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Abstract

Network science is a vast interdisciplinary area which connects disparate subjects such

as mathematics, the natural sciences, sociology, information technology and more. Net-

work neuroscience, in particular, is a thriving and rapidly expanding field in which

graph theory techniques have been deployed to better understand structure-function

relations in the brain across multiple temporal and spatial scales. In this thesis, we use

large-scale brain network models for a range of different species (cat, Macaque monkey

and C.elegans) to simulate important aspects of brain function, such as associative mem-

ory and synchrony related activities. Network directionality is a fundamental feature

of such models, yet it is typically ignored due to limitations of non-invasive imaging

techniques. Here, we explore the role that directionality plays in determining neural

activity in the brain. We start by considering a system of Hopfield neural elements

with heterogeneous structural connectivity given by range of species and parcellations

for which network directionality information is present. We investigate the effect of

removing directionality of connections on brain capacity, which we quantify via its

ability to store attractor states. In addition to determining large numbers of fixed-point

attractor sets, we deploy the recently developed basin stability technique in order to

assess the global stability of such brain states as well as their robustness to non-small

perturbations. By comparison with standard network models with the same coarse

statistics, we find that directionality effects not only the number of fixed-point attrac-

tors but also the likelihood that neural systems remain in their most ‘desirable’ states.

These findings suggest that directionality plays an important role in shaping transition

routes between different brain networks states. We then go onto consider the impact

that network directionality has on the synchrony properties of the brain. We simu-
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late neural dynamics on the aforementioned connectome-based networks deploying a

phase delayed Kuramoto Model, which is perhaps the simplest example of a delay-

coupled oscillatory network and is well-suited to assessing how directed connectomes

govern synchronisation properties of the brain. In particular, we find that network

directionality profoundly impacts both the time-scale at which coordinated rhythmic

activity occurs across large-scale brain networks as well as the stability properties of

these synchronised states. We also find that recently observed relations between net-

work structure and directed functional connectivity, as quantified using the directed

phase lag index, appear far less conclusive when network directionality is accounted

for. This study thereby emphasizes the substantial role network directionality plays in

shaping the brain’s ability to both store and process information.
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CHAPTER 1

Introduction

Networks can be found everywhere, in both natural and manufactured structures from

physical structures such as train lines, to more hypothetical connections such as friend-

ships within social networks. Due to the prevalence of real life networks, network

science is a major interdisciplinary field which combines ideas from subjects such as

biology, social science, statistics, economics, mathematics, computer science and neuro-

science. The study of these networks has expanded across these topics and some exam-

ples of widely studied networks are power grids [1, 2], brain networks [3], metabolic

networks [4, 5] and protein-protein interactions [6], the world wide web [7], neural

networks and social media [8]. In this introductory chapter we start by giving a brief

historical overview of the network studies in general, before focusing in greater de-

tail on key concepts from network neuroscience. We in particular look at the role (or

rather lack of!) that directionality has played in this area to date as due to limitations

in noninvasive imaging methods, information on directionality is missing in studies

of the human connectome. This means that directionality is an often neglected aspect

of network neuroscience research and it is not known how this vital information may

impact neural networks.

1.1 A brief history of networks

The history of networks originates from the study of graph theory which began in 1736

with the Königsberg bridge problem. The city of Königsberg lay on the banks of the
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CHAPTER 1: INTRODUCTION

river Pregel with an island in the middle and citizens would try and come up with

ways to cross all seven bridges in and out of the island without traversing the same

one twice. Leonhard Euler confirmed most peoples’ beliefs, i.e. that no such solution

existed, by framing the problem as a graph and using graph theoretical techniques to

solve the problem [9]. Graph theory evolved and studies began on small structured

graphs such as lattices, i.e. regular, grid-like graphs. Useful ideas that became part

of fundamental discrete mathematics emerged, for example, map colouring [10] and

matching theorems [11, 12]. (For a more in depth introduction of graph theory see, for

example, [13, 14].)

In 1959 Erdős and Rényi produced a seminal paper which explored larger graphs

named random graphs [15]. Within the paper they introduced G(n, p) as a collection of

networks that have n nodes with all pairs of nodes connected with probability p. This

became known as the Erdős Rényi (ER) random graph that is widely used in research

to this very day as a null graph with which to test hypotheses within network science.

Graph theory continued to grow and in 1967 social psychologist Stanley Milgram con-

firmed a network phenomenon known as the small-world effect [16]. To determine

how interconnected society was he set about trying to understand how many people

know one another and how wide spread the impact of someone’s connections is. To

discover how connected people are within the USA, Milgram conducted an experi-

ment:

• He sent letters to people from Omaha, Nebraska instructing them to forward the

letter to randomly selected people in Boston, Massachusetts.

• When a person received a letter they were instructed to do one of two things:

1. If they knew the intended person, they were to forward it straight to them.

2. If they didn’t know the intended person they were to forward it to someone

more likely to know the intended.

From this, Milgram found that the average path length between the person that started

with the letter and the intended person was 5.5; this was a lot smaller then first pre-

dicted given the size of the United States. This discovery has also led to the idea of
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CHAPTER 1: INTRODUCTION

‘six degrees of separation’ and the theory that everyone in the world is connected via

approximately six people. This also leads to the saying of ‘it’s a small world’.

Empirically, a network is termed small-world if it has a ‘small’ average (or characteris-

tic) path-length together with a ‘high’ level of clustering. The clustering coefficient is a

measure to indicate how clustered a network is. First thought of in 1949, it uses triplets,

three nodes connected by either two or three edges, as they can mean that connections

are close to one another [17]. This measure is calculated by computing the number of

triangles divided by the sum of triplets, i.e. it equals the proportion of triangles present

within a network.

Another important development made largely by social scientists was the idea of net-

work centrality. A centrality measure provides a way of ordering the nodes within

a network in terms of ‘importance’, the definition of this importance depends on the

problem at hand and so a plethora of centrality measures have been put forward (see

[18] and references therein for a discussion on centrality measures in a bioinformatics

setting). Popular examples of centrality measures include: degree centrality (highest

degree is the most important node); eigenvector centrality; Katz centrality (takes into

account the influence of linked nodes)[19] and betweenness centrality (when a node

is central to linking two areas of a network together) [20]. Measures such as charac-

teristic path length and clustering are key in quantifying non-trivial structures present

within large complex networks. We discuss these measures (and others) in more de-

tail in Chapter 2 with a particular focus on those measures of historical importance to

neuroscience and thus of relevance to the work in this thesis.

The modern discipline of Network Science exploded into life in the late nineties with

two seminal papers. In 1998 Watts and Strogatz released a paper [21], which was per-

haps the birth of network science as a field in its own right. They studied real-world

networks and compared the average path length and clustering levels. Until this point

scientists had largely studied two extremes: structured lattices (or regular networks),

which exhibit high levels of clustering but have a large average path-length; and ran-

dom networks, which have a small average path-length and low levels of clustering.

Therefore neither of the networks exhibited the small-world property that appeared
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CHAPTER 1: INTRODUCTION

prevalent in real-world networks. The Watts-Strogatz model constructs a random net-

work that admits both of these two important properties. Beginning with a regular

lattice network, Watts and Strogatz rewired each edge, or added a new edge (depend-

ing on the algorithm used), with a predetermined probability (p) so that a node is

randomly connected to another randomly chosen node. This method adds shortcuts

and, with each shortcut, the average path length decreases but (for small values of p)

this has little effect on the high levels of clustering. Thus, this procedure generates

networks with the desired small-world property, which can be used as toy models to

compare properties of small-world networks and real life networks.

Another massively influential paper in Network Science was released in 1999 by Barabási

and Albert, which examined another way to create networks with a desired effect; in

this case a scale-free degree distribution, which is a property that many real-world

networks possess [22]. A scale-free network has a degree distribution that follows a

power law, which means that in these networks it is common to have a large number

of nodes with small degree and a small number of nodes with a large degree. Barabási

and Albert posited that this was a natural consequence of so-called preferential attach-

ment, meaning that nodes have a preference to attach themselves to nodes with higher

degree. The algorithm for constructing a network with scale-free degree distribution

starts with some small initial network, before proceeding iteratively by adding a new

node at each step, which is connected to already existing nodes with a probability that

is proportional to their current degree. This way the higher the degree the more likely

the new node is to create a new edge with that node. This model is often termed the

preferential attachment model.

Another important concept, particularly in network neuroscience and biology more

widely, is that of community structure of networks [23]. The most popular method for

determining community structure, or modularity, was introduced in 2002 by Girvan and

Newman. The method provides a single measure, or modularity score, which quan-

tifies the extent to which a network’s nodes can be partitioned into subsets such that

nodes within the same sets are highly connected and those nodes in different sets are

sparsely connected. This is just one example of a modularity algorithm; there are many
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CHAPTER 1: INTRODUCTION

other ways to calculate the community structure of networks [24, 25]. Like most biolog-

ical networks, it is well known that cortical networks display high levels of modularity

and this is believed to be related to functional segregation and integration in the brain

[26]. Once again, we examine how to compute modularity measures in more detail in

Chapter 2.

Before moving on to focus on neuroscience applications in network science, it is worth

noting the recent development in the field whereby more complex objects known as

multilayer networks are used to represent systems in which multiple interaction types

are present. Neuroscience, in particular, is awash with multimodal datasets that could

benefit from such a holistic approach. More, commonly (especially in neuroscience)

such systems can be modelled using a fixed set of network nodes (general multilayer

networks allow for variation in nodes as well as both inter and intra connectivity [27])

across different layers – each describing a different type of interaction – and is termed a

multiplex network. An example of a multiplex network is a two layer structure-function

network in which one layer represents anatomical connectivity and the second func-

tional connectivity – here the nodes generally denote brain regions as given by some

parcellation of the brain. Examples of more general multilayer networks include a

recent network model of the C. Elegans nervous system, which consisted of layers

describing synaptic, gap junction and neuromodulator interactions [28], as well as a

multilayer functional network consisting of different layers (including both inter and

intra layer connections) for the different frequency bands in MEG data [29]. Such an

approach adds layers of complexity and with it comes new solutions and problems.

New complex network measures have been forwarded [30], including, for example,

new multilayered centrality measures [31], as well as the extension of network studies

of diffusion processes to the multilayer setting [32], and these methods have recently

been applied to human disease [33, 34, 35].
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CHAPTER 1: INTRODUCTION

1.2 Network neuroscience

The brain is one of the most complex systems in the world; it is a system of interrelated

parts which exhibit properties and behaviors that cannot be explained by analysing

these parts in isolation [36, 37]. Due to this complexity, the brain is often modelled

as a network, where the nodes denote brain regions and edges denotes relationships

between the aforementioned brain regions – at least at the scales that we consider. In

what follows, we provide a brief overview into the methodologies behind the con-

struction of network models of the brain, starting with a discussion of the different

scales at which one can study, before considering the different types of brain network

models (i.e., structural, functional, etc.). We then touch upon the important topic of

network directionality, a concept that is typically overlooked in modern network neu-

roscience investigations, and one that will play a key role in the work presented within

this thesis. Finally, we examine the relevant and recent research into the connection of

brain network architecture and neural disease, and discuss how the ideas of network

neuroscience may one day provide solutions to some of the biggest diseases, such as

Alzheimer’s, epilepsy and schizophrenia.

1.2.1 Constructing complex brain networks

There have been many questions on how to best represent the brain as a network. A

lot of network neuroscience research have been done at different scales and there has

been some attempts to bridge the gap between these different levels of research [38].

The most common scales used are the micro-scale, where problems are researched at

the cellular level; meso-scale, where populations of neurons are grouped together and

macro-scale, where the brain can be parcellated or investigated as a whole.

A brief view into the cellular level shows that the brain is made up of around 100 bil-

lion cells called neurons and most connections between them are made up of synapses.

Neurons communicate by passing electrochemical signals to one another by ‘spiking’

and ‘firing’ these impulses along axons and across synapses, see Figure 1.1. To under-

stand whole brain dynamics at the micro-scale would require us to construct a network
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CHAPTER 1: INTRODUCTION

Figure 1.1: An illustration of a synapse [39]

model of local organisation consisting of billions of nodes all connected via trillions of

synaptic links, which is unfortunately beyond current technologies.

As is usual in network neuroscience, we focus here on macro-scale connectivity, which

considers brain connectivity between large-scale brain regions as opposed to neurons.

In these large-scale networks brain regions are represented as nodes of a graph and

the edges denote either structural or functional connectivity between these regions.

More recently, multiplex (or, more generally, multilayered) networks have been used

to construct large-scale structure-function models of the brain [40]. Such an approach

has the potential to understand multi-scale neural behaviour by forming multilayered

models across different scales.

Structural (or anatomical) brain networks describe the physical connections within the

brain. The most common technique for computing brain networks for humans is to

use diffusion magnetic resonance imaging (dMRI) [41]. This technique works by de-

tecting differences in the diffusion of water molecules in drawn out structures such

as the white matter fibres that make up the long-range wiring within the brain; water

molecules diffuse faster along these bundles rather then perpendicular to them, and

MRI techniques are capable of picking up these differences and hence determine the lo-

cation of white matter connections. There are other techniques for finding the anatomi-

cal network of a brain such as tract tracing and electron microscopy, importantly, unlike

the non-invasive techniques described previously, such methods are capable of infer-

ring directionality [42, 43]. Electron microscopy is one of the oldest and best established

way of providing the structural information of the brain. In this method the brain is cut
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into thin slices, which are then examined by electron microscopy and pieced back to-

gether to give a 3D image of the structure. This, however, is a lengthy process and can

still take an extended amount of time, even with the aid of computer programs. An-

other common technique is to use staining, this is where brain slices are stained with

coloured dyes making the brain cells visible and neurons stand out from the surround-

ing tissue which is then examined with optical microscopy [44]. Nowadays the use of

genetically modified mice is becoming common practice, where mice have a florescent

protein used as a marker within the brain that emits visible light when illuminated

under a UV light, which can then be observed and analysed to recreate the network

[45]. Another common approach to find the underlying structural brain network is to

use tracing, it works by injecting a tracer molecule into the brain where it then gets

absorbed. Once absorbed it can be transported one of two ways; either forwards along

the axons and through to neighbouring cells via synapses or backwards from synapses

to the cell. The tracer is tagged with a florescent protein which leaves a path mean-

ing the final path can be seen and the connections can be put together to create the

structural network. Importantly, these invasive methods allow for the detection of di-

rectionality in the observed connections of the brain for a range of mammalian species.

A useful resource for connectomics data is the brain connectivity toolbox (BCT), which

consists of a number of MATLAB routines for performing network analysis as well as

connectomes for a range of species.

Any network representation of the brain requires a so-called brain parcellation to be

constructed such that the brain is divided into defined sections. These sections are

close, interacting parts of the brain that are considered as fundamental units. The brain

can be parcellated; however, there is no set way of describing the connectome and so

different parcellations are used in practice. A brain parcellation typically consists of

a subdivision of the brain into logical parts that all act in a similar way, are similar

structurally and tend to be used for the same function i.e vision or motor skills. Dif-

ferent connectome maps still have the expected properties such as the networks are

still small-world and scale-free; however, network analyses have also shown to differ

significantly based on the type of parcellation used [46].
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Functional networks are obtained by measuring similarities in neural activities across

brain regions, e.g. correlations in time series of measured neural signals. One of the

most common ways to create a functional network is by using data from a variety

of measures such as functional magnetic resonance imaging (fMRI) [47]. FMRI is a

time resolved imaging technique that picks out related brain activity of living brains

in real time, it does this by measuring the blood oxygen level which increases during

activity in functioning areas of the brain causing them to ‘light up’ on the MRI im-

age. Other common measures include Electroencephalography (EEG) [48, 49] which

measures electrical signals around the recording sites and Magnetoencephalography

(MEG) [50] which measures the magnetic field around recording sites in the brain

[51, 52]. The benefit of fMRI over the others is that EEG and MEG only measure cortical

activity, which is the activity occurring in the top layer of the brain known as the cor-

tex; fMRI can look deeper into the brain, past the cortex. Another problem with EEG

is that it can quite often be affected by the noise of unavoidable tasks such as blinking

and swallowing [53]. However unlike diffusion MRI these techniques do not directly

measure the network connections, instead this is decided by observing correlations. A

time series is obtained from these methods and from that we measure the strength of

the statistical relationship between different areas of the brain. There are many dif-

ferent methods to measure correlation or coherence for example Pearson’s correlation

coefficient or phase coherence [54, 55]. These techniques result in a matrix of pairwise

similarities, from which we can infer a weighted network, in which the weights of the

edges are related to the strength of the correlation between the activities of the relevant

brain regions (nodes). We can then choose (if we wish) to threshold the network in a

number of ways such as choosing a significant edge weight and removing any edges

whose weights fall below this value. Other ways of thresholding a network include

choosing the number of edges wanted within a chosen network, or listing the values

from strongest connection to weakest and selecting a percentage (typically 20-30%) of

strongest links to form a list to become edges within the network.

Another type of brain network is that of effective connectivity [56]. It measures the

influences that nodes have over other nodes within a network model. To determine
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this connectivity the system would be analysed using a measure capable of inferring

causality amongst a collection of time series; however, despite the importance of these

methods to our work we put off a thorough discussion of such techniques until Chapter

2.

1.2.2 Directionality in neural networks

Directionality is an important and often overlooked aspect of brain networks. Natu-

rally, brains are directed. This is because within the brain there are chemical synapses

which have predetermined transmitters and receivers, hence the chemicals flow one

way, from the transmitter of one synapse to the receiver of another. Direction is rarely

investigated as the methods to obtain the data are intrusive. Methods such as electron

microscopy and tract tracing involve slicing the brain and examining it underneath

a microscope. This means that there is little information on the direction of the con-

nections within the human brain, as these are mapped with non-invasive techniques,

and although they have improved in the level of detail that can be found they are still

unable to determine direction at present. Therefore papers which analyse the human

connectome are potentially flawed as they neglect a fundamental aspect of biology. De-

spite having the information available for analysis on animal connectomes they too are

still often analysed with undirected networks as to discover underlying information

about brain networks and so these too are also potentially flawed. Many of the net-

work measures and characteristics that have been found within the connectome [57]

are dependent on the directionality of the connections in the networks. Therefore it

is important to address this gap in knowledge and understand the extent of its im-

pact. The main aim of this work is to explore the effect that directionality has on brain

network dynamics.

Kale et al questioned the reliability of undirected connectomes by evaluating a range of

species and parcellations using network analysis and comparing the directed (or em-

pirical) and undirected cortical network results [58]. Their findings demonstrate that

adding in extra edges (reciprocal edges) thus making a directed network undirected

leads to larger errors than if you remove edges to make a network undirected. This
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suggests that errors can be made when classifying and identifying nodes such as hub

and peripheral nodes, meaning large consequences as these can have important roles

within brain function. This work focuses on characterising the effect of network direc-

tionality on structural brain networks; however, the extent to which perturbations to

the directionality of connections influence neural activity on large-scale connectomes

has yet to be addressed. The majority of work in this direction has centred on the

dynamics of small circuits, such as network motifs [59].

1.2.3 Network models of large-scale neural activity

Computational models have been closely linked to neuroscience for a number of years,

beginning with the spiking model of Hodgkin and Huxley in the 1950s [60]. Their

model consisted of a set of non-linear ODES describing the temporal evolution of the

membrane potential, and was derived from so-called clamping experiments on the gi-

ant squid axon. This work was the foundation of the family of models known as spik-

ing neuron models [61, 62]. In 1982, Hopfield introduced an artificial neural network

which replicated how the human brain stores and retrieves memories. In this model,

a neuron is either on or off (firing or not firing) which is a huge simplification of how

the brain works; however, the model is capable of being trained to learn patterns and

then recognise slightly corrupted patterns. Since then computational models have con-

tinued to grow in numbers and complexity so that the brain may be represented to suit

the requirements desired, including large scale functional patterns within the brain. By

using computational models that examine large-scale activity, we can view the overrid-

ing dynamics that occur. To model this larger-scale behaviour, many authors tend to

use neural mass models, such as Wilson-Cowan [63], Jansen-Rit [64] and Stuart-Landau

[65], since they better replicate neural rhythms such as those observed in EEG record-

ings. Unlike the spiking neuron models discussed above, these models describe the

collective neuronal behaviour of large groups of neurons together thus providing an

average activity level for larger brain regions. By using these models we can visualise

and understand what is happening within the brain at a larger scale to that of single

spiking neurons and they are more realistic at the scales we examine.
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Figure 1.2: Comparison of functional connectivity networks for simulated dynamics
using the Wilson-Cowan model (two different parameter sets) and coupled via the
anatomical connectivity of the Macaque monkey.

Neural mass models usually describe local populations of interacting neurons; most

commonly they describe the excitatory and inhibitory behaviour of the collective neu-

rons [66]. Within these models each node has complex dynamics from the population

behaviours as well as influence from other nodes within the network. They can be cou-

pled to a large scale brain by using an anatomically informed connectome. These can

be found in a variety of places, one of which is CoCoMac [67], which is a collation of

invasive tract tracing studies that enable us to better understand the primates’ brains.

Creating a functional network this way means that we gain valuable insight into the

functional patterns of correlated areas of the brain, meaning that by using the connec-

tome alongside the generated functional network we can analyse structure-function

relationships using these brain network models [68]. Figure 1.2 shows two simulated

functional networks with dynamics simulated using the neural mass model of Wilson

and Cowan (two different parameter sets) and connectivity provided by the anatomical

network for the Macaque monkey.

These models are dynamical systems and are capable of generating diverse dynamical

behaviours that closely match observed neural activity in the brain, such as oscillations

and multistability. Multistability is an interesting area of dynamics and it is believed

to play an important role within the brain that can help us understand large-scale pat-

terns that occur [69]. To begin to understand multistability we first need to understand

stability. An attractor, which could be of varying nature for example a fixed point or
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a limit cycle, has unique basin of attraction. This is said to be stable if after a small

perturbation it returns to the same attractor; if a system has multiple of these stable

states its said to be mutlistable. However, large perturbations can knock the system

from one basin of attraction to another meaning it changes the attractor it is drawn to.

Within the brain this has been hypothesised to equate to the brain being ‘knocked’ from

a healthy state to an unhealthy one, or indeed to another healthy state (e.g. different

resting states). Resting state data studies have shown that healthy brains constantly

switch between various resting states showing that the brain is multistable as well as

dynamic even when the brain is at rest (meaning there is no task and the brain has no

stimulation) [70].

The virtual brain (TVB) is a neuroinformatics software that simulates brain activity by

using realistic biological data for the connectivity matrices within the framework [71].

It has a variety of information included such as time delays and connection strength in

order to make networks biologically realistic. The package also holds many different

neural mass models which can be used alongside the tractography data they supply.

Together this defines the virtual brain. It can be used to generate time series which

simulate brain activity similar to that of data from imaging techniques such as EEG,

MEG or fMRI. It then can also be used to analyse this data and can seamlessly interact

with other well known toolboxes via MATLAB such as the Brain Connectivity Toolbox

(BCT) [72]. More information can be found in papers such as [73, 74] that go into depth

on how to use and understand this platform and simulator.

1.2.4 Brain networks and disease

Brain networks (both healthy and diseased) have been shown to display many com-

mon features such as small-worldness [75], the existence of hubs [76] and a hierarchi-

cally modular structure [77]. Importantly recent studies have found that a number of

brain diseases result from a breakdown in the above features, which are believed to be

crucial for the efficient transfer of information in the brain [78, 79]. Schizophrenia, for

example, has been reported to involve significant changes to network architecture, as

compared to healthy controls. For example, in the study by Liu et al. [80] it was found
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that the small-world architecture of the brain was disrupted in people with schizophre-

nia, largely due to an increase in the distance between nodes, or brain regions, in the

networks. Indeed, it has been postulated recently that schizophrenia is a disorder of

brain network disorganisation [81].

Another neurological disorder that has received considerable attention is Alzheimer’s

disease (AD). Research has shown that the structural brain networks of those patients

with AD display abnormal small-world features with increased local clustering, mean-

ing AD patients’ brain networks have a less than optimal organisation [82]. It has been

argued that the spread of disease can be linked to the attack of important hub networks

during the early stages of the disease [83]. Not only does AD attack hub nodes but also

the functional connections within modules, this degeneration of both hub nodes and

the modular structure correlates with patients’ cognitive ability [84]. By using network

neuroscience within diseases such as AD we can highlight the differences between dis-

eased and healthy brains, meaning physical bio-markers can be made known to further

researchers.

Epilepsy is a dynamic brain disorder that affects approximately 1% of the world’s pop-

ulation. Its main symptom is seizures, which are the spread of uncontrolled neural

activity. It has been known for a while that changes in the brain’s structure can lead to

abnormal brain function such as epileptic seizures, as well as other neurological disor-

ders [85]. Neuroimaging techniques are improving, meaning we have greater insight

into the structural networks and the differences between healthy and diseased brains

have become better quantified using network measures; for example, the clustering co-

efficient has been shown to increase in certain areas of epileptic patients’ brains [86].

Computational models have been used to simulate corresponding functional networks,

and examining structural and functional networks together has yielded greater under-

standing into epilepsy and other diseases [87, 88]. There are several different types

of epilepsy and, although it normally cannot be cured, it can be controlled with anti-

epileptic drugs and these are effective in 60–70% of individuals [89]. However, this

is not always successful and in some cases surgery is the only option left. In surgery

it is common to remove the part of the brain that is ‘linked’ to the origin of seizures
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in most epileptic patients, and the success rate of patients can vary significantly [90].

An active area in network neuroscience, computer modelling of epilepsy using brain

network models, attempts to predict surgical outcomes for patients with focal epilepsy

with success which can aid clinicians in presurgery consultations [91]. Another impor-

tant research area is in the prediction and control of seizures using implantable devices.

Network methods have recently been shown capable of detecting seizure onset deploy-

ing so-called time-dependent network approaches. In one study by Kramer et al. [92], it

was shown that functional networks evolve through distinct topological phases during

seizure progression: a large, densely connected set of nodes dominate at seizure onset,

and just prior to termination, but during seizures this densely connected component is

fractured into a number of smaller modules.

Note that whilst we have provided some examples above on how networks can be ap-

plied to study brain disorders we have only touched on what is a huge subject area. An

excellent recent overview of the state-of-the-art in network neuroscience and its appli-

cation to psychiatry is given in the review by Alexander et al. [93]. Another important

note is that the aformentioned studies almost exclusively ignore directionality and so it

is very important to determine the impact of structural direction on network dynamics

in order to understand how directionality might impact and influence the results and

studies mentioned.

1.3 Thesis overview

In this thesis we apply techniques of network science in order to better understand

structure-function relationships in the brain, and the impact that these can have on one

another. More specifically, we aim to discover the impact that directionality of a struc-

tural brain network can have on the dynamic properties sub-serving brain function.

Below we outline the structure of the remainder of the thesis.

In Chapter 2, we delve deeper into the preliminaries of network science, providing

definitions of specific relevance to this project within network science. Within this we

look at different network measures that can be used to analyse a system as well as
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the different network models that can be used. In Chapter 3 we analyse systemati-

cally the effect that network directionality has on the brain’s ability to store network

patterns. More specifically, activity of neural subunits is described by a determinis-

tic, graded response Hopfield model with connectivity defined via physiologically-

relevant structural connectomes across a range of species and parcellations. The ca-

pacity of connectome-based networks to store patterns is interrogated by determining

large numbers of fixed-point attractor sets for both directed and undirected connec-

tomes (obtained via the addition of reciprocal connections) under systematic variation

of model parameters. Moreover, we quantify the robustness of said patterns using the

basin stability approach, which uses the basin of attraction to assess a steady state’s

stability in a probabilistic sense (i.e. it provides the likelihood of returning to a steady

state under a random, non-small perturbation). Importantly, our approach enables us

to determine the extent to which directed network topology influences multistability

within connectome-based networks, as well as allowing us to quantify the affect that

directionality has on the robustness of neuronal activity patterns in the brain. In Chap-

ter 4 we question whether a significant change such as the addition of direction to the

structural network will have a significant impact on the resulting directed functional

network [94]. We hypothesise that neglecting direction from the structural connec-

tome will have a major impact on the resulting functional brain networks as measured

by Granger causality (GC), single transfer entropy (STE) or directed phase lag index

(dPLI). Here, we focus on dPLI as it is a simple measure which has been proven to

have similar outcomes to that of GC and STE without the complexity that those mea-

sures bring [95, 96]. We also follow on from several papers which have also used dPLI

as a comparison measure in studying directionality [94, 96]. Finally, in Chapter 5 we

conclude with a summary of the work presented and provide a discussion of possible

ongoing research in this area.

16



CHAPTER 2

Network preliminaries

In this Chapter we provide a mathematical overview of some of the most important

areas in network science, with especial focus on those areas of most use in our work. We

start by exploring the definitions of a graph or network and we then study the different

network measures which will be used throughout this thesis. Subsequently we look at

some classic network models that are commonly used within network science before

discussing some further topics of interest such as modularity that we use later in this

thesis.

2.1 Networks

A network, or graph, is a pair N = (V, E) consisting of a set of vertices (or "nodes")

V and a set of edges E ⊂ V × V, in which vi, vj ∈ V are connected in N if there exists

an edge e =
(
vi, vj

)
∈ E. The cardinality of the sets V and E, denoted n = |V| and

m = |E|, respectively, count the number of nodes and edges of the network. There

are many different types of network; we discuss a few including the key example of

directed networks below.

2.1.1 Weighted networks

In real world networks connections can have varying strengths or weights. To include

this in the network structure we define a weighted network by considering a graph
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Figure 2.1: An example of a weighted network. Here, edge thickness varies in regard
to the edge weight.

G = (V, E) along with a weight function w : E −→ R, mapping each edge to the real

number line. In neuroscience, for example, weighted networks are often used to define

a structural brain network derived from diffusion tensor imaging (DTI) experiments

thus resulting in a complete, weighted network, where the weights can be considered

as probabilities describing the likelihood that two nodes, or brain regions, are con-

nected. It is common practice for studies in network neuroscience to consider binary

brain networks, using some thresholding scheme to convert real numbers to zeroes and

ones. Figure 2.1 shows an example of a weighted network in which the edge thickness

represents the weight of the edge.

2.1.2 Directed networks

As already discussed in Chapter 1, directed networks are prevalent within neuroscience

but often overlooked. The majority of experimental techniques are incapable of infer-

ring whether or not a connection is directed, either structural or functional, and so,

again, the default is to consider undirected representations only – although in the case

of functional connectivity studies, statistical techniques such as dynamic causal mod-

elling and Granger causality can be used to infer directionality [56, 97, 98]. A directed

network is one in which connections are not mutual, meaning that a connection can

occur one way and not the other. For example chemical synapses within the brain only

fire one way, meaning there is natural direction in the brain. Mathematically, we say
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Figure 2.2: An example of a directed network. Here, the arrows show the direction of
the connection between nodes.

that a network is undirected if (vi, vj) ∈ E then necessarily (vj, vi) ∈ E; otherwise it is

directed. Figure 2.2 shows an example of a directed network in which the arrows show

the direction of the edges.

2.1.3 Adjacency matrices

The most common way to represent a network is by its adjacency matrix, which is an

n × n matrix given by, A, with entries

aij =


1, i ∼ j,

0, otherwise.
(2.1)

Here, ∼ denotes that nodes i and j are adjacent, i.e. they are connected by an edge, in an

undirected network. In a directed network, ∼ would denote a connection from node i

to node j, rather then a connection going both ways. The above formulation assumes

that the connections between nodes are binary, or unweighted, which for most real-

world systems is not the case as discussed above. Clearly, the adjacency matrix of an

undirected network is symmetric, i.e. A = AT.

An abundance of network models in neuroscience, and biology more widely, are mod-

elled as so-called simple networks, that is they are unweighted, undirected networks that

contain no self-loops or multiple edges. However, clearly many biological systems are
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more naturally described using more complicated mathematical objects, e.g. hypernet-

works, multiplex networks, or more generally, multilayered networks. The brain in

particular, has recently been modelled as a multilayered network, in which different

layers represent either structure and function [33, 99], or the different frequency bands

at which the brain operates [34, 100].

2.2 Network measures

In this section we introduce the network measures considered in our experiments for

both undirected and directed forms. See the books by Estrada [101] and Newman [102]

for a more general introduction to network measures and for additional details on the

measures introduced here.

Degree

The degree of a node is the number of connections the node has or in terms of the

adjacency matrix

ki = ∑
j

aij. (2.2)

In directed networks there are a number of different degrees. The in-degree is the num-

ber of connections into the node, the out-degree is the number of connections out of the

node and the total degree is the sum of the in- and out-degrees:

kin
i = ∑

j
aji kout

i = ∑
j

aij, (2.3)

and

ktot
i = kin

i + kout
i . (2.4)

Often the mean, or characteristic, degree is used as a global measure of connectivity

and is given by

⟨k⟩ = 1
n

n

∑
i=1

ki =
1
n ∑

ij
aij =

2m
n

, (2.5)

where m is the number of edges. Note that a similar result holds for directed networks.

20



CHAPTER 2: NETWORK PRELIMINARIES

Shortest and average path-length

The distance d(i, j) between two nodes i and j is the length of the shortest path connect-

ing the nodes i and j. The matrix D =
(
dij
)

is called the distance matrix . For simple

networks (a graph that is unweighted and contains no self loops, undirected), D is a

symmetric matrix, i.e. the distance between i and j is the same as the distance between

j and i. The characteristic path-length is the average geodesic distance over all pairs of

nodes in the network and is given by

⟨l⟩ = 1
n(n − 1) ∑

i,j
d(i, j). (2.6)

This particular measure is historically important in neuroscience since a short charac-

teristic path-length is indicative of efficient transfer of information in such systems.

Triadic structures

Triangle counting is an important problem in network mining and is used in determin-

ing a number of different network measures. A triangle in a network is defined as a

path of length 3 starting and ending at the same node (i.e. a 3-cycle). To compute the

number of triangles we can use the following observation concerning the number of

walks (i.e. network traversals [101]) in a network:

(
Ak
)

ij
=

n

∑
r1=1

n

∑
r2=1

· · ·
n

∑
rk−1

ai,r1 ar1,r2 . . . ark−2,rk−1 ark−1,j, (2.7)

counts the number of walks of length k that start at node i and end at node j – this result

is easily proved by induction.

Using this result we can count the number of triangles centred on node i in a network

as

∆(i) =
1
2
(

A3)
ii . (2.8)
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The total number of triangles in an undirected network is given by

∆ =
Trace(A3)

6
, (2.9)

and directed network is given by

∆ =
Trace(A3)

3
. (2.10)

Note that when dealing with a directed network the above equations generalise imme-

diately to count directed 3-cycles – although sometimes we might wish to count more

general triadic structures in which case the formulae need to be refined [103].

Clustering coefficient

Clustering describes the interconnectedness of a node’s nearest neighbours. For exam-

ple, consider a friendship network. Such a network typically forms lots of small cliques

due to fact that friendship occurs much more frequently amongst a friends’ friends than

it does between random people in the network. Thus, friendship networks exhibit large

levels of ‘clustering’.

In their seminal work on ‘small-world’ networks [21], Watts and Strogatz forwarded a

new measure, which they termed the local clustering coefficient, that quantifies the extent

to which a network node is clustered. For a given node, they considered the ratio

C(i) =
2∆(i)

ki(ki − 1)
. (2.11)

Here, ki is the degree of node i and the quantity ki(ki − 1)/2 counts the number of

connected triples (a pair of edges with a shared node) centred on node i. Informally,

C(i) measures the ‘cliquishness’ of the network; it tells you the likelihood that a nodes

neighbours are connected.

As mentioned above, there are a number of different ways of counting triangles in a

directed network and so this results in multiple versions of the clustering coefficient

22



CHAPTER 2: NETWORK PRELIMINARIES

for a directed network [103]. For example, if we include all triangles, of all directions,

then the resulting coefficient is given by

Ci =

(
A + AT)3

ii
(ktot

i )(ktot
i − 1)− 2A2

ii
. (2.12)

This is the equation we use throughout this thesis to calculate directed clustering coef-

ficient. See reference [103] for definitions of the other possibilities.

As is common in network science, a global measure of clustering is provided by taking

an average over all nodes, i.e. the global clustering coefficient is given by

⟨C⟩ = 1
n

n

∑
i=1

C(i). (2.13)

Global efficiency

The efficiency of a network measures how effectively the network can exchange infor-

mation, which is, for obvious reasons, an important measure in network neuroscience.

It is a useful measure as, unlike distance, efficiency does not explode for disconnected

nodes:

e =
1

n(n − 1) ∑
i,j,i ̸=j

1
d(i, j)

. (2.14)

It can be used to measure the small-world phenomenon within a network as it can give

an idea into how the shortcuts in the network can help reduce inefficiency when pass-

ing information through the network. Such a measure is particularly relevant to neu-

roscience since it quantifies the efficiency of information transfer in cortical networks

from a parallel processing perspective.

2.2.1 Measuring network centrality

Centrality measures are a very useful way to find important nodes within a network.

The different measures can identify contrasting important nodes depending on the cho-

sen definition of important. Below we outline some historically important centrality

measures (see the book by Estrada[101] for further examples).
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Degree centrality

Degree centrality is a simple measure which orders the importance of nodes via the

number of connections. This is a simple measure to calculate as we use Equation (2.2)

to find each node degree, then rank nodes from highest degree as most important to

lowest degree being least important.

Betweenness centrality

Betweenness centrality measures nodes that connect important regions within the net-

work. The algorithm for computing the betweenness centrality of node i, is to calculate

the shortest path between between all other pair of nodes and calculate the fraction of

them that pass through node i.

b(i) = ∑
j,k

αkj(i)
αkj

(2.15)

where αkj is the number of shortest paths from k to j and αkj(i) is the amount of those

shortest paths that pass through node i. This can also be normalised so that the cal-

culation lies between 0 and 1, to do this we divide by the number of pairs of nodes

not including node i. So for directed networks (n − 1)(n − 2) and undirected networks

(n − 1)(n − 2)/2. Figure 2.3 shows an example of betweenness centrality where nodes

2 and 6 would have very high betweenness centrality values as they are both important

bridging nodes to other parts of the network, where as node 7 would have a low value

with it being a peripheral node [57].

Eigenvector centrality

Eigenvector centrality measures the influence a node has on the network by assessing

the connected nodes, if the connected nodes also have high influence it increases the

score whereas a node connected to a low influencing node the score will decrease. So

it places importance onto the connections of a node rather than the credit of that indi-

vidual node. The measure is calculated via the eigenvectors of the adjacency matrix as
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Figure 2.3: An example of two nodes with high betweenness values. Nodes 2 and
6 have a connection between them which connects two important regions of the net-
work.

follows:

λ1 e(i) = ∑
j

Aij e(j), (2.16)

where λ1 is the largest eigenvalue of A, which is guaranteed by Perron–Frobenius the-

orem, the proof that a square matrix with real values will always have a unique largest

eigenvalue [104]. The centrality score of the vertex i is then given by the ith component

of the related eigenvector.

2.3 Network models

For completeness we consider here briefly three different network models that have

had a significant impact in network science and network neuroscience in particular.

2.3.1 Erdős-Rényi random graphs

As discussed in Chapter 1, Erdős and Rényi explored a new type of graph, named

Erdős-Rényi random graphs (ER) [15]. They introduced G(n, p) as a collection of net-

works having n nodes such that all pairs of nodes were connected with probability p.

So, for example as seen in Figure 2.4, when p = 0 a null network containing no edges

would be created. For increasing values of p the networks become increasingly dense

until at a certain point a giant connected component forms [105, 106]; further increasing
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Figure 2.4: Increasing value of p to increase connections in an ER random graph.

p the networks tend towards a complete network. A considerable amount of research

has gone into understanding the ER random graph model and so, for example, it is

well known that their degree distribution is binomial, given by

P(k) =
(

n
k

)
pk(1 − p)n−1−k (2.17)

and that in the large n limit this distribution is well approximated by a Poisson distri-

bution of the form

P(k) = e−⟨k⟩⟨k⟩k 1
k!

. (2.18)

Note that we require ⟨k⟩ to remain bounded in the above limit.

Importantly, both the clustering coefficient and average path-length are known for ER

random graphs [107]:

l ∼ log n
log⟨k⟩ and C = p ≈ ⟨k⟩

n
. (2.19)

Note contrasting the above against real-world networks shows that ER random graphs

are not ideal to be used for modelling real-world networks.

Perhaps the most common use of ER networks is as null models by which to compare

results for real-world networks against. It is particularly common in neuroscience to

use the following ratio to determine whether or not a network possesses the small-

world property:

S =
γ

λ
, (2.20)

where

γ =
C

Crand
and λ =

l
lrand

. (2.21)
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Figure 2.5: Increasing randomness changes a network from regular to random and
through transition shows small-world properties.

In the above, Crand and lrand are the mean clustering and characteristic path-length for

an ensemble of ER networks of the same order as the network of interest and we say

that the network is small-world if S >> 1.

2.3.2 Watts-Strogatz small-world model

Stanley Milgram’s experiment showed the first evidence of the small-world phenomenon,

as explained in Chapter 1. From this, it was hypothesised that for a network to be con-

sidered ’small-world’ the path length would need to be proportional to the log of the

network size, specifically l ∝ log(n). Real-world networks, however, tend to also dis-

play high levels of clustering, and so from a practical point of view we say a network

is small-world if it has both small average path length whilst simultaneously having a

large amount of clustering when compared to a ‘random’ network.

Watts and Strogatz thought up an idea to create a random network model that incorpo-

rates elements of both random and regular structures. Ideally taking the small average

path length in classic random graphs whilst also having the clustering levels seen in

regular networks. They created this by beginning with a k–regular lattice on n nodes

and rewiring each edge or adding a new edge (depending on the algorithm used), with

a set probability p so that each node is reconnected randomly to a different node. When

p = 0 the network will still have a regular structure, as is the case with low values of p.

However, as p increases so does the small-worldness of the network; we know that reg-
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Figure 2.6: Scale-free network and the corresponding degree distribution graph.

ular networks have high levels of clustering already but adding short-cuts, we shorten

the average path length and so traversing the network becomes easier and the small-

worldness increases as can be seen in Figure 2.5. The result of this method is a random

graph that has small-world properties, high clustering and small path length.

2.3.3 Barabási-Albert model

When studying the Erdős-Rényi and Watts-Strogatz models there is no thought to the

degree distribution of the resulting networks. Within those network models the nodes

are often homogeneous due to each node being treated the same; the issue here is that

most real world degree distributions are not homogeneous but instead are heteroge-

neous. We often have few nodes with many connections, called hub nodes, and many

nodes with few connections, called periphery nodes, this feature is typical of scale-free

networks an example of which can be found in Figure 2.6. Barabási and Albert posited

that this was a natural consequence of so-called preferential attachment, meaning that

nodes have a preference to attach themselves to nodes with higher degree.

They set about creating a network model which could construct a network that was

scale-free. This algorithm starts with a small initial network, adding nodes in each
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iteration using this probability,

p(i) =
ki

∑j k j
. (2.22)

The nodes follow the preferential attachment idea and so with that are more likely to

attach to a node with higher degree already, creating a scale-free network. This model

is often termed the preferential attachment model or the BA model.

2.4 Network modularity

It is common in real-world networks that some nodes will cluster together in groups

called modules. Often this is due to them having similar characteristics, either struc-

turally or functionally. These modules or communities are identifiable as having a high

concentration of connections between nodes within a module and sparse connectivity

with the rest of the network. Modularity plays an important role in network neuro-

science due to the observed hierarchically modular organisation of both structural and

functional networks. For example, it has been shown to impact the function of work-

ing memory capacity and declining brain modularity is related to aging in both healthy

and diseased brains [108]. There is also a belief that the way the brain is organised in

modules can mediate the relationship between task complexity and performance, the

authors in [109], for example, showed that when a brain is more organised it has a neg-

ative correlation with scores from complex tasks but a positive correlation with scores

from simple tasks, showing a link between brain organisation and cognitive processes.

Girvan and Newman first proposed modularity as a network measure [24]. They de-

termine a partitioning of the node set V, i.e. a collection of sets Vi ⊂ V with Vi ∩ Vj =

∅ ∀i ̸= j and ∪iVi = V, such that nodes in the same set are densely connected with each

other, but sparsely connected with all other nodes. To measure the ‘quality’ of such a

partition Girvan and Newman forwarded the following modularity score

Q =
1

4m

np

∑
r=1

n

∑
i,j=1

(
aij −

kik j

2m

)
sirsjr, (2.23)

where m is the number of edges within the network, np is the number of sets within
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Figure 2.7: A network with two distinct modules.

our partition, aij equals 1 or 0 depending upon whether a connection exists between

nodes i and j, ki is the degree of node i and sir = 1 if node i is in the cluster r and sir = 0

if it is not. Incorporating directionality alters Equation (2.23) as follows:

Q =
1

2m ∑
ij

(
Aij −

kin
i kout

j

m

) (
sisj + 1

)
(2.24)

Modularity can then be optimised over all partitions to understand the optimised com-

munity structure. Note that this measure is in general a computationally intractable

problem.

A comprehensive overview of community detection algorithms for general complex

networks is given in [110]; for a more recent neuroscience-specific review see [111]. Our

focus here, is on the spectral community detection algorithm [112] due to Newman

since we deploy it in Chapter 3 to determine modularity structure for connectomes

across a range of species.

Spectral modularity maximisation is a method of obtaining modularity values and

makes use of the eigenvectors of the matrices to approximate the divisions within a

network [102, 112]. The method begins by splitting a network in two and introducing

si which holds the value of either +1 or −1 dependent on if node i is in group 1 or 2

respectively. We can then use a vector form of (2.23) given by,

Q =
1

4m
sTBs, (2.25)
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where s is a vector of the elements of si and B is the modularity matrix that is made up

of the elements of Bij where,

Bij = Aij −
kik j

2m
. (2.26)

In order to maximise the value of Q we must find the value of the vector s that max-

imises Equation (2.25) for given matrix B. Given that si is a discrete variable maximisa-

tion is trickier then usual, normally the usual tools of calculus would suffice, but as the

problem is discrete we instead we use an approximation method. An approximation

to this difficult discrete maximisation problem can be obtained via the method of re-

laxation, in which we replace the intractable discrete problem by a related continuous

one, which is amenable to the tools of calculus. To this end we allow the vector s to

take real entries so that we can find an approximation to maximise Q, not exact as the

values may not be ±1, but will allow us to see the best way to split the network.

By considering the fact that the values of the vector s are binary and so they align with

the corners of a hypercube, we can relax this by allowing the vector to point anywhere

on the surface of a hypersphere with radius of
√

n. The length of the vector must stay

the same and so

∑
i

s2
i = n. (2.27)

The relaxed form means that the maximisation problem is elementary and is simply

just a case of differentiating Equation (2.23) whilst using the new constraints given in

Equation (2.27) with Lagrange multiplier λ:

∂

∂si

[
∑
jk

Bjksjsk + λ

(
n − ∑

j
s2

j

)]
= 0. (2.28)

Thus, we obtain

∑
j

Bijsj = λsi, (2.29)

or in vector form

Bs = λs. (2.30)

Which means that the optimal s is one of the eigenvectors of the modularity matrix with
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corresponding eigenvalue λ. Substituting Equation (2.30) into Equation (2.25) gives

Q =
1

4m
λsTs =

n
4m

λ, (2.31)

which can be used to find the eigenvector which maximises our Q, by choosing the

largest eigenvalue and using the corresponding eigenvector.

The elements of s however we know are forced to only take the values of ±1 and so we

try and chose values of s as close to our ideal as possible within these constraints. By

minimising the angle between s and the leading eigenvector which we will denote as

u. Alternatively we can just maximise the product sTu = ∑ isiui which is when for all i,

siui is positive which occurs when both si and ui both have the same sign, if ui = 0 we

can chose either si = ±1. This creates an algorithm to then follow, firstly we calculate

the eigenvector that corresponds to the largest eigenvalue, then use this vector to assign

signs to each node which splits them into two modules or communities, positive signs

in one community and negative in the other.

2.5 Summary

In this chapter we have given an overview of some of the most essential features of

network science currently with a focus on the topics with most relevance to the work

within this thesis. This review is not extensive as there are many areas we have not con-

sidered within this chapter. We have covered the basic mathematical concepts of graph

theory and networks. We have also considered some of the different types of network

models that exist and that can be created to make networks with various results and

behaviours. We also examined how we can analyse networks by using measures such

as centrality measures and extended our review to include information about modu-

larity. For further details we recommend the following books and references therein

[101, 102]. The concepts covered in this chapter will be examined for various relevant

(directed and undirected) cortical networks in the subsequent chapters.
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The impact of structural

directionality on the computational

properties of a neural network

The goal of this chapter is to extend work by Golos et al. [113] to analyse systemati-

cally the effect that network directionality has on the brain’s ability to store network

patterns. More specifically, activity of neural subunits is described by a deterministic,

graded response Hopfield model [114] with connectivity defined via physiologically

relevant structural connectomes across a range of species and parcellations. The ca-

pacity of connectome-based networks to store patterns is interrogated by determining

large numbers of fixed-point attractor sets for both directed and undirected connec-

tomes (obtained via the addition of reciprocal connections) under systematic variation

of model parameters. Moreover, we quantify the robustness of said patterns using the

basin stability approach forwarded by Menck et al. [115], which uses the basin of at-

traction to assess a steady state’s stability in a probabilistic sense (i.e. it provides the

likelihood of returning to a steady state under a random (non-small) perturbation). Im-

portantly, our approach enables us to determine the extent to which directed network

topology influences multistability within connectome-based networks, as well as al-

lowing us to quantify the affect that directionality has on the robustness of neuronal

activity patterns in the brain.
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3.1 Brain network models

3.1.1 The Hopfield model

The Hopfield model was originally forwarded by J. J. Hopfield as a relatively simple

description of the collective behaviour of a large ensemble of ‘neurons’ [114, 116]. In

this section we give a brief description of the original Hopfield model [116] as well as

the so-called ‘graded response’ model [114], which extends the original discrete model

to the case of continuous variables and response. We then discuss an adaptation of the

graded response model forwarded in [113] that we use throughout this chapter.

The original model

The original Hopfield model consists of n neurons, each of which can be in one of two

states: an ‘on’ state or an ‘off’ state. Denoting the state of the ith neuron as Vi (typically

Vi will be taken as being either 1 or 0), the total input of the ith neuron is given by

Hi = ∑
j ̸=i

AijVj + Ii, (3.1)

where the matrix A defines the neural architecture and any external inputs are given

by Ii. Thus, each neuron receives two types of input: an external input and input from

neighbouring neurons.

Each neuron updates it state according to the following probabilistic rule:

Vi −→ 0 if ∑
j ̸=i

AijVj + Ii < θi

−→ 1 if ∑
j ̸=i

AijVj + Ii > θi.
(3.2)

The threshold θi determines the state of the ith neuron. The state of the system updates

at random and in an asynchronous manner. This asynchronicity is believed to better

model important features of neural systems such as noise, delays and jitter [114, 116].

Importantly, it can be shown that the dynamics of an n-neuron Hopfield model (evolv-
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ing according to (3.2)) always converges onto a stable steady state, regardless of the

initial configuration. To see this, consider the following energy function:

E = −1
2 ∑

i
∑
j ̸=i

AijViVj − ∑
i

IiVi + ∑
i

θiVi.

Any change, ∆E, of the energy, E, due to a change in state (Vi −→ V ′
i ) of the ith node is

given by

∆E = −
[
∑
i ̸=j

AijVj + Ii − Ui

]
∆Vi.

Now, according to the update rules in (3.2), ∆Vi is positive/negative only when the

bracketed term in the above is positive/negative, thus any change in E under the al-

gorithm in (3.2) is negative, and since E is bounded, iteration of the algorithm must

converge to a stable steady state [114, 116]. The boundedness of E follows since the

input is bounded and all other elements in each of the sums lie in the range [0, 1].

The original Hopfield model as described above, serves as a model of associative mem-

ory in that it converges onto a set of stable steady states, each of which can be consid-

ered as content-addressable memory. Configurations that lie close to a steady state, or

memory, can be thought of as partial information about that memory. Convergence of

such an initial configuration to the aforementioned steady state implies that memory

retrieval can be achieved even when only partial information of the memory is avail-

able; in this instance, we say that the memory is defined by its content as opposed to

its location.

Graded response Hopfield model

Next, we consider the graded response Hopfield model, which is a time-continuous ver-

sion of the model described previously. The graded response model originally consid-

ered by Hopfield is given by

Ci
dui

dt
= ∑

j
Aijgj(uj)− ui/Ri + Ii, (3.3)
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which is a resistance-capcitance model of cell potential [114]. In (3.3), ui describes the

mean potential of the ith neuron, Ci and Ri are the membrane capacitance and resis-

tance, respectively of the ith neuron, and as before Ii denotes any external inputs to

neuron i. The function gi(x) describes the firing rate and is typically given by a sig-

moidal function of the form

g(x) =
1
2
(1 + tanh (x)) , (3.4)

but any monotonically increasing function in x that asymptotes at V0
i and V1

i is suffi-

cient. (Note that for the above choice of g we have V0
i = 0 and V1

i = 1.)

Importantly, Hopfield showed that Equation (3.3) has energy E given by

E = ∑
i

(
−1

2 ∑
j

AijViVj +
1
Ri

∫ Vi

0
g−1

i (V)dV + IiVi

)
, (3.5)

where Vi = g(ui). The minima of the energy function E determine the set of potential

states (i.e. steady state solutions) supported by the model in (3.3). To see this, note that

differentiating Equation (3.5) with respect to t gives:

dE
dt

= −∑
i

dVi

dt

(
∑

j
AijVj −

ui

Ri
+ Ii

)
,

= −∑
i

Ci
dVi

dt
dui

dt
,

= −∑
i

Cig−1
i (Vi)

(
dVi

dt

)2

,

and since g−1
i (Vi) is a monotonically increasing function and Ci is positive, we have

that either dE/dt < 0 or dE/dt = 0 in which case dVi/dt = 0 for all i. Thus, the

time evolution of (3.3) results in trajectories that seek out minima of the energy func-

tion in (3.5), in other words, the minima of E are in a one-to-one correspondence with

the stable steady state solutions of (3.3). To further illustrate these points, in Figure

3.2 we have plotted the phase portrait and energy function for the adapted Hopfield

model (see equations (3.6)–(3.7)) on an undirected, complete network on two nodes.

The correspondence between fixed points of (3.3) and minima of (3.5) can be seen in
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Figure 3.1: The firing rate function g(x, θ) =
1
2
(1+ tanh (G(Px − θ))) deployed in this

chapter for various values of G and P and fixed θ = 0.5.

Figure 3.2: Phase portrait and energy landscape of the Hopfield model in (3.6)–(3.7)
with N = 2, G = 10, P = 1, θ = 1/2 and C = 1.

the plot by examining where the fixed points are in the middle figure, shown with red

circles, also corresponds to where energy is at its lowest (dark blue) in the right side

figure. Note that the stable equilibria (or fixed points) of the Hopfield model in (3.3)

are in a one-to-one correspondence with the minimum energy configurations of (3.5)

as is evident from figures.

Adaptation of the Hopfield model

In our experiments neural activity is described using a variation of the Hopfield graded

response network model forwarded in [113]. This results in a dynamic network model

consisting of n state variables x1, x2, . . . , xn each describing the average neural activity
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within a brain region (or neuron):

τ
dxi

dt
= −xi +

n

∑
j=1

wjig(xj, θ), (3.6)

with

g(x, θ) =
1
2
(1 + tanh (G(Px − θ))) . (3.7)

Here, τ is a relaxation time constant and the matrix W represents the normalised adja-

cency matrix, which is defined as

W =
1

||A||1
A ∈ Rn×n. (3.8)

In the above, we make use of the one-norm to ensure that each xi ∈ [0, 1] by:

g(xj, θ) ∈ [0, 1] =⇒ ∑
j

wjig(xj, θ) ≤ kin
j = 1 (3.9)

for the normalised adjacency matrix. Which for a matrix A ∈ Rn×n is defined by

||A||1 = max
j

n

∑
i=1

|aij| = max
j

kin
j ,

where kin
j denotes the in-degree of the jth node. This ensures that xi ∈ [0, 1] as the

numbers within the matrix are divided by the maximum in degree from the network

and so this means the maximum number will be 1 and as there are no negatives lowest

value possible will be 0.

The function g(x, θ) in (3.7) is a sigmoidal function that represents the input-output re-

lationship of each node – see Figure 3.1. The parameters G and P, which represent node

excitability and the ratio of excitation over inhibition respectively, determine, alongside

the activation threshold θ, the degree of multistability present within the system (3.6).

Here, we follow [113] and define a global activation threshold given by

θ =
1

2n ∑
i,j

wji. (3.10)
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The global activation threshold is a simplification of the original Hopfield model since

each node uses the same activation threshold. In this simplified setting, nodes with

larger in-degree have a larger probability of being active.

Importantly, the parameters G and P control the dynamical regime. More specifically,

G is the system gain which controls the multistability of the system (see, for exam-

ple, [113]). In our experiments we fixed G = 10, 000 as such large values enhance

multistability thus increasing the network’s ability to support information. We then in-

vestigated the capacity of both directed and undirected connectomes to store patterns

under systematic variation of the scaling factor P, since this parameter has previously

been hypothesised to play an important role in determining attractor densities.

3.1.2 Structural connectivity

Network directionality is a fundamental feature of brain networks, yet due to experi-

mental limitations it is typically omitted from network studies of the brain. Motivated

by the study of Kale et al. [58], here, we investigate the influence that network direc-

tionality has on the information storing capacity of connectome-based networks for

a variety of different organisms across a range of scales, including two different par-

cellations of the Macaque monkey cortex [117], a parcellation of the cat cortex [118]

and a representation of the nervous system of C. elegans, which is a tiny round worm

and the only organism to date for which the entire nervous system is mapped out

[119, 120]. The Macaque and cat datsets are accessible via the Brain Connectivity Tool-

box [57]. The C. elegans data is the same as that used in [121, 122] and is available from

http://www.biological-networks.org/?page_id=25.

For the mammalian connectomes, nodes represent some predefined collection of brain

tissue and edges encode the presence of long-range connections between pairs of brain

regions; whilst for the C. elegans connectome, nodes represent individual neurons and

edges between nodes represent synapses. For consistency in our experiments, edge

weights were discarded (when present) resulting in a binary representation of each

of the aforementioned connectomes, yielding a binary connectivity matrix A ∈ Rn×n

such that aij = 1 if brain region (neuron) i projects onto brain region (neuron) j, and is
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otherwise zero. To obtain undirected versions of the connectomes all connections were

made bidirectional resulting in a symmetric adjacency matrix given by

B = sgn
(

A + AT
)

,

where sgn(x) denotes the sign function, which equals 1 for positive inputs, -1 for neg-

ative inputs and is otherwise 0. Below we provide further details of the connectomes

studied in this work.

Macaque networks

The first Macaque connectivity network we consider is a representation consisting of

n = 71 brain regions and m = 876 directed edges. The network combines the parcel-

lation of the Macaque visual system due to Felleman and Van Essen [123] with that of

Yeterian and Pandya [124], which also includes brain regions within the sensorimotor,

motor and superior temporal corticies. The second Macaque connectome is the same

as that studied in [122], which is based on three extensive neuroanatomical compila-

tions [123, 125, 126] that collectively cover large parts of the cerebral cortex. It consists

of n = 95 cortical areas and m = 2390 directed edges. The connectivity data for these

networks were originally collated from the CoCoMac database [117] but we obtained

them from the Brain Connectivity Toolbox [57].

Cat network

The matrix representing the cat connectome is that given by Scannell et al. [118], which

is a collation of numerous studies and deploys the parcellation from [127, 128]. This

results in a connectome with n = 52 brain regions and m = 818 directed edges.

C. elegans

The C. elegans nervous system considered here has n = 277 nodes and m = 2105 di-

rected edges [121, 122]. This network is derived using electron microscopy and is the
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Figure 3.3: Spy plots of the adjacency matrices corresponding to the four connectomes
studied in this work: two different parcellations of the macaque cortex, the cat cortex
and the neuronal network for C. elegans. Directed connections are shown in blue.
Reciprocal edges added to form the corresponding undirected networks are shown in
red. The proportion of reciprocal edges, Pud, is given below each network diagram.

only fully mapped nervous system to date. It has two types of connections: chemical

synapses, which are directed, and gap junctions, which we treat as bidirectional since

experimental techniques are unable to infer directionality in this case.

Figure 3.3 displays the four connectomes analysed in this study with reciprocal edges

added to form the undirected representation of each connectome highlighted in red

and the respective proportion of reciprocal edges stated below each connectome. Ba-

sic network statistics for both the empirical connectomes as well as their undirected

representations are given in Table 3.1.
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Connectome
Cat M71 M95 CE

D U D U D U D U
# of edges 818 515 746 438 2390 1515 2105 1918

mean degree 15.73 19.81 10.51 12.34 25.43 32.23 7.60 13.85
# of modules 4 3 4 4 3 3 6 5

Table 3.1: Network statistics for the original directed connectomes (D) and their undi-
rected representations (U). Here, M71 and M95 denote the Macaque connectomes on
71 and 95 nodes, respectively, whilst CE denotes the C. elegans connectome.

3.2 Basin stability

For each network the dynamics are governed by the Hopfield model in (3.6). To deter-

mine the global stability of attractor states, we compute the basin stability [115] for each

of the steady states of (3.6) as a function of the parameter P. This amounts to estimat-

ing the size of the basin of attraction B(x∗) of each steady state, x∗, of (3.6). Due to the

computational challenges inherent in computing volumes of high-dimensional spaces

the basin stability is computed in a relative sense, that is

SB(x∗) = µ(B(x∗)), (3.11)

where µ is an appropriately defined measure over an appropriately chosen domain, Q

say, containing all basins of attraction of all attractors. Typically, µ will be proportional

to a volume and so µ(B(x∗)) ∈ [0, 1] is a proportion of state space. From a practical

point-of-view, suppose that x∗ is an asymptotically stable equilibrium point of (3.6)

with basin of attraction B(x∗). Then we integrate (3.6) for N initial conditions drawn

uniformly at random from Q and count the number, M, of initial conditions that con-

verge to the fixed point x∗, which provides the estimate M/N for the basin stability,

SB(x∗), of the steady state x∗.

3.3 Results

3.3.1 Network analysis
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Figure 3.4: Network measures for both directed (blue) and undirected (red) connec-
tomes: ρ = density; ⟨C⟩ = mean clustering coefficient; ϵ = efficiency; Q = Newman-
Girvan modularity score; and S = size of the giant (strongly) connected component.

Our focus here is on the impact that directionality has on network dynamics; however,

for completeness we present a brief overview of the fundamental statistical features of

the connectomes introduced in the previous section for both directed and undirected

cases. Note that unlike the study by Kale et al. [58], that considers a spectrum of

perturbed networks comprised of the empirical (directed) connectome at one end and

the fully undirected representation of the connectome at the other, we consider only

the aforementioned limiting cases here.

Figure 3.4 shows results of a network analysis for the different connectomes using

a range of standard network measures, including the network density ρ; the global

Watts-Strogatz clustering coefficient ⟨C⟩; and the Newman-Girvan modularity score Q

(see Chapter 2 for definitions of these standard network metrics). In addition, since the

empirical connectomes are in general not strongly connected, we also compute the rel-

ative size, S, of the giant strongly connected component (GSCC) for each connectome,
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as well as the global efficiency, which recall is defined as

ϵ =
1

n(n − 1) ∑
i,j,i ̸=j

1
d(i, j)

.

Here d(i, j) is the length of the shortest path between nodes i and j. All network mea-

sures were computed using the Brain Connectivity Toolbox [57].

The loss of directionality has the general effect of inflating network measures. For

the local metrics considered (i.e. the degree and clustering coefficient) this is a direct

consequence of the increased density of these networks. Note that whilst the cluster-

ing coefficient depends both on degree and interneighbour network connectivity, the

addition of reciprocal edges results in a monotonic increase of ⟨C⟩. The inclusion of

reciprocal edges has a similar inflationary effect on network efficiency since it facili-

tates shorter (potentially biologically implausible) routes between nodes. Interestingly,

network modularity is higher in the empirical connectomes in all cases, which indi-

cates the existence of asymmetric, intermodule connections potentially controlling the

flow of neural information between functional modules. Table 3.1 shows the number of

modules observed for each of the empirical and undirected connectomes correspond-

ing to the modularity scores given in Figure 3.4. It is noteworthy that in the case of the

Cat connectome and the C. elegans connectome, the removal of network directionality

reduces the number of observed modules – see Appendix A for details. We remark that

a similar break-down of modular topology due to the existence of false positive con-

nections in undirected brain networks was recently observed in a study by Sporns and

Betzel [111]. Finally, we note that, with the exception of the cat connectome, all empir-

ical connectomes have GSCCs consisting of less than N nodes; the fraction of nodes in

the GSCCs are 0.99, 0.90 and 0.85 for the Macaque connectome on 71 and 95 nodes and

C. elegans connectome, respectively.

3.3.2 Numerical simulations

In all of our experiments the time constant and network gain were fixed at τ = 10 and

G = 10000 respectively. (Such a large value of the gain results in network saturation,

44



CHAPTER 3: THE IMPACT OF STRUCTURAL DIRECTIONALITY ON THE

COMPUTATIONAL PROPERTIES OF A NEURAL NETWORK

at least for the connectomes we analysed.) We then proceeded to investigate the be-

haviour of the system in (3.6) for different connectomes under variation of the control

parameter P. Note that for such large values of G the function in (3.7) approaches a

Heaviside function with switching threshold at xs = θ/P. As the switch approaches

zero (i.e. in the large P limit) we have that all nodes are active for any non-zero initial

condition (as long as the network is strongly connected), and so the system is monos-

table with almost all initial states converging to the maximal solution, also known as

the ‘up’ state, x∗U = WT1. Here 1 =

(
1, . . . , 1

)T

is the vector of all ones. When the

switch is at one (i.e. P = θ), the network is in a quiescent ‘down’ state irrespective of

the initial condition. That is, the system is monostable and all initial states converge

to the trivial steady state x∗D = 0. For intermediate values of P the system displays

multistable behaviour.

In what follows, we choose P ∈ [θ, 10] since we have found (experimentally) that the

dynamics of (3.6) are unchanged outside this region regardless of the connectome con-

sidered. More specifically, for each connectome, we selected 101 equally spaced values

of P ∈ [θ, 10] and integrated a fixed set of 104 initial states drawn at random from

the state space Q = [0, 1]n. For each distinct fixed point x∗ found, we then approxi-

mated its basin stability, SB(x∗)(P), as the proportion of all initial states that converged

to x∗. Fixed points were identified by integrating (3.6) for T = 1000 using the built-in

MATLAB routine ode45, with absolute and relative tolerances both set to 10−6. Note

that convergence to a fixed point is generally much faster than T = 1000 and so the

integration was terminated early in this case. To better sample the extremely high-

dimensional state space, initial conditions were drawn from a binomial distribution

with xi(0) ∼ Bi(1, r), where r is a random number selected from a uniform distribution

over [0, 1]. In this way, we consider a range of different initial activity patterns. For

example, for small r the initial activity pattern has very few ‘active’ nodes. Conversely,

large values of r result in initial activity patterns with large numbers of ‘active’ nodes.

Figure 3.5 shows an estimation of the number of final attractors for the four different

connectomes as a function of the parameter P. For the three large-scale connectomes

(figures 3.5(a–c)) we find that the number of attractors is relatively small, with a maxi-
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Connectome
Cat M71 M95 CE

D U D U D U D U
Total # of
attractors

205 198 204 203 286 223 605 1066

Table 3.2: Total number of attractors found for the original directed connectomes (D)
and their undirected representations (U). Here, M71 and M95 denote the Macaque
connectomes on 71 and 95 nodes, respectively, whilst CE denotes the C. elegans con-
nectome.

mum of 4 to 11 different final attractors being observed for any particular P value. Peak

pattern variability occurs for P ≈ 1 for the three large-scale connectomes regardless

of whether network directionality is incorporated. In terms of numbers, the empiri-

cal cat connectome displays nearly twice as many attractor states at peak variability

than its undirected representation, whilst directionality appears to have less of an ef-

fect in the case of the two Macaque networks, although the empirical network on 95

nodes displays increased multistability over a broader range of P values. Results for

the micro-scale connectome of C. elegans are shown in Figure 3.5(d). Unlike the macro-

scale connectomes, we observe large numbers of attractor states for both directed and

undirected connectomes, although significantly more in the undirected case, with ap-

proximately 10 times as many attractor states being observed at peak variability. Inter-

estingly, peak variability for the empirical C. elegans connectome happens away from

P = 1, in contrast to the other networks studied. As can be observed from Figure

3.5(d), the empirical network displays increased multistability over a broader range of

P values than its undirected counterpart, peaking for values of P approximately in the

plateau range (2, 4), although it is worth noting that a local maximum at P ≈ 1 is also

evident. (See the magnified section of Figure 3.5(d).) These findings are further sup-

ported by Table 3.2, which displays the cumulative number of attractor states (up to

P = 10) for each of the four connectomes.

Figures 3.6 and 3.7 display the basin stability of the steady states of (3.6) as a function of

the parameter P for the different connectomes considered in this work. For each value

of P, the basin stabilities of each observed steady state are represented as a stacked bar
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Figure 3.5: Estimated attractor numbers as a function of the scaling factor P for each
of the connectomes described in Section (3.1.2).

chart with total height 1. Sub-bar heights are proportional to the basin stability, SB(x∗),

and are coloured according to the magnitude of x∗ as measured by the one-norm. As

expected, for low values of P the system is monostable with all initial states converging

to the trivial steady state x∗D = 0 regardless of the connectome. This is evident from the

figures since the basin volume consists of a single blue bar. Increasing P sees the emer-

gence of a multistable regime for all connectomes. For the undirected connectomes,

regions of parameter space displaying high levels of multistability (i.e. more than two

attractor states) were roughly contained within the interval (0.5, 1.5), whilst for the em-

pirical connectomes the multistable regime is significantly more widespread. As P is

further increased the multistability systematically decreases until only two solutions

remain: the trivial steady state, x∗D, and the maximal solution, x∗U, although the basin

of attraction for the trivial steady state diminishes rapidly, as expected. We remark that
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for networks that are only weakly connected, initial states exist that do not converge

to the state x∗U regardless of the size of P; however, these solutions are rarely met in

practice and so have negligible basins of attraction.

As expected the basin stability plots for the cat connectome differ significantly be-

tween the undirected and empirical connectomes. At peak variability the empirical

connectome has seven different attractor states each with appreciable basins of attrac-

tion, whereas the undirected connectome is essentially bistable with almost all initial

conditions converging either to the quiescent state, x∗D, or to a highly active state (i.e.

one such that x∗ ≈ x∗U) regardless of the choice of P. A similar feature is observed for

both the Macaque networks, in that solutions with intermediate activity tend to have

relatively small basins of attraction in the undirected representations. Solutions for the

empirical Macaque connectomes, however, exhibit various levels of neural activity as

well as an increase in their respective domains of attraction.

The basin stability plots for C. elegans (Figure 3.7) are more complex than those of the

mammalian connectomes due largely to the sheer number of solutions determined;

however, we still observe broadly similar characteristics to the large-scale networks.

Solutions for the undirected connectome are more ‘active’ on average, whilst multi-

stability is prevalent across significantly larger regions of parameter space for the em-

pirical network. Also, whilst the attractor set for the undirected C. elegans connec-

tome consists of up to 295 activity patterns (for any particular P value), a considerable

amount of redundancy exists, with many solutions being either very similar (in norm)

or possessing negligible domains of attraction. Note that we have performed a clus-

tering analysis (further details are provided in Appendix C) and determined a small

number (3–10 in the multistable regime) of principal modes, or clusters in the attractor

landscape, whose significance can be quantified using the combined basin stabilities

of the clustered states. Importantly, such dimensionality reduction techniques enable

us to characterise large, complex attractor sets, such as that obtained for the C. elegans

connectome, using just a small number of prototypical activity patterns. Deploying

the same technique for the empirical connectome results in 3–5 different prototypical

network patterns for values of P in the multistable regime. Importantly, this result
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Figure 3.6: Basin stability of the Hopfield neuronal model as a function of the scaling
factor, P, for the three large-scale mammalian connectomes considered in this work.
(a, b), (c, d) and (e, f) display results for the directed and undirected connectomes of
the respective parcellations of the cat and Macaque (on 71 and 95 nodes, respectively)
cortex. Each solution is coloured according to its magnitude as measured by the one-
norm.
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Figure 3.7: Basin stability of the Hopfield neuronal model as a function of the scaling
factor, P, for the C. elegans neuronal network. (a) and (b) give results for the directed
and undirected neuronal networks, respectively. Each solution is coloured according
to its magnitude as measured by the one-norm.

(a) SB = 0.19 (b) SB = 0.07

(c) SB = 0.08 (d) SB = 0.66

Figure 3.8: Example final activation patterns (i.e. network states) for the Macaque
network on 95 nodes along with their respective basin stabilities. Here P = 0.7 and
solutions shown are those with basin stability scores of at least 5%. As well as the
‘down’ state (a) and the ‘up’ state (d), we have two non-trivial intermediate states (b,
c) whose activity is driven by the modular structure of the network.

suggests that despite the dramatic quantitative differences observed between the undi-

rected and empirical connectomes (see Figure 3.5(d)), the number of sustainable pat-

terns, whilst larger in the undirected connectome (appoximately 5–10), remains small

in both cases.

In Figure 3.8 we show an example of a typical set of final activation patterns for the

empirical connectome of the Macaque monkey on 95 nodes along with their respec-
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tive basin stabilities. We display only those solutions with a basin stability score of at

least 5% since such network patterns are more likely to be sustainable as they are less

sensitive to perturbations arising due to neuronal noise. Figures 3.8(a, d) display the

quiescent state and a high activity state (which are permissible in both empirical and

undirected connectomes (see Appendix B)), whilst figures 3.8(b, c) show two different

intermediate states in which neuronal activity strongly reflects the modular organisa-

tion of the Macaque cortical network – a structure that is particularly evident in the spy

plot in Figure 3.3. The two active modules observed in figures 3.8(b, c) are the same

as those in [129] with the one in 3.8(b) consisting of brain regions belonging to visual

pathways (e.g. primary visual cortices (V1, V2, V3 and V4), Frontal eye field (FEF), etc)

serving perception and action [130], whilst the second module is formed of brain re-

gions of importance to the control of movement (e.g. supplementary motor area (SMA)

and premotor and visuomotor cortices (Brodmann areas 6 and 7)) as well as prefrontal

areas responsible for decision making (e.g. orbitofrontal cortex (Brodmann areas 11 and

12)). We remark that whilst similar intermediate states (as those shown in figures 3.8(b,

c)) exist for the undirected Macaque connectome, the frequency with which they are

observed is greatly diminished due to the reduction in their respective basins of attrac-

tion. As a final note, we emphasise that the modular patterns displayed in Figure 3.8

are representative of configurations observed across all four connectomes studied here

(see Appendix B for additional details), thus implicating directed network modularity

as a key ingredient in the formation of neural patterns.

3.3.3 Discussion

In this Chapter, we have investigated the influence of directed network topology on the

activation dynamics of connectome-based networks for a range of species, including

the cat, Macaque monkey and C. elegans round worm. Whilst network directionality

is typically ignored in network investigations of the brain (due largely to limitations

in experimental neuroscience), our analysis indicates that it can have a profound effect

on network dynamics, both in terms of the number of attractor states observed and the

sustainability (or network robustness) of said states. We find that network patterns are

51



CHAPTER 3: THE IMPACT OF STRUCTURAL DIRECTIONALITY ON THE

COMPUTATIONAL PROPERTIES OF A NEURAL NETWORK

2
1

23

24a

24b
24c

25

29

3b

5

7b
SII

12l

10m

12m

12r

13a

13m

14r

45

46

6d

6va

6vb

8

G

Iai

Iam

PrCO

10o

11l

11m

12o

13b

13l

14c

32

9

Ial

3a 4

Id

35

6

SMA

7a

AITdCITd

CITv

DP

FEF

FST

LIP

LIPd

LIPv

MT

PITd
PITv

STPa

STPp

TF

TH

V1

V2

V3

V3A

V4

V4t

V4ta

V4tp

Ri

MDP

MIP

MSTd
MSTda

MSTdp

PIP

PO

VIP

VIPl

VIPm

30

IPa

Ig

LOP

MSTm

TPOc

TPOi

TPOr

MSTl

AITv

36

A1

VOT

Figure 3.9: Representation of the cortical connectivity of the Macaque monkey (n = 95
nodes), where labels denote the approximate position of cortical area-nodes. Node
colour is based on the communities identified by the Modularity score. Node size is
proportional to the in-degree and degree, respectively. Nodes are labelled using the
standard cortical atlas.

typically organised according to the modular architecture of the underlying structural

network as demonstrated in Figure 3.8 for the Macaque connectome on 95 nodes. This

finding has important implications since the modularity structure of the undirected

and empirical networks can differ markedly. As mentioned previously, the inclusion

of false positive connections can effect a break-down in the modular topology of the

network as modules merge to form new larger modules, which possibly explains the

observed increase in neural activity for the undirected connectomes in this study (see

figures 3.6 and 3.7). This type of hyper-activity is reminiscent of the types of excessive

synchronisation found in many neurological disorders and perhaps hints at the im-

portant role network directionality plays in network mechanisms underlying healthy

spreading dynamics. We emphasise again, that the results displayed in Figure 3.8 are

representative of the solutions obtained across all four connectomes considered in this

work. (See Appendix B.)

We note, that the influence of network modularity in the formation of neural activity

patterns observed in this study is similar to recently reported results implicating net-

work modularity in the formation of network patterns via Turing mechanisms [131].

In this study, the authors used both numerical and analytical techniques to explore

pattern formation on modular networks with their key results being that (a) modu-

larity is crucial for the self-organisation of the global dynamics on a network; and (b)
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based on their studies (as well as recent results in [132]), significantly richer dynam-

ics are expected in the case of directed networks, such as the emergence of travelling

Turing waves, which importantly, are not observed in the undirected case. We note

here, that the effect of directionality on the pattern formation capabilities of modular,

connectome-based networks is an open area of research.

We remark that our results are in contrast to the study by Golos et al. [113] in which

observed numbers of attractor states were orders of magnitude higher than found here,

even for the case of the micro-scale C. elegans connectome; however, it is important to

note that the connectomes studied in [113] are of the order n = 1000 and that the num-

ber of attractor states of (3.6) scale with network complexity (as seen in the case of C.

elegans). Also, whilst the number of attractor states was much larger in the study by

Golos et al., a closer analysis determined a small set of ‘significant’ (and importantly

comparably sized) activity patterns resembling observed resting state networks in the

human brain. Other recent studies [133, 70] have reported attractor landscapes pop-

ulated by a small number of patterns, as in this study, whilst results from empirical

investigations typically posit the existence of up to eight different sustainable network

patterns. (See, for example, the paper by Damoiseaux et al. [134].) The critical brain hy-

pothesis [135] states that neuronal dynamics are governed by a dynamical system close

to criticality. The resting state networks (i.e. attractor states) of this dynamical sys-

tem are then multistable ghost attractors that shape the global dynamics of the system.

Importantly, results in this study indicate that directed network topology can have a

strong influence on both the number and configuration of admissible network patterns.

3.4 Summary

In this chapter we have shown that the directionality of networks can impact on the in-

formation capacity of connectomes and can also impact significantly the domains of at-

traction of the aforementioned brain states. Using a system of Hopfield neural elements

with heterogeneous structural connectivity given by different species and parcellations

(cat, C. elegans and two macaque networks), we investigated the effect of removing

53



CHAPTER 3: THE IMPACT OF STRUCTURAL DIRECTIONALITY ON THE

COMPUTATIONAL PROPERTIES OF A NEURAL NETWORK

directionality of connections on brain capacity, which we quantified via its ability to

store attractor states. In addition to determining large numbers of fixed-point attractor

sets, we deployed the recently developed basin stability technique in order to assess

the global stability of such brain states, which can be considered a proxy for network

state robustness. In particular, we found network modularity to be a key mechanism

underlying the formation of neural activity patterns, and moreover, our results suggest

that neglecting network directionality has the scope to eliminate states that correlate

highly with the directed modular structure of the brain. A numerical analysis of the

distribution of attractor states identified a small set of prototypical direction-dependent

activity patterns that potentially constitute a ‘skeleton’ of the non-stationary dynamics

typically observed in the brain. Therefore the ineffectiveness of modern neuroimag-

ing techniques to try and correct directionality can potentially lead to errors in the

classification of network patterns making it difficult to define a meaningful dynamical

repertoire (i.e. collection of prototypical brain states) of the brain.
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The impact of structural

directionality on effective

connectivity networks

In this chapter we investigate the implications of the directed topology of structural

brain networks on the directed functional connectivity patterns observed in connec-

tomes for several species (cat, two parcellations of the macaque monkey and C. elegans)

[136, 137, 138]. To better understand these relations, we construct brain network mod-

els with neural dynamics of each brain region (network node) given by the Kuramoto

model [139, 140] and structural connectivity defined via one of either the Macaque, Cat

or C. elegans connectome. More specifically, we examine the impact of directionality on

the speed of synchronisation, as well investigating the stability of these synchronous

states as a function of the inherent time delay found within these neural systems. More-

over, we study the dependence of effective connectivity patterns on the directed topol-

ogy underlying neural activity in the brain, by constructing and analysing functional

connectivity networks using the so-called directed phase lag index, which is a measure of

the flow of information within a network.

The Kuramoto model we study in this chapter is an example of a phase oscillator model

[141], and so before proceeding we emphasise that in the following, we deploy the term

synchronisation to describe the case when all signals coincide, i.e. all phases are identi-
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cal. This is commonly known as complete synchronisation in the literature [142]. In addi-

tion, we are also interested in solutions in which the phase differences become constant

and we term this behaviour as phase locking. Importantly, we are only interested in 1:1

locking (i.e. |θi − θj| = constant) here as opposed to the more general concept of n : m

locking, which requires the following relation between phases |nθi − mθj| = constant.

4.1 The Kuramoto model

The emergence of synchronisation in biology, and neuroscience in particular, is ubiq-

uitous, as exemplified by chorusing crickets, flashing fireflies, or pulsing pacemaker

neurons [143]. Winfree was the first to attempt to capture common features of the

aforementioned oscillatory systems and beyond, with his pioneering work on weakly

coupled systems of oscillators [144]. From a mathematical point-of-view, Winfree’s for-

mulation was essentially a mean field approach in which a large system of interacting

units evolved according to the collective rhythm of the population.

Kuramoto [139], inspired by the work of Winfree, derived the following highly simpli-

fied model of n globally coupled oscillators:

dθi

dt
= ωi +

S
n

n

∑
j=1

sin
(
θi − θj

)
(i = 1, . . . , n). (4.1)

Here, S is the coupling strength and θi and ωi are respectively, the phase and natu-

ral frequency of the ith oscillator. Note that despite its simplicities, the model in (4.1)

displays many of the features of Winfree’s earlier models, including the observed syn-

chronisation threshold phenomenon.

The natural frequencies in (4.1) are typically drawn from a Lorentzian distribution cen-

tred at ω0 and of width γ, that is the probability density function is given by

g(ω) =
γ

π [γ2 + (ω − ω0)2]
. (4.2)

Figure 4.1 shows an example of the Lorentzian distribution for ω0 = 10 and γ = 1.

Note, however, that other unimodal distributions such as the Gaussian distribution are

56



CHAPTER 4: THE IMPACT OF STRUCTURAL DIRECTIONALITY ON EFFECTIVE

CONNECTIVITY NETWORKS

-10 0 10 20 30
0

0.25

Figure 4.1: Lorenzian distribution with ω0 = 10 and γ = 1.

also used in practice.

To determine the levels of synchrony present within the system, Kuramoto forwarded

the following order parameter:

r(t) =

∣∣∣∣∣ 1n n

∑
i=1

eiθi(t)

∣∣∣∣∣ . (4.3)

If we denote by r = ⟨r(t)⟩ the time average of the order parameter, then it can be

shown that when r = 0 the system is in an incoherent state with phases distributed

evenly across the interval [0, 2π), whilst for r = 1 all oscillators are perfectly phase-

locked (i.e. display zero phase lagged synchrony). Importantly, Kuramoto showed that

the system in (4.1) undergoes a phase transition, moving from a desynchronised state

to a partially synchronised state as the coupling strength, S, is increased past some

critical value S = Scrit [139].

In Figure 4.2 we display the time-averaged order parameter, r, as a function of coupling

strength S for a system of n = 100 Kuramoto oscillators. More precisely, we integrated

(4.1) using the built-in Matlab solver ode45 with fixed step-size ∆t = 0.01 for time T =

100. The mean frequency of the oscillators was 0 Hz, and the width of the Lorentzian

distribution γ = 1. The system was initialised by drawing phases at random from a

uniform distribution on [0, 2π). To remove transients, the first 5,000 time-steps were

discarded and the results were then averaged over 10 trials. For values of S < 2 we see
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Figure 4.2: Time averaged order parameter r as a function of coupling strength S for a
complete network on n = 100 nodes.

(a) S = 1 (b) S = 3 (c) S = 10

Figure 4.3: Evolution of oscillator phases for the globally coupled Kuramoto model
(n = 100) for weak (S = 1), moderate (S = 3) and strong (S = 10) coupling.

that r remains at relatively low levels. From S = 2 onwards, however, there is a sudden

increase in the averaged order parameter, which plateaus close to r = 1. Note that

this result is in agreement with theoretical studies that have shown that if the natural

frequencies are drawn from a Lorentzian distribution, then in the large n limit Scrit is

given by

Scrit = 2γ. (4.4)

Thus the phase transition in this case, is completely determined by the width, γ, of the

Lorentzian distribution.

Figure 4.3 illustrates the impact of increasing the coupling strength, S, on the evolution

of phase oscillators. As can clearly be seen, in the case of weak coupling the oscillators

disperse, whereas for increasing values of S, clusters of synchronous oscillators begin

to appear, which merge to form a fully synchronised solution for large S.
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4.1.1 Extensions of the model to a neuroscience setting

The Kuramoto model described in the previous section can be generalised in a number

of ways to make it more applicable to a neuroscience setting. For example, neural net-

works display a heterogeneous network connectivity and so the all-to-all connectivity

of the original problem is more naturally replaced by one that resembles the topology

of the brain. In addition, one typically wants to account for the inherent delays within

neural systems that arise due to finite neural signalling speeds. Accounting for such

physiological details results in the following Kuramoto model for complex networks

[145]:
dθi

dt
= ωi + S

n

∑
j=1

aji sin(θj − θi − β), i = 1, . . . , n. (4.5)

Here, aij denotes the elements of the cortical connectivity matrix, β is a phase delay

term that accounts for finite signal propagation speeds [146], and S is the coupling pa-

rameter as before. Note that in the above equation the factor of 1/n has been removed

so that the coupling is independent of the system size n; it has been argued that this

allows for more meaningful comparisons between observables between networks of

differing size.

Note that in [94], it was shown (in the case of an undirected network) that the net-

worked system (4.5) can be simplified via the introduction of the following local order

parameter

riejΘi =
1
ni

N

∑
k=1

aikejθk . (4.6)

where ni is the sum of the couplings to oscilator i, nj = ∑N
k=1 aik. The above equa-

tion differs from that in [145] as it accounts for the fact that the network is potentially

directed. The local order parameter (LOP) measures to what extent oscillator i is in

synchrony with its neighbours.

Multiplying (4.6) by the factor e−i(θi+β) and equating imaginary parts of the resultant

expression gives

ri sin (Θi − θi − β) =
1

kin
i

n

∑
j=1

aji sin
(
θj − θi − β

)
, (4.7)
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which results in the following form of Equation (4.5):

dθi

dt
= ωi + Skin

i ri sin (Θi − θi − β) , i = 1, . . . , n. (4.8)

We can further simplify these equations by deploying a rotating coordinate frame, that

is by performing the following change of variables ϕi = θi − Ωt, where Ω is the pop-

ulation frequency once a stationary distribution has been reached. This leads to the

following representation of a network of Kuramoto oscillators:

dϕi

dt
= ωi − Ω + Skin

i ri sin (Φi − ϕi − β) i = 1, . . . , n. (4.9)

Here, Φi = Θi − Ωt.

It follows that phase locked solutions of (4.5) are fixed points of (4.9), asymptotically at

least. The advantage of the above formulation is that it reveals the important relation

between the in-degree of the network and the ability for oscillators to phase lock. To

see this, note that since we require dϕi/dt = 0 for the oscillators to phase lock, we have

the following fixed point condition

Fi(ϕi) = ωi − Ω + Skin
i ri sin (Φi − ϕi − β) = 0, i = 1, . . . , n, (4.10)

where F(ϕ) is the right-hand side of Equation (4.9). Note that the ri and Φi are constant

in the phased lock state. The Jacobian of (4.9) is given by

∂Fi

∂ϕj
(ϕ∗) =


−Skin

i ri cos (Φi − ϕ∗
i − β) , i = j,

0, i ̸= j.
(4.11)

For a fixed point to exist requires the condition |ωi − Ω| ≤ Skin
i ri, to hold, and more-

over, for that fixed point to be stable requires

cos (Φi − ϕi − β) > 0, i = 1, . . . , n. (4.12)

When the aforementioned stability condition is satisfied, we can solve (4.10) to obtain
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the following analytical expression for the phase:

ϕ∗
i = sin−1

(
ωi − Ω
Skin

i ri

)
+ Φi − β, i = 1, . . . , n. (4.13)

This result is a direct extension of that in [94] to directed networks, in that it provides

a relation between the phase of an oscillator and the in-degree, kin
i , and the local or-

der parameter (via ri and Φi). In [94], the authors argued that since the inverse sine

function is monotonically increasing and the ri and Φi display only a small amount of

variation (an experimentally observed fact), the phase ϕi increases as the network de-

gree decreases, that is they discovered an inverse relationship between node phase and

node degree. We shall consider the question of whether or not such a relation persists

when directionality is incorporated later on in this chapter.

4.2 Directed functional connectivity

Directed functional connectivity (i.e. effective connectivity (EC)) is a measure of the

influence that a node exerts over other nodes in the network [147]. Unlike standard

functional connectivity (such as that derived using Pearon’s correlation coefficient or

mean phase coherence) these interactions are not necessarily reciprocal resulting in

asymmetric adjacency matrices describing function. A number of techniques are avail-

able for measuring EC, for example, Granger causality [97], structural equation mod-

elling [148], and dynamic causal modelling [149], to name a few. Here, we deploy the

concept of directed phase lag index (dPLI) [95] to determine EC. Our primary moti-

vation for using dPLI, is to be able to perform a comparative analysis with the work

in [94, 96, 150], which deployed it to determine important structure-function relations

in the case of undirected connectomes. In particular, we wish to investigate the extent

to which directed connectomes impact observed global directionality patterns in the

brain.
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4.2.1 Phase lag index

The phase lag index (PLI) is a measure of phase synchronisation that was originally in-

troduced to counter biases that typically reduce the reliability of phase synchronisation

estimates in EEG signals [151]. It measures the asymmetry of a phase distribution and

can be obtained from the time series of phase differences as follows

PLIij =
∣∣⟨sign

[
∆θij(tk)

]
⟩
∣∣ . (4.14)

Here, ∆θij(t) = θi − θj denotes the instantaneous phase difference between node pairs;

the sign function yields 1 if ∆θij > 0, 0 if ∆θij = 0 and -1 if ∆θij < 0; and the angled

brackets denote a time average. PLI lies in the range [0, 1], with zero indicating no

coupling, or rather, that signals are randomly alternating between a position of phase

lead and lag. A PLI score of 1 indicates that the instantaneous phase of one signal is

consistently leading that of the other (i.e. they are phase locked).

It is worth noting that the formula in (4.14) assumes that phases lie in the range [−π, π),

if, however, phases lie in the interval [0, 2π) then the formula

PLIij =
∣∣⟨sign

[
sin
(
∆θij(tk)

)]
⟩
∣∣

should be deployed.

As mentioned above, the authors of [96] considered directed PLI in order to determine

the impact that network topology has on effective connectivity. The measure is ob-

tained from the PLI measure in (4.14) by simply removing the absolute value:

dPLIij = ⟨sign
[
∆θij(tk)

]
⟩. (4.15)

The range of dPLI is [−1, 1]. If a node leads on average then it obtains a dPLI score

in (0, 1]; if it lags on average a score in [−1, 0); and a score of zero in the absence of

a phase-lead/lag relationship. Importantly, it was shown in [96] that network degree

was an effective predictor of phase-lead/lag relationships in the case of undirected

network topologies; and so in this chapter we wish to explore the extent to which this
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Figure 4.4: Distinct local dynamics of hub and peripheral nodes as coupling strength
(S) increases. Hub nodes shown by the red circles and the peripheral nodes shown
with black triangles. Results shown for the undirected cat connectome.

result holds for directed, or empirical, connectomes.

In Figure 4.4 we repeat experiments in [96] in which the authors demonstrate the im-

pact of undirected network topology on local oscillator phase dynamics. To illustrate

the result we use the undirected connectivity structure of the cat cortex, but the result

applies to all undirected cortical networks studied in our work. We solved the system

in (4.5) with A set equal to the undirected adjacency matrix of the cat cortex (n = 52)

for T = 100 using the built-in Matlab solver ode45 (∆t = 0.01) and phase delay β = 0.1.

Note that this matches the set-up in [96]. Figure 4.4(a) shows the mean phase coher-

ence (MPC) ( see [55] for a precise definition) for two nodes in the network: the node of

maximal degree (red circle); and the node with minimal degree (black triangle). Note

that MPC is a measure of phase synchrony that is similar in spirit to the Kuramoto or-

der parameter in that it is a temporal average over an angular distribution of the phase

differences between node pairs and that we use it in this instance to more accurately

replicate the results in [96]. We see that the high-degree node synchronises significantly

quicker than the low-degree node and attains full synchrony (i.e. an r value close to

one) for smaller values of coupling. In Figure 4.4(b) we display the mean dPLI values

for the nodes with maximal (red circle) and minimal (black triangle) degree. This is
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Connectome
Cat M71 M95 CE

D U D U D U D U
# of nodes 52 52 70 70 85 85 235 235
# of edges 818 515 745 437 2356 1481 1841 1656

mean degree 15.73 19.81 10.64 12.49 27.72 34.85 7.83 14.09
Table 4.1: Network statistics for the directed connectomes (D) and their undirected
representations (U) restricted to its strongly connected component. Here, M71 and
M95 denote the original Macaque connectomes of 71 and 95 nodes, respectively, whilst
CE denotes the C. elegans connectome.

computed by averaging over all dPLI values, i.e.

dPILi =
1
n

n

∑
k=1

dPLIik. (4.16)

For large values of S we observe a distinct behaviour between high- and low-degree

nodes, with the low-degree node leading and the high-degree node lagging, for suffi-

ciently large S.

4.3 Numerical Experiments

In all of our experiments Equation (4.5) was integrated from t = 0 to t = 100 using the

built-in Matlab solver ode45 with ∆t = 0.01 and absolute and relative tolerances set at

10−8. In accordance with [96], natural frequencies of the oscillators were drawn from

a Gaussian distribution with mean f = 10Hz (or ωj = f · 2π rad/s) and variance one.

This choice of frequencies simulates observed alpha oscillations in the human brain as

well as the peak bandwidth of other species such as the macaque and mouse [96, 94].

To determine the dependence on initial data, each simulation was repeated ten times

with different sets of initial conditions θ drawn uniformly at random from the interval

[0, 2π) . Connectomes studied are the same as those in Chapter 3; however, to ensure

the existence of the completely synchronised solution (in the case β = 0 at least) we

restricted each connectome to its strongly connected component, thus resulting in the

following networks: cat of size n = 52; parcellations of the Macaque on 71 and 95 nodes

become of size n = 70 and n = 85, respectively; and C. elegans of size n = 235, basic

network statistics are given in Table 4.1.
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(a) Cat (b) Macaque (n = 70)

(c) Macaque (n = 85) (d) C. elegans

Figure 4.5: Simulation results: S = 1, β = 0.1

Figure 4.5 shows simulation results when solving Equation (4.5) for each of the four

connectomes. In these experiments we deploy the directed, or empirical, connectomes

with S = 1 and β = 0.1. For each connectome we plot four figures: a snapshot of the

Kuramoto model in action with phases at time T = 100 plotted on the unit circle (Top

Left); the relative phase ϕ versus time (Top Right); the rate of change in the relative

phase (Bottom Left); and the quantity kin
i ri (Bottom Right). In addition, in each plot

we highlight in yellow the node of greatest degree and in green the node with mini-

mal degree. With the exception of the Macaque parcellation with n = 85, we observe

convergence towards a phase locked state for the selected parameter values. This is

evident not only from the plots displaying constant values for both the quantity kin
i ri

(recall that ri tends to a constant value when the system is phase locked) and the rel-
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ative phase, but also from the fact that ϕ̇i tends to zero for all i. The latter statement

follows from the fixed point condition in Equation (4.10). Additionally, as noted above,

in the case of the Macaque connectome on n = 85 nodes we do not observe conver-

gence to a phase locked state, rather the nodes are divided into two classes: those that

phase lock and those that drift monotonically without locking.

4.3.1 Speed of Synchronisation

For β = 0 the system in (4.5) admits a fully synchronised solution of the form

θi(t) ≡ θj(t) =: θ(t). (4.17)

For non-zero values of β the solution in (4.17) is no longer guaranteed, rather in this

case we observe either phase locked solutions such that θi − θj is constant ∀i, j or so-

called cluster states in which two or more groups of synchronised oscillators coexist.

In this section we assume identical oscillators so that ωi = ω∀i, and set the phase

lag β = 0 thus guaranteeing the existence of the completely synchronised solution in

(4.17). To determine the time scales of synchronisation for the different connectomes

we compute the distance

d(t) = max
i,j

dist
(
θi, θj

)
, (4.18)

where

dist
(
θ, θ′

)
= min

{
|θ − θ′|, 2π − |θ − θ′|

}
(4.19)

is the circular distance between two phases θ and θ′ on S1. Note that after some initial

transient, convergence to the synchronous state decays as d(t) ∼ exp(−t/τ), where τ

denotes the characteristic time scale of each cortical network. Theoretically, this char-

acteristic time scale is given by

τ = − 1
Re(λ2)

, (4.20)

where λ2 is the second largest eigenvalue of the graph Laplacian [152], which in this

case coincides with the stability matrix, or Jacobian, of (4.5) evaluated at the syn-

chronous state. (See, for example, [153] for further details.)
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Figure 4.6: Speed of synchronisation shown by plotting d(t) against time. Blue lines
represent the undirected network and red lines show the directed network. For β = 0
and coupling strength, S = 1.

In Figure 4.6 we plot the logarithm of the decaying distances for directed (red line) and

undirected (blue line) representations of each of the connectomes. In addition, we plot

slopes of −1/τ for both directed (red dashed line) and undirected (blue dashed line)

networks, where τ is the theoretical time-scale given in (4.20). Importantly, we find

that in all cases synchronisation times are reduced for the undirected connectomes, and

also, that, with the exception of the Macaque network on n = 70 nodes (which displays

very similar time-scales regardless of directionality), these differences scale with the

size of the network. Moreover, we note that the theoretical time-scales predicted by

(4.20) are in excellent agreement with the simulation results.

Finally, we plot the normalised spread of the Laplacian eigenvalues for each network,

in both directed and undirected cases, since this is known to correlate with network
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Figure 4.7: Scatter plots of the eigenvalues for empirical (blue) and undirected (red)
representations of the connectomes studied in our work.

synchronisability [154]. To quantify the spread of the eigenvalues we use the following

(see [155] for further details):

σ2 =
1

d2(n − 1)

n

∑
i=2

|λi − ⟨λ⟩|2, where ⟨λ⟩ = 1
n − 1

n

∑
i=2

λi. (4.21)

Note that in the above equation, the quantity d =
1
n ∑ ∑

i ̸=j
aij measures the average

coupling strength per node. Importantly, the smaller the variance (as measured by

Equation (4.21)) the more synchronisable the network will generally be.

Figure 4.7 shows the spread of the eigenvalues of the graph Laplacian for each of the

four networks considered, in both the directed (or empirical) and undirected cases, as

well as σ2
A and σ2

B, which measure, respectively, the eigenvalue spread in the empirical

and undirected networks. Note that in all cases, we find that the spread is reduced

for the undirected connectomes, suggesting that these networks synchronise easier, a

result that is in agreement with our earlier numerical experiments.
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Figure 4.8: Comparison between the analytical and simulation results for macaque
(n = 70). Top row are results for the directed networks and bottom for that of the
undirected networks with β = 0.1 on the left and β = 0.5 on the right.

4.3.2 Stability of phase locked solutions

For non-zero β the solution in (4.17) is no longer guaranteed to exist; rather, as we

increase β the system in (4.5) admits phase locked solutions such that θi − θj equals a

constant ∀i, j. See Figure 4.5 for examples of such solutions. Recall that these phase-

locked solutions can be determined analytically, when they exist, by solving Equation

(4.10) for ϕ to obtain the following

ϕ∗
i = sin−1

(
ω − Ω
Skin

i ri

)
+ Φ∗

i − β, i = 1, . . . , n. (4.22)

Importantly, phase-locked solutions are fixed points in the rotating frame.

Figure 4.8 compares results of numerical simulations and the analytical phase given
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Figure 4.9: Stability plots of the 4 networks considered. Red lines are for the directed
networks and blue for the undirected networks. Solid lines show the value of the
maximal eigenvalue and dashed lines the stability condition in (4.12) as a function of
the delay parameter β.

in (4.22) for two different values of the delay parameter (β = 0.1 and β = 0.5) using

the macaque connectome on n = 70 nodes. Figures on top display results for the

empirical connectome and those below for the undirected connectome. We see that for

the smaller delay (β = 0.1) the analytical result is in agreement with the simulations;

however, as we increase the delay the two results diverge due to a loss in stability of

the phase locked solution, which results in so-called cluster states in which two or more

groups of synchronised oscillators coexist. Similar results hold for all networks.

Next we wish to determine the value of β at which the phase locked solution loses

stability for each of the connectomes. To do this, we calculate the maximal eigenvalue,

λmax, of the Jacobian matrix in (4.11) evaluated at the fixed point (which we evaluate via

direct numerical integration) for increasing values of β, stopping as λmax approaches
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zero.

Figure 4.9 plots the maximal eigenvalue (solid line) and the stability condition in (4.12)

(dashed line) for empirical (red) and undirected (blue) connectomes for each of the four

species considered. Importantly, we observe an increase in the stability properties of

the phase locked solution for the empirical connectomes in all but the cat network. We

note that this anomaly can be understood by considering Equation (4.11), from which

we observe that for β = 0, the stability of the globally synchronised solution is given

by the minimal in-degree (or degree in the case of the undirected representation) of the

network. Unlike the other networks considered here, the cat network’s minimal de-

gree increases significantly (going from 3 to 7) in the undirected connectome, as can be

readily observed in Figure 4.9(a). Importantly, the impact of these additional false neg-

ative connections is to artificially increase the stability of the phase locked solution. It

is noteworthy that despite the initial differences in stability between the empirical and

undirected cat networks, the rate at which stability decays is greater in the undirected

connectome, a fact that is consistent across all species we considered.

These results suggest that directed connectomes are more robust with respect to delays,

which, according to a number of recent studies (see [156] and references therein), is

likely to improve both the efficacy of signal transmission and the quality of information

transfer in brain networks.

4.3.3 Phase lead/lag relations

As mentioned previously, the relationship between phase (as measured by dPLI) and

cortical network structure has recently received considerable attention ( see for exam-

ple [94, 96, 157]). In particular, it was shown that patterns of phase lead and lag can be

predicted by the network structure, network degree to be more specific. In this section

we wish to determine whether or not a similar result holds for directed connectomes.
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dPLI Vs network degree

To begin with we focus on network degree. Our results are plotted in Figure 4.10. For

each network, simulations were performed for S ∈ [0, 5] and for two different values

of β; one in which the phase locked state was stable and one in which it was not.

In [94, 96], it was shown that nodes with large degree phase lag, whilst nodes with

small degree phase lead, and so in the figures we plot the mean dPLI (see Equation

(4.16)) of each node as a function of the coupling strength S, with nodes ordered in

ascending order of their in-degree. It is clear from Figure 4.10 that this relation holds for

all undirected connectomes as expected; however, we find the relation between phase

lead/lag and node degree to be less transparent in the case of the directed networks. In

particular, the relationship appears to largely breakdown for the two larger networks

of Macaque (n = 85) and C. elegans.

To understand why this is the case we need to reconsider the equation for the analytic

phase, i.e.

ϕ∗
i = sin−1

(
ω − Ω
Skin

i ri

)
+ Φ∗

i − β, i = 1, . . . , n. (4.23)

As noted in [94], neglecting the potential impact of the terms ri and Φi that result from

the local order parameter (4.6), provides an inverse relationship between phase and

node degree. Our results would appear to suggest that these terms are indeed negli-

gible in the undirected case, with simulations (not shown) showing that ri ≈ 1 for all

i, whilst the Φi are approximately constant. However, for the empirical connectomes

(particularly the larger ones), we observe considerable variation in the Φi terms, which

we hypothesise arise due to the existence of non-reciprocal connections present within

the empirical networks that cause a breakdown in the local synchrony properties of

the affected nodes, which explains the increased variability and thus the breakdown

in the relation between phase and network degree. We note that there is much less

variation in the ri terms. These results are similar to those obtained in [158], in which

it was shown that the over representation of certain closed loop motifs could frustrate,

or disrupt, synchronous dynamics in directed cortical networks at both the local and

global level.
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(a) Cat β = 0.1
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(b) Cat β = 0.4
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(c) Macaque (N = 70) β = 0.1
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(d) Macaque (N = 70) β = 0.25
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(e) Macaque (N = 85) β = 0.01
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(f) Macaque (N = 85) β = 0.1
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(g) C. elegans β = 0.1
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Figure 4.10: dPLI vs S. Left side of figure is for a chosen value of β in which the system
is stable and right side is when the system is unstable.
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Figure 4.11: Scatter plots of dPLI Vs network degree and dPLI Vs eigenvector central-
ity for each of the four connectomes (cat, Macaque (n = 70 and n = 85) and C. elegans)
for both directed and undirected representations. The red dashed lines represent the
lines of best fit for each dataset.

Correlation analysis of network measures and dPLI

Next, we decided to perform a correlation analysis of dPLI against commonly deployed

network measures as introduced in Chapter 2 (were appropriate). Note, however, that

with the exception of network degree and eigenvector centrality (see Figure 4.11 and

the text below), only weak correlations were observed and so these results have largely

been relegated to Appendix D.

Figure 4.11 shows scatter plots of mean dPLI versus network degree and eigenvec-

tor centrality for all four connectomes studied in this work, as well as a plot of the

line of best fit passing through the data. As one would expect, these two measures
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show very similar results – it is well known that degree and eigenvector centrality are

highly correlated. We see that the cat and Macaque (n = 70) are highly correlated

(r = −0.78, p = 7 × 10−12 and r = −0.69, p = 5 × 10−11, respectively for the empirical

connectomes, and r = −0.83, p = 5 × 10−14 and r = −0.70, p = 2 × 10−11, respectively

for the undirected representations) as expected from our previous results, although the

correlations are stronger in the case of the undirected connectomes. For the two larger

networks, we see a deterioration in this relationship in the case of the empirical connec-

tomes, which is perhaps even more evident than that displayed in the plots in Figure

4.10. Quantitatively, this deterioration can be see via the associated p-values, which for

the macaque network on n = 85 nodes are p = 2 × 10−5 and p = 9 × 10−27 for the

directed and undirected representations, respectively; and for the C. elegans network

are p = 0.15 and p = 5× 10−37 for the directed and undirected representations, respec-

tively. These results emphasise the breakdown in the inverse relationship observed by

the authors of [94, 96] in the case were network directionality is included.

4.4 Summary

In this Chapter we aimed to better understand the impact that directed network topol-

ogy has on synchrony properties of the brain. To address this question we simulated

neural dynamics on connectome-based networks for a range of species and parcella-

tions that contain directionality information. Neural activity is described by a phase

delayed Kuramoto Model (KM), which is perhaps the simplest example of a delay-

coupled oscillatory network [159] and is well-suited to assessing how directed connec-

tomes govern synchronisation properties of the brain [160]. In particular, we found

that network directionality profoundly impacts both the time-scale at which coordi-

nated rhythmic activity occurs across large-scale brain networks as well as the stability

properties of these synchronised states. We also find that recently observed relations

between network structure and directed functional connectivity [96, 94], as quantified

using the directed phase lag index (dPLI) [95], appear far less conclusive when network

directionality is accounted for.

75



CHAPTER 5

Conclusions

To conclude, in this chapter we review some of the main findings of this thesis and

forward a number of possibilities for future research in this area.

5.1 Summary of thesis

The aim of this thesis was to determine the impact of network directionality on large-

scale neural activity patterns in the brain. Typically, such models omit information on

structural directionality patterns, due largely to the inability of modern non-invasive

imaging technologies to infer edge directionality in the brain. Our investigations de-

ployed brain network models, with underlying connectivity informed via a range of

species (including the cat, Macaque monkey and C. elegans round worm), and neu-

ral activity of each node simulated using a suitable neural model. Importantly, our

theoretical studies imply that network directionality can have a profound effect on net-

work dynamics, both in terms of the connectomes information storing capabilities and

synchrony-related activities such as neural learning.

After introducing the relevant background material in Chapter 1 and describing the

network science concepts of pertinence to our work in Chapter 2, we started the tech-

nical work of the thesis in Chapter 3, by conducting a computational study to reveal

the role of network directionality in determining the capability of a connectome-based

network to store information. Deploying a graded response Hopfield model on each
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node, information capacity was measured by counting the number of fixed point at-

tractor states as a function of the model parameters. In addition, the robustness of each

attractor state was determined by computing its basin stability, which approximates

the size of the attractor states basin of attraction. Our study indicates that not only

can directed network topology have a significant effect on the information capacity (as

measured by the number of attractor states) of connectome-based networks, but it can

also impact significantly the domains of attraction of these ‘brain states’. Moreover, we

found that network modularity was a key mechanism underlying the formation of ob-

served neural activity patterns, and that by neglecting network directionality we risk

eliminating brain states that correlate highly with the directed topology of the brain.

Finally, we observed, as in other recent studies [70, 133], a small set of prototypical

direction-dependent activity patterns that potentially constitute a ‘skeleton’ of the non-

stationary dynamics typically discerned in the brain.

In Chapter 4 we focussed on the role that the interplay between local dynamics and di-

rected cortical topology has on the propensity for cortical structures to synchronise.

More specifically, using the same cortical networks as in the previous chapter (cat,

Macaque and C. elegans), we deployed numerical simulations to investigate the fol-

lowing questions: ‘does network directionality enhance or destabilise synchrony in the

brain?’, ‘what impact does it have on the speed at which synchrony takes place?’ and

‘what role do time delays play when directionality is incorporated?’. To address these

questions we simulated neural dynamics on the aforementioned connectomes using a

phase delayed Kuramoto model to describe neural activity. The simplicity of the Ku-

ramoto model is well-suited to assessing how directionality impacts synchrony proper-

ties of the brain. Importantly, we found that network directionality has a profound im-

pact on both the time-scale at which coordinated rhythmic activity occurs as well as the

stability properties of these synchronous states. We also found that recently observed

relations between network structure and directed functional connectivity [94, 96], as

quantified using the directed phase lag index [151], appear far less conclusive when

network directionality is accounted for.
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Figure 5.1: Structure-function brain network

5.2 Discussion of further work

Multilayer networks have received considerable attention over the past decade and are

natural candidates for modelling the brain, due to the variety of imaging modalities

used to study structure-function relations, as well as the multitude of different scales

at which neural interactions occur. However, as with standard network analyses the

majority of investigations restrict to binary, undirected network representations. Thus,

it would be of great interest to construct multilayer network models incorporating both

directed structural (where possible) and directed functional information. For example,

following [33, 99, 161], we would propose to extend these multiplex structure-function

brain network models (i.e. two layer models with a layer each for structure and func-

tion – see Figure 5.1) to fully incorporate directionality, and indeed, to extend were ap-

propriate, these measures (e.g. structure-function clustering) to the fully directed case.

We hypothesise that the inclusion of network directionality would provide additional

insights beyond a traditional (i.e. undirected) network analysis and so potentially lead

to improved understanding of the mechanisms underlying structure-function relations

in the brain.

Additionally, we could extend these models to incorporate time, by modelling the brain

as a time-evolving multiplex network [162, 163, 164]; thus allowing us to consider dy-

namic aspects of structure-function relations. A novel temporal structure-function mul-

tiplex model of so-called dynamic functional connectivity ( see [165] and references

therein) in healthy and diseased brains, promises to provide a holistic understanding
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of brain function and thus reveal key mechanisms underlying structure-function rela-

tions. Dynamic functional networks have recently been deployed to model a range of

neural diseases such as epilepsy [92, 166], Parkinson’s disease [167], and Alzheimer’s

disease [168], yet these models study function in isolation, typically omitting impor-

tant structural information. Incorporating important biological details (such as struc-

tural weights and directionality) is likely key to forwarding the practical applications

of network neuroscience, an area that is still in its infancy despite 20 years of research.
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Cortical network modularity

In this appendix we display the results of performing a modularity analysis on both

the empirical and undirected cortical networks studied in this work: Macaque (71 and

95 nodes); cat and C. elegans. All calculations were performed using a multi-iterative

generalisation of the Louvain community detection algorithm which estimates optimal

modularity structure of a network and is available via the Matlab Brain Connectivity

Toolbox (see [57] and references therein for further details). Note that all calculations

were performed using the default parameters.

Modularity scores and number of modules for empirical and undirected networks for

each species is given in Table A.1., whilst colour coded plots including labelled nodes

(denoting either brain regions or neurons) are shown in figures A.1–A.4.

Connectome
Cat M71 M95 CE

D U D U D U D U
modularity 0.36 0.26 0.4 0.38 0.4 0.35 0.43 0.39

# of modules 4 3 4 4 3 3 6 5
Table A.1: Network statistics for the original directed connectomes (D) and their undi-
rected representations (U). Here, M71 and M95 denote the Macaque connectomes on
71 and 95 nodes, respectively, whilst CE denotes the C. elegans connectome.

Networks were produced using the Gephi software [169] and nodes were laid out ei-

ther using available x-y coordinates of cortical brain regions/neurons (Macaque n = 95

and C. elegans) or else using the Yifan Hu algorithm [170]. In all cases node size is pro-

portional to the in-degree or degree for the empirical or undirected networks, respec-
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tively.
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Figure A.1: Modularity structure for empirical and undirected anatomical networks
for the cat cortex (n = 52). Node colour is based on the communities identified by the
Modularity score. Node size is proportional to the in-degree and degree, respectively.
Nodes are labelled using the standard cortical atlas.
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Figure A.2: Modularity structure for empirical and undirected anatomical networks
for the Macaque cortex (n = 71).Node colour is based on the communities identified
by the Modularity score. Node size is proportional to the in-degree and degree, re-
spectively. Nodes are labelled using the standard cortical atlas.83
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Figure A.3: Modularity structure for empirical and undirected anatomical networks
for the Macaque cortex (n = 95). Node colour is based on the communities identified
by the Modularity score. Node size is proportional to the in-degree and degree, re-
spectively. Nodes are labelled using the standard cortical atlas.
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APPENDIX B

Neural network activity patterns

In this appendix we display final activation patterns for both empirical and undirected

networks for the species studied in this thesis: cat, two parcellations of the Macaque

monkey and C. elegans. In each case we display only solutions with a basin stability

score of at least 1% (note this is smaller than the 5% criteria used in Chapter 3 for

purposes of comparison) since as argued earlier patterns with smaller basin stabilities

are unlikely to be observed in practice.

It is noteworthy that in all cases the driving force behind these states would appear to

be the modularity structure (see Appendix A). For the mammalian networks the empir-

ical representation displays a greater number of ‘significant’ solutions than the undi-

rected networks, a situation that is reversed for the micro-scale C. elegans connectome.

In all cases we find that activity is increased in the undirected networks suggesting a

possible role for directionality in neural inhibition, a fact that is related to the loss of

modularity in the undirected networks.

Finally, we note that in the plots of the C. elegan and Macaque (n = 95) networks node

coordinates were obtained by projecting the spatial position of the corresponding brain

regions onto the x-y plane. In all other cases the layout was the result of applying the

Yifan Hu algorithm (see [170] for a discussion of the different methods for laying out

large-scale networks). In all instances node size is proportional to the in-degree or

degree for the empirical or undirected networks, respectively.
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APPENDIX B: NEURAL NETWORK ACTIVITY PATTERNS

(a) SB = 0.5 (b) SB = 0.25

(c) SB = 0.1 (d) SB = 0.07

Figure B.1: Final activation patterns (i.e. network states) for the empirical Cat network
on 52 nodes along with their respective basin stabilities. Here P = 0.9 and solutions
shown are those with basin stability scores of at least 1%.
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APPENDIX B: NEURAL NETWORK ACTIVITY PATTERNS

(a) SB = 0.45 (b) SB = 0.27

(c) SB = 0.28

Figure B.2: Final activation patterns (i.e. network states) for the undirected Cat net-
work on 52 nodes along with their respective basin stabilities. Here P = 0.9 and
solutions shown are those with basin stability scores of at least 1%.
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APPENDIX B: NEURAL NETWORK ACTIVITY PATTERNS

(a) SB = 0.55 (b) SB = 0.35 (c) SB = 0.05

(d) SB = 0.01 (e) SB = 0.01 (f) SB = 0.01

Figure B.3: Final activation patterns (i.e. network states) for the empirical Macaque
network on 71 nodes along with their respective basin stabilities. Here P = 0.8 and
solutions shown are those with basin stability scores of at least 1%.
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APPENDIX B: NEURAL NETWORK ACTIVITY PATTERNS

(a) SB = 0.56 (b) SB = 0.35 (c) SB = 0.01

(d) SB = 0.02 (e) SB = 0.05

Figure B.4: Final activation patterns (i.e. network states) for the undirected Macaque
network on 71 nodes along with their respective basin stabilities. Here P = 0.8 and
solutions shown are those with basin stability scores of at least 1%.

(a) SB = 0.77 (b) SB = 0.01

(c) SB = 0.21 (d) SB = 0.01

Figure B.5: Final activation patterns (i.e. network states) for the undirected Macaque
network on 95 nodes along with their respective basin stabilities. Here P = 1.1 and
solutions shown are those with basin stability scores of at least 1%.
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APPENDIX B: NEURAL NETWORK ACTIVITY PATTERNS

(a) SB = 0.05

(b) SB = 0.6

(c) SB = 0.1

(d) SB = 0.25

Figure B.6: Final activation patterns (i.e. network states) for the empirical C. elegans
network on 277 nodes along with their respective basin stabilities. Here P = 1 and
solutions shown are those with basin stability scores of at least 1%.
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APPENDIX B: NEURAL NETWORK ACTIVITY PATTERNS

(a) SB = 0.45 (b) SB = 0.03

(c) SB = 0.02 (d) SB = 0.01

(e) SB = 0.12 (f) SB = 0.33

(g) SB = 0.04

Figure B.7: Final activation patterns (i.e. network states) for the undirected C. elegans
network on 277 nodes along with their respective basin stabilities. Here P = 1 and
solutions shown are those with basin stability scores of at least 1%.
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APPENDIX C

Clustering of activity patterns for C.

elegans neural network

From the basin stability plots for C. elegans (see figures 3.7(a) and 3.7(b)) we see that

many of the observed attractor states are similar in magnitude. This observation mo-

tivates the use of a clustering algorithm to identify whether a smaller class of spatially

similar attractor states exists, thus reducing the complexity of the attractor state set and

making any analysis more amenable.

As a measure of similarity between attractor states we deploy the Euclidean distance:

d(p, q) =

√
n

∑
i=1

(pi − qi)
2, (C.1)

which results in a distance matrix D ∈ RN×N , where the ijth entry of D gives the

similarity between attractor states i and j. Here, N is the number of attractor states

found (for each choice of P) for each of the C. elegan connectomes (i.e. the empirical and

undirected network representations). This then enables us to group the solutions and

perform a cluster analysis based on spatial proximity.

We perform hierarchical clustering (see, for example, the excellent text [171]) using the

builit-in routines from the Matlab Statistics and Machine Learning Toolbox in order

to reproduce coarse-grained versions of the basin stability plots of Chapter 3. More

specifically, for each value of P, clustering was applied on the attractor set of each
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APPENDIX C: CLUSTERING OF ACTIVITY PATTERNS FOR C. elegans NEURAL NETWORK

00.511.52

Figure C.1: Dendogram displaying results of a cluster analysis of the attractor set
of the undirected C. elegans network for P = 0.9. The horizontal axis represents the
distance or dissimilarity between clusters. The vertical axis represents the objects (at-
tractor states) and clusters.

connectome (see Figure C.1 for an illustrative example; here, we deploy the undirected

C. elegans connectome and set P = 0.9), and the basin stabilities of attractor states

belonging to the same clusters where combined.

The resulting basin stability plots are shown in figures C.2 and C.3. As can be seen from

figures C.1–C.3 there is both a significant variation in the size of the cluster states as well

as their relative importance – as measured via the basin stability score. We find that in

both cases the number of significant attractor states is relatively small, ranging from 3-

5 attractor states for the empirical connectome to 5-10 for the undirected connectome.

Thus the observed complexities in figures 3.7(a) and 3.7(b) would appear to be due to

the existence of a large number of ‘similar’ attractor states – note that such apparent

redundancies are common in biological networks and believed to play a crucial role in

the robustness of many biological processes [172].
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Figure C.2: Basin stability for the clustered attractor states as a function of P for the
empirical C. elegans neuronal network. Cluster states are coloured according to their
average magnitude as measured by the one-norm.
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Figure C.3: Basin stability for the clustered attractor states as a function of P for the
undirected C. elegans neuronal network. Cluster states are coloured according to their
average magnitude as measured by the one-norm.
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APPENDIX D

Other network measures correlation

with dPLI

In this Appendix we display results for a correlation analysis of mean dPLI versus

local clustering and betweenness centrality (Figure D.1). Note that correlations were

observed (see figures for r and p-values) over some of the connectomes but neither

measure displayed a relationship with phase against all connectomes.
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(c) Macaque (N = 85) directed (d) C. elegans directed

Figure D.1: Scatter plots of dPLI Vs betweenness centrality and dPLI Vs local cluster-
ing for each of the four connectomes (cat, Macaque (n = 70 and n = 85) and C. elegans)
for both directed and undirected representations. The red dashed lines represent the
lines of best fit for each dataset.
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[15] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math.

Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[16] Stanley Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.

[17] R Duncan Luce and Albert D Perry. A method of matrix analysis of group struc-

ture. Psychometrika, 14(2):95–116, 1949.

[18] Minoo Ashtiani, Ali Salehzadeh-Yazdi, Zahra Razaghi-Moghadam, Holger Hen-

nig, Olaf Wolkenhauer, Mehdi Mirzaie, and Mohieddin Jafari. A systematic sur-

vey of centrality measures for protein-protein interaction networks. BMC systems

biology, 12(1):80, 2018.

[19] Leo Katz. A new status index derived from sociometric analysis. Psychometrika,

18(1):39–43, 1953.

[20] Linton C Freeman. A set of measures of centrality based on betweenness. So-

ciometry, pages 35–41, 1977.

[21] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-

world’networks. nature, 393(6684):440, 1998.

100



REFERENCES

[22] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-

works. science, 286(5439):509–512, 1999.

[23] Michelle Girvan and Mark EJ Newman. Community structure in social and bio-

logical networks. Proceedings of the national academy of sciences, 99(12):7821–7826,

2002.

[24] Mark EJ Newman. Modularity and community structure in networks. Proceed-

ings of the national academy of sciences, 103(23):8577–8582, 2006.

[25] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of statistical me-

chanics: theory and experiment, 2008(10):P10008, 2008.

[26] Giulio Tononi, Olaf Sporns, and Gerald M Edelman. A measure for brain com-

plexity: relating functional segregation and integration in the nervous system.

Proceedings of the National Academy of Sciences, 91(11):5033–5037, 1994.

[27] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno,

and Mason A Porter. Multilayer networks. Journal of complex networks, 2(3):203–

271, 2014.

[28] Barry Bentley, Robyn Branicky, Christopher L Barnes, Yee Lian Chew, Evi-

atar Yemini, Edward T Bullmore, Petra E Vértes, and William R Schafer. The

multilayer connectome of caenorhabditis elegans. PLoS computational biology,

12(12):e1005283, 2016.

[29] Kanad Mandke, Jil Meier, Matthew J Brookes, Reuben D O’dea, Piet

Van Mieghem, Cornelis J Stam, Arjan Hillebrand, and Prejaas Tewarie. Com-

paring multilayer brain networks between groups: Introducing graph metrics

and recommendations. NeuroImage, 166:371–384, 2018.

[30] Federico Battiston, Vincenzo Nicosia, and Vito Latora. Structural measures for

multiplex networks. Physical Review E, 89(3):032804, 3 2014.

101



REFERENCES

[31] Albert Solé-Ribalta, Manlio De Domenico, Sergio Gómez, and Alex Arenas. Cen-

trality rankings in multiplex networks. In Proceedings of the 2014 ACM conference

on Web science, pages 149–155. ACM, 2014.

[32] Sergio Gomez, Albert Diaz-Guilera, Jesus Gomez-Gardenes, Conrad J Perez-

Vicente, Yamir Moreno, and Alex Arenas. Diffusion dynamics on multiplex net-

works. Physical review letters, 110(2):028701, 2013.

[33] Federico Battiston, Vincenzo Nicosia, Mario Chavez, and Vito Latora. Multilayer

motif analysis of brain networks. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 27(4):047404, 2017.

[34] Manlio De Domenico. Multilayer modeling and analysis of human brain net-

works. GigaScience, 6(5):1–8, 2017.

[35] Arda Halu, Manlio De Domenico, Alex Arenas, and Amitabh Sharma. The mul-

tiplex network of human diseases. NPJ systems biology and applications, 5(1):15,

2019.

[36] JA Scott Kelso. Dynamic patterns: The self-organization of brain and behavior. MIT

press, 1997.

[37] Olaf Sporns. Networks of the Brain. MIT press, 2010.

[38] Richard F Betzel and Danielle S Bassett. Multi-scale brain networks. Neuroimage,

160:73–83, 2017.

[39] Brain power grade 4-5. background. https://www.drugabuse.gov/

publications/brain-power/grades-4-5/neurotransmission-module-3/

background. Accessed: 27-08-2019.

[40] Michael Vaiana and Sarah Feldt Muldoon. Multilayer brain networks. Journal of

Nonlinear Science, 30(5):2147–2169, 2020.

[41] David C Van Essen, Kamil Ugurbil, Edward Auerbach, Deanna Barch, Timo-

thy EJ Behrens, Richard Bucholz, Acer Chang, Liyong Chen, Maurizio Corbetta,

102

https://www.drugabuse.gov/publications/brain-power/grades-4-5/neurotransmission-module-3/background
https://www.drugabuse.gov/publications/brain-power/grades-4-5/neurotransmission-module-3/background
https://www.drugabuse.gov/publications/brain-power/grades-4-5/neurotransmission-module-3/background


REFERENCES

Sandra W Curtiss, et al. The human connectome project: a data acquisition per-

spective. Neuroimage, 62(4):2222–2231, 2012.

[42] Dan Goldowitz. Allen reference atlas. a digital color brain atlas of the c57bl/6j

male mouse-by hw dong. Genes, Brain and Behavior, 9(1):128–128, 2010.

[43] Theodore B Achacoso and William S Yamamoto. AY’s Neuroanatomy of C. elegans

for Computation. CRC Press, 1991.

[44] Michael W Davidson and Mortimer Abramowitz. Optical microscopy. Encyclo-

pedia of imaging science and technology, 2002.

[45] Liqun Luo, Edward M Callaway, and Karel Svoboda. Genetic dissection of neural

circuits. Neuron, 57(5):634–660, 2008.

[46] Jinhui Wang, Liang Wang, Yufeng Zang, Hong Yang, Hehan Tang, Qiyong Gong,

Zhang Chen, Chaozhe Zhu, and Yong He. Parcellation-dependent small-world

brain functional networks: a resting-state fmri study. Human brain mapping,

30(5):1511–1523, 2009.

[47] Stephen A Engel, David E Rumelhart, Brian A Wandell, Adrian T Lee, Gary H

Glover, Eduardo-Jose Chichilnisky, and Michael N Shadlen. fmri of human visual

cortex. Nature, 1994.

[48] Orvar Eeg-Olofsson, Ingemar Petersén, and Ulla Selldén. The development of

the electroencephalogram in normal children from the age of 1 through 15 years–

paroxysmal activity. Neuropädiatrie, 2(04):375–404, 1971.

[49] EA Allen, E Damaraju, T Eichele, L Wu, and Vince Daniel Calhoun. Eeg sig-

natures of dynamic functional network connectivity states. Brain topography,

31(1):101–116, 2018.

[50] David Cohen. Magnetoencephalography: detection of the brain’s electrical ac-

tivity with a superconducting magnetometer. Science, 175(4022):664–666, 1972.

[51] Olivier David and Karl J Friston. A neural mass model for meg/eeg:: coupling

and neuronal dynamics. NeuroImage, 20(3):1743–1755, 2003.

103



REFERENCES

[52] Jan-Mathijs Schoffelen and Joachim Gross. Source connectivity analysis with meg

and eeg. Human brain mapping, 30(6):1857–1865, 2009.

[53] Morteza Afrasiabi and Neda Noroozian. Advantages and limitations of func-

tional magnetic resonance imaging (fmri) of the human visual brain. Horizons in

Neuroscience Research Series; Costa, A., Villalba, E., Eds, pages 65–72, 2015.

[54] Karl Pearson. Note on regression and inheritance in the case of two parents.

Proceedings of the Royal Society of London, 58:240–242, 1895.

[55] Florian Mormann, Klaus Lehnertz, Peter David, and Christian E Elger. Mean

phase coherence as a measure for phase synchronization and its application to

the eeg of epilepsy patients. Physica D: Nonlinear Phenomena, 144(3-4):358–369,

2000.

[56] Karl J Friston. Functional and effective connectivity: a review. Brain connectivity,

1(1):13–36, 2011.

[57] Mikail Rubinov and Olaf Sporns. Complex network measures of brain connec-

tivity: uses and interpretations. Neuroimage, 52(3):1059–1069, 2010.

[58] Penelope Kale, Andrew Zalesky, and Leonardo L Gollo. Estimating the impact

of structural directionality: How reliable are undirected connectomes? Network

Neuroscience, 2(02):259–284, 2018.

[59] Uri Alon. Network motifs: theory and experimental approaches. Nature Reviews

Genetics, 8(6):450–461, 2007.

[60] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane

current and its application to conduction and excitation in nerve. The Journal of

physiology, 117(4):500–544, 1952.

[61] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons,

populations, plasticity. Cambridge university press, 2002.

[62] Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

104



REFERENCES

[63] Hugh R Wilson and Jack D Cowan. Excitatory and inhibitory interactions in

localized populations of model neurons. Biophysical journal, 12(1):1–24, 1972.

[64] Ben H Jansen and Vincent G Rit. Electroencephalogram and visual evoked poten-

tial generation in a mathematical model of coupled cortical columns. Biological

cybernetics, 73(4):357–366, 1995.

[65] Mattia Frasca, Andre Bergner, Juergen Kurths, and Luigi Fortuna. Bifurcations in

a star-like network of stuart–landau oscillators. International Journal of Bifurcation

and Chaos, 22(07):1250173, 2012.

[66] Michael Breakspear. Dynamic models of large-scale brain activity. Nature neuro-

science, 20(3):340, 2017.

[67] Rembrandt Bakker, Thomas Wachtler, and Markus Diesmann. Cocomac 2.0 and

the future of tract-tracing databases. Frontiers in neuroinformatics, 6:30, 2012.

[68] Gustavo Deco, Adrián Ponce-Alvarez, Dante Mantini, Gian Luca Romani, Patric

Hagmann, and Maurizio Corbetta. Resting-state functional connectivity emerges

from structurally and dynamically shaped slow linear fluctuations. Journal of

Neuroscience, 33(27):11239–11252, 2013.

[69] Ulrike Feudel, Alexander N Pisarchik, and Kenneth Showalter. Multistability

and tipping: From mathematics and physics to climate and brain—minireview

and preface to the focus issue. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 28(3):033501, 2018.

[70] Gustavo Deco and Viktor K Jirsa. Ongoing cortical activity at rest: criticality, mul-

tistability, and ghost attractors. Journal of Neuroscience, 32(10):3366–3375, 2012.

[71] Paula Sanz Leon, Stuart A Knock, M Marmaduke Woodman, Lia Domide, Jochen

Mersmann, Anthony R McIntosh, and Viktor Jirsa. The virtual brain: a simulator

of primate brain network dynamics. Frontiers in neuroinformatics, 7:10, 2013.

[72] M Marmaduke Woodman, Laurent Pezard, Lia Domide, Stuart A Knock, Paula

Sanz-Leon, Jochen Mersmann, Anthony R McIntosh, and Viktor Jirsa. Integrating

neuroinformatics tools in thevirtualbrain. Frontiers in neuroinformatics, 8:36, 2014.

105



REFERENCES

[73] Petra Ritter, Michael Schirner, Anthony R McIntosh, and Viktor K Jirsa. The

virtual brain integrates computational modeling and multimodal neuroimaging.

Brain connectivity, 3(2):121–145, 2013.

[74] Paula Sanz-Leon, Stuart A Knock, Andreas Spiegler, and Viktor K Jirsa. Math-

ematical framework for large-scale brain network modeling in the virtual brain.

Neuroimage, 111:385–430, 2015.

[75] Danielle S Bassett, Andreas Meyer-Lindenberg, Sophie Achard, Thomas Duke,

and Edward Bullmore. Adaptive reconfiguration of fractal small-world hu-

man brain functional networks. Proceedings of the National Academy of Sciences,

103(51):19518–19523, 2006.

[76] Martijn P van den Heuvel and Olaf Sporns. Network hubs in the human brain.

Trends in cognitive sciences, 17(12):683–696, 2013.

[77] David Meunier, Renaud Lambiotte, and Edward T Bullmore. Modular and hi-

erarchically modular organization of brain networks. Frontiers in neuroscience,

4:200, 2010.

[78] Sophie Achard and Ed Bullmore. Efficiency and cost of economical brain func-

tional networks. PLoS computational biology, 3(2):e17, 2007.

[79] Ed Bullmore and Olaf Sporns. The economy of brain network organization. Na-

ture Reviews Neuroscience, 13(5):336, 2012.

[80] Yong Liu, Meng Liang, Yuan Zhou, Yong He, Yihui Hao, Ming Song, Chunshui

Yu, Haihong Liu, Zhening Liu, and Tianzi Jiang. Disrupted small-world net-

works in schizophrenia. Brain, 131(4):945–961, 2008.

[81] Mikail Rubinov et al. Schizophrenia and abnormal brain network hubs. Dialogues

in clinical neuroscience, 15(3):339, 2013.

[82] Yong He, Zhang Chen, and Alan Evans. Structural insights into aberrant topo-

logical patterns of large-scale cortical networks in alzheimer’s disease. Journal of

Neuroscience, 28(18):4756–4766, 2008.

106



REFERENCES

[83] Randy L Buckner, Jorge Sepulcre, Tanveer Talukdar, Fenna M Krienen, Hesh-

eng Liu, Trey Hedden, Jessica R Andrews-Hanna, Reisa A Sperling, and Keith A

Johnson. Cortical hubs revealed by intrinsic functional connectivity: mapping,

assessment of stability, and relation to alzheimer’s disease. Journal of neuroscience,

29(6):1860–1873, 2009.

[84] Zhengjia Dai, Chaogan Yan, Kuncheng Li, Zhiqun Wang, Jinhui Wang, Miao Cao,

Qixiang Lin, Ni Shu, Mingrui Xia, Yanchao Bi, et al. Identifying and mapping

connectivity patterns of brain network hubs in alzheimer’s disease. Cerebral cor-

tex, 25(10):3723–3742, 2014.

[85] Sheryl R Haut, Jana Veliškova, and Solomon L Moshé. Susceptibility of immature

and adult brains to seizure effects. The Lancet Neurology, 3(10):608–617, 2004.

[86] Leonardo Bonilha, Travis Nesland, Gabriel U Martz, Jane E Joseph, Maria V

Spampinato, Jonathan C Edwards, and Ali Tabesh. Medial temporal lobe

epilepsy is associated with neuronal fibre loss and paradoxical increase in struc-

tural connectivity of limbic structures. J Neurol Neurosurg Psychiatry, 83(9):903–

909, 2012.

[87] Mark P Richardson. Large scale brain models of epilepsy: dynamics meets con-

nectomics. J Neurol Neurosurg Psychiatry, 83(12):1238–1248, 2012.

[88] Peter Neal Taylor, Marcus Kaiser, and Justin Dauwels. Structural connectivity

based whole brain modelling in epilepsy. Journal of neuroscience methods, 236:51–

57, 2014.

[89] John S Duncan, Josemir W Sander, Sanjay M Sisodiya, and Matthew C Walker.

Adult epilepsy. The Lancet, 367(9516):1087–1100, 2006.

[90] Susan Spencer and Linda Huh. Outcomes of epilepsy surgery in adults and chil-

dren. The Lancet Neurology, 7(6):525–537, 2008.

[91] Nishant Sinha, Justin Dauwels, Marcus Kaiser, Sydney S Cash, M Brandon West-

over, Yujiang Wang, and Peter N Taylor. Predicting neurosurgical outcomes in

107



REFERENCES

focal epilepsy patients using computational modelling. Brain, 140(2):319–332,

2016.

[92] Mark A Kramer, Uri T Eden, Eric D Kolaczyk, Rodrigo Zepeda, Emad N Eskan-

dar, and Sydney S Cash. Coalescence and fragmentation of cortical networks

during focal seizures. Journal of Neuroscience, 30(30):10076–10085, 2010.

[93] Aaron F Alexander-Bloch, Danielle S Bassett, and David A Ross. Missed con-

nections: A network approach to understanding psychiatric illness. Biological

Psychiatry, 84(2):e9–e11, 2018.

[94] Joon-Young Moon, Junhyeok Kim, Tae-Wook Ko, Minkyung Kim, Yasser Iturria-

Medina, Jee-Hyun Choi, Joseph Lee, George A Mashour, and UnCheol Lee.

Structure shapes dynamics and directionality in diverse brain networks: mathe-

matical principles and empirical confirmation in three species. Scientific reports,

7:46606, 2017.

[95] Cornelis J Stam and Elisabeth CW van Straaten. Go with the flow: use of a di-

rected phase lag index (dpli) to characterize patterns of phase relations in a large-

scale model of brain dynamics. Neuroimage, 62(3):1415–1428, 2012.

[96] Joon-Young Moon, UnCheol Lee, Stefanie Blain-Moraes, and George A Mashour.

General relationship of global topology, local dynamics, and directionality in

large-scale brain networks. PLoS computational biology, 11(4):e1004225, 2015.

[97] Alard Roebroeck, Elia Formisano, and Rainer Goebel. Mapping directed influ-

ence over the brain using granger causality and fmri. Neuroimage, 25(1):230–242,

2005.

[98] André M Bastos and Jan-Mathijs Schoffelen. A tutorial review of functional con-

nectivity analysis methods and their interpretational pitfalls. Frontiers in systems

neuroscience, 9:175, 2016.

[99] Jonathan J Crofts, Michael Forrester, and Reuben D O’Dea. Structure-function

clustering in multiplex brain networks. EPL (Europhysics Letters), 116(1):18003,

2016.

108



REFERENCES

[100] Javier M Buldú and Mason A Porter. Frequency-based brain networks: From

a multiplex framework to a full multilayer description. Network Neuroscience,

2(4):418–441, 2018.

[101] Ernesto Estrada. The structure of complex networks: theory and applications. Oxford

University Press, 2012.

[102] Mark Newman. Networks. Oxford university press, 2018.

[103] Giorgio Fagiolo. Clustering in complex directed networks. Physical Review E,

76(2):026107, 2007.

[104] Leo Spizzirri. Justification and application of eigenvector centrality. Algebra in

Geography: Eigenvectors of Network, 2011.

[105] Cristopher Moore and Mark EJ Newman. Epidemics and percolation in small-

world networks. Physical Review E, 61(5):5678, 2000.

[106] Mark EJ Newman, DJ Walls, Mark Newman, Albert-László Barabási, and Dun-

can J Watts. Scaling and percolation in the small-world network model. In The

Structure and Dynamics of Networks, pages 310–320. Princeton University Press,

2011.

[107] Béla Bollobás and Bollobás Béla. Random graphs. Number 73 in Cambridge stud-

ies in advanced mathematics. Cambridge university press, 2001.

[108] Keiichi Onoda and Shuhei Yamaguchi. Small-worldness and modularity of the

resting-state functional brain network decrease with aging. Neuroscience letters,

556:104–108, 2013.

[109] Qiuhai Yue, Randi C Martin, Simon Fischer-Baum, Aurora I Ramos-Nuñez, Feng-

dan Ye, and Michael W Deem. Brain modularity mediates the relation between

task complexity and performance. Journal of cognitive neuroscience, 29(9):1532–

1546, 2017.

[110] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–

174, 2010.

109



REFERENCES

[111] Olaf Sporns and Richard F Betzel. Modular brain networks. Annual review of

psychology, 67:613–640, 2016.

[112] MEJ Newman. Spectral community detection in sparse networks. arXiv preprint

arXiv:1308.6494, 2013.

[113] Mathieu Golos, Viktor Jirsa, and Emmanuel Daucé. Multistability in large scale

models of brain activity. PLoS computational biology, 11(12):e1004644, 2015.

[114] John J Hopfield. Neurons with graded response have collective computational

properties like those of two-state neurons. Proceedings of the national academy of

sciences, 81(10):3088–3092, 1984.

[115] Peter J Menck, Jobst Heitzig, Norbert Marwan, and Jürgen Kurths. How basin

stability complements the linear-stability paradigm. Nature physics, 9(2):89, 2013.

[116] John J Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the national academy of sciences, 79(8):2554–

2558, 1982.

[117] Klaas Enno Stephan. The history of cocomac. Neuroimage, 80:46–52, 2013.

[118] JW Scannell, GAPC Burns, CC Hilgetag, MA O’Neil, and Malcolm P Young. The

connectional organization of the cortico-thalamic system of the cat. Cerebral Cor-

tex, 9(3):277–299, 1999.

[119] Richard Michael Durbin. Studies on the development and organisation of the

nervous system of caenorhabditis elegans, 1987.

[120] John G White, Eileen Southgate, J Nichol Thomson, and Sydney Brenner. The

structure of the nervous system of the nematode caenorhabditis elegans. Philos

Trans R Soc Lond B Biol Sci, 314(1165):1–340, 1986.

[121] Yoonsuck Choe, BH McCormick, and W Koh. Network connectivity analysis on

the temporally augmented c. elegans web: A pilot study. In Soc Neurosci Abstr,

volume 30, 2004.

110



REFERENCES

[122] Marcus Kaiser and Claus C Hilgetag. Nonoptimal component placement, but

short processing paths, due to long-distance projections in neural systems. PLoS

computational biology, 2(7):e95, 2006.

[123] Daniel J Felleman and David C Van Essen. Distributed hierarchical processing in

the primate cerebral cortex. In Cereb cortex. Citeseer, 1991.

[124] Edward H Yeterian and Deepak N Pandya. Corticothalamic connections of the

posterior parietal cortex in the rhesus monkey. Journal of Comparative Neurology,

237(3):408–426, 1985.

[125] ST Carmichael and JL Price. Architectonic subdivision of the orbital and me-

dial prefrontal cortex in the macaque monkey. Journal of Comparative Neurology,

346(3):366–402, 1994.

[126] James W Lewis and David C Van Essen. Mapping of architectonic subdivisions

in the macaque monkey, with emphasis on parieto-occipital cortex. Journal of

Comparative Neurology, 428(1):79–111, 2000.

[127] F Reinoso-Suarez. Connectional patterns in parietotemporooccipital association

cortex of the feline cerebral cortex. Cortical integration. IBRO, 11:255–278, 1984.

[128] Jack W Scannell, Colin Blakemore, and Malcolm P Young. Analysis of connectiv-

ity in the cat cerebral cortex. Journal of Neuroscience, 15(2):1463–1483, 1995.

[129] Lucianoda F Costa, Marcus Kaiser, and Claus C Hilgetag. Predicting the connec-

tivity of primate cortical networks from topological and spatial node properties.

BMC systems biology, 1(1):16, 2007.

[130] Alice Rokszin, Zita Márkus, Gábor Braunitzer, Antal Berényi, György Benedek,

and Attila Nagy. Visual pathways serving motion detection in the mammalian

brain. Sensors, 10(4):3218–3242, 2010.

[131] Bram A Siebert, Cameron L Hall, James P Gleeson, and Malbor Asllani. The

role of modularity in self-organisation dynamics in biological networks. arXiv

preprint arXiv:2003.12311, 2020.

111



REFERENCES

[132] Malbor Asllani, Joseph D Challenger, Francesco Saverio Pavone, Leonardo Sac-

coni, and Duccio Fanelli. The theory of pattern formation on directed networks.

Nature communications, 5(1):1–9, 2014.

[133] Gustavo Deco, Mario Senden, and Viktor Jirsa. How anatomy shapes dynamics:

a semi-analytical study of the brain at rest by a simple spin model. Frontiers in

computational neuroscience, 6:68, 2012.

[134] Jessica S Damoiseaux, SARB Rombouts, Frederik Barkhof, Philip Scheltens, Cor-

nelis J Stam, Stephen M Smith, and Christian F Beckmann. Consistent resting-

state networks across healthy subjects. Proceedings of the national academy of sci-

ences, 103(37):13848–13853, 2006.

[135] Luca Cocchi, Leonardo L Gollo, Andrew Zalesky, and Michael Breakspear. Crit-

icality in the brain: A synthesis of neurobiology, models and cognition. Progress

in neurobiology, 158:132–152, 2017.

[136] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical anal-

ysis of structural and functional systems. Nature reviews neuroscience, 10(3):186–

198, 2009.

[137] CJ Stam, ECW Van Straaten, E Van Dellen, P Tewarie, G Gong, A Hillebrand,

J Meier, and P Van Mieghem. The relation between structural and functional con-

nectivity patterns in complex brain networks. International Journal of Psychophys-

iology, 103:149–160, 2016.

[138] Farzad V Farahani, Waldemar Karwowski, and Nichole R Lighthall. Application

of graph theory for identifying connectivity patterns in human brain networks:

a systematic review. frontiers in Neuroscience, 13:585, 2019.

[139] Yoshiki Kuramoto. International symposium on mathematical problems in theo-

retical physics. Lecture notes in Physics, 30:420, 1975.

[140] Juan A Acebrón, Luis L Bonilla, Conrad J Pérez Vicente, Félix Ritort, and Renato

Spigler. The kuramoto model: A simple paradigm for synchronization phenom-

ena. Reviews of modern physics, 77(1):137, 2005.

112



REFERENCES

[141] Carlo R Laing. Phase oscillator network models of brain dynamics. Computational

models of brain and behavior, 505:517, 2017.

[142] Arkady Pikovsky, Michael Rosenblum, Jürgen Kurths, and A Synchronization.

A universal concept in nonlinear sciences. Self, 2:3, 2001.

[143] Alex Arenas, Albert Díaz-Guilera, Jurgen Kurths, Yamir Moreno, and Changsong

Zhou. Synchronization in complex networks. Physics reports, 469(3):93–153, 2008.

[144] Arthur T Winfree. Biological rhythms and the behavior of populations of coupled

oscillators. Journal of theoretical biology, 16(1):15–42, 1967.

[145] Francisco A Rodrigues, Thomas K DM Peron, Peng Ji, and Jürgen Kurths. The

kuramoto model in complex networks. Physics Reports, 610:1–98, 2016.

[146] Fatihcan M Atay and Axel Hutt. Stability and bifurcations in neural fields with

finite propagation speed and general connectivity. SIAM Journal on Applied Math-

ematics, 65(2):644–666, 2004.

[147] Hae-Jeong Park, Karl J Friston, Chongwon Pae, Bumhee Park, and Adeel Razi.

Dynamic effective connectivity in resting state fmri. NeuroImage, 180:594–608,

2018.

[148] E Kevin Kelloway. Structural equation modelling in perspective. Journal of Orga-

nizational Behavior, 16(3):215–224, 1995.

[149] Karl J Friston, Lee Harrison, and Will Penny. Dynamic causal modelling. Neu-

roimage, 19(4):1273–1302, 2003.

[150] Junhyeok Kim, Joon-Young Moon, Uncheol Lee, George A Mashour, Seunghwan

Kim, and Tae-Wook Ko. Phase lead/lag due to degree inhomogeneity in complex

oscillator network with application to brain networks. BMC Neuroscience, 16(1):1–

2, 2015.

[151] Cornelis J Stam, Guido Nolte, and Andreas Daffertshofer. Phase lag index: as-

sessment of functional connectivity from multi channel eeg and meg with dimin-

ished bias from common sources. Human brain mapping, 28(11):1178–1193, 2007.

113



REFERENCES

[152] Russell Merris. Laplacian matrices of graphs: a survey. Linear algebra and its

applications, 197:143–176, 1994.

[153] Carsten Grabow, Stefan Grosskinsky, and Marc Timme. Speed of complex net-

work synchronization. The European Physical Journal B, 84(4):613–626, 2011.

[154] Patrick N McGraw and Michael Menzinger. Laplacian spectra as a diagnostic

tool for network structure and dynamics. Physical Review E, 77(3):031102, 2008.

[155] Takashi Nishikawa and Adilson E Motter. Network synchronization landscape

reveals compensatory structures, quantization, and the positive effect of negative

interactions. Proceedings of the National Academy of Sciences, 107(23):10342–10347,

2010.

[156] Aref Pariz, Ingo Fischer, Alireza Valizadeh, and Claudio Mirasso. Transmission

delays and frequency detuning can regulate information flow between brain re-

gions. PLoS computational biology, 17(4):e1008129, 2021.

[157] Spase Petkoski, J Matias Palva, and Viktor K Jirsa. Phase-lags in large scale brain

synchronization: Methodological considerations and in-silico analysis. PLoS com-

putational biology, 14(7):e1006160, 2018.

[158] Leonardo L Gollo and Michael Breakspear. The frustrated brain: from dynamics

on motifs to communities and networks. Philosophical Transactions of the Royal

Society B: Biological Sciences, 369(1653):20130532, 2014.

[159] Frank C Hoppensteadt and Eugene M Izhikevich. Weakly connected neural net-

works, volume 126. Springer Science & Business Media, 2012.

[160] Francisco Varela, Jean-Philippe Lachaux, Eugenio Rodriguez, and Jacques Mar-

tinerie. The brainweb: phase synchronization and large-scale integration. Nature

reviews neuroscience, 2(4):229–239, 2001.

[161] Jonathan J Crofts, Michael Forrester, Steve Coombes, and Reuben D O’Dea.

Structure-function clustering in weighted brain networks. Submitted to New

Journal of Physics (2021).

114



REFERENCES

[162] Peter J Mucha. Community structure in time-dependent, multiscale, and multi-

plex networks (vol 328, pg 876, 2010). Science, 329(5989):277–277, 2010.

[163] Peter Grindrod, Mark C Parsons, Desmond J Higham, and Ernesto Estrada. Com-

municability across evolving networks. Physical Review E, 83(4):046120, 2011.

[164] Alexander V Mantzaris, Danielle S Bassett, Nicholas F Wymbs, Ernesto Estrada,

Mason A Porter, Peter J Mucha, Scott T Grafton, and Desmond J Higham. Dy-

namic network centrality summarizes learning in the human brain. Journal of

Complex Networks, 1(1):83–92, 2013.

[165] Enrique CA Hansen, Demian Battaglia, Andreas Spiegler, Gustavo Deco, and

Viktor K Jirsa. Functional connectivity dynamics: modeling the switching be-

havior of the resting state. Neuroimage, 105:525–535, 2015.

[166] Victoria L Morgan, Bassel Abou-Khalil, and Baxter P Rogers. Evolution of func-

tional connectivity of brain networks and their dynamic interaction in temporal

lobe epilepsy. Brain connectivity, 5(1):35–44, 2015.

[167] Hong Zhu, Juan Huang, Lifu Deng, Naying He, Lin Cheng, Pin Shu, Fuhua Yan,

Shanbao Tong, Junfeng Sun, and Huawei Ling. Abnormal dynamic functional

connectivity associated with subcortical networks in parkinson’s disease: a tem-

poral variability perspective. Frontiers in neuroscience, 13:80, 2019.

[168] Delphine Puttaert, Nicolas Coquelet, Vincent Wens, Philippe Peigneux, Patrick

Fery, Antonin Rovai, Nicola Trotta, N Sadeghi, Tim Coolen, J-C Bier, et al. Alter-

ations in resting-state network dynamics along the alzheimer’s disease contin-

uum. Scientific reports, 10(1):1–13, 2020.

[169] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: an open

source software for exploring and manipulating networks. In Proceedings of the

International AAAI Conference on Web and Social Media, volume 3, 2009.

[170] Georgios A Pavlopoulos, David Paez-Espino, Nikos C Kyrpides, and Ioannis Il-

iopoulos. Empirical comparison of visualization tools for larger-scale network

analysis. Advances in bioinformatics, 2017, 2017.

115



REFERENCES

[171] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction

to cluster analysis, volume 344. John Wiley & Sons, 2009.

[172] James Michael Whitacre. Biological robustness: paradigms, mechanisms, and

systems principles. Frontiers in genetics, 3:67, 2012.

116


	Titlepage
	Copyright Statement
	Abstract
	Acknowledgements
	Declarations
	1 Introduction
	1.1 A brief history of networks
	1.2 Network neuroscience
	1.2.1 Constructing complex brain networks
	1.2.2 Directionality in neural networks
	1.2.3 Network models of large-scale neural activity
	1.2.4 Brain networks and disease

	1.3 Thesis overview

	2 Network preliminaries
	2.1 Networks
	2.1.1 Weighted networks
	2.1.2 Directed networks
	2.1.3 Adjacency matrices

	2.2 Network measures
	2.2.1 Measuring network centrality

	2.3 Network models
	2.3.1 Erdős-Rényi random graphs
	2.3.2 Watts-Strogatz small-world model
	2.3.3 Barabási-Albert model

	2.4 Network modularity
	2.5 Summary

	3 The impact of structural directionality on the computational properties of a neural network
	3.1 Brain network models
	3.1.1 The Hopfield model
	3.1.2 Structural connectivity

	3.2 Basin stability
	3.3 Results
	3.3.1 Network analysis
	3.3.2 Numerical simulations
	3.3.3 Discussion

	3.4 Summary

	4 The impact of structural directionality on effective connectivity networks
	4.1 The Kuramoto model
	4.1.1 Extensions of the model to a neuroscience setting

	4.2 Directed functional connectivity
	4.2.1 Phase lag index

	4.3 Numerical Experiments
	4.3.1 Speed of Synchronisation
	4.3.2 Stability of phase locked solutions
	4.3.3 Phase lead/lag relations

	4.4 Summary

	5 Conclusions
	5.1 Summary of thesis
	5.2 Discussion of further work

	A Cortical network modularity
	B Neural network activity patterns
	C Clustering of activity patterns for C. elegans neural network
	D Other network measures correlation with dPLI
	References

