Open Research Online

The Open University's repository of research publications and other research outputs

Using remote laboratory experiments to develop learning outcomes in engineering practice.

Conference or Workshop Item

How to cite:

Lockett, Helen (2022). Using remote laboratory experiments to develop learning outcomes in engineering practice. In: Horizons in STEM Higher Education Conference: Making Connections, Innovating and Sharing Pedagogy, 1-2 Jul 2020, University of Nottingham – virtual.

For guidance on citations see FAQs.

 \odot [not recorded]

Version: Version of Record

Link(s) to article on publisher's website: https://ukstemconference.com/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data <u>policy</u> on reuse of materials please consult the policies page.

oro.open.ac.uk

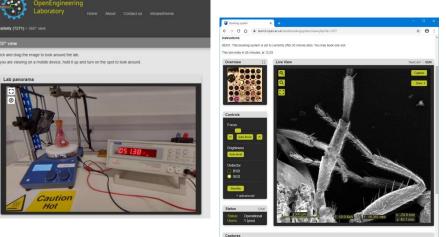
Using remote laboratory experiments to develop learning outcomes in engineering practice

Dr Helen Lockett Director of OpenSTEM Labs and Senior Lecturer in Engineering The Open University

Overview

- Background
- Introduction to the OpenSTEM Labs
- Teaching engineering practice
- Process for developing remote experiments
- Case study
- Lessons learned

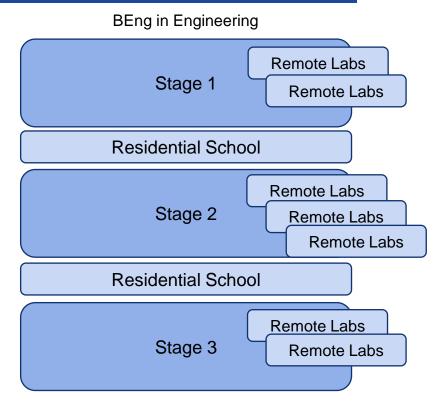
- Accredited engineering degrees in the UK must meet learning outcomes defined by the Engineering Council Accreditation of Higher Education Programmes (AHEP) framework
- Engineering graduates achieve learning outcomes in six key areas of learning
- Engineering practice is usually taught through face to face laboratories and workshops


AHEP key areas of learning:

- Science and mathematics
- Engineering analysis
- Design
- Economic, legal, social, ethical and environmental context
- Engineering practice
- Additional general skills

The OpenSTEM Labs

- The OpenSTEM Labs provide remote and virtual experiments for our distance learning students
- They cover a range of STEM subjects including engineering, physics, bioscience and chemistry
- Students interact with experiments via a web browser on their laptop or mobile device.


The Open University

Teaching engineering practice in Engineering qualifications

- Engineering students attend mandatory residential schools at the end of stage 1 and stage 2
- The residential schools are supplemented with remote experiments delivered through the OpenEngineering laboratory

Examples of remote experiments:

- Creep of a material
- Temperature dependence of electrical resistivity
- Strain in a thick-walled pressure vessel
- Electronics
- Heat transfer (under development)
- Wind tunnels (under development)

Development process for remote experiments

Identify need

• Define learning outcomes

• Describe activity

• Define remote interaction

Develop and deploy activity

e Opel iversit

Case Study – pressure vessel

A remote experiment was proposed as part of a stage 2 mandatory module teaching stress analysis (Core Engineering B)

• The purpose of the experiment was for students to gain an improved understanding of stress and strain in pressure vessels

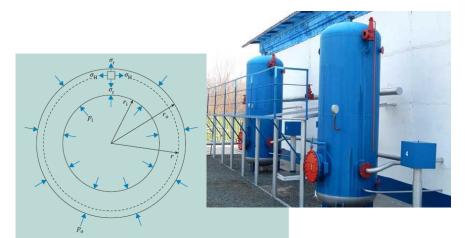


Figure 4.14 A cross-section through a thick-walled cylinder subjected to inner and outer pressures

Lamé's equations define the hoop stress, radial stress and longitudinal stress in a thick-walled cylinder as

$$\sigma_{\rm H} = A + \frac{B}{r^2} \tag{4.5}$$

$$\sigma_r = A - \frac{B}{r^2}$$
(4.6)

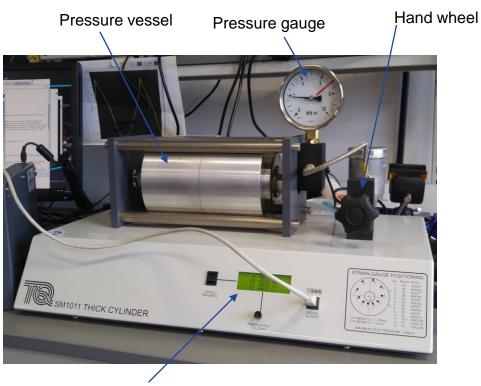
$$\sigma_{\rm L} = A.$$
 (4.7)

The two constants A and B in these equations are referred to as Lamé constants and are given by

$$A = \frac{p_1 r_i^2 - p_0 r_0^2}{r_0^2 - r_i^2}$$
(4.8)

$$B = \frac{r_i^2 r_o^2 (p_i - p_o)}{r_o^2 - r_i^2}.$$
(4.9)

Initial learning outcomes

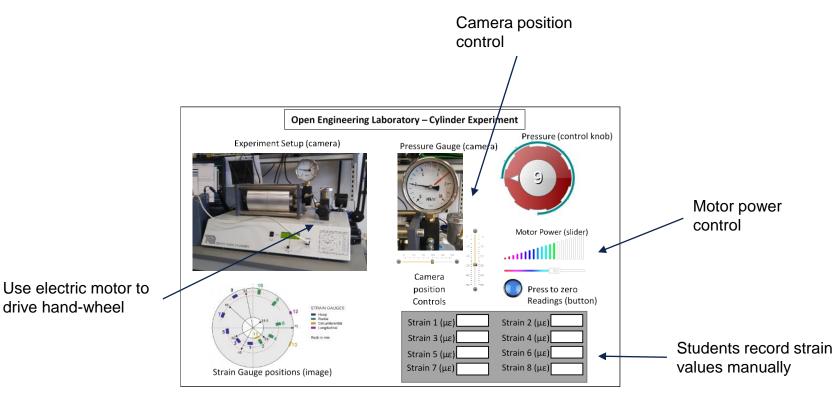


- Be able to measure experimentally the strain in a thick walled, pressurised cylinder using the provided bench equipment
- Understand the use and positioning of strain gauges to measure engineering strain and consider sources of error
- Be able to compare experimental strain measurements with hand calculations and discuss the reasons for differences

Describe activity

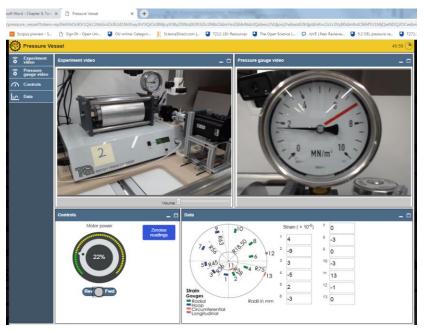
- Off-the-shelf equipment was selected as the basis for the experiment
- Equipment was tested and key interactions that develop practical knowledge of workshop and laboratory practice were identified:
 - Relationship between force and pressure when using a hand-wheel to control pressure in cylinder
 - Measuring pressure using a mechanical pressure gauge
 - Systematically recording data

Strain gauge readings


Revised learning outcomes

- Be able to measure experimentally the strain in a thick walled, pressurised cylinder using the provided bench equipment
- Understand the use and positioning of strain gauges for measuring engineering strain and consider sources of error
- Be able to compare experimental strain measurements with hand calculations and discuss the reasons for differences
- Understand the relationship between force and pressure when using pressure equipment
- Be able to measure pressure accurately using a mechanical pressure gauge
- Be able to systematically collect and record experimental data

Define remote interactions



Early mockup of user interface

Develop and deploy activity

- The remote experiment was developed by a team of software and hardware developers
- Eight sets of remote equipment were developed
- Experiment was used for the first time in 2019 with a cohort 418 students.
 - Submission rate for coursework: 96 %
 - Pass rate 80: %.
- High level of engagement and student feedback was positive

Final user interface

Lessons learned

- Need to consider engineering practice learning outcomes as part of experimental design to ensure that the experiment is fit for purpose
- Development of remote experiments is complex and needs a multidisciplinary team
- Assessment increases student engagement

Questions?

