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Abstract 18 

Biophysical models of diffusion in white matter have been center-stage over the past two decades and are 19 

essentially based on what is now commonly referred to as the “Standard Model” (SM) of non-exchanging 20 

anisotropic compartments with Gaussian diffusion. In this work, we focus on diffusion MRI in gray matter, 21 

which requires rethinking basic microstructure modeling blocks. In particular, at least three contributions 22 

beyond the SM need to be considered for gray matter: water exchange across the cell membrane – between 23 

neurites and the extracellular space; non-Gaussian diffusion along neuronal and glial processes – resulting 24 

from structural disorder; and signal contribution from soma. For the first contribution, we propose Neurite 25 

Exchange Imaging (NEXI) as an extension of the SM of diffusion, which builds on the anisotropic Kärger model 26 

of two exchanging compartments. Using datasets acquired at multiple diffusion weightings (b) and diffusion 27 

times (t) in the rat brain in vivo, we investigate the suitability of NEXI to describe the diffusion signal in the 28 

gray matter, compared to the other two possible contributions. Our results for the diffusion time window 20-29 

45 ms show minimal diffusivity time-dependence and more pronounced kurtosis decay with time, which is 30 

well fit by the exchange model. Moreover, we observe lower signal for longer diffusion times at high b. In light 31 

of these observations, we identify exchange as the mechanism that best explains these signal signatures in 32 

both low-b and high-b regime, and thereby propose NEXI as the minimal model for gray matter microstructure 33 

mapping. We finally highlight multi-b multi-t acquisitions protocols as being best suited to estimate NEXI 34 

model parameters reliably. Using this approach, we estimate the inter-compartment water exchange time to 35 

be 15 – 60 ms in the rat cortex and hippocampus in vivo, which is of the same order or shorter than the 36 

diffusion time in typical diffusion MRI acquisitions. This suggests water exchange as an essential component 37 

for interpreting diffusion MRI measurements in gray matter.  38 

 39 
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1. Introduction 1 

The bedrock of biophysical models of diffusion MRI is water compartmentalization. Morphologically, there are 2 

at least three compartments in brain tissue that are essential for interpreting an MRI measurement. The first 3 

one is a collection of micron-thin long and often branch-like cellular structures, referred to “cellular processes 4 

or projections” – either axons, dendrites or glial cell processes. There, water diffusion is locally unidirectional, 5 

and is typically modeled in terms of the so-called “sticks”, i.e., zero-radius cylinders (Jespersen et al., 2007; 6 

Kroenke et al., 2004). The second compartment is cell bodies (soma), which are roughly spherical and of ∼7 15μm in diameter (Palombo et al., 2021). Their size is generally comparable with a typical mean squared 8 

displacement (the diffusion length) of a water molecule during measurements. The third compartment is the 9 

extra-cellular space in which the first two are embedded.  10 

In the white matter (WM), soma are typically neglected due to their relatively small density (5 – 10% ex vivo) 11 

(Andersson et al., 2020; Veraart et al., 2020). Furthermore, the myelin sheath around axons contributes to 12 

impermeability (i.e. negligible exchange with the extra-axonal water) over the diffusion MRI-relevant 13 

timescales, and thus the sought compartmentalization. Biophysical models of diffusion in WM have therefore 14 

gained a lot of traction and are essentially based on what is now commonly referred to as the “Standard 15 

Model” (SM) (Novikov et al., 2018a, 2019) of non-exchanging compartments with Gaussian diffusion: a 16 

collection of sticks (axons) with some orientation distribution function (ODF); an anisotropic extra-axonal 17 

space surrounding each local fascicle (a bundle of sticks) aligned in a given direction; and, if relevant, the “free 18 

water” compartment describing the partial volume contribution of the cerebrospinal fluid (CSF), free from the 19 

hindrances of the extra-axonal space. Within the SM family, a constellation of implementations has been 20 

proposed, each with its own acronym and its own further simplifying assumptions, e.g., on the shape of the 21 

ODF for fiber fascicles, or on the relations between the compartmental diffusivities and volume fractions 22 

(Fieremans et al., 2011; Jespersen et al., 2010; Novikov et al., 2018b; Reisert et al., 2017; Wang et al., 2011; 23 

Zhang et al., 2012). These models are widely used to characterize WM microstructure, and are occasionally 24 

applied in gray matter (GM). Physics beyond SM has been revealed in WM, such as the residual non-Gaussian 25 

diffusion along sticks (axons) (Arbabi et al., 2020; Fieremans et al., 2016; Lee et al., 2020a). 26 

In this work, we focus on diffusion MRI in GM, which is sufficiently distinct from WM morphologically. This 27 

implies rethinking basic microstructure modeling blocks, leading to a different simplified picture of diffusion 28 

MRI-relevant microgeometry (Jelescu et al., 2020; Novikov, 2021; Palombo et al., 2020). In particular, at least 29 

three contributions beyond the SM need to be considered:  30 

(i) exchange across the membrane of cellular processes;  31 

(ii) non-Gaussian diffusion along cellular processes – resulting from structural disorder; and  32 

(iii) signal contribution from cell bodies (soma). 33 

For (i), as myelin content is limited in GM, there is growing evidence that water exchange across the neurite 34 

membrane cannot be neglected for typical clinical diffusion times (20 < t < 80 ms). Evidence for the deviation 35 

from the impermeable stick model for neurites in GM and its relationship to exchange has been highlighted in 36 

human cortex, with an estimated characteristic in vivo exchange time of 10 – 30 ms (Veraart et al., 2018a, 37 

2020). Similar exchange time ranges have been reported for perfused neonatal mouse spinal cords 38 

(Williamson et al., 2019), while other groups have reported longer exchange times of 100 – 150 ms in astrocyte 39 

and neuron cultures (Yang et al., 2018), rat brain (Quirk et al., 2003) and rat brain cortical cultures (Bai et al., 40 

2018). Much shorter exchange times (3 – 5 ms) have been recently reported in the rat brain ex vivo (Olesen et 41 

al., 2022). 42 

For (ii), the intra-compartment structural disorder along the effectively one-dimensional neurite has been 43 

suggested in the rat brain in vivo based on the power law exponent 𝜗 = ½ (Novikov et al., 2014) in oscillating-44 
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gradient diffusion MRI data of (Does et al., 2003), at time scales (0.4 – 10 ms) long relative to the correlation 1 

length, but shorter than typical PGSE (Pulsed Gradient Spin Echo) diffusion times. Recently, a related kurtosis 2 

time-dependence with the same exponent, 𝐾(𝑡) ∝ 𝑡−1 2⁄ , was found in the human cortex at long t (Lee et al., 3 

2020b). However, in that work, the inter-compartment exchange could not be ruled out (generating the sub-4 

leading, faster kurtosis decay 𝐾(𝑡) ∝ 𝑡−1 at long t), especially in the face of weak-to-absent time-dependent 5 

diffusivity within the diffusion time range accessible with PGSE on a clinical scanner (20 – 100 ms). Notably, 6 

structural disorder in the extra-cellular space is naturally provided by the embedded neurites, which, given 7 

the three-dimensional nature of diffusion in this compartment, would lead to diffusion and kurtosis time-8 

dependence as (ln t)/t at long t (Novikov et al., 2014). 9 

Finally, for (iii), cell bodies (soma) occupy ~10 – 20% of gray matter by volume (Bondareff and Pysh, 1968; 10 

Motta et al., 2019; Shapson-Coe et al., 2021; Spocter et al., 2012) and may need to be modeled, as proposed 11 

in a recent three-compartment model (SANDI) that also accounts for this tissue component by representing 12 

soma as impermeable spheres (Palombo et al., 2020). The potential issue of inter-compartment exchange was 13 

partially circumvented by the use of short diffusion times (t < 20 ms). Diffusion in soma was modeled in the 14 

Gaussian phase approximation, whereby diffusivity time-dependence in this compartment was retained, but 15 

higher-order terms (kurtosis and above) were neglected.  16 

Figure 1 summarizes the picture underlying each model, the expected functional forms of time-dependent 17 

diffusion and kurtosis in the long-time limit as well as the functional form of the powder-averaged signal at 18 

high b. Model details and full expressions of the functional forms are provided in the Theory Section.  19 

Figure 1. Sketch of relevant features and parameters in the Standard Model, NEXI, SANDI and structural disorder models, 

along with the associated functional form for time-dependence in diffusivity D and kurtosis K, as well as the functional 

form of the signal decay in the high-b regime. Note that parameters 𝐴 and 𝐵 stand for constants that are different in 

each instance. The Standard Model considers a collection of impermeable sticks – occupying a relative signal fraction f – 

where diffusion is Gaussian and unidirectional with diffusivity 𝐷𝑖,∥ and an extra-neurite Gaussian anisotropic 

compartment with characteristic diffusivities 𝐷𝑒,∥ and 𝐷𝑒,⊥ parallel and perpendicular to the local neurite orientation, 

respectively. ODF anisotropy can be characterized by the 𝑙 = 2 order rotational invariant p2 or its derived dispersion angle 𝑐2 ≡ ۄ𝑐𝑜𝑠2𝜓ۃ = 2𝑝2+13 . NEXI considers a collection of randomly-oriented sticks – occupying a relative signal fraction f – 

where diffusion is unidirectional with diffusivity 𝐷𝑖,∥ and an extra-neurite Gaussian isotropic compartment with 

characteristic diffusivity 𝐷𝑒 . The two compartments exchange with a characteristic time tex. SANDI considers a similar 

picture as NEXI, but accounts for a third compartment of spheres of radius Rs (occupying a relative fraction fs) and neglects 

inter-compartment exchange. The structural disorder model assumes a certain type of disorder (here short-range 

disorder) and its signature in diffusion and kurtosis time-dependence, also as a function of the spatial dimensionality in 

which the disorder is manifest (1D for intra-neurite water, 2D or 3D for extracellular water).  
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This work is organized in two main parts.  1 

First, we examine the diffusion and kurtosis time-dependence as well as powder-average signal signature at 2 

high b-value in the rat brain in vivo in order to assess the importance of the effects (i) – (iii) above. Within the 3 

ranges of diffusion weightings (b) and diffusion times (t) explored, we highlight negligible diffusivity time-4 

dependence and a time-dependent kurtosis which can be consistent with the 𝑡−1 power-law, both trends 5 

compatible with exchange, whereby structural disorder may be less relevant in modeling rat cortex in this 6 

diffusion time range. Signal decay curves at high b-values and for different diffusion times are also better 7 

accounted for by an exchange term as compared with adding the soma compartment, as also recently shown 8 

in ex vivo rat cortex (Olesen et al., 2022).  9 

Second, we therefore propose NEXI (Neurite EXchange Imaging), an implementation of the anisotropic Kärger 10 

model of exchange as the minimal model suitable for gray matter, accounting only for the effect (i) above. We 11 

show in simulations that the availability of multi-b multi-t data is critical for the reliable estimation of model 12 

parameters, in particular of the exchange time. We further demonstrate NEXI performance in experimental 13 

data. Fit stability permitting, the model could be extended to account for a soma fraction as well (Olesen et 14 

al., 2022; Palombo et al., 2020).    15 

For our experiments, we exploit the potential of strong preclinical gradients (1 T/m) to probe a range of short 16 

to intermediate diffusion times (10 – 45 ms) with strong diffusion-weighting (up to b = 10 ms/μm2). The GM 17 

regions of interest (ROIs) are cortex and hippocampus, with corpus callosum, internal capsule and cingulum 18 

serving as reference WM ROIs. We take advantage of the rat brain anatomy where cortex is much less affected 19 

by partial volume effects with neighboring white matter or CSF than its human counterpart. 20 

2. Methods 21 

2.1. Theory 22 

Let us first provide a theoretical description of the models sketched in Figure 1, that will be compared 23 

throughout this work. 24 

2.1.1. Standard Model. To build a GM model, we begin with the Standard Model (Novikov et al., 2019) of 25 

brain tissue composed of two compartments (we will neglect the CSF contribution in what follows, assuming 26 

voxels are devoid of the CSF contamination). In SM, the intra-neurite compartment – occupying a relative 27 

signal fraction f – is modeled as a collection of “sticks” (zero-radius cylinders) where diffusion is unidirectional 28 

with diffusivity 𝐷𝑖,∥. The extra-neurite compartment – the immediate environment of sticks – is modeled as a 29 

Gaussian anisotropic medium with characteristic diffusivities 𝐷𝑒,∥ and 𝐷𝑒,⊥ parallel and perpendicular to the 30 

local orientation of neurites, respectively. For a neurite ensemble coherently oriented along the unit direction 31 𝐧, its signal (response) in the unit direction 𝐠 is: 32 𝒦𝑆𝑀(𝑞, 𝑡, 𝐠 ∙ 𝐧;  𝑓, 𝐷𝑖,∥, 𝐷𝑒,∥, 𝐷𝑒,⊥) = 𝑓𝑒−𝑞2𝑡 𝐷𝑖,∥(𝐠∙𝐧)2 + (1 − 𝑓)𝑒−𝑞2𝑡(𝐷𝑒,∥(𝐠∙𝐧)2+𝐷𝑒,⊥(1−(𝐠∙𝐧)2))
 

(1) 

The signal attenuation (1) for the elementary neurite ensemble and its immediate extracellular space is then 33 

convolved on the unit sphere |𝐧| = 1 with the orientation distribution function (ODF) 𝑃(𝐧) for the neurites 34 

to give the overall SM signal 35 𝑆𝑆𝑀(𝑞, 𝐠, 𝑡) = ∫ 𝒦𝑆𝑀(𝑞, 𝑡, 𝐠 ∙ 𝐧;  𝑓, 𝐷𝑖,∥, 𝐷𝑒,∥, 𝐷𝑒,⊥) 𝑃(𝐧) d𝐧 . (2) 

 36 

The SM is suitable for white matter, where neurites – mainly myelinated axons – are the dominant structure 37 

(vs negligible soma), and the accepted assumption is to neglect the exchange between intra- and extra-neurite 38 

spaces due to the myelin sheath. 39 
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2.1.2. NEXI: adding exchange to SM. In the GM, most neurites are unmyelinated and inter-compartment 1 

water exchange across the cell membrane may be non-negligible for clinical diffusion times (t > 20 ms). A 2 

model of two exchanging compartments, one being the collection of isotropically oriented neurites (sticks) 3 

and the other being the extra-neurite space, is built based on the anisotropic Kärger model for a coherent 4 

fiber tract (Fieremans et al., 2010; Kärger, 1985). Namely, the signal (response) from an elementary coherent 5 

ensemble of “neurite + its proximal extracellular space” is the result of mixing two anisotropic Gaussian 6 

compartments in Eq (1) by the barrier-limited exchange, with the rates 𝑟𝑖𝑒 and 𝑟𝑒𝑖 related by the detailed 7 

balance condition 𝑓𝑟𝑖𝑒 = (1 − 𝑓)𝑟𝑒𝑖: 8 𝒦(𝑞, 𝑡, 𝐠 ∙ 𝐧;  𝑓, 𝐷𝑖,∥, 𝐷𝑒,∥, 𝐷𝑒,⊥, 𝑡𝑒𝑥) = 𝑓′𝑒−𝑞2𝑡𝐷𝑖′ + (1 − 𝑓′)𝑒−𝑞2𝑡𝐷𝑒′  (3) 

𝐷𝑖/𝑒′ = 12 {𝐷𝑖 + 𝐷𝑒 + 1𝑞2𝑡𝑒𝑥 ∓ [[𝐷𝑒 − 𝐷𝑖 + 2𝑓 − 1𝑞2𝑡𝑒𝑥 ]2 + 4𝑓(1 − 𝑓)𝑞4𝑡𝑒𝑥2 ]12} (4) 

𝑓′ = 1𝐷𝑖′ − 𝐷𝑒′ [𝑓𝐷𝑖 + (1 − 𝑓)𝐷𝑒 − 𝐷𝑒′ ] (5) 

 9 

where 𝐷𝑖 ≡ 𝐷𝑖,∥(𝐠 ∙ 𝐧)2, 𝐷𝑒 ≡ 𝐷𝑒,∥(𝐠 ∙ 𝐧)2 + 𝐷𝑒,⊥(1 − (𝐠 ∙ 𝐧)2) and 𝑡𝑒𝑥 = 1/𝑟, with 𝑟 = 𝑟𝑖𝑒 + 𝑟𝑒𝑖. In other 10 

words, the bi-exponential expression in Eq (3) is reminiscent of the SM expression in Eq (1), but with apparent 11 

fractions and diffusivities that depend on all model parameters as well as on diffusion wavenumber q and on 12 

the characteristic exchange time  𝑡𝑒𝑥 . Eqs (3)-(5) are valid in the narrow pulse approximation. In this work this 13 

approximation is a posteriori justified with estimated values of 𝑡𝑒𝑥 notably exceeding pulse width 𝛿.  14 

In principle, the response function (3) should be convolved with the GM neurite ODF to get the overall signal 15 

in direction 𝐠, as in Eq (2). Since diffusion anisotropy in GM can be variable across cortical layers, though overall 16 

negligible (FA~0.15), we choose to consider the orientational average (the so-called powder average) of the 17 

signal instead, which is independent of the ODF. By the same token, we further assume the extra-neurite space 18 

to be isotropic 𝐷𝑒,∥ = 𝐷𝑒,⊥ ≡ 𝐷𝑒. This approximation helps reduce the number of parameters to be estimated 19 

and raises the precision on the remaining ones. The model parameters are therefore 𝐩 = [𝑓, 𝐷𝑖,∥, 𝐷𝑒 , 𝑡𝑒𝑥] 20 

(Figure 1). Hence, the model signal equation, to be fit to the powder-averaged measured signal 𝑆̅, is:  21 

𝑆̅(𝑞, 𝑡) = 𝑆|𝑞=0 ∙ ∫ 𝒦(𝑞, 𝑡, 𝐠 ∙ 𝐧; 𝐩)𝑑(𝐠 ∙ 𝐧)1
0  (6) 

Technically, this means that we are only using the 𝑙 = 0 rotational invariant of the overall directional signal, 22 

and discarding potential information residing in 𝑙 = 2, 4, …  invariants. Nonetheless, the latter are small in GM, 23 

and are not expected to contribute much information to the original directional signal.  24 

We call this implementation, Eqs (3)–(6), NEXI.  25 

NEXI kurtosis. One of the assumptions behind the Kärger model, and thus behind NEXI, is time-independent 26 

diffusivity. If this condition is met, the NEXI kurtosis of Eq (6) (see Appendix for the derivation) is: 27 𝐾(𝑡) = 𝐾0 ⋅ 2𝑡𝑒𝑥𝑡 [1 − 𝑡𝑒𝑥𝑡 (1 − 𝑒−𝑡 𝑡𝑒𝑥⁄ )] + 𝐾∞. (7) 

It has two contributions: the inter-compartment heterogeneity ∼ 𝐾0 which decays to zero as 1/t at long times 28 𝑡 ≫ 𝑡𝑒𝑥 as a result of exchange, identical to that found in (Fieremans et al., 2010; Jensen et al., 2005); and the 29 

constant offset 𝐾∞ that captures potential residual sources of kurtosis in the limit 𝑡 ≫ 𝑡𝑒𝑥. Residual kurtosis 30 

could stem from partial volume (macroscopic heterogeneity) within a voxel (in our experiment, this is deemed 31 
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small due to homogeneity of rat GM at our imaging resolution) and, in the case of powder-averaged signal, 1 

from non-exchanging microscopic anisotropic structures (Szczepankiewicz et al., 2016). Indeed, the powder-2 

averaged signal, Eq (6), has residual kurtosis, as derived in the Appendix; it originates from the assumption 3 

that exchange happens only within a local neighborhood, between a single stick (neurite) and its 4 

accompanying extracellular space. The actual tissue geometry may differ from this latter assumption. If 5 

multiple sub-units of “neurite + extracellular space” with different orientations fall within the same volume 6 ∼ 𝐿3(𝑡), where 𝐿 ∼ √6𝐷𝑒𝑡 is the diffusion length, then exchange can occur across multiple neurites. Since the 7 

extra-cellular space is a connected medium, at long times 𝑡 ≫ 𝑡𝑒𝑥, exchange would coarse-grain the medium 8 

fully, yielding 𝐾∞ = 0.  9 

We note that the absence of exchange across multiple neurites is a mathematical construct to make the 10 

problem solvable from an analytical point of view. A plausible picture is naturally one with exchange across 11 

multiple neurites, given the random orientations of neurites and the tight network they constitute. This 12 

plausible picture led us to assume isotropic ECS diffusion and 𝐾∞ = 0. At reasonably short diffusion times as 13 

the ones used here, the two pictures are compatible, but for longer diffusion times, exchange across multiple 14 

neurites is of course expected. 15 

Finally, we also note that even for anisotropically oriented neurites, the kurtosis of the non-powder-averaged 16 

signal will have the functional form of Eq (7), with the parameters 𝐾0 and 𝐾∞ depending on the ODF but the 17 

exchange time being ODF-independent. Hence, we will use Eq (7) to analyze mean kurtosis. Fitting Eq (7) to 18 

the measured mean kurtosis can provide a complementary estimate of 𝑡𝑒𝑥 stemming from the low-b regime 19 

(within the convergence radius of the cumulant expansion), to be compared to the one from the full NEXI 20 

model (6). We label this estimate 𝑡𝑒𝑥𝐾(𝑡)
. 21 

High-b scaling. An independent hallmark of the model (3)–(6) is the functional form  22 

𝑆|𝑏→∞ = √𝜋4  𝑓√𝑏𝐷𝑖,∥ 𝑒−𝑡(1−𝑓)𝑡𝑒𝑥  [1 + 2(1 − 𝑓) 𝑡 𝑡𝑒𝑥⁄ + 𝑓(1 − 𝑓)(𝑡 𝑡𝑒𝑥⁄ )2𝑏𝐷𝑒,⊥ + 𝑂 ( 1𝑏2)] (8) 

of its expansion in the inverse powers of the diffusion weighting parameter 𝑏 = 𝑞2𝑡. The first term in the 23 

square brackets, corresponding to 𝑏−1/2 decrease, is the signature of impermeable sticks (Callaghan et al., 24 

1979; McKinnon et al., 2017; Veraart et al., 2019). The subsequent 𝑏−3/2 term arises due to slow exchange, 25 

such that 𝑡 𝑡𝑒𝑥⁄ ≪ 𝑏𝐷, where 𝐷 is the smallest of the compartment diffusivities; the lower bound is practically 26 

set by 𝐷𝑒,⊥ = 𝐷𝑒. The ∼ 𝑡 𝑡𝑒𝑥⁄  term was obtained by (Veraart et al., 2020), and the ∼ (𝑡 𝑡𝑒𝑥⁄ )2 term by (Olesen 27 

et al., 2022). 28 

 29 

We note that the Kärger Model is treated in the narrow pulse approximation regime. This condition translates 30 

into 𝛿 ≪ 𝑡𝑒𝑥, which will be justified a posteriori by comparing experimental values of  𝛿 = 4 − 4.5 ms and 31 𝑡𝑒𝑥 = 20 − 40 ms. However, a numerical solution to the Kärger model in the finite pulse regime (Olesen et 32 

al., 2022) could be implemented in the case of longer diffusion pulses (or shorter exchange times). 33 

 34 

2.1.3. Structural disorder. The assumption of Gaussian compartments may break in the presence of 35 

irregularities on length scales similar to the diffusion length, such as dendritic spines and neurite beading. 36 

While there is no analytical formula to describe the signal in this case exactly, the relative importance of non-37 

Gaussian effects can be determined by examining the diffusivity and kurtosis time-dependence at diffusion 38 

times 𝑡 ≫ 𝑡𝑐, the time 𝑡𝑐 to diffuse past the disorder correlation length (Novikov et al., 2014). In particular, 39 

kurtosis should follow a 𝑡−1/2 functional form in the case of 1-dimensional disorder (Dhital et al., 2018; Lee et 40 

al., 2020b):  41 
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𝐾(𝑡)|𝑡≫𝑡𝑐 ≃ 𝐴 ∙ 𝑡−𝜗 + 𝐾∞, 𝜗 = 1 2⁄  (9) 

or (ln 𝑡)/𝑡 in the case of 2-dimensional disorder (Burcaw et al., 2015; Lee et al., 2020b). The offset 𝐾∞ arises 1 

in the case of residual voxel heterogeneity in the long-time limit, similar to that in Eq (7). If the relevant 2 

correlation time 𝑡𝑐 for diffusion across these structural irregularities is of the order of 𝑡𝑒𝑥, the competing 3 

effects of coarse-graining over the structural disorder and of exchange are both contributing significantly to 4 

the time-dependence of the measured 𝐾(𝑡), which complicates the interpretation (Lee et al., 2020b). 5 

2.1.4. SANDI: adding soma. A three-compartment model (SANDI) was proposed as an extension of the SM 6 

that models the total direction-averaged signal as the sum of three non-exchanging compartments (Palombo 7 

et al., 2020): (i) randomly oriented sticks with intra-stick axial diffusivity 𝐷𝑖,∥ and relative signal fraction f; (ii) 8 

restriction in sphere of apparent radius 𝑅𝑠, fixed intra-sphere diffusivity 𝐷𝑠 = 3 μm2ms  and relative signal fraction 9 𝑓𝑠 (modeled in the Gaussian phase approximation); (iii) Gaussian isotropic diffusion in the extracellular space 10 

with diffusivity 𝐷𝑒 and relative signal fraction 𝑓𝑒 = 1 − 𝑓 − 𝑓𝑠. SANDI provides estimates for the five model 11 

parameters: [f, 𝑓𝑠, 𝐷𝑖,∥, 𝐷𝑒, 𝑅𝑠] which by design should be independent of diffusion time. The direction-12 

averaged SANDI signal is: 13 𝑆̅(𝑏)𝑆(0) = 𝑓 ∙ √𝜋4  1√𝑏𝐷𝑖,∥ erf(√𝑏𝐷𝑖,∥) + 𝑓𝑠 ∙ �̅�𝑠(𝑏, 𝐷𝑠, 𝑅𝑠) + 𝑓𝑒 ∙ 𝑒−𝑏𝐷𝑒 (10) 

where 14 

�̅�𝑠(𝑏, 𝐷𝑠 , 𝑅𝑠) ≈ exp {− 2𝑔2𝑅𝑠4𝐷𝑠 ∑ 𝛼𝑚−4𝛼𝑚2 − 2∞
𝑚=115 

∙ [2𝛿 − 𝑅𝑠2𝛼𝑚2 𝐷𝑠 (2 + 𝑒−𝛼𝑚2 𝐷𝑠(Δ−𝛿)/𝑅𝑠2 − 2𝑒−𝛼𝑚2 𝐷𝑠𝛿/𝑅𝑠2 − 2𝑒−𝛼𝑚2 𝐷𝑠Δ/𝑅𝑠2 + 𝑒−𝛼𝑚2 𝐷𝑠(Δ+𝛿)/𝑅𝑠2)]} 16 

with δ and Δ the diffusion gradient pulse duration and separation, respectively, g the product of diffusion 17 

gradient amplitude and gyromagnetic ratio, αm the m-th root of 
12 𝐽32(𝛼) = 𝛼𝐽′32(𝛼), and Jn(x) the Bessel 18 

function of the first kind. In practice, summation up to m=20 roots is sufficient for a good approximation. 19 

2.2. Experimental 20 

Animal experiments were approved by the Service for Veterinary Affairs of the canton of Vaud. Six Wistar rats 21 

(Charles River) weighing 250 - 300g were scanned on a 14T Bruker system equipped with 1 T/m gradients 22 

(Resonance Research Inc.) using a home-built surface quadrature transceiver. Rats were set up and maintained 23 

under isoflurane anesthesia, and body temperature was monitored and maintained around 38°C for the 24 

duration of the experiment. Diffusion MRI data were acquired using a PGSE EPI sequence, with parameters 25 

provided in Table 1. All six datasets were used to assess the behavior of time-dependent diffusion and kurtosis, 26 

while four datasets (labeled 1 – 4) were used for high-b signal analysis, SANDI and NEXI estimations. In datasets 27 

5 – 6 we prioritized a larger number of diffusion times over b-values to capture trends in D(t) and K(t). 28 

Images were denoised using MP-PCA and corrected for Rician bias (Veraart et al., 2016b, 2016a), for Gibbs 29 

ringing (Kellner et al., 2016) and for motion (Jenkinson et al., 2002). No strong distortions due to eddy currents 30 

were observed. 31 

Regions of interest (ROI) in both white matter – internal capsule (IC), corpus callosum (CC) and cingulum (Cg) 32 

– and gray matter – cortex (CTX) and hippocampus (HPC) – were manually drawn. 33 

  34 
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# Datasets 3 1 1 1 

Dataset Label 1 – 3  4 5 6 

TE (ms) 50 58 52 58 

δ (ms) 4.5 4.5 4 4 

Δ (ms) 12, 20, 30, 40 11, 25, 45 10, 15, 20, 25, 

30, 40 

10, 15, 20, 25, 

30, 35, 40, 45 

b-values (ms/um2) 1, 2.5, 4, 5.5, 7, 

8.5, 10  

1, 2.5, 5, 6, 7, 8, 

9, 10 

1, 1.8, 2.5 1, 1.4, 2.5 

Dirs. per shell 24 24 24 24 

TR (ms) 2500 3000 2500 3000 

In-plane res (mm2) 0.2 x 0.2  0.25 x 0.25  0.2 x 0.2  0.25 x 0.25  

Slice thickness (mm) 0.5 0.8 0.5 0.8 

Table 1. Acquisition parameters for the six datasets included in this study. 1 

2.3. Impact of each contribution (i)-(iii): exchange, structural disorder & soma 2 

Standard Model: To examine potential time-dependence and b-range dependence of SM estimates in various 3 

brain regions, for the four datasets with bmax = 10 ms/μm2, the SM parameters were estimated for each 4 

diffusion time using likelihood maximization in the rotational invariant framework RotInv using up to 𝑙 = 4 5 

(Novikov et al., 2018b) on various data subsets (bmax =2.5, 6 or 10). RotInv was implemented in Matlab using 6 

non-linear least-squares minimization with a trust-region-reflective algorithm (‘lsqnonlin’ function). The 𝐷𝑖,∥ >7 𝐷𝑒,∥ solution was favored by choosing a random algorithm initialization that met this inequality. The time- and 8 

bmax- dependence of model parameters were evaluated in the various brain ROIs. Notable time-dependence 9 

of SM parameter estimates was tested via the slope – and its uncertainty – of a simple linear regression. 10 

Time-dependent diffusion and kurtosis: To determine the extent to which inter-compartment exchange 11 

and/or structural disorder are relevant in various brain regions, diffusion and kurtosis tensors were estimated 12 

for each diffusion time using shells up to b = 2.5 ms/μm2 and a weighted linear least-squares algorithm custom-13 

written in Matlab (Veraart et al., 2013), from which mean diffusivity and kurtosis were derived. The time-14 

dependence of these metrics was evaluated in the various brain ROIs. Notable time-dependence of 15 

diffusivities was first tested via the slope – and its uncertainty – of a simple linear regression. To establish the 16 

dominant power-law of 𝐾(𝑡) decay, Eq (9) with variable 𝜗 was fit to the experimental 𝐾(𝑡) using the 17 

‘lsqnonlin’ function a trust-region reflective algorithm in Matlab. The Kärger time-dependent kurtosis, Eq (7), 18 

was also fit to the experimental 𝐾(𝑡), either allowing for nonzero 𝐾∞ or setting it to zero.  The 1D structural 19 

disorder functional form (Eq (9) with 𝜗 = 1/2) was also fit to the measured 𝐾(𝑡) for comparison.  20 

For SM estimates, as well as for 𝐷(𝑡) and 𝐾(𝑡), the uncertainty on fit parameters was estimated using a 21 

bootstrapping method where random noise with variance equal to the residual variance was added to the 22 

datapoints for N=1000 realizations, from which mean and standard deviation of the estimated parameters 23 

were extracted. 24 
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Soma vs exchange: The signal was averaged over each shell 𝑆̅(𝑏, 𝑡) to fit either the SANDI model, Eq (10) 1 

(Palombo et al., 2020), for each diffusion time t separately, or the NEXI model, for all diffusion times t jointly 2 

(see Section 2.4 on NEXI parameter estimation below).  3 

 4 

The SANDI fit was performed using its implementation in the accelerated microstructure imaging via convex 5 

optimization (AMICO) framework in Python 3.5 (Daducci et al., 2015), publicly available at : 6 

https ://github.com/daducci/AMICO/wiki/Fitting-the-SANDI-model. Briefly, AMICO (Daducci et al., 2015) 7 

rewrites Eq (10) as a linear system Ax=y, where A = [Astick, Asphere, Aextra] is a matrix whose columns contain 8 

simulated signals of each compartment (stick, sphere or isotropic Gaussian), y is the vector of measured 9 

signals, and x the unknown contributions. To build A, we used a dictionary of signals simulated using: 5 values 10 

of 𝐷𝑖,∥ linearly spaced within the interval [0.25, 3] m2/ms (namely pstick) for Astick; 5 values of 𝑅𝑠 linearly spaced 11 

within the interval [1, 12] m (namely psphere) for Asphere; and 5 values of 𝐷𝑒 linearly spaced within the interval 12 

[0.25, 3] m2/ms (namely pextra) for Aextra. The elements of x are then estimated using non-negative least 13 

squares with Tikhonov regularization (Efron et al., 2004) (regularization parameter 2 = 0.005) using the Lasso 14 

function implemented in the SPAMS optimization toolbox (http://spams-devel.gforge.inria.fr). From x, we 15 

then computed the SANDI model parameters as: 𝑓 = ∑ 𝑥𝑖5𝑖=1∑ 𝑥𝑖15𝑖=1 ; 𝑓𝑠 = ∑ 𝑥𝑖10𝑖=6∑ 𝑥𝑖15𝑖=1 ; 𝐷𝑖,∥ = ∑ 𝑥𝑖 𝑝𝑠𝑡𝑖𝑐𝑘,𝑖5𝑖=1∑ 𝑥𝑖5𝑖=1 ;  𝑅𝑠 =16 ∑ 𝑥𝑖 𝑝𝑠𝑝ℎ𝑒𝑟𝑒,𝑖10𝑖=6∑ 𝑥𝑖10𝑖=6 ; 𝐷𝑒 = ∑ 𝑥𝑖 𝑝𝑒𝑥𝑡𝑟𝑎,𝑖15𝑖=11∑ 𝑥𝑖15𝑖=11 . The fit provided estimates for the five model parameters: [𝑓, 𝑓𝑠, 𝐷𝑖,∥, 𝑅𝑠, 17 𝐷𝑒] in the cortex and hippocampus at each investigated diffusion time. The dependence of SANDI model 18 

parameters on diffusion time was quantified by computing the mean percentage difference of parameter 19 

estimates at each time with respect to the shortest diffusion time (t = 12 ms), and, in parallel, by performing 20 

one-way ANOVA as a function of time and reporting the significant differences pairwise for available diffusion 21 

times. Finally, the significance of a linear trend of model parameters over time was also calculated.  22 

The SANDI parameter estimates at the shortest diffusion time were also used to predict the signal decay in 23 

the cortex at longer diffusion times, and compared to experimental outcomes, as suggested in (Olesen et al., 24 

2022). 25 

The NEXI fit was performed using a non-linear least-squares (NLLS) optimization based on a quasi-Newton 26 

algorithm without constraints, implemented as ‘fminunc’ function in Matlab.  27 

The performance of SANDI and NEXI to capture the deviation from the stick model at high b-values and the 28 

qualitative signal decay curves across multiple diffusion times was evaluated and compared. 29 

2.4. NEXI parameter estimation 30 

Simulations: Synthetic signals (N = 104) were generated based on Eqs (3) – (6) assuming a protocol of b = 0 31 

and seven shells at b = 1, 2.5, 4, 5.5, 7, 8.5 and 10 ms/μm2, four diffusion times (t = 12, 20, 30, 40 ms) and a 32 

realistic SNR level of 100 – as estimated from experimental data in cortex following MP-PCA denoising and 33 

powder-averaging – see Experimental paragraph below. The ground truth was either fixed to [𝑡ex, 𝐷i,∥, 𝐷e, 𝑓] =34 [20, 2.5, 0.75, 0.34] with only the noise realization changing for each iteration, or randomly chosen within 35 

physical ranges, that is 𝑡𝑒𝑥 ∈ [5, 120], 𝐷i,∥ ∈ [1.5, 3], 𝐷𝑒 ∈ [0, 1.5] and 𝑓 ∈ [0.1, 0.9], thus enforcing the 𝐷𝑖,∥ >36 𝐷𝑒 solution of the NEXI model. The exploration of disjoint intervals with 𝐷𝑖,∥ > 𝐷𝑒 was supported by 37 

experimental data where, when repeating the NEXI estimation by varying the algorithm initialization (within 38 

full ranges 𝐷i,∥, 𝐷𝑒 ∈ [0, 3]) the mode of the outcome distribution yielded 𝐷𝑖,∥ > 𝐷𝑒 in both cortex and 39 

hippocampus (see Results and Figure S9). 40 

 41 

Parameter estimation was done either based on the signals for each diffusion time separately (as in standard 42 

multi-shell datasets) or jointly. A widespread non-linear least-squares (NLLS) minimization algorithm was used 43 

to estimate model parameters. NLLS used a trust-region-reflective algorithm with box constraints for multi-44 

https://github.com/daducci/AMICO/wiki/Fitting-the-SANDI-model
http://spams-devel.gforge.inria.fr/
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shell data and quasi-Newton algorithm without constraints for multi-shell multi-t data. We also tested the 1 

performance of a deep learning (DL) algorithm for parameter estimation, in terms of precision and accuracy 2 

with respect to the more widespread NLLS approach, in the perspective of providing a fast implementation of 3 

NEXI with on-the-fly estimation of model parameter maps (Supplementary Methods).  4 

Impact of b range. In the case of the joint diffusion times fit, we further evaluated the impact of the maximum 5 

b-value on NEXI estimates by retaining only subsets of the data for the estimation: bmax = 2.5 (2 shells), 5.5 (4 6 

shells), or 10 ms/μm2 (7 shells). For completeness, we also compared the performance of the estimation for 7 

datasets with variable bmax but same number of equally spaced shells (Nshells = 7). 8 

Experimental: The signal was averaged over each shell 𝑆̅(𝑏, 𝑡) to be used for NEXI parameter estimation. All 9 

four model parameters were estimated with NLLS (and DL) by using all shells and diffusion times jointly. This 10 

joint fit was performed on a voxel-wise basis to generate parametric maps. The 𝑡𝑒𝑥 estimate from NEXI was 11 

also compared to 𝑡𝑒𝑥𝐾(𝑡)
.  12 

 13 

The NLLS fit was unconstrained. To test the impact of algorithm initialization on the outcome, NEXI was fit to 14 

the average signal in cortex and hippocampus (separately) using N=100 random initializations covering the 15 

entire range of physical values for each parameter (𝐷i,∥, 𝐷𝑒 ∈ [0, 3], 𝑓 ∈ [0, 1], 𝑡𝑒𝑥 ∈ [0, 100]). Based on this 16 

outcome, the range of NLLS fit initializations was further reduced to (𝐷i,∥ ∈ [1.5, 3], 𝐷𝑒 ∈ [0.5, 1.5], 𝑓 ∈17 [0.1, 0.9], 𝑡𝑒𝑥 ∈ [5, 60]) to limit the impact of spurious noise-driven minima in voxel-wise fits.  18 

The agreement between membrane permeability estimates derived from the experimental tex values and 19 

existing literature for physiologically relevant membrane permeability values in healthy cells were compared. 20 

2.5. Histology 21 

A fixed brain sample from a 6 month-old rat was cut into 30 µm-thick slices using a cryomicrotome, and 22 

positioned on glass slides. Then, immunohistochemical stainings were performed to label various 23 

microstructure features.  After a step of blocking non-specific antigens with donkey serum 5% buffer, with 24 

detergent (Triton, Sigma Aldrich, X-100, 1% 2 h incubation), a quadruple staining was prepared. It included 25 

labeling for microglial cells (anti-Iba 1, AbCam ab5076, 1/500 dilution), astrocytes (anti-GFAP, AbCam, ab7260, 26 

1/500 dilution), neuron microfilaments (anti-NF, AbCam ab4680, 1/2000 dilution) and neuron nuclei (anti-27 

NeuN, Millipore, MAB377X Alexa488, 1/100 dilution). Each antibody was incubated for one hour, followed by 28 

two steps of washing with PBS. Secondary antibodies were incubated at the same time, with anti-NeuN already 29 

coupled with Alexa488. We used donkey anti-chicken Cy5 (Millipore, AP194C), donkey anti-rabbit Alexa350 30 

(ThermoFisher, 1710039) and donkey anti-goat Alexa647 (AbCam, ab150135).  31 

Slices were mounted with Permafluor (ThermoFisher, TA-030-Fr), then fluorescence microscopy images 32 

acquired with an Axio Vision Observer microscope at x20 magnification (Carl Zeiss).  33 

The patterns of staining intensity across the brain (mainly cortex and hippocampus) were compared to 34 

patterns of NEXI model parameters, in particular neurite density f. 35 

 36 

3. Results 37 

3.1. Impact of exchange, structural disorder and soma  38 

3.1.1. Time-dependent Standard Model parameters in GM and WM  39 

To underline the limits of applicability of the Standard Model, Eqs (1)-(2), we evaluated SM parameter 40 

estimates in GM vs WM ROIs at different diffusion times and b-value ranges.  41 
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Geometric parameters f and c2. The apparent intra-neurite water fraction f decreased with increasing 1 

diffusion time irrespective of bmax in both GM (Figure 2) and WM (Figure S1). The decrease had a slow rate of 2 

(2 – 3) ·10-3 ms-1 for all ROIs (Table S1), which would translate into an underestimation of the fraction by 0.2 3 

points for a diffusion time of 100 ms. Neurite alignment c2 increased with diffusion time, most markedly in 4 

GM.  5 

Compartment diffusivities. The trends for compartment diffusivities as a function of diffusion time and bmax 6 

were more complex. Significant decrease in parallel diffusivities (both intra- 𝐷𝑖,∥ and extra-neurite 𝐷𝑒,∥) with 7 

longer times were found in GM, but much more markedly beyond the second-order cumulant expansion 8 

regime (bmax ≥ 6 (Figure 2, Table S1). The extra-axonal radial diffusivity 𝐷𝑒,⊥ increased with longer times only 9 

for bmax ≥ 6.  Time-dependence of compartment diffusivities was less pronounced in WM ROIs than GM ROIs, 10 

with only cingulum showing a reliable trend (Figure S1, Table S1). 11 

 12 

Figure 2. Time-dependence of SM parameters, also as a function of maximum b-value available, in two GM ROIs: cortex 13 
and hippocampus. Symbols: mean ± std across rats. Solid line: linear fits. 14 

3.1.2. Exchange vs structural disorder: Time-dependent diffusion and kurtosis  15 

As all SM parameter estimates significantly depended on diffusion time in GM ROIs, we explored whether 16 

inter-compartment exchange and/or intra-compartment non-Gaussian diffusion were relevant mechanisms 17 

in GM. To this end, we examined the time-dependence of mean diffusivity and kurtosis.  18 

All tensor estimates were consistent across animals and displayed a reproducible ordering of rat brain 19 

structures from most coherent to least coherent: internal capsule had highest anisotropy and kurtosis, 20 

followed by corpus callosum, cingulum, cortex and finally hippocampus. 21 

No significant time-dependence of diffusivities could be measured over the 10 – 45 ms range, based on slopes 22 

of linear fits (Table S2). Fitting the generic power-law formula (Eq (9) with the exponent 𝜗 as a free parameter) 23 

to MD(t) yielded unreliable estimates with the exception of 𝐷∞ (Figure 3A for GM and Figure S2 for WM).  24 

Mean kurtosis on the other hand showed marked time dependence over the 10 – 45 ms range (Figure 3 for 25 

GM and Figure S2 for WM). The important observation is that the exponents of decay of MD(t) and MK(t) at 26 

long times are very different from each other, with MD at a plateau and MK still decreasing markedly. While 27 

MD(t) may still exhibit some time-dependence due to structural disorder at short times (t<20ms), this effect 28 

is practically fully coarse-grained at t>20ms such that each compartment can be approximated as Gaussian. In 29 

contrast, MK(t) has sustained sources of time-dependence throughout the 20 – 45 ms interval suggesting an 30 

additional mechanism: inter-compartment exchange.  31 
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We note however that the fit of a three-parameter power-law to the average MK(t) from all datasets yielded 1 

an exponent between 0.5 and 1, with large uncertainty for all three parameters (Figure 3B). Presumably, a 2 

direct comparison of the two possible power laws governing MK(t) in the GM, between exchange (~1/t) and 3 

1D structural disorder (~1/√𝑡), was not conclusive as the long-time limit was likely not reached at the longest 4 

diffusion time (45 ms); e.g. in the Kärger model the sub-leading negative 1/𝑡2  term in Eq (7) still weighed in 5 

significantly (with a numerical value of 0.2 – 0.3 vs 0.5 – 0.7 for the leading term, at t=45ms and assuming 6 𝑡𝑒𝑥~20 ms), which may explain the curvature for KM kurtosis in Figure 3C. Remarkably, fitting MK(t) in each 7 

dataset individually yielded a dominant apparent exponent of 0.3 for the large majority of datasets, which was 8 

further accompanied by a 𝐾∞ = 0 estimate. Simulating time-dependent MK(t) in the diffusion time range 20 9 

– 45 ms based on the Kärger model of exchange (with 𝐾0 = 0.75; 𝑡𝑒𝑥 = 25; 𝐾∞ = 0 as ground truth) and 10 

fitting a generic power-law to it also yielded an apparent exponent of 0.3, therefore consistent with our data 11 

and the exploration of an intermediate time regime (Supplementary Figure S3). 12 

In that regard, the Kärger kurtosis enforcing 𝐾∞ = 0 was the functional form that captured best the decay of 13 𝐾(𝑡) at the longest diffusion times available (leftmost on the plots, Figure 3C-D). Allowing for nonzero 𝐾∞ 14 

when fitting the NEXI kurtosis (Eq. 7) to the measured 𝐾(𝑡) yielded extremely large uncertainty on both 𝐾0 15 

and 𝑡𝑒𝑥 estimates – up to 1800% – obscuring their interpretation completely (Figure 3). A finite 𝐾∞~0.3 is 16 

associated with very short exchange time estimates (1 – 3 ms) which (i) are too short to be reliably estimated 17 

from our diffusion time range and (ii) correspond to a timescale where different mechanisms may also come 18 

into play, such as structural disorder.  19 

Setting 𝐾∞ = 0 enabled a more robust fit. The 𝐾∞ = 0 approximation is justified in the context of the 20 

reasonable picture of a fully mixed (Gaussian) medium in a rat GM voxel at infinitely long diffusion times, due 21 

to intra-/extracellular exchange and a fully connected extracellular space. The GM yielded exchange times in 22 

Figure 3. Mean diffusivity and kurtosis as a function of diffusion time, in the cortex (Ctx) and hippocampus (Hpc),

averaged across animals. Fit parameters (mean±std) for each functional form are collected in the tables. A: Fitting the

power-law to MD yielded very large exponent 𝜗 (with high variability), mainly driven by the diffusion times 10 – 20 ms.

B: The behavior of MK was markedly different, with a decay throughout the 10 – 45 ms span. As a result, the power-law

fit to MK yielded exponent 𝜗 close to 1 (and with reduced variability). C-D: The direct fitting to either the KM kurtosis 

(imposing 𝐾∞ = 0) or the 1D structural disorder form (𝜗 =  1/2) showed both approaches fit the data similarly, though 

KM kurtosis captures the curve at the longest times (leftmost of x-axis) better. Releasing 𝐾∞ = 0 in the KM results in a 

similar curve to 1D disorder but with poorer parameter estimates (3 free parameters instead of 2). [The number of 

datasets N averaged for each diffusion time t is variable: t(N) = 10(2), 11(1), 12(3), 15(2), 20(5), 25(3), 30(5), 35(1), 40(5), 

45(2), see also Table 1.] 
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the same range as the diffusion times explored and thus with better precision, e.g., 𝑡𝑒𝑥 =  21 ±  4 ms in cortex 1 

and 𝑡𝑒𝑥 =  16 ±  3 ms in hippocampus. Estimated exchange times were longer (𝑡𝑒𝑥 > 80 ms) in the internal 2 

capsule and the corpus callosum but were also associated with a fairly large uncertainty (~35%) likely related 3 

to the inappropriate diffusion time range (10 – 45 ms) to estimate long exchange times. The cingulum (WM) 4 

displayed an intermediate behavior between GM and WM, with 𝑡𝑒𝑥 =  43 ± 24 ms. This suggests that the 5 

myelin sheath plays a significant role in slowing down inter-compartment water exchange – the IC and CC are 6 

most myelinated, the GM the least, while CG may be affected by partial volume effects with neighboring GM 7 

due to its thinner structure.  8 

In light of the possible MD(t) time-dependence for t < 20 ms, we further estimated the exchange time by fitting 9 

the Kärger kurtosis to MK(t) using t ≥ 20 ms data only, which yielded longer yet consistent exchange times of 10 𝑡𝑒𝑥 =  41 ±  18 ms in cortex and 𝑡𝑒𝑥 =  28 ±  15 ms in hippocampus (Supplementary Figure S3). As expected, 11 

the diffusion time range affects the exchange time estimation and excluding short diffusion times yields a 12 

longer exchange time estimate. 13 

 14 

3.1.3. Exchange vs soma 15 

To explore whether soma and/or exchange are relevant features to explain the diffusion signal in GM, we 16 

assessed whether the estimated SANDI model parameters show any significant time dependence, and then 17 

compared the quality of fit and predictions of the SANDI and NEXI models at high b-values. 18 

The SANDI model was applied to GM ROIs at different diffusion times (Figure 4). We overall observed 19 

statistically significant time dependence of all SANDI model parameters, based on slopes of linear fits (Table 20 

S3). However, for all parameters except 𝑅𝑠 and f, the mean absolute percentage differences of the values at 21 

each time point with respect to the first time point at t = 12 ms were within 10% at t=20 ms, suggesting that 22 

estimates of those SANDI parameters are stable for t ≤ 20 ms (see Figure S4). In particular, for 𝐷𝑖,∥ and 𝐷𝑒, this 23 

variability drops further down to within 5% for t ≤ 20 ms.  24 

A one-way ANOVA analysis with Bonferroni correction for multiple comparison further showed that the 25 

estimates of all SANDI model parameters (except 𝑅𝑠) were not statistically different between t=12 and 20 ms 26 

(see Figure S5). In contrast, 𝑅𝑠 estimates showed significant increase with increasing diffusion times. This is to 27 

some extent expected: 𝑅𝑠 is an MR apparent estimate of the sphere radius, weighted by the tail of the 28 

Figure 4. Time-dependence of SANDI model parameters for the ROI in the cortex and hippocampus. Open symbols: mean 

value; error bars: standard deviation over all the voxels within the ROI for each investigated rat. Note that data from Rat 

#1-3 were acquired at higher resolution (blue, red, yellow – voxel size 0.2x0.2x0.5 mm3) and different diffusion times 

than Rat #4 (purple – voxel size 0.25x0.25x0.8 mm3). See Table 1 for further details on the acquisition. 



14 

 

distribution, and such weighting depends on the pulse timings (Alexander et al., 2010). Therefore, our findings 1 

suggest limited bias due to exchange at t<~20 ms for all SANDI model parameters, except 𝑅𝑠, in vivo in rat. 2 

Accounting for either a soma compartment or exchange between neurites and the extracellular space captures 3 

well the curvature of the signal decay as function of 𝑏−12 , which distinguishes the diffusion behavior in gray 4 

matter from that in white matter, where 𝑆|̅𝑏→∞ ∝ 𝑏−12 (an asymptotically straight line). The quality of the fit 5 

for SANDI, NEXI and other signal approximations at a single diffusion time is shown in an example dataset 6 

(Figure 5). 7 

Remarkably though, a SANDI fit at short diffusion time predicted a qualitative trend of higher diffusion signals 8 

at longer diffusion times, while the experimental trend was the opposite. In this respect, the NEXI model of 9 

exchange explained signal decay curves for multiple diffusion times better than SANDI (Figure 6). 10 

 11 
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 1 

Figure 6. A. The SANDI model was fit to the average signal in the cortex (Rat #2) at t=12 ms. Estimated model parameters

[𝑓 = 0.22; 𝑓𝑠 = 0.41; 𝐷𝑖,∥ = 2.3; 𝑅𝑠 = 9.3; 𝐷𝑒 = 0.54] were used to predict the signal for longer diffusion times (solid 

lines), as suggested by (Olesen et al., 2021). Qualitatively, SANDI predicted higher signal at longer diffusion times, which 

was opposite to the experimental pattern of increasingly reduced signal with longer diffusion time (dots). B. The NEXI

model of exchange was fit to data from all diffusion times jointly (solid lines). The estimated model parameters were

[𝑓 = 0.29; 𝐷𝑖,∥ = 2.5; 𝐷𝑒 = 0.74; 𝑡𝑒𝑥 = 44]. This model explained decay curves at different diffusion times well, though 

the agreement was poorer at the highest b-values, potentially due to an imperfect correction for Rician noise floor or to

soma. All units in µm, ms and µm2/ms. 

Figure 5. A. Various models were fit to the average signal in the cortex (Rat #2) at t=12 ms: SANDI, Eq (10), and NEXI, Eq 

(6), covering the full b-value range; the impermeable stick approximation (Callaghan’s model); NEXI approximation at 
high b, Eq (8); and the NEXI-derived diffusivity + kurtosis approximation at low b (Appendix). B. Zoom-in of the black 

framed region in panel A. Both SANDI and NEXI explain the data at a single diffusion time well. Callaghan’s model does 
not describe diffusion signal decay in the cortex appropriately due to the signal’s notable curvature with respect to 𝑏−1/2, 

cf Eq (8). The NEXI low-b and high-b approximations are reasonable in their respective regimes. It should be noted the 

low-b approximation is derived from NEXI parameter estimates obtained over the entire b-value range available hence 

some mismatch with the experimental datapoints. The mismatch is reduced for longer diffusion times, where the 

Gaussian compartment approximation may be more suitable (Figure S10). Estimated model parameters, underlying the 

plotted curves: SANDI: 𝑓 = 0.22; 𝑓𝑠 = 0.41; 𝐷𝑖,∥ = 2.3; 𝑅𝑠 = 9.3; 𝐷𝑒 = 0.54; NEXI: 𝑓 = 0.35; 𝐷𝑖,∥ = 3; 𝐷𝑒 =0.73; 𝑡𝑒𝑥 = 20; Sticks: 𝑓 = 0.25; 𝐷𝑖,∥ = 2.4; High b NEXI approx.: 𝑓 = 0.29; 𝐷𝑖,∥ = 1.9; 𝐷𝑒 = 0.35; 𝑡𝑒𝑥 = 12.  
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3.2. NEXI parameter estimation 1 

Since inter-compartment exchange appears to be a relevant mechanism to explain the diffusion signal both in 2 

the low-order approximation and at high b-values, we assess the performance of NEXI – a biophysical model 3 

of two compartments with exchange – in terms of accuracy and precision in simulations, as well as feasibility 4 

and sensibility of estimated microstructure parameters in experimental rat data in vivo. 5 

3.2.1. Simulations  6 

We first present the performance of NEXI in simulations, using Eqs (3)-(6) to generate ground truth signal, and 7 

estimating the four model parameters using conventional NLLS (see Supplementary Material for DL-based 8 

fitting, Figures S6 and S7). 9 

Scenario a: Fitting the four model parameters for each diffusion time separately. The precision was good on 10 𝐷e and acceptable on f. However, in a finite SNR case, 𝐷𝑖,∥ and 𝑡ex could not be estimated, irrespective of the 11 

diffusion time (Figure 7). 12 

Scenario b: Fitting the four model parameters using all diffusion times jointly. In all cases, this approach 13 

significantly improved the precision on f and 𝑡ex compared to Scenario a. Some sensitivity to 𝐷𝑖,∥ was also 14 

restored (Figure 8). 15 

Varying bmax showed that b-values larger than 2.5 ms/μm2 are needed for accuracy (Figure S8). Both accuracy 16 

and precision were further improved for bmax = 10 vs 6 ms/μm2 but the benefits were less substantial. When 17 

inspecting the impact of bmax given a constant number of shells, the performance of bmax = 10 was still superior 18 

to that of bmax = 2.5 in terms of accuracy and precision, confirming it is the b-value range that is critical for 19 

sensitivity to model parameters.  20 

 21 

Figure 7. Simulation results fitting multi-shell data for each diffusion time separately using NLLS, without noise (A) or with 

SNR = 100 (B). Displayed is the ground truth (GT) vs estimation for 104 set of random parameters. Markers correspond to 

the median & IQR in the corresponding intervals. Black lines are the ideal estimation ±10% error. In all cases, the precision 

is good on 𝐷𝑒  and acceptable on f. However, in a finite SNR case, 𝐷𝑖,∥ and 𝑡𝑒𝑥  cannot be estimated, irrespective of the 

diffusion time. 
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 1 

Figure 8. Simulation results fitting multi-shell multi-td data jointly using NLLS, for random GT (A) or fixed to 2 [𝑡𝑒𝑥𝑡ℎ, 𝐷𝑖,∥𝑡ℎ, 𝐷𝑒𝑡ℎ, 𝑓𝑡ℎ] = [20,2.5,0.75,0.34] (B). A: Displayed are the medians & IQR in each bin. Black lines: ideal estimation 3 

±10 % error. Without noise, NLLS fits all parameters with high accuracy and precision. At SNR=100, uncertainty increases 4 
primarily for 𝐷𝑖,∥ and tex and sensitivity to high tex values is lost but the performance is much improved compared to single 5 
td fits (Fig. 7). B: At SNR=100, good accuracy is achieved for all NEXI parameters. For 𝐷𝑖,∥ the precision is poor. Black solid 6 

line: ground truth. 7 

 8 

3.2.2. Experimental: in vivo rat GM 9 

The time-dependence analysis of diffusion, kurtosis and SM metrics highlighted the sharp difference in 10 

behavior between highly myelinated white matter fibers such as the internal capsule and the corpus callosum, 11 

and GM. Results from the previous sections suggest non-negligible inter-compartment water exchange in GM, 12 

which should be accounted for by biophysical models of this type of tissue when working at relatively long 13 

diffusion times (t>20 ms).  14 

 15 

Simulation results for NEXI performance in turn suggested the use of multi-shell multi-t data was crucial for 16 

the reliable estimation of model parameters, and of the exchange time in particular, for a broad range of 17 

ground truth values. 18 

Given a dataset comprised of b-values up to 10 ms/μm2 and three to four diffusion times, all NEXI model 19 

parameters could be estimated both at the ROI and at the single voxel level in the rat GM.  20 

Testing 100 random initializations on ROI-averaged signal showed that the overwhelming mode of the 21 

distribution of outcomes corresponded to a solution where 𝐷i,∥ > 2 and 𝐷e < 1 (Figure S9). 22 

Parametric maps of NEXI estimates were consistent with expected neuroanatomy of the rat brain (Figure 9A-23 

D). Simulations predicted the variability was largest for 𝑡ex and 𝐷i,∥. ROI-based analysis in the cortex and 24 

hippocampus confirmed these trends and also revealed good between-subject consistency (Figure 9E). On 25 

average, the intra-neurite diffusivity was 2.5 μm2/ms, the extra-neurite diffusivity was 0.75 μm2/ms and the 26 

neurite fraction was around 0.3. 27 
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For Datasets 1 – 3, the estimated exchange time 𝑡ex was higher with NEXI than with 𝑡𝑒𝑥𝐾(𝑡)
: 30 – 60 ms vs 10 – 1 

40 ms, respectively, in cortex and 25 – 65 ms vs 10 – 25 ms, respectively, in hippocampus. Remarkably, for 2 

Dataset 4 (x2.5 voxel volume compared to Datasets 1 – 3), the two approaches displayed better agreement 3 

and estimates for tex ranged 10 – 30 ms. This comparison is based on fits using the entire diffusion time range 4 

available. As shown for MK(t), excluding t < 20 ms datapoints yielded longer exchange times. This can also be 5 

expected for NEXI but was not implemented here for concerns of fit stability and precision. 6 

The exchange time can be related to the cell membrane permeability of a cylinder via 𝑃 = 𝑑4(𝑡𝑒𝑥 − 𝑑232 𝐷𝑖,∥), where 7 

d is the diameter of the cylinder (neurite) and P is the diffusional water membrane permeability (affected by 8 

the properties of the lipids in the membrane and by water-channel proteins embedded in the membrane and 9 

different from the osmotic permeability, generally larger and measured in the presence of an osmotic pressure 10 

gradient over the membrane) (Meier et al., 2003; M Nilsson et al., 2013). Given the typical diameter and 11 

diffusivity values, this is further very well approximated as 𝑃 ≅ 𝑑4𝑡𝑒𝑥. Assuming d ~[0.5 - 2] m, a characteristic 12 

exchange time 𝑡𝑒𝑥= [15 – 60] ms, as estimated here using NEXI, yields P ~ [2.1 – 33] x 10-3 µm/ms. 13 

The intra-neurite fraction map displayed substantially larger values in white matter than gray matter though 14 

the model does not in principle support white matter (the extra-neurite space cannot be assumed to be 15 

isotropic). This can be explained by the fact that myelin is MR-invisible in our diffusion MRI measurements 16 

(due to the long TE) and the physical space occupied by myelin is therefore not considered. Assuming neurite 17 

Figure 9. A-D: Four coronal slices of NEXI parametric maps calculated using NLLS from a multi-shell multi-𝑡 dataset. The

maps enable a good differentiation between GM & WM as well as between different cortical layers (white arrows) or 

hippocampal subfields (black arrow). E: Median & IQR of model parameters in the cortex and hippocampus ROIs across

the four datasets. The exchange time estimate is also compared with 𝑡𝑒𝑥𝐾(𝑡)
,  Eq (7). Experimental trends agree with the 

simulations. Regarding 𝑡𝑒𝑥𝐾(𝑡)
, the estimation agrees with 𝑡𝑒𝑥  very well for Dataset #4, which had the highest SNR (larger 

voxels), and is otherwise shorter. 
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physical occupancy fractions are similar in GM and WM, the relative neurite fraction we estimate is higher in 1 

WM because the myelin space reduces the extracellular space. Different T2 relaxation times in compartments 2 

between GM and WM could also account for the difference. The other NEXI parameters were also higher in 3 

WM, which is in good agreement with more aligned structures (enabling faster diffusivity) and longer exchange 4 

times in highly myelinated axons. 5 

All NEXI parameters also showed contrast within GM structures, such as across cortical layers and hippocampal 6 

subfields. Notably, the neurite fraction was higher in central cortical layers, consistent with neurofilament 7 

staining in ex vivo rat cortex slices (Figure 10). A higher NEXI neurite fraction in the central section of the 8 

hippocampus (dorsal dendate gyrus) agreed especially with higher astrocyte density in that region, which 9 

suggests astrocytic processes also contribute to this parameter via their similar geometry to neurites, i.e. long, 10 

thin structures. 11 

 12 

  13 

Figure 10. Features of NEXI neurite density map features as compared to cellular components obtained from histological 

stainings: neurofilaments (orange), astrocytes (blue), neuron nuclei (green) and microglia (red). The WM is outlined in 

fine dotted lines for legibility; cortex lies above, hippocampus below. Higher NEXI neurite density in central cortical layers 

agrees with higher density of neurofilament staining (dashed lines). Higher NEXI neurite density in the central part of the 

hippocampus (dorsal dendate gyrus) agrees especially with higher density of astrocytes but also neurofilaments (long-

dashed contour). Neuron soma and microglia do not seem to contribute to NEXI neurite density contrast. 
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4. Discussion  1 

In this work, we propose NEXI as an extension of the SM of diffusion suitable for GM. NEXI accounts for inter-2 

compartment exchange between neurites and the extracellular space, building on the anisotropic Kärger 3 

model of two exchanging compartments. Using multi-shell multi-t datasets acquired in the rat brain in vivo, 4 

we investigate the suitability of NEXI to describe diffusion in the GM, compared to other approaches such as 5 

SM, structural disorder, or the addition of a soma compartment. We identify exchange as the mechanism that 6 

best explains diffusion-time-dependence of signal in both low-b and high-b regime, and thereby propose NEXI 7 

as the minimal model for GM microstructure mapping. We finally propose multi-b multi-𝑡 acquisitions schemes 8 

as best suited to estimate NEXI model parameters [𝑓, 𝐷𝑖,∥, 𝐷𝑒 , 𝑡𝑒𝑥] reliably. 9 

SM applicability. The presence of exchange yields a spurious time-dependence of SM parameters. 10 

Unsurprisingly, the time-dependence of geometric parameters for the SM was most marked in GM and 11 

cingulum. The apparent intra-neurite fraction decreased with increasing diffusion time. Qualitatively, this can 12 

be interpreted as water molecules that leave the intra-neurite space developing a diffusion signature closer 13 

to hindered diffusion – as the extracellular space or large soma – rather than restricted and unidirectional 14 

along the neurite. The neurite alignment also increased with longer times. These results suggest that in the    15 

SM the diffusion time acts as a filter that attributes to the intra-neurite space only cellular processes (axons, 16 

dendrites and glial processes) that can be considered impermeable over that time scale. Arguably, only the 17 

more myelinated and aligned neurites are retained at longer times.  18 

The time-dependence of SM compartment apparent diffusivities varied with b-value regime, with more 19 

pronounced trends for bmax ≥ 6 ms/μm2 and for GM than for WM ROIs. A trend of apparent diffusivity 20 

decreasing with time can be a signature of either non-Gaussian diffusion, exchange with a slower 21 

compartment or both. A trend of apparent diffusivity increasing with time is a sign of model failure or 22 

insufficiency. Essentially, in GM the SM parameters become ill-defined and their interpretation in terms of 23 

microstructure becomes challenging. Since exchange is not accounted for, compartment diffusivities 𝐷𝑖 and 24 𝐷𝑒 should be interpreted as “apparent” compartment diffusivities 𝐷𝑖′ and 𝐷𝑒′ . At 𝑡 → 0, the two compartments 25 

have not mixed at all, a standard model fit would yield apparent 𝐷𝑖′ = 𝐷𝑖 and 𝐷𝑒′ = 𝐷𝑒, while �̅� = 𝑓𝐷𝑖 +26 (1 − 𝑓)𝐷𝑒. In the long-time limit 𝑡 → ∞, the mean diffusivity �̅� is unchanged but the compartments are well-27 

mixed. It is unlikely that the mixture effect can be absorbed entirely by a decrease in f, and apparent 28 

compartment diffusivities will also be affected: they will each tend to converge towards �̅�, hence, assuming 29 

without loss of generality that 𝐷𝑖 > 𝐷𝑒,  𝐷𝑖′(𝑡 → 0) > 𝐷𝑖′(𝑡 → ∞) while 𝐷𝑒′ (𝑡 → 0) < 𝐷𝑖′(𝑡 → ∞). 30 

Our analysis confirms that the SM is applicable in thick WM bundles. The quantitative estimate of 31 

compartment diffusivities may however depend on the b-value range (the anisotropy of the extra-neurite 32 

compartment in particular may be exacerbated) and the intra-neurite fraction may decrease with longer times 33 

likely by dropping unmyelinated axons in WM. The latter are more numerous in the rodent than in the human 34 

brain (Wang et al., 2008) so this effect may not impact human brain estimates as much. However, the SM 35 

assumptions are likely not met in GM and this could also impact WM bundles that have substantial partial 36 

volume with cortex, such as the cingulum. In particular, while in the cumulant regime (𝑏 ≲ 2.5) only a 37 

progressive filtering of neurites with increasing time was observed, for higher b-values apparent compartment 38 

diffusivities were also affected, particularly in the intra-neurite space. 39 

Exchange vs structural disorder in cortex. Our data show negligible time-dependence of mean diffusivity, over 40 

the range of diffusion times 20 – 45 ms, in the rat GM. This is consistent with previous reports for the in vivo 41 

rat brain by (Pyatigorskaya et al., 2014) and ex vivo mouse brain by (Aggarwal et al., 2020). We note however 42 

that  pronounced OGSE frequency dependence of diffusivities has been reported at shorter time scales in rat 43 

and mouse cortex (Aggarwal et al., 2020; Does et al., 2003; Pyatigorskaya et al., 2014), and, in the case of  the 44 
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work by Does et al., has been attributed to the neurites based on the exponent 𝜗 = 1/2 by (Novikov et al., 1 

2014).  2 

Weak diffusivity time-dependence has also been highlighted in human cortical gray matter for diffusion times 3 

21 – 100 ms (Lee et al., 2020b). The human brain presents the additional challenge of thin cortical ribbons and 4 

thereby relatively strong partial volume with white matter and CSF in “cortical voxels”. The rat brain is, from 5 

this perspective, a well-suited model system for exploring cortical properties. We note however the weak 6 

time-dependence of diffusion is not necessarily transposable to other organs, ex vivo conditions and different 7 

diffusion time ranges. For example, (Jespersen et al., 2018) have shown significant time-dependence of the 8 

diffusion coefficient in fixed pig spinal cord, for diffusion times 6 – 350 ms. The negligible time-dependence of 9 

D in our context suggests/validates that, within the cumulant expansion regime, the tissue can be considered 10 

as a collection of Gaussian compartments, one of the main assumptions behind multi-compartment models 11 

of diffusion, and that structural disorder is therefore negligible at our diffusion time scales. A larger dynamic 12 

range of diffusion times, covering at least a logarithmic decade, may be necessary to detect diffusivity time-13 

dependence. 14 

On the other hand, kurtosis displayed marked time-dependence, also in agreement with findings of all afore-15 

mentioned studies (Aggarwal et al., 2020; Jespersen et al., 2018; Lee et al., 2020b; Pyatigorskaya et al., 2014). 16 

Together with the absence of marked time-dependence of D, the decrease in 𝐾(𝑡) with 𝑡 can be attributed to 17 

inter-compartment exchange, Eq (7) (Fieremans et al., 2010; Jensen et al., 2005; Kärger, 1985) rather than 18 

structural disorder, with kurtosis decaying to zero at very long times when compartments are fully mixed and 19 

appear as a single Gaussian compartment. The confirmation of dominant exchange by the analysis of the 20 

power-law exponent of the K(t) decay was challenged by the fact that the long-time limit has not been reached 21 

in order to yield either a decay as 1/t which would support exchange, or a 1/√𝑡 functional form, which would 22 

favor structural disorder as in (Lee et al., 2020b). Nevertheless, simulations of exchange-driven K(t) in our 23 

experimental time range yielded an apparent power-law exponent of 0.3, which agreed with the experimental 24 

exponents estimated from K(t) power law fits on each animal and GM ROI. The exploration of a broader range 25 

of diffusion times in future work may enable a more definite assessment of the most relevant power law of 26 𝐾(𝑡) decay and of the relative contribution of the competing effects of incomplete coarse-graining over the 27 

structural disorder, and inter-compartmental exchange.   28 

It should be underlined that the functional form for structural disorder as 1/√𝑡 corresponds to one-29 

dimensional short-range disorder which is potentially suited for intra-neurite diffusion (Novikov et al., 2014). 30 

In principle, structural disorder could also arise from extracellular water, and would in this case be expected 31 

to follow the functional form for 2d or 3d disorder, as (ln 𝑡)/𝑡 or 1/𝑡. This functional form should however be 32 

followed by both 𝐷(𝑡) and 𝐾(𝑡). Overall, the trend in 𝐷(𝑡) was flat and certainly did not support a decay as 33 (ln 𝑡)/𝑡  which is more pronounced than 1/√𝑡. The 2d or 3d disorder was also not supported by 𝐷(𝑡) in human 34 

cortex (Lee et al., 2020b). 35 

The estimation of inter-compartment exchange based on NEXI 𝐾(𝑡) yielded relatively long exchange times 36 

(𝑡𝑒𝑥𝐾(𝑡)
= 80 – 130 ms, exceeding our diffusion time range) in highly myelinated white matter bundles such as 37 

the corpus callosum and internal capsule, intermediate exchange times (𝑡𝑒𝑥𝐾(𝑡)~ 40 ms) in thinner bundles such 38 

as the cingulum that may experience partial volume effects with neighboring gray matter, and relatively short 39 

exchange times in the cortex and hippocampus (𝑡ex ~ 15 – 20 ms).  40 

Estimates of exchange time in WM bundles were unsurprisingly imprecise due to the mismatch between 41 

probed timescales (10 – 45 ms) and the expected exchange time 𝑡𝑒𝑥𝐾(𝑡)
 > 80 ms. Nevertheless, this result 42 

validates a posteriori the assumption of non-exchanging compartments for white matter models at diffusion 43 

times typical for PGSE acquisitions: t < 80 ms. Our findings are also consistent with previous studies in the 44 
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human WM reporting exchange times above 500 ms (Lampinen et al., 2017; Nedjati-Gilani et al., 2017), and 1 

350 – 400 ms in mouse corpus callosum (Hill et al., 2021).  2 

In the case of gray matter, the 𝑡exK(t)
 estimates of 15 – 20 ms were consistent with previous studies in human 3 

gray matter (Veraart et al., 2018a) and perfused pup rat spinal cord (Williamson et al., 2019). Other studies 4 

using relaxation-based methods suggested however longer exchange times of 100 – 150 ms in astrocyte and 5 

neuron cultures (Yang et al., 2018),  in rat subcortical structures – presumably the striatum (Quirk et al., 2003) 6 

and in rat perfused cortical cultures (Bai et al., 2018). Filter-exchange imaging (FEXI), another diffusion-based 7 

method to estimate the exchange time between a slow and a fast water pool reported an exchange time on 8 

the order of 1 s in WM and 2.5 s in GM using a filtering block of bf = 0.9 ms/μm2 (Lampinen et al., 2017; M. 9 

Nilsson et al., 2013). While the exchange times between different WM tracts agreed with expected 10 

myelination levels, e.g. up to 3 s in corpus callosum and 500 ms in anterior corona radiata, it is somewhat 11 

counterintuitive that the exchange time would be longest in GM – the authors suggested the latter was likely 12 

overestimated. Recent work using FEXI with a similar filter also yielded an exchange time of around 1 s in WM 13 

and 1.4 s in GM (Bai et al., 2020), while arguing that there is no direct evidence that what FEXI measures is the 14 

exchange between intra- and extra-cellular compartments. Conversely, shorter exchange times of 2 – 5 ms 15 

have recently been reported in fixed mouse gray matter using SMEX (Standard Model with EXchange), a similar 16 

approach to NEXI, as will be discussed in the more detail further on (Olesen et al., 2022). 17 

Related to FEXI, while bi-exponential functions typically fit diffusion decay in brain tissue well, the association 18 

of the slow and fast water pools to specific tissue compartments has never been straightforward (Kiselev and 19 

Il’yasov, 2007; Novikov et al., 2018a), in particular since a distribution of non-parallel sticks – a single 20 

compartment, technically – also yields a characteristic decay that is well approximated by a bi-exponential 21 

function (Assaf and Cohen, 1998; Callaghan et al., 1979; Novikov et al., 2018a; Sehy et al., 2002). For this same 22 

reason, alternative approaches to the Kärger model, extracting the exchange time from the decay of the intra-23 

cellular fraction – as estimated from a bi-exponential model – with increasing diffusion time (Moutal et al., 24 

2018) were explored in yeast suspensions but are not suitable for brain tissue. Indeed, predominant stick-like 25 

geometries in both white and gray matter invalidate the approximation of a sum of two Gaussian 26 

compartments in any direction or for the powder-average signal.  27 

Our analysis of 𝐾(𝑡) so far cannot provide direct information on the mechanisms of exchange, such as 28 

intra/extracellular, neurite/soma or neurite/neurite exchange. However, numerical simulations suggest that 29 

neurite/soma and neurite/neurite exchange within the same neuron occur at longer time scales (on the order 30 

of 100 ms or more) than those estimated here (~20 ms) (Ianus et al., 2020) and support the intra/extracellular 31 

exchange as the dominant mechanism in these experiments. 32 

Exchange vs soma. Going a step further, we investigated the performance of a two-compartment model with 33 

exchange (NEXI) and of a three-compartment model accounting for soma (SANDI) to capture diffusion signal 34 

decay at high b-values, and for multiple diffusion times. SANDI extends the SM by adding an extra 35 

compartment for modelling explicitly diffusion restricted in soma and relies on the assumption of negligible 36 

exchange between the three tissue compartments: intra-neurite, intra-soma and extra-cellular. Our results do 37 

not challenge this assumption in the rat GM in vivo for relatively short diffusion times ( 20 ms), while 38 

challenging it for longer diffusion times (> 20 ms), where the SANDI model parameters show some time-39 

dependence. This diffusion time cutoff is in line with 𝑡exK(t)
 and suggests that unaccounted exchange 40 

mechanisms between the three major tissue compartments in GM (cellular processes, soma and extra-cellular 41 

space) may bias SANDI parameters estimation at diffusion times longer than 20 ms. On the other hand, our 42 

results also suggest that SANDI model parameter estimation provides f, 𝐷𝑖,∥ and 𝐷𝑒 estimates in good 43 

agreement with the equivalent counterpart from the SM and NEXI. The importance of modeling exchange in 44 

addition to soma was mostly evident in the ability of NEXI vs SANDI to predict signal decay curves for longer 45 
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diffusion times based on model parameters estimated at short diffusion times. This result is consistent with 1 

findings in the rat cortex ex vivo (Olesen et al., 2022). However, based on the NEXI parameter estimation 2 

performance alone – discussed below – a larger q-t coverage and higher SNR would likely be needed in vivo 3 

to account for both soma and exchange in a model. 4 

NEXI parameter estimation. To provide recommendations of minimum data and fitting procedures for NEXI, 5 

we first established its performance in simulations. Given a comprehensive protocol with 7 shells up to bmax = 6 

10 ms/μm2 and high final SNR of 100 – boosted by the MP-PCA denoising procedure and the powder-averaging 7 

over directions – data at a single diffusion time were insufficient to estimate 𝑡𝑒𝑥 and 𝐷𝑖,∥. Noise was clearly 8 

the culprit as the noiseless simulations otherwise demonstrated good performance for all four model 9 

parameters. Fitting the NEXI model to joint data over four diffusion times dramatically improved the accuracy 10 

and precision for all four model parameters though 𝐷𝑖,∥ remained the most challenging parameter to estimate, 11 

consistent with other model frameworks (Jelescu et al., 2016; Novikov et al., 2018b; Palombo et al., 2020). 12 

The benefit of a broader b-value range was critical between 2.5 and 6 ms/μm2, but only marginal beyond, 13 

which suggests a range 0 < b < 6 ms/μm2 could be sufficient to estimate NEXI parameters.  14 

Simulations also suggested the exchange time estimate �̂�𝑒𝑥 plateaus beyond ground truths 𝑡𝑒𝑥 ≥ 80 𝑚𝑠 15 

approximately. This is likely related to the diffusion time range simulated 12 – 40 ms, which is too short to 16 

probe slow processes with longer characteristic exchange times. For tissues where longer exchange times are 17 

expected, the diffusion time range should be adjusted accordingly. 18 

Importantly, the performance of NEXI on experimental data using a multi-shell multi-t protocol was consistent 19 

with simulations. On average, the intra-neurite diffusivity was 2.2 – 2.5 μm2/ms, in agreement with its estimate 20 

from the SM and from SANDI at the shortest diffusion times, as well as with previous reports of intra-21 

neurite/axonal diffusivity (Dhital et al., 2019; Kunz et al., 2018; Olesen et al., 2021). The extra-neurite 22 

diffusivity was 0.75 μm2/ms and remarkably also agreed with the SANDI estimate at the shortest times. We 23 

underline that the intra-neurite diffusivity corresponds to the parallel diffusivity, with 𝐷𝑖,⊥ = 0 in the 24 

perpendicular direction (the stick picture). A three-fold ratio between 𝐷𝑖,∥ and 𝐷𝑒 is consistent with previous 25 

literature that reported similar Apparent Diffusion Coefficient (ADC) between intra- and extra-cellular water 26 

in rat GM (Duong et al., 1998). Considering the picture of isotropically-oriented neurites, the ADC of intra-27 

cellular water in any given direction would be estimated at 𝐷𝑖,∥/3 and thereby similar to 𝐷𝑒.  28 

Compartment fractions: The neurite fraction was about 0.3, which is lower than estimates from ex vivo 29 

histology (~0.65) but nonetheless higher than the SANDI estimate for neurite fraction at the shortest diffusion 30 

time (f ~0.25). This suggests that even at short diffusion times, neurite fractions from models that do not 31 

account for exchange may be underestimated, possibly by “missing” fast-exchanging components. In parallel, 32 

by comparing NEXI and SANDI compartment fractions, it appears the soma is associated to extra-neurite space 33 

in NEXI. While accounting for exchange had the advantage of providing a time-independent estimate of the 34 

neurite fraction, thereby correcting for its decrease with longer times in models of non-exchanging 35 

compartments, the absolute value of the neurite fraction estimate remains lower than the 60 – 70 % expected 36 

from histology (Bondareff and Pysh, 1968; Motta et al., 2019; Shapson-Coe et al., 2021; Spocter et al., 2012). 37 

Combined relaxation-diffusion measurements may help improve the quantification of the neurite fraction by 38 

correcting for relaxation time-weighting (Barakovic et al., 2021; Hutter et al., 2018; Tax et al., 2021; Veraart et 39 

al., 2018b). Exchange processes on a shorter scale than those explored here also cannot be excluded, as very 40 

short exchange times have been recently reported in rat brain ex vivo (Olesen et al., 2022).  41 

Exchange time: Determining the accurate value of tex correctly is of utmost importance to mapping GM 42 

microstructure, as this value sets the relevant tissue features to be modeled, given that typically accessible 43 

diffusion times on clinical MRI systems are 𝑡 ≳ 10 ms. If, for instance, tex ~1 ms (well below 10ms), the 44 

exchange can be practically classified as fast, i.e., there are no distinct intra- and extra-stick exchanging 45 
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compartments; neurites and extra-neurite space form a homogenized effective medium. This is the picture 1 

suggested by recent results of Olesen et al. If, conversely, tex ≳ 100 ms, as (Lampinen et al., 2017; Yang et al., 2 

2018) suggest, then exchange is slow and can be neglected, and a Standard Model-like approach is applicable. 3 

Finally, if exchange is intermediate, between ~10ms and ~50-100ms, as our present results and the 2-4 

dimensional NMR measurements by (Williamson et al., 2019) suggest, then exchange is relevant, must be 5 

explicitly modeled, and can be mapped. This possibility, albeit requiring more complex modeling, would open 6 

a tantalizing prospect of mapping tissue function in vivo, since permeability has been shown to be modulated 7 

by metabolism (Bai et al., 2019). Below we consider the confounding effects for tex.  8 

The discrepancy in exchange time estimates between Olesen et al. and the current work, which are otherwise 9 

similar in approach, can be due to multiple sources. First, in vivo vs fixed tissue is an important driver of 10 

exchange time differences (Li et al., 1998; Shepherd et al., 2009; Thelwall et al., 2006). Recent additional work 11 

using NEXI on ex vivo rat brain at 20°C also yielded shorter exchange times of 4 – 6 ms, than the ones reported 12 

here in vivo (Jelescu and Uhl, 2022). Another possible source of discrepancy is the range of diffusion times 13 

explored in either study: 7.5 – 16 ms in Olesen et al. vs 11 – 45 ms here. The diffusion times act as a filter for 14 

the exchange times that can be reliably estimated (see Figure 8, where, in simulations, the estimation of tex 15 

plateaus beyond 75 ms for simulated diffusion times of 12 – 40 ms). Slow exchange cannot be accurately 16 

captured with short diffusion times.  17 

Finally, since the NEXI fit deviates from the data at high b-values (Figure 6), we also tested an adapted model 18 

of NEXI including a “dot” compartment (i.e. water apparently immobile, as reported mainly ex vivo and in the 19 

cerebellum) and a model fitting for a Rician floor. In the first case, the NEXI_dot model is thus characterized 20 

by five parameters to be estimated, similar to the SMEX model by Olesen et al.: fn, tex, Di, De and fdot. In the 21 

second case, the NEXI_rm (for Rician mean) model is also characterized by five parameters to be estimated: 22 

fn, tex, Di, De and the Rician noise parameter σ: 23 𝑁𝐸𝑋𝐼𝑟𝑚(𝑓, 𝑡𝑒𝑥 , 𝐷𝑖, 𝐷𝑒 , 𝜎) = √𝜋2 ∙ 𝜎 ∙ 𝐿1/2 (− 12 (𝑁𝐸𝑋𝐼(𝑓, 𝑡𝑒𝑥 , 𝐷𝑖, 𝐷𝑒)𝜎 )2) 24 

Where 𝐿12(𝑥) =1 𝐹1 (− 12 , 1, 𝑥) = 𝑒𝑥/2[(1 − 𝑥)𝐼0 (− 𝑥2) − 𝑥𝐼1(− 𝑥2)]  is the generalization of Laguerre 25 

polynomial 𝐿𝑛(𝑥), which for non-integer 𝑛 is given in terms of the confluent hypergeometric function. The 26 

above equation elevates NEXI(𝑓, 𝑡𝑒𝑥 , 𝐷𝑖, 𝐷𝑒) based on the Rician expectation value. 27 

NEXI, NEXI_dot and NEXI_rm were fit to the data in Figure 6 within the ranges: fn: [0, 1], tex: [0, 200], Di: [0, 4], 28 

De: [0, 4], fdot: [0, 0.2]. NEXI_dot and NEXI_rm indeed yielded a shorter tex than NEXI, but not as short as 29 

reported in (Jelescu and Uhl, 2022; Olesen et al., 2022). Furthermore, the uncertainty in NEXI_dot estimates 30 

was largest among the three models, while the intra-neurite diffusivity largely exceeded 3 µm2/ms 31 

systematically. The NEXI_dot and NEXI_rm estimates were similar and the resulting fitted curves approximated 32 

the data well (Supplementary Figure S11). This suggests both an actual dot compartment and an impact of 33 

non-zero Rician mean could explain the NEXI departure from experimental points at highest b-values. 34 

 35 
Table 2. NEXI and NEXI_dot parameter estimates from the average signal in the rat cortex (as in Figure 6). Mean ± std 36 
over N=100 random initializations of the fitting algorithm. 37 

 fn tex Di De fdot / σ 

NEXI 0.29 ± 0.01 43 ± 8 2.55 ± 0.24 0.74 ± 0.02 - 

NEXI_dot 0.22 ± 0.03 21 ± 9 3.6 ± 0.6 0.70 ± 0.02 0.022 ± 0.008 

NEXI_rm 0.29 ± 0.01 22 ± 6 3.2 ± 0.3 0.69 ± 0.02 0.025 ± 0.002 

 38 

The exchange time estimates depended on the underlying SNR of the data, the diffusion time range and on 39 

the estimation approach. For a diffusion time range 10 – 45 ms, NEXI estimated an exchange time of 15 – 60 40 

ms while the matching estimate from 𝐾(𝑡) was 10 – 40 ms. The latter became 18 – 60 ms when the diffusion 41 

time range was reduced to 20 – 45 ms (albeit with increased uncertainty)  These exchange times, combined 42 
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with intra-neurite realistic diameter values yielded a range of cell membrane permeability values on the order 1 

of 𝑃 ≅ [2.1 − 33]µm/s. This range of permeability values is in agreement with previous reports of 2 

physiologically relevant membrane permeability values in healthy cells: 𝑃 ≅ [6 − 30] µm/s (Baylis, 1988; 3 

Harkins et al., 2009; Latour et al., 1994; Stanisz et al., 1997; Vestergaard-Poulsen et al., 2007). Cell-specific 4 

membrane water permeability values have also been reported as [18 – 76] µm/s in murine neurons, [41 – 112] 5 

µm/s in murine astrocytes and [23 – 81] µm/s in human red blood cells (Boss et al., 2013). The latter have 6 

been extensively studied in terms of water permeability, with variable reported ranges  (Benga et al., 2009, 7 

2000). Shorter exchange times of  3 – 5 ms reported ex vivo by (Jelescu and Uhl, 2022; Olesen et al., 2022) 8 

would translate into a permeability 𝑃 ≅ [25 − 167] µm/s, consistent with chemical fixation increasing 9 

permeability over three-fold (Shepherd et al., 2009). 10 

Parametric maps agreed with known rat brain structure, with clear delimitation between gray and white 11 

matter. Contrast between adjacent cortical layers and between hippocampal sub-fields was also apparent. 12 

Comparison with histological staining revealed that higher NEXI neurite fraction in middle cortical layers 13 

corresponded to higher neurofilament density in that area, but that in hippocampus, abundant astrocytic 14 

processes could contribute to the higher NEXI neurite fraction. Indeed, water is ubiquitous and microstructural 15 

features with similar geometry are typically pooled together – here neurites and astrocytic processes are both 16 

thin elongated cylinders. This is expected to be the case for all water diffusion models proposed, though the 17 

balance of contributions between neurons and glial cells has never been firmly established.  18 

The importance of high SNR (> 20 – 30 in an individual b=0 image) for reliable parameter estimation was 19 

manifest throughout our data which had a strong SNR spatial gradient from cortex to deep brain due to the 20 

use of a surface transceiver. An experimental setup with a volume coil for transmission and a surface coil for 21 

reception would yield uniform SNR and enable estimates of NEXI parameters over the whole brain. DL 22 

approaches are increasingly replacing NLLS in biophysical model estimation (Hill et al., 2021; Nedjati-Gilani et 23 

al., 2017; Palombo et al., 2020). We also showed here an improved management of noise by DL vs NLLS, 24 

although bias towards the mean of the prior was also more pronounced and DL outputs should always be 25 

examined carefully (Coelho et al., 2021; Gyori et al., 2021b; Martins et al., 2021). Alternatively, a log-likelihood 26 

objective function could be considered for the NLLS optimization to account for Rician noise in a voxel-wise 27 

fashion. As there was already good agreement between sum-of-squares NLLS and DL on our data, we did not 28 

implement the log-likelihood minimization, but it may be worth considering for lower SNR data. 29 

Limitations 30 

We note that a multi-shell multi-t acquisition protocol may be difficult to implement when scan time is of the 31 

essence. Future work will focus on optimizing the protocol to the best compromise between minimal scan 32 

time and maximal accuracy and precision of model parameter estimates. The currently large uncertainty on 33 𝑡𝑒𝑥 and 𝐷𝑖,|| estimates will also benefit from such an optimization, which may include schemes that combine 34 

multiple diffusion tensor encodings (Chakwizira et al., 2021).  35 

After inspecting the mode of NEXI outcomes as a function of random algorithm initialization, and in line with 36 

recent evidence that 𝐷𝑖,∥ ≅ 2 − 2.5 µm2/ms (Dhital et al., 2019; Howard et al., 2020; Kunz et al., 2018; Olesen 37 

et al., 2021), we chose an algorithm initialization where 𝐷𝑖,∥ > 𝐷𝑒 in NLLS, and trained the DL network on 38 

disjoint intervals 𝐷𝑖,∥ ≥ 1.5 and 𝐷𝑒 ≤ 1.5. These constraints would likely need to be reconsidered and relaxed, 39 

particularly when characterizing pathological conditions or diseases, such as Alzheimer’s or Huntington’s 40 

diseases, where tangles and/or proteins accumulate in the intracellular space, hence increasing the cytoplasm 41 

tortuosity and reducing 𝐷𝑖,∥, potentially to the level of being slower than 𝐷𝑒.  42 

One substantial limitation of the NEXI model is that it does not account for soma as a third compartment, 43 

which are then artificially absorbed into the extra-neurite space as the relative fractions suggest. Recently, the 44 
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evidence of curved boundaries in the cortex, attributed to soma, was presented by observing the localization 1 

regime of diffusion on a human Connectom scanner (Lee et al., 2021). An important line of future work is the 2 

extension of NEXI to three compartments, or, equivalently, the incorporation of exchange processes in the 3 

SANDI model, as has been implemented in fixed mouse gray matter (Olesen et al., 2022). For now, SANDI 4 

accounts for three non-exchanging compartments – soma, neurites, extracellular space – but thus requires 5 

data acquisition at relatively short diffusion times ( 20 ms) concomitantly with high b-values (bmax  6 ms/μm2) 6 

(Palombo et al., 2020) which can only be achieved on preclinical and Connectom scanners, but not on typical 7 

clinical scanners. Going forward, accounting for exchange in SANDI will make it translatable to clinical settings, 8 

by enabling the use of longer diffusion times. The feasibility of estimating a large number of model parameters 9 

on data limited in terms of SNR and (q,t) coverage by in vivo and/or clinical hardware settings is yet to be 10 

determined. 11 

Furthermore, NEXI considers Gaussian compartments, an assumption which seems to break for the neurite 12 

compartment, as revealed at higher b-values, likely due to finite length of dendritic processes, branching, etc. 13 

This poses a significant conundrum, as low b-values where non-Gaussian contributions in each compartment 14 

can be neglected are detrimental for estimation accuracy and precision, while higher b-values reveal non-15 

Gaussian effects which bias the outcomes as well. Ultimately, computational models based on realistic 16 

simulations of neural cells (Callaghan et al., 2020; Ginsburger et al., 2019; Lee et al., 2020a; Palombo et al., 17 

2019) and cortical substrate may be the best approach for characterizing gray matter microstructure in vivo. 18 

Analytical approaches able to incorporate intra-compartmental non-Gaussian time-dependent effects, such 19 

as (Lee et al., 2018), are in need to faithfully quantify the structural disorder contributions. 20 

Finally, built on the anisotropic KM, NEXI assumes exchange happening within each ensemble of “neurite + its 21 

immediate extracellular space” separately. This may differ from GM microanatomy, where neurites at 22 

different angles can be piercing a volume of the size of the diffusion length. Sequential exchange processes 23 

can bring a molecule from, e.g., one stick to the extra-stick space to a differently-oriented stick, and so on; 24 

such a model geometry has not been considered. We note, however, that in the limit of 𝑏𝐷𝑒 ≫ 1, the 25 

distinction between this more general geometry and NEXI should vanish, since, once a spin enters the extra-26 

neurite space, its contribution to the overall signal gets exponentially suppressed, as does the memory about 27 

the above sequential exchange processes with different orientations. Hence, we expect that tex estimated from 28 

the full protocol including strong diffusion weightings will be more accurate than that from the time-29 

dependent kurtosis approximation of Eq (6).  30 

Value 31 

Taken together, our results suggest that inter-compartment exchange is not negligible in gray matter at typical 32 

PGSE or clinical diffusion times (t > 20 ms) and should therefore be accounted for in biophysical models of gray 33 

matter and potentially even in thinner white matter tracts such as the cingulum (in rodents), and by extension 34 

to demyelinating WM as a result of disease. Our findings also highlight an additional challenge for approaches 35 

that use b-tensor encoding techniques to disentangle various tissue geometries or solve model degeneracy 36 

(Afzali et al., 2021; Coelho et al., 2019; Gyori et al., 2021a; Reisert et al., 2019). Since free gradient waveforms 37 

introduce by design a whole spectrum of relatively long diffusion times (> 20 ms), the ill-definition of the 38 

diffusion time may become problematic in a regime where exchange cannot be neglected. 39 

NEXI constitutes an important first step in accounting for inter-compartment exchange in GM and developing 40 

a more realistic model of diffusion in gray matter. The estimate of the exchange time alone can be used as a 41 

proxy for membrane permeability, which is known to increase with injury or neurodegeneration (M. Nilsson 42 

et al., 2013; Pacheco et al., 2015), and could yield an original and valuable new biomarker of tissue integrity, 43 

metabolism and function (Bai et al., 2018). In myelinated structures, the exchange time could also become a 44 
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strong proxy for the myelin thickness, which is at the heart of several “in vivo histology” efforts (Brusini et al., 1 

2019; Hill et al., 2021; Lazari and Lipp, 2021; Mancini et al., 2020). 2 

5. Conclusions  3 

One fundamental challenge in brain microstructure is to establish the biophysical origin of effects beyond the 4 

“Standard Model” (SM) picture of non-exchanging Gaussian compartments. Here we showed that in the rat 5 

GM in vivo, the exchange dominates over structural disorder, and offer the picture of diffusion time effectively 6 

filtering out the contribution of unmyelinated neurites with stronger dispersion. At long times, this picture 7 

suggests that only the myelinated (non-exchanging) neurites contribute to the intra-neurite SM compartment, 8 

and the rest is asymptotically attributed to extra-neurite space. Exchange also explains signal decay curves 9 

across different diffusion times better than the addition of a soma compartment. If a choice is warranted, a 10 

two-compartment model with exchange – NEXI – is better suited than a three-compartment model with soma 11 

for characterizing cortical microstructure at diffusion times t > 20 ms, while also yielding a valuable estimate 12 

of exchange time, which can be used as a proxy for membrane permeability. Going forward, both soma and 13 

exchange should ideally be accounted for, if the data support the estimation of a larger number of parameters. 14 

 15 
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Appendix: DKI(t) for the orientationally-averaged anisotropic KM 1 

We begin from a familiar DKI representation of a standard (scalar) KM:  2 

ln 𝑆𝐾𝑀(𝑏) =  −𝑏𝐷 + 𝑏22 𝑓(1 − 𝑓)(𝐷1 − 𝐷2)2 ⋅ 𝐹(𝜏),     𝐹(𝜏) = 2(𝑒−𝜏 − 1 + 𝜏)𝜏2 ,   𝜏 = 𝑡𝑡𝑒𝑥 3 

corresponding to the kurtosis (Fieremans et al., 2010) 𝐾(𝜏) = 𝐾0𝐹(𝜏) with 4 

𝐾0 = 3𝑓(1 − 𝑓) ⋅ (𝐷1 − 𝐷2)2𝐷2  . 5 

We now use the above expressions for a single ensemble of neurites and their immediate extracellular space, 6 

oriented at an angle 𝜃 to the gradient direction, as function of 𝑥 = cos 𝜃. This means that 𝐷1 = 𝐷𝑖,∥ 𝑥2 and 7 𝐷2 = 𝐷𝑒,⊥ + Δ𝑒𝑥2, where Δ𝑒 = 𝐷𝑒,∥ − 𝐷𝑒,⊥. Note that Δ𝑒 ≡ 0 and 𝐷𝑒,⊥ ≡ 𝐷𝑒 for the isotropic extra-cellular 8 

space assumed in the main text. To average over directions, we expand 𝑆𝐾𝑀(𝑏, 𝑥) in moments up to 𝑏2, 9 

integrate term-by-term over the orientations and re-expand in the exponential:  10 𝑆(𝑏) = ∫ 𝑑𝑥 𝑆𝐾𝑀(𝑏, 𝑥)10 ≃ 𝑒−𝑏𝐷+𝑏2𝐷2𝐾6  .  11 

In this way, after some algebra we obtain  12 𝐷 = 13 [𝑓𝐷𝑖,∥ + (1 − 𝑓)(3𝐷𝑒,⊥ + Δ𝑒)] 13 

and  14 

  15 𝐾 = 𝐾0𝐹(𝜏) + 𝐾∞ , 16 

where  17 

  18 𝐾0 = 3𝑓(1 − 𝑓) [𝐷𝑒,⊥2 + 23 𝐷𝑒,⊥(Δ𝑒 − 𝐷𝑖,∥) + 15 (Δ𝑒 − 𝐷𝑖,∥)2]𝐷2  , 19 

𝐾∞ = 415 [𝑓𝐷𝑖,∥ + (1 − 𝑓)Δ𝑒]2𝐷2  . 20 

For 𝐷𝑒,⊥ = 0 or for 𝑓 = 1 (only sticks), 𝐾 = 𝐾∞ = 125 ,  the familiar kurtosis value for the Callaghan model. Since 21 𝐹(0) = 1, the initial value  22 𝐾(𝑡)|𝑡=0 = 𝐾0 + 𝐾∞ . 24 

The long-time asymptotic behavior is  23 𝐾(𝑡)|𝑡≫𝑡𝑒𝑥 ≃ 𝐾∞ + 2𝐾0 ⋅ 𝑡𝑒𝑥𝑡  .  25 

Note that the residual kurtosis 𝐾∞ ≡ 𝐾(𝑡)|𝑡→∞ corresponds to that of the isotropic mixture of diffusion 26 

tensors with axial and radial diffusivities 𝑓𝐷𝑖,∥ + (1 − 𝑓)𝐷𝑒,∥ and (1 − 𝑓)𝐷𝑒,⊥, respectively.   27 

In the main text we set Δ𝑒 = 0 and 𝐷𝑒,⊥ = 𝐷𝑒,∥ = 𝐷𝑒 in the above expressions, and end up neglecting 𝐾∞ 28 

when analyzing data, since the above model does not adequately describe mixing between sticks with 29 

different orientations at sufficiently long times.  30 
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