples of benchmarks and frequency solutions of cracked 

shells under variable circumferential wave numbers confirmed that the established 

adaptive finite element solution for the free vibration of moderately thick circular 

cylindrical shells is suitable for solving the high-precision free vibration 

frequency and mode of cylindrical shell structures. The reliability, accuracy, and 

effectiveness of the proposed method and models were verified. 

(3) The adaptive mesh refinement algorithm has good applicability for the analysis of 

cracked shells. The vibration mode was disturbed near the crack damage. In this 

study, the non-uniform mesh was adaptively optimised, and a relatively dense 

mesh was used near the crack to adapt to the change in vibration mode caused by 

crack damage. 

(4) The occurrence of crack damage reduces the frequency of each order, and the 

greater the damage depth is, the greater the reduction degree. The crack damage 

generates the greatest disturbance to the rotational displacement, and the greater 

the damage degree is, the greater the disturbance amplitude. The number and 

location of cracks simultaneously affect the frequency value. An increase in the 
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number of cracks tends to increase the frequency as a whole. However, because 

the change in crack location will also reduce the frequency value in some order 

frequencies, the vibration modes near each crack damage will be disturbed. 

Compared with the uniform distribution, the frequency value of the concentrated 

distribution on one side of the crack has a higher value at low order and a lower 

value at high order. The vibration modes were disturbed near the uniformly 

distributed and centrally distributed crack damage. The different distribution 

forms of the same number of cracks have become an important factor affecting 

the vibration characteristics. 

This study can be used as a reference for the adaptive finite element solution of 

free vibration of moderately thick circular cylindrical shells with cracks and it lays a 

foundation for further development of a high-performance computation method 

suitable for dynamic disturbance and damage identification analysis of general cracked 

structures. Furthermore, the error estimation and element refinement techniques of the 

finite element method have the potential to be extended in the future to the refined 

numerical model and high-precision computation field of general structural eigenvalue 

problems (displacement field) and solid stress (displacement derivative field).  
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