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Improving the Diagnostic Yield of Prostate Cancer 
Abstract 
Although the introduction of PSA as a biomarker for detecting prostate cancer has enabled 

the disease to be diagnosed at an earlier stage, the primary drawback to PSA as a 

biomarker and basis for prostate cancer screening and diagnosis is its lack of specificity. 

To address this issue, PSA density, velocity and percent free PSA have all been assessed 

as potential approaches for improving the diagnosis of prostate cancer, albeit with 

variable and limited success. 

 

These challenges and the desire to improve the management and treatment of patients 

with prostate cancer prompted studies that investigated the capacity of measuring pro-

PSA levels to improve diagnostic yield over that of PSA alone. Our study confirmed that 

combining pro-PSA, total and percent free PSA improved the specificity of prostate 

cancer detection from that of 23% for PSA alone to 44%. To further improve the utility 

of pro-PSA, we subsequently determined that the ratio of pro-PSA and benign-PSA can 

identify the presence of prostate cancer with greater accuracy when the percent free PSA 

is below 15%. 

 

Traditionally, prostate cancer has been definitively diagnosed by performing transrectal 

ultrasound (TRUS) guided prostate biopsies. However, such a biopsy technique has a 

cancer detection rate of less than 30% in a benign feeling prostate. In addition, when 

TRUS biopsies are repeated due to rising PSA, the cancer detection rate significantly 

reduces to below 10% for men undergoing a third set of such biopsies. We therefore 

undertook a study to assess the diagnostic strength of the transperineal template prostate 

biopsies (TPTPB) in this group of men and demonstrated that the cancer detection rate of 

the TPTPB is significantly better than that of the TRUS biopsy (52%-68%). We 

subsequently directly compared TRUS against TPTPB in biopsy naïve men and revealed 

that TPTPB significantly outperforms TRUS in prostate cancer detection (60% versus 

32%). 

 

Based on the established concept that there is a reciprocal relationship between cancer 

and the immune system, and the proposition that the presence of cancer will influence the 

phenotype of immune cells in the blood which can be detected by profiling peripheral 
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blood mononuclear cells, we subsequently investigated whether profiling the phenotype 

of immune cells in the blood could further improve our ability not only to detect prostate 

cancer, but clinically significant prostate cancer. For this, flow cytometric immune 

profiling of the peripheral blood from men with benign prostate disease and patients with 

confirmed prostate cancer identified phenotypic features ‘fingerprints’ within the 

lymphocyte populations which, when incorporated into machine learning based 

algorithms, can be used to distinguish between the presence of benign prostate disease 

and prostate cancer. Furthermore, we identified a panel of eight natural killer (NK) cell 

phenotypic features which can be used to very accurately differentiate between high risk 

and low/intermediate risk prostate cancer when incorporated into machine learning 

algorithms. 

 

In summary, over the past two decades, my work has not only resulted in an improvement 

in the utility of PSA as a biomarker for the detection of prostate, but I also demonstrated 

that performing transperineal prostate biopsies significantly improves prostate cancer 

detection. Furthermore, we have recently revealed that our immune system can aid us to 

differentiate between indolent and clinically significant prostate cancer. Taken together, 

this programme of work has greatly impacted clinical practice. 
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Summary of Approach 
There is no definitive structure for a thesis submitted for a ‘Doctor of Philosophy by 

Published Work’ at Nottingham Trent University, rather the content and structure can 

vary according to the content of the individual study / body of work. This submission 

therefore provides a list of the peer-reviewed publications that form the basis to the PhD 

followed by introduction to the field and the knowledge to which the work is contributing. 

Each of the published papers is then reviewed, following which is a copy of the published 

work to which reference is being made. Published works contain all the relevant literature 

review, rationale, methods, results and discussions that were peer-reviewed and 

published. The aim of this structured approach is to demonstrate the progression and 

significance of this programme of work and its coherency with regards to Improving the 

Diagnostic Yield of Prostate Cancer.  Integrated into the critical review are copies of the 

published papers contained in the publications list. 
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The Research / Clinical Question 
How do we improve the diagnosis of prostate cancer beyond the utilisation of PSA and 

digital rectal examination (DRE) alone? Unfortunately, measuring blood PSA levels lacks 

specificity and DRE lacks both sensitivity and specificity. Despite the shortfalls of both 

PSA as a biomarker for the detection of prostate cancer and our ability to suspect prostate 

cancer based on an abnormal DRE, we have traditionally relied on these two tools to 

determine whether a man has prostate cancer. Accordingly, men are subjected to invasive 

prostate biopsies to detect prostate cancer, which is present in only a minority of those 

that are biopsied. Prostate biopsies are not only associated with significant complications 

such as urosepsis, bleeding and urinary retention, PSA and DRE measurements do not 

necessarily differentiate between clinically significant prostate cancer, which requires 

treatment, and indolent cancer, for which the current recommendation is to ‘watch and 

wait’ or active surveillance. The challenge over the past two decades has therefore not 

only been to improve the diagnostic yield of prostate cancer, but also to develop new 

approaches for more specifically distinguishing between benign prostate disease and 

prostate cancer and, arguably more importantly, between low-risk disease which requires 

no treatment and clinically significant disease which requires treatment.  
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Summary Analysis of Included Publications and Candidate 
Contributions 

 
PUBLICATION 1: Khan MA, Partin AW, Rittenhouse HG, Mikolajczyk SD, Sokoll 

LJ, Chan DW, Veltri RW. Evaluation of proprostate specific antigen for early detection 

of prostate cancer in men with a total prostate specific antigen range of 4.0 to 10.0 ng/ml.  

Journal of Urology 2003, 170:723-6. doi: 10.1097/01.ju.0000086940.10392.93 

Citations: 115 

Summary/Abstract: Total PSA consists of bound and free PSA. It has previously been 

demonstrated that percent free PSA (free PSA divided by total PSA) improves the 

specificity of prostate cancer diagnosis in men with an overall elevated total PSA. 

However, free PSA consists of several different components. We determined that 

measuring Sum-proPSA, total PSA and percent-free PSA, in combination, further 

improves the specificity of early prostate cancer detection in men with a total PSA of 4 

to 10 ng/ml, compared with the results when individual molecular forms PSA are 

measured.  

Contribution: As the 1st author, I conducted the study, analysed the data and wrote the 

paper. 

 

PUBLICATION 2: Khan MA, Sokoll LJ, Chan DW, Mangold LA, Mohr P, 

Mikolajczyk SD, Linton HJ, Evans CL, Rittenhouse HG, Partin AW. Clinical utility of 

proPSA and "benign" PSA when percent free PSA is less than 15%. 

Urology 2004, 64:1160-4. doi: 10.1016/j.urology.2004.06.033. 

Citations: 69 

Summary/Abstract: Although a level of percent-free PSA (%fPSA) below 15% is 

thought to be more likely associated with the presence of prostate cancer, this is not 

necessarily the case. In order to improve our ability to detect prostate cancer in men with 

a %fPSA below 15% we determined the clinical utility of the various subforms of fPSA, 

namely proPSA and “benign” PSA (BPSA). The results of our study revealed that the 

ratio of proPSA and BPSA can distinguish cancer with greater accuracy in this group of 

men, and may therefore provide better clinical utility in this lower range of percent free 

PSA. 

Contribution: I performed the study, analysed the data and wrote the paper. 
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PUBLICATION 3: Pal RP, Elmussareh M, Chanawani M, Khan MA. The role of a 

standardized 36 core template-assisted transperineal prostate biopsy technique in patients 

with previously negative transrectal ultrasonography-guided prostate biopsies. 

BJU International 2012, 109:367-71. doi: 10.1111/j.1464-410X.2011.10355.x. 

Citations: 55 

Summary/Abstract: Traditionally we have relied on transrectal ultrasound (TRUS) 

guided prostate biopsies to determine the presence of prostate cancer. However, TRUS 

guided prostate biopsies can only interrogate the posterior aspect of the prostate. As such, 

if prostate cancer is present in the anterior area of the prostate, then such cancers are 

missed and the prostate is falsely diagnosed as negative for prostate cancer. These men 

are then are at a risk of representing at a future date with either more advanced or 

metastatic prostate cancer. In addition, as TRUS guided prostate biopsies are performed 

through the rectum, there is a risk of experiencing urosepsis. In view of the limitations 

and risks associated with TRUS guided prostate biopsies, we determined whether 

performing prostate biopsies using the transperineal route, which can interrogate the 

entire prostate, improves the detection of prostate cancer in men who have had two 

previous sets of negative TRUS guided prostate biopsies due to a rising PSA. Our study 

revealed that the transperineal approach does indeed significantly improve our ability to 

detect prostate cancer. 

Contribution: As the senior author, I co-ordinated the study, performed all the biopsies 

and supervised the writing of the paper. 

 

PUBLICATION 4: Nafie S, Pal RP, Dormer JP, Khan MA. Transperineal template 

prostate biopsies in men with raised PSA despite two previous sets of negative TRUS-

guided prostate biopsies. 

World Journal of Urology 2014, 32:971-5. doi: 10.1007/s00345-013-1225-x. 

Citations: 20 

Summary/Abstract: Having shown that, when directly compared, transperineal biopsies 

are significantly better at detecting prostate cancer than TRUS guided biopsies in 

previously biopsy naïve men, we then determined whether this was still the case in the 

difficult group of men who have had two previous sets of negative TRUS guided prostate 

biopsies. We again performed both transperineal and TRUS guided prostate biopsies on 

the same occasion in order to rule out bias. Our unique study revealed that the 
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transperineal approach continues to be of benefit in detecting prostate cancer in men who 

have previously undergone two sets of negative TRUS guided prostate biopsies. 

Contribution: As the senior author, I devised the study, performed all of the biopsies and 

supervised the writing of the paper. I was also involved in recruiting the patients. 

 

PUBLICATION 5: Nafie S, Mellon JK, Dormer JP, Khan MA. The role of transperineal 

template prostate biopsies in prostate cancer diagnosis in biopsy naïve men with PSA less 

than 20 ng.ml-1. 

Prostate Cancer Prostatic Disease 2014, 17:170-3. doi: 10.1038/pcan.2014.4. 

Citations: 28 

Summary/Abstract: Having previously demonstrated the superiority of the transperineal 

approach in performing prostate biopsies over TRUS guided prostate biopsies in men who 

have previously had two negative sets of TRUS guided prostate biopsies, we determined 

if this benefit holds true in biopsy naïve men. Accordingly, we were the first group in the 

world to directly compare transperineal and TRUS guided prostate biopsies by 

performing both procedures at the same occasion. Our study revealed that transperineal 

prostate biopsies are significantly better at detecting prostate cancer than TRUS guided 

prostate biopsies. 

Contribution: As the senior author, I devised the study, performed all of the biopsies and 

supervised the writing of the paper. I was also involved in recruiting the patients. 

 

PUBLICATION 6: Nafie S, Wanis M, Khan M. The efficacy of Transrectal Ultrasound 

Guided Biopsy versus Transperineal Template Biopsy of the prostate in diagnosing 

prostate cancer in men with previous negative Transrectal Ultrasound Guided Biopsy.  

Urology Journal 2017, 14:3008-12. doi: 10.22037/uj.v14i2.3702 

Citations: 13 

Summary/Abstract: We further determined whether the transperineal approach was of 

benefit and better than TRUS guided prostate biopsies in detecting prostate cancer in men 

who have a rising PSA despite one previous set of negative TRUS guided prostate 

biopsies. We again performed both of the procedures on the same occasion and 

determined that the transperineal approach outperformed TRUS guided prostate biopsies. 

These series of studies have had a paradigm shift in the way that we now biopsy men 

with an elevated PSA. We now only perform transperineal prostate biopsies in men with 

a rising PSA and a background of a single set of previously negative TRUS guided 
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prostate biopsies. In addition, the vast majority of biopsy naïve men are also only 

considered for transperineal prostate biopsies. Now, the only group of men that we would 

currently consider for TRUS guided prostate biopsies are those who have a clearly 

palpably abnormal prostate on rectal examination requiring only a few biopsies. 

Contribution: As the senior author, I devised the study, performed all of the biopsies and 

supervised the writing of the paper. I was also involved in recruiting the patients. 

 

PUBLICATION 7: Nafie S, Berridge C, Khan M. Novel technique in performing 

standard Transperineal Template Prostate Biopsy under local anaesthetic. 

Urology Journal, submitted 2021. 

Summary/Abstract: Transperineal prostate biopsies have now become the standard 

method of obtaining histology for the diagnosis of prostate cancer. However, as these 

biopsies have traditionally been performed under general anaesthetic, it is not feasible for 

this to continue in the future due to the limited access we have to operating theatres in the 

NHS. We therefore devised a novel technique in performing such biopsies under local 

anaesthetic without compromising our cancer detection in 250 men. The study confirmed 

that the cancer detection rate was 62% in previously biopsy naïve men, which is very 

similar to the cancer detection rate when transperineal biopsies are performed under 

general anaesthetic.  

Contribution: I devised this novel technique and performed all of the biopsies. I also 

assisted in the writing of the paper. 

 

PUBLICATION 8: Cosma G, Acampora G, Brown D, Rees RC, Khan M, Pockley AG. 

Prediction of pathological stage in patients with prostate cancer: A Neuro-Fuzzy model.  

PLoS ONE 2016, 11(6): e0155856. doi: 10.1371/journal.pone.0155856. 

Citations: 42 

Summary/Abstract: The prediction of cancer staging in prostate cancer is a process for 

estimating the likelihood that the cancer has spread before treatment is given to the 

patient. Although important for determining the most suitable treatment and optimal 

management strategy for patients, staging continues to present significant challenges to 

clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA) 

level, the biopsy most common tumour pattern (Primary Gleason pattern) and the second 

most common tumour pattern (Secondary Gleason pattern) in tissue biopsies, and the 

clinical T stage can be used by clinicians to predict the pathological stage of cancer. 
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However, not every patient will return abnormal results in all tests. Herein we have 

developed a neuro-fuzzy computational intelligence model for classifying and predicting 

the likelihood of a patient having Organ-Confined Disease (OCD) or Extra-Prostatic 

Disease (ED) using a prostate cancer patient dataset obtained from The Cancer Genome 

Atlas (TCGA) Research Network. The system input consisted of the following variables: 

Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and 

clinical T stage. The performance of the neuro-fuzzy system was compared to other 

computational intelligence-based approaches, namely the Artificial Neural Network, 

Fuzzy C-Means, Support Vector Machine, the Naïve Bayes classifiers, and also the AJCC 

pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the 

optimal Receiver Operating Characteristic (ROC) points that were identified using these 

approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest 

Area Under the Curve (AUC), with a low number of false positives (FPR = 0.274, TPR 

= 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC 

pTNM Staging Nomogram (FPR = 0.032, TPR = 0.197, AUC = 0.582). 

Contribution: As a co-senior author and clinical lead, I supervised the study and the 

writing of the paper. 

 

PUBLICATION 9: Cosma G, McArdle SE, Reeder S, Foulds G, Hood S, Khan M, 

Pockley AG. Identifying the presence of prostate cancer in individuals with PSA levels 

<20 ng/ml using computational data extraction analysis of high dimensional peripheral 

blood flow cytometric phenotyping data. 

Frontiers in Immunology 2017, 8:1771. doi: 10.3389/fimmu.2017.01771. 

Citations: 7 

Summary/Abstract: Determining whether an asymptomatic individual with Prostate-

Specific Antigen (PSA) levels below 20 ng/ml has prostate cancer in the absence of 

definitive, biopsy-based evidence continues to present a significant challenge to clinicians 

who must decide whether such individuals with low PSA values have prostate cancer.  

 

Herein, we present an advanced computational data extraction approach which can 

identify the presence of prostate cancer in men with PSA levels <20 ng/ml based on 

peripheral blood immune cell profiles that have been generated using multi-parameter 

flow cytometry. 
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Statistical analysis of immune phenotyping datasets relating to the presence and 

prevalence of key leukocyte populations in the peripheral blood, as generated from 

individuals undergoing routine tests for prostate cancer (including tissue biopsy) using 

multi-parametric flow cytometric analysis, was unable to identify significant relationships 

between leukocyte population profiles and the presence of benign disease (no prostate 

cancer) or prostate cancer. By contrast, a Genetic Algorithm computational approach 

identified a subset of five flow cytometry features; CD8+CD45RA−CD27−CD28− (CD8+ 

Effector Memory Cells); CD4+CD45RA−CD27−CD28− (CD4+ Terminally Differentiated 

Effector Memory Cells re-expressing CD45RA); CD3−CD19+ (B cells); 

CD3+CD56+CD8+CD4+ (NKT cells) from a set of twenty features, which could 

potentially discriminate between benign disease and prostate cancer. These features were 

used to construct a prostate cancer prediction model using the k-Nearest-Neighbour 

classification algorithm. The proposed model, which takes as input the set of flow 

cytometry features, outperformed the predictive model which takes PSA values as input. 

Specifically, the flow cytometry-based model achieved Accuracy = 83.33%, AUC = 

83.40%, and optimal ROC points of FPR = 16.13%, TPR = 82.93%, whereas the PSA-

based model achieved Accuracy = 77.78%, AUC = 76.95%, and optimal ROC points of 

FPR = 29.03%, TPR = 82.93%. Combining PSA and flow cytometry predictors achieved 

Accuracy = 79.17%, AUC = 78.17% and optimal ROC points of FPR = 29.03%, TPR = 

85.37%. 

The results demonstrate the value of computational intelligence-based approaches for 

interrogating immunophenotyping datasets and that combining peripheral blood 

phenotypic profiling with PSA levels improves diagnostic accuracy compared to using 

PSA test alone. These studies also demonstrate that the presence of cancer is reflected in 

changes in the peripheral blood immune phenotype profile which can be identified. 

Contribution: As a senior co-author and the clinical lead, I recruited the patients to the 

study and collected all samples. In addition, I co-supervised the study and the writing of 

the paper. 

 

PUBLICATION 10: Hood SP, Foulds GA, Imrie H, Reeder S, McArdle SE, Khan MA, 

Pockley AG. Phenotype and function of activated natural killer cells from patients with 

prostate cancer: Patient-dependent responses to priming and IL-2 activation. 

Frontiers in Immunology 2019, 9:3169. doi: 10.3389/fimmu.2018.03169. 

Citations: 3 
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Summary/Abstract: Although immunotherapy has emerged as the “next generation” of 

cancer treatments, it has not yet been shown to be successful in the treatment of patients 

with prostate cancer, for whom therapeutic options remain limited to radiotherapy and 

androgen (hormone) deprivation therapy. Previous studies have shown that priming 

natural killer (NK) cells isolated from healthy individuals via co-incubation with CTV-1 

cells derived from an acute lymphoblastic leukaemia (ALL) enhances their cytotoxicity 

against human DU145 (metastatic) prostate cancer cells, but it remains unknown to what 

extent NK cells from patients with prostate cancer can be triggered to kill. 

Herein, we explore the phenotype of peripheral blood NK cells in patients with prostate 

cancer and compare the capacity of CTV-1 cell-mediated priming and IL-2 stimulation 

to trigger NK cell-mediated killing of the human PC3 (metastatic) prostate cancer cell 

line. 

The phenotype of resting, primed (co-incubation with CTV-1 cells for 17 h) and IL-2 

activated (100 IU/ml IL-2 for 17 h) NK cells isolated from frozen-thawed peripheral 

blood mononuclear cell (PBMC) preparations from patients with benign disease (n = 6) 

and prostate cancer (n = 18) and their cytotoxicity against PC3 and K562 cells was 

determined by flow cytometry. Relationships between NK cell phenotypic features and 

cytotoxic potential were interrogated using Spearman Rank correlation matrices. 

 

NK cell priming and IL-2 activation of patient-derived NK cells resulted in similar levels 

of cytotoxicity, but distinct NK cell phenotypes. Importantly, the capacity of priming and 

IL-2 stimulation to trigger cytotoxicity was patient-dependent and mutually exclusive, in 

that NK cells from ∼50% of patients preferentially responded to priming whereas NK 

cells from the remaining patients preferentially responded to cytokine stimulation. In 

addition to providing more insight into the biology of primed and cytokine-stimulated 

NK cells, this study supports the use of autologous NK cell-based immunotherapies for 

the treatment of prostate cancer. However, our findings also indicate that patients will 

need to be stratified according to their potential responsiveness to individual therapeutic 

approaches. 

Contribution: As a senior co-author and the clinical lead, I recruited the patients to the 

study and collected all the samples. In addition, I co-supervised the study and the writing 

of the paper. 

Declaration: Material contained in this publication formed part of a submission for the 

award of PhD entitled ‘Characterising the phenotype and function of natural killer cells 
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in patients with prostate cancer’ which was awarded to Simon P. Hood by Nottingham 

Trent University(Hood 2016).  

 

PUBLICATION 11: Hood SP, Cosma G, Foulds GA, Johnson C, Reeder S, McArdle 

SE, Khan MA, Pockley AG. Identifying prostate cancer and its clinical risk in 

asymptomatic men using Machine Learning of high dimensional peripheral blood flow 

cytometric natural killer cell subset phenotyping data 

 eLife 2020, e50936. doi: 10.7554/eLife.50936. 

Citations: 9 

Summary/Abstract: We demonstrate that prostate cancer can be identified by flow 

cytometric profiling of blood immune cell subsets. Herein, we profiled natural killer (NK) 

cell subsets in the blood of 72 asymptomatic men with Prostate-Specific Antigen (PSA) 

levels < 20 ng/ml, of whom 31 had benign disease (no cancer) and 41 had prostate cancer. 

Statistical and computational methods identified a panel of eight phenotypic features: 

CD56dimCD16high, CD56+DNAM-1-, CD56+LAIR-1+, CD56+LAIR-1-, CD56brightCD8+, 

CD56+NKp30+, CD56+NKp30-, CD56+NKp46+ that, when incorporated into an 

Ensemble machine learning prediction model, distinguished between the presence of 

benign prostate disease and prostate cancer. The machine learning model was then 

adapted to predict the D’Amico Risk Classification using data from 54 patients with 

prostate cancer and was shown to accurately differentiate between the presence of low-/ 

intermediate-risk disease and high-risk disease without the need for additional clinical 

data. This simple blood test has the potential to transform prostate cancer diagnostics.  

Contribution: As a senior co-author and clinical lead, I recruited the patients to the study 

and collected all the samples. In addition, I co-supervised the study and the writing of the 

paper. 
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Background and Context 
The published papers being considered for this PhD encompass work that has taken place 

over the past two decades. Since the early 1990’s PSA has been regarded as the primary 

diagnostic tool for the detection of prostate cancer. However, due to its lack of specificity, 

PSA has been found to be of limited value. Although PSA is still used as a starting point 

in determining whether a person has prostate cancer we now rely on other factors as such 

pro-PSA in ‘fine tuning’ our diagnostic skills. In addition, prior to a decade ago biopsies 

obtained for the histological confirmation of prostate cancer relied wholly on the 

transrectal approach. This is not only associated with the risk of urosepsis but lacks 

specificity for detecting prostate cancer. With the publication of evidence that the 

transperineal template approach to prostate biopsies is not only safer for patients, but 

significantly more likely to detect prostate cancer, today, the vast majority of prostate 

biopsies are performed transperineally. 

 

Despite our improved ability to detect prostate cancer by performing transperineal 

template prostate biopsies, we have not been able to differentiate between men harbouring 

low-risk disease from men with intermediate/high-risk prostate cancer. This is extremely 

important as low-risk prostate cancers are very unlikely to impact adversely on men and, 

therefore, do not need to be diagnosed. As such, with a background research experience 

of greater than 15 years in investigating our ability to improve the diagnose prostate 

cancer, I have collaborated with the John van Geest Cancer Centre (JvGCRC) at 

Nottingham Trent University since 2012. Our aim over the past decade has not only been 

to improve our ability to detect prostate cancer in men with an elevated PSA, but also 

improve our ability to differentiate, amongst men with an elevated PSA, those harbouring 

clinically significant prostate cancer prior to performing prostate biopsies. Our 

collaborative work has resulted in a number of publications revealing the role of 

peripheral immune markers and computational models in improving our ability to detect 

clinically significant prostate cancer. We expect that our findings will, in the future, lead 

to a dramatic change in our approach to the diagnosis of prostate cancer in men presenting 

with an elevated PSA test. 
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Introduction / Critical Study 
 

Incidence and prevalence of prostate cancer 

Prostate cancer is the most common non-skin cancer in older males (> 70 years of age) in 

Europe. It is a major health concern, especially in developed countries with a greater 

proportion of older men in the general population. Although the incidence is currently the 

highest in Northern and Western Europe (> 200 per 100,000 men), rates in Eastern and 

Southern Europe have shown a continuous increase (Arnold, Karim-Kos et al. 2015). 

There is a survival difference between men diagnosed in Eastern Europe and those in the 

rest of Europe (De Angelis, Sant et al. 2014). Overall, during the past decade, the 5-year 

relative survival percentages for prostate cancer has steadily increased from 73.4% in 

1999-2001 to 83.4% in 2005-2007 (De Angelis, Sant et al. 2014). With the expected 

increase in the life expectancy of men and the subsequent rise in the incidence of prostate 

cancer, the economic burden of prostate cancer in Europe is also expected to increase. It 

is estimated that the total economic costs of prostate cancer in Europe exceed 8.43 billion 

Euros (Luengo-Fernandez, Leal et al. 2013), with a high proportion of the costs occurring 

in the first year after diagnosis. In European countries with available data (UK, Germany, 

France, Italy, Spain, the Netherlands), this amounted to 106.7-179.0 million Euros for all 

prostate cancer patients diagnosed in 2006. As such, prostate cancer is an important 

disease and accounts for over 45,000 new diagnosed cases yearly in the UK (WHO 2014). 

It is also responsible for greater than 10,000 deaths yearly in the UK (WHO 2014).  

 

Genetic pre-disposition to prostate cancer 

Epidemiological studies have shown strong evidence for a genetic predisposition to 

prostate cancer, based on two of the most important factors, racial/ethnic background and 

family history (Hemminki 2012, Jansson, Akre et al. 2012). Genome-wide association 

studies have identified 100 common susceptibility loci that contribute to the risk for 

prostate cancer (Al Olama, Kote-Jarai et al. 2009). A small subpopulation of men with 

prostate cancer (about 9%) have true hereditary prostate cancer. This is defined as three 

or more affected relatives, or at least two relatives who have developed early-onset 

disease, i.e. before the age of 55 (Hemminki 2012). More than 70 prostate cancer 

susceptibility loci, explaining ~30% of the familial risk for this disease, have been 

identified (Eeles, Al Olama et al. 2013). Patients with hereditary prostate cancer usually 

have a disease onset six to seven years earlier than spontaneous cases, but do not differ 
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in other ways (Hemminki 2012). The frequency of incidentally- and autopsy-detected 

cancers is roughly the same in different parts of the world (Haas, Delongchamps et al. 

2008). This finding is in sharp contrast to the incidence of clinical prostate cancer, which 

varies widely between different geographical areas, being high in the USA and Northern 

Europe and low in South-East Asia. If Japanese men move from Japan to Hawaii, their 

risk of prostate cancer increases. If they move to California their risk increases even more, 

approaching that of American men (Breslow, Chan et al. 1977). These findings indicate 

that exogenous factors affect the risk of progression from so-called latent prostate cancer 

to clinical prostate cancer. Factors such as diet, sexual behaviour, alcohol consumption, 

exposure to ultraviolet radiation, chronic inflammation (Nelson, De Marzo et al. 2003, 

Leitzmann and Rohrmann 2012) and occupational exposure have all been discussed as 

being aetiologically important (Leitzmann and Rohrmann 2012).  

 

Prostate cancer biomarkers 

The National Cancer Institute (NCI) defines a biomarker as being a ‘biological molecule 

found in blood, other body fluids, or tissues that can be objectively measured and 

evaluated as a sign of a normal/abnormal biological process and a pathogenic 

condition/disease’. A biomarker may be used for screening purposes, for disease 

diagnosis and prognosis, for the evaluation of disease disposition and for the 

prediction/monitoring of treatment responses to various therapeutic interventions (Ilyin, 

Belkowski et al. 2004, Sawyers 2008). 

 

Prostate specific acid phosphatase (PSAP) / prostatic acid phosphatase (PAP) 

Until the introduction of prostate specific antigen (PSA) as biomarker for the detection of 

prostate cancer in 1986, the detection of prostate cancer relied on digital rectal 

examination (DRE) and the prostate specific acid phosphatase (PSAP, also known as 

prostatic acid phosphatase, PAP) blood test. However, the major drawback of DRE is that 

it is unreliable and dependent on the individual undertaking the test, in that one person 

may exam a prostate and regard it as being benign, whereas another might examine the 

same prostate and consider it to be suspicious for prostate cancer. In addition, a benign 

feeling prostate does not necessarily equate to a diagnosis of benign disease and men 

suspected of having prostate cancer based on an abnormal feeling prostate are more likely 

to harbour advanced prostate cancer. Hence, such prostate cancers are more likely to have 

spread beyond the prostate capsule and even develop metastatic disease. Unfortunately, 
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when such groups of men are diagnosed with prostate cancer, the prognosis is limited, 

and it is too late to be considered for radical treatment with curative intent in the majority 

of individuals.  

 

The first prostate cancer biomarker, prostatic specific acid phosphatase (PSAP), was 

described in the 1930s and has since then been used as a clinical marker for the 

progression of prostate cancer given that serum PSAP levels were found to be elevated in 

cases of metastatic disease (Griffiths 1980, Epstein and Eggleston 1984). Elevated serum 

PSAP levels not only indicate the presence of prostate cancer, but also that the individual 

has developed metastatic disease having a limited prognosis and is therefore not suitable 

for radical treatment with curative intent. As such, PSAP has been of limited value when 

used for detecting prostate cancer and is not suitable for the screening of prostate cancer. 

 

Prostate specific antigen (PSA) 

Prostate specific antigen (PSA) is a kallikrein-related serine protease produced by the 

epithelial cells of the prostate gland (Romero Otero, Garcia Gomez et al. 2014). PSA is 

present in normal prostatic secretions and has the sole purpose of liquifying semen. PSA 

therefore plays an important role in fertility and, as such, the prostate gland is regarded 

as one of the four accessory glands of sexual function. PSA was first isolated by Wang et 

al in 1979 (Wang, Valenzuela et al. 1979) and initially used by the legal world in rape 

trials to confirm the presence of semen, as PSA is very highly concentrated in semen. 

Initial reports suggested a role for PSA as a biomarker for monitoring the progression of 

patients already diagnosed with prostate cancer, or for monitoring recurrence following 

curative therapy for organ-confined disease (Griffiths 1980, Epstein and Eggleston 1984). 

In a landmark study, Stamey et al performed the first large-scale analysis of serum PSA 

as a prostate cancer biomarker in 1987, convincingly demonstrating that PSA was more 

sensitive than PSAP for monitoring the disease (Stamey, Yang et al. 1987). They showed 

that PSA level increased with advancing clinical stage and was useful for detecting 

disease recurrence after curative therapy (Stamey, Yang et al. 1987). Subsequent studies 

shifted the focus of PSA towards early detection of prostate cancer. In 1986, the U.S. 

Food and Drug Administration (FDA) approved PSA as an adjunctive test to the DRE for 

the detection of prostate cancer in men over the age of 50. In 1991, Catalona et al 

demonstrated that the combination of a serum PSA measurement ≥4.0 ng/ml with other 

clinical findings, such as the results of a DRE, improved detection of prostate cancer in a 
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prospective study of 1653 healthy men with no history of cancer (Catalona, Smith et al. 

1991). Numerous groups confirmed that PSA was useful as a diagnostic test for prostate 

cancer (Parkes, Wald et al. 1995). 

 

Unfortunately, although PSA can effectively be regarded as organ-specific, in that it is 

almost exclusively secreted by the prostate, with minute amounts secreted by breast and 

pancreas, it is not disease-specific. As such, PSA can be elevated in men with urinary 

tract infection, catheterised men, men with benign prostatic hyperplasia (BPH - a natural 

and benign growth of the prostate in men above the age of 40 years), excessive cycling, 

recent sexual activity, and prostatitis which can be infective or inflammatory. In addition, 

prostatic massage and urethral instrumentation such as performing a cystoscopy can all 

lead to a rise in PSA levels. It is, therefore, not possible to distinguish a man with prostate 

cancer from another with a benign prostate solely based on an elevated PSA. In view of 

this, all men with an elevated PSA are considered to potentially harbour prostate cancer 

and are considered for prostate biopsy. As such, the specificity of prostate cancer 

detection in men with an elevated PSA is low at approximately 30% (Naughton, Miller 

et al. 2000). In addition, this rate continues to decline with repeated prostate biopsies due 

to persistently rising PSA (Djavan, Ravery et al. 2001). Recent findings from a decade-

long study involving 415,000 British men (The Cluster Randomized Trial of PSA Testing 

for Prostate Cancer (CAP) Randomized Clinical Trial) have not supported single PSA 

testing for population-based screening and suggest that asymptomatic men should not be 

routinely tested to avoid unnecessary anxiety and treatment (Martin, Donovan et al. 

2018). Due to its lack of specificity, PSA is therefore not regarded as a suitable biomarker 

for screening for prostate cancer and as such, unfortunately, at present there is no prostate 

cancer screening test or programme. 

 

Although PSA has significantly improved our ability to detect prostate cancer at an earlier 

stage, in that most men diagnosed with prostate cancer today have a benign feeling 

prostate (Jang, Han et al. 2006), a further flaw with PSA is that it cannot distinguish low-

risk prostate cancer from clinically significant prostate cancer. This is extremely 

important, as men diagnosed with low-risk prostate cancer will be very unlikely to ever 

experience any problems or adverse outcome due to prostate cancer. Nonetheless, such a 

group of men will require long-term follow-up and must live with the psychological 

consequences of knowing that they have a cancer. Such patients will not only experience 
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invasive investigations which can be life-threatening but will also be financially 

disadvantaged as their diagnosis of prostate cancer will have a negative impact when 

obtaining life/travel insurance. Furthermore, such a group of men adds unnecessary 

financial burden to the NHS as, irrespective of their low-risk disease, they still require 

regular Urology clinic follow-up with current PSA test values and DRE examinations. 

Hence, it is imperative that when we diagnose prostate cancer, it is clinically significant 

disease and not low-risk prostate cancer. 

 

Traditionally, prostate cancer diagnosis has relied on performing transrectal prostate 

biopsies. Initially this was performed blindly with a very low detection rate. However, to 

visualise the prostate and improve our ability to obtain biopsies from the appropriate areas 

of the prostate gland, live ultrasound scan is now routinely used. Until recently, transrectal 

ultrasound guided prostate biopsies (TRUS) have been regarded as the gold standard 

approach to the histological diagnosis of men with prostate cancer. Furthermore, sextant 

biopsies (six areas) from the right and left posterior peripheral zones with two biopsies 

each from the base, mid and apex areas of the prostate are taken (Norberg, Egevad et al. 

1997, Presti 2003).  As such, 12 cores are traditionally taken to determine whether 

prostate cancer is present. Unfortunately, despite such a technique, which has been 

modified and improved over the past many decades, including the use of a local 

anaesthetic, thereby making the procedure more tolerable, the cancer detection rate is still 

very low. Less than 30% of men with an elevated PSA and a benign feeling prostate will 

have a histological diagnosis of prostate cancer. This rate reduces even further when 

repeated biopsies are performed at later dates due to a rising PSA (Djavan, Ravery et al. 

2001). 

 

In order to improve our ability to diagnose prostate cancer in men with an elevated PSA 

various approaches to PSA has been made. This included examining age-specific PSA, 

PSA density, PSA velocity and percent-free PSA. The prostate increases in size from the 

age of 40 years under the influence of testosterone. It, therefore, makes sense that as a 

man ages his prostate will continue to increase in size with a naturally resultant rise in 

detectable PSA levels. Accordingly, the normal PSA level is likely to rise with age. 

Despite this, previously a PSA level of 4.0 was regarded as a cut-off to distinguish normal 

from an elevated PSA level. To address the issue of a naturally rising PSA with age, age-
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specific normal PSA levels have been established (Oesterling, Jacobsen et al. 1993). This 

has helped us to avoid unnecessary prostate biopsies in the older population. 

 

PSA density is total PSA divided by the volume of the prostate. The rationale for this is 

that men with a high PSA density are thought to have prostate cancer due to the cancer 

area generating significantly more PSA than the benign prostate tissue. As such, a PSA 

density 0.15 or greater has been shown to modestly improve our ability to detect prostate 

cancer (Catalona, Southwick et al. 2000). Hence, men with a PSA density of greater than 

0.15 are more likely to be considered for a prostate biopsy rather than continue with PSA 

follow-up/monitoring. 

 

PSA velocity refers to the rate of rise in PSA per year. It has previously been reported 

that a PSA velocity of greater than 0.75 may indicate the presence of prostate cancer 

(Carter, Pearson et al. 1992). As such, men with a rapidly rising PSA are more likely to 

be considered for prostate biopsies over men with a slow-rising PSA.  

 

In 1991 it was discovered that serum contains two distinct, major, immunodetectable 

forms of PSA. One form covalently binds primarily to a serum protease inhibitor (a1-

antichymotrypsin) as well as other less dominant inhibitors and is known as complexed 

PSA, whereas the other form is a “free”, nonactive, noncomplexed form known as free-

PSA (fPSA) (Lilja, Christensson et al. 1991, Stenman, Leinonen et al. 1991). The 

measurement of the ratio of free and total PSA has led to a modest, but significant 

improvement in the discrimination of prostate cancer from benign disease in men with an 

elevated PSA (Veltri and Miller 1999, Catalona, Southwick et al. 2000). Despite this, it 

is estimated that only 30% to 50% of men with percent free PSA less than 15% will have 

a cancer diagnosis at biopsy (Catalona, Partin et al. 1998). 

 

Therefore, differences within the molecular sub-populations of fPSA have been 

extensively investigated to further discriminate prostate cancer from benign disease. It is 

now known that fPSA is composed of at least 3 distinct forms of enzymatically inactive 

PSA. One of the forms is called benignPSA (bPSA), an internally cleaved or degraded 

form of PSA that is more highly associated with benign prostatic hyperplasia (benign 

disease, BPH) (Mikolajczyk, Millar et al. 2000, Linton, Marks et al. 2003). Another form 

is thought to contain a number of minor variants but appears to be composed largely of 
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intact PSA that is similar to native, active PSA except for structural or conformational 

changes that have rendered it enzymatically inactive (Mikolajczyk, Marks et al. 2002). 

The third has been identified as the proenzyme or precursor form of PSA, also known as 

proPSA (Mikolajczyk, Marks et al. 2002). Truncated proPSA refers to proPSA in which 

any of the normal 7 amino acids in the pro-leader peptide have been removed as a result 

of post-translational proteolytic cleavage of the pro-leader peptide (Khan and James 

1998). All forms of the truncated proPSA containing any of the pro-leaded amino acids 

remain enzymatically inactive. It is these truncated forms of proPSA that have generated 

a great deal of interest since there is strong evidence to support the association of proPSA 

with prostate cancer (Kumar, Mikolajczyk et al. 1997, Mikolajczyk, Millar et al. 2000, 

Mikolajczyk, Marker et al. 2001, Peter, Unverzagt et al. 2001, Mikolajczyk, Marks et al. 

2002). To this end, examining prostate tissue from patients undergoing radical 

prostatectomy, Mickolajczyk et al (Kumar, Mikolajczyk et al. 1997) reported that proPSA 

was increased in cancer areas compared to noncancerous tissue. The authors subsequently 

developed monoclonal antibodies to detect proPSA with Western blot analysis in the PSA 

purified from the serum of five men with biopsy proven prostate cancer (tPSA range 6 to 

24 ng/ml, mean 13.4) and 3 men with negative prostate biopsies (tPSA 7 to 12, mean 9.7) 

(Mikolajczyk, Marker et al. 2001). Multiple proPSA forms were detected at higher levels 

in serum from patients with cancer whereas the truncated [-2]proPSA form was found to 

be the most consistently associated with prostate cancer in the five samples tested when 

compared to samples from individuals with benign disease. Peter et al (Peter, Unverzagt 

et al. 2001) conducted a similar study using mass spectrometry to detect PSA forms in 

which they detected [-7], [-5], [-4], [-2] and [-1]proPSA forms in serum from five patients 

with prostate cancer. The [-2]proPSA was present in four of five samples, and was the 

highest pro form in two of the samples. The mass spectrometry technique used by Peter 

et al necessitated the use of serum with much higher serum PSA values (for example, 

tPSA was 1890 ng/ml in one patient and PSA values were greater than 6000 ng/ml the 

other four samples). The development of [-2], [-4] and [-5,-7]proPSA immunoassays has 

enabled us to expand the sample population significantly and to determine whether serum 

proPSA measurement provides any additional information in the detection of prostate 

cancer in men with clinically relevant serum tPSA levels ranging from 4 to 10 ng/ml. We 

therefore assayed for percent-free PSA (%fPSA), total PSA (tPSA) and the three forms 

of proPSA in archival serum from 93 men who underwent a systematic 12-core prostate 

biopsy with a total PSA of between 4.0 and 10.0 ng/ml. Free PSA, the cumulative sum of 
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individual proPSA forms ([-2], [-4] and [-7], or sum-proPSA) and derivatives were 

determined. Our study revealed that sum-proPSA with the addition of tPSA and %fPSA 

improved the specificity of prostate cancer detection by greater than 10% at 90% 

sensitivity compared with any of these serum biomarkers measured individually 

(Mikolajczyk, Marker et al. 2001). Thus, we concluded that the combination of serum 

sum-proPSA, tPSA and %fPSA is likely to provide added clinical value resulting in fewer 

men with a tPSA ranging 4 to 10 ng/ml being unnecessarily biopsied, decreasing repeat 

biopsy frequency, and could possibly be of use for men undergoing active surveillance 

for low-risk prostate cancer (PUBLICATION 1: (Khan, Partin et al. 2003)). 

 

We subsequently investigated the clinical utility of proPSA and bPSA in improving 

prostate cancer diagnosis in men with a %fPSA level of less than 15%. This study 

included archived sera from 161 consecutive men who were prospectively enrolled in the 

Early Detection Research Network prostate cancer early detection biomarker programme 

at Johns Hopkins Hospital, Baltimore, USA, with a %fPSA value of less than 15%. 

TotalPSA, fPSA, proPSA and bPSA were measured for each sample. Our study revealed 

that the ratio of proPSA/bPSA significantly differentiated between cancer and non-cancer 

groups with an Area Under Curve-Receiver Operator Characteristic (AUC-ROC) of 0.72. 

Furthermore, using a cut-off of 0.61 for the proPSA/bPSA ratio achieved a specificity of 

46% and sensitivity of 90% for prostate cancer detection (Peter, Unverzagt et al. 2001). 

In addition, bPSA alone achieved the same overall AUC-ROC as proPSA/bPSA but at a 

significantly lower specificity of 20% at 90% sensitivity. We also determined that within 

the subgroup of men presenting with a tPSA level in the range of 4.0 to 10.0 ng/ml, bPSA 

and the proPSA/bPSA ratio were also able to distinguish between the two groups with 

near identical results to those of the overall study (PUBLICATION 2: (Khan, Sokoll et 

al. 2004)). Our study therefore revealed that the use of bPSA and the ratio of 

proPSA/bPSA in men presenting with a low %fPSA level below 15% can accurately 

distinguish between prostate cancer and non-cancerous / benign disease.  

 

Since the publication of our two studies investigating the potential benefit of proPSA in 

improving our ability to diagnose prostate cancer in 2003 and 2004 many further studies 

have further proven the usefulness of proPSA in improving our ability to detect prostate 

cancer (Stephan, Kahrs et al. 2009, Sokoll, Sanda et al. 2010, Hori, Blanchet et al. 2013). 

This has led to the subsequent development of the Prostate Health Index (PHI). PHI is a 
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diagnostic blood test that combines free and total PSA and the (-2) pro-PSA isoform ([-

2] proPSA/fPSA) × PSA1/2). This test was developed by Beckman Coulter in partnership 

with the National Cancer Institute Early Detection Research Network.  In prospective 

multicentre studies, the PHI test has outperformed free and total PSA for detection of 

prostate cancer and has improved prediction of clinically significant prostate cancer in 

men with an elevated PSA of up to 10 ng/ml. As such, using the PHI test has revealed 

that at the 90% sensitivity cut point (a score less than 28.6), 30 % of men could have been 

spared an unnecessary biopsy for benign disease or insignificant prostate cancer 

compared to 21% using the percent free PSA approach (Loeb, Sanda et al. 2015). 

Accordingly, the PHI test is now FDA approved.  

 

Most prostate cancers arise from the peripheral zone with the minority from the transition 

zone. The major drawback in performing TRUS prostate biopsies is that it is only possible 

to accurately biopsy the posterior peripheral and transition zone due to limitations in 

mobility of the ultrasound probe. A negative TRUS biopsy of the prostate does not 

therefore necessarily equate to a cancer-free prostate, as prostate cancer may be present 

in the anterior parts of the peripheral or transition zone that are inaccessible via such a 

route. As such, unfortunately a negative TRUS biopsy could falsely be reassuring to the 

patient who then subsequently presents later with advanced/metastatic prostate cancer. In 

addition, the rectum is a high bacteria colonizing organ due to the presence of faeces. 

Accordingly, approximately 3-5% of men who undergo TRUS guided prostate biopsies 

will experience urosepsis (Raaijmakers, Kirkels et al. 2002) with many such patients 

requiring ITU care. Furthermore, a minority of men experiencing urosepsis from prostate 

biopsies will not survive the experience. Worryingly, the risk of developing urosepsis has 

increased over the past decade due to the development of multi-drug resistant faecal 

bacteria (Carlson, Bell et al. 2010). 

 

Despite the risks of developing urosepsis, in an attempt to improve the diagnostic yield 

of TRUS guided prostate biopsies, saturation TRUS guided prostate biopsies have been 

performed in the past. This involves far greater numbers of prostate biopsies being taken. 

The rationale for this was that increasing the number of biopsies taken may, in turn, 

increase the chance of hitting the area of prostate involved with prostate cancer. However, 

transrectal saturation biopsies have not increased the prostate cancer detection rate (Jones, 

Patel et al. 2006). This is not surprising, as repeatedly biopsy of the same area is very 
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unlikely to give a different result. In view of this, TRUS guided saturation prostate 

biopsies are not recommended.  

 

To avoid taking biopsies through the rectum and to be in a position to biopsy any part of 

the prostate, the transperineal approach has gained traction over the past decade. It is now 

considered as the preferred mode of biopsy for the majority of men presenting with an 

elevated PSA. Transperineal template prostate biopsies (TPTPB) involve the insertion of 

a number of needles under sterile condition through the perineal skin (area between the 

scrotum and anus) to obtain tissue samples from the prostate gland. This procedure is 

traditionally and currently in the vast majority of instances performed under a general 

anaesthetic. An ultrasound probe is inserted rectally to visualise the whole of the prostate 

and stabilised using an articulated arm clamped on to the theatre trolley. This enables us 

to accurately biopsy any part of the prostate. 

 

I was the first person to perform TPTPB in the East Midlands in January 2008. This was 

borne out of the necessity to improve the diagnostic yield of prostate cancer in men with 

persistently rising PSA despite two previous sets of negative TRUS guided prostate 

biopsies. There was, at that time, a dilemma as to how to manage the growing population 

of men repeatedly attending the Urology Department due to a continuing rise in PSA with 

the background of multiple previous negative TRUS guided prostate biopsies. It is not 

surprising that biopsying the same area repeatedly did not bring about an improvement in 

the prostate cancer diagnosis rate. Indeed, it has been previously reported that repeated 

TRUS guided prostate biopsies diminish the cancer detection rate (Djavan, Ravery et al. 

2001). As such, we determined the efficacy and safety of TPTPB in 40 men with rising 

PSA tests despite two previous sets of negative TRUS guided prostate biopsies. For this 

study, a total of 36 cores were taken under general anaesthetic, six each from the right 

and left anterior, mid and posterior areas. This method permitted sampling of the anterior 

peripheral and transition zones that were previously inaccessible via the TRUS route. Our 

study revealed that 68% of men were diagnosed with prostate cancer (PUBLICATION 

3: (Pal, Elmussareh et al. 2012)). This was a very large and significant improvement in 

the cancer detection rate compared to TRUS guided prostate biopsies in such a group of 

men which has previously reported a less than 10% cancer detection rate (Djavan, Ravery 

et al. 2001). Furthermore, there were no cases of urosepsis confirming that this approach 

is significantly safer than TRUS guided prostate biopsies. This study brought about a 
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paradigm shift in the management of men who presented to our department with a rising 

PSA despite a previous set of negative TRUS guided prostate biopsies as such men were 

no longer considered for further TRUS biopsies, but instead TPTPB. 

 

Having published the benefit of TPTPB in a small group of men we subsequently 

determined whether TPTPB could continue to demonstrate such benefit in a larger group 

of men. We therefore published our findings of 122 men who underwent TPTPB due to 

a rising PSA and two previous sets of negative TRUS guided prostate biopsies. This larger 

study revealed that 58% of men were diagnosed with prostate cancer (PUBLICATION 

4: (Nafie, Pal et al. 2014)). In addition, in 80% of those in which cancer was detected, the 

cancer was either in the anterior peripheral zone (59%) or mid transition zone (21%) - the 

two areas that could not have been accessed via the TRUS route.  

 

Having established the superiority of TPTPB over TRUS guided prostate biopsies in 

detecting prostate cancer in men with a rising PSA despite previous negative TRUS 

guided prostate biopsies we determined whether this was still the case for biopsy naïve 

men with an elevated PSA. As such, we performed a study in which men with an elevated 

PSA below 20 ng/ml and a benign feeling prostate underwent TRUS guided prostate 

biopsies and TPTPB on the same occasion. TRUS guided prostate biopsies were 

performed first followed by TPTPB. Biopsies were performed in this order to avoid 

criticism that if we had performed TPTPB in the first instance then a negative TRUS 

guided prostate biopsies may have been due to the TPTPB picking up the posterior 

peripheral zone cancer. This study investigated 50 men and found that TPTPB detected 

prostate cancer in 60% of men versus 32% of men for the TRUS guided prostate biopsies 

(PUBLICATION 5: (Nafie, Mellon et al. 2014)). The 32% cancer detection rate via the 

TRUS guided route mirrors well the published data in the world literature regarding this 

group of men (Djavan, Ravery et al. 2001). Furthermore, if only TRUS guided prostate 

biopsies were performed, then prostate cancer would have been missed in 28% of men. 

In addition, no prostate cancer was detected solely on TRUS guided prostate biopsies. 

This study consolidated our previous findings that TPTPB significantly out-performs 

TRUS guided prostate biopsies in the detection of prostate cancer. 

 

As the final part of a series of studies we determined whether TPTPB is superior to TRUS 

guided prostate biopsies in detecting prostate cancer in men with a rising PSA despite a 
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previous single set of negative TRUS guided prostate biopsies. For this study, we 

simultaneously performed TRUS guided prostate biopsies and TPTPB in 42 men with a 

rising PSA, but below 20 ng/ml and a benign feeling prostate on rectal examination, with 

the background of a previous single set of negative TRUS guided prostate biopsies. 

TPTPB still demonstrated a significantly higher prostate cancer detection rate compared 

to TRUS guided prostate biopsies (12% versus 45%, P < 0.01) (PUBLICATION 6; 

(Nafie, Wanis et al. 2017)) 

 

As a result of the above studies, we now very infrequently perform TRUS guided prostate 

biopsies. The only instances on which we would now consider performing TRUS guided 

prostate biopsies is in men with an abnormal feeling prostate which only requires a few 

targeted biopsies of the abnormal area. With the increasing use of PSA, greater than 80% 

of prostate cancer today is detected in men with a benign feeling prostate. All such men 

are now undergoing TPTPB rather than TRUS guided prostate biopsies. 

 

To further improve the detection of prostate cancer in men with a rising PSA, the use of 

MRI scans has become increasingly common. With advancements in the quality of MRI 

scans, radiologists can more accurately interpret abnormal areas within a prostate. The 

PROMIS study was conducted to determine the role of MRI scan in prostate cancer 

detection. PROMIS was a paired validating confirmatory study determining the role of 

multi-parametric MRI scan along with TPTPB and TRUS guided prostate biopsies in the 

detection of prostate cancer in men with an elevated PSA of 15.0 or less with the 

background of a benign feeling prostate (Ahmed, El-Shater Bosaily et al. 2017). The 

study revealed that in 25% of men with an MRI detected abnormal area in the prostate 

there was no significant prostate cancer found on biopsies. In addition, in 20% of men 

with an underlying unremarkable prostate gland on an MRI scan there was significant 

prostate cancer confirmed on biopsies. As such, although MRI scanning of the prostate 

may help us to target abnormal appearing appears, this does not necessarily equate to an 

area of cancer. Furthermore, a normal appearing area does not rule out prostate cancer. 

As such, the current guideline is that targeted along with saturation TPTPB should be 

considered in a man with and elevated PSA and a benign feeling prostate. 

 

Due to the steep rise in the demand for TPTPB there has been a move towards performing 

such biopsies under local anaesthetic. This has posed significant challenges, as TPTPB 
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requires the patient to be in a lithotomy position with a transrectal probe to visualise the 

prostate for anything between 10 to 30 minutes. In addition, the prostate has a rich nerve 

supply making such a procedure very difficult under a local anaesthetic. Nonetheless, I 

am the first person in the East Midlands to have performed this procedure under local 

anaesthetic using a novel technique. I have now performed over 250 TPTPB using local 

anaesthetic over the past two years without any significant issues and with a high cancer 

detection rate, thereby demonstrating that local anaesthetic TPTPB is safe and feasible. 

This has led to over 90% of men now having their TPTPB under local anaesthetic at my 

institution. Only the minority of men who do not tolerate a DRE are considered for 

TPTPB under general anaesthetic. Our findings and technique have now been submitted 

for peer-reviewed publication (PUBLICATION 7: (Nafie, Berridge et al. 2021)). 

 

Despite the improved utilisation of serum biomarkers and performing TPTPB leading to 

a significant increase in the detection of prostate cancer, the major problem that we are 

still facing today is our inability to predict low/intermediate risk prostate cancer versus 

high prostate cancer. The large, UK based prospective ProtecT (Prostate Testing for 

Cancer and Treatment) study randomised low, intermediate, and high-risk prostate 

cancer, all detected by TRUS guided prostate biopsies, to active surveillance or radical 

radiotherapy with neoadjuvant and adjuvant hormones or radical prostatectomy (Lane, 

Donovan et al. 2014). This study has revealed that all low risk and most intermediate risk 

prostate cancers can be safely managed on long-term active surveillance. In other words, 

it is very unlikely that anyone diagnosed with low-risk prostate cancer and most men 

diagnosed with intermediate risk prostate cancer will ever need any active treatment to 

address their prostate cancer. It is, therefore, important to only consider performing 

prostate biopsies in men highly likely to harbour high risk prostate cancer (clinically 

significant disease).  

 

Our ability to do this will not only result in a significant reduction in the financial burden 

to the NHS as far fewer biopsies will need to be performed in the future, but also reduce 

unnecessary emotional and financial burden to our patients. As men diagnosed with 

prostate cancer, irrespective of the category, will experience financial implications when 

obtaining travel and life insurance. In addition, biopsies are not without their side-effects 

and risks. Furthermore, even those diagnosed with low-risk prostate cancer will have to 



Improving the Diagnostic Yield of Prostate Cancer – Masood A. Khan 
________________________________________ 

 

25 | P a g e  
 

endure a life-long follow-up to rule out the very small risk of eventually developing 

clinically significant disease requiring active treatment. 

 

When diagnosing prostate cancer, it is also important to have insight into the likely 

staging of the cancer as this impact on the management the individual and the disease. 

Cancer staging prediction is a process for estimating the likelihood that the disease has 

spread before treatment is given to the patient. The evaluation of cancer staging occurs 

before (i.e. at the prognosis stage) and after (i.e. at the diagnosis stage) the tumour is 

removed - the ‘clinical’ and ‘pathological’ stages respectively. The clinical stage 

evaluation is based on data gathered from clinical tests that are available prior to treatment 

or following the surgical removal of the tumour. There are three primary clinical stage 

tests for prostate cancer: the PSA test; a biopsy which is used to detect the presence of 

cancer in the prostate and to evaluate the degree of cancer aggressiveness (results are 

usually given in the form of the Primary and Secondary Gleason patterns); and a physical 

examination, namely the DRE which can determine the existence of disease and possibly 

provide sufficient information to predict the stage of the cancer. A limitation of the PSA 

test is that abnormally high PSA levels may not necessarily indicate the presence of 

prostate cancer, nor might normal PSA levels reflect the absence of prostate cancer. 

Pathological staging can be determined following surgery and the examination of the 

removed tumour tissue and is likely to be more accurate than clinical staging, as it allows 

a direct insight into the extent and nature of the disease.  

 

Given the potential prognostic power of the clinical tests, a variety of prostate cancer 

staging prediction systems have been developed. The ability to predict the pathological 

stage of a patient with prostate cancer is important, as it enables clinicians to better 

determine the optimal treatment and management strategies. This is to the patient’s 

considerable benefit, as many of the therapeutic options can be associated with significant 

short- and long- term side-effects. For example, radical prostatectomy, the surgical 

removal of the prostate gland, offers the best chance for curing the disease when prostate 

cancer is localised, and the accurate prediction of pathological stage is fundamental to 

determining which patients would benefit most from this approach (Blute, Nativ et al. 

1989, Epstein, Pizov et al. 1993, Epstein, Walsh et al. 1994). Currently, as clinicians we 

use nomograms to predict a prognostic clinical outcome for prostate cancer, and these are 

based on statistical methods such as logistic regression (Dotan and Ramon 2009). 
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However, cancer staging continues to present significant challenges to the clinical 

community.  

 

The prostate cancer staging nomograms which are used to predict the pathological stage 

of the cancer are based on results from the clinical tests. However, the accuracy of the 

nomograms is debatable (Chun, Karakiewicz et al. 2007, Briganti, Karakiewicz et al. 

2009). Briganti et al. (Briganti, Karakiewicz et al. 2009) has stated that nomograms are 

accurate tools and that “Personalized medicine recognizes the need for adjustments, 

according to disease and host characteristics. It is time to embrace the same attitude in 

other disciplines of medicine. This includes urologic oncology where nomograms, 

regression-trees, lookup tables and neural networks represent the key tools capable of 

providing individualized predictions”. However, Dr Joniau (Briganti, Karakiewicz et al. 

2009) has expressed that the data used for devising the nomograms are subjective and, to 

a certain extent, biased by institutional protocols on which patients are selected for a given 

treatment. Dr Joniau also states that one of the drawbacks of nomograms is that various 

nomograms have been devised for risk estimation and it is difficult to determine which 

nomogram will provide the most reliable risk estimation for a particular patient. He 

emphasises that although nomograms allow for more accurate risk assessment, this risk 

estimation is a “snapshot in a risk continuum”. Although this might allow personalized 

predictions, it also makes treatment decisions difficult (Briganti, Karakiewicz et al. 2009).  

 

Cancer prediction systems which consider various variables for the prediction of an out- 

come require computational intelligent methods for efficient prediction outcomes 

(Tewari, Porter et al. 2001). Although computational intelligence approaches have been 

used to predict prostate cancer out-comes, very few models for predicting the pathological 

stage of prostate cancer exist. In essence, classification models based on computational 

intelligence are utilised for prediction tasks. Classification is a form of data analysis 

which extracts classifier models describing data classes, and uses these models to predict 

categorical labels (classes) or numeric values (Han 2005). When the classifier is used to 

predict a numeric value, as opposed to a class label, it is referred to as a predictor. 

Classification and numeric prediction are both types of prediction problems (Han 2005), 

and classification models are widely adopted to analyse patient data and extract a 

prediction model in the medical setting.  
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Computational intelligence approaches, and in particular fuzzy-based approaches, are 

based on mathematical models that are specially developed for dealing with the 

uncertainty and imprecision which is typically found in the clinical data that are used for 

prognosis and the diagnosis of diseases in patients. These characteristics make these 

algorithms a suitable platform on which to base new strategies for diagnosing and staging 

prostate cancer. For example, not everyone diagnosed with prostate cancer will exhibit 

abnormal results in all tests, as a consequence of which, different test result combinations 

can lead to the same outcome.  

 

The capacity of fuzzy, and especially neuro-fuzzy approaches, to predict the pathological 

stage of prostate cancer has not been as widely evaluated as the more commonly used 

Artificial Neural Network (ANN) and other approaches. However, fuzzy approaches have 

been applied to other prostate cancer scenarios. Benechi et al. (Benecchi 2006) have 

applied the Co-Active Neuro-Fuzzy Inference System (CANFIS) to predict the presence 

of prostate cancer; Keles et al. (Keles, Hasiloglu et al. 2007) proposed a neuro-fuzzy 

system for predicting whether an individual has cancer or Benign Prostatic Hyperplasia 

(BPH). Çinar et al. (Çinar, Mehmet et al. 2009) designed a classifier-based expert system 

for the early diagnosis of prostate cancer, thereby aiding the decision-making process and 

informing the need for a biopsy. Castanho et al. (Castanho, Hernandes et al. 2013) 

developed a genetic-fuzzy expert system which combines pre-operative serum PSA, 

clinical stage, and Gleason grade of a biopsy to predict the pathological stage of prostate 

cancer (i.e. whether it was confined or not- confined).  

 

Saritas et al. (Saritas, Ozkan et al. 2010) devised an ANN approach for the prognosis of 

cancer which can be used to assist clinical decisions relating to the necessity for a biopsy. 

Shariat et al. (Shariat, Kattan et al. 2009)have performed a critical review of prostate 

cancer prediction tools and concluded that predictive tools can help during the complex 

decision-making processes, and that they can provide individualised, evidence-based 

estimates of disease status in patients with prostate cancer.  

 

Furthermore, Tsao et al. (Tsao, Liu et al. 2014) developed an ANN model to predict 

prostate cancer pathological staging in 299 patients prior to radical prostatectomy and 

found that the ANN model was superior at predicting Organ Confined Disease in prostate 

cancer than a Logistic Regression model. Tsao et al. (Tsao, Liu et al. 2014) also compared 
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their ANN model with Partin Tables and found that the ANN model more accurately 

predicted the pathological stage of prostate cancer.  

 

We therefore proposed a neuro-fuzzy model for predicting the pathological stage of 

prostate cancer. The system inputs comprised the following variables: the most common 

tumour pattern (Primary Gleason pattern), the second most common pattern (Secondary 

Gleason pattern), PSA levels, age at diagnosis, and clinical T stage. The neuro-fuzzy 

model automatically constructed fuzzy rules via a training process which applied to 

existing and known patient records and status. These rules were then used to predict the 

prostate cancer stage of patients in a validation set. The model made use of the Adaptive 

Neuro-Fuzzy Inference System which was also used to optimise the predictive 

performance. The outcome for each patient record was a numerical prediction of the 

‘degree of belongingness’ of each patient in the Organ-Confined Disease and Extra-

Prostatic Disease classes. The performance of the neuro-fuzzy system was compared to 

other computational intelligence-based approaches, namely the Artificial Neural 

Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also 

the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A 

comparison of the optimal Receiver Operating Characteristic (ROC) points that were 

identified using these approaches, revealed that the neuro-fuzzy system, at its optimal 

point, returns the largest Area Under the ROC Curve (AUC), with a low number of false 

positives (FPR = 0.274, TPR = 0.789, AUC = 0.812). The proposed approach is also an 

improvement over the AJCC pTNM Staging Nomogram (FPR = 0.032, TPR = 0.197, 

AUC = 0.582) (PUBLICATION 8: (Cosma, Acampora et al. 2016)). Currently, the 

proposed framework has been implemented as a research tool, and once more evaluations 

are conducted, the tool will be developed as a simple to use application which can be 

made accessible to clinicians. The tool will take the clinical test results (i.e. age at 

diagnosis, PSA, biopsy Primary and Secondary Gleason patterns, and clinical T stage) of 

an individual patient and predict his likelihood of having extra-prostatic cancer, and 

thereby aid the clinical decision-making process. Ongoing work is applying the proposed 

neuro-fuzzy predictor to a larger dataset, examining other computational intelligence 

approaches, and continuing the development of novel algorithms for predicting disease 

status in patients with prostate cancer.  
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As stated previously, it is essential that men with low-risk prostate cancer are not 

diagnosed as having cancer, as they do not require any active treatment. However, this 

group of men, will, nonetheless, require life-long surveillance. This can have profound 

adverse psychological and financial consequences, not only to the individual but also to 

the healthcare system. We ,therefore, determined whether it is possible to predict with a 

high level of diagnostic accuracy ,for asymptomatic men with an elevated PSA <20 ng/l, 

between those with clinically significant prostate cancer from those with either benign 

disease or low-risk prostate cancer. The development of such approaches will spare men 

with benign disease or low-risk cancer from unnecessary invasive diagnostic procedures 

such as TRUS-guided prostate biopsies or TPTPB. Given the reciprocal interactions 

between tumours and the immune system, we hypothesized that the presence of disease, 

disease recurrence, and therapeutic resistance may be influenced, reflected in, or 

predicted by tumour-related immunoregulatory events that can be identified by changes 

in immune phenotypes in the periphery. Accordingly, we proposed that the analysis of 

immune phenotyping datasets using multi-parametric flow cytometric analysis can 

identify features that reflect the presence of disease and/or predict disease progression 

(Rajwa, Wallace et al. 2017). Although flow cytometry provides a vital tool for exploring, 

explaining, and understanding complex cellular dynamics and processes in a variety of 

experimental and clinical settings (Pockley, Foulds et al. 2015), key challenges with 

multi-parametric flow cytometry include the analysis and interpretation of the complex 

and increasingly multidimensional data and its conversion into biologically and clinically 

useful information. This study attempts to address and resolve some of these challenges 

using computational intelligence methods. Computational intelligence methods comprise 

evolutionary algorithms (also known as metaheuristic optimization, or nature-inspired 

optimization algorithms) coupled with machine learning methods, and hybrids of these.  

 

A type of machine learning method, supervised learning, is used to derive prediction 

models which can be very effective in dealing with uncertainty, noise, and dimensionality 

in data. Supervised learning methods can learn from existing data to make informed 

predictions using new patient data and have been widely adopted for prostate cancer 

prediction tasks when using clinical and biomedical data (Cosma, Brown et al. 2017). It 

is now time to embrace computational intelligence methods for the analysis of flow 

cytometry data, since statistical methods alone may not be sufficient for the task of 

analysing and modelling such complex data (Cosma, Brown et al. 2017). Herein, we 



Improving the Diagnostic Yield of Prostate Cancer – Masood A. Khan 
________________________________________ 

 

30 | P a g e  
 

assess whether advanced computational analysis of peripheral blood flow cytometry 

immunophenotyping data from a selected cohort of individuals can generate prediction 

models with potential clinical value and identify the presence of prostate cancer in 

asymptomatic individuals with a PSA level <20 ng/ml. The computational models and 

algorithms are trained to make predictions on new and previously unseen data using 

existing data. Significantly, this approach has identified a novel prostate cancer 

immunophenotyping “finger- print” which could potentially be used to identify the 

presence of prostate cancer in asymptomatic men having PSA levels <20 ng/ml; and 

which outperforms the predictive value of the PSA test alone. We have also shown that 

combining flow cytometry predictors with PSA levels improves diagnostic accuracy. 

Taken together, these studies demonstrate that the presence of cancer is reflected in 

changes in the peripheral blood immune phenotype profile which can be identified using 

computational analysis and interpretation of complex flow cytometry datasets, and the 

value of computational intelligence-based approaches for interrogating 

immunophenotyping datasets.  

 

The prediction model was developed using a selected subset of flow cytometry features 

and the k-Nearest Neighbor (kNN) classification algorithm. The Genetic Algorithm 

proposed by Ludwig and Nunes (Ludwig and Nunes 2010) was utilized for the feature 

selection stage, and this algorithm returned the best combination of flow cytometry 

features (i.e. predictors) for discriminating between patients with benign disease and 

patients with cancer. These predictors were then input into the kNN classification 

algorithm. The kNN classifier was used to predict the disease status of an individual using 

new and previously unseen patient records. Feature selection was important because it 

enabled only the best subset of features (i.e., predictors) to be selected for the prediction 

task and, thus, removes the “noisy” features that are not useful in identifying cancer.  

 

Our advanced computational data extraction approach identified the presence of prostate 

cancer in men with PSA levels <20 ng/ml based on peripheral blood immune cell profiles 

that have been generated using multi-parameter flow cytometry. Statistical analysis of 

immune phenotyping datasets relating to the presence and prevalence of key leukocyte 

populations in the peripheral blood, as generated from individuals undergoing routine 

tests for prostate cancer (including tissue biopsy) using multi-parametric flow cytometric 

analysis, was unable to identify significant relationships between leukocyte population 
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profiles and the presence of benign disease (no prostate cancer) or prostate cancer. By 

contrast, a Genetic Algorithm computational approach identified a subset of five flow 

cytometry features (CD8+CD45RA-CD27-CD28- (CD8+ Effector Memory cells); 

CD4+CD45RA-CD27-CD28- (CD4+ Terminally Differentiated Effector Memory Cells 

re-expressing CD45RA); CD3-CD19+ (B cells); CD3+CD56+CD8+CD4+ (NKT cells)) 

from a set of twenty features, which could potentially discriminate between benign 

disease and prostate cancer. These features were used to construct a prostate cancer 

prediction model using the k-Nearest-Neighbor classification algorithm. The proposed 

model, which takes as input the set of flow cytometry features, outperformed the 

predictive model which takes PSA values as input. Specifically, the flow cytometry-based 

model achieved Accuracy = 83.33%, AUC = 83.40%, and optimal ROC points of FPR = 

16.13%, TPR = 82.93%, whereas the PSA-based model achieved Accuracy = 77.78%, 

AUC = 76.95%, and optimal ROC points of FPR = 29.03%, TPR = 82.93%. Combining 

PSA and flow cytometry predictors achieved Accuracy = 79.17%, AUC = 78.17% and 

optimal ROC points of FPR = 29.03%, TPR = 85.37%. (PUBLICATION 9: (Cosma, 

McArdle et al. 2017)). Taken together, these studies demonstrate the value of 

computational intelligence-based approaches for interrogating immunophenotyping 

datasets and that combining peripheral blood phenotypic profiling with PSA levels 

improves diagnostic accuracy compared to using PSA test alone. These studies also 

demonstrate that the presence of cancer is reflected in changes in the peripheral blood 

immune phenotype profile which can be identified using computational analysis and 

interpretation of complex flow cytometry datasets.  

 

Based on the reciprocal interaction between cancer and the immune system, we have 

proposed that immunological signatures within the peripheral blood (the peripheral blood 

‘immunome’) can discriminate between men with benign prostate disease and those with 

prostate cancer and thereby reduce the dependency of diagnosis on invasive biopsies. To 

this end, we have shown above that the incorporation of a peripheral blood immune 

phenotyping-based feature set comprising five phenotypic features into a computation-

based prediction tool enables the better detection of prostate cancer and strengthens the 

accuracy of the PSA test in asymptomatic men having PSA levels < 20 ng/ml (Cosma, 

McArdle et al. 2017). We then extended this new approach to determine if phenotypic 

profiling of peripheral blood NK cell subsets can also discriminate between the presence 
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of benign prostate disease and prostate cancer in the same cohort of asymptomatic men 

(Hood, Cosma et al. 2020). We also investigated the potential of the peripheral blood 

dataset to discriminate between low- or intermediate-risk prostate cancer and high-risk 

prostate cancer in those men having prostate cancer. Using statistical and computational 

methods, our study identified a panel of eight phenotypic features (CD56dimCD16high, 

CD56+DNAM-1-, CD56+LAIR-1+, CD56+LAIR-1-, CD56brightCD8+, CD56+NKp30+, 

CD56+NKp30-, CD56+NKp46+) that, when incorporated into an Ensemble machine 

learning prediction model, distinguished between the presence of benign prostate disease 

and prostate cancer. The machine learning model was then adapted to predict the 

D’Amico Risk Classification using data from 54 men with prostate cancer and was shown 

to accurately differentiate between the presence of low-/ intermediate-risk disease and 

high-risk disease without the need for additional clinical data (PUBLICATION 10: 

(Hood, Cosma et al. 2020)). This simple blood test therefore has the potential to transform 

prostate cancer diagnostics, as it may be feasible in the future to predict in men with an 

elevated PSA those who are likely to harbour clinically significant prostate cancer. 

 

The primary treatment for advanced metastatic prostate cancer is androgen (hormone) 

deprivation therapy (ADT), with upfront chemotherapy if medically fit and with good 

renal function. Although the majority of patients initially respond to ADT, as evidenced 

by disease regression and disease stability (Kalina, Neilson et al. 2017), it is inevitable 

that the disease will progress and become hormone-resistant. At this point, second-line 

hormone therapy followed by further hormone manipulation therapy is considered, but 

will typically deliver only a very limited effect. As such, as we have demonstrated above 

that the immune system may be able to differentiate between clinically significant and 

non-significant prostate cancer, we determined whether immune modulation could play 

a role in the management of hormone-resistant prostate cancer. 

 

Immunotherapy involving stimulating the patient’s own immune system to retarget their 

cancer is emerging as the next generation of cancer treatment (Farkona, Diamandis et al. 

2016). Currently, the only approved immunotherapy for treating castration-resistant 

prostate cancer is Sipuleucel-T immunotherapy which has been shown to improve the 

median overall survival by 4.1 months compared to a placebo group (Kantoff, Higano et 

al. 2010). Although preventing tumour-mediated immunoregulation using immune 

checkpoint inhibitors such as Ipilimumab has shown some success in treating 
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immunogenic cancers such as melanoma and non-small cell lung cancer, their use in 

patients with prostate cancer has not been shown to improve overall survival (Kwon, 

Drake et al. 2014). However, some evidence of beneficial effects have been observed and 

clinical trials testing Ipilimumab in combination with other standard prostate cancer 

treatments (e.g., ADT) are ongoing (Modena, Ciccarese et al. 2016). NK cells were first 

identified on the basis of their natural cytotoxicity toward cancerous cells and a number 

of NK cell-based immunotherapies are now in development (Trinchieri 1989, Miller 

2013, Specht, Ahrens et al. 2015, Shevtsov and Multhoff 2016, Shevtsov and Multhoff 

2016, Chiossone, Vienne et al. 2017, Multhoff, Seier et al. 2020). As reviewed by Sabry 

and Lowdell (Sabry and Lowdell 2013), the cytotoxic function of NK cells is controlled 

by the balance of signals transduced via activating and inhibitory receptors following 

ligation with stress ligands and MHC class I molecules, respectively (Dynamic 

Equilibrium Theory). Bryceson et al. demonstrated that natural cytotoxicity requires the 

co-engagement of multiple activating receptors (Bryceson, March et al. 2006, Bryceson, 

Ljunggren et al. 2009). Furthermore, work by Lowdell et al. led to the hypothesis that the 

natural cytotoxicity mechanism can be divided into two discrete stages; “priming” and 

“triggering” (North, Bakhsh et al. 2007, Sabry, Tsirogianni et al. 2011, Sabry and Lowdell 

2013). For this, they hypothesized that the “priming” signal can be delivered either by the 

ligation of the appropriate number and combination of activating receptors with their 

target ligands or via an activating cytokine (e.g., IL-2). The “triggering” signal requires 

the ligation of at least one additional activating receptor to its target ligand that is specific 

to stressed cells (Sabry and Lowdell 2013). 

 

Tumor primed NK cells (TpNK) can be generated in vitro by co-incubating resting NK 

cells with the acute lymphoblastic leukemia (ALL) cell line CTV-1 (North, Bakhsh et al. 

2007). Phenotypically, tumour primed NK cells appear distinct from resting NK cells in 

that they exhibit reduced expression of activating receptors (e.g., CD16, NKG2D, 

NKp46), both in terms of intensity and proportion, whereas both the proportion and 

intensity of expression of co-receptors (e.g., CD69 and CD25) are up-regulated (North, 

Bakhsh et al. 2007, Sabry, Tsirogianni et al. 2011). Priming NK cells from healthy 

volunteers in this way has been reported to enhance their cytotoxicity against NK cell-

resistant tumour cell lines such as the human metastatic prostate cancer cell line DU145 

(Sabry, Tsirogianni et al. 2011).  
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The therapeutic potential of an autologous NK cell-based therapy requires that patient-

derived NK cells can be appropriately triggered. We therefore determined whether 

activation of NK cells isolated from thawed peripheral blood mononuclear cell (PBMC) 

preparations derived from patients with prostate cancer by either co-incubation with 

mitomycin C treated CTV-1 cells or stimulation with IL-2 enhanced their capacity to kill 

the human metastatic disease-derived prostate cancer cell line PC3.  

 

Tumour priming and IL-2 stimulation of patient-derived NK cells resulted in similar 

levels of cytotoxicity, but distinct NK cell phenotypes. Importantly, the capacity of 

priming and IL- 2 stimulation to trigger cytotoxicity was patient-dependent and mutually 

exclusive, in that NK cells from ∼50% of patients preferentially responded to tumour 

priming, whereas NK cells from the remaining patients preferentially responded to IL- 2 

stimulation. (PUBLICATION 11: (Hood, Foulds et al. 2018)). In addition to providing 

more insight into the biology of tumour primed and cytokine-stimulated NK cells, this 

study supports the use of autologous NK cell-based immunotherapies for the treatment of 

prostate cancer. However, our findings also indicate that patients will need to be stratified 

according to their potential responsiveness to individual therapeutic approaches (Hood 

2016, Hood, Foulds et al. 2018).  

 

In summary, over the past two decades I have improved the diagnostic yield of prostate 

cancer. This has not only been in improving PSA as a biomarker but also the modality of 

performing prostate biopsies by revealing that TPTPB is significantly superior to 

performing TRUS guided prostate biopsies. My collaboration with JvGCRC has led to 

the discovery of potential new immune markers that are not only significantly more 

accurate in detecting prostate cancer than PSA alone but is able to differentiate between 

clinically significant prostate cancer and benign disease/low-risk prostate cancer. 
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EVALUATION OF PROPROSTATE SPECIFIC ANTIGEN FOR EARLY
DETECTION OF PROSTATE CANCER IN MEN WITH A TOTAL
PROSTATE SPECIFIC ANTIGEN RANGE OF 4.0 TO 10.0 NG/ML

MASOOD A. KHAN,* ALAN W. PARTIN,† HARRY G. RITTENHOUSE,‡
STEPHEN D. MIKOLAJCZYK,‡ LORI J. SOKOLL,‡ DANIEL W. CHAN‡ AND ROBERT W. VELTRI§
From the James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, and

Hybritech Incorporated, a subsidiary of Beckman Coulter, Inc., San Diego, California (HGR, SDM)

ABSTRACT

Purpose: In contemporary screening populations a major drawback of prostate specific antigen
(PSA) is its relative lack of specificity, especially in the range of 4 to 10 ng/ml, where prostate
cancer is found 25% of the time. ProPSA is a derivative of free PSA (fPSA) consisting of the
truncated forms (eg [-2]proPSA, [-4]proPSA or the full-length [-7]proPSA). There is increasing
evidence that proPSA is associated preferentially with prostate cancer. The objective of this study
was to determine whether proPSA can influence the detection of early prostate cancer.

Materials and Methods: Archival serum samples obtained from 93 men who underwent a
systematic 12-core prostate biopsy (total PSA range 4.0 to 10.0 ng/ml) were assayed for percent
free PSA, total PSA and the 3 forms of proPSA (Hybritech Tandem Assays Beckman Coulter
Access, Beckman Coulter, Inc., Brea, California). Free PSA, the cumulative sum of individual
proPSA forms ([-2], [-4] and [-7], or sum-proPSA) and derivatives were determined. Of the 93 men
assessed 41 (44%) had evidence of prostate cancer (76% Gleason 5/6, 19% Gleason 7 and 5%
Gleason 8). Prostate volume was measured at systematic 12-core biopsy for the detection of
prostate cancer. Results were analyzed using univariate and multivariate logistic regression (LR)
nonparametric statistical methods.

Results: Using univariate LR, fPSA, percent fPSA (%fPSA), percent sum-proPSA and prostate
volume significantly (p !0.05) differentiated men with prostate cancer from those with benign
disease. However, applying stepwise backward multivariate LR, total PSA, %fPSA and sum-
proPSA were retained and generated a receiver operator characteristic curve with an area under
the curve of 76.6%. At 90% sensitivity these 3 variables collectively achieved a specificity of 44%
for the detection of prostate cancer. Individually, the 3 retained variables had a specificity of 23%
(total PSA), 33% (%fPSA) and 13% (sum-proPSA).

Conclusions: Sum-proPSA, total PSA and %fPSA in combination improve the specificity of
early prostate cancer detection in men with a total PSA of 4 to 10 ng/ml compared with the results
of individual PSA molecular forms measured.

KEY WORDS: adenocarcinoma, prostate, prostate-specific antigen

The development and subsequent routine use of prostate
specific antigen (PSA) during the last decade have revolu-
tionized the management of prostate cancer. Total PSA

(tPSA) has increased our ability to detect and, in turn, treat
early prostate cancer. However, the major drawback of tPSA
is its relative lack of specificity. This drawback is especially
important in the critical diagnostic range of 4 to 10 ng/ml
where only 25% of patients biopsied will demonstrate pros-
tate cancer.1 To improve the specificity of tPSA further var-
ious methods have been introduced including age specific
PSA,2 PSA density,3 percent free PSA (%fPSA)4 and com-
plexed PSA.5 The continually changing natural history of
prostate cancer in terms of age at detection, grade, stage and
tumor size during the PSA era of the 1990s has also had an
impact on the diagnostic performance of these assays in
different age groups with regard to specificity in the range of
2 to 10 ng/ml tPSA.6

The free PSA (fPSA) form and its derivatives represent a
heterogeneous group of at least 3 different subforms of inac-
tive PSA. One form has been identified as the proenzyme or
precursor form of PSA (proPSA), which contains a 7 amino
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acid pro-leader peptide, and is preferentially associated with
prostate cancer.7,8 Total PSA is normally found in seminal
fluid in a mature, active form with 237 amino acids lacking
the pro-leader peptide. The pro-leader peptide is removed
extracellularly to produce this active, mature form of PSA.
Human kallikrein 2 has been proposed as a possible in vivo
activator of proPSA.9 The proPSA secreted from epithelial
cells is truncated as a result of posttranslational proteolytic
cleavage of the pro-leader peptide. Truncated pro-leader pep-
tides containing 1 to 5 amino acids have been reported, all of
which remain enzymatically inactive.9–11 These truncated
forms of proPSA have recently generated a great deal of
clinical interest since they may have a diagnostic role in the
early detection of prostate cancer, especially in the new,
extended gray zone of 2.5 to 10 ng/ml. Another investigation
has already revealed the positive impact of proPSA in the
tPSA range of 2.5 to 4.0 ng/ml.12 Therefore, we determined
whether proPSA could positively influence the detection of
early prostate cancer through decreasing false positives in
patients with tPSA ranging from 4 to 10 ng/ml.

MATERIALS AND METHODS

Patient selection. Between July 1999 and October 2000 as
part of a screening program which involved digital rectal
examination (DRE) and serum tPSA measurement, 93 men
were noted to have an increased tPSA between 4.0 and 10.0
ng/ml. Each of these men subsequently underwent transrec-
tal, ultrasound guided, systematic, 12-core biopsies that in-
cluded sampling of the lateral peripheral zone for prostate
cancer detection. No prior PSA values were available on any
of these patients and none had undergone a previous prostate
biopsy. DRE was classified as suspicious or nonsuspicious for
prostate cancer, and the biopsy result was classified as with
or without evidence of prostate cancer. The urologist who
performs the biopsy conducts the DRE examination before
the procedure. The classification of suspicious means evi-
dence of induration or a nodule and/or significant gland
asymmetry is noted during the digital rectal examination.

Detection of total, free and proPSA. Archival serum sam-
ples from the 93 men obtained before biopsy were stored at
!80C. These samples were analyzed for tPSA, fPSA
(Hybritech Tandem Assays, Beckman Coulter Access,
Beckman Coulter, Inc.), and [-2]proPSA, [-4p]proPSA, and
[-5,-7]proPSA (the sum of [-5]proPSA and [-7]proPSA).
Percent free PSA, sum-proPSA (the cumulative sum of
individual proPSA forms) and percent sum-proPSA (sum-
proPSA/fPSA) were calculated.12 The Hybritech Access
free and total PSA assays are 2-site immuno-enzymatic
assays that use mouse monoclonal antibody in alkaline
phosphatase conjugate and paramagnetic particles coated
with a second mouse monoclonal antibody. After unbound
particles are removed by washing, a chemiluminescent
substrate, Lumi-Phos 530 (Lumigen, Inc., Southfield,
Michigan), is added to produce light directly proportional
to the amount of analyte in the sample as determined from
a stored calibration curve. The individual [-2]proPSA,
[-4p]proPSA and [-5,-7]proPSA forms (measured in ng/ml)
were analyzed using individual time resolved fluorescence
immunoassays (Beckman Coulter, Inc., San Diego, Califor-
nia, research use only, not for diagnostic use). The immu-
noassay format was a dual monoclonal sandwich assay in
a microliter plate under standard conditions using a bio-
tinylated capture anti-PSA mAb, and Europium labeled
proPSA-specific mAbs for detection with a Victor 1420
multilabel counter (Wallac, EG&G PerkinElmer Life Sci-
ences Inc., Boston, Massachusetts). These immunoassays
have less than 0.2% cross-reactivity with mature PSA and
other proPSA forms. The analytical detection limit was
0.01 ng/ml and the assays had a clinical detection limit in
serum of 0.025 ng/ml.

Statistical analysis. All statistical analyses were per-
formed using the STATA v7.0 software package (Stata Cor-
poration, College Station, Texas). Differences in average test
results between benign disease and prostate cancer samples
were examined using the Student’s t-test. Logistic regression
(LR) analysis was also used to fit a model of the variables to
predict the disease outcome of benign vs prostate cancer. The
areas under the receiver operator characteristic curve (ROC-
AUC), as well as sensitivity and specificity, were used to
assess the diagnostic performance of the assays. Before start-
ing the study informed consent was obtained from each pa-
tient.

RESULTS

Of the 93 men 85 (93%) assessed were white. Prostate
cancer was detected using a 12-core biopsy procedure in 44%
and benign disease was detected in 56% of the men (41 of 93
and 52 of 93, respectively). Even though this biopsy sampling
strategy optimizes prostate cancer detection achieving rates
of 44%, clearly as the gland increases in size the ability to
detect small cancers may be compromised. Men with prostate
cancer and those with benign disease were similarly dis-
tributed for age, DRE findings and tPSA (table 1). Of the men
diagnosed with prostate cancer 76% had Gleason score (GS)
5 or 6 disease (1 and 30 men, respectively), 19% had GS 7
disease (8 men) and 5% had GS 8 disease (2). Of the 41 men
diagnosed with prostate cancer, 14 have had anatomical rad-
ical retropubic prostatectomy performed to date. None of
these men have evidence of disease recurrence after a mean
followup of 2 years (range 1.5 to 2.5).

Using univariate LR, fPSA, %fPSA, percent sum-proPSA
and prostate volume all significantly (p "0.05) differentiated
men with prostate cancer from those with benign disease
(table 2). Applying stepwise backward logistic regression and
accepting variables that have a Pz !0.05, a multivariate
model for predicting men with PCa was created. The model
retained tPSA, %fPSA and sum-proPSA optimally to differ-
entiate the men with prostate cancer from those with benign
disease (p "0.001). The ROC-AUC for this model solution
was 76.6% (see figure). This ROC curve has an AUC that is
statistically significantly different than those generated for
tPSA and sum-proPSA but not %fPSA. Table 3 compares the
specificity for the individual variables as well as the complete
LR model at 3 different sensitivities. Note that at 90% sen-
sitivity these 3 variables collectively achieved a specificity of
44% for the detection of prostate cancer. Individually, the 3
retained independent variables had a specificity of 23% 33%
and 13%, respectively. There was a consistent improvement
in specificity in the complete LR model at the various sensi-
tivities assessed.

DISCUSSION

In 1991 it was discovered that serum contains 2 distinct,
major, immunodetectable forms of PSA. One form covalently
binds primarily to a serum protease inhibitor ("1-
antichymotrypsin) as well as other less dominant inhibitors
and is known as complexed PSA, while the other form is a
“free,” nonactive, noncomplexed form known as free PSA.13, 14

The measurement of the ratio of free and total PSA has led to
a modest but significant improvement in the discrimination
of prostate cancer from benign prostatic hyperplasia (BPH)

TABLE 1. Comparison of age (years) total PSA and DRE in men
with and without prostate cancer

Benign
Disease PCa p Value

Mean age (range) 63 (46–76) 64 (47–77) 0.4
DRE stage (range) T1c (T1c–T2a) T1c (T1c–T2b) "0.06
Mean tPSA (range) 6.8 (4.1–9.9) 6.3 (4.0–9.1) "0.08
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in men with a PSA between 4.0 and 10.0 ng/ml.15, 16 This
improvement is due to the association of BPH with higher
levels of fPSA compared with prostate cancer.15, 16 As such,
measurement of the free-to-total PSA ratio has been shown
to improve specificity by avoiding 20% of unnecessary biop-
sies and yet is able to detect 95% of cancers when the %fPSA
cutoff of 25% is used.15, 16 Catalona et al16 also recently re-
ported on a large, multicenter study which determined the
ability of %fPSA and age specific PSA to detect prostate
cancer in 773 men with histologically confirmed diagnosis
(379 with prostate cancer and 394 with benign prostatic
disease). The study demonstrated that in the presence of
tPSA ranging from 4 to 10 ng/ml, %fPSA maintained signif-
icantly higher sensitivities than age specific PSA cutoffs for
the detection of prostate cancer in men older than 60 years.

In an attempt to discriminate prostate cancer from benign
disease further, differences within molecular subpopulations
of fPSA have been extensively investigated. It is now known
that fPSA is composed of at least 3 distinct forms of enzy-
matically inactive PSA. One form is called BPSA, an inter-
nally cleaved or degraded form of PSA that is more highly

associated with BPH.9 Another form is thought to contain a
number of minor variants but appears to be composed largely
of intact PSA that is similar to native, active PSA except for
structural or conformational changes that have rendered it
enzymatically inactive.7 The third has been identified as the
proenzyme or precursor form of PSA, also known as proPSA.7
Truncated proPSA refers to proPSA in which any of the
normal 7 amino acids in the pro-leader peptide have been
removed as a result of posttranslational proteolytic cleavage
of the pro-leader peptide.17 All forms of the truncated proPSA
containing any of the pro-leader amino acids remain enzy-
matically inactive. It is these truncated forms of proPSA that
have recently generated a great deal of interest since there is
strong evidence to support the association of proPSA with
prostate cancer.7, 8, 10, 11, 18

Examining prostate tissue from patients undergoing radi-
cal prostatectomy, Mikolajczyk et al18 reported that proPSA
was increased in cancer areas compared to noncancerous
tissue. The authors subsequently developed monoclonal an-
tibodies to detect proPSA with Western blot analysis in the
PSA purified from the serum of 5 men with biopsy proven
prostate cancer (tPSA range 6 to 24 ng/ml, mean 13.4) and 3
men with negative biopsies (tPSA range 7 to 12 ng/ml, mean
9.7).10 Multiple proPSA forms were detected at higher levels
in the cancer serum but the truncated [-2]proPSA was found
to be the most consistently associated with cancer in the 5
samples tested when compared to benign serum. Peter et al11

conducted a similar study using mass spectrometry to detect
PSA forms where they obtained serum from 5 patients with
prostate cancer and detected [-7], [-5], [-4], [-2] and
[-1]proPSA forms. The [-2]proPSA was present in 4 of 5
samples, and was the highest pro form in 2 of the samples.
The mass spectrometry technique used by Peter et al11 ne-
cessitated the use of serum with much higher serum tPSA
values (ie tPSA was 1,890 ng/ml in 1 patient and the other 4
samples had PSA values greater than 6,000 ng/ml). The
recent development of [-2], [-4] and [-5,-7]proPSA immunoas-
says has enabled us to expand the sample population signif-
icantly and to determine whether serum proPSA meas-
urement provides any additional information in the detection
of prostate cancer in patients with clinically relevant serum
tPSA levels ranging from 4 to 10 ng/ml.

Our study has shown that sum-proPSA (the total of the
[-2]proPSA, [-4]proPSA, and [-5,-7]proPSA) with the addition
of tPSA and %fPSA improves the specificity of prostate can-
cer detection by more than 10% at 90% sensitivity compared
with any of these serum biomarkers measured individually.
Thus, the combination of serum sum-proPSA, tPSA, and
%fPSA may provide added clinical value resulting in fewer
men with tPSA ranges from 4 to 10 ng/ml being unnecessar-
ily biopsied, decreasing repeat biopsy frequency, and could
possibly be of use for men undergoing a watchful waiting
protocol for small tumors.15, 16, 19 Clearly a larger multicenter
study is needed to confirm our preliminary findings and to
assess economic impact.

If it is confirmed that measurement of combined proPSA
forms provides the most diagnostic value, a single assay for
all of these forms has been developed and would have to be

TABLE 3. Comparison of specificity and accuracy to detect PCa at 95%, 90% and 85% sensitivity for individual variables vs multivariate
LR model

% Sensitivity

Variable
95 90 85

Specificity Accuracy Specificity Accuracy Specificity Accuracy

tPSA 15 51 23 53 25 52
%fPSA 27 57 33 58 37 57
Sum-proPSA 10 47 13 47 25 52
Gland vol 17 52 27 55 33 56
LR multivariate model 37 61 44 63 48 65

TABLE 2. The ability of various serum markers to differentiate
prostate cancer from benign disease

Variable
Mean (range) %

ROC-AUC
p Value

(LR)Benign Disease PCa

tPSA (ng/ml) 6.8 (4.1–9.9) 6.3 (4.0–9.1) 60.37 !0.072
fPSA (ng/ml) 1.13 (0.51–2.50) 0.79 (0.28–1.76) 70.80 !0.0002
%fPSA 16.7 (5.6–27.5) 12.7 (6.4–24.2) 70.59 !0.0005
Sum-proPSA

(ng/ml)
0.28 (0.01–0.91) 0.26 (0.05–0.88) 54.03 0.5

%sum-proPSA 25.3 (2.7–80.7) 32.7 (4.6–75.4) 66.32 !0.03
Gland vol (ml) 57.6 (18–144) 39.63 (15–94) 71.06 !0.0002

ROC curve for total PSA, free PSA and sum-proPSA to detect
prostate cancer in 93 men. NPV, negative predictive value. PPV,
positive predictive value.
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approved by the Food and Drug Administration. However,
even with only 1 additional PSA test, we would have to
determine if the economics of health care savings in PCa
management outweigh additional PSA testing fees. In a
study involving 2,138 men from 7 institutions, Ellison et al20

recently performed such an economic evaluation of Food and
Drug Administration approved PSA molecular assays and
concluded that complexed PSA was most cost-effective. The
use of combinations of markers to optimize disease manage-
ment for clinical decisions will be a challenge in the future as
more biomarkers surface through advances in proteomics
technology. Since current evidence suggests that no single
serum marker is likely to achieve the desired level of diag-
nostic specificity to detect cancer, true advances in prostate
cancer detection may depend on the development of multi-
plexed assays that can simultaneously measure multiple
analytes in a single serum sample. Multiplexed assays could
include all of the markers described in this study in addition
to existing markers such as human kallikrein 2,
interleukin-6 and transforming growth factor-! insulin
growth factor-1 currently under investigation for PCa.

CONCLUSIONS

The usefulness of %fPSA in the tPSA range of 4 to 10
ng/ml, especially in the background of normal DRE (clinical
stage T1c), is widely accepted considering its significant in-
crease in specificity for prostate cancer detection compared
with the use of only tPSA. To improve cancer detection fur-
ther and avoid unnecessary biopsies, a great deal of interest
has recently been generated in the proPSA component of
fPSA, which has been shown to be increased in the serum of
patients with prostate cancer. Our study demonstrates that
sum-proPSA, tPSA and %fPSA in combination significantly
improve the specificity of early prostate cancer detection in
men with a tPSA of 4 to 10 ng/ml when compared with any of
these individual PSA molecular forms measured alone.
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CLINICAL UTILITY OF proPSA AND “BENIGN” PSA WHEN
PERCENT FREE PSA IS LESS THAN 15%

MASOOD A. KHAN, LORI J. SOKOLL, DANIEL W. CHAN, LESLIE A. MANGOLD, PHAEDRE MOHR,
STEPHEN D. MIKOLAJCZYK, HARRY J. LINTON, CINDY L. EVANS, HARRY G. RITTENHOUSE, AND

ALAN W. PARTIN

ABSTRACT
Objectives. To investigate the clinical utility of the subforms of free prostate-specific antigen (PSA), namely
proPSA and “benign” PSA (BPSA), to improve cancer detection when the percent free PSA level is less than
15%. Percent free PSA, while maintaining sensitivity, has greatly improved the specificity of PSA for the early
detection of prostate cancer. A low percent free PSA value indicates a greater risk of cancer, but only 30%
to 50% of men with percent free PSA levels of less than 15% actually have cancer at biopsy.
Methods. Archived sera from 161 consecutive men who were prospectively enrolled in our Early Detection
Research Network prostate cancer early detection biomarker program with a percent free PSA value of less
than 15% were included in the study. Total PSA, free PSA, proPSA, and BPSA were measured for each
sample.
Results. The mean total PSA was 6.1 ng/mL (range 1.8 to 24.0). The mean age of the study group was 62
! 7 years. Prostate cancer was detected in 66 (41%) of 161 men. The area under the curve–receiver
operating characteristic for total and percent free PSA was 0.51 and 0.54, respectively. BPSA and proPSA/
BPSA both improved cancer detection compared with percent free PSA alone; the improvement was
statistically significant (P "0.001) . The area under the curve–receiver operating characteristic for proPSA/
BPSA was 0.72, giving a sensitivity and specificity of 90% and 46%, respectively.
Conclusions. The results of our preliminary studies have suggested that the ratio of proPSA and BPSA can
distinguish cancer with greater accuracy when the percent free PSA value is very low (less than 15%), and
may, therefore, provide better clinical utility in this lower range of percent free PSA. UROLOGY 64:
1160–1164, 2004. © 2004 Elsevier Inc.

The development and subsequent routine use of
prostate-specific antigen (PSA) during the past

decade has revolutionized the management of
prostate cancer. PSA measurement has increased
our ability to detect and, in turn, treat early pros-
tate cancer. However, the major drawback of PSA is

its relative lack of specificity. This is especially im-
portant in the critical diagnostic range of 4.0 to
10.0 ng/mL, in which an elevated PSA level may
reflect either prostate cancer or benign disease
such as benign prostatic hyperplasia (BPH). At this
range of total PSA, it is associated with a specificity
of approximately 25% for the detection of prostate
cancer.1,2 This limited specificity has led to unnec-
essary prostate biopsies, with associated anxiety,
cost, and potential morbidity.

It was discovered in 1991 that serum contains two
distinct major forms of PSA. One form covalently
bound to endogenous serum protease inhibitors such
as alpha1-antichymotrypsin is known as complexed
PSA, the other form is present as free, noncomplexed
PSA and is known as free PSA.3,4 The measurement of
the ratio of free and total PSA (ie, percent free PSA)
has led to a modest but statistically significant im-
provement (approximately 25%) in the discrimina-
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tion of prostate cancer from benign prostatic hyper-
plasia (BPH) in men with PSA levels between 4.0 and
10.0 ng/mL.5,6 This is because of the association of
BPH with high levels of free PSA compared with the
levels associated with prostate cancer. Despite this, it
is estimated that only 30% to 50% of men with per-
cent free PSA levels less than 15% will have cancer at
biopsy.5

The free PSA subforms represent a heteroge-
neous group consisting of at least three different
subforms of inactive PSA.7 One form has been
identified as the proenzyme or precursor form of
PSA (proPSA), which is normally expressed with a
7 amino acid pro-leader peptide. However, proPSA
with truncated pro-leader peptides have been iden-
tified that appear to be more associated with pros-
tate cancer.7–9 Immunoassays have been developed
that are specific for proPSA forms containing pro-
leader peptides with 2, 4, and 5 plus 7 amino acids,
[!2], [!4], and [!5,!7]proPSA, respectively
(Beckman Coulter, for research use only; not for
diagnostic procedures). Studies with these assays
have shown that proPSA, within the total PSA
range of 2.5 to 10 ng/mL, can significantly improve
the specificity of prostate cancer detection.10–12 In
contrast to proPSA, “benign” PSA (BPSA) is a com-
ponent of the free PSA that has been shown to be
associated with BPH.13,14 Serum levels of BPSA
have been shown to increase in men with BPH.12

However, the presence of prostate cancer does not
alter the relative proportions of BPSA in sera.14 We,
therefore, investigated whether proPSA and BPSA
could be used in men with free PSA levels less than
15% to improve the detection rate of prostate can-
cer.

MATERIAL AND METHODS

STUDY GROUP
A total of 161 men (mean age 62 " 7 years; range 46 to 80)

with a percent free PSA level less than 15% were prospectively
enrolled in our Early Detection Research Network prostate
cancer early detection biomarker program. These men were

selected on the basis of voluntary presentation to our institu-
tion for prostate cancer screening and were subsequently
noted to have a percent free PSA level of less than 15%. Before
undertaking transrectal ultrasound-guided biopsies (12 or
more cores), serum was obtained and stored at !80°C until
ready for analysis. Biopsies were taken from all men, irrespec-
tive of the digital rectal examination (DRE) findings. On his-
tologic examination, 66 (41%) of 161 had a diagnosis of pros-
tate cancer and 95 (59%) had no evidence of cancer. Of the 66
cancer cases, 63 (95%) were clinically significant with a Glea-
son score of 6 or greater (49 [74%] with a Gleason score of 6,
12 [17%] with a Gleason score of 7, and 2 [3%] with a Gleason
score of 8 to 9).

All data, as well as the serum samples, were collected under
an institutional review board-approved protocol that passed
HIPAA compliance. All men provided written informed con-
sent.

MEASUREMENT OF TOTAL PSA, FREE PSA, proPSA,
AND BPSA

Total and free PSA were measured using Hybritech Tandem
assays (Beckman Coulter Access, Beckman Coulter, Brea,
Calif). ProPSA, defined here as the cumulative sum of the
truncated [!2]pPSA, [!4]pPSA, [!5]pPSA forms, as well as
the native proPSA containing a 7-amino acid pro-peptide,
[!7]pPSA,9 was measured using individual time-resolved flu-
orescence research immunoassays at Johns Hopkins and Beck-
man Coulter. These assays have less than 1% cross-reactivity
with other PSA forms. The BPSA assay used alkaline phos-
phate-labeled detect antibody and also had less than 1% cross-
reactivity with other forms of PSA.14 Because of the newness of
the proPSA and BPSA assays, limited stability studies have
been performed.15 However, the current results have not indi-
cated the presence of stability problems.15 In addition, speci-
mens for this study had been frozen at !80°C before analysis.

STATISTICAL ANALYSIS
All statistical analyses were performed using the STATA,

version 8.0, software package (Stata, College Station, Tex).
The areas under the curve–receiver operating characteristic
(AUC-ROCs), as well as the sensitivity and specificity, were
used to assess the diagnostic performance of the subforms of
free PSA.

RESULTS

The differences in the serum total PSA, percent
free PSA, and proPSA levels were not statistically

TABLE I. Ability of total serum PSA, percent free PSA, and subforms of free PSA to predict
prostate cancer in 161 men with percent free PSA level less than 15%

Variable Noncancer Cancer AUC-ROC P Value

Age (yr) 62 " 7 62 " 8 0.53 NS
Total PSA (ng/mL) 6.0 " 3.0 6.4 " 4.0 0.51 NS
Percent free PSA (%) 10.0 " 3.0 10.0 " 3.0 0.54 NS
proPSA (ng/mL) 0.3 " 0.2 0.25 " 0.2 0.55 NS
BPSA (ng/mL) 0.4 " 0.4 0.2 " 0.2 0.72 #0.001
proPSA/BPSA 0.9 " 0.7 1.33 " 0.7 0.72 #0.001
Abnormal DRE 21/66 19/95 0.56 NS
Prostate volume (cm3) 45 " 20 37 " 19 0.63 #0.05

KEY: AUC-ROC $ area under the curve receiver operating characteristic; NS $ not significant; PSA $ prostate-specific antigen; BPSA $ benign PSA; DRE $ digital rectal
examination.
Data presented as mean " standard deviation.
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significant between the cancer and noncancer
groups (Table I). The prostate volume was signifi-
cantly greater statistically (P !0.05) in the non-
cancer than in the cancer groups (45 " 20 g versus
37 " 19 g). Although a greater number of abnor-
mal DRE findings were detected in the cancer than
in the noncancer groups (21 [32%] of 66 versus 18
[19%] of 95, respectively), this did not reach sta-
tistical significance. BPSA was statistically signifi-
cantly greater (P !0.001) and ratio of proPSA/
BPSA was statistically significantly lower (P
!0.001) in the noncancer group (Table I). The
clinical utility of proPSA and BPSA were compared
with that of percent free PSA using ROC analysis.
The AUC-ROCs for percent free PSA and proPSA
were very similar (0.54 and 0.55, respectively;
Table I). To this end, unsurprisingly, the percent
proPSA level (proPSA/free PSA) also failed to dis-
tinguish between the two groups (data not shown).
However, the AUC-ROC for BPSA and proPSA/
BPSA was significantly greater than the percent
free PSA (P !0.001 for both), with both producing
a value of 0.72 (Table I). Furthermore, using a
proPSA/BPSA cutoff of 0.61, a sensitivity and spec-
ificity of 90% and 46%, respectively, was achieved
for the detection of prostate cancer (Fig. 1). Al-
though the AUC-ROCs of BPSA and proPSA/BPSA
were identical at 0.72, BPSA alone had a statisti-
cally significantly lower specificity of 20% (P
!0.05) when the sensitivity was maintained at
90% for the detection of prostate cancer.

The racial demographic of the study population
with prostate cancer was as follows: 58 men (88%)
were white, 5 (8%) were African American, and 3
(4%) other. Of those with a negative biopsy, 79
(83%) were white, 8 (8.5%) African American, and
8 (8.5%) other.

COMMENT

The availability of serum PSA as a biomarker for
the early detection of prostate cancer has dramati-
cally changed our approach to the management of
this common disease. Before its availability, we re-
lied primarily on DRE findings to determine the
presence of prostate cancer. However, DRE is not
only unreliable, even by experienced examiners,
but is also frequently associated with understaging
of prostate cancer.16 To this end, the widespread
use of serum PSA measurement has resulted in a
20% increase in the detection of clinically localized
prostate cancer that are, in turn, amenable to de-
finitive therapy.17 However, the major drawback
associated with serum PSA is its relative lack of
specificity, particularly with total serum PSA levels
in the “gray” zone (ie, 4.0 to 10.0 ng/mL) in which
an elevated serum PSA value may reflect either
prostate cancer or benign disease, such as BPH.
Accordingly, within this range, serum PSA is asso-
ciated with a specificity of approximately 25% for
the detection of prostate cancer.1,2 In an attempt to
improve specificity and, thereby reduce the num-
ber of unnecessary biopsies, attention during the
past decade has focused on the role of the free (ie,
unbound) component of serum PSA. Even though
percent free PSA determination significantly im-
proves the specificity of prostate cancer detection,
it is noteworthy that most men with percent free
PSA levels less than 15% will have negative pros-
tate biopsies.5 Therefore, in an attempt to improve
the specificity further, components of free PSA
have recently received great interest.

Free PSA is thought to be composed of at least
three components, namely proPSA, BPSA, and “in-
active” PSA.7 PSA is normally found in seminal
fluid in a mature, active form with 237 amino acids
lacking the pro-leader peptide. The pro-leader pep-
tide is removed extracellularly, possibly by human
glandular kallikrein 2, to produce the active ma-
ture form of PSA.7 Intracellularly, the proPSA form
is itself truncated as a result of post-translational
proteolytic cleavage of the pro-leader peptide in
which 2 to 6 of the 7 pro-leader amino acids are
removed. All forms of truncated pPSA remain en-
zymatically inactive. It is these truncated forms of
pPSA that have recently generated a great deal of
clinical interest as they may have a diagnostic role
in the early detection of prostate cancer.7,18 In sup-
port of this, we have recently reported that proPSA
can result in the detection of 75% of cancer while
sparing 59% of unnecessary biopsies in men with a
total serum PSA level in the range of 2.5 to 4.0
ng/mL.10 However, within this total serum PSA
range, the percent free PSA would have resulted in
sparing only 33% of unnecessary biopsies. We have
also recently demonstrated that proPSA signifi-

FIGURE 1. ROC curve for ability of proPSA/BPSA to
detect prostate cancer in 161 men with percent free
PSA less than 15%.
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cantly improves the specificity of prostate cancer
detection in men presenting with total serum PSA
levels in the range of 4.0 to 10.0 ng/mL.11 In addi-
tion, a recent two-site study of 1091 men by Cata-
lona et al.12 has shown that percent proPSA
determination significantly improved detection
throughout the 2 to 10-ng/mL PSA range, and that
the [!2]pPSA form of proPSA was particularly
useful in the 2 to 4-ng/mL PSA range. That large
study confirmed earlier preliminary studies that
proPSA enhances prostate cancer detection. Our
current study, unsurprisingly, failed to demon-
strate the ability of percent proPSA to distinguish
between the two groups because this study was
biased toward men with low percent free PSA,
which, along with proPSA, did not differ signifi-
cantly between the two groups.

In contrast to proPSA, BPSA is a degraded form
of free PSA that contains peptide bond cleavages
at Lys145 and Lys182. BPSA was initially de-
scribed in nodular tissue samples from the tran-
sition zone of BPH tissue,14 subsequently in sem-
inal plasma,19 and finally in the serum14 of men
with benign prostatic disease. Tissue samples
obtained from enlarged prostates secondary to
BPH and from prostate cancer demonstrated sig-
nificantly greater BPSA expression in the transi-
tion zone.13 Using purified BPSA as an immuno-
gen, a specific assay for measuring BPSA was
developed that revealed that an estimated 15% to
50% of free PSA in men with benign disease is
BPSA and was undetectable in the sera from nor-
mal controls.14

Our current study has revealed that men present-
ing with similar age and total serum PSA levels,
with a mean total serum PSA range within the
“gray zone,” along with low percent free PSA val-
ues (less than 15%), BPSA and the ratio of proPSA/
BPSA can significantly differentiate between the
cancer and non-cancer groups with AUC-ROC val-
ues of 0.72. Furthermore, using a cutoff of 0.61 for
the proPSA/BPSA ratio, a specificity of 46% while
maintaining sensitivity at 90% for prostate cancer
detection was achieved. BPSA alone had the same
overall AUC-ROC as proPSA/BPSA (Table I), but
had a significantly lower specificity of 20% at 90%
sensitivity. We also determined that within the
subgroup of men presenting with a total serum
PSA level in the range of 4.0 to 10.0 ng/mL (43 men
with cancer and 66 men with no evidence of can-
cer), BPSA and the pro/BPSA ratio were also able to
distinguish between the two groups with near
identical results to those of the overall study (data
not shown). We, therefore, in the future, hope to
develop an algorithm applying proPSA and BPSA
data in men presenting with low percent free PSA
and total serum PSA levels in the “gray” zone to
predict accurately the likelihood of harboring

prostate cancer, and thereby reduce the number of
unnecessary prostate biopsies.

The findings from this study required four PSA
tests: total PSA, free PSA, proPSA, and BPSA. A
single, pan-proPSA assay has been developed that
can measure all the proPSA forms (data not
shown). Although the application of four or more
tests may seem financially unrealistic in common
medical practice, it is becoming evident that no
single marker can be expected to provide sufficient
value owing to the heterogeneous nature of pros-
tatic disease. The challenges for prostatic disease
diagnosis include cancer detection, distinguishing
significant cancer from indolent cancer, identify-
ing metastasis, treatment options for PSA failure
after prostatectomy, and monitoring and treatment
for benign conditions such as BPH that can inter-
fere with prostate cancer detection. Thus, panels of
serum markers, combined with algorithms, may be
the future of prostate diagnostics to achieve statis-
tically significant improvements over current tests.
Additional studies with proPSA and BPSA are in
progress to investigate other aspects of prostate
disease.

CONCLUSIONS

Serum PSA has dramatically improved our ability
to detect early prostate cancer. However, it is lim-
ited by its low specificity, particularly in the critical
diagnostic range of 4.0 to 10.0 ng/mL in which an
elevated serum PSA level may reflect either pros-
tate cancer or benign disease. Despite the improve-
ments in specificity associated with the use of per-
cent free PSA, most men presenting with a percent
free PSA level of less than 15% will have negative
biopsies. Our study has demonstrated that the use
of BPSA and the ratio of proPSA/BPSA in men pre-
senting with a low percent free PSA level (less than
15%) and mean total serum PSA level within the
“gray zone” can accurately distinguish prostate
cancer from noncancer cases. On the basis of our
preliminary study, we hope to develop an algo-
rithm that can be implemented to predict accu-
rately the likelihood of harboring prostate cancer
and, in turn, result in a reduction in the number of
unnecessary prostate biopsies performed.
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  The role of a standardized 36 core template-
assisted transperineal prostate biopsy technique 
in patients with previously negative transrectal 
ultrasonography-guided prostate biopsies  
   Raj P.     Pal   ,    Muhammad     Elmussareh   ,    Malek     Chanawani    and    Masood A.     Khan  
    Department of Urology, University Hospitals of Leicester, Leicester General Hospital, UK   

   What ’ s known on the subject? and What does the study add?    
 Template assisted transperineal biopsy of the prostate has become increasingly popular 
over the past decade. Several studies have demonstrated that transperineal prostate 
biopsy (TPB) is associated with an increased rate of cancer detection, increased 
histological concordance with fi nal prostatectomy samples and an increase in anterior 
and apical prostate cancers than standard TRUS biopsy. However, interpretation of the 
literature is diffi cult due to considerable variation between studies in terms of 
technique and equipment. 

 We examined a small cohort ( n   =  40) of patients using a standardized 36 core 
template assisted TPB technique. We show that utilising this technique is associated 
with high cancer (68%) detection rate in patients with two previous negative TRUS 
biopsies. Of patients were found to have anterior gland tumours which would not have 
been detected by standard TRUS guided biopsy. 

 OBJECTIVE 

  •    To determine the effi cacy and safety of a 
standardized 36 core template-assisted 
transperineal biopsy technique for 
detecting prostate cancer in patients 
with previously negative transrectal 
ultrasonography-guided prostate biopsies 
and elevated prostate-specifi c antigen 
(PSA) levels. 

 PATIENTS AND METHODS 

  •    Between April 2008 to September 2010, 
a total of 40 patients with a mean (range) 
age of 63 (49 – 73) years, a mean (range) 
elevated PSA level of 21.9 (4.7 – 87)   ng/mL 
and two previous sets of negative 
TRUS-guided prostate biopsies underwent 
standardized 36 core template-assisted 
transperineal prostate biopsies under 
general anaesthetic as a day case 
procedure. 
  •    The cancer detection rate and 
complications for all cases were evaluated. 

 RESULTS 

  •    In total, 27 of 40 (68%) patients were 
found to have adenocarcinoma of the 
prostate, two patients (5.0%) had atypical 
small acinar proliferation  , one had 
high-grade prostatic intraepithelial 
neoplasia   (2.5%), four (10%) had chronic 
active infl ammation and six (15%) had 
benign histology. 
  •    Gleason scores were in the range 6 – 9, 
with a median Gleason score of 7. 
  •    There were no cases of urosepsis, urinary 
tract infections or haematuria. A single 
patient experienced acute urinary retention, 
with a subsequent succesful trial without a 
catheter, and haematospermia was 
common, although minor. 

 CONCLUSIONS 

  •    Our standardized 36 core template-
assisted transperineal prostate biopsy 
technique is safe and associated with a 
high detection rate of prostate cancer. 
  •    This technique should be considered in 
patients with elevated PSA levels and 
previously negative TRUS-guided prostate 
biopsies.  

  KEYWORDS 

   prostate cancer  ,   transperineal biopsy  , 
  detection   

   INTRODUCTION 

 Prostate cancer is the most commonly 
diagnosed cancer and the second most 
common cause of death from cancer in men 
  [ 1 ]  . The widespread use of PSA testing has 

contributed to a dramatic increase in the 
number of men undergoing TRUS-guided 
prostate biopsies   [ 2,3 ]  . Data from the USA 
suggest that more than 1.2 million needle 
prostate biopsies are performed each year 
  [ 4 ]  . 

 TRUS was introduced in 1968 as an imaging 
tool to assist in the diagnosis of prostate 
cancer   [ 5 ]  . TRUS allows biopsies to be 
accurately guided towards the peripheral 
zone where cancers predominate, therefore 
achieving reasonable sampling of the 
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prostate. It has a sensitivity of 39 – 52% and 
a specifi city of 82%   [ 6 ]  . Additionally, it 
carries low morbidity and can be performed 
in the offi ce setting. Hence, systematic 
TRUS-guided prostate biopsies remain the 
gold standard for detecting prostate cancer. 
However, a limitation of this technique is 
that men with an initial negative biopsy are 
often found to have subsequent prostate 
cancer. Almost one-quarter of prostate 
cancers are identifi ed after an initial 
negative biopsy   [ 7 ]  . Furthermore, the cancer 
detection rate decreases with an increasing 
number of biopsy sessions, with yields of 
10 – 20% for the second biopsy and below 
10% for subsequent biopsies   [ 8,9 ]  . Repeated 
TRUS-guided biopsy results in sampling of 
the same prostatic areas and other potential 
tumour sites can be missed. The question of 
whether to pursue further repeat TRUS-
guided biopsy for patients with a rising 
PSA level subsequent to an initial negative 
biopsy is a common clinical dilemma and 
remains a diagnostic challenge. 

 Many studies have proposed a number 
of different biopsy approaches in these 
patients, including repeated standard 
biopsies and transrectal saturation biopsies 
  [ 10,11 ]  . More recently, transperineal prostate 
biopsy (TPB) utilizing a brachytherapy 
template grid has become increasingly 
popular but, currently, a standardized TPB 
technique does not exist   [ 12 – 15 ]  . In the 
present study, we determined the role of a 
standardized 36 core transperineal template 
prostate biopsy technique in the detection 
of prostate cancer in men with an elevated 
PSA levels and at least two previous 
negative TRUS-guided prostate biopsies.  

  PATIENTS AND METHODS 

 Between Januray 2008 and September 2010, 
a total of 40 men were selected to undergo 
template-assisted TPB at the Leicester 
General Hospital. Men were selected if 
they had had at least two previous sets of 
TRUS-guided prostate biopsies yielding a 
non-cancerous diagnosis and an elevated 
PSA level. All patients had a minimum life 
expectancy of 10 years. Additionally, a 
further fi ve patients with known prostate 
adenocarcinoma who were managed 
with active surveilance were selected for 
template-assisted TPB as part of their 
surveilance regime. 

 All patients underwent template-assisted 
TPB, which was performed by the same 
surgeon (M.A.K.) using the same biopsy 
technique in every case. The procedure 
was performed under general anaesthetic. 
At the time of induction, a combination of 
intravenous co-amoxiclav and gentamicin 
were used as antibiotic prophylaxis. A 14-F 
urethral catheter was inserted and the 
patient was placed in an extended lithotomy 
position. A DRE was performed. This was 
followed by insertion of the transrectal 
probe (BK Medical Pro-Focus 2202; BK 
Medical, Mileparken, Denmark) and prostate 
volume measurement. A STEPPER (Galil 
Medical; Crawley, Sussex, UK) with an 
articulated arm and a stabilizer was used 
to fi x the ultrasonographic probe. Ater 
prepping and draping the perineum, a 
standard 0.5-cm brachytherapy template 
grid was attached to the STEPPER and 
positioned over the perimeum. 

 With the prostate at its widest in the 
transverse plane, the gland was divided 
on the TRUS screen into six zones (right 
anterior, left anterior, right mid, left mid, 
right posterior and left posterior) ( Fig.   1a ). 
Next, six needles were inserted at a time 
into a single zone, and biopsies through 
an 18-gauge needle were taken from 
the apex of the prostate to the base. The 
ultrasonographic probe was then switched 
to the sagittal plane and the needles were 
withdrawn ( Fig.   1b ). A total of 36 biopsies 
were taken from each case for histological 
analysis. In patients with larger prostates 
( > 50   mL) where the anterior part of the 
gland could not be reached, biopsy needles 
were manually manipulated to ensure 
the whole gland was sampled. The 
urinary catheters were removed at the 
end of the procedure and the patients 
were discharged home the same day after 
voiding. Patients who experienced post-
procedure retention were recatheterized and 
re-attended for a trial without catheter the 
next day.  

  RESULTS 

 Mean (range) patient age was 62.9 (49 – 73) 
years. Mean (range) PSA level was 21.9 
(4.7 – 119)   ng/mL at the time of template-
assisted TPB compared to 18.7 (3.7 – 122)   ng/
mL at the time of the previous TRUS biopsy 
session. The PSA and previous histological 
results for each patient before template-
assisted TPB are shown in  Table   1 . The mean 

(range) number of biopsies taken at the 
most recent TRUS biopsy session was 11.6 
(10 – 18). The median (range) time from the 
most recent TRUS biopsy session to TPB was 
16 (2 – 58) months. 

  Table   1  summarizes the clinical and 
histological fi ndings for all patients after 
template-assisted TPB. In the present study 
cohort of patients, 27 of 40 (68%) patients 
had prostate adenocarcinoma diagnosed 
after template-assisted TPB. The remaining 
histological fi ndings were: two patients (5%) 
had atypical small acinar proliferation  , one 
had high-grade prostatic intraepithelial 
neoplasia   (2.5%), four (10%) had chronic 
active infl ammation and six (15%) had 
benign histology. 

 In the patients with prostate cancer, the 
median (range) number of positive cores 
was 8 (1 – 22). In total, 21 of 27 (71.4%) 
patients who had prostate adenocarcimona 
on the template-assisted TPB had cancer 
involving fi ve or more cores. Out of 27 
patients, 16 (59.3%) patients had a Gleason 

         FIG.   1.   a , Transverse plane view of prostate 
subdivided into six zones (RA, right anterior; LA, left 
anterior; RM, right mid; LM, left mid; RP, right 
posterior; LP, left posterior). In total, six biopsies 
were taken from each zone.  b , Sagittal view of the 
prostate showing biopsy needles placed in the 
anterior part of the gland (arrows). B, catheter 
balloon; c, catheter; P, prostate; R, rectum.   

a

b
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score of 6, fi ve (18.5%) patients had a 
Gleason score of 7, three (11.1%) patients 
had a Gleason score 8 and three (11.1%) 
patients had a Gleason score of 9. Cancer 
involving the anterior zone was present in 
12 of 27 (44.4%) patients. In four of these 
patients, the tumour was localized to 
the anterior zone, and did not affect the 
remainder of the gland. The mean PSA 

level for patients diagnosed with prostate 
adenocarcinoma was 26.1 vs 13.0   ng/mL for 
those with non-cancerous histology. 

 The TRUS biopsy and template-assisted TPB 
results of those patients already diagnosed 
with prostate cancer and treated with active 
surveilance are outlined in  Table   2 . Of fi ve 
patients, four experienced an increase in 

Gleason grade, and three out of fi ve patients 
had a higher percentage of positive cores on 
repeat template-assisted TPB compared to 
the initial TRUS biopsy. The mean (range) 
time interval between TRUS and template-
assisted TPB was 11.6 (4 – 15) months. 

 There were no cases of urosepsis, urinary 
tract infection or haematuria. Although 

    TABLE   1  Clinical parameters for patients with benign histology before transperineal prostate biopsy (TPB)   

Case 
number

Number of past 
biopsy sessions

Histology from 
previous biopsy

PSA at most recent 
TRUS biopsy (ng/mL)

PSA at TPB 
(ng/mL)

TRUS 
volume (mL) TPB histology

Number of cores 
containing cancer

1 2 Benign 8.8 5.6 35 chronic active infl ammation
2 2 Benign 7.0 7.4 37 ASAP
3 2 HGPIN 7.7 8.7 30 Adenocarcinoma (3  +  3  =  6) 17
4 2 Benign 4.2 8.9 78 HPIN
5 2 HGPIN 6.2 9.5 45 Adenocarcinoma (3  +  3  =  6) 8
6 2 HGPIN 9.4 10 98 Benign
7 3 Benign 11 11 31 Benign
8 3 Benign 6.7 11 50 Adenocarcinoma (3  +  3  =  6) 1
9 2 Benign 4.9 12 21 Adenocarcinoma (4  +  5  =  9) 22
10 3 Benign 11 14 42 Adenocarcinoma (3  +  3  =  6) 9
11 5 ASAP 20 19 32 Adenocarcinoma (3  +  3  =  6) 6
12 2 Benign 8.7 20 29 Adenocarcinoma (4  +  5  =  9) 9
13 3 Benign 13.1 21 110 Benign
14 2 HGPIN 8.7 21 55 Benign
15 2 Benign 9.4 22 71 chronic active infl ammation
16 2 Benign 23 23 28 Adenocarcinoma (3  +  3  =  6) 5
17 2 Benign 27 25 22 Adenocarcinoma (3  +  4  =  7) 12
18 2 HGPIN 44 28 41 Adenocarcinoma (4  +  3  =  7) 6
19 2 Benign 15 29 40 Adenocarcinoma (4  +  4  =  8) 10
20 2 Benign 20 32 40 Adenocarcinoma (3  +  3  =  6) 6
21 2 Benign 18 36 50 Adenocarcinoma (3  +  4  =  7) 10
22 2 Benign 40 40 66 Adenocarcinoma (3  +  3  =  6) 1
23 2 Benign 40 41 29 Adenocarcinoma (3  +  3  =  6) 6
24 2 HGPIN 44 41 47 Adenocarcinoma (4  +  5  =  9) 16
25 2 Benign 72 87 30 Adenocarcinoma (4  +  3  =  7) 20
26 2 Benign 24 24 37 Adenocarcinoma (3  +  3  =  6) 10
27 2 ASAP 6.9 6.9 30 Adenocarcinoma (3  +  3  =  6) 2
28 2 ASAP 5.6 5.6 32 Adenocarcinoma (3  +  3  =  6) 1
29 2 ASAP 4.7 4.7 26 Adenocarcinoma (3  +  3  =  6) 9
30 2 Benign 122 119 60 Adenocarcinoma (3  +  5  =  8) 15
31 2 Benign 5.8 8.8 49 Adenocarcinoma (3  +  3  =  6) 11
32 2 HGPIN 13 13 72 chronic active infl ammation
33 4 Benign 5.6 9.8 60 Benign
34 3 HGPIN 17 33 31 Adenocarcinoma (4  +  4  =  8) 7
35 2 Benign 7.8 11 85 Adenocarcinoma (3  +  3  =  6) 2
36 2 HGPIN  +  ASAP 11 10 89 Adenocarcinoma (3  +  4  =  7) 2
37 2 HGPIN 8.6 11 61 ASAP
38 2 Benign 3.7 6.2 20 Adenocarcinoma (3  +  3  =  6) 5
39 2 Benign Not known 24 32 Benign
40 2 HGPIN 9.7 4.7 28 chronic active infl ammation

   ASAP, atypical small acinar proliferation  ; HGPIN, high-grade prostatic intraepithelial neoplasia  .      
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haematospermia was common, it was minor 
because our patients did not raise any 
concerns. In the one patient who developed 
urinary retention, a catheter was replaced 
and the patient was re-admitted the next 
week and had a successful trial without 
catheter.  

  DISCUSSION 

 TRUS-guided biopsy is the standard 
approach for men with suspected prostate 
cancer. However, the use of TPB has become 
increasingly popular over the past decade. 
Several studies have now investigated this 
technique as a diagnostic alternative to 
TRUS-guided biopsy in both men with and 
without previous biopsy. These studies 
have shown a reduction in upstaging at 
the time of radical prostatectomy and 
more concordance with fi nal prostatectomy 
specimen biopsy results   [ 14 ]  . Additionally, 
studies sampling a higher number of biopsy 
yield an increased cancer detection rate, 
particularly in the apical and anterior 
regions of the prostate   [ 12,16,17 ]  . 

 However, a diffi culty in the interpretation of 
the current literature results from a lack of 
standardization of a TPB technique. Both 
within and between individual studies, there 
is a signifi cant variation in patient selection 
and the number of biopsies sampled, as well 
as with respect to whether a template grid 
is used   [ 12 – 20 ]  . In the present study, we 
report data obtained using a standardized 
36 core biopsy template-assisted TPB 
technique for all patients. All patients 
selected for biopsy at our institute had at 
least two previous negative TRUS-guided 
biopsies and all had elevated PSA levels. 

 Although several series of TPB have now 
been published, only one randomized control 
trial has compared TPB against TRUS biopsy, 
and this was carried out in a cohort without 
previous prostatic biopsy   [ 15 ]  . Although no 
signifi cant difference in cancer detection 
rates were noted between both techniques, 
that study utilized only a 12 core biopsy 
technique for both TPB and TRUS biopsy. 
However, in comparison, a recent study 
investigating a template-assisted TPB 
technique sampling a mean core biopsy 
number of 54 in patients without previous 
prostate biopsy reported far higher cancer 
detection rates in patients without previous 
biopsy (79% vs 48%), and this was in a 

cohort of patients with lower mean PSA 
levels and a higher prostate volume, where 
fewer cancers would be expected   [ 16 ]  . 
Cancer detection rates after one or more 
benign sextant or octant biopsies have been 
reported to be in the range 13 – 34% when 
using TRUS-guided saturation biopsy   [ 10,11 ]  . 
Pinkstaff  et   al .   [ 20 ]   and Demura  et   al .   [ 13 ]   
reported cancer detection rates of 36% and 
37%, respectively, when sampling between 
20 to 21 cores   using a template-assisted 
TPB technique. In a study conducted by Bott 
 et   al .   [ 18 ]   in men with high-grade prostatic 
intraepithelial neoplasia or atypical small 
acinar proliferation on previous TRUS biopsy, 
the cancer detection rate was 38% when a 
median of 24 cores were sampled using a 
template-assisted TPB technique. When 
template-assisted TPB was performed using 
a mean core biopsy technique of 53.8 in 
men with negative TRUS biopsy, Bittner  et   al . 
  [ 17 ]   showed that cancer detection rates 
were 44.7%. Studies sampling a higher 
number of biopsy cores at transperineal 
prostate have yielded high prostate cancer 
detection rates. Accordingly, it is evident 
that prostate cancer detection rates are 
dependent on the number of biopsy cores 
sampled. However, exactly how many cores 
are required for the optimum biopsy 
strategy, as well as when this should be 
performed, remains to be determined. 

 Our current method of TTMB is based on a 
36 core biopsy technique that samples three 
times more biopsies than our standard TRUS 
biopsy technique. In the present study, we 
report a cancer detection rate of 68%, 
which is higher than previous studies, 
including those sampling a larger number of 
cores, although the mean PSA level for our 
study group is greater than that reported in 
previous studies   [ 13,17,18,20 ]  . A potential 
concern of the increasing detection rates by 
more substantial sampling is the increase 
in clinically insignifi cant cancers. However, 

previous studies have shown that this is 
unlikely to be the case, with only a minority 
of clinically insignifi cant cancers being 
detected when using a transperineal 
technique   [ 18,20 ]  . Of the 27 patients 
diagnosed with cancer in the present 
study, 24 patients had more than one core 
involved, and 21 patients had more than 
fi ve cores involved, indicating that the 
most cancers could potentially be clinically 
signifi cant tumours. However, it should be 
noted that fi ve positive cores on template-
assisted TPB equates to 13.8% of the cores 
being positive for cancer. If translated as a 
percentage to a 12-core TRUS guided biopsy 
technique (although this is not an entirely 
accurate comparison), between one and 
two cores would be positive, equating to 
a relative low volume of disease. 

 Additionally, other studies have investigated 
the utility of TPB as the initial biopsy 
technique in patients with an elevated 
PSA level or abnormal DRE   [ 15,16 ]  . 
Although associated with potentially 
higher cancer detection rates   [ 16 ]   because 
of the need for a general anaesthetic, 
offering TPB as an initial biopsy strategy to 
all patients may not be feasible as a result 
of time and fi nancial constraints in many 
centres. 

 A limitation of the present study is the 
sample size employed. In particular, it 
is diffi cult to assess the safety of a 
standardized 36 core technique in this 
small cohort. However, only one patient 
reported transient mild haematuria, one 
patient experienced urinary retention 
and haematospermia, although mild, was 
common. Other complications were not 
reported. The safety profi le of this TPB is 
very similar to TRUS-guided biopsy. Only 
one randomized study has investigated 
the complication rates between these two 
approaches   [ 15 ]  . Although lower rates 

    TABLE   2  Clinical parameters of active surveillance patients undergoing repeat template-assisted 
transperineal prostate biopsy (TPB)   

Initial TRUS biopsy Template-assisted TPB
PSA (ng/mL) Gleason score Number of cores PSA (ng/mL) Gleason score Number of cores
4 3  +  3  =  6 1/10 8.6 3  +  4  =  7 4/36
9.1 3  +  3  =  6 1/10 12 3  +  4  =  7 2/36
4.2 3  +  3  =  6 1/10 5.1 3  +  3  =  6 7/36
4.0 3  +  3  =  6 2/10 6.1 3  +  4  =  7 11/36
5.3 3  +  3  =  6 1/10 8.0 3  +  4  =  7 1/36
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of retention and sepsis were reported in 
patients undergoing TPB compared to a 
TRUS biopsy, these were statistically 
insignifi cant. A further limitation of the 
present study is that the time interval 
between template-assisted TPB and TRUS 
biopsy was greater than 1 year in some 
instances. It may be that the disease 
progressed in some of these men during 
this period, explaining why cancer was 
detected on template-assisted TPB rather 
than previous TRUS biopsy sessions. 
However, identifying the time when to 
perform repeat biopsy remains a dilemma 
for many clinicians. Not only is this heavily 
infl uenced by patient choice after a negative 
biopsy, but also repeat biopsy within a 
short time period may result in unnecessary 
discomfort and patient morbidity. 

 In conclusion, we present our early data on 
a standardized 36 template-assisted TPB 
technique. In the present study cohort, 
we report a high cancer detection rate. A 
current diffi culty in determining the utility 
of template-assisted TPB is related to the 
lack of a standardized technique for all 
patients. The present study supports the role 
of a 36 core biopsy technique for patients 
with elevated PSA levels despite previous 
negative TRUS-guided biopsies. The fi nding 
of the present study support the need for 
further investigations in the form of a 
prospective multicentre randomized control 
trial.   
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Abstract
Background The possibility of prostate cancer as a cause

for steadily rising PSA despite previously negative trans-

rectal ultrasound (TRUS)-guided prostate biopsies is a
major concern. An initial negative TRUS-guided prostate

biopsy does not necessarily exclude the presence of clini-

cally significant prostate cancer. We determined the role of
transperineal template prostate biopsy (TPTPB) in prostate

cancer detection in men with raised PSA despite two pre-

vious sets of negative TRUS biopsies.
Methods Between January 2008 and August 2012, a total

of 122 men’s records were reviewed after having 36-core

TPTPB following two previous sets of negative TRUS
biopsies despite raised PSA. A retrospective record of PSA

levels, clinicopathological parameters and histological

outcomes was made.
Results Mean age was 63 years (range 49–77), and mean

PSA was 18.0 (range 2.0–119.0). A total of 71/122 (58 %)

men were diagnosed with prostate cancer on TPTPB. Of
these, 28 (39 %), 34 (48 %), 5 (7 %), and 4 (6 %) had

Gleason score 6, 7 (3 ? 4), 7 (4 ? 3), and 9 (4 ? 5),
respectively. The mean number of positive cores was 7

(range 1–22). Of these, only 15 (21 %) had B2 cores

positive and Gleason score of 6. Of the 51 (42 %) men with
a negative histology on TPTPB, 11 (22 %), 10 (19 %), and

30 (59 %) had atypical small acinar proliferation, high-

grade prostatic intraepithelial neoplasia, or benign
pathology.

Conclusion TPTPB is associated with a high rate of

clinically significant prostate cancer diagnosis (58 %) in
men with raised PSA despite two previous sets of negative

TRUS biopsies.

Keywords Prostate ! TRUS ! Transperineal ! Biopsy !
Cancer ! Detection

Introduction

The possibility of prostate cancer as a cause for steadily

rising PSA despite previously negative transrectal ultra-
sound (TRUS)-guided prostate biopsies is a major concern.

In addition, previous studies have reported that TRUS-
guided prostate biopsies has a sensitivity of only 39–52 %

[1], cancer detection rate of around 25 % on initial biopsies

[2], and 18–32 % in the repeated biopsies [3, 4]. Therefore,
an initial negative TRUS-guided prostate biopsies does not

necessarily exclude the presence of clinically significant

prostate cancer. Hence, modification of the standard biopsy
technique along with TRUS-guided saturation biopsies has

been performed in an attempt to increase the specificity of

prostate cancer detection [5–8]. Unfortunately, variations
of the standard TRUS-guided prostate biopsy techniques

have failed to demonstrate a significant increase in the

diagnosis of prostate cancer [9].
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Transperineal template prostate biopsies (TPTPB) is a

technique which is gaining popularity and is associated
with a high prostate cancer detection rates in men with a

background of a rising PSA and previously negative

TRUS-guided prostate biopsies. We have previously
reported our preliminary findings of the prostate cancer

detection rate in 40 men who underwent a standardized

36-core TPTPB due to rising PSA despite two previous sets
of negative TRUS-guided prostate biopsies [10]. Our pre-

liminary data revealed prostate cancer detection rates
approaching 70 %, but this study was limited by a rela-

tively low sample size. In this present study, we now

present retrospective data in a cohort of 122 men who have
undergone the same TPTPB technique due to a persistently

rising PSA after two sets of negative TRUS-guided prostate

biopsies.

Patients and methods

Between January 2008 and September 2012, a total of 122

men were selected to undergo TPTPB. Men were selected
if they had two previous sets of standard 12-core TRUS-

guided prostate biopsies yielding a non-cancerous diagno-

sis and an increased PSA. All patients had a minimum life
expectancy of 10 years.

All patients underwent TPTPB that was performed by

the same surgeon (MAK) using the same biopsy technique
in every case as previously described [10]. The procedure

was performed under general anesthetic. A 14-Fr urethral

catheter was inserted and the patient was placed in the
extended lithotomy position. This was followed by inser-

tion of the transrectal probe (BK Medical Pro-Focus 2202,

BK Medical, Mileparken, Denmark) and prostate volume
measurement. A STEPPER (Galil Medical; Crawley, Sus-

sex, UK) with an articulated arm and a stabilizer was used

to fix the ultrasound probe. After prepping and draping the
perineum, a standard 0.5 cm brachytherapy template grid

was attached to the STEPPER and positioned over the

perineum. With the prostate at its widest in the transverse
plane, the gland was divided on the TRUS screen into 6

sectors (right anterior, left anterior, right mid, left mid,

right posterior and left posterior). Six 18-gauge needles
were inserted at a time into a single sector in the transverse

plane and biopsies were taken from the apex of the prostate

to the base in the sagittal plane. A total of 36 biopsies were
taken from each case for histological analysis. The urinary

catheters were removed at the end of the procedure unless

the prostate volume was [60 cc, in which case a trial
without catheter (TWOC) was performed 5 days later. All

patients were discharged home the same day. A retro-

spective record of clinicopathological parameters and his-
tological outcomes was made. PSA velocity was calculated

as per Carter et al. using the first and last PSA values (FL

method) [11, 12]. Student’s t test was used for statistical
analysis and p \ 0.05 was considered significant. As

TPTPB was offered to this cohort as part of a routine

practice in our unit, we did not seek ethical approval.

Results

The mean age of the 122 patients was 63 years (range
49–73) with mean prostate volume of 54.0 cc (range

16.0–140.0). Mean PSA level was 18.0 ng/mL (range

2.0–119.0) at the time of TPTPB, which was higher com-
pared to 14.0 ng/mL (range 1.4–122.0) at the time of the

previous TRUS biopsy (p \ 0.01). The mean time interval

between the previous TRUS biopsy and the TPTPB was
24 months (range 2–128) with mean PSA velocity of

2.3 ng/mL per year (range 0–33.6).

Out of the 122 men, a total of 71 (58 %) were found to
have a malignant pathology, while 51 (42 %) men were

found to have non-cancer histology. Mean PSA density

(PSAD) was 0.5 ng/mL/cc (range 0–2.9) in the cancer
cohort compared to 0.3 ng/mL/cc (range 0.06–1.36) in the

non-cancer cohort (p = 0.9). Table 1 demonstrates the

histological findings along with Gleason scores. Figure 1
shows the distribution of the cancer positive cores.

Out of the 71 patients with prostate cancer, 28 (39 %)

had Gleason score of 6 (3 ? 3), 34 (48 %) had Gleason
score of 7 (3 ? 4), 5 (7 %) had Gleason score of 7 (4 ? 3),

and 4 (6 %) had Gleason score of 9 (4 ? 5). The mean

number of positive cores was 7 (range 1–22), with mean
tumor volume of 9 % of the positive cores (range

0.3–54 %). A total of 15 (21 %) patients had B3 positive

cores, Gleason score of 6, and tumor volume \50 %. In
total 221 cancer positive cores were found, of these, 108

(49 %) were found in the anterior zone, 69 (31 %) in the

middle zone, and 44 (20 %) in the posterior zone. Out of
the 51 (42 %) patients with a non-malignant diagnosis, 11

(22 %) men had atypical small acinar proliferation, 10

(19 %) men had high-grade prostatic intraepithelial neo-
plasia, and 30 (59 %) men had a benign pathology.

There was no significant difference in the mean PSA

levels at the time TPTPB between the 71 patients with
prostate cancer (20.2 ng/mL, range 4.6–119.0) and the 51

men with non-cancer histology (14.9 ng/mL, range

1.6–70.0) (p = 0.09). Furthermore, there was no significant
difference in the mean PSA velocity of the both groups (2.9

vs. 1.1 ng/mL/year, p = 0.17).

There were no cases of urosepsis. Urinary retention
occurred in 5 % of the cases and hematuria in 30 % of the

cases. Minor hematospermia was common but did not raise

any patient concerns. A minority of patients experienced
mild perineal ecchymosis and/or swelling.
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Discussion

Since the introduction of the original sextant biopsy by
Hodge et al. [13], TRUS-guided prostate biopsy has been

regarded as the gold standard approach to the diagnosis of

prostate cancer in men with an increased serum PSA.
However, the probability of missing a cancer with prostate

biopsy under TRUS guidance is estimated at 25 %, even

with saturation biopsies [4, 5, 7, 9, 14]. Furthermore, with
each successive biopsy, the risk of prostate cancer detec-

tion falls [15]. This has in turn resulted in many men being

initially falsely reassured by a negative biopsy.
TPTPB is a technique that has evolved and gained more

popularity over the last decade. A study [16] assessed

TPTPB in the initial and repeated biopsy setting and con-
cluded that it provides high rates of cancer detection of

77.9 % in biopsy naı̈ve men and a rate of 46.9 % as a

repeat biopsy. Although different authors use varying
transperineal biopsy techniques, cancer detection rates

following TPTPB in men with previously negative TRUS

biopsy is higher than reported with saturation biopsies via
the transrectal route [5, 17, 18]. This has partly been

attributed to the fact that TPTPB detects, in particular,

tumors located in the apical and anterior zones of the
prostate, often poorly sampled by TRUS biopsy [19, 20].

We previously reported high cancer detection rates using a

standardized 36-core transperineal biopsy technique. In our

initial study, 68 % of patients who had had two previously

negative TRUS biopsies underwent TPTPB, all having 36
cores sampled in a standardized manner. However, our

initial study was limited by a small cohort size, and this

present study was performed to evaluate this technique in a
larger number of patients. By sampling 36 cores at the time

of TPTPB in 122 men with two negative prior TRUS

biopsies, we again report high cancer detection rates of
58 %, again which compares favorably to other studies

[16–19, 21–23].

Earlier data regarding the cancer detection yield of
TPTPB, as with TRUS biopsy, demonstrates that the cancer

detection rate appears to vary depending on the number of
cores sampled. In studies sampling 20 cores, the cancer

detection rate in men with prior negative TRUS biopsy is

around 35 % [24], whereas in those studies sampling
almost 50 cores report higher cancer detection rates

approaching 50 % [18]. However, more recently, Ekwe-

ume et al. [25] noted similarly high cancer detection rates
of 54 %—as in our study—in a cohort of patients under-

going a median of 28 biopsies following a median of two

set of negative TRUS biopsies. Furthermore, Bittner et al.
[23] reported a cancer detection rate of 46.6 % for trans-

perineal biopsy with 86.7 % clinically significant cancers

in a cohort of patients undergoing a median of 59 biopsies
following at least one negative set of TRUS biopsies.

Together with our data, this indicates that studies sampling

higher numbers of cores may be unnecessary and does not
increase the diagnostic yield. It must be borne in mind that

clinical parameters and the selection criteria for transperi-

neal biopsies (i.e., PSA, PSA velocity and number of
previous TRUS biopsy sessions) vary from study to study

and this will have a clear bearing on the cancer detection

rates reported [10, 16–20, 24].
As reported by previous authors [19, 25, 26], in our study

a high proportion of biopsies containing cancer were located

in the anterior zone of the prostate. Almost 50 % of cancer-
containing cores were found in the anterior zone of the

prostate, a region poorly sampled during TRUS biopsy,

hence, the high proportion of anterior tumors is to be
expected. As previous studies have shown that TPTPB is

Table 1 Pathology findings in 122 patients who underwent the TPTPB

TPTP pathology No. of patients Age Prostate volume TPTP PSA No. of ?ve cores

Mean Range Mean Range Mean Range Mean Range

3 ? 3 28 62 76 52 51 140 20 15 48 4.6 5 15 1

3 ? 4 34 64 77 51 41 89 16.1 22 119 5.2 9 20 2

4 ? 3 5 69 77 61 42 52 31 36 93 16 13 19 8

4 ? 5 4 64 68 56 39 60 21.2 25 41 12 13 22 8

Benign 51 63 77 49 67 132 25 15 70 4.6 0 0 0

Fig. 1 Distribution of cancer positive cores found by the TPTPB in
the prostate sectors
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able to adequately sample anterior tumors, and TRUS biopsy

is able to adequately sample posterior tumors, and in our
cohort all patients had two previous sets of TRUS biopsies,

one would expect that TRUS biopsies would have detected

the majority of the posterior located tumors. Nonetheless, a
substantial number of cancers (20 %) were located in the

posterior zone, highlighting further limitations of TRUS

biopsy in comparison to TPTPB.
Following TPTPB, concerns have been raised regarding

the clinical significance of the cancers diagnosed through this
route [18, 24]. However, in our present study, 43 (61 %) had a

Gleason grade score C7, automatically placing them into the

intermediate or high-risk categories when using established
risk stratification criteria [21]. Furthermore, in our cohort only

one-fifth of patients were noted to have clinically insignificant

cancer when using the Epstein criteria, which has been
described in studies evaluating saturation TRUS biopsy [27].

Hence, in our cohort, TPTPB appeared to detect tumors that

require treatment. Despite detecting a number of patients with
moderately or poorly differentiated disease in our and other

studies [10, 25], studies have demonstrated that in comparison

to TRUS biopsy, TPTPB identifies tumors of a smaller size
and earlier stage [28]. This data could suggest that TPTPB

identifies more clinically significant tumors at an earlier stage,

making it a far more ideal diagnostic test for localized prostate
cancer than TRUS biopsy.

One limitation in this study, however, is that the time dif-

ference between the previous TRUS biopsy, and TPTPB was
an average of 2 years; hence, natural progression to cancer

could have happened during this period accounting for the

high detection rate of cancer following TPTPB. Although the
mean PSA value was higher in cancer cases, our data showed

that there was no significant difference in rate of cancer

diagnosis in patients who had the TPTPB biopsy within 1 year
from last TRUS biopsy and those who had it after this period.

A further question mark arises as to the timing of TPTPB in

patients with suspected prostate cancer. Several authors have
shown that TPTPB in biopsy naı̈ve patients is associated with

high cancer detection rates [16], but due to the need for a

general anesthetic, offering TPTPB as an initial biopsy
strategy to all patients may not be feasible as a result of time

and financial constraints in many centers.

We predict that in the future such a cohort will initially
undergo a multiparametric MRI scan of the prostate and

then proceed to TPTPB, which may or may not be focused.

However, further studies are needed before this can be
confirmed.

Conclusion

In conclusion, we report a high cancer detection rate of
58 % by TPTPB in a cohort of 122 men with rising PSA

despite previous two sets of negative TRUS-guided biop-

sies. Most cancers involved the anterior zone with vast
majority of Gleason score C7. Hence, TPTPB should be

regarded as the gold standard investigation in such cases,

and consideration must be given to performing this tech-
nique in men with one negative TRUS biopsy in whom

cancer is suspected.
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ORIGINAL ARTICLE

The role of transperineal template prostate biopsies in prostate
cancer diagnosis in biopsy naı̈ve men with PSA less than
20 ngml! 1

S Nafie1, JK Mellon1, JP Dormer2 and MA Khan1

BACKGROUND: To compare prostate cancer detection rates between transrectal ultrasound (TRUS) prostate biopsy and
transperineal template prostate biopsy (TPTPB) in biopsy naı̈ve men. TRUS biopsy is still regarded as gold standard for prostate
cancer diagnosis. TPTPB has been shown to improve prostate cancer detection in men with rising PSA and previous negative TRUS
biopsies. We carried out a prospective study performing both biopsies in the same group of men with a benign feeling digital rectal
examination (DRE), PSA o20 ng ml! 1 and no previous prostate biopsies.
METHODS: A total of 50 patients with mean age of 67 years (range: 54–84), mean prostate volume 58 cc (range: 19–165) and mean
PSA 8 ng l! 1 (range: 4–18) underwent standard 12-core TRUS biopsy followed immediately by 36-core TPTPB under general
anaesthetic. We determined the prostate cancer detection rate between the two diagnostic modalities.
RESULTS: In total, 20/50 (40%) had benign pathology. Of 30/50 (60%) diagnosed with prostate cancer, 16 (32%) had positive results
in both TRUS and TPTPB, whereas 14 (28%) had negative TRUS but positive TPTPB. No cancers were detected solely by TRUS biopsy.
TRUS biopsy detected cancer in 32% versus 60% with TPTPB. In total, 19/30(63%) cancers detected by TPTPB had Gleason score X7.
2 (4%) experienced urosepsis, 7 (14%) temporary urinary retention, 16 (32%) mild haematuria and 19 (38%) haematospermia.
CONCLUSIONS: TPTPB is associated with significantly higher prostate cancer detection rate than TRUS biopsies in biopsy naı̈ve
men with a benign feeling DRE and PSA o20 ng ml! 1. PSA appears to be better biomarker than previously thought.

Prostate Cancer and Prostatic Disease (2014) 17, 170–173; doi:10.1038/pcan.2014.4; published online 4 March 2014

Keywords: prostate; cancer; biopsy; TRUS; transperineal; detection

INTRODUCTION
Since the introduction of serum PSA in 1986 as a biomarker for
prostate cancer diagnosis, not only there has been a steady world-
wide increase in the diagnosis of prostate cancer, there has also
been a shift toward diagnosing this disease earlier in its pathway.
Hence, the majority of men diagnosed with prostate cancer today
are done so purely on the basis of an elevated PSA,1 whereas prior
to the advent of PSA, the majority were diagnosed on the basis of
an abnormal digital rectal examination (DRE) and therefore more
advanced disease at diagnosis. However, PSA is criticised for its
poor specificity of B30% in diagnosing prostate cancer.2

The technique of transrectal ultrasound (TRUS)-guided prostate
biopsy has been in existence since the 1980s with subsequent
refinements made to the technique in taking biopsies3 as well as
the number of biopsies that should be taken.3,4 It is currently
regarded as the gold standard procedure for prostate cancer
diagnosis. However, the yield from TRUS biopsies is low, especially
when men have already undergone previous negative TRUS
biopsies.2

In view of the ability of transperineal template prostate biopsy
(TPTPB) to detect prostate cancer at significantly higher rates than
TRUS biopsies,5–8 we questioned whether we should move away
from TRUS biopsies to TPTPB and whether PSA is actually a more

specific biomarker for prostate cancer detection than previously
thought. To this end, we performed a prospective study to have
a head-to-head comparison between TRUS biopsy and TPTPB
whereby the same cohort of biopsy naı̈ve men with a benign
feeling prostate on a DRE and an elevated PSA o20 ng ml! 1

underwent simultaneous TRUS biopsies and TPTPB under general
anaesthetic. Hence, these patients acted as their own controls.

MATERIALS AND METHODS
Between August 2012 and August 2013, a total of 50 men with at least
10 years life expectancy along with a benign feeling prostate on DRE
and elevated serum PSA o20 ng ml! 1 were enroled in our study. Research
protocol was registered and approved by the National Research Ethics
Service committee of East Midlands and by the research and development
department in the University Hospitals of Leicester NHS trust. All of our
participants were given information sheets explaining the nature of the
study and they all signed their informed consent forms.

After performing the first 40 cases, a significant difference in cancer
detection rates between the two techniques was demonstrated. Power
analysis was conducted using a power model based on a one-proportion
Z, w2 test within STATISTICA (StatSoft, Tulsa, OH, USA). This analysis
indicated that to obtain a power of 0.9 (using alpha value of 0.05, a TRUS
frequency of 0.32 and a TPTPB frequency of 0.6) would require 30 cases.
Furthermore, a power analysis was undertaken for a two-way two-

1Department of Urology, Leicester General Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK and 2Department of Cellular Pathology, Leicester Royal Infirmary,
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proportion Z-test, this analysis indicated that to obtain a power of 0.8
(using the same alpha value and the same frequencies) would require 50
cases. This was on the basis of a null hypothesis that the proportions of
positive cases detected were equal. In order to ensure that we had an
appropriate power across these analysis methods, 50 cases were chosen as
the optimum.

Each patient was given a dose of Ciprofloxacin 500 mg orally at least
30 min prior to being anaesthetised. At induction, 120 mg of Gentamicin
and 1.2 g of Augmentin were administered intravenously unless the patient
was penicillin allergic, in which case 400 mg of Teicoplanin was admini-
stered intravenously instead. After being placed in the left lateral position,
the prostate volume was calculated, 12 TRUS-guided core biopsies were
taken with 6 each from the right and left peripheral zones as previously
described by Presti et al.4 The patient was subsequently placed in the
extended lithotomy position. After shaving the perineal area and securing
the scrotum away from the biopsy area using mepore tape, an ultrasound
probe (BK Medical Pro-Focus 2202; BK Medical, Mileparken, Denmark) was
placed in the rectum to visualise the prostate. Thereafter, the perineum
and the genital areas were prepped and draped. A 14-Fr urethral catheter
was subsequently inserted in order to visualise the urethra and determine
the degree of haematuria at the end of the procedure.

TPTPB was then performed as previously described.9,10 In short, on the
ultrasound screen using a marker pen the prostate, at its largest diameter
on the transverse plane, was divided into six sectors, namely, right and left
anterior, mid and posterior. In each sector, six 18-gauge biopsy needles
(Pro-Mag Biopsy Needle, 18G! 20 cm, MCXS1820AX) were placed into the
prostate in the transverse plane using a Brachytherapy template grid. Once
all six needles were inserted, the probe was switched to the sagittal plane
and the needle gently withdrawn, one at a time, to the apex of the
prostate and biopsies taken from the apex towards the base of the
prostate. In every case, the biopsies were performed in exactly the same
systematic manner starting with the right anterior followed by left anterior
and then right mid and so on ending with the left posterior. At the end of
the procedure, the catheter was removed unless there was significant
haematuria, in which case the catheter was removed after 1–2 h
Furthermore, if the prostate volume was measured to be X60cc then
the catheter was removed after 5 days. All cases were discharged home
the same day. All biopsies were performed by the same surgeon (MAK) and
histological analysis was undertaken by the same pathologist (JPD), using
standard haemotoxylin and eosin-stained, formalin-fixed and paraffin-
embedded sections. Standard 4-mm sections were examined over three
levels from each core. Where necessary immunoperoxidase to p63,
34betaE12 and AMACR (p504s) antigens were also employed to render a
diagnosis. Statistical analysis was carried out using Fisher’s exact test to
evaluate the association of nominal variables. All calculated P-values were
two-sided, considering Po0.05 statistically significant.

RESULTS
Our 50 participants had mean age of 67 years (range: 54–84) with
mean prostate volume of 58 cc (range: 19–165) and mean serum
PSA level of 8 ng ml" 1 (range: 4–18). In total, 20/50 (40%) men
had benign pathology with no cancer detected in either TRUS
biopsies or TPTPB. Out of the 30 patients with detected cancers,
16 (32%) had positive results in both TRUS biopsies and TPTPB,
whereas 14 (28%) had positive results in the TPTPB only. There
was no cancer detected by the TRUS biopsies solely. Patients with
detected cancers had a mean PSA density of 0.19 ng ml" 1per cc
(range: 0.05–0.57), whereas patients with no detected cancers had
a mean PSA density of 0.16 ng ml" 1 per cc (range: 0.03–0.53) with
no significant difference between both (P¼ 0.3). In total, TRUS
biopsy detected cancers in 16/50 patients, whereas TPTPB
detected cancer in 30/50 patients with detection rates of 31 and
60%, respectively (Po0.0001). Considereing TPTPB as the refer-
ence standard, TRUS biopsy had a negative predictive value of
58.8% and a sensitivity of 53.3%. Table 1 demonstrates the details
of cancer detection rates along with the pathology findings of
both biopsy types.

Of the 14/50 patients who had malignant pathology exclusively
detected by the TPTPB, six patients (43%) had Gleason score of
3þ 3, seven (50%) had 3þ 4 and one (7%) had 4þ 3 denoting that
57% of these patients had clinically significant cancers; meanwhile

TRUS biopsy showed eight (56%) patients with high-grade PIN,
three (21%) with atypia and three (21%) with benign prostate
tissue in the same cohort. In total, there was no significant
difference in the Gleason scores of cancers detected by both
biopsy modalities, as 19/30 (63%) cancers detected by the TPTPB
and 10/16 (63%) of cancers detected by TRUS biopsy had Gleason
score X7 (P¼ 0.9). In total, 64/600 (11%) cancer-positive cores
were detected by TRUS biopsy, whereas 226/1800 (12.5%) positive
cores were detected by the TPTPB (P¼ 0.2). In total, 92/226 (40%)
cores were detected in the anterior zone, 68 (31%) in the middle
zone and 66 (29%) in the posterior zone of the prostate gland.

Post procedure complications are summarised in Table 2. The
seven (14%) patients who had temporary urine retention were
catheterised and all of them had a successful trial without catheter
after 5 days. Those who had urosepsis were admitted and treated
by intravenous antibiotics. Other complications were mild, not of
worrisome to our patients and required no intervention.

DISCUSSION
It is well accepted that the introduction of PSA as a biomarker has
resulted in the detection of prostate cancer at an earlier stage of
its natural history.1 Hence, the majority of men are diagnosed
today with organ-confined disease, which allows for radical
intervention with curative intent. Furthermore, TRUS biopsies
not only allow us to visualise the prostate but to also focus our
biopsies to areas within the prostate likely to harbour cancer.
Despite advancements in our approach to TRUS prostate biopsies,
the majority of men undergoing such a procedure have negative
biopsies. This creates great dilemma both for the physician and
patient alike, which is further compounded when there is a
persistent rise in PSA despite multiple sets of previous negative

Table 1. Cancer detection rates and pathology types of TRUS biopsy
versus TPTPB specimens in the total cohort of patients (n¼ 50)

TRUS Biopsy TPTP Biopsy

Number Percentage (%) Number Percentage (%)

Cancer 16 32 30 60
G3þ 3¼ 6 6 12 11 22
G3þ 4¼ 7 6 12 14 28
G4þ 3¼ 7 3 6 3 6
G4þ 4¼ 8 0 0 0 0
G4þ 5¼ 9 1 2 2 4
Benign 34 68 20 40
HGPIN 19 38 8 16
Atypia 10 20 8 16
Benign 5 10 4 8

Abbreviations: TPTPB, transperineal template prostate biopsy; TRUS,
transrectal ultrasound.

Table 2. Post procedure (TRUS biopsy and TPTPB) complications
(n¼ 50)

Complication Number Percentage (%)

Haematuria 16 32
PR bleeding 8 16
Hematospermia 16 32
Ecchymosis 15 30
AUR 7 14
Urosepsis 2 4

Abbreviations: TPTPB, transperineal template prostate biopsy; TRUS,
transrectal ultrasound.
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TRUS biopsies. This has led to a loss in confidence in PSA as an
effective biomarker.

Another tact has been to alter our approach to taking prostate
biopsies as it is increasingly appreciated that TRUS biopsy does
not permit the whole prostate to be scrutinised. Hence, the
potential risk of missing cancers arising from the anterior areas of
the prostate, and a false negative TRUS biopsy result. In view of
this, the role of TPTPB is slowly gaining momentum. To this end,
TPTPB has been shown to improve our ability to diagnose prostate
cancer.5–7,11 We have previously demonstrated that TPTPB can
detect prostate cancer in the majority of men with a raised PSA
despite two prior sets of negative TRUS biopsies.9,12 This led us to
consider the role of TPTPB in biopsy naı̈ve men with a benign
feeling prostate on a DRE and PSA o20 ng ml! 1. Our study has
demonstrated that TPTPB is associated with a 60% prostate cancer
detection rate in this particular group of patients. Furthermore,
only 32% would have been given the diagnosis of prostate cancer
if only TRUS biopsies were performed. This figure is consistent
with the previously reported prostate cancer detection rate for
such groups of men.2,8 Hence, it appears that our ability to
diagnose prostate cancer by taking TRUS biopsies is not inferior to
the published literature.

Very few studies have previously performed a direct comparison
between TRUS and transperineal biopsies in the same patients.
Emiliozzie et al13 reported a higher cancer detection rate of 38% in
6-core transperineal biopsy (using the fan scheme) compared with
32% in 6-core transrectal biopsy. Kawakami et al.14 compared
14-core transperineal versus 12-core transrectal biopsies, using a
transrectal ultrasound-guided three-dimensional 26-core biopsy
designed to sample the peripheral zone (regardless of a history
of negative biopsy, DRE-finding, PSA level or prostate volume)
showed that both biopsies had nearly the same cancer detection
rate of 36%. However, the heterogeneity of the cohort criteria, the
techniques used and the relatively low number of transperineal
biopsy cores could have contributed to their result. Earlier data
suggest that the number of biopsy cores taken might affect the
cancer detection rate, as studies sampling 20 cores, the cancer
detection rate is around 35%15, whereas others sampling almost 50
cores, the detection rate approaches 50%.16 Shen et al17 reported
no significant difference in cancer detection rate between both
biopsies in a meta-analysis of seven studies. However, this
included a heterogeneous cohort and moreover the comparison
included sextant, extensive and saturation biopsy procedures.

Equally important, our study bucks the general notion that PSA
is a poor biomarker for prostate cancer diagnosis. This study
instead shows clearly that although PSA is still far from perfect, it is
a significantly better biomarker than has previously been given
credit for. As such, the low-cancer yield in men with an elevated
PSA is more likely to be related to the way we currently perform
prostate biopsies rather than PSA itself. Hence, our study has
revealed that men with a background of no previous biopsies,
elevated PSA and benign feeling DRE, should undergo TPTPB as
TRUS biopsy is likely to miss prostate cancer in 28% of cases. In
view of this, TRUS biopsies should be abandoned in this group of
men, especially as we did not experience any case where cancer
was only detected in TRUS biopsies. However, we appreciate that
before this paradigm shift in our approach to diagnosing prostate
cancer is widely accepted, a larger multi-centre, multi-national
study may be required. Furthermore, we accept that men with an
abnormal DRE should still continue to be considered for TRUS
biopsies as such a procedure is unlikely to miss the diagnosis of
prostate cancer in this group of men, which reassuringly is
becoming increasingly uncommon.

Our study has also demonstrated that the majority of cancers
detected on TPTPB (63%) were Gleason score X7 indicating that
these were clinically significant disease. Hence, TPTPB did not
appear to increase the risk of prostate cancer over-diagnosis.
Furthermore, although TPTPB does require the need for general

anaesthesia, there is some evidence that such a procedure might
be feasible under local anaesthetic, pudendal and periprostatic
nerve block.18–20 Nonetheless, the additional cost of a general
anaesthetic can offset the need for further TRUS biopsies due to
further rise in PSA at a future date. In addition, to date we have
performed over 400 cases of TPTPB without any associated
urosepsis. In comparison, TRUS biopsy is associated with anB5%
risk of urosepsis requiring hospital admission.21

TPTPB is not without its limitations. Men with large prostates
can pose a problem in adequately accessing the anterior areas of
the prostate due to potential pubic arch interference. However,
this can be overcome in the majority by manipulating the angle of
the TRUS probe placed in the rectum. In addition, TPTPB was
associated with a 14% risk of temporary urinary retention in our
study, however this is consistent with previously published data
on TPTPB.22 Nonetheless, this can be addressed by pharma-
cotherapy if needed. Furthermore, men with larger prostates may
need to be considered for a greater number of biopsies in order to
adequately sample the whole prostate. Future work will be
needed to address the optimum number of biopsies. In our study,
in order to keep a uniform approach, all cases underwent 36-core
TPTPB irrespective of the prostate volume.

There is growing evidence that multiparametric magnetic
resonance imaging (MRI)-guided focal TPTPB is likely to have a
greater role in the future. However, evidence for that is still
emerging and not confirmed. In addition, there are concerns
relating to false negative results associated with MRIs. It is of note
that MRI is currently a privilege of the developed world. As such, it
is impractical financially and logistically for it to be considered as
the initial modality of investigation for all patients with an
elevated PSA and a benign feeling prostate. However, it is likely
that in the future we will have a better panel of biomarkers, which
may or may not include PSA, in predicting the presence of
clinically significant prostate cancer with a greater accuracy. At
that time, we might be able to consider such patients for an MRI
scan prior to undergoing focal TPTPB.

CONCLUSION
TPTPB is associated with a significantly greater prostate cancer
detection rate than TRUS biopsies in biopsy naı̈ve men with an
elevated PSA o20 ng ml! 1 and a benign feeling prostate. We
propose that TPTPB should be regarded as the biopsy technique
of choice in such cases. We do accept that a larger multi-centre,
multi-national study might be required before our recommenda-
tion is widely accepted. In addition, PSA appears to be a better
biomarker for the detection of prostate cancer than previously
thought. Hence, in the future, PSA is still likely to have a prominent
role as part of a multi-panel biomarker in aiding the diagnosis of
prostate cancer.
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ABSTRACT 

Purpose: Transperineal template prostate biopsies (TPTPB) are now increasingly commonly performed for 

the diagnosis of prostate cancer. TPTPB are traditionally performed under general anaesthetic. However, this 

poses a significant strain on hospital theatre capacity. As such, local anaesthetic (LA) TPTPB are becoming 

more popular. We describe a novel technique in performing the standard TPTPB under LA in the outpatient 

setting. 

Materials and Methods: Between February 2019- February 2021, 254 consecutive men (median age 69; 

range: 44-80 years) with a median PSA of 8.7 ng/ml (range: 2.2-76) underwent L/A TPTPB using our novel 

technique. This is whereby 50mls of 1% prilocaine was injected partially around the perineal skin and partially 

deep bilateral periprostatic areas. Multiple simultaneous prostate biopsies were then taken with the standard 

template grid and stepper. 

Results: A total of 250/254 (98.4%) men underwent successful L/A TPTPB with a median visual analogue 

pain score of 4 (range: 2-8). The median prostate volume was 49cc (range: 14-240cc). The median number of 

cores taken were 18 (range: 14-24). A total of 163/250 men (65%) had a positive histology for prostate cancer 

with a median of 5 cores being involved with prostate cancer (range: 1-18). In addition, 101/163 men (62%) 

diagnosed with prostate cancer had either Gleason score 3+4=7 or greater. None experienced urosepsis and 

only 2/250 men (0.8%) had temporary urinary retention. 

Conclusion: Our novel LA technique in performing the standard TPTPB is safe, feasible and well tolerated 

and associated with a high rate of prostate cancer detection. 

Keywords: anaesthetic; biopsy; local; perineum; prilocaine; prostate 
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INTRODUCTION 

Over the past two decades the role of transrectal ultrasound guided prostate biopsies, in the detection of prostate 

cancer, has been steadily falling out of favour due to its limited ability to accurately biopsy the prostate, in 

particular the the anterior gland, (1,2) along with its associated risk of urosepsis in up to 5% of cases (3,4). As 

such, transperineal template prostate biopsies (TPTPB) have increasingly become the standard diagnostic tool 

in obtaining adequate and accurate prostate tissue (5-7). In addition, multi-parametric magnetic resonance 

imaging (mpMRI) of the prostate now plays an important role in directing biopsies to the most suspicious areas 

within the prostate; thereby increasing our ability to detect prostate cancer (8). However, as up to 20% of men 

with a negative MRI scan of the prostate can still harbour clinically significant prostate cancer(8,9), it is 

important not only to be able to accurately take biopsies from the MRI suspicious areas but also perform 

saturation biopsies from all other areas of the prostate. 

TPTPB have traditionally been performed under general anaesthetic (GA). However, the rapid rise, over the 

past two decades, in the number of men undergoing such a procedure has resulted in a great strain in gaining 

access to the operating theatres. To address this dilemma, a local anaesthetic (LA) approach in performing 

TPTPB has been increasingly desired.  To date, the commonly used technique in performing LA TPTPB is by 

using PrecisionPointTM. Unfortunately, not only does this technique add to the cost of performing such a 

procedure but there is some evidence that this technique may not be as accurate in detecting prostate cancer as 

the standard TPTPB performed under GA(10,11). We, therefore, determined whether it is feasible to perform the 

standard TPTPB using the template grid and a stepper by modifying the LA technique.  
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PATIENTS AND METHODS 

Between February 2019 and February 2021, a total of 254 consecutive men with no selection bias underwent 

TPTPB under LA in our unit by a single surgeon (MAK). As previously described, all men had pre-procedure 

antibiotic cover with oral Ciprofloxacin 500 mg, Co-Amoxicalv 625 mg and intravenous Gentamicin 120 mg. 

The men were placed in the lithotomy position and the perineal area shaved and cleaned with Betadine®. The 

scrotum was lifted away and fixed in place using a Mepore® sticky tape. A total of 50mls of Prilocaine 1% 

was used as LA. Of the 50mls of 1% prilocaine approximately 25mls is applied to the skin and subcutaneous 

tissue covering a wide area around the right of the anal margin. Thereafter, approximately 5 mls of LA is 

injected immediately above the anal margin at a midline and a slim strip of area to the left of the anal margin 

in a distorted/skewed horse-shoe distribution using a 23G needle as shown in Figure 1. The reason for this 

distribution of the LA is that all biopsies (right and left) are exclusively taken from the widely infiltrated area 

on the right. The rationale for adding LA to the other sites is that subsequently the ultrasound probe (BK 

Medical Pro-Focus 2202, BK Medical, Mileparken, Denmark) with Endocavity BalloonTM is inserted in the 

rectum and held in place using a mechanical stepper arm (Galil Medical; Crawley, Sussex, UK). Under 

ultrasound guidance (both sagittal and transverse views), a spinal needle (19G) is inserted to inject 10 mls each 

of Prilocaine 1% in the peri-prostatic area between the rectum and Denonvellier’s fascia (at the posterior lateral 

area of the apex of the prostate) on the right and left. Hence, the spinal needle is inserted in the areas above 

and right of the anal margin previously injected by LA (Figure1).  In total, 50 mls of 1% prilocaine LA is used. 

Thereafter, the prostate volume is measured by ultrasound, the gland divided on the ultrasound screen into six 

areas (Right Anterior, Right Mid, Right Posterior, Left Anterior, Left Mid, Left Posterior). A standard 0.5 cm 

brachytherapy template grid is fixed to the mechanical arm (stepper) and placed over the right perineal area 

(Figure 2). The stepper not only stabilizes the ultrasound probe but also permits the probe to be tilted in various 

angles thereby gaining access to the whole of the prostate for biopsy solely from the single area to the right of 

the anus (Figure 2).   TPTPB is then carried out using the template grid and 18G needles. This enable multiple 

needles to be inserted at the same time ensuring that a wide spread of biopsies are taken (Figure 2). Cognitive 

MRI fusion is used to take 4 biopsies from the MRI suspicious areas and two biopsies each from all other 

areas. In cases where the pre-biopsy MRI scan excluded any suspicious lesions within the prostate (i.e. negative 

MRI), four biopsies are taken from each of the six areas to ensure that thorough saturation biopsies are 
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undertaken. As such, between 14 and 24 biopsies were taken from each men. At the end of the procedure, each 

men were asked to complete a visual analogue score, where 1 is no pain and 10 is unbearable/severe pain. 

Subsequently, the men returned to the waiting area, and were discharged home after voiding urine. 

 

RESULTS 

Out of the 254 consecutive men, 4 (1.6%) did not tolerate the ultrasound probe under LA, therefore the 

procedure was abandoned and referred for TPTPB under GA. The 250 men who underwent the procedure had 

a median age of 69 years (range: 44-80) with a median PSA of 8.7 ng/mL (range: 2.2-76) and mean Prostate 

volume of 49 cc (14-240). A median of 18 cores (range: 24-14) were taken from each men with a median of 5 

positive cores (range: 1-18). A total of 163/250 men (65%) had positive histology for prostate cancer. Of these, 

62(38%) had Gleason score (GS) 3+3, 68(42%) had GS 3+4, 15(9%) had GS 4+3, 10(6%) had G4+4 and 

8(5%) had GS 4+5 as shown in Figure 3. The median pain score of 4 (range: 2-8). None of the men experienced 

urosepsis and 2 had temporary post-procedure urinary retention (0.8%). 

 

DISCUSSION 

Over the past two decades TPTPB has gained greater momentum in being the procedure of choice in adequately 

sampling the prostate. It carries the advantages over conventional TRUS guided prostate biopsies in being 

associated with a lower risk of urinary sepsis as well as having a higher yield in detecting prostate cancer due 

to being able to access all areas of the prostate. However, the rapid rise in the volume of TPTPB being 

performed has added significantly to the burden on operative theatre utilisation as it is commonly performed 

under GA.  In order to move TPTPB out of the theatre environment and towards an out-patient scenario, great 

effort has been invested in developing LA techniques for this increasingly common procedure.  

To our knowledge, our LA technique this the first of its type to be described in the world literature, whereby 

we have been able to perform the standard TPTPB using the template grid and stepper along with multiple 

simultaneous needle insertions; which is currently the technique used when performing this procedure under 

GA. Our experience has confirmed that it is feasible and safe to perform TPTPB under LA without 

compromising the areas sampled or the numbers of biopsies taken when compared with the standard TPTPB 
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under GA. In addition, our yield in detecting prostate cancer of 65% is consistent with the standard TPTPB 

performed under GA(6,7). 

At present, there are few readily available systems for performing transperineal biopsies under LA such as 

PrecisionPoint™ access system (10,11) and the CamProbe (12). These systems have been shown to be effective in 

performing transperineal biopsies under LA in the outpatient setting. However, they come with additional 

financial costs and are free-hand held devices, thus affecting the accuracy in taking biopsies from the 

appropriate/suspicious areas (13). In addition, as only a single needle can be inserted on each occasion a biopsy 

is taken, these two techniques are less predictable in ensuring that appropriate biopsies including saturation 

biopsies are taken. Therefore, it can be debated whether such biopsy techniques are truly template biopsies.  

However, our technique using the template grid permitting the simultaneous insertion of multiple needles 

offers better needle distribution and ensures that the same point of the prostate is not sampled twice. 

Furthermore, using the mechanical arm offers motion stability and precision in taking the biopsies. In addition, 

if a needle is not deemed to be in the correct position, it can easily be withdrawn and reinserted to a appropriate 

position as per cognitive MRI fusion. 

 

CONCLUSION 

Our LA technique, which is feasible, safe and well tolerated, enables us to perform the standard TPTPB without 

compromising cancer detection rates. By avoiding the need for additional specialist equipment and moving 

this procedure to the out-patient setting will also have a significant cost and time saving benefit. 
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Figure 1: The marked region demonstrates the skewed horse-shoe area anaesthetised.  
X: represents the approximate places where the spinal needle is inserted to inject the 
deep peri-prostatic local anaesthetic around the right and left apical areas. 
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 C           D 
 

         
 
Figure 2A-D: 
 
A: Demonstrating the angle of the ultrasound probe with the template grid, stabilised 
by the stepper, required to take biopsies from the right areas of the prostate. The probe 
is then adjusted slightly to take biopsies from the left areas of the prostate.  
 
B: Showing simultaneous insertions of multiple biopsy needles. 
 
C: Sagittal ultrasound image of the multiple biopsy needles insertions. 
 
D: Biopsy needle insertion sites around the anaesthetised perineal area (post-procedure) 
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Figure 3. Distribution of the various histology types in men undergoing LA TPTPB 
(GS=Gleason Score) 
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Abstract
The prediction of cancer staging in prostate cancer is a process for estimating the likelihood
that the cancer has spread before treatment is given to the patient. Although important for
determining the most suitable treatment and optimal management strategy for patients,
staging continues to present significant challenges to clinicians. Clinical test results such as
the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor
pattern (Primary Gleason pattern) and the second most common tumor pattern (Secondary
Gleason pattern) in tissue biopsies, and the clinical T stage can be used by clinicians to pre-
dict the pathological stage of cancer. However, not every patient will return abnormal results
in all tests. This significantly influences the capacity to effectively predict the stage of pros-
tate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for
classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD)
or Extra-Prostatic Disease (ED) using a prostate cancer patient dataset obtained from The
Cancer Genome Atlas (TCGA) Research Network. The system input consisted of the fol-
lowing variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diag-
nosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to
other computational intelligence based approaches, namely the Artificial Neural Network,
Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC
pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the opti-
mal Receiver Operating Characteristic (ROC) points that were identified using these
approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest
Area Under the ROC Curve (AUC), with a low number of false positives (FPR = 0.274, TPR
= 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC
pTNM Staging Nomogram (FPR = 0.032, TPR = 0.197, AUC = 0.582).
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Introduction
Cancer staging prediction is a process for estimating the likelihood that the disease has spread
before treatment is given to the patient. Cancer staging evaluation occurs before (i.e. at the
prognosis stage) and after (i.e. at the diagnosis stage) the tumor is removed—the clinical and
pathological stages respectively. The clinical stage evaluation is based on data gathered from
clinical tests that are available prior to treatment or the surgical removal of the tumor. There
are three primary clinical stage tests for prostate cancer: the Prostate Specific Antigen (PSA)
test which measures the level of PSA in the bloodstream; a biopsy which is used to detect the
presence of cancer in the prostate and to evaluate the degree of cancer aggressiveness (results
are usually given in the form of the Primary and Secondary Gleason patterns); and a physical
examination, namely the Digital Rectal Examination (DRE) which can determine the existence
of disease and possibly provide sufficient information to predict the stage of the cancer. A limi-
tation of the PSA test is that abnormally high PSA levels may not necessarily indicate the pres-
ence of prostate cancer, nor might normal PSA levels reflect the absence of prostate cancer.
Pathological staging can be determined following surgery and the examination of the removed
tumor tissue, and is likely to be more accurate than clinical staging, as it allows a direct insight
into the extent and nature of the disease. More information on the clinical tests is provided in
the next subsectionMedical Background.

Given the potential prognostic power of the clinical tests, a variety of prostate cancer staging
prediction systems have been developed. The ability to predict the pathological stage of a
patient with prostate cancer is important, as it enables clinicians to better determine the opti-
mal treatment and management strategies. This is to the patient’s considerable benefit, as
many of the therapeutic options can be associated with significant short- and long- term side-
effects. For example, radical prostatectomy (RP)—the surgical removal of the prostate gland—
offers the best chance for curing the disease when prostate cancer is localised, and the accurate
prediction of pathological stage is fundamental to determining which patients would benefit
most from this approach [1–3]. Currently, clinicians use nomograms to predict a prognostic
clinical outcome for prostate cancer, and these are based on statistical methods such as logistic
regression [4]. However, cancer staging continues to present significant challenges to the clini-
cal community.

The prostate cancer staging nomograms which are used to predict the pathological stage of
the cancer are based on results from the clinical tests. However, the accuracy of the nomograms
is debatable [5, 6]. Briganti et al. [5] argues that nomograms are accurate tools and that “Per-
sonalized medicine recognizes the need for adjustments, according to disease and host charac-
teristics. It is time to embrace the same attitude in other disciplines of medicine. This includes
urologic oncology where nomograms, regression-trees, lookup tables and neural networks rep-
resent the key tools capable of providing individualized predictions”. Dr Joniau in [5] argues
that the data used for devising the nomograms are subjective and, to a certain extent, biased by
institutional protocols on which patients are selected for a given treatment. Dr Joniau states
that one of the drawbacks of nomograms is that various nomograms have been devised for risk
estimation and it is difficult to determine which nomogram will provide the most reliable risk
estimation for a particular patient. He emphasises that although nomograms allow for more
accurate risk assessment, this risk estimation is a “snapshot in a risk continuum”. Although
this might allow personalized predictions, it also makes treatment decisions difficult [5].

Cancer prediction systems which consider various variables for the prediction of an out-
come require computational intelligent methods for efficient prediction outcomes [7].
Although computational intelligence approaches have been used to predict prostate cancer out-
comes, very few models for predicting the pathological stage of prostate cancer exist. In
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essence, classification models based on computational intelligence are utilised for prediction
tasks. Classification is a form of data analysis which extracts classifier models describing data
classes, and uses these models to predict categorical labels (classes) or numeric values [8].
When the classifier is used to predict a numeric value, as opposed to a class label, it is referred
to as a predictor. Classification and numeric prediction are both types of prediction problems
[8], and classification models are widely adopted to analyse patient data and extract a predic-
tion model in the medical setting.

Computational intelligence approaches, and in particular fuzzy-based approaches, are based
on mathematical models that are specially developed for dealing with the uncertainty and
imprecision which is typically found in the clinical data that are used for prognosis and the
diagnosis of diseases in patients. These characteristics make these algorithms a suitable plat-
form on which to base new strategies for diagnosing and staging prostate cancer. For example,
not everyone diagnosed with prostate cancer will exhibit abnormal results in all tests, as a con-
sequence of which, different test result combinations can lead to the same outcome.

The capacity of fuzzy, and especially neuro-fuzzy approaches, to predict the pathological
stage of prostate cancer has not been as widely evaluated as the more commonly used Artificial
Neural Network (ANN) and other approaches. However, fuzzy approaches have been applied
to other prostate cancer scenarios. Benechi et al. [9] have applied the Co-Active Neuro-Fuzzy
Inference System (CANFIS) to predict the presence of prostate cancer; Keles et al.[10] pro-
posed a neuro-fuzzy system for predicting whether an individual has cancer or Benign Pros-
tatic Hyperplasia (BPH, a benign enlargement of the prostate). Çinar [11] designed a classifier-
based expert system for the early diagnosis of prostate cancer, thereby aiding the decision-mak-
ing process and informing the need for a biopsy. Castanho et al. [12] developed a genetic-fuzzy
expert system which combines pre-operative serum PSA, clinical stage, and Gleason grade of a
biopsy to predict the pathological stage of prostate cancer (i.e. whether it was confined or not-
confined).

Saritas et al. [13] devised an ANN approach for the prognosis of cancer which can be used
to assist clinical decisions relating to the necessity for a biopsy. Shariat et al. [14] have per-
formed a critical review of prostate cancer prediction tools and concluded that predictive tools
can help during the complex decision-making processes, and that they can provide individual-
ised, evidence-based estimates of disease status in patients with prostate cancer.

Finally, Tsao et al. [15] developed an ANN model to predict prostate cancer pathological
staging in 299 patients prior to radical prostatectomy, and found that the ANNmodel was
superior at predicting Organ Confined Disease in prostate cancer than a Logistic Regression
model. Tsao et al. [15] also compared their ANNmodel with Partin Tables, and found that the
ANNmodel more accurately predicted the pathological stage of prostate cancer.

Herein we propose a neuro-fuzzy model for predicting the pathological stage of prostate
cancer. The system inputs comprise the following variables: the most common tumor pattern
(Primary Gleason pattern), the second most common pattern (Secondary Gleason pattern),
PSA levels, age at diagnosis, and clinical T stage. The neuro-fuzzy model automatically con-
structs fuzzy rules via a training process which is applied to existing and known patient records
and status. These rules are then used to predict the prostate cancer stage of patients in a valida-
tion set. The model makes use of the Adaptive Neuro-Fuzzy Inference System which is also
used to optimise the predictive performance. The outcome for each patient record is a numeri-
cal prediction of the ‘degree of belongingness’ of each patient in the Organ-Confined Disease
and Extra-Prostatic Disease classes.

Prostate Cancer Pathological Stage Prediction Using a Neuro-Fuzzy Model
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Medical Background
This section describes the variables used for diagnosis.

Prostate Specific Antigen (PSA). The Prostate Specific Antigen (PSA) test is a blood test
that measures the level of prostate-specific antigen in the bloodstream. Although having limita-
tions, the PSA test is currently the best method for identifying an increased risk of localised
prostate cancer. PSA values tend to rise with age, and the total PSA levels (ng/ml) recom-
mended by the Prostate Cancer Risk Management Programme are as follows [16]: 50–59 years,
PSA! 3.0; 60–69 years, PSA! 4.0; and 70 and over, PSA> 5.0. Abnormally high and raised
PSA levels may, but does not necessarily, indicate the presence of prostate cancer. The Euro-
pean Study of Screening for Prostate Cancer revealed that screening significantly reduces death
from prostate cancer, and that a man who undergoes PSA testing will have his risk of dying
from prostate cancer reduced by 29% [17, 18], and [19]. However, it should also be noted that
a normal PSA test does not necessarily exclude the presence of prostate cancer.

Primary and Secondary Gleason Patterns. A tissue sample (biopsy) is used to detect the
presence of cancer in the prostate and to evaluate its aggressiveness. The results from a prostate
biopsy are usually provided in the form of the Gleason grade score. For each biopsy sample,
pathologists examine the most common tumor pattern (Primary Gleason pattern) and the sec-
ond most common pattern (Secondary Gleason pattern), with each pattern being given a grade
of 3 to 5. These grades are then combined to create the Gleason score (a number ranging from
6 to 10) which is used to describe how abnormal the glandular architecture appears under a
microscope. For example, if the most common tumor pattern is grade 3, and the next most
common tumor pattern is grade 4, the Gleason score is 3 + 4, or 7. A score of 6 is regarded as
low risk disease, as it poses little danger of becoming aggressive; and a score of 3 + 4 = 7 indi-
cates intermediate risk. Because the first number represents the majority of abnormal tissue in
the biopsy sample, a 3 + 4 is considered less aggressive than a 4 + 3. Scores of 4 + 3 = 7, or 8 to
10 indicate that the glandular architecture is increasingly more abnormal and associated with
high risk disease which is likely to be aggressive.

Clinical and Pathological Stages. The clinical stage is an estimate of the prostate cancer
stage, and this is based on the results of the digital rectal examination (DRE). The pathological
stage can be determined if a patient has had surgery and hence is based on the examination of
the removed tissue. Pathological staging is likely to be more accurate than clinical staging, as it
can provide a direct insight into the extent of the disease. At the clinical stage, there are four
categories for describing the local extent of a prostate tumor (T1 to T4). Clinical and pathologi-
cal staging use the same categories, except that the T1 category is not used for pathological
staging. In summary, stages T1 and T2 describe a cancer that is probably organ-confined, T3
describes cancer which is beginning to spread outside the prostate, and T4 describes a cancer
that has likely begun to spread to nearby organs. Category T1 is when the tumor cannot be felt
during the DRE or be seen with imaging such as transrectal ultrasound (TRUS). Category T1
has three subcategories: T1a cancer is found incidentally during a transurethral resection of the
prostate (TURP) which will have been performed for the treatment of Benign Prostatic Hyper-
plasia, and the cancer is present in no more than 5% of the tissue removed; T1b cancer is found
during a TURP, but is present in more than 5% of the tissue removed, and T1c cancer is found
in a needle biopsy which has been performed due to an elevated PSA level. Category T2 is
when the tumor can be felt during a DRE or seen with imaging, but still appears to be confined
to the prostate gland. Category T2 has three subcategories: T2a cancer is in one half or less of
only one side (left or right) of the prostate; T2b cancer is in more than half of only one side (left
or right) of the prostate; and T2c cancer is in both sides of the prostate. Category T3 has two
subcategories: T3a cancer extends outside the prostate, but not to the seminal vesicles; and T3b

Prostate Cancer Pathological Stage Prediction Using a Neuro-Fuzzy Model
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cancer has spread to the seminal vesicles. Finally, category T4 cancer has grown into tissues
next to the prostate (other than the seminal vesicles), such as the urethral sphincter, the rectum,
the bladder, and/or the wall of the pelvis.

The TNM staging is the most widely used system for prostate cancer staging and aims to
determine the extent of:

• primary tumor (T stage),

• the absence or presence of regional lymph node involvement (N stage), and

• the absence or presence of distant metastases (M stage)

The TNM system has been accepted by the Union for International Cancer Control (UICC)
and the American Joint Committee on Cancer (AJCC). Most medical facilities use the TNM
system as their main method for cancer reporting. The clinical TNM and pathological TNM
are provided in Tables 1 and 2 respectively. Once the T, N, and M are determined, a stage of I,
II, III, or IV is assigned, with stage I being early and stage IV being advanced disease. Upon
determining the T, N, and M stages, a prognosis can be made about the anatomic stage of can-
cer using the groupings shown in Table 3 where a stage of I, II, III, or IV is assigned to a patient,
with stage I being early and stage IV being advanced disease [20]. Stages I, II, are organ con-
fined cancer stages, whereas Stages III and IV are extra-prostatic stages. TNM systems have
gone through several refinements in order to “improve the uniformity of patient evaluation
and to maintain a clinically relevant evaluation” [20]. In the most recent American Joint

Table 1. Definitions of clinical TNM according AJCC 2010 [21].

Primary tumor (pT)

TX Primary tumor cannot be assessed

T0 No evidence of primary tumor

Clinically inapparent tumor neither palpable nor visible by imaging (T1)

T1a Tumor incidental histologic finding in ! 5% of tissue resected

T1b Tumor incidental histologic finding in > 5% of tissue resected

T1c Tumor identified by needle biopsy (e.g. because of elevated PSA)

Tumor confined within prostate (T2)

T2a Tumor involves one-half of one lobe or less

T2b Tumor involves more than one-half of one lobe but not both lobes

T2c Tumor involves both lobes

Tumor extends through the prostate capsule (T3)

T3a Extracapsular extension (unilateral or bilateral)

T3b Tumor invades seminal vesicle(s)

T4 Tumor is fixed or invades adjacent structures other than seminal vesicles such as external
sphincter, rectum, bladder, levator muscles, and/or pelvic wall

Regional lymph nodes (pN)

NX Regional lymph nodes were not assessed

N0 No regional lymph node metastasis

N1 Metastasis in regional lymph node(s)

Distant metastasis (pM)

M0 No distant metastasis

M1 Distant metastasis

M1a Non-regional lymph node(s)

M1b Bone(s)

M1c Other site(s) with or without bone disease

doi:10.1371/journal.pone.0155856.t001
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Committee on Cancer (AJCC) [21], the Gleason score and PSA have been incorporated in the
cancer stage/prognostic groups 3.

Methods I—Neuro-Fuzzy Model
Fuzzy logic is an extension of multivalued logic that deals with approximate, rather than fixed
and exact reasoning. Fixed reasoning is the traditional binary logic where variables may take
on true or false values. Fuzzy logic starts with the concept of a fuzzy set [22], which is a set
without a crisp, clearly defined boundary. A fuzzy set can contain elements with only a partial
degree of membership, and hence allows for degrees of truth, making fuzzy logic applicable to
medical scenarios which are considered to involve complexity, uncertainty and vagueness.

Table 2. Pathological TNM according AJCC 2010 [21]. There is no pT1 classification.

Organ confined (pT2)

pT2a Unilateral, one-half of one side or less

pT2b Unilateral, involving more than one-half of one side, but not both sides

pT2c Bilateral disease

Extraprostatic extension (pT3)

pT3a Extraprostatic extension or microscopic bladder neck invasion

pT3b Seminal vesicle invasion

pT4 Invasion of rectum levator muscles, and/or pelvic wall

Regional lymph nodes (pN)

pNX Regional lymph nodes not sampled

pN0 No positive regional lymph nodes

pN1 Metastasis in regional lymph node(s)

Distant metastasis (pM)

pM1 Distant metastasis

pM1a Non-regional lymph node(s)

pM1b Bone(s)

pM1c Other site(s) with or without bone disease

doi:10.1371/journal.pone.0155856.t002

Table 3. Anatomic stage/prognostic groups (from AJCC 2010) [21].

Group T N M PSA Gleason score (GS)

I T1a–c N0 M0 PSA < 10 GS ! 6

T2a N0 M0 PSA < 10 GS ! 6

T1–2a N0 M0 PSA X GS X

IIA T1a–c N0 M0 PSA < 20 GS 7

T1a–c N0 M0 PSA " 10 < 20 GS ! 6

T2a N0 M0 PSA < 20 GS ! 7

T2b N0 M0 PSA < 20 GS ! 7

T2b N0 M0 PSA X GS X

IIB T2c N0 M0 Any PSA Any GS

T1–2 N0 M0 PSA " 20 Any GS

T1–2 N0 M0 Any PSA GS " 8

III T3a–b N0 M0 Any PSA Any GS

IV T4 N0 M0 Any PSA Any GS

Any T N1 M0 Any PSA Any GS

Any T Any N M1 Any PSA Any GS

doi:10.1371/journal.pone.0155856.t003
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Fuzzy logic has been combined with various soft computing methodologies, including neuro-
computing, thereby leading to powerful neuro-fuzzy systems.

The neuro-fuzzy system proposed herein (a combination of fuzzy logic-based algorithms
that are illustrated in Fig 1) predicts the pathological stage of cancer (i.e. diagnosis outcome),
using data that are obtained from pre-operative clinical tests that are conducted at the progno-
sis stage. As with the TNM system, our proposed neuro-fuzzy system predicts whether a
patient has organ-confined disease (OCD, pathological stage pT2) or extra-prostatic disease
(ED, pathological stage> pT2).

Fig 1. Neuro-Fuzzy Prostate Cancer Pathological Stage Predictor.

doi:10.1371/journal.pone.0155856.g001

Prostate Cancer Pathological Stage Prediction Using a Neuro-Fuzzy Model

PLOS ONE | DOI:10.1371/journal.pone.0155856 June 3, 2016 7 / 27



Improving the Diagnostic Yield of Prostate Cancer – Masood A. Khan 
________________________________________ 

 

96 | P a g e  
 

 

 

 

 

 

 

 
 

The clinical data used for pathological cancer stage prediction are typically affected by
imprecision, primarily due to the fact that not all patients exhibit abnormal results in all clinical
tests. This poses a problem when trying to predict the progression of the cancer and therefore
deciding on the best treatment strategy for patients. Hence, fuzzy logic is a suitable approach
for this type of clinical prediction because it can be used to model human reasoning—in real
scenarios the clinician would consider the data and give an estimation rather than a definite
answer. The neuro-fuzzy system will make a prediction about a particular patient and return a
value representing the ‘degree of membership’ of the patient’s cancer in the extra-prostatic set.
The proposed framework is illustrated in Fig 1 and described in the subsections that follow.

The neuro-fuzzy model comprises two main stages: learning and prediction. At the learning
stage, the model trains itself using patient records for which the pathological stage is known,
and at the prediction stage the model predicts the pathological stage using the knowledge which
has been obtained during the learning stage. The following subsections describe the processes
that are involved during the learning and prediction stages.

System Inputs
At the learning stage, the neuro-fuzzy predictor learns (i.e. trains itself) using existing patient
record data in order to create the knowledge which will be used (during the prediction stage) to
make predictions on new, and previously unseen, data. During the learning stage, the system
takes as input data relating to each patient’s clinical features (i.e. age at diagnosis, PSA, biopsy
Primary Gleason pattern, biopsy Secondary Gleason pattern, and clinical T stage) and known
pathological stage results (i.e. known outputs) that have been obtained during diagnosis. The
system represents the inputs as a matrix A of size n ×m, where n is the total number of patient
records, andm is the total number of clinical features (i.e. system inputs,m = 5). The system
represents the targets in the form of a n × 1 vector T, where each cell ti holds the pathological T
stage (pT) value for each patient record.

At the prediction stage, the system only requires as input an 1 ×m vector holding the results
of a patient’s clinical features (i.e. age at diagnosis, PSA, biopsy Primary Gleason pattern,
biopsy Secondary Gleason pattern, and clinical T stage), and the system will return a value rep-
resenting the likelihood of the patient having Extra-Prostatic Disease (i.e. pathological stage
results).

Data Normalisation
The age, PSA level, clinical T stage and pathological stage (pT) variables must be grouped
before they are input into the fuzzy predictor. The normalisation of the values is described in
the Results Section. The normalisation process is performed in order to ensure a balanced dis-
tribution among the data and to remove any outliers from the data which could affect the per-
formance of the predictor algorithm.

Fuzzy C-Means
Formally, let A = [v1, v2, v3, . . . , vn] be the [patient record cases]-by-[clinical features] matrix
and let 2! c< n be an integer, where c is the number of clusters (i.e. classes) and n is the total
number of patient record cases. In this particular prostate cancer application, c = 2 since we
have two clusters: Organ-Confined Disease (OCD) and Extra-Prostatic Disease (ED). The
Fuzzy C-Means (FCM) algorithm returns a list of cluster centers X = x1, . . . , xc and a member-
ship matrix U = μi,k 2 [0, 1]; i = 1, . . . , n; k = 1, . . . , c, where each element μik holds the total
membership of a data point vk (i.e. patient record) belonging to cluster ci. FCM updates the
centers of clusters Organ-Confined Disease and Extra-Prostatic Disease, and the membership

Prostate Cancer Pathological Stage Prediction Using a Neuro-Fuzzy Model
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grades for each data point, representing a patient record, by iteratively moving the cluster cen-
ters to the correct location within a data set. Essentially, this iteration process is based on mini-
mizing an objective function which represents the distance from any given data point to a
cluster center weighted by that data point’s membership grade. The objective function for
FCM is a generalisation of Eq (1)

JðU ; c1; . . . ; ccÞ ¼
Xc

i¼1

XN

k¼1

mm
ikjjvk $ xijj

2; 1 % m % 1 ð1Þ

where μik represents the degree of membership of patient record vi in the ith cluster; xi is the
cluster centre of fuzzy group i; || & || is the Euclidean distance between ith cluster and jth data
point; andm 2 [1,1] is a weighting exponent. The necessary conditions for function (1) to
reach its minimum are shown in functions (2) and (3).

ci ¼
PN

k¼1 m
m
ikvkPN

k¼1 m
m
i;k

; ð2Þ

mik ¼
1Pc
k¼1

jjvk $ xijj
jjvk $ xijj

! "2=ðm$1Þ

; ð3Þ

Sugeno-Yusukawa Method
A collection of Takagi-Sugeno-Kang (TSK) rules [23], one for each cluster, for determining the
membership of a patient record to a particular cluster are generated. This Sugeno-type Fuzzy
Inference System (FIS) is generated using the FCM clustering algorithm. The number of clus-
ters derived from the clustering process determines the number of rules and membership func-
tions in the generated FIS. The FIS structure maps inputs through input membership functions
and associated parameters, and then through output membership functions and associated
parameters to outputs. The output FIS is passed into the Adaptive-Neuro Fuzzy Inference Sys-
tem (ANFIS) model [24] which then tunes the FIS parameters using the input/output training
data in order to optimise the prediction model.

Adaptive-Neuro Fuzzy Inference System
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [24] combines Artificial Neural Net-
works and Fuzzy Logic algorithms. ANFIS creates a fuzzy inference system with membership
functions that are generated by adaptive backpropagation learning. The architecture of a Type-
3 ANFIS, which is the ANFIS used in the proposed model, is explained in [24]. The following
is a brief description of ANFIS and is based on [25]. ANFIS consists of five layers. In layer 1,
each node generates a membership grade of a linguistic variable (in the prostate cancer sce-
nario, linguistic variables are the staging classes, i.e. Organ-Confined Disease and Extra-Pros-
tatic Disease) using a membership function. The Gaussian membership function is used within
the neuro-fuzzy model. Layer 2 calculates the firing strength of each rule, and layer 3 calculates
the ratio of each rule’s firing strength to the total of all firing strengths. At layer 4, the contribu-
tion of each rule toward the overall output is computed, and, finally, layer 5 calculates the over-
all output as the summation of the contribution from each rule. During the learning process,
ANFIS adapts the parameters associated with the membership functions and tunes them using
a gradient vector which, given a set of parameters, measures the performance of the system on
the basis of how well it models input and output data. ANFIS has been used in conjunction
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with FCM, and thus the FIS returned from FCM clustering is input into the ANFIS, and the
FIS parameters are tuned using the input/output training data in order to optimise the predic-
tion model.

The training process stops whenever the designated epoch number is reached, or the error
goal is achieved. The performance of ANFIS is evaluated using the array of root mean square
errors (difference between the FIS output and the training data output) at each epoch. Thus,
the membership degree of a patient record into a particular cluster (e.g. Extra-Prostatic Dis-
ease), determines how close a prediction is to the next cluster (e.g. Organ-Confined Disease).
In simple terms, let ca and cb be cluster Extra-Prostatic Disease and cluster Organ-Confined
Disease respectively, a patient record vk can belong to cluster ca such that vk 2 ca, or it can
belong in the intersection area between two clusters such that vk 2 ca ^ vk 2 cb.

Neuro-Fuzzy Predictor
The neuro-fuzzy predictor takes as input a vector Xi of size 1 ×m, wherem is the total number
of clinical features, hence 1 × 5 and the patient’s record is clustered as Organ-Confined Disease
or Extra-Prostatic Disease, via the FCM clustering algorithm [26]. The predetermined Takagi-
Sugeno-Kang (TSK) rules [23] are then applied in order to evaluate the degree of membership
of the patient’s record to a particular cluster. The output is a numerical value representing the
likelihood of a patient belonging to the Extra-Prostatic Disease cluster. This value is particu-
larly useful when deciding on the suitable treatment to be offered to the patient. For example,
treatment might be different if a patient is predicted as having Organ-Confined Disease with a
value which leans more toward Extra-Prostatic Disease.

Methods II—Other Computational Intelligence Approaches
Artificial Neural Network Classifier
An Artificial Neural Network (ANN) can be trained to recognise patterns in data and this is a
suitable approach for solving classification problems involving two or more classes. For the
prostate cancer staging prediction problem, the ANN is trained to recognise the patients which
have Organ-Confined Disease or Extra-Prostatic Disease. The pattern recognition neural net-
work used was a two-layer feedforward network, in which the first layer has a connection from
the network input and is connected to the output layer which produces the network’s output.
A log-sigmoid transfer function was embedded in the hidden layer, and a softmax transfer func-
tion was embedded in the output layer.

A neuron has R number of inputs where R is the number of elements in an input vector. Let
an input vector X be a patient record Xi belonging to a class Organ-Confined Disease or Extra-
Prostatic Disease. Each input Xi is weighted with an appropriate weight w. The sum of the
weighted inputs and the bias forms the input to the transfer function f. Neurons can use a dif-
ferentiable transfer function f to generate their output. The Log-Sigmoid function which gener-
ates outputs between 0 and 1 as the neuron’s net input goes from negative to positive infinity
was used. The Softmax neural transfer function was used to calculate a layer’s output from its
net input. Softmax functions convert a raw value into a posterior probability and this provides
a measure of certainty. The number of hidden neurons is set to 5 in order to match the number
of inputs. The number of output neurons is set to 2, which is equal to the number of elements
in the target vector (the number of classes, Organ-Confined Disease and Extra-Prostatic Dis-
ease). The maximum number of epochs (repetitions) was set to ! = 200 and in order to avoid
over-fitting, training stops when the maximum number of epochs is reached. The ANN was
trained using the Scaled Conjugate Gradient (SCG) for Fast Supervised Learning which is suit-
able for large-scale problems [27]. The process of training the ANN involves tuning the values
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of the weights and biases of the network in order to optimise network performance which is
measured by the mean squared error network function.

Naive Bayes Classifier
Although the Naive Bayes classifier is designed for use when predictors within each class are
independent of one another within each class, it is known to work well even when that inde-
pendence assumption is not valid. The Naive Bayes classifies data in two steps. The first step is
the training (i.e. learning) step which uses the training data, which are patient cases and their
corresponding pathological cancer stage (i.e. Organ-Confined Disease or Extra-Prostatic Dis-
ease), to estimate the parameters of a probability distribution, assuming predictors are condi-
tionally independent given the class. The second step is the prediction step, during which the
classifier predicts any unseen test data and computes the posterior probability of that sample
belonging to each class. It subsequently classifies the test data according to the largest posterior
probability. The following Naive Bayes description is based on that presented by Han et. al [8].

Let P(ci|X) be the posterior probability that a patient record Xi will belong to a class ci (class
can be Organ-Confined Disease or Extra-Prostatic Disease), given the attributes of vector Xi.
Let P(ci) be the prior probability that a patient’s record will fall in a given class regardless of the
record’s characteristics; and P(X) is the prior probability of record X, and hence the probability
of the attribute values of each record. The Naive Bayes classifier predicts that a record Xi

belongs to the class ci having the highest posterior probability, conditioned on Xi if and only if
P(ci|X)> P(cj|X) for 1! j!m, j 6¼ i, maximising P(ci|X). The class ci for which P(ci|X) is maxi-
mised is called themaximum posteriori hypothesis and estimated using formula (4)

PðcijXÞ ¼
PðXjciÞPðciÞ

PðXÞ
: ð4Þ

To predict the class label of a given record Xi, P(X|ci)P(ci) is evaluated for each class ci. The
classifier predicts that the class label of record Xi is the class ci if and only if

PðXjciÞPðciÞ > PðXjcjÞPðcjÞ ð5Þ

for 1! j!m, j 6¼ i.
The Naive Bayes outcome is that each patient’s record, which is represented as a vector Xi, is

mapped to exactly one class ci, where ci = 1, . . . , n where n is the total number of classes, i.e.
n = 2. The Naive Bayes classification function can be tuned on the basis of an assumption
regarding the distribution of the data. Experiments were conducted using two methods of den-
sity estimation: the first one assumes normality and models each conditional distribution with
a single Gaussian; and the second uses nonparametric kernel density estimation. Hence, the
Naive Bayes classifier was tuned using two functions: a Gaussian distribution (GD) and the
Kernel Density Estimation (KDE). The Gaussian distribution assumes that the variables are
conditionally independent given the class label and thereby exhibit a multivariate normal dis-
tribution, whereas kernel density estimation does not assume a normal distribution and hence
it is a non-parametric technique.

Support Vector Machine Classifier
The Support Vector Machine (SVM) classification method uses nonlinear mapping to trans-
form the original training data (i.e. the patient dataset) into a higher dimensional feature space.
It then determines the best separating hyperplane, which serves as a boundary separating the
data from two classes. The best separating hyperplane for a Support Vector Machine means
the one with the largest margin between the two classes. The bigger the margin, the better the
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generalisation error of the linear classifier is defined by the separating hyperplane. Support vec-
tors are the points that reside on the canonical hyperplanes and are the elements of the training
set that would change the position of the dividing hyper plane if removed. As with all super-
vised learning models, a support vector machine is initially trained on existing data records,
after which the trained machine is used to classify (predict) new data. Various Support Vector
Machine kernel functions can be utilised to obtain satisfactory predictive accuracy.

The Support Vector Machine finds the MaximumMarginal Hyperplane (MMH) and the
support vectors using a Lagrangian formulation and solving the equation using the Karush-
Kuhn-Tucker (TTK) conditions, details of which can be found in [28]. Once the Support Vec-
tor Machine has been trained, the classification of new unseen patient records is based on the
Lagrangian formulation. For many ‘real-world’ practical problems, using the linear boundary
to separate the classes may not reach an optimal separation of hyperplanes. However, Support
Vector Machine kernel functions which are capable of performing linear and nonlinear hyper-
plane separation exist. The outcome of applying the Support Vector Machine for prediction is
that each patient record, represented as a vector Xi, is mapped to exactly one class label yi,
where yi = ±1, such that (X1,y1), (X2, y2), . . .(Xm, ym), and hence yi can take one of two values,
either −1 or +1 corresponding to the classes Organ-Confined Disease and Extra-Prostatic Dis-
ease. Further details on the Support Vector Machine can be found in [29], and [30].

Results I: Dataset Analysis
Dataset Description
The Cancer Genome Atlas (TCGA) Research Network provides datasets for cancer patients
which are made open to the public through the Data Coordinating Center and the TCGA Data
Portal. The prostate cancer dataset obtained from the TCGA contains records collected from
399 patients diagnosed with a type of Prostate Adenocarcinoma Acinar, during the years 2000–
2013. All patients had prostate needle core biopsies for diagnosis before they underwent prosta-
tectomy, and all patients had undergone a prostatectomy. The variables selected from the data-
set were those that are used for performing prostate cancer stage predictions by clinicians, and
which are also required for undertaking staging prediction using the AJCC pTNMNomogram
[21]—namely, biopsy Primary and Secondary Gleason patterns, pre-treatment PSA level,
patient’s age at diagnosis, clinical T stage, and pathological T stage.

The age and PSA variables were categorically divided into groups that were chosen in order
to ensure a balanced distribution between the data, as described later in this section. Table 4
provides statistics about the variables before they were categorised.

The Primary and Secondary Gleason pattern variables (see Table 5) did not require any
modification, as they are already categorically divided into three groups.

Table 4. Dataset Statistics.

Statistics of variables before categorisation

Minimum Maximum Mean Standard deviation

Primary Gleason pattern 3 5 3.54 0.60

Secondary Gleason pattern 3 5 3.74 0.69

PSA level (ng/mL) 0.70 107.00 9.84 11.25

Age at Diagnosis 41.10 78.00 59.88 6.92

Clinical T 1.00 5.00 2.19 1.45

Pathological T stage 1.00 2.00 1.55 0.50

doi:10.1371/journal.pone.0155856.t004
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The variables of pre-treatment total serum PSA levels and age were categorically divided
into groups, as described in Tables 6 and 7. Table 6 shows how the PSA values have been
grouped, the number of cases in each group (i.e. count), and their percentage. The histogram
in Fig 2 illustrates the frequency distributions of the grouped PSA values.

Table 7 displays how the age values have been grouped, the number of patient cases in each
group (i.e. count), and the percentage of cases. Although it is very unlikely for a patient to have
prostate cancer under the age of 35, there is still a possibility, and for this reason, groupings 1
to 4 have been formed. However, none of the patient cases fall in this category in the particular
dataset which was used in the current study. This does not affect the performance of the system

Table 5. Primary and Secondary Gleason pattern groups.

Primary Gleason pattern groups Frequency count Proportion of patients(%)

3 205 51.4

4 173 43.4

5 21 5.3

Total 399 100.0

Secondary Gleason pattern groups Frequency count Proportion of patients(%)

3 159 39.8

4 185 46.4

5 55 13.8

Total 399 100.0

doi:10.1371/journal.pone.0155856.t005

Table 6. PSA groups.

PSA group PSA range Frequency count Proportion of patients (%)

1 0–2.5 ng/mL 16 4.01

2 2.6–4.0 ng/mL 33 8.27

3 4.1–6.0 ng/mL 124 31.08

4 6.1–9.9 ng/mL 124 31.08

5 10–19 ng/mL 67 16.79

6 ! 20 ng/mL 35 8.77

doi:10.1371/journal.pone.0155856.t006

Table 7. Age groups.

Age group Age range Frequency count Proportion of patients (%)

1 < 25 0 0

2 25–29 0 0

3 30–34 0 0

4 35–39 0 0

5 40–44 5 1.25

6 45–49 22 5.51

7 50–54 68 17.04

8 55–59 97 24.31

9 60–64 100 25.06

10 65–69 76 19.05

11 > 70 31 7.77

doi:10.1371/journal.pone.0155856.t007
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in any way, and these groupings were included in order to create a comprehensive prediction
system.

The clinical T and pathological T stage variable values were grouped as shown in Tables 8
and 9 respectively. The clinical T stage variable values were grouped in such a way so as to
match the groups that are presented on the TNM nomogram. Group 1 includes T stages T1a-c,
which reflects the fact that tumor is present in one or both lobes by needle biopsy, but is not
identifiable on the basis of palpation or is reliably visible by imaging. Group 2 includes clinical
T stages in which the cancer is unilateral, meaning that it is located on one-half of one side or
less; group 3 is unilateral and involves more than one-half of one side, but not both sides;
group 4 is when the cancer is in the form of bilateral disease which is located on both sides of
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Fig 2. Histogram of grouped PSA values.

doi:10.1371/journal.pone.0155856.g002

Table 8. Clinical T stage groups.

Clinical T group Clinical T stage Frequency count Proportion of patients (%)

1 T1(a-c) 204 51.13

2 T2a 53 13.28

3 T2b 53 13.28

4 T2c 42 10.53

5 T3a 29 7.27

5 T3b 16 4.01

5 T4 2 0.50

Total 399 100.00

doi:10.1371/journal.pone.0155856.t008
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the prostate; and group 5 is an Extra-Prostatic Disease, meaning that the cancer has started to
spread (or has spread) to the bladder neck, rectum, and/or nearby organs.

The independent variable (i.e. predictor variable) of the dataset is the pathological T (pT)
stage, whose values have been categorised as 1 for Organ-Confined Disease (OCD) and 2 for
Extra-Prostatic Disease (ED). There is no pathologic pT1 classification, and pathological T
stage values in the pT2 range indicate an Organ-Confined Disease and pathological T stage val-
ues in the range of 3–4 indicate an Extra-Prostatic Disease.

Given that the aim of the model was to predict whether a patient has organ-confined disease
(OCD, TNM pathological stage pT2) or extra-prostatic disease (ED, TNM pathological stage
> pT2), and not the likelihood of cancer-related death (DOD, dead of disease), the pT3 and
pT4 groupings were consolidated. T3a, T3b and T4 disease are all considered as being ‘high-
risk disease’ and strongly considered for active treatment, whereas those with lower categories
of disease might instead be considered for active surveillance. Table 9 includes the groupings of
the pathological T stage values.

Tables 10 and 11 present a sample of the data before and after data normalisation (i.e. cate-
gorically divided into groups), respectively. As previously mentioned, the values of Primary
and Secondary Gleason patterns did not require any transformation, as they were already
grouped.

Age at Diagnosis and its Association with PSA Values
Evidence indicates that age could be a contributing factor to increased PSA levels [16], and for
this reason it is informative to investigate whether there are any associations between PSA lev-
els and age in the dataset. The histograms illustrating the frequency distributions of the
grouped PSA levels and age are illustrated in Figs 2 and 3 respectively. The mean age at diagno-
sis of patients was 59.88 ± 6.92, and the mean pre-treatment PSA level was 9.84 ± 11.25.
Table 12 shows the mean and standard deviation PSA values of each age group.

Table 9. Pathological T (pT) stage groups.

pT group Pathological T (pT) stage Frequency count Proportion of patients (%) OCD or ED

1 T2(unknown if a or b) 1 0.25 OCD

1 T2a 14 3.51 OCD

1 T2b 47 11.78 OCD

1 T2c 117 29.32 OCD

2 T3a 142 35.59 ED

2 T3b 72 18.05 ED

2 T4 6 1.50 ED

Total 399 100.00

doi:10.1371/journal.pone.0155856.t009

Table 10. Before data normalisation.

Case No. Primary Gleason Pattern Secondary Gleason Pattern PSA Age Clinical T stage Pathological (pT) stage

1 3 3 1.00 51.6 T2b T2a

2 3 3 1.70 77.0 T2b T2c

3 3 3 2.05 55.2 T2a pT2b

4 3 3 2.09 61.1 T1c pT2b

5 3 3 2.20 57.0 T1c T3a

n . . . . . . . . . . . . . . . . . .

doi:10.1371/journal.pone.0155856.t010

Prostate Cancer Pathological Stage Prediction Using a Neuro-Fuzzy Model

PLOS ONE | DOI:10.1371/journal.pone.0155856 June 3, 2016 15 / 27



Improving the Diagnostic Yield of Prostate Cancer – Masood A. Khan 
________________________________________ 

 

105 | P a g e  
 

 

 

 

 

 

 
 

 

Table 11. After data normalisation.

Case No. Primary Gleason Pattern Secondary Gleason Pattern PSA group Age group Clinical T group Pathological (pT) group

1 3 3 1 7 3 1

2 3 3 1 11 3 1

3 3 3 1 8 2 1

4 3 3 1 9 1 1

5 3 3 1 8 1 2

n . . . . . . . . . . . . . . . . . .

doi:10.1371/journal.pone.0155856.t011
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Fig 3. Histogram of grouped age values.

doi:10.1371/journal.pone.0155856.g003

Table 12. PSA levels categorised by age group.

Age group Patient count PSA mean Standard deviation of PSA values

5 5 4.40 1.14

6 22 4.14 0.89

7 68 3.54 1.23

8 97 3.75 1.20

9 100 3.74 1.14

10 76 3.75 1.21

11 31 3.81 1.56

Total 399 3.75 1.21

doi:10.1371/journal.pone.0155856.t012
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To investigate if there is a statistically significant association between age and PSA levels, a
Spearman’s rho correlation test was performed. The results revealed no significant associations
among age and PSA levels (r = 0.003, p = 0.948), at least over the age ranges (40 to 78) that
were included in the dataset which was used. A one-way ANOVA was also conducted to test
for statistically significant differences between the PSA values of the various age groups. The
test indicated that there were no statistically significant differences among any of the groups,
F(6,392) = 0.956, p = 0.455, p> 0.05). Since age and PSA values are not associated, then both
variables were used as inputs by the prediction system.

Analysis of the Clinical T Stage Values
The clinical T stage values are the results of a Digital Rectal Examination (DRE) test. Table 8
shows the total number of patients for each clinical T stage. As shown in Table 8, the clinical
stage values of T1 (n = 204, 51.13%), T2a (n = 53, 13.28%), T2b (n = 53, 13.28%), T2c (n = 42,
10.53%), denote an Organ-Confined Disease cancer stage, and the T3a (n = 29, 7.27%), T3b
(n = 16, 4.01%), T4 (n = 2, 0.50%) denote an Extra-Prostatic Disease cancer stage. At a clinical
stage, a total of 352 patients (88.22%) exhibited Organ-Confined Disease, and a total of 47
patients exhibited Extra-Prostatic Disease (11.78%). Clearly, the results of the clinical T test
alone is not as reliable as the pathological T (pT) test for determining the stage of prostate can-
cer. This is evident since, at the pathological stage (i.e. diagnosis stage), out of the 399 patients,
a total of 44.86% (n = 179) had Organ-Confined Disease, and 55.14% (n = 220) had Extra-Pros-
tatic Disease, meaning that 43.36% (n = 173) patients with Extra-Prostatic Disease were misdi-
agnosed as having Organ-Confined Disease. DRE is not always a reliable test, since the location
of the tumor within the prostate might influence the capacity to feel it.

Analysis of the Pathological T (pT) Stage Values
Table 9 shows the total number of patients for each pathological T stage. As shown in Table 9,
the pathological T stage values of T2a-c denote an Organ-Confined Disease cancer stage, and
the pathological T stage values of T3a,b,T4 denote an Extra-Prostatic Disease cancer stage. Of
the 399 patients, a total of 44.86% (n = 179) exhibited Organ-Confined Disease, and 55.14%
(n = 220) exhibited Extra-Prostatic Disease.

Table 13 shows the relationship between the prediction variables and prostate cancer with
Organ-Confined Disease and Extra-Prostatic Disease. A one-way ANOVA test revealed signifi-
cant differences between the means of the two groups for the biopsy Primary Gleason pattern
(F(1,397) = 7.87, p = 0.005, p< 0.05), biopsy Secondary Gleason pattern (F(1,397) = 5.83,
p = 0.016, p< 0.05), and clinical T stage (F(1,397) = 5.062, p = 0.025, p< 0.05) variables. These

Table 13. Mean and Standard deviation values for Organ-Confined Disease (OCD) and Extra-Prostatic
Disease (ED) groups diagnosed at the Pathological stage.

Groups

Variables OCD ED p

n = 179 n = 220

Primary Gleason pattern 3.45 ± 0.52 3.61 ± 0.64 0.005

Secondary Gleason pattern 3.65 ± 0.64 3.81 ± 0.71 0.016

Pre-treatment PSA level (ng/mL) 3.76 ± 1.26 3.74 ± 1.17 0.848

Age at diagnosis (groups) 8.49 ± 1.37 8.60 ± 1.40 0.434

Clinical T stage 2.01 ± 1.36 2.33 ± 1.51 0.025

doi:10.1371/journal.pone.0155856.t013
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results were expected, since Gleason 1 grading of the biopsy determines the aggressiveness of
the cancer, and hence patients with Extra-Prostatic Disease are more likely to have a higher
value in this category than patients with Organ-Confined Disease. The same applies for PSA
levels, as these tend to increase with progressive and more extensive disease. In addition, the
clinical T stage values determine the outcome of a physical examination and the higher the
number of the clinical T stage value, the more the disease has progressed. Interestingly, in this
particular dataset, no statistically significant differences among the means values of the pre-
treatment PSA levels (F(1,397) = 0.037, p = 0.848, p> 0.05) and age (F(1,397) = 0.614,
p = 0.434, p> 0.05) variables were apparent. Although the mean age of patients with Extra-
Prostatic Disease was higher than that of patients with Organ-Confined Disease, this difference
is not statistically significant. Also, there were no statistically significant differences among the
mean PSA values of patients with Extra-Prostatic Disease and Organ-Confined Disease. In
summary, the mean values of all but the PSA and age variables were significantly higher in the
Extra-Prostatic Disease than in the Organ-Confined Disease groups.

Results II: Pathological Stage Prediction Using the Neuro-Fuzzy
Model
Experiment Methodology
Having analysed the dataset and, as appropriate, grouped the data, the next step is to explain
how the transformed data will be input into the neuro-fuzzy model and the other models
which will be used for the comparison process. In particular, the performance of the neuro-
fuzzy model is compared to other computational intelligence based approaches, namely the
Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, and the Naive Bayes clas-
sifier. All of these classifiers are suitable for solving prediction problems, as is the American
Joint Committee on Cancer (AJCC) pTNMNomogram [21] which is a statistical approach
that is commonly adopted by clinicians for predicting prostate cancer staging. For predicting
the pathological stage of cancer, the AJCC pTNMNomogram uses all variables except the age
at diagnosis variable. These variables are found in Table 13.

System Inputs
All classification models take as input a matrix A of size n ×m, where n is the total number of
patient records andm is the total number of clinical features, hence 399 × 5; and a n × 1 vector
T, where n = 399 and each cell ti holds the pathological T (pT) stage value for each patient
record. Table 11 shows the first five records of matrix A after normalising the input values, in
which the first 5 columns are the inputs and the last column pathological T (pT) stage holds the
target output values. The dataset (n = 399) was separated into two subsets, a training subset and
a validation subset, and the same subsets were used across the models undergoing evaluation in
order to ensure a fair comparative evaluation. The training subset comprised 266 (66.6%) rec-
ords, which were used for training each model. The validation subset comprised 133 (33.3%)
records and these were used for determining the predictive accuracy of each model (i.e. validat-
ing its performance). Of the 133 records used for validation, 66 (49.62%) records corresponded
to patients with Organ-Confined Disease, and 67 (50.38%) records corresponded to patients
with Extra-Prostatic Disease. Fig 4 shows a set of Gaussian membership functions generated by
the proposed system, for each input data. The input comprised of 5 inputs given by two external
markers (Organ-Confined Disease, and Extra-Prostatic Disease). Observing the membership
curves found in Fig 4, reveals a consistency among them—the results of tests corresponding to
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patients with Extra-Prostatic Disease fall in a higher range than the results of patients with
Organ-Confined Disease.

The performance of the proposed neuro-fuzzy model was compared to that of an Artificial
Neural Network, Fuzzy C-Means, Support Vector Machine, and the Naive Bayes classifiers;
and the AJCC pTNMNomogram statistical approach [21] which can also be considered as a
classifier. The subsections below give a brief introduction to each classification model and
details on how the parameters of each model were appropriately tuned in order to report their
best performance.
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Fig 4. Neuro-Fuzzy SystemMembership Functions: Gleason 1 is Primary Gleason Pattern; Gleason 2 is Secondary Gleason pattern; PSA
is Prostate Specific Antigen; Age represents the Age group; and clinical T stage is the result of the Digital Rectal Examination.OCD is
Organ-Confined Disease and ED is Extra-Prostatic Disease.

doi:10.1371/journal.pone.0155856.g004
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Performance Evaluation Measures
The evaluation measures that were adopted for assessing the performance of each approach for
predicting the pathological stage of patients are Sensitivity and Specificity. These statistical mea-
sures are used for evaluating the performance of binary classification tests and are suitable
since the aim is to measure the performance of each system in distinguishing Extra-Prostatic
Disease from the Organ-Confined Disease.

Sensitivity (i.e. True Positive Rate) measures the proportion of actual positives which are
correctly identified as such (e.g. the percentage of Extra-Prostatic Disease patients who are cor-
rectly identified as Extra-Prostatic Disease). Specificity (i.e. True Negative Rate) measures the
proportion of negatives which are correctly identified as such (e.g. the percentage of patients
with Organ-Confined Disease who are correctly identified as not having Extra-Prostatic Dis-
ease). A perfect system would return 100% sensitivity (e.g., all patients with Extra-Prostatic
Disease are classed as Extra-Prostatic Disease) and 100% specificity (e.g. all patients with
Organ-Confined Disease are not classed as Extra-Prostatic Disease). The following notation
relates to the evaluation measures.

• Let |TP| be the total number of patients with Extra-Prostatic Disease correctly classified as
Extra-Prostatic Disease.

• Let |TN| be total the number of patients with Organ-Confined Disease correctly classified as
Organ-Confined Disease.

• Let |FP| be the total number of patients with Organ-Confined Disease incorrectly classified
as Extra-Prostatic Disease.

• Let |FN| be the total number of patients with Extra-Prostatic Disease incorrectly classified as
Organ-Confined Disease.

• Let |P| be the total number of Extra-Prostatic Disease cases that exist in the dataset, where |P|
= |TP| + |FN|.

• Let |N| be the total number of patients with Organ-Confined Disease that exist in the dataset,
where |N| = |FP| + |TN|.

The functions for the Sensitivity and Specificity evaluation measures are presented in Func-
tions (6) and (7) respectively.

SensitivityðkÞ ¼ jTPj
jTPjþ jFNj

;2 ½0; 1&: ð6Þ

SpecificityðkÞ ¼ jTNj
jTNjþ jFPj

;2 ½0; 1&: ð7Þ

The closer the values of Sensitivity and Specificity are to 1.0, the better the detection perfor-
mance of the system.

Evaluation measures based on the Receiver Operating Characteristic (ROC) curve analysis
are fundamental in clinical research. ROC curves are used to determine the performance of the
systems, and they can be used to establish a cutoff value for optimal performance of each sys-
tem. The ROC curve is a graph of sensitivity (y-axis) against 1-specificity (x-axis) across differ-
ent cut-off points. The area under the ROC curve (AUC) is a reflection of how good the
system’s performance is at distinguishing (or discriminating) between patients with and with-
out Extra-Prostatic Disease—the larger the area, the better the performance. The aim is to
determine the cutoff point for which the classifier returns the high number of true positives
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and the low number of false positives. Maximizing sensitivity corresponds to some large True
Positive Rate (y-axis value) on the ROC curve, and maximizing specificity corresponds to a
small False Positive Rate value (x-axis value) on the ROC curve. Thus, the optimal cutoff value
is to the upper left corner of the chart, the higher the overall accuracy of the classifier. Hence, a
system which perfectly discriminates Organ-Confined Disease and Extra-Prostatic Disease has
1.0 (or 100%) sensitivity and 1.0 (or 100%) specificity.

Comparison of the Neuro-Fuzzy Model with Other Methods
The aim of the evaluation is to measure the ability of each system to predict the pathological
stage of patients. The results presented in this section are those for validating the system, as
these determine the true ability of a system to discriminate Organ-Confined Disease from
Extra-Prostatic Disease using the knowledge which has been acquired by the system during the
training (i.e. learning) process. To perform these evaluations, the actual outputs returned by
each system during the validation stage were compared against the targets (i.e. known) outputs.

The results of the comparisons are shown in Table 14 and illustrated in Fig 5. The ROC
curves for all systems are shown in Fig 6. The cutoff points of each classifier are presented in

Table 14. Performance evaluation.

Performances based on ROC evaluation measurements

Neuro-Fuzzy (Our approach) FCM Quadratic-SVM ANN GB-NB AJCC pTNM Nomogram

Area Under the Curve (AUC) 0.812 0.809 0.738 0.699 0.750 0.582

Optimal ROC point FPR 0.274 0.403 0.242 0.303 0.274 0.032

Optimal ROC point TPR 0.789 0.901 0.718 0.701 0.775 0.197

Asymp. Sig. (McNemars) 1.000 0.868 0.499 1.000 1.000 0.000

doi:10.1371/journal.pone.0155856.t014

AUC False Positive ORP True Positive ORP
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Fig 5. Performance Comparison.

doi:10.1371/journal.pone.0155856.g005
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rows, Optimal ROC point False Positive Rate and Optimal ROC point True Positive Rate, of
Table 14 and were computed with the alpha values set to α = 0.05 (95% Confidence Interval).
The best system would return the largest AUC, a high number of true positives, and a low
number of false positives.

The Support Vector Machine was trained using the Linear kernel function, Quadratic,
Gaussian Radial Basis (GRB), Multilayer Perceptron kernel (MP) functions. The results of test-
ing the performance (i.e. validation) of the Support Vector Machine using the various kernel
functions are presented in Table 15. The results show that the Quadratic-Support Vector
Machine has the largest AUC (AUC = 0.738), thereby outperforming all other functions.

The Naive Bayes classifier results, when tuned using the Gaussian Distribution (i.e. normal
distribution) and Kernel Density Estimation functions, are presented in Table 16. The results
revealed that the Gaussian Naive Bayes (GD-NB) classifier returned a larger AUC
(AUC = 0.750), thereby outperforming the Kernel Density Estimation Naive Bayes (KDE-NB)
classifier (AUC = 0.696).
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Fig 6. ROC Curves: Performance Comparison.

doi:10.1371/journal.pone.0155856.g006

Table 15. Support Vector Machine(SVM) performance evaluation when applying various kernel functions.

Kernel Function

Evaluation Measure Linear Quadratic GRB MP

Specificity (TNR) 0.758 0.758 0.661 0.597

Sensitivity (TPR) 0.704 0.718 0.747 0.690

Area Under the Curve 0.731 0.738 0.704 0.644

Optimal ROC point FPR 0.242 0.242 0.339 0.403

Optimal ROC point TPR 0.704 0.718 0.747 0.690

doi:10.1371/journal.pone.0155856.t015
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The best Support Vector Machine and Naive Bayes classifiers are included in Table 14 which
contains all of the results. The results of the comparison revealed that the proposed neuro-fuzzy
system, at its optimal point, returns the largest AUC, with a low number of false positives
(FPR = 0.274, TPR = 0.789, AUC = 0.812). Although the FCM classifier returned the highest
number of true positives, it returned a very high number of false positives (FPR = 0.403,
TPR = 0.901, AUC = 0.809). For these reasons, FCM cannot be considered as the optimum clas-
sifier. The Quadratic-Support Vector Machine, ANN, and GB-NB did not perform as well as
the neuro-fuzzy approach—they returned a smaller AUC, and a lower optimal TPR. The AJCC
pTNMNomogram performed the worst, with the smallest AUC (0.582), and the lowest number
of TPR (0.197) at the optimal ROC point. The proposed neuro-fuzzy system therefore outper-
formed all other systems.

Finally, Table 14 shows the results of the McNemar test which was applied to investigate
whether any statistically significant differences exist among each system’s target outputs and
the actual outputs. The McNemar test is a statistical test which is applied on paired nominal
data. It uses an approximate chi-square test of goodness to test the null hypothesis, i.e. there
are no significant differences among targets and outputs. Each pair comprised of the actual and
predicted values of each system. A good system will not return a statistically significant differ-
ence (i.e. p> 0.05) amongst its predicted outputs and the actual target outputs (known out-
puts). The results revealed that there were no statistically significant differences among the
actual and predicted outputs of the proposed neuro-fuzzy approach (p = 1.000, p> 0.05); the
FCM classifier, (p = 0.868, p> 0.05); the Quadratic-SVM, (p = 0.499, p> 0.05); the ANN
(p = 1.000, p> 0.05); and the GB-NB, (p = 1.000, p> 0.05). However, there was a statistically
significant difference among the outputs of the AJCC pTNMNomogram against targets
(p = 0.00, p< 0.05).

Discussion and Conclusion
At the clinical prostate cancer staging process, the patient undergoes various clinical tests for
the prognosis of prostate cancer, and based on these tests, the clinician estimates (or predicts)
how much the cancer has spread. It is only after surgery, and hence at the pathological stage,
that it is possible to more accurately diagnose cancer and determine the extent of its spread
beyond the prostate gland. The ability to predict that pathological stage of prostate cancer is
important, as it allows clinicians to determine the best approach for treating and managing the
disease.

Herein, we propose the application of a neuro-fuzzy based approach for the prediction of
the pathological stage of prostate cancer. The algorithm is suitable for the particular problem
due to the imprecision, and the uncertainty which is typically found in the results of the clinical
tests which can be used for predicting the pathological stage of prostate cancer. The system

Table 16. Naive Bayes(NB) performance evaluation using the Gaussian distribution and Kernel Den-
sity Estimation functions.

Type of function

Evaluation Measure GD-NB KDE-NB

Specificity (TNR) 0.726 0.645

Sensitivity (TPR) 0.745 0.747

Area Under the Curve 0.750 0.696

Optimal ROC point FPR 0.274 0.355

Optimal ROC point TPR 0.775 0.747

doi:10.1371/journal.pone.0155856.t016
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input comprised of variables Primary and Secondary Gleason patterns, PSA levels, age at diag-
nosis, and clinical T stage. The output is the pathological stage of the cancer which can be
either Organ-Confined Disease or Extra-Prostatic Disease. Experiments were performed using
an existing and validated prostate cancer patient dataset comprising n = 399 patient records
obtained from The Cancer Genome Atlas (TCGA) Research Network. The performance of the
proposed neuro-fuzzy system was compared to other classifiers: the Artificial Neural Network,
Fuzzy C-Means, Support Vector Machines, the Naive Bayes, and the AJCC pTNMNomogram
[21]. The results revealed that the proposed neuro-fuzzy system outperformed all other classifi-
ers. Our results appear to be consistent to those of Castanho et al. [12] who have also developed
genetic-fuzzy expert system for predicting whether prostate cancer if confined or not-confined.
Their results have also revealed that computational intelligence approaches based on fuzzy
algorithms are suitable for prostate cancer staging prediction, and exceed the performance of
nomograms.

The algorithm proposed by Castanho et al. [12] tunes the membership functions using a
genetic algorithm, whereas we have used the Adaptive Neuro Fuzzy Inference System
(ANFIS) to optimise the membership functions. Furthermore, Castanho et al.’s [12] and our
proposed system both aim to predict whether a patient has organ-confined disease (OCD,
pathological stage pT2) or extra-prostatic disease (ED, pathological stage> pT2). Although
both systems use pre-operative serum PSA, clinical stage, and primary and secondary Gleason
grades of a biopsy to predict the pathological stage of prostate cancer, our system considers
age as an additional input variable. Castanho et al.’s [12] genetic-fuzzy system achieved an
Area Under the Curve of 0.824 which they compared against Partin probability tables which
have been proposed by Makarov et al. [31], and which only achieved an Area Under the
Curve of 0.693. Our proposed neuro-fuzzy approach achieved an Area under the curve of
0.812, and the AJCC nomogram achieved an Area Under the Curve of 0.582. These results
approximate to those reported by Castanho et al. [12], and reveal a high degree of consistency
among the two outcomes of the two studies, despite the fact that different datasets were used
for each study. The nomograms used by Castanho et al., and the AJCC nomogram both use
the TNM Classification of Malignant Tumors grading system [32]. A major limitation of the
AJCC nomogram is that the biopsy Gleason 7 values are not split into 3 + 4 = 7 vs. 4 + 3 = 7
which have drastically different clinical outcomes. The proposed neuro-fuzzy model considers
the Gleason Grades 3 + 4 and 4 + 3, and this was one of the reasons that it performed better
than the AJCC nomogram.

A recent study by Tsao et al. [15] has also reported similar AUC values, to those returned by
our model and that of Castanho et al. [12], when using the Partin probability tables proposed
which have been proposed by Makarov et al. [31] to predict the pathological stage of prostate
cancer in patients prior to receiving radical prostatectomy. Tsao et al. [15] developed an artifi-
cial neural network (ANN) model to predict the pathological stage of prostate cancer and eval-
uated the model on 299 patients, of whom 109 (36.45%) displayed prostate cancer with extra-
capsular extension (ECE), and 190 (63.55%) displayed organ-confined disease (OCD). Overall,
their results revealed that the ANNmodel (AUC = 0.795) significantly outperformed a Linear
Regression statistical model (AUC = 0.746), and the Partin Tables (AUC = 0.695).

It should be noted that other predictors/nomograms consider features other than clinical
stage, PSA, age, and biopsy Gleason grade. Some use the amount of tumor present, while others
are starting to incorporate results of molecular analysis data, such as data from Prolaris [33] or
oncotype measurements. Such models were not considered in the current study, as the relevant
information is not available via the TCGA datasets and urologists predominantly use the Kat-
tan preoperative nomogram [34] and the Partin Tables [35] for determining the likelihood of
prostate cancer recurrence following radical prostatectomy, at least in the UK and Europe.
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A study by Tamblyn et al. [36] which compared the Cancer of the Prostate Risk Assessment
(CAPRA) score [37] against the Kattan (version 1998) [34] and Stephenson nomograms (ver-
sion 2006) [38] revealed that the Kattan (version 1998) [34] tool was the best predictor of abso-
lute risk of recurrence. Furthermore, a recent study by Boehm et al. [39] which compared three
preoperative models, D’Amico [40], CAPRA [37] and Stephenson [38], revealed that these
tools are reliable in North American patients, but have shortcomings for identifying patients at
high risk of prostate cancer death in Europe. D’Amico [40] and CAPRA [37] include the
amount of tumor detected on biopsy as part of their risk prediction algorithm and consider vol-
ume to have an influence on the risk of disease recurrence. However, from the evidence pre-
sented in Boehm et al. [39], this is not necessarily the case for non-US patients. Therefore, the
precise influence of tumor volume on the risk of disease is inconclusive. Finally, although the
volume of tumour per each core has been used to determine the significance of the tumor,
Gleason 6 disease is still regarded as being a non-significant pathology, whereas Gleason 7 or
greater is thought to be significant disease, irrespective of volume. As such, volume of disease
adds very little to the decision-making process.

Currently, the proposed framework has been implemented as a research tool, and once
more evaluations are conducted, the tool will be developed as a simple to use application which
can be made accessible to clinicians. The tool will take the clinical test results (i.e. age at diagno-
sis, PSA, biopsy Primary and Secondary Gleason patterns, and clinical T stage) of an individual
patient and predict his likelihood of having extra-prostatic cancer, and thereby aid the clinical
decision-making process. Ongoing work is applying the proposed neuro-fuzzy predictor to a
larger dataset, examining other computational intelligence approaches, and continuing the
development of novel algorithms for predicting disease status in patients with prostate cancer.
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Determining whether an asymptomatic individual with Prostate-Specific Antigen (PSA) 
levels below 20 ng ml−1 has prostate cancer in the absence of definitive, biopsy-based 
evidence continues to present a significant challenge to clinicians who must decide 
whether such individuals with low PSA values have prostate cancer. Herein, we present 
an advanced computational data extraction approach which can identify the presence of 
prostate cancer in men with PSA levels <20 ng ml−1 on the basis of peripheral blood immune 
cell profiles that have been generated using multi-parameter flow cytometry. Statistical 
analysis of immune phenotyping datasets relating to the presence and prevalence of key 
leukocyte populations in the peripheral blood, as generated from individuals undergoing 
routine tests for prostate cancer (including tissue biopsy) using multi-parametric flow 
cytometric analysis, was unable to identify significant relationships between leukocyte 
population profiles and the presence of benign disease (no prostate cancer) or prostate 
cancer. By contrast, a Genetic Algorithm computational approach identified a subset of 
five flow cytometry features (CD8+CD45RA−CD27−CD28− (CD8+ Effector Memory cells); 
CD4+CD45RA−CD27−CD28− (CD4+ Terminally Differentiated Effector Memory Cells 
re-expressing CD45RA); CD3−CD19+ (B cells); CD3+CD56+CD8+CD4+ (NKT cells)) from 
a set of twenty features, which could potentially discriminate between benign disease 
and prostate cancer. These features were used to construct a prostate cancer prediction 
model using the k-Nearest-Neighbor classification algorithm. The proposed model, which 
takes as input the set of flow cytometry features, outperformed the predictive model 
which takes PSA values as input. Specifically, the flow cytometry-based model achieved 
Accuracy  =  83.33%, AUC  =  83.40%, and optimal ROC points of FPR  =  16.13%, 
TPR  =  82.93%, whereas the PSA-based model achieved Accuracy  =  77.78%, 
AUC = 76.95%, and optimal ROC points of FPR = 29.03%, TPR = 82.93%. Combining 
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PSA and flow cytometry predictors achieved Accuracy = 79.17%, AUC = 78.17% and 
optimal ROC points of FPR = 29.03%, TPR = 85.37%. The results demonstrate the 
value of computational intelligence-based approaches for interrogating immunopheno-
typing datasets and that combining peripheral blood phenotypic profiling with PSA levels 
improves diagnostic accuracy compared to using PSA test alone. These studies also 
demonstrate that the presence of cancer is reflected in changes in the peripheral blood 
immune phenotype profile which can be identified using computational analysis and 
interpretation of complex flow cytometry datasets.

Keywords: prostate cancer, predictive modeling, immunophenotyping data, !ow cytometry, PSA level, 
computational analysis, genetic algorithm, machine learning

1. INTRODUCTION

!e introduction of the serum Prostate-Speci"c Antigen (PSA) 
level as a biomarker for the presence of prostate cancer in 1986 
prompted a progressive global increase in the diagnosis, and 
earlier diagnosis of the disease. !e fact that most men are now 
diagnosed with organ-con"ned disease enables intervention 
with curative intent. However, although the initial diagnosis of 
prostate cancer in most men is based on a PSA test and digital 
rectal examination (DRE) (1), the PSA test has been criticized 
for its poor diagnostic speci"city (30%) (2). Further investiga-
tions are, therefore, indicated in the event of an elevated PSA 
or abnormal DRE. !ese include a transrectal ultrasound 
(TRUS)-guided prostate biopsy and subsequent examination 
and reporting by a pathologist. However, TRUS-guided pros-
tate biopsies have a documented sensitivity of only 39–52% (3), 
and cancer detection rates of around 25% on initial biopsies 
(4), and 18–32% on repeated biopsies (5, 6). !is approach is 
also costly and rarely detects prostate cancers that an elevated 
PSA and/or DRE cannot predict. Although TRUS is commonly 
used to guide a biopsy, it is not, therefore, recommended for 
routine screening. An alternative approach to the TRUS is 
the Transperineal Template Prostate Biopsy (TPTPB), and 
we have previously shown that TPTPB can identify clinically 
signi"cant prostate cancer in 71/122 (58%) of men with raised 
PSA, despite two previous sets of negative TRUS biopsies (7). 
An important element of these "ndings was that 61% of the 
patients in whom prostate cancer was diagnosed had a Gleason 
grade score ≥7 (most which were in the anterior zone), thereby 
automatically placing them into the “intermediate” or “high-
risk” categories when applying established risk strati"cation 
criteria (7). !e capacity of the TPTPB to identify more clini-
cally signi"cant tumors at an earlier stage, therefore, suggests 
that it is a better diagnostic test for localized prostate cancer 
than the TRUS biopsy. Given the ability of the TPTPB to detect 
prostate cancer at signi"cantly higher rates than TRUS biopsies 
(8–12), we questioned whether we should move away from 
TRUS biopsies to TPTPB and whether PSA is actually a more 
speci"c biomarker for prostate cancer detection than had been 
previously thought. To this end, we performed a prospective 
study which directly compared the diagnostic potential of the 
TRUS and TPTPB approaches in the same cohort of biopsy 
naïve men with an elevated PSA <20  ng  ml−1 and a benign 

feeling prostate on a DRE. !ese patients, therefore, served 
as their own controls (13). !e study demonstrated that the 
TRUS biopsy detected cancer in 32 versus 60% with TPTP, and 
that TPTPB is associated with a signi"cantly higher prostate 
cancer detection rate than TRUS biopsies in biopsy naïve men 
with PSA <20 ng ml−1 and a benign feeling DRE (13). However, 
given that TRUS guided prostate biopsies are associated with a 
5% risk of urosepsis (which can be life-threatening), and that 
TPTPB is performed under general anesthetic and associated 
with a 5% risk of urinary retention, both procedures are associ-
ated with a signi"cant cost and potential for complications. It 
is also essential that men with low-risk prostate cancer are not 
diagnosed as having cancer, as they do not require any active 
treatment and such individuals are “labeled” as having cancer. 
!is can have profound adverse psychological and "nancial 
consequences, and assign them to life-long surveillance. !e 
fundamental aim of this study is, therefore, to develop an 
approach which delivers a high level of diagnostic accuracy for 
asymptomatic men with an elevated PSA <20 ng l−1. !e devel-
opment of such approaches will spare men with benign disease 
or low-risk cancer from unnecessary invasive diagnostic proce-
dures such as TRUS-guided prostate biopsies or TPTPB. Given 
the reciprocal interactions between tumors and the immune 
system, we hypothesized that the presence of disease, disease 
recurrence, and therapeutic resistance may be in$uenced, 
re$ected in, or predicted by tumor-related immunoregulatory 
events that can be identi"ed by changes in immune phenotypes 
in the periphery. We, therefore, proposed that the analysis 
of immune phenotyping datasets using multi-parametric 
$ow cytometric analysis can identify features that re$ect the 
presence of disease and/or predict disease progression (14). 
Although $ow cytometry provides a vital tool for exploring, 
explaining, and understanding complex cellular dynamics and 
processes in a variety of experimental and clinical settings (15), 
key challenges with multi-parametric $ow cytometry include 
the analysis and interpretation of the complex and increasingly 
multidimensional data and its conversion into biologically and 
clinically useful information. !is study attempts to address 
and resolve some of these challenges using computational 
intelligence methods. Computational intelligence methods 
comprise evolutionary algorithms (also known as metaheuris-
tic optimization, or nature-inspired optimization algorithms) 
coupled with machine learning methods, and hybrids of these. 
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TABLE 1 | Monoclonal antibody panel.

Antibody Fluorochrome Clone No. Supplier

CD8 FITC SK1 Biolegend
CD19 PE HIB19 Biolegend
CD28 PE-Texas Red (ECD) CD28.2 Beckman Coulter
CD56 PE-Cy5 NCAM Biolegend
CD3 PE-Cy7 HIT3a Biolegend
CD45RA Allophycocyanine (APC) HI100 eBioscience
CD14 Alexa Fluor 700 HCD14 Biolegend
CD27 APC eFluor 780 O323 eBioscience
CD45 Pacific Blue J33 Beckman Coulter
CD4 Krome Orange 13B8.2 Beckman Coulter
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A type of machine learning method, supervised learning, is 
used to derive prediction models which can be very e!ective 
in dealing with uncertainty, noise, and dimensionality in data. 
Supervised learning methods can learn from existing data to 
make informed predictions using new patient data, and have 
been widely adopted for prostate cancer prediction tasks 
when using clinical and biomedical data (16). It is now time to 
embrace computational intelligence methods for the analysis of 
"ow cytometry data, since statistical methods alone may not be 
su#cient for the task of analyzing and modeling such complex 
data (16). Herein, we assess whether advanced computational 
analysis of peripheral blood "ow cytometry immunopheno-
typing data from a selected cohort of individuals can generate 
prediction models with potential clinical value and identify the 
presence of prostate cancer in asymptomatic individuals with 
a PSA level <20 ng ml−1. %e computational models and algo-
rithms are trained to make predictions on new and previously 
unseen data using existing data. Signi&cantly, this approach has 
identi&ed a novel prostate cancer immunophenotyping “&nger-
print” which could potentially be used to identify the presence 
of prostate cancer in asymptomatic men having PSA levels 
<20 ng ml−1; and which outperforms the predictive value of the 
PSA test alone. We have also shown that combining "ow cytom-
etry predictors with PSA levels improves diagnostic accuracy. 
Taken together, these studies demonstrate that the presence of 
cancer is re"ected in changes in the peripheral blood immune 
phenotype pro&le which can be identi&ed using computational 
analysis and interpretation of complex "ow cytometry datasets, 
and the value of computational intelligence-based approaches 
for interrogating immunophenotyping datasets.

2. MATERIALS

2.1. Data Collection
Patients with suspected prostate cancer attending the Urology 
Clinic at Leicester General Hospital (University Hospitals of 
Leicester NHS Trust, Leicester, UK) were examined by Professor 
Masood Khan (Consultant Urologist) and Mr. Shady Na&e 
(Registrar in Urology). Samples were obtained from a selected 
cohort of patients which met the following criteria—being biopsy 
naïve, with a PSA level of <20 ng ml−1 and agreeing to undergo 
simultaneous TRUS biopsy (12 cores) and a transperineal 
template prostate biopsy (TPTPB) (36 cores) procedures under 
general anesthetic. Samples from the TPTPB cohort were col-
lected from 24 October 2012 to 15 August 2014. Further details 
on how patients were recruited and treated are described in Na&e 
et al. (7). %e cohort comprised samples from 72 males who had 
a TRUS-guided biopsy and then a TPTPB. %e mean age for this 
cohort was 66 years old (age range of 50–84 years old). Given the 
more de&nitive diagnostic power of the TPTPB (7, 13), samples 
that were considered as being from individuals with benign 
disease were obtained from this cohort. A total of 41 (56.94%) 
patients were diagnosed with prostate cancer. %e remaining 31 
(43.06%) patients were classed as having benign disease following 
pathological examination and the application of established crite-
ria. Of those patients diagnosed with benign disease, 10 patients 
were diagnosed with High Prostatic Intraepithelial Neoplasia 

(High-Grade); 10 patients were diagnosed with Atypical Small 
Acinar Proliferation and 2 patients with Atypia. %e remaining 9 
patients were diagnosed as having benign disease. Patients with 
multi-focal high-grade PIN or ASAP commonly have a prostatic 
core biopsy showing a focus which is suspicious for, but not 
diagnostic of, cancer (17).

2.2. Ethics Statement
Research Protocols were registered and approved by the National 
Research Ethics Service (NRES) Committee East Midlands and 
by the Research and Development Department in the University 
Hospitals of Leicester NHS Trust. All participants were given 
information sheets explaining the nature of the study and all pro-
vided informed consent. All samples were collected by suitably 
quali&ed individuals using standard procedures. Ethical approval 
for the collection and use of samples from the TPTPB cohort 
(Project Title: De&ning the role of Transperineal Template-guided 
prostate biopsy) was given by NRES Committee East Midlands-
Derby 1 (NREC Reference number: 11/EM/3012; UHL11068). 
Ethical approval for the collection of peripheral blood from 
healthy volunteers was obtained from the Nottingham Trent 
University College of Science and Technology Human Ethics 
Committee (Application numbers 165 and 412).

2.3. Flow Cytometric Analysis
Peripheral blood (60  ml) was collected from all patients using 
standard clinical procedures. Aliquots (30 ml) were transferred 
into two sterile 50  ml polypropylene (Falcon) tubes contain-
ing 300  µl of sterilized Heparin (1000  U  ml−1, Sigma). Anti-
coagulated samples were immediately transferred to the John van 
Geest Cancer Research Centre at Nottingham Trent University 
(Nottingham, UK) and were processed immediately upon receipt 
(as described in this section), and within 3 h of collection. 200 µl 
of whole blood was used to pro&le the key immune cell subsets 
in the periphery (Overview of the Immune System: “OVIS”—see 
Table 1).

Absolute cell counts in whole blood samples were determined 
by the inclusion of BD Trucount™ beads (BD Biosciences; 
Mountain View, CA, USA), as per the manufacturer’s protocol. 
For the "ow cytometric analysis, 100  µl of blood was mixed 
directly in the BD Trucount™ bead tube and T cell, B cell, and 
NK cell populations identi&ed using the conjugated monoclonal 
antibodies (mAbs) detailed in Table  1. For the staining, cells 
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FIGURE 1 | Representative gating strategies for the flow cytometric analysis of single cells. The Overview of the Immune System (OVIS) staining panel confirmed 
CD45 expression then determined cell populations as CD14+ monocytes, CD3−CD56+ NK cells (with CD56bright and CD56dim subsets), CD3+CD56+ NKT cell 
subpopulations, CD19+ B cells, CD3+CD4+ and CD3+CD8+ Naïve, Central Memory, Effector Memory, Terminally Differentiated Effector Memory Cells Expressing 
CD45RA T cells populations. The definition of monocytes based on CD45+CD4+ generated the same data as defining them based on CD3−CD14+ (data not shown).
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were incubated for 15 min at room temperature, protected from 
the light, a"er which erythrocytes were lysed by incubating 
samples for 15 min at room temperature in BD Pharm Lyse™ 
(BD Biosciences). Once staining was complete, cells were 
washed in phosphate bu#ered saline (PBS), resuspended in 
Coulter Isoton™ diluent. Data were acquired within 1 h using 
a 10-color/3-laser Beckman Coulter Gallios™ $ow cytometer 
and analyzed using Kaluza™ v1.3 data acquisition and analysis 
so"ware (Beckman Coulter). Controls used a “Fluorescence 
minus One,” “FMO” approach. A typical gating strategy for the 
analyses is presented in Figure 1.

2.4. Data Normalization and Statistical 
Analysis
For this study, we considered a feature to be the grouped set of 
$ow cytometry phenotypic variables shown in Table 2. %e mean 
and Standard Deviation (SD) values of each $ow cytometry fea-
ture shown in Table 2 indicate clear variation, as a consequence 
of which data were normalized to put them on the same scale and 
enable the comparison of two or more variables (i.e., $ow cytom-
etry features). Let Xmxn = [xij] be a m x n matrix with m rows and 
n columns. Z-score normalization was applied to each column n 
of matrix X. Applying normalization returned the z-score value 
for each matrix element xij, and each column j of matrix X was 
centered to have a mean value of 0 and scaled to have a SD value 
of 1. %e standardized data set retains the shape properties of 

the original data set (same skewness and kurtosis). %e z-score 
normalization function is shown in Function (1):

 
z

x xij=
−( )
σ  

(1)

where xij is a data point; x is the mean value of column j; σ is the 
SD; and z is the transformed value of data point xij.

Figure  2 illustrates the distribution of the $ow cytometry 
features in the form of box plots, and allows for quick visualiza-
tion of variability. Outliers were included in the analyses as it is 
important to consider those “out of range values” when creating 
a prediction model. Figure 3 illustrates the $ow cytometry values 
derived from individuals with benign disease and patients with 
prostate cancer before and a"er data normalization.

Table 3 provides descriptive statistics of the normalized dataset, 
and these are also illustrated in Figure 2. %e Interquartile range 
(IQR) is an informative measure of variability and determined 
by computing the distance between the Upper Quartile (i.e., top)  
and Lower Quartile (i.e., bottom) of the box. %e features with 
the smallest degree of variability are those with the smallest  
IQR values, and hence: CD4+CD45RA+CD27−CD28− (ID 10, &rst  
smallest); CD3+CD56+CD8+CD4+ (ID 17, second smallest); 
CD3+CD56+CD8−CD4+ (ID 19, third smallest); CD4+CD45RA− 
CD27−CD28− (ID 9, fourth smallest), CD8+CD45RA−CD27−CD28− 
(ID 4, &"h smallest). %ese variables, therefore, appear to the best 
candidate predictors when considered independently.
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TABLE 2 | Flow Cytometry features.

Feature ID Flow cytometry feature Mean SD

1 CD3+CD8+ 450.39 402.03
2 CD8+CD45RA+CD27+CD28+ 96.92 75.99
3 CD8+CD45RA−CD27+CD28− 68.45 58.73
4 CD8+CD45RA−CD27−CD28− 45.37 104.69
5 CD8+CD45RA+CD27−CD28− 120.05 197.85
6 CD3+CD4+ 877.88 468.35
7 CD4+CD45RA+CD27+CD28+ 393.72 214.27
8 CD4+CD45RA−CD27+CD28+ 311.24 211.16
9 CD4+CD45RA−CD27−CD28− 17.78 39.78

10 CD4+CD45RA+CD27−CD28− 14.19 35.48
11 CD45+CD14+ 116.16 87.19
12 CD3−CD19+ 257.70 251.40
13 CD3+CD56+ NKT 76.54 85.74
14 CD3−CD56+ NK 260.34 202.84
15 CD3−CD56low 253.20 192.27
16 CD3−CD56high 16.06 14.66
17 CD3+CD56+CD8+CD4+ 5.67 16.16
18 CD3+CD56+CD8+CD4− 53.32 59.76
19 CD3+CD56+CD8-CD4+ 10.96 20.41
20 CD3+CD56+CD8−CD4− 6.59 6.58

Mean and Standard Deviation (SD) values of raw data.
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!e Kruskal–Wallis test (“one-way ANOVA on ranks”) tested for 
statistically signi"cant di#erences between the mean ranks of the 
normalized $ow cytometry variables observed in individuals with 
benign disease and patients with prostate cancer due to the presence 
of unequal variances, and demonstrated there to be no statistically 
signi"cant di#erences at the alpha level of α = 0.05 in the mean 
ranks of the $ow cytometry features between these two groups 
(Table 4). A more sophisticated approach that has the potential 
to determine which features would better indicate the presence of 
disease was, therefore, adopted. For this, a Genetic Algorithm was 
used to explore the di#erent combinations of features and return 
the optimal combination of features which indicate the presence of 
prostate cancer. As a "nal stage of the analysis, and prior to applying 
a Genetic Algorithm for feature selection, it is useful to determine 
whether any correlations among the $ow cytometry features exist. 
For this, the non-parametric Spearman rank correlation assessed 
the degree of association between $ow cytometry features. !e rho 
values arising from this analysis were plotted in a heatmap graph 
(shown in Figure 4) in order to visualize those feature pairs having 
strong positive and strong negative correlations. Figure 4 shows 
that many pairs have positive correlation values (color red). !e 
p values were computed to determine which of these correlations 
were signi"cant at α = 0.05. !e rho correlation values range from 
−1.0 to +1.0. A value of 0 suggests no correlation, a value of +1.0 
suggests a strong positive correlation and a value of −1.0 suggests 
a strong negative correlation. A total of 141 unique pairs of features 
returned signi"cant correlations with p < 0.05.

!e large number of pairs having signi"cant correlations pre-
sents signi"cant challenges for identifying features which better 
identify the presence of disease. !is is because if two features 
have a strong correlation, then only one of those features should 
be selected as a candidate predictor. A Genetic Algorithm evalu-
ates these combinations and identi"es those features that, as a 
combination, deliver the best subset of predictors.

3. RESULTS

3.1. Experiment Methodology
!e aim of the experiments is to identify a suitable set of features 
which would, as a combination, deliver an immunophenotypic 
“"ngerprint” for determining whether an individual with 
Prostate-Speci"c Antigen (PSA) levels below 20 ng ml−1 has pros-
tate cancer in the absence of de"nitive biopsy-based evidence. 
!is "ngerprint, or set of features, would then be utilized to 
construct a prediction model. Given that the optimum number 
of features was unknown, a Genetic Algorithm (18) was applied 
λ times, with λ = 2, 3, …, n where n is the total number of $ow 
cytometry features. !erefore, each time the Genetic Algorithm 
was run a combination containing λ number of features was 
returned. A total of 19 subsets of features were returned by the 
Genetic Algorithm, with the "rst subset s1 containing the best 
2 selected features; subset s2 the best 3 selected features, subset 
s3 the best 4 selected features, and so forth. Each subset, si of 
selected features, was input into a kNN classi"er. Experiments 
were conducted with kNN using various distance measures, as 
this would allow for it to be tuned for the speci"c problem at 
hand. !e number of kNN neighbors was set to k = 2 and was 
chosen experimentally to be the best setting. !e state-of-the-
art Leave-One-Out Cross Validation (LOOCV) approach was 
adopted for evaluating the performance of the kNN classi"er 
using various parameter settings. During LOOCV, the training 
and testing process is repeated m times and in every iteration, 
a di#erent patient record is le& out for testing until all records 
are le& out (19). To perform the evaluations, the actual outputs 
returned by the classi"cation model during the validation stage 
were compared against the targets (i.e., known outputs). !e 
Receiver Operating Characteristic (ROC) curves were created 
and the optimal cut-o# points (optimal ROC point (ORP): False 
Positive Rate (FPR), True Positive Rate (TPR)) were computed 
with the alpha value set to α = 0.05 (95% Con"dence Interval). 
An e'cient classi"cation system (i.e., prediction model) would 
return the largest Area Under the Curve (AUC); a high number of 
True Positives; and a low number of False Positives. !e methods 
of Hanley and McNeil (20, 21) were used for the calculation of the 
Standard Error of an Area Under the Curve (AUC (SE)), and the 
Binomial Exact Con"dence Interval for an Area Under the Curve 
(AUC (BEC)) was also calculated.

3.2. Prostate Cancer Prediction Using 
Immunophenotyping Data
!is section discusses the results of the experiments when 
tuning the kNN with various distance measures and when 
using each subset, si, of $ow cytometry features which were 
returned by the Genetic Algorithm. Table  5 shows the best 
results that were achieved a&er applying the kNN classi"er 
using each subset of features and di#erent distance measures. 
As shown in Table 5, the best performance was achieved using 
the FC-PM(Correlation(5)) which reached an AUC  =  83.40% 
and Optimal ROC point of FPR = 16.13%, TPR = 82.93%. !e 
FC-PM(Correlation(5)) utilized 5 $ow cytometry features with 
IDs: 4, 9, 10, 12, 17 which correspond to $ow cytometry features: 
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FIGURE 3 | Raw and z-score transformed values of the flow cytometry 
variables derived from individuals with benign disease and patients with 
prostate cancer.

FIGURE 2 | Box-plots of normalized flow cytometry features.
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CD8+CD45RA−CD27-CD28− (CD8+ E!ector Memory cells); 
CD4+CD45RA−CD27−CD28− (CD4+ E!ector Memory Cells); 
CD4+CD45RA+CD27−CD28− (CD4+ Terminally Di!erentiated 
E!ector Memory Cells re-expressing CD45RA); CD3−CD19+ 
(B cells); CD3+CD56+CD8+CD4+ (NKT cells).

Given that this set contains the best combination of #ow 
cytometry predictors, it can be used as a signature for distin-
guishing between the presence of benign disease and cancer. 
FC-PM(Cosine(6)) achieved the same value for Accuracy as 
FC-PM(Correlation(5)) using 6 features. Feature CD45+ CD14+ 
(ID 11) was included in the feature set used by FC-PM(Cosine(6)). 
Figure 5 shows the AUCs and optimal ROC Points of the two #ow 
cytometry-based prediction models, FC-PM(Correlation(5)) and 
FC-PM(Cosine(6)). FC-PM (Cosine(6)) achieved a 12.9% higher 
False Positive Rate than FC-PM (Correlation(5)) (Table 5), and 
lower Con$dence Interval(CI) values shown in Table  6, which 
suggests that it has weaker ability than FC-PM(Correlation(5)) 
to discriminate between benign and cancer patients. In addition, 
Table 6 shows the percentage of patients correctly classi$ed in each 
group. FC-PM(Cosine(6)) achieved a lower predictive accuracy 
for benign patients compared to FC-PM(Correlation(5)), but cor-
rectly classi$ed more cancer patients. %e comparison suggests that 
FC-PM(Cosine(6)) is relatively more likely to misclassify benign 
patients as cancer patients, which is not a desirable outcome, and 
thus the model’s con$dence in identifying benign disease is lower.
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TABLE 3 | Descriptive statistics of the normalized dataset.

Flow cytometry feature Range Minimum Maximum IQR Skewness

1 CD3+CD8+ 5.73 −0.92 4.81 0.84 2.92
2 CD8+CD45RA+CD27+CD28+ 4.93 −1.12 3.82 1.13 1.65
3 CD8+CD45RA−CD27+CD28+ 4.82 −1.15 3.67 1.02 1.74
4 CD8+CD45RA−CD27−CD28− 5.75 −0.43 5.31 0.34 4.41
5 CD8+CD45RA+CD27−CD28− 6.00 −0.60 5.40 0.58 4.44
6 CD3+CD4+ 4.43 −1.12 3.32 0.98 1.71
7 CD4+CD45RA+CD27+CD28+ 5.53 −1.56 3.97 1.23 1.27
8 CD4+CD45RA−CD27+CD28+ 5.66 −1.45 4.21 0.85 2.17
9 CD4+CD45RA−CD27−CD28− 6.81 −0.45 6.36 0.34 4.41

10 CD4+CD45RA+CD27−CD28− 5.38 −0.40 4.98 0.17 3.46
11 CD45+CD14+ 5.65 −1.16 4.49 0.68 2.65
12 CD3−CD19+ 8.00 −1.00 7.00 0.75 5.02
13 CD3+CD56+ NKT 5.90 −0.85 5.05 0.80 2.46
14 CD3−CD56+ NK 5.55 −1.02 4.53 0.69 2.62
15 CD3−CD56low 6.12 −1.06 5.06 0.81 2.67
16 CD3−CD56high 6.70 −0.97 5.72 0.63 3.18
17 CD3+CD56+CD8+CD4+ 8.35 −0.35 8.00 0.29 7.28
18 CD3+CD56+CD8+CD4− 4.34 −0.87 3.48 0.97 1.80
19 CD3+CD56+CD8−CD4+ 5.73 −0.52 5.21 0.32 3.64
20 CD3+CD56+CD8−CD4− 4.25 −0.97 3.28 1.14 1.48

TABLE 4 | Results of the Kruskal–Wallis test for testing for significant differences, 
at α < 0.05, between the mean ranks of the normalized flow cytometry variables 
observed between patients with benign disease and patients with prostate 
cancer.

Flow cytometry feature Chi-Sq. χ2 Asy. Sig. p value

1 CD3+CD8+ 1.73 0.19
2 CD8+CD45RA+CD27+CD28+ 0.82 0.37
3 CD8+CD45RA−CD27+CD28+ 0.04 0.83
4 CD8+CD45RA−CD27−CD28− 0.06 0.81
5 CD8+CD45RA+CD27−CD28− 0.44 0.51
6 CD3+CD4+ 3.72 0.05
7 CD4+CD45RA+CD27+CD28+ 1.33 0.25
8 CD4+CD45RA−CD27+CD28+ 1.79 0.18
9 CD4+CD45RA−CD27−CD28− 3.44 0.06

10 CD4+CD45RA+CD27−CD28− 0.88 0.35
11 CD45+CD14+ 0.80 0.37
12 CD3−CD19+ 0.74 0.39
13 CD3+CD56+ NKT 0.59 0.44
14 CD3−CD56+ NK 0.74 0.39
15 CD3−CD56low 0.96 0.33
16 CD3−CD56high 0.52 0.47
17 CD3+CD56+CD8+CD4+ 0.61 0.44
18 CD3+CD56+CD8+CD4− 0.68 0.41
19 CD3+CD56+CD8−CD4+ 2.85 0.09
20 CD3+CD56+CD8−CD4− 0.03 0.86
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Revisiting the results which are presented in Table  3, 
features CD8+CD45RA−CD27−CD28− (ID 4); CD4+CD45RA− 
CD27−CD28− (ID 9); CD4+CD45RA+CD27−CD28− (ID 10); 
CD3+CD56+CD8+CD4+ (ID 17) were among those !ow cytometry 
features with the smallest IQR values (and, therefore, least vari-
ability in data) and which would potentially be good candidates 
for indicating the presence cancer. Furthermore, the Genetic 
Algorithm identi"ed an additional !ow cytometry feature as part 
of the selected features (CD3−CD19+ (ID 12)) which was not an 
obvious candidate during the initial statistical analysis. When fea-
ture ID12 is placed into a group with other features, it contributes 
to improving prediction performance. #is reinforces the point 

as to why it is important to examine combinations of features 
rather than individual features when choosing those which would 
make a cancer predictors (i.e., "ngerprint). Importantly, not all 
!ow cytometry features with a low IQR are needed to reach high 
predictive accuracy, and a subset containing the optimal combi-
nation of features was created using the Genetic Algorithm.

#e heatmap in Figure  4 shows that the correlation values 
between the "ve selected features range from +0.10 to +0.66, 
with six out of the ten pairs having a weak correlation value 
rho < 0.50 (ID 4, ID 10) = 0.43, (ID 4, ID 12) = 0.28, (ID 9, ID 
12) = 0.18, (ID 10,ID 12) = 0.10, (ID 10, ID 17) = 0.47, (ID 12,  
ID 17)  =  0.23 and the remaining four pairs having moderate 
correlation values (ID 4, ID 9) = 0.66, (ID 4, ID 17) = 0.57, (ID 9,  
ID 10) = 0.58, and (ID 9, ID 17) = 0.63, thereby suggesting that 
these "ve features are most suitable, since none of these pairs 
are highly correlated. Hence, we can conclude that the !ow 
cytometry features: CD8+CD45RA−CD27−CD28− (CD8+ E%ector 
Memory cells); CD4+CD45RA−CD27−CD28− (CD4+ E%ector 
Memory Cells); CD4+CD45RA+CD27−CD28− (CD4+ Terminally 
Di%erentiated E%ector Memory Cells re-expressing CD45RA); 
CD3−CD19+ (B cells); CD3+CD56+CD8+CD4+ (NKT cells) can be 
considered as an immunophenotyping pro"le which predicts the 
presence of prostate cancer in men with Prostate-Speci"c Antigen 
(PSA) levels below 20 ng ml−1.

3.3. Prostate Cancer Prediction: 
Immunophenotyping versus Prostate-
Speci"c Antigen (PSA) Data
#e Prostate-Speci"c Antigen (PSA) test measures circulating 
levels of PSA and is currently considered to be the best method 
for identifying an increased risk of localized prostate cancer. 
However, elevated PSA levels do not necessarily indicate the pres-
ence of prostate cancer, and a normal PSA test does not neces-
sarily exclude the presence of prostate cancer. PSA values tend to 
rise with age, and the total PSA levels (ng ml−1) recommended by 
the Prostate Cancer Risk Management Programme are as follows 
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TABLE 5 | FC-based prediction models using kNN classification and the selected flow cytometry features.

Prediction model name Feature IDS Accuracy (%) AUC (%) Optimal ROC Point (%)

FPR TPR

FC-PM(Correlation(5)) 4, 9, 10, 12, 17 83.33 83.40 16.13 82.93
FC-PM(Cosine(6)) 4, 9, 10, 11, 12, 17 83.33 81.83 29.03 92.68
FC-PM(Chebychev(6)) 4, 9, 10, 11, 12, 17 81.94 81.39 22.58 85.37
FC-PM(Minkowski(6)) 4, 9, 10, 11, 12, 17 80.56 79.78 25.81 85.37
FC-PM(Euclidean(6)) 4, 9, 10, 11, 12, 17 80.56 79.78 25.81 85.37
FC-PM(Seuclidean(6)) 4, 9, 10, 11, 12, 17 80.56 79.78 25.81 85.37
FC-PM(Mahalanobis(6)) 4, 9, 10, 11, 12, 17 77.78 76.55 32.26 85.37
FC-PM(Cityblock(7)) 4, 9, 10, 11, 12, 16, 17 77.78 76.55 32.26 85.37
FC-PM(Spearman(8)) 2, 4, 9, 10, 11, 12, 17, 19 83.33 70.89 38.71 80.49

The feature IDs map those presented in Table 2. The naming of the models includes the distance measure and number of features which were selected by the GA.

FIGURE 4 | Heatmap of flow cytometry features: Each cell of the heatmap provides a Spearman rho correlation value between two flow cytometry features.
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values between the individuals with benign disease and patients 
with cancer, χ2 (1, N = 72) = 0.03, p = 0.955.

PSA values were input into the kNN model and performance 
was evaluated using the LOOCV approach. Although experiments 
were performed with various distance measures, the Cityblock, 
Mahalanobis, Minkowski, Seuclidean, Euclidean and Chebychev 
returned exactly the same results, as shown in Table 7.

Figure  7 illustrates the AUCs and optimal ROC Points of 
PSA-PM and FC-PM (Correlation(5)). Table 8 shows a compari-
son of AUC statistics using PSA-PM and FC-PM. "e CI values 
shown in Table 8 are higher for FC-PM(Correlation(5)) thereby 
meaning that the model is more capable of achieving higher pre-
diction accuracies. Comparing the classi#cation performances of 
FC-PM(Correlation(5)) (Accuracy = 83.33%) and the PSA-PM 

(22): 50–59 years, PSA ≥ 3.0; 60–69 years, PSA ≥ 4.0; and 70 and 
over, PSA > 5.0. According to a study by the European Study of 
Screening for Prostate Cancer, screening can signi#cantly reduce 
death from prostate cancer by 29% (23–25). Herein, we compare 
the capacity of the proposed $ow cytometry-based prostate 
cancer predictive model (FC-PM) and a predictive model based 
on PSA blood test results (PSA-PM) to discriminate between 
benign disease and prostate cancer. Since PSA values were 
already between 1 and 20, it was not necessary to apply z-score 
transformation. Figure 6 shows the PSA values for individuals 
with benign disease and patients with cancer. A Kruskal–Wallis 
test sought signi#cant di%erences between the mean rank PSA 
values of the benign disease and cancer groups. "e test indicated 
that there were no signi#cant di%erences in the mean rank PSA 
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FIGURE 5 | AUC for FC-PM(Cosine(6)) and FC-PM(Correlation(5)). The ORP 
of each model is also shown on the graph. FC-PM (Cosine(6)) has ORP  
(TPR = 92.68, FPR = 29.03) and FC-PM (Correlation (5)) has ORP  
(TPR = 82.93, FPR = 16.13).

TABLE 6 | A comparison using FC-PM(Correlation(5)) and FC-PM(Cosine(6)).

FC-PM(Correlation(5)) FC-PM(Cosine(6))

AUC% 83.40 81.83
AUC (SE)a 0.0514 0.0550
AUC 95% CIb 0.728–0.911 0.710–0.899
Benign (% of correctly 
classified)

83.87 70.97

Cancer (% of correctly 
classified)

82.93 92.68

Misclassified (%) 16.67 16.67

aHanley and McNeil (20).
bBinomial exact.
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(Accuracy = 77.78%), there is a 5.55% increase in accuracy when 
using the FC-PM. Furthermore, there is a 12.9% increase in False 
Positive Rate (FPR) when using PSA-PM, as opposed to when 
using the FC-PM(Correlation(5)). In conclusion, the FC-PM 
(Correlation (5)) which is based on immunophenotyping features 
provides a more accurate identi"cation of prostate cancer than 
PSA-PM and is better able to discriminate between the presence 
of benign disease and cancer.

3.4. Does Adding the PSA Test Values  
to the Flow Cytometry Phenotyping 
Strengthen the Diagnostic Accuracy  
and Potential?
Given that current clinical practice uses the PSA test as an initial 
indicator of prostate cancer, we determined whether combin-
ing PSA test values with the selected #ow cytometry predictors 
can strengthen diagnostic accuracy of the PSA test (the PSAFC 

prediction model, PSAFC-PM). $e PSA-PM was tuned using 
the Euclidean distance measure, whereas the PSAFC-PM was 
tuned with the Correlation distance measure. Although the 
PSA-PM performed exactly the same when tuned with distance 
measures other than Euclidean as shown in Table 7, the Euclidean 
distance measure was selected because it is the simplest to 
compute. Experiments with various distance measures revealed 
that PSAFC-PM achieved its highest predictive accuracy using 
the correlation distance measure. Results of the performance 
evaluation using the best models are presented in Table 8 and 
illustrated in Figure  7. Comparing the predictive performance 
of the PSA-PM to the PSAFC-PM(Correlation(5)), an important 
observation is that the latter achieved 2.44% higher TPR than the 
PSA-PM, without increasing the FPR. Furthermore, the PSAFC-
PM(Correlation(5)) returned an overall predictive accuracy of 
79.17%, whereas the PSA-PM(Correlation(5)) returned 77.78% 
overall predictive accuracy, and thus an improvement of 1.39% 
when #ow cytometry features were combined with PSA. It is 
useful to observe the impact of the predictors on the classi"ca-
tion accuracy for each group of individuals, i.e., benign disease 
and cancer. Table 8 holds these values and it also contains the 
values of FC-PM for comparison purposes. Table 8 shows that the 
PSAFC-PM(Correlation(5)) performed better than the PSA-PM 
with regard to identifying benign disease (0.18% improvement), 
and it was also 2.44% more accurate at identifying cancer than  
the PSA-PM. In particular, the PSAFC-PM(Correlation(5)) 
achieved a 85.37% accuracy in detecting cancer, whereas the 
PSA-PM delivered 82.93% accuracy (a 2.44% di%erence).

$e PSA-based prediction models, PSA-PM and PSAFC-PM, 
clearly su%er from higher FPRs than the FC-PM model, primarily 
because combining the PSA with the FC predictors inherits the 
disadvantage of PSA returning a high number of false positive 
cases. Table 8 shows that combining PSA with #ow cytometry 
predictors increases the con"dence interval and reduces the 
Standard Error of the AUC (SE) of the prediction compared to 
using PSA predictors alone, meaning that fewer patients will be 
misdiagnosed when using the PSAFC-PM, as opposed to the 
PSA-PM model.

Herein, we propose a predictive model, PSAFC-PM, which 
improves the diagnostic capacity of the PSA test by combining 
PSA with #ow cytometry features. A very important "nding from 
the experiments is that if current clinical practice favors the con-
tinuation of the PSA test as an initial indicator of prostate cancer, 
then combining PSA predictor with a subset of #ow cytometry 
predictors can increase the accuracy of the initial PSA test.

4. DISCUSSION

$e results of this study demonstrate that the presence of prostate 
cancer in asymptomatic men with PSA levels <20 ng ml−1 can 
be better identi"ed using immune cell pro"les that have been 
generated using multiparametric #ow cytometricanalysis of the 
peripheral blood. Prediction models were implemented using an 
advanced computational data extraction approach and a com-
prehensive statistical analysis. $e computational approach com-
prised a metaheuristic optimization method, namely the Genetic 
Algorithm, which identi"ed signi"cant relationships between 
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TABLE 7 | Prediction using PSA data as input into the kNN classification model.

Prediction model Accuracy (%) AUC (%) Optimal ROC 
Point (%)

FPR TPR

PSA-PM(Cityblock) 77.78 76.95 29.03 82.93
PSA-PM(Mahalanobis) 77.78 76.95 29.03 82.93
PSA-PM(Minkowski) 77.78 76.95 29.03 82.93
PSA-PM(Seuclidean) 77.78 76.95 29.03 82.93
PSA-PM(Euclidean) 77.78 76.95 29.03 82.93
PSA-PM(Chebychev) 77.78 76.95 29.03 82.93
PSA-PM(Correlation) 56.94 50.00 100.00 100.00
PSA-PM(Cosine) 43.06 50.00 100.00 100.00
PSA-PM(Spearman) 56.94 50.00 100.00 100.00

FIGURE 6 | Distribution of the PSA values for individuals with benign disease and patients with prostate cancer.
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leukocyte population pro!les and the presence of benign disease 
(no prostate cancer) or prostate cancer. A subset of !ve "ow 
cytometry features was selected (CD8+CD45RA−CD27−CD28−; 
CD4+CD45RA−CD27−CD28−; CD4+CD45RA+CD27−CD28−; 
CD3−CD19+; CD3+CD56+CD8+CD4+) from a set of 20 features, 
which could potentially discriminate between the presence of 
benign disease and prostate cancer. A prostate cancer predic-
tion model was constructed using the selected features and 
the k-Nearest Neighbor classi!cation algorithm. #e proposed  
model, which takes as input the abovementioned !ve "ow cytom-
etry features, outperformed the predictive model which takes  

PSA values as input. In particular, the "ow cytometry-based 
model achieved Accuracy = 83.33%, AUC = 83.40%, and optimal 
ROC points of FPR = 16.13%, TPR = 82.93%, whereas the PSA-
based model achieved Accuracy = 77.78%, AUC = 76.95%, and 
optimal ROC points of FPR = 29.03%, TPR = 82.93%. Combining 
PSA and "ow cytometry-based parameters as predictors achieved 
Accuracy = 79.17%, AUC = 78.17%, and optimal ROC points of 
FPR = 29.03% TPR = 85.37%.

Since current clinical practice favors the use of the PSA test as 
an initial indicator of prostate cancer, complementing the PSA 
prediction model with a subset of "ow cytometry predictions 
can increase the accuracy of the initial prostate cancer test and 
reduce the misclassi!ed patient cases. #e proposed prediction 
model has the potential to improve outcomes of prostate cancer 
patients. Future studies will undertake further evaluations using 
the identi!ed set of cancer predictors, and explore the use of deep 
learning algorithms for the analysis and interpretation of high 
dimensional "ow cytometry data.

5. METHODS

#e prediction model was developed using a selected subset of 
"ow cytometry features and the k-Nearest Neighbor (kNN) clas-
si!cation algorithm. #e Genetic Algorithm proposed by Ludwig 
and Nunes (18) was utilized for the feature selection stage, and 
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TABLE 8 | A comparison using PSA-PM, FC-PM, and PSAFC-PM.

PSA-PM FC-PM(Correlation(5)) PSAFC-PM

AUC% 76.95 83.40 78.17
AUC (SEa) 0.0590 0.0514 0.0581
AUC 95% CIb 0.655–0.861 0.728–0.911 0.669 to 0.870
ORP TPR (%) 82.93 82.93 85.37
ORP FPR (%) 29.03 16.13 29.03
Accuracy (%) 77.78 83.33 79.17
Benign Accuracy (%) 70.79 83.87 70.97
Cancer Accuracy (%) 82.93 82.93 85.37
Misclassified (%) 22.22 16.67 20.83

aHanley and McNeil (20).
bBinomial exact.

FIGURE 7 | AUCs and optimal ROC points of PSA-PM, FC-
PM(Correlation(5)) and PSAFC-PM (Correlation(5)). This figure illustrates the 
differences among the models in predictive performance. FC-PM 
(Correlation(5)) was the best model in reducing the false positives. PSA-PM 
has ORP (TPR = 82.93, FPR = 29.03), FC-PM (Correlation (5)) has ORP  
(TPR = 82.93, FPR = 16.13), and PSAFC-PM (Correlation (5)) has ORP  
(TPR = 85.37, FPR = 29.03).
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this algorithm returned the best combination of !ow cytometry 
features (i.e., predictors) for discriminating between patients with 
benign disease and patients with cancer. "ese predictors were 
then input into the kNN classi#cation algorithm. "e kNN clas-
si#er is used to predict the disease status of an individual using 
new and previously unseen patient records. Feature selection is 
important because it enables only the best subset of features (i.e., 
predictors) to be selected for the prediction task and, thus, removes 
the “noisy” features that are not useful in identifying cancer.

"e Genetic Algorithm is a powerful metaheuristic optimiza-
tion method which aims to #nd optimal solutions to NP-hard 
optimization problems (26)—these are problems which require 
searching a space for the best solution (27). Let X be a m x n 
matrix with m rows and n columns, where m is the total number 
of patient records and n is the total number of !ow cytometry 

features. Each patient record, xi, is represented by an n-dimen-
sional feature vector, and it is given a corresponding known class 
label yi, which has a value of either benign disease or cancer. "e 
known labels were derived because of the highly accurate TPTP 
biopsy. "e Genetic Algorithm is designed to take as input the 
m x n matrix X, and a m x 1 vector Y, where each element yi 
contains the target output of each patient record. "e Genetic 
Algorithm returns a set of indices of size λ containing the selected 
features. Importantly, the λ number of features returned are the 
best combination of features for discriminating the two groups 
of individuals (i.e., benign disease or cancer). It was important to 
use a Genetic Algorithm for the !ow cytometry feature selection 
task for three main reasons:

t� "ere were no signi#cant di$erences between the mean !ow 
cytometry values of the benign disease and cancer groups 
(Table  4), as a consequence of which a more sophisticated 
approach for identifying the best predictor features was 
needed.

t� Searching for the best number of features is a combinatorial 
optimization problem, such that

 n
n
!
− !2( )λ

, (2)

where n is the total number of !ow cytometry features and λ is 
the desired number of features. Given that the value of λ is not 
known beforehand, experiments are needed with the number of 
features starting from λ = 2, …, 20. "e total possible number of 
combinations is 104,855,5 making this a computational expensive 
task, which is also impossible to be completed by basic statistical 
approaches. "e Genetic Algorithm proposed by Ludwig and 
Nunes (18) was adapted and applied to extract the best set of !ow 
cytometry features.

t� When choosing the best subset of features for a predictive 
modeling task, it is important to take into consideration the 
interaction between features and the e&ciency of these, as 
a group, for predicting an outcome (i.e., whether a patient 
belongs to the benign disease or cancer class), as opposed to 
choosing the best subset of features based on an analysis of 
each feature alone.

5.1. The k-Nearest Neighbor (kNN) 
Classi"cation Algorithm
"e subset of features returned by the Genetic Algorithm 
was input into the kNN classi#er, and this was then used to 
construct a prediction model based on the particular subset 
of features. Nearest-neighbor classi#ers are based on learning 
analogy, meaning that by comparing a given test case with 
training cases that are similar to the test cases. All training 
cases are represented as points in an n-dimensional space. "e 
kNN classi#er is a popular classi#cation method, primarily due 
to its simplicity. It is a non-parametric approach and, hence, 
does not make any assumptions about the distribution of the 
data. When given an unknown case to classify, a kNN classi#er 
searches the pattern space for the k training cases, i.e., “near-
est neighbors” that are closest to the unknown case (i.e., the 
case that needs to be classi#ed). Many distance measures exist, 
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including the Euclidean distance, the Minkowski distance, the 
Hamming distance, Pearson’s correlation coe!cient, and cosine 
similarity. "e performance of the kNN classi#er depends on 
the choice of k-nearest neighbors, and the distance measure d 
selected. "e values selected for k and d depend on the dataset 
and the speci#cation of the problem, and for this reason they are 
selected experimentally. Given a patient record (represented as 
a data point) x holding the $ow cytometry values; a k number 
of neighbors; and a distance metric d, the kNN classi#er #rst 
locates the k data points (i.e., k patient records) that are the 
closest to the data point x (i.e., patient record x) as the k-nearest 
neighbors to determine the target class of the data point. "e 
proposed kNN approach uses the exhaustive search method, 
also known as the brute force method. "e exhaustive search 
method #nds the distance from each query point (i.e., a record 
to be classi#ed), x, to every point in X, ranks them in ascending 
order, and returns the k points with the smallest distances. For 
the experiments reported in this paper, the kNN classi#er can 
be tuned by selecting a distance measure d, and a k number of 
neighbors.

5.2. Performance Evaluation Measures
With regard to measuring performance, the aim was to adopt 
a variety of relevant evaluation metrics in order to get a more 
representative view of each classi#er’s performance. Let |TP| 
be the total number of patients with cancer correctly classi#ed 
as having cancer; |TN| be total the number of benign patients 
correctly classi#ed as benign; |FP| be the total number of benign 
patients incorrectly classi#ed as cancer patients; |FN| be the total 
number of cancer patients incorrectly classi#ed as benign; |P| be 
the total number of cancer patients that exist in the dataset, where 
|P| = |TP| + |FN|; and |N| be the total number of benign that exist 
in the dataset, where |N | = |FP| + |TN|. "e following commonly 
used evaluation measures can be de#ned:

 
Accuracy TP TN

TP FP FN TN
= | | + | |
| | + | | + | | + | |

,∈ ,[ ],0 1
 

(3)

 
TPR TP

TP FN
= | |
| | + | |

,∈ ,[ ],0 1
 

(4)

 
TNR TN

TN FP
= | |
| | + | |

,∈ ,[ ],0 1
 

(5)

 
FNR FN

TP FN
Sensitivity= | |

| | + | |
= − ,∈ ,1 0 1[ ],

 
(6)

 
FPR FP

FP TN
Specificity= | |

| | + | |
= − ,∈ , .1 0 1[ ]

 
(7)

"e closer the values of Accuracy, True Positive Rate (i.e., TPR, 
Sensitivity) and True Negative Rate (i.e., TNR, Speci#city) are to 
1.0, then the better the classi#cation performance of a system. "e 
Receiver Operating Characteristic (ROC) is another important 
metric which can be used to evaluate the quality of a classi#er’s 
performance. "e optimal operating point of the ROC curve is 
made up of the False Positive Rate (FPR) and True Positive Rate 

(TPR) values. "e optimal operating point for the ROC curve is 
computed by #nding the slope, S, using function (8) and then 
identifying the optimal operating point by moving the straight 
line with slope S from the upper le& corner of the ROC plot 
(FPR = 0, TPR = 1) down and to the right, until it intersects the 
ROC curve.

 
S Cost P N Cost N N

Cost N P Cost P P
N
P

= | − |
| − |

× ,( ) ( )
( ) ( )  

(8)

where Cost(N|P) is the cost of misclassifying a positive class 
as a negative class; Cost(P|N) is the cost of misclassifying a 
negative class, as a positive class; P and N are the total instance 
counts in the positive and negative class, respectively. The Area 
Under the ROC Curve (AUC) can be computed and reflects 
a system’s performance at discriminating between the data 
obtained from individuals with benign disease and patients 
with cancer. The larger the AUC, the better the overall capacity 
of the classification system to correctly identify benign disease 
and cancer.

6. POTENTIAL IMPACT

It is essential that men with low-risk prostate abnormalities 
are not diagnosed as having prostate cancer, as even those 
with low-grade disease do not require active treatment, yet 
they become “labeled” as having cancer. "is can have adverse 
psychological and #nancial consequences and assign these 
men to life-long surveillance. "e strategies described herein 
have the potential to deliver new approaches for diagnosing 
asymptomatic men with an elevated PSA <20 ng l−1. Inserting 
the data derived from the analysis of the peripheral blood from 
an individual into the algorithm will return a prediction about 
that individual. "e algorithm could be retrained when more 
patient data are collected in order to learn patterns from a 
larger population, and it is possible that this will increase the 
accuracy of the approach. For example, re-training can occur 
every 50 new records. Such approaches will spare men with 
benign disease or low-risk cancer from unnecessary invasive 
diagnostic procedures such as TRUS guided prostate biopsies 
or TPTPB.
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Abstract We demonstrate that prostate cancer can be identified by flow cytometric profiling of
blood immune cell subsets. Herein, we profiled natural killer (NK) cell subsets in the blood of 72
asymptomatic men with Prostate-Specific Antigen (PSA) levels < 20 ng ml-1, of whom 31 had
benign disease (no cancer) and 41 had prostate cancer. Statistical and computational methods

identified a panel of eight phenotypic features (CD56dimCD16high, CD56þDNAM " 1",

CD56þLAIR" 1þ, CD56þLAIR" 1", CD56brightCD8þ, CD56þNKp30þ, CD56þNKp30", CD56þNKp46þ)
that, when incorporated into an Ensemble machine learning prediction model, distinguished
between the presence of benign prostate disease and prostate cancer. The machine learning model
was then adapted to predict the D’Amico Risk Classification using data from 54 patients with
prostate cancer and was shown to accurately differentiate between the presence of low-/
intermediate-risk disease and high-risk disease without the need for additional clinical data. This
simple blood test has the potential to transform prostate cancer diagnostics.

Introduction
Early diagnosis and treatment increase curative rates for many cancers. The WHO considers that the
burden of cancer on health services can be reduced by early detection and that this is achievable via
three integrated steps: 1) awareness and accessing care, 2) clinical evaluation, diagnosis, and stag-
ing, 3) access to treatment (http://www.who.int/mediacentre/factsheets/fs297/en/). Although the
clinical introduction of the Prostate-Specific Antigen (PSA) test in 1986 increased the early diagnosis
of localized prostate cancer (Catalona et al., 1991; Hankey et al., 1999), elevated PSA levels are
not necessarily indicative of prostate cancer because PSA levels can be raised by prostatitis, other
localised infections, benign hyperplasia and/or factors such as physical stress. Contrastingly, 15% of
men with ‘normal’ PSA levels typically have prostate cancer, with a further 15% of these cancers
being high-grade (https://prostatecanceruk.org/prostate-information/prostate-tests/psa-test). The

Hood et al. eLife 2020;9:e50936. DOI: https://doi.org/10.7554/eLife.50936 1 of 30
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reliable diagnosis of prostate cancer based on PSA levels alone is therefore not possible and confir-

mation using invasive biopsies is currently required. In 2011/12 approximately 32,000 diagnostic

biopsies (28,000 TRUS and 4,000 TPTPB) were performed by the NHS in England (NICE, 2014).

Although the transrectal ultrasound guided prostate (TRUS) biopsy is the most commonly used tech-

nique, it is limited to taking 10 to 12 biopsies primarily from the peripheral zone of the prostate and

has a positive detection rate between 26% and 33% (Aganovic et al., 2011; Nafie et al., 2014a;

Naughton et al., 2000; Yuasa et al., 2008). The Transperineal Template Prostate biopsy (TPTPB) is

a 36 core technique that samples all regions of the prostate and delivers a better positive detection

rate between 55% and 68% (Dimmen et al., 2012; Nafie et al., 2014b; Pal et al., 2012). However,

invasive biopsies are painful and associated with a significant risk of potentially serious side-effects

such as urosepsis and erectile dysfunction (Chang et al., 2013). Given the potential challenges of

invasive tests and the risk of significant side-effects, considerable interest in the potential of non-

invasive blood or urine-based tests/approaches (‘liquid biopsies’) for diagnosing disease has devel-

oped (Quandt et al., 2017). Liquid biopsies can provide information about both the tumour (e.g. cir-

culating cells, cell-free and exosomal DNA and RNA) and the immune response (e.g. immune cell

composition and their gene, protein, and exosome expression profiles). Liquid biopsies are minimally

invasive and enable serial assessments and ‘live’ monitoring speedily and cost-effectively

(Quandt et al., 2017).
Based on the reciprocal interaction between cancer and the immune system, we have proposed

that immunological signatures within the peripheral blood (the peripheral blood ‘immunome’) can

discriminate between men with benign prostate disease and those with prostate cancer and thereby

reduce the dependency of diagnosis on invasive biopsies. To this end, we have previously shown

that the incorporation of a peripheral blood immune phenotyping-based feature set comprising five

phenotypic features CD8þCD45RA"CD27"CD28" (CD8þ Effector Memory cells),

eLife digest With an estimated 1.8 million new cases in 2018 alone, prostate cancer is the
fourth most common cancer in the world. Catching the disease early increases the chances of
survival, but this cancer remains difficult to detect.

The best diagnostic test currently available measures the blood level of a protein called the
prostate-specific antigen (PSA for short). Heightened amounts of PSA may mean that the patient has
cancer, but 15% of individuals with prostate cancer have normal levels of the protein, and many
healthy people can have high amounts of PSA. This blood test is therefore not widely accepted as a
reliable diagnostic tool.

Other methods exist to detect prostate cancer, yet their results are limited. A small piece of the
prostate can be taken for analysis, but results from this invasive procedure are often incorrect. Scans
can help to spot a tumor, but they are not accurate enough to be conclusive on their own. New
tests are therefore urgently needed.

Prostate cancer is often associated with changes in the immune system that can be detected
through a blood test. In particular, the appearance of a type of white blood (immune) cells called
natural killer cells may be altered. Yet, it was unclear whether measurements based on these cells
could help to detect prostate cancer and assess the severity of the disease.

Here, Hood, Cosma et al. collected and examined the natural killer cells of 72 participants with
slightly elevated PSA levels and no other symptoms. Amongst these, 31 individuals had prostate
cancer and 41 were healthy. These biological data were then used to produce computer models that
could detect the presence of the disease, as well as assess its severity. The algorithms were
developed using machine learning, where previous patient information is used to make prediction
on new data. This work resulted in a new detection tool which was 12.5% more accurate than the
PSA test in detecting prostate cancer; and in a detection tool that was 99% accurate in predicting
the risk of the disease (in terms of clinical significance) in individuals with prostate cancer.

Although these new approaches first need to be validated in the clinic before being deployed,
they could ultimately improve the detection and diagnosis of prostate cancer, saving lives and
reducing the need for further tests.

Hood et al. eLife 2020;9:e50936. DOI: https://doi.org/10.7554/eLife.50936 2 of 30
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CD4þCD45RA"CD27"CD28" (CD4þ Effector Memory cells), CD4þCD45RAþCD27"CD28" (CD4þ Ter-

minally Differentiated Effector Memory Cells re-expressing CD45RA), CD3"CD19þ (B cells),

CD3þCD56þCD8þCD4þ (NKT cells) into a computation-based prediction tool enables the better
detection of prostate cancer and strengthens the accuracy of the PSA test in asymptomatic men hav-
ing PSA levels < 20 ng/ml (Cosma et al., 2017). Herein, we have extended this new approach to
determine if phenotypic profiling of peripheral blood natural killer (NK) cell subsets can also discrimi-
nate between the presence of benign prostate disease and prostate cancer in the same cohort of
asymptomatic men. We also investigate the potential of the peripheral blood dataset to
discriminate between low- or intermediate-risk prostate cancer and high-risk prostate cancer in those
men having prostate cancer.

Results

Distinguishing between benign prostate disease and prostate cancer:
statistical analysis of NK cell phenotypic features and PSA levels
Herein, we consider a ‘feature’ to be a single phenotypic variable (as determined using flow cytome-
try) or a pre-grouped set of phenotypic variables, as shown in Table 1. It was not possible to discrim-
inate between men with benign prostate disease and men with prostate cancer based on differences
between phenotypic features/profiles due to their similarity (Table 1, Figure 1, Figure 2).

These findings highlight the difficulty in identifying combinations of features that can best identify
the presence of cancer. These difficulties are compounded by the challenge of identifying the best
combination of predictors which comprise n number of features, and that features within a combina-
tion, ideally, should not correlate. It is important to evaluate correlations between features, because
if two features are highly correlated, then only one of these could serve as a candidate predictor.
However, there may be occasions where both features are needed and besides the impact of this on
the dimensionality of the dataset, there is no other negative impact. Furthermore, when two features
are highly correlated and are important, it may be difficult to decide which feature to remove. Fig-
ure 3 shows the correlations between features, where +1.0 indicates a strong positive correlation
between two features, and "1.0 indicates a strong negative correlation between two features.

The Kolmogorov-Smirnov and Shapiro-Wilk tests of normality were carried out to determine
whether the dataset is normally distributed, as this would determine the choice of statistical tests,
that is whether to use parametric (for normally distributed datasets), or non-parametric (for not nor-
mally distributed datasets) tests. The results of the normality tests are shown in Table 2. The results
revealed that only 7–8 features (depending on the normality test) were normally distributed (with
p> 0:05), and for the remaining features the p value was less than 0.05 (p< 0:05) which indicates that
there is a statistically significant difference between the distribution of the data of those features
and the normal distribution. Based on the results of the test, we can conclude that the dataset is not
normally distributed.

Given that most features in the dataset are not normally distributed, the Kruskal-Wallis (also
called the ‘one-way ANOVA on ranks’, a rank-based non-parametric test) tests were used to check
for statistically significant differences between the mean ranks of the NK cell phenotypic features in
men with benign prostate disease and patients with prostate cancer rather than its parametric equiv-
alent (one-way analysis of variance, ANOVA). Although the Kruskal-Wallis test did not return any sig-
nificant differences in the mean PSA values between individuals with benign disease and those with

prostate cancer (!2 ¼ 0; p=0.949, Figure 4), statistically significant differences at the alpha level of

a ¼ 0:05 in the mean ranks of the CD56brightCD8þ (ID14, p=0.007), CD56þNKp30þ (ID15, p=0.008),

CD56þNKp30" (ID16, p=0.031), CD56þNKp46þ (ID17, p=0.023) populations in men with benign pros-
tate disease and those with prostate cancer (Table 3) were observed.

This initial analysis provided insight into which phenotypic features might be good candidates for
distinguishing between the presence of benign disease and prostate cancer. The next step was to
examine whether using these as inputs into a machine learning algorithm can achieve this. An
Ensemble Subspace kNN classifier was developed for the task at hand. The section which follows
explains the approaches that were used to compare the diagnostic accuracy of the classifier when
using the subset of features derived from the statistical analysis, and those features which were
selected as a combination using the Genetic Algorithm (GA) for feature selection.

Hood et al. eLife 2020;9:e50936. DOI: https://doi.org/10.7554/eLife.50936 3 of 30
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Table 1. Descriptive statistics of the dataset.
Min. Max. Mean Std. IQR Range Diff.

Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc.

PSA 4.70 4.70 19.00 19.00 8.26 8.34 3.31 3.28 3.30 4.08 14.30 14.30 !0.08

CD56dim %

1 CD16þ 83.85 73.04 96.61 96.98 90.98 90.64 3.35 5.46 4.13 5.02 12.76 23.94 0.34

2 CD16high 24.38 49.66 87.46 89.33 72.88 73.32 11.74 10.22 15.00 10.45 63.08 39.67 !0.44

3 CD16low 5.17 6.57 64.22 44.00 17.74 16.84 10.40 7.45 8.76 7.66 59.05 37.43 0.90

4 CD16! 1.41 1.25 11.11 18.06 4.83 4.89 2.45 3.48 2.58 2.68 9.70 16.81 !0.06

5 CD56dimtotal 91.29 87.24 98.70 98.70 95.81 95.53 2.02 2.58 2.96 3.02 7.41 11.46 0.28

CD56bright %

6 CD16þ 0.46 0.65 5.10 5.88 1.91 1.83 1.06 1.04 1.64 0.92 4.64 5.23 0.08

7 CD16high 0.09 0.12 1.97 1.15 0.60 0.47 0.44 0.25 0.50 0.40 1.88 1.03 0.13

8 CD16low 0.34 0.40 3.11 4.95 1.27 1.35 0.72 0.86 0.97 0.63 2.77 4.55 !0.07

9 CD16! 0.61 0.58 5.78 9.09 2.28 2.64 1.14 1.82 1.42 1.75 5.17 8.51 !0.36

10 CD56bright total 1.30 1.30 8.71 12.76 4.19 4.47 2.02 2.58 2.95 3.01 7.41 11.46 !0.28

CD8%

11 CD56þCD8þ 21.88 9.20 86.70 80.47 46.43 40.71 15.64 14.66 24.03 20.05 64.82 71.27 5.72

12 CD56þCD8! 13.30 19.53 78.12 90.80 53.57 59.29 15.64 14.66 24.03 20.05 64.82 71.27 !5.72

13 CD56dimCD8þ 19.63 8.60 82.38 77.47 45.18 39.11 15.31 14.10 24.72 19.36 62.75 68.87 6.07

14 CD56brightCD8þ 0.37 0.25 4.75 6.64 1.41 1.70 1.07 1.41 0.70 1.60 4.38 6.39 !0.29

NKp30 %

15 CD56þNKp30þ 40.69 56.80 96.74 98.43 79.78 88.56 16.42 10.41 21.80 10.44 56.05 41.63 !8.78

16 CD56þNKp30! 3.26 1.57 58.34 44.59 20.05 11.43 16.22 10.46 20.54 10.49 55.08 43.02 8.61

NKp46 %

17 CD56þNKp46þ 38.11 45.37 86.52 95.82 62.65 69.82 13.49 11.58 23.90 12.71 48.41 50.45 !7.18

18 CD56þNKp46! 14.02 4.32 62.97 55.68 38.40 30.87 13.58 11.64 24.89 13.44 48.95 51.36 7.53

DNAM-1 %

19 CD56þDNAM ! 1þ 63.69 88.56 99.18 99.60 95.35 96.46 6.81 2.59 3.37 3.49 35.49 11.04 !1.11

20 CD56þDNAM ! 1! 0.86 0.42 37.29 11.66 4.74 3.59 6.96 2.61 3.45 3.54 36.43 11.24 1.14

NKG2D %

21 CD56þNKG2Dþ 85.17 80.79 98.77 98.96 93.49 94.07 4.45 4.87 6.81 3.83 13.60 18.17 !0.58

22 CD56þNKG2D! 1.22 1.03 14.76 19.12 6.44 5.84 4.36 4.76 6.80 3.96 13.54 18.09 0.60

PSA 4.70 4.70 19.00 19.00 8.26 8.34 3.31 3.28 3.30 4.08 14.30 14.30 !0.08

NKp44 %

23 CD56þNKp44þ 0.43 0.28 3.71 6.77 1.16 1.34 0.82 1.20 0.78 1.25 3.28 6.49 !0.18

24 CD56þNKp44! 96.10 93.70 99.53 99.70 98.82 98.64 0.83 1.13 0.80 1.25 3.43 6.00 0.18

CD85j %

25 CD56þCD85jþ 19.53 14.21 84.73 91.59 53.37 55.10 19.04 18.34 30.49 20.23 65.20 77.38 !1.74

26 CD56þCD85j! 14.93 8.50 81.54 86.08 46.94 45.24 19.21 18.43 30.28 21.48 66.61 77.58 1.69

LAIR-1 %

27 CD56þLAIR! 1þ 94.97 21.43 99.90 99.89 99.07 97.47 1.07 12.19 0.49 0.47 4.93 78.46 1.60

28 CD56þLAIR! 1! 0.02 0.05 5.24 78.20 0.76 2.40 1.02 12.15 0.42 0.43 5.22 78.15 !1.65

NKG2A %

29 CD56þNKG2Aþ 20.43 19.01 77.57 73.01 46.14 44.24 17.41 13.73 30.82 17.47 57.14 54.00 1.90

30 CD56þNKG2A! 22.62 27.11 79.40 80.85 54.01 55.99 17.39 13.67 30.48 17.90 56.78 53.74 !1.98

Table 1 continued on next page
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Distinguishing between benign prostate disease and prostate cancer:
GA
The GA was used to identify a subset of features that, as a combination, provide an NK cell-based
immunophenotypic ‘fingerprint’ which can determine if an asymptomatic individual with PSA levels
below 20 ng ml-1 has benign prostate disease or prostate cancer. This fingerprint, or feature set,
would then be used to construct a diagnostic/prediction model. Given that GAs stochastically select
multiple individuals (i.e. features) from the current population (based on their ‘fitness’), each run can
return different results. A common approach to identifying the best solution(s) is, therefore, to run
the algorithm several times to obtain the frequency of the solution(s). Since the aim herein is to iden-
tify the most commonly occurring subset of NK cell phenotypic predictors, the GA was applied to
the dataset and the most frequent subset of features returned was considered as being the best and
most promising.

Let fc denote the number of times (frequency) a combination was returned during the n number
of runs, then the relative frequency of a combination (Rfc) can be calculated using formula

(Equation 1),

Rfc ¼
fc

n
(1)

Table 4 shows the most frequent feature combinations returned at the end of each of the 30 runs
when setting l to different values. In Table 4, l is the number of features in a combination. No. dif-
ferent comb is the number of unique combinations returned during the n number of runs (i.e. n = 30)
for a given l; Comb. with highest freq is the combination which was returned most frequently during
the n number of runs; Freq of Comb. is the frequency of the most common combination found in the
previous column; Relative Freq. (%) is computed using formula (Equation 1) converted to a
percentage.

As the optimum number of features is not known, the GA was run by setting l ¼ 2; 3; . . . ; n where
n is the total number of features in the dataset. Table 4 shows the results for the first 10 combina-
tions. The results indicate that the combination comprising four features is the most promising in
terms of its ability to discriminate between benign prostate disease and prostate cancer on NK cell
phenotypic data alone. Features 2, 20, 27, 28, were returned in all 30 runs when searching for the
best combination comprising of four features. Furthermore, features 20, 27, 28 were returned
together in all combinations comprising more than three features (see feature ID’s in combinations
l ¼ 4 to l ¼ 10 in Table 4). These results strongly suggest that these are good predictors when
grouped. The fact that the same combination was returned in 30 iterations is a strong indicator that
these four features are the most reliable for distinguishing between the presence of benign prostate
disease and prostate cancer. Although the statistical analysis presented in Table 3 determined that

features: ID14: CD56brightCD8þ, ID15: CD56þNKp30þ, ID16: CD56þNKp30#, and ID17: CD56þNKp46þ

were the only ones with values which were significantly different in the two groups at a ¼ 0:05, and
for which p values were therefore less than 0.05, none of the features selected by the statistical anal-
ysis were returned by the GA when searching for the best combination of features for discriminating
between the presence of benign prostate disease and prostate cancer. The features selected by the

GA were: ID2: CD56dimCD16high, ID20: CD56þDNAM # 1#, ID27: CD56þLAIR# 1þ, and

Table 1 continued

Min. Max. Mean Std. IQR Range Diff.

Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc.

2B4 %

31 CD56þ2B4þ 98.41 97.06 99.99 99.96 99.53 99.50 0.39 0.59 0.32 0.33 1.58 2.90 0.02

32 CD56þ2B4# 0.01 0.05 1.59 2.95 0.48 0.50 0.39 0.59 0.31 0.34 1.58 2.90 #0.02

Min. is the minimum value, Max. is maximum value, Mean is the mean or average value, and Std. is Standard Deviation. Range is the difference between

the minimum and maximum values. The Interquartile range (IQR) is a measure of data variability and was derived by computing the distance between the

Upper Quartile (i.e. top) and Lower Quartile (i.e. bottom) of the boxes illustrated in Figure 1. Difference is computed as diff = mean(Benign)-mean

(Cancer).
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Figure 1. NK cell phenotypic features in men with benign prostate disease and patients with prostate cancer. Boxplots represent the flow cytometry

values of each feature for patients with benign disease and with prostate cancer.

Hood et al. eLife 2020;9:e50936. DOI: https://doi.org/10.7554/eLife.50936 6 of 30

Research article Cancer Biology Computational and Systems Biology



Improving the Diagnostic Yield of Prostate Cancer – Masood A. Khan 
________________________________________ 

 

140 | P a g e  
 

 

 

 

 

 

 

 

 

ID28: CD56þLAIR" 1". Referring back to Figure 3 and the correlation values between the selected

features 2, 20, 27, 28, 14, 15, 16, 17, it is shown that these features do not have a strong positive

correlation. There is a strong negative correlation between features 27 and 28, but we decided to

keep both features since these were selected by the feature selection method.
The next step in the analysis involves evaluating the predictive performance of the feature subsets

returned by the statistical test and by the GA. The features identified from the statistical and GA

approaches were input into the proposed Ensemble Subspace kNN classifier to determine whether

it can learn these features and discriminate between the presence of benign prostate disease and

prostate cancer. For transparency of the machine learning model, it was important to keep the pre-

dictor selection and machine learning processes separate. The feature selection algorithm identified

a set of novel NK cell phenotypic features for diagnosing the presence of prostate cancer which will

be used to construct a transparent prediction tool.

Distinguishing between benign prostate disease and prostate cancer:
machine learning
This section describes the outcome of experiments that were performed to determine the predictive

performance of various feature subsets using the Ensemble Subspace kNN model, which was

designed for the task. Machine learning classifiers that are constructed using small training sets have

a large variance which means that the estimate of the target function will change if different training

data are used (Skurichina and Duin, 2002). It is therefore expected, and normal, that classifiers will

exhibit some variance. This means that small changes in input variable values can result in very differ-

ent classification rules. To ensure that the proposed approach does not suffer from low variance, we

evaluated the performance of the classifier using the 10-fold cross-validation approach which was

repeated 30 times, for which the average and standard deviation of each run were recorded. Multi-

ple runs of 10-fold cross-validation are performed using different partitions (i.e. folds), and the vali-

dation results are averaged over the runs to estimate a final predictive model. Each run of the cross-
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Figure 2. Mean and standard deviation values of flow cytometry features.
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validation involves randomly partitioning a sample of data into complementary subsets, for which

one subset is used as the training set, and the other is used as the validation subset. Cross validation

randomly partitions the dataset into training and validation sets to limit overfitting problems, and to

provide an insight into how the model will generalise to an independent dataset which was not pre-

viously seen by the model. A random seed generator was used to generate a different sequence of

values each time the k-fold was run, and this was reseeded using a seed that was created using the

current time. It is normal that a classifier returns a different validation accuracy in each fold and run,

since it is training and validating on different samples. The aim is to create a low variance classifier,

meaning that the results of each validation test are close together. The closer the results of each vali-

dation test, the more robust the classifier. To evaluate the predictive performance of various feature

subsets derived from the computational and statistical feature selection approaches, each of these

feature subsets was input into an Ensemble Subspace kNN classifier. Applying 10-fold validation

resulted in 10 different partitions of the dataset of approximately 64 randomly selected samples for

training and 7 randomly selected samples for validation in each partition (1 dataset comprising 63

training cases and 8 validation cases; and 9 datasets comprising 64 validation cases and 7 validation

cases). All samples went through validation at some point during the evaluations. We consider 10-

fold cross validation to be suitable given the small size of the dataset and the fact that sufficient

samples are needed during the training process.
Table 5 shows the results of the comparison when running the 10-fold validation 30 times using

six sets of features: 1) the four features selected by the GA; 2) the four features which were returned

by the Kruskal-Wallis statistical test (STAT); 3) combined features selected by the GA and the statisti-

cal test (GA+STAT); 4) PSA values combined with features selected by the GA and the statistical test

Figure 3. Correlations between features.
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(PSA+GA+STAT); 5) PSA values alone as a predictor (PSA); and 6) using all 32 features (All features).

The averages of the Area Under the Curve (AUC), Optimal ROC Point (ORP) False Positive Rate

(FPR) of the AUC, ORP True Positive Rate (TPR) of the AUC, and Accuracy (ACC) of each fold are

provided. The last column of Table 5 shows the Rank of each model, where 1 is the best model and

Table 2. Tests of normality results.
Tests of normality

NK cell values Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

1 CD56dim CD16þ 0.15 71.00 0.00 0.85 71.00 0.00

2 CD56dim CD16high 0.11 71.00 0.03 0.89 71.00 0.00

3 CD56dim CD16low 0.17 71.00 0.00 0.79 71.00 0.00

4 CD56dim CD16" 0.19 71.00 0.00 0.82 71.00 0.00

5 CD56dim CD56dimtotal% 0.15 71.00 0.00 0.91 71.00 0.00

6 CD56bright CD16þ 0.13 71.00 0.00 0.88 71.00 0.00

7 CD56bright CD16high 0.15 71.00 0.00 0.87 71.00 0.00

8 CD56bright CD16low 0.14 71.00 0.00 0.85 71.00 0.00

9 CD56bright CD16" 0.16 71.00 0.00 0.86 71.00 0.00

10 CD56bright CD56bright total 0.15 71.00 0.00 0.91 71.00 0.00

11 CD8 CD56þCD8þ 0.10 71.00 0.06 0.98 71.00 0.17

12 CD8 CD56þCD8" 0.10 71.00 0.06 0.98 71.00 0.17

13 CD8 CD56dimCD8þ 0.09 71.00 0.20* 0.98 71.00 0.24

14 CD8 CD56brightCD8þ 0.19 71.00 0.00 0.82 71.00 0.00

15 NKp30 CD56þNKp30þ 0.21 71.00 0.00 0.81 71.00 0.00

16 NKp30 CD56þNKp30" 0.21 71.00 0.00 0.81 71.00 0.00

17 NKp46 CD56þNKp46þ 0.08 71.00 0.20* 0.98 71.00 0.52

18 NKp46 CD56þNKp46" 0.07 71.00 0.20* 0.99 71.00 0.57

19 DNAM " 1 CD56þDNAM " 1þ 0.23 71.00 0.00 0.56 71.00 0.00

20 DNAM " 1 CD56þDNAM " 1" 0.23 71.00 0.00 0.55 71.00 0.00

21 NKG2D CD56þNKG2Dþ 0.19 71.00 0.00 0.84 71.00 0.00

22 NKG2D CD56þNKG2D" 0.18 71.00 0.00 0.85 71.00 0.00

23 NKp44 CD56þNKp44þ 0.18 71.00 0.00 0.76 71.00 0.00

24 NKp44 CD56þNKp44" 0.17 71.00 0.00 0.78 71.00 0.00

25 CD85j CD56þCD85jþ 0.11 71.00 0.05 0.96 71.00 0.02

26 CD85j CD56þCD85j" 0.10 71.00 0.07 0.96 71.00 0.02

27 LAIR" 1 CD56þLAIR" 1þ 0.43 71.00 0.00 0.14 71.00 0.00

28 LAIR" 1 CD56þLAIR" 1" 0.43 71.00 0.00 0.14 71.00 0.00

29 NKG2A CD56þNKG2Aþ 0.09 71.00 0.20* 0.97 71.00 0.11

30 NKG2A CD56þNKG2A" 0.08 71.00 0.20* 0.97 71.00 0.10

31 2B4 CD56þ2B4þ 0.23 71.00 0.00 0.75 71.00 0.00

32 2B4 CD56þ2B4" 0.23 71.00 0.00 0.75 71.00 0.00

*. This is a lower bound of the true significance.

Those values in bold are of those features whose data is normally distributed.

If the p> 0:05, we can accept the null hypothesis, that there is no statistically significant difference between the data and the normal distribution, hence we

can presume that the data of those features are normally distributed.

If the p< 0:05, we can reject the null hypothesis because there is a statistically significant difference between the data and the normal distribution, hence

we can presume that the data of those features are not normally distributed.
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6 is the worst. The results of each k-fold were averaged, and these average values are plotted in the

box plot shown in Figure 5. As shown in Table 5, combining the features selected by the GA ID2:

CD56dimCD16high, ID20: CD56þDNAM " 1", ID27: CD56þLAIR" 1þ, ID28: CD56þLAIR" 1"; with the

four features which were returned by the Kruskal-Wallis statistical test as features with values which

were statistically significant between individuals with benign prostate disease and patients with pros-

tate cancer, ID14: CD56brightCD8þ, ID15: CD56þNKp30þ, ID16: CD56þNKp30", ID17: CD56þNKp46þ

yielded the highest classification accuracy, with AUC = 0.818, ORP FPR = 0.201, ORP TPR = 0.836

and Accuracy = 0.821. PSA values input into the classifier resulted in weak classification perfor-

mance, AUC = 0.698, ORP FPR = 0.217, ORP TPR = 0.609, and Accuracy = 0.692. Although PSA is

used as a screening test in clinical practice for identifying prostate cancer in men, it is the weakest of

all the predictors. Importantly, predictive accuracy improved when PSA is combined with GA+STAT

flow cytometry features (PSA+GA+STAT): AUC = 0.812, ORP FPR = 0.208, ORP TPR = 0.832, and

ACC = 0.815. Combining PSA with the NK cell phenotypic fingerprint increased accuracy by +0.123

points when compared to using PSA alone.
The closer the standard deviation value is to 0 the less spread out are the results across the 30

runs, and hence the classifier variability is low (see Table 5). This results in a low variance classifier. A

low standard deviation indicates that the data points tend to be close to the mean (also called the

expected value) of the set, whereas a high standard deviation indicates that the data points are

spread out over a wider range of values. Observing the data shown in Table 5 and Figure 5 for each

evaluation measure (i.e. AUC, ORP TPR, ORP FPR, Accuracy (ACC)), the aim is to have a high AUC

and low Std.; low ORP FPR and low Std.; high ORP TPR and low Std.; and high Accuracy and low

Std. The results show that the classifier achieved the best performance when using the GA+STAT

input and the results using k-fold across the 30 runs returned the lowest mean standard deviation
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Figure 4. PSA values by group.
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and hence the least variability in the results. The results reveal that using the GA+STAT predictors

delivers a more reliable classification model with regards to training and validation on new data

which will be generated in the future using the prediction model.

Importance of findings
The GA+STAT prediction model achieved the best performance, in that the ORP FPR was the low-

est, and the AUC, ORP TPR, and Accuracy (ACC) were the highest compared to the other prediction

models. The experimental results are promising and the proposed prediction model is expected to

achieve even higher classification accuracy in identifying the presence of prostate cancer in asymp-

tomatic individuals with PSA levels < 20 ng ml-1 based on peripheral blood NK cell phenotypic

Table 3. Results of the Kruskal-Wallis test.
Chi-Sq.(!2) Asy. sig. p value

PSA 0 0.949

NK cells

1 CD56dim CD16þ 0.001 0.981

2 CD56dim CD16high 0.069 0.793

3 CD56dim CD16low 0.555 0.456

4 CD56dim CD16" 0.033 0.857

5 CD56dim CD56dimtotal% 0.063 0.802

6 CD56bright CD16þ 0.836 0.361

7 CD56bright CD16high 0.201 0.654

8 CD56bright CD16low 0.106 0.744

9 CD56bright CD16" 0.030 0.861

10 CD56bright CD56bright total 2.415 0.120

11 CD8 CD56þCD8þ 2.415 0.120

12 CD8 CD56þCD8" 2.849 0.091

13 CD8 CD56dimCD8þ 0.417 0.518

14 CD8 CD56brightCD8þ 7.230 0.007

15 NKp30 CD56þNKp30þ 7.106 0.008

16 NKp30 CD56þNKp30" 4.638 0.031

17 NKp46 CD56þNKp46þ 5.179 0.023

18 NKp46 CD56þNKp46" 0.001 0.981

19 DNAM " 1 CD56þDNAM " 1þ 0.001 0.972

20 DNAM " 1 CD56þDNAM " 1" 0.293 0.588

21 NKG2D CD56þNKG2Dþ 0.325 0.568

22 NKG2D CD56þNKG2D" 0.033 0.857

23 NKp44 CD56þNKp44þ 0.072 0.789

24 NKp44 CD56þNKp44" 0.049 0.825

25 CD85j CD56þCD85jþ 0.072 0.789

26 CD85j CD56þCD85j" 2.135 0.144

27 LAIR" 1 CD56þLAIR" 1þ 1.343 0.247

28 LAIR" 1 CD56þLAIR" 1" 0.060 0.807

29 NKG2A CD56þNKG2Aþ 0.072 0.789

30 NKG2A CD56þNKG2A" 0.879 0.348

31 2B4 CD56þ2B4þ 0.890 0.346

32 2B4 CD56þ2B4" 0.890 0.346
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profiles as more data become available in the future. Table 5 shows the performance of the classifier

when using various feature subsets. When using the GA+STAT features, the AUC is higher, and FPR

is lower (this is an important distinction) than when using all features or the other alternative feature

subsets. The most important aspect is that better performance was achieved using a much smaller

set of biomarkers (features), which indicates that we have identified a fingerprint for detecting the

presence of prostate cancer in asymptomatic men with PSA levels < 20 ng ml-1 which is indeed sig-

nificant from a clinical perspective. Feature selection is important, as the fundamental aim of this

project is to develop a subset of phenotypic biomarkers that is smaller than the original set of bio-

markers (i.e. 32 biomarkers in total) which can confidently identify the presence of prostate cancer.

Ultimately, the approach will be embedded into a software application to be used by clinicians, and

the aim is to create an interface that requires the clinician to input a few values (features), that is 8

instead of 32. Importantly, identifying a small subset of 8 features which is needed for detecting the

presence of prostate cancer, results in the construction of an explainable disease detection and cate-

gorization model. Working with a small set of the most promising biomarkers provides a better

understanding of the disease and allows cancer immunobiologists and clinicians to focus on perform-

ing further laboratory evaluations using the specific subset of biomarkers, in a more cost effective

and less time-consuming manner.

Table 4. Results of the Genetic Algorithm when searching for the best subset of features.
l No. different comb Comb. with highest freq. Freq. of comb. Relative freq. (%)

2 3 17,28 16 53.3

3 2 17,27,29 23 76.7

4 1 2,20,27,28 30 100.0

5 2 3,20,27,28,32 29 96.7

6 2 3,7,20,27,28,32 26 86.7

7 3 3,7,20,23,27,28,32 24 80.0

8 4 3,7,20,22,23,27,28,32 19 63.3

9 3 3,7,19,20,22,23,27,28,32 24 80.0

10 3 2,3,7,19,20,22,23,27,28,32 21 70.0

Table 5. Naming of the models includes the feature selection method (GA) combined with the proposed Ensemble Subspace kNN
classifier.
Validation results are presented at k = 10 fold cross validation.

Results of 10-fold cross validation over 30 runs

AUC ORP FPR ORP TPR ACC Mean std. Rank

GA Mean 0.776 0.296 0.833 0.781 4

Std. 0.024 0.065 0.026 0.023 0.035

STAT Mean 0.769 0.303 0.828 0.774 5

Std. 0.022 0.057 0.023 0.021 0.031

GA+STAT Mean 0.818 0.201 0.836 0.821 1

Std. 0.021 0.027 0.021 0.020 0.022

PSA+GA+STAT Mean 0.812 0.208 0.832 0.815 2

Std. 0.020 0.031 0.018 0.019 0.022

PSA Mean 0.698 0.217 0.609 0.692 6

Std. 0.022 0.025 0.043 0.020 0.028

All features Mean 0.812 0.213 0.836 0.815 3

Std. 0.022 0.035 0.021 0.021 0.025
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Comparing the performance of the proposed ensemble subspace kNN
classifier with alternative classifiers
The experiments discussed thus far utilised a machine learning model comprised of an Ensemble of

kNN learners (see Section ‘Proposed Ensemble Learning Classifier for the task of Predicting Prostate

Cancer’). We then undertook experiments to determine the impact of using the proposed Ensemble

method over conventional machine learning classifiers: simple kNN; Support Vector Machine; and

Naive Bayes models. The last column of Table 6 shows the difference in the performance of the

methods. The proposed method, denoted as EkNN, returned better performance than all other

alternative classifiers. EkNN also returned the lowest Standard Deviation values and these are an

indicator of a more stable and reliable model since the average values are clustered closely around

the mean. SVM-linear returned the highest ORP TPR; however, the higher ORP FPR, higher Std. val-

ues, the low AUC, and low Accuracy values suggest that this model is worse than the proposed

EkNN. Naive Bayes was the least efficient classifier, and although it returned the lowest ORP FPR, it
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Figure 5. Boxplots illustrating the performance of the proposed model using various feature sets. (a) Average AUC values, (b) Average Optimal ROC

points (TPRs), (c) Average Optimal ROC points (FPRs), (d) Average Accuracy values. Each box plot contains 30 points, where each point is the average

performance evaluation value (i.e. AUC, ORP TPR, ORP FPR, Accuracy) from one 10-fold run using the various feature sets.
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values. There were statistically significant differences between group 8 (GA+STAT vs. GA) and 10

(PSA vs. PSA+GA+STAT) (p=0.001). We can conclude that GA+STAT returned a significantly higher

AUC than PSA, and the difference between their mean ranks is diff = 17.217. PSA returned a signifi-

cantly lower AUC than PSA+GA+STAT (p=0.002), and the difference between their mean ranks is

diff=-15.800.

Comparing the best prediction models over 30 runs
With regard to constructing a model which has the potential to be used in clinical practice, it is nec-

essary to finalise an initial prediction model, since the last experiment returned 30 different varia-

tions of each prediction model when using different training and validation data partitions. Those

experiments were crucial in determining whether the prediction models (five models, a different one

for each feature subset) suffer from low variance. We then observed the classification performance

of each model for each run, to identify the highest performance achieved using a single 10-fold cross

validation in any of the runs. This provides a way of comparing the performance of each prediction

model as it would be used in the clinical setting. Table 8 provides the results of the highest perform-

ing model, and the performance of the models is ranked (with 1 being the best model and 5 the

worst model).

Predicting low-/intermediate risk cancer vs. high-risk cancer
The continuing, significant clinical challenge resides in distinguishing men with low- or intermediate-

risk prostate cancer which is unlikely to progress (for both of which ‘active surveillance’ is the most

appropriate approach), from men with intermediate disease which is likely to progress and men with

Table 7. Ad hoc test results.
Ad hoc test

Group 1 Group 2 Ll 95% Diff. betw.means Ul 95% p

1 GA STAT !12.658 1.317 15.292 1.000

2 GA GA+STAT !22.208 !8.233 5.742 0.525

3 GA PSA !4.992 8.983 22.958 0.344

4 GA PSA+GA+STAT !20.792 !6.817 7.158 1.000

5 STAT GA+STAT !23.525 !9.550 4.425 0.245

6 STAT PSA !6.308 7.667 21.642 0.710

7 STAT PSA+GA+STAT !22.108 !8.133 5.842 0.555

8 GA+STAT PSA 3.242 17.217 31.192 0.001

9 GA+STAT PSA+GA+STAT !12.558 1.417 15.392 1.000

10 PSA PSA+GA+STAT !29.775 !15.800 !1.825 0.002

The first two columns show the groups that are compared. The third and fifth columns show the lower and upper limits for 95% confidence intervals for

the true mean difference. The fourth column shows the difference between the estimated group means. The sixth column contains the p-value for testing

a hypothesis that the corresponding mean difference is equal to zero.

Table 8. Results of the best prediction models created during the 30 runs.
Validation results are presented at k = 10 fold cross validation.

Best prediction model results

AUC ORP FPR ORP TPR Accuracy Rank

GA 0.818 0.192 0.829 0.820 3

GA+STAT 0.853 0.157 0.862 0.855 1

PSA 0.734 0.218 0.685 0.730 5

PSA+GA+STAT 0.844 0.175 0.864 0.848 2

STAT 0.811 0.227 0.85 0.817 4
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also returned the lowest ORP TPR, lowest AUC and Accuracy values; and its Std. values were also

higher than those of the EkNN model.

Statistically significant differences in predictive performance when
using various feature subsets
The next step in the analysis is to determine whether statistically significant differences exist

between the average AUC performance values of the classifier when using the various feature sub-

sets, for which Friedman’s two-way Analysis of Variance (ANOVA) test was used. It was also impor-

tant to observe whether including the PSA test values significantly strengthens the diagnostic

accuracy and capacity. The average k-fold values across the 30 runs for each feature set were com-

puted. A matrix C was derived which holds the results of the classifier when using one of five feature

subsets. Friedman’s chi-square statistic compares the mean values of the columns of matrix C. The

test returned a statistically significant difference in the AUC predictive performance depending on

which type of feature subset was input into the classifier, !2ð4Þ ¼ 106:55, p ¼ 3:968E $ 22. This sug-

gests that the mean AUC ranks of at least one feature subset are significantly different than the

others. The mean ranks were as follows: GA = 12.050, STAT = 10.733, GA+STAT = 20.283,

PSA = 3.067, PSA+GA+STAT = 18.867. A post hoc test was run alongside the Friedman test to pin-

point which feature subsets differ from each other. Post hoc analysis using a Bonferroni correction

was used to reduce the likelihood of erroneously declaring a statistically significant due to multiple

comparisons (a Type I error). Table 7 shows the results of multiple comparisons and adjusted p

Table 6. Comparing the performance of the proposed Ensemble Subspace kNN model against conventional machine learning
models when using the GA+STAT feature set.
Results of 10-fold cross validation over 30 runs.

Proposed ensemble subspace kNN (EkNN) model
(No. of learners (NL): 30; Subspace Dimension (SD): 16)

Parameters AUC ORP FPR ORP TPR ACC

NL: 30, SD:16 Mean 0.818 0.201 0.836 0.821

Std. 0.021 0.027 0.021 0.020

Simple kNN model (Distance: Euclidean)

k AUC ORP FPR ORP TPR ACC Acc. Diff.
(EkNN vs. kNN)

2 Mean 0.768 0.241 0.730 0.751 +0.070

Std. 0.119 0.160 0.393 0.128 $0.108

5 Mean 0.778 0.300 0.833 0.783 +0.038

Std. 0.107 0.265 0.103 0.103 $0.083

10 Mean 0.753 0.371 0.845 0.758 +0.063

Std. 0.137 0.350 0.120 0.131 $0.111

Support Vector Machine models

Kernel AUC ORP FPR ORP TPR ACC Acc. Diff.
(EkNN vs. SVM)

Linear Mean 0.782 0.342 0.860 0.784 +0.037

Std. 0.126 0.352 0.110 0.120 $0.100

Gaussian Mean. 0.808 0.353 0.876 0.799 +0.022

Std. 0.112 0.416 0.107 0.111 $0.091

Naive Bayes model

Predictor distributions AUC ORP FPR ORP TPR ACC Acc. Diff.
(EkNN vs. Naı̈ve Bayes)

Normal Mean. 0.695 0.132 0.455 0.662 +0.159

Std. 0.169 0.163 0.493 0.181 $0.161
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high-risk prostate cancer (both of which require treatment). The diagnosis of men with low-risk or

small volume intermediate-risk prostate cancer as having prostate cancer is unhelpful as these men

will very rarely require treatment. The inappropriate assignment of men to potentially life-threaten-

ing invasive procedures and life-long surveillance for prostate cancer has significant psychological,

quality of life, financial, and societal consequences. Furthermore, the definitive diagnosis of prostate

cancer currently requires painful invasive biopsies with which is associated a risk of potentially life-

threatening urosepsis in 5% of individuals. We, therefore, undertook experiments to train the pro-

posed Ensemble Subspace kNN model to predict the D’Amico Risk Classification for those patients

with prostate cancer (see subsection ‘The cancer patients dataset used for building the risk predic-

tion modelin Methods), in terms of Low/Intermediate (L/I) risk and High (H) risk disease using NK cell

phenotypic data alone.
The Ensemble model was modified to take as input all 32 features (described in Table 1), and

was trained to classify the disease in patients with prostate cancer as being L/I or H risk disease (see

Figure 9 in Materials and methods). Hence, given a new patient record, which comprises of 32

inputs, the model predicts whether the patient is D’Amico L/I risk (not clinically significant) or H (clin-

ically significant) risk. The flow charts in Figure 6 illustrate the process to detect the presence and

risk of prostate cancer and patient outcomes. Of those 54 patient records, a total of 10 randomly

selected records (5 from the L/I group and 5 from the H group) were extracted from the dataset

such that they can be used at the testing (mini clinical trial) stage. To ensure thorough experiments,

a rigorous methodology was adopted. More specifically, a 10-fold cross validation method was

adopted, and the experiments were run in 30 iterations, for which each iteration provided an aver-

age validation result across 10 folds. Each iteration consists of 10 different ‘train and validation’ data

arrangements (hence 300 tests were carried out using a different mix of train and validation records).

The 10 test records were input into each trained model (i.e. iteration) to predict their accuracy, and

Figure 6. Flow charts illustrating the process to detect the presence and risk of prostate cancer and patient

outcomes. Model 1: Distinguishes between men with benign prostate disease and prostate cancer; Model 2:

predicts risk (in terms of clinical significance) in men identified as having prostate cancer in Stage 1. Note that

Model 1 can detect prostate cancer in men with PSA < 20 ng ml-1.
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to evaluate the model when it is trained and validated using different variations of patient data. The
model can highly accurately differentiate between L/I risk group and H risk group patients. The
k-fold validation results across 30 iterations were AUC: 0.98(±0.03); FPR: 0.03(±0.05), TPR: 0.99
(±0.01), Accuracy: 0.99(±0.02); and results using the test set were AUC: 0.98(±0.03); FPR: 0.03
(±0.05), TPR: 0.99(±0.01), Accuracy: 0.97(±0.02). Accuracy has been near perfect in all iterations (i.e.
using different train and validation data cases in each iteration). Figure 7 illustrates the performance
of the model obtained across the 30 runs during the k-fold cross validation and independent testing
using the 10 patient samples. The results demonstrate that the proposed model predicts with near-
perfect accuracy, the result of the D’Amico Risk Classification (L/I vs High) using NK cell phenotypic
data alone, and without requiring the PSA, Gleason, and tumor stage data.

The dataset that was utilized to identify the biomarker (that comprised eight features) for detect-
ing the presence of prostate cancer (i.e. benign prostate disease vs prostate cancer) in 71 men, and
thus it was large enough to perform the combinatorial feature selection task for finding the best sub-
set of features. The GA that was used for the combinatorial feature selection task is described in
Section Computational Methods. Given that detecting the presence of prostate cancer and its risk if
present are two different tasks, it is expected that the biomarkers for those tasks will be different
since a different target is given to the GA (i.e. the target for the prostate cancer detection model
comprises 0 (benign prostate disease) and 1 (prostate cancer) values; the target for the prostate can-
cer risk prediction model comprises 0 (L/I risk) and 1 (High risk) values). For the L/I vs H risk task, the
dataset was small (n = 54 men (L/I = 36, H = 16)), and we could not perform the combinatorial fea-
ture selection task with confidence. Hence, it was decided to use the entire feature set for the risk
prediction task. The results obtained from the risk prediction model were very promising as shown
experimentally, and this provided the confidence to report these preliminary results. The combinato-
rial feature selection task to identify the best subset of features for the risk prediction task will be
performed once a larger dataset is available.

Herein, we demonstrate that all 32 phenotypic features are required to distinguish between low/
intermediate risk cancer (L/I) and high risk (H) cancer. However, we expect to be able to identify
smaller subset(s) of these features as the datasets increase and the prediction model is retrained on
the larger dataset. As indicated above, the generation and delivery of additional datasets is beyond
the scope of this paper.

Discussion
The clinical challenge in prostate cancer diagnosis resides in distinguishing men with low- or small
volume intermediate-risk prostate cancer which is unlikely to progress (both require ’active surveil-
lance’) from men with intermediate disease which is likely to progress or high-risk disease (both of

(a) (b)

Figure 7. Each box plot contains 30 points, where each point is the average performance evaluation value (i.e. AUC, FPR, TPR, Accuracy (ACC)) from

one 10-fold run during (a) k-fold validation results, and (b) independent testing results (i.e. using 10 patient records).
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which require treatment). It is essential that men with low-risk prostate abnormalities are not diag-

nosed as having prostate cancer, as those with low-risk/grade disease do not require active treat-

ment. Furthermore, unnecessarily labeling men as having prostate cancer can assign these men to

life-long surveillance and have significant psychological, quality of life, financial and societal conse-

quences. Recent findings from a decade-long study involving 415,000 British men (The Cluster Ran-

domized Trial of PSA Testing for Prostate Cancer (CAP) Randomized Clinical Trial) have not

supported single PSA testing for population-based screening and suggest that asymptomatic men

should not be routinely tested to avoid unnecessary anxiety and treatment. It is therefore essential

that new approaches for enabling more definitive, early detection of prostate cancer are developed.

The reliable diagnosis of prostate cancer based on PSA levels alone is not possible and confirmation

using invasive biopsies or other approaches such as MRI and biopsy are currently required. Although

interest in the potential diagnostic capabilities of MRI scanning is developing, MRI cannot currently

be used as a sole diagnostic as a positive MRI can be incorrect in approximately 25% of cases and a

negative MRI can be incorrect in approximately 20% of cases Ahmed et al., 2017. Although the

findings from the CAP study do not support using the PSA test as an approach for population-based

screening, combining PSA measurements with other approaches that either identify individuals for

additional testing or strengthen the capacity to diagnose prostate cancer have significant merit, and

it is based on this concept that the current study has been performed. The studies presented herein

have focused on asymptomatic men with a PSA < 20 ng/ml, as men with a PSA level > 20 ng/ml are

more likely to harbour prostate cancer and are thereby less likely to pose a clinical diagnostic quan-

dary. In contrast, men with a PSA < 20 ng/ml pose a major problem because although only 30–40%

of these men will have prostate cancer, all currently undergo potentially unnecessary invasive pros-

tate biopsies to determine who has the disease. It is, therefore, this group of men for which the

development of new and more accurate approaches for the early detection of cancer is a clear

unmet clinical need, and for whom the benefits of such an approach will be most relevant and

significant.

Comparing results to the previous study
We have previously shown that incorporating peripheral blood immune phenotyping-based features

into a computation-based prediction tool enables the better detection of prostate cancer and, fur-

thermore, strengthens the accuracy of the PSA test in asymptomatic individuals having PSA levels

< 20 ng/ml (Cosma et al., 2017). The phenotypic feature set which was shown to be discriminatory

between benign disease and prostate cancer comprised CD8þCD45RA"CD27"CD28" (CD8þ Effector

Memory cells), CD4þCD45RA"CD27"CD28" (CD4þ Effector Memory Cells),

CD4þCD45RAþCD27"CD28"(CD4þ Terminally Differentiated Effector Memory Cells re-expressing

CD45RA), CD3"CD19þ (B cells), CD3þCD56þCD8þCD4þ (NKT cells).
Using samples from the same cohort of asymptomatic individuals, herein we have further investi-

gated the phenotype and function of NK cell subsets. Using a combination of statistical and compu-

tational feature selection approaches, we have identified a subset of eight phenotypic features

CD56dimCD16high, CD56þDNAM " 1", CD56þLAIR" 1þ, CD56þLAIR" 1", CD56brightCD8þ,

CD56þNKp30þ, CD56þNKp30", CD56þNKp46þ which distinguish between the presence of benign

prostate disease and prostate cancer. These features were used to implement a prediction model.

The kNN machine learning approach developed in our previous study (Cosma et al., 2017) has been

extended to an Ensemble of kNN learners to improve performance in identifying patterns in even

more complex data. As was observed in our previous study, flow cytometry predictors significantly

outperform the PSA test. The findings presented herein significantly reinforce our previous finding

(Cosma et al., 2017) that complementing the PSA prediction model with a subset of flow cytome-

try-based phenotypic predictors can significantly increase the accuracy of the initial prostate cancer

test and reduce misclassification. The performance of the prediction model which was built using the

phenotypic ‘signature’ presented in our previous study "CD8þCD45RA"CD27"CD28",

CD4þCD45RA"CD27"CD28", CD4þCD45RAþCD27"CD28", CD3"CD19þ,

CD3þCD56þCD8þCD4þ (Cosma et al., 2017), is similar to the model which was built using the NK

cell-based phenotypic signature presented herein, CD56dimCD16high, CD56þDNAM " 1",

CD56þLAIR" 1þ, CD56þLAIR" 1", CD56brightCD8þ, CD56þNKp30þ, CD56þNKp30", CD56þNKp46þ.

Specifically, the prediction model using the five flow cytometry features identified in Cosma et al.,
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2017 achieved Accuracy: 83.33% , AUC: 83.40%, ORP TPR: 82.93%, FPR: 16.13%, whereas the pre-
diction model presented herein achieved AUC: 85.3%, ORP FPR: 15.7%, ORP TPR: 86.2%, Accuracy:

85.5%. Across the 30 runs the average performance of the prediction model presented herein is
AUC: 81.8%, ORP TPR: 83.6%, FPR: 20.1%, Accuracy: 82.1%.

The difference in the performance of the model presented in the first study (Cosma et al., 2017)
and the study described herein is a consequence of different data and prediction models being used

in each study. Given that the phenotypic features that were used to create the prediction models
were different, the studies resulted in different prediction models. In particular, the model presented
previously (Cosma et al., 2017) was based on a kNN classifier, and herein the kNN classifier was
extended to construct an Ensemble Subspace kNN method which comprised several kNN classifiers

(see Figure 9). The dataset used herein was more complex, and it was therefore necessary to create
a more complex classifier. At this point in the studies, it is not possible to determine which set of
phenotypic features is better at identifying prostate cancer. However, it is evident that both
approaches have significant promise. Since the publication of our previous study (Cosma et al.,

2017), the model developed for that study was used to predict the outcomes of a further 20 new
patients which were previously unseen by the prediction model. The model correctly identified the
presence of prostate cancer in 19 of the 20 patients (data not shown).

Encouragingly, the prediction models generated in the study reported upon herein selected phe-
notypic features that are associated with the expression of activating receptors NKp30, NKp46, and
DNAM-1 by NK cells. Pasero et al., 2015 demonstrated that these activating receptors, in addition
to NKG2D, are involved in the recognition of prostate cancer cell lines. Furthermore, they identified

that the intensity of NKp30 and NKp46 expression on the surface of NK cells isolated from the
peripheral blood of patients with metastatic prostate cancer was predictive of time to hormone (cas-
tration) resistance and overall survival. This suggests that our computational analysis is selecting phe-
notypic features that are of biological/clinical relevance. Thus far, our identification of disease
predictive phenotypic immune features has been limited to effector immune populations (T, B, and

NK cells). The responsiveness of these cells is known to be influenced by the presence of innate
immune cell populations that can be polarized by the tumor toward an immunosuppressive state
(Vitale et al., 2014; Anderson et al., 2017). Therefore, future studies will investigate the identifica-
tion and inclusion of phenotypic features from innate immune subpopulations such as monocytes

and neutrophils into prediction models to assess whether their inclusion enhances predictive capabil-
ity and enables a better assessment of patient prognosis in line with the D’Amico Risk Classification.

The proposed machine learning model was adapted to predict the D’Amico Risk Classification of
patients with prostate cancer using NK cell phenotypic data alone. Experiments with data from 54
patients revealed the significant potential of using the proposed machine learning model for deter-
mining if men with prostate cancer are in the low-/intermediate- or high-risk groups, without the
need for additional clinical data (i.e. PSA, Gleason, clinical stage data). One limitation of the current

study is that the small patient numbers required for low- and intermediate-risk patients to be
grouped. Future work, for which additional sample collections are required, will train the model to
separately predict low-, intermediate- and high-risk cancer. Future work involves collecting more
patient samples to conduct further testing of the proposed machine learning models. In terms of

future work from a computational perspective, once we have a larger patient dataset we plan to
design deep learning models and compare their performance to the conventional machine learning
model which was proposed in this paper.

Potential impact
Currently available screening methods and tests for prostate cancer lack accuracy and reliability, the
consequence of which is that many men unnecessarily undergo invasive tests such as biopsy and/or

are misdiagnosed as having the disease. Furthermore, a biopsy involves removing samples of tissue
from the prostate and it is an extremely uncomfortable procedure which also puts men at risk of
developing life-threatening infections. As biopsy results are not definitive, there is a significant
potential for misdiagnosis and over- and under- treatment. It is therefore essential that new non-

invasive approaches such as blood tests that are more accurate than the Prostate Specific Antigen
(PSA) test are developed to reduce misdiagnosis and unnecessary procedures. Misdiagnosis unnec-
essarily subjects many men to lifelong monitoring for prostate cancer which can have undesirable
psychological and quality of life side-effects, as well as place a significant financial burden on the
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NHS and other healthcare systems. This paper proposes a computerised model, which detects the

presence of prostate cancer in men by analyzing immune system cells in the blood. The model uses

the data from the blood tests and artificial intelligence-based computing (machine learning) to more

accurately detect the presence of prostate cancer. A preliminary model has also been presented to

detect the clinical risk that any prostate cancer which is present poses. The tool has two elements,

the first detects whether a man has prostate cancer. If prostate cancer is detected, the second ele-

ment will detect the clinical risk of the disease (low, intermediate, high) and thereby enable the clini-

cian to decide whether the patient requires no further investigation/treatment (‘watch and wait’) or

whether further investigation and treatment are required.
To our knowledge, these are the first studies to employ computational modeling of peripheral

blood NK cell phenotyping data for the early detection of cancer and its clinical significance. They

also illustrate the potential for this approach to decipher clinically relevant immune features that can

distinguish between benign prostate disease and prostate cancer in asymptomatic individuals for

whom the management and treatment strategy is unclear. Of translational importance is that our

prediction models are interpretable, can be explained to patients and clinicians and can be continu-

ally refined and improved as data are collected.
The novelty of this approach is that it interrogates the immunological response to the tumour,

not the tumour itself and that it requires a simple blood test (liquid biopsy). Based on current prac-

tice, we expect that this approach could avoid up to 70% of prostate biopsies, thereby sparing men

with benign prostate disease or low-risk prostate cancer from unnecessary invasive procedures with

which are associated significant side-effects. Furthermore, more accurate diagnosis would reduce

the demands of healthcare provision and resources associated with treatment and continual surveil-

lance, thereby reducing costs and improving healthcare. We envisage that, in the future, men with a

mildly elevated PSA will also undergo an immune status test and those with a suspicion for signifi-

cant prostate cancer will then undergo an MRI. Although the current study focuses on prostate can-

cer, its fundamental principles and approaches are highly likely to be applicable across many, if not

all, cancer entities.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference

Identifiers Additional
information

Biological
Sample

Hyclone fetal
bovine serum (FBS)

GE Healthcare
Life Sciences

SV30180.03

Antibody Monoclonal mouse
IgG1 kappa anti human
DNAM-1 (CD226) (clone
11A8); FITC

BioLegend 338304 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human
NKG2D (CD314) (clone
1D11); PE

eBioscience 12-5878-42 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD56
(clone N901); ECD (PE-
Texas Red)

Beckman
Coulter

A82943 2.5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD16
(clone 3G8); PerCP-Cy5.5

BioLegend 302028 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human NKp46
(CD335) (clone 9E2);
PE-Cy7

BioLegend 331916 5 ml per tube / 106cells

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference

Identifiers Additional
information

Antibody Monoclonal mouse IgG1
kappa anti human NKp30
(CD337) (clone P30-15);
Alexa Fluor 647

BioLegend 325212 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD3
(clone UCHT1); Alexa
Fluor 700

BioLegend 300424 2 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD19
(clone HIB19); Alexa
Fluor 700

BioLegend 302226 1 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD8
(clone SK1); APC-Cy7

BioLegend 344714 2.5 ml per tube / 106cells

Antibody Monoclonal mouse IgG2b
anti human CD85j (ILT2)
(clone GHI/75); FITC

Miltenyi Biotec 130-098-437 10 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human LAIR-1
(CD305) (clone DX26); PE

BD Biosciences 550811 20 ml per tube / 106cells

Antibody Monoclonal mouse IgG2b
anti human NKG2A
(CD159a) (clone Z199);
PE-Cy7(PC7)

Beckman Coulter B10246 20 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human NKp44
(CD336) (clone P44-8);
Alexa Fluor 647

BioLegend 325112 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human 2B4
(CD244.2) (clone C1.7);
FITC

BioLegend 329506 5 ml per tube / 106cells

Chemical
Compound

LIVE/DEAD Fixable
Violet Dead Stain

Thermo Fisher
Scientific

L34955 1 ml in 1 ml

Chemical
Compound

Novagen Benzonase
Nuclease

Merck Millipore 70664

Chemical
Compound

CTL Wash Solution Cellular
Technology
Limited

CTLW-010

Chemical
Compound

Trypan Blue
viability stain

Santa Cruz sc-216028

Chemical
Compound

Dimethyl sulfoxide
(DMSO)

Santa Cruz sc-202581

Chemical
Compound

Calbiochem bovine
serum albumin (BSA)

Merck Millipore 2905-OP

Chemical
Compound

Sigma-Aldrich
sodium azide

Merck Millipore S8032

Chemical
Compound

Sigma-Aldrich
lithium heparin

Merck Millipore H0878

Chemical
Compound

Ficoll-Paque GE Healthcare
Life Sciences

17-1440-03

Chemical
Compound

Isoton II isotonic
buffered saline
solution

Beckman
Coulter

844 80 11

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference

Identifiers Additional
information

Chemical
Compound

RPMI medium Lonza 12-167Q

Chemical
Compound

Phosphate
Buffered Saline
(PBS)

Lonza 17-517Q

Other Leucosep tubes Greiner Bio-One
International

227290

Software Kaluza v1.3 Beckman Coulter

Data collection
Peripheral blood samples were obtained from individuals suspected of having prostate cancer that

attended the Urology Clinic at Leicester General Hospital (Leicester, UK) between 24th October

2012 and 15th August 2014. Only patients who had provided informed consent and met the criteria

of being biopsy naive, a benign feeling Digital Rectal Examination (DRE) with a PSA level of < 20 ng

ml-1 and agreeing to undergo a simultaneous 12 core TRUS biopsy and a 36 core transperineal tem-

plate prostate biopsy (TPTPB) were included in the study. Further details regarding the TPTPB tech-

nique are provided in Nafie et al., 2014b. A total of 71 males (30 patients diagnosed with benign

disease and 41 patients diagnosed with cancer, as confirmed by pathological examination of TPTPB

biopsies) met the criteria. Of the 30 patients diagnosed with benign disease; 9 patients were diag-

nosed with High Grade Prostatic Intraepithelial Neoplasia (PIN), 10 patients were diagnosed with

Atypia and 2 patients were diagnosed with Atypical Small Acinar Proliferation. The remainder were

diagnosed with benign disease. Of the men diagnosed with prostate cancer, 16 had Gleason 6 dis-

ease, 23 had Gleason 7 disease and 2 had Gleason 9 disease on biopsy-based evidence. The clinical

features of individuals with benign disease and patients with prostate cancer are provided in

Table 9.

The cancer patients dataset used for building the risk prediction model
Data derived from the 41 individuals with prostate cancer were extracted from the dataset shown in

Table 9. All 41 patients had PSA < 20 ng ml-1. However, three of the 41 patients who had a High

D’Amico risk were removed because their clinical profiles were very different from those of other

high risk patients. They were patients with either a Gleason score 3+3 or had a benign biopsy. In the

future, we aim to collect more data from such infrequent patient groups to train the algorithms on

patients with such clinical profiles. The remaining 38 patients had PSA levels < 20 ng ml-1 and

belonged to the D’Amico L/I risk group.
Data were collected from an additional 16 patients with prostate cancer who were diagnosed as

having a D’Amico High risk profile (see Table 10). Thus, the new cancer patient dataset comprised

54 patients with prostate cancer, of which 38 patients belonged to the D’Amico L/I risk group and

all had PSA<20 ng ml-1, and 16 patients belong to the D’Amico H risk group and have PSA 4.3 ng

Table 9. Patient clinical features.
Patient group Gleason score Number of patients Age range (years) PSA range (ng/ml)

Benign Benign 9 64-71 5.3–15

Benign HGPIN 9 54–70 5.1–12

Benign Atypia 10 50–76 4.7–19

Benign ASAP 2 59–60 5.3–7.8

Cancer Gleason 6 16 55–80 4.7–11

Cancer Gleason 7 23 53–77 4.7–19

Cancer Gleason 9 2 65–75 6.3–18
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ml-1! PSA ! 2617 ng ml-1. The 16 patients were diagnosed with Gleason scores of: 4+4 = 8 (n = 2),

5+4 = 9 (n = 2), and 4+5 = 9 (n = 11), and 1 patient was diagnosed with small cell cancer. The com-

bined dataset (i.e. 38+16 = 54) comprised 15 patients with Gleason 6 (3+3), 18 patients with Glea-

son 7 (3+4), 5 patients with Gleason 7 (4+3), 2 patients with Gleason 8 (4+4), 11 patients with

Gleason 9 (4+5), 2 patients with Gleason 9 (5+4), and 1 patient with small cell cancer.
Since 11 of those 16 patients had a PSA > 20 ng ml-1, their data could only be utilised for building

the prostate cancer risk prediction model, as the detection model focuses on detecting prostate

cancer in asymptomatic men with PSA< 20 ng ml-1.

Flow cytometric analysis
Peripheral blood (60 ml) was collected from all patients using standard clinical procedures. Aliquots

(30 ml) were transferred into two sterile 50 ml polypropylene (Falcon) tubes containing 300 ml of ster-

ilized Sigma Aldrich Lithium Heparin (1000 U/ml, Merck Millipore). Anti-coagulated samples were

transferred to the John van Geest Cancer Research Centre at Nottingham Trent University (Notting-

ham, UK) and processed immediately upon receipt (always within 3 hr of collection). Peripheral

blood (60 ml) was mixed with Phosphate Buffered Saline (PBS, 30 ml, Lonza) and layered over Ficoll-

Paque (GE Healthcare Life Sciences) in Leucosep tubes (20 ml blood per tube) and then centrifuged

at 800 g for 20 min. The peripheral blood mononuclear cell (PBMC) fraction was harvested and

washed twice with PBS before being re-suspended in Hyclone fetal bovine serum (FBS, GE Health-

care Life Sciences). Viable cells were counted using trypan blue (0.1 % v/v trypan blue, Santa Cruz)

and a haemocytometer. Cells were frozen in 90% v/v FBS, 10% v/v DMSO (Santa Cruz) in aliquots of

10 " 106 PBMC/vial and stored in liquid nitrogen until phenotypic analysis. At the time of analysis,

one vial from each patient was thawed by mixing with 10 ml ‘thaw’ solution (90% v/v RPMI (Lonza)),

10% v/v CTL wash solution (Cellular Technology Limited) and 10 ml of Novagen Benzonase (Merck

Millipore) at room temperature.
PBMCs were centrifuged at 400 g for 5 min followed by resuspension in 1 ml of RPMI (supple-

mented with 10% v/v FBS, 1% v/v L-glutamine (Lonza)). Cells were rested for 1 hr at 37, after which

viable cells were counted using trypan blue dye (Santa Cruz) exclusion. For each monoclonal anti-

body (mAb) panel shown in Table 11, 1 " 106 cells were washed and incubated in 100 ml of Wash

Buffer (PBS +2% w/v Calbiochem bovine serum albumin (BSA, Merck Millipore) +0.02% w/v sodium

azide (Sigma)) containing the relevant mAb cocktail for 15 min, after which cells were washed with 1

ml PBS and then incubated in 1 ml LIVE/DEAD Fixable Violet dead stain (Thermo Fisher Scientific)

for 30 min. All incubations were performed at 4 protected from light. The cells were washed with

PBS and then re-suspended in Beckman Coulter Isoton isotonic buffered saline solution.
Data (on viable cells) were acquired within 1 hr using a 10-color/3-laser Beckman Coulter Gallios

flow cytometer and analyzed using Beckman Coulter Kaluza v1.3 data acquisition and analysis soft-

ware. Controls used a Fluorescence Minus One (FMO) approach. A typical gating strategy for the

analyses is presented in Figure 8.

Computational methods
Initially, the GA by Ludwig and Nunes, 2010 was adopted to identify the best subset of features

(i.e. predictors), and thereafter a prediction model was constructed using the Ensemble classifier.

This section also explains the metrics adopted for evaluating the performance of the prediction

model.

GA for selecting the best subset of features
The GA is a metaheuristic, commonly used to generate solutions to optimization and search prob-

lems. Given the large number of combinations, the process of selecting the best subset of flow

Table 10. Dataset used for differentiating between patients with L/I and H cancer.
Patient group Count %

L/I 38 70.37

H 16 29.63
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0 for benign). Hence, each patient x is mapped to a diagnosis y. The GA takes three inputs: 1) the

feature-by-patient matrix X; 2) the vector y which holds the corresponding labels for each patient

record; and 3) the desired number of features, l. The GA returns the IDs of the best subset of fea-

tures, where the subset has size l. GAs stochastically select multiple features from the current popu-

lation and thus each run of the GA can return different results. Consequently, we proposed an

approach to identify the best subset of features by running the algorithm several times and then

obtaining the frequency of the subsets.

Proposed ensemble learning classifier for identifying the presence of
prostate cancer
This section discusses the machine learning classifier which was developed for the task of identifying

the presence of benign prostate disease or prostate cancer using the identified subset of phenotypic

features. The challenging task is that a suitable and reliable classifier must be developed using only

72 patient records. A limitation is that classifiers that have been trained on small sample size data

are likely to be unstable because small changes in the training set cause large changes in the classi-

fier. It was for this reason that the Ensemble machine learning classifier was preferred as an

approach for developing a more stable and reliable classifier. Ensemble classifiers achieve stability

and reliability by constructing many ‘weak’ classifiers instead of a single classifier and then combine

the weak classifiers (i.e. weak learners) to create a more powerful decision rule than that constructed

Figure 8. Representative gating strategy for analyzing the expression of activating and inhibitory receptors on peripheral blood natural killer (NK) cells.

Using density plots, the NK cell phenotypic profiles were determined by first gating on ‘live cells’ in the forward scatter (FSc) linear vs side scatter (SSc)

linear density plot and then gating on single cells (determined by FSc Linear vs FS time of flight). The expression of activating and inhibitory receptors

was determined by gating on CD3!CD19!CD56þ cells using fluorescence minus one (FMO) controls. The expression of each NK cell receptor was

measured using the ‘Logical’ setting.
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cytometry features for creating the prediction algorithm is performed using a GA. The GA adopted

in the experiments was developed by Ludwig and Nunes, 2010. The particular GA performs combi-

natorial optimization to identify a subset of features that comprises the optimum feature set, in

which the order of features has no relation with their importance. The algorithm works by maximis-

ing the mutual information between the target y (where y can have a value 1 for cancer or 0 for

benign) and the input features (i.e. these are the 32 features listed in Table 1). Mutual information is

the measure of the mutual dependence between the two variables, i.e. an input feature and the tar-

get. Adopting a GA eliminates the computational effort which is necessary to evaluate all the possi-

ble combinations of features. The fitness function of the GA (Ludwig and Nunes, 2010) is based on

the principle of max-relevance and min-redundancy (mRMR), for which the objective is that the out-

puts of the selected features present discriminant power, thereby avoiding redundancy. The princi-

ple of max-relevance and min-redundancy corresponds to searching the set of feature indexes that

are mutually exclusive and correlated to the target output. Let m ! n be a feature-by-patient matrix,

X ¼ ½xij$ with m features and n patients. Thus, the matrix element xij is the flow cytometry value i of

patient j. Let y be a vector of size 1 ! n which holds the diagnosis of each patient (1 for cancer and

Table 11. Antibody panels for measuring the phenotype of Natural Killer cells.
Antibody Fluorochrome Clone no. Supplier

Panel 1

DNAM-1 (CD226) FITC 11A8 BioLegend

NKG2D (CD314) PE 1D11 eBioscience

CD56 ECD (PE-Texas Red) N901 Beckman Coulter

CD16 PerCP-Cy5.5 3G8 BioLegend

NKp46 (CD335) PE-Cy7 9E2 BioLegend

NKp30 (CD337) Alexa Fluor 647 P30-15 BioLegend

CD3 Alexa Fluor 700 UCHT1 BioLegend

CD19 Alexa Fluor 700 HIB19 BioLegend

CD8 APC-Cy7 SK1 BioLegend

Live/Dead Dye (violet) Thermo Fisher Scientific

Panel 2

CD85j (ILT2) FITC GHI/75 Miltenyi Biotec

LAIR-1 (CD305) PE DX26 BD Biosciences

CD56 ECD (PE-Texas Red) N901 Beckman Coulter

CD16 PerCP-Cy5.5 3G8 BioLegend

NKG2A (CD159a) PC7 (PE-Cy7) Z199 Beckman Coulter

NKp44 (CD336) Alexa Fluor 647 P44-8 BioLegend

CD3 Alexa Fluor 700 UCHT1 BioLegend

CD19 Alexa Fluor 700 HIB19 BioLegend

CD8 APC-Cy7 SK1 BioLegend

LIVE/DEAD Dye (violet) Thermo Fisher Scientific

Panel 3

2B4 (CD244.2) FITC C1.7 BioLegend

CD56 ECD (PE-Texas Red) N901 Beckman Coulter

CD16 PerCp-Cy5.5 3G8 BioLegend

CD3 Alexa Fluor 700 UCHT1 BioLegend

CD19 Alexa Fluor 700 HIB19 BioLegend

CD8 APC-Cy7 SK1 BioLegend

LIVE/DEAD Dye (violet) Thermo Fisher
Scientific
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when using a single classifier. In clinical applications, it is important to construct prediction models

which have a low bias, meaning that the classifier suggests fewer assumptions about the form of the

target function. Because Ensemble learning makes fewer assumptions about the form of the target

function, it was considered to be a suitable classifier for the task. Several techniques for combining

the classifiers of an Ensemble model exist and these include Boosting, Bagging, and Random Sub-

space Dimension.
In the proposed method, the Random Subspace Dimension approach was utilised as a strategy

for combining the kNN classifiers, to create the Ensemble of kNN classifiers. In machine learning,

the Random Subspace Method (Ho, 1998), also called attribute bagging (Bryll et al., 2003) or fea-

ture bagging, is an Ensemble learning method which attempts to reduce the correlation between

estimators in an Ensemble by training them on random samples of features instead of the entire fea-

ture set. In the Random Subspace method, classifiers are constructed in random subspaces of the

data feature space. These classifiers were combined by simple majority voting in the final decision

rule, and we used the k Nearest Neighbor method (see Figure 9). In particular, we used the Random

Subspace ensemble-aggregation method coupled with k Nearest Neighbours weak learners to pro-

duce an Ensemble of classifiers, and this resulted to a better classification rule. Thus, the Random

Space modifies the training data set, builds classifiers on these modified training sets, and then com-

bines them into a final decision rule by simple or weighted majority voting.
Figure 9 provides an overview of the architecture of the proposed kNN Ensemble learning, and

the description that follows explains the architecture in more detail. Let m be the number of dimen-

sions (variables) to sample in each learner minus 1. Let d be the number of dimensions in the data,

which is the number of predictors in the data matrix X. Let n be the number of learners in the ensem-

ble. The basic random subspace algorithm performs the following steps using the above-mentioned

parameters:

Figure 9. Proposed Ensemble Subspace kNN model. Ensembles combine predictions from different models to

generate a final prediction. Because Ensemble approaches combine baseline predictions, they perform at least as

well as the best baseline model.

Hood et al. eLife 2020;9:e50936. DOI: https://doi.org/10.7554/eLife.50936 26 of 30

Research article Cancer Biology Computational and Systems Biology



Improving the Diagnostic Yield of Prostate Cancer – Masood A. Khan 
________________________________________ 

 

164 | P a g e  
 

 

 

 
 

 

 

 

 

1. Choose without replacement a random set of m predictors from the d possible values.
2. Train a weak learner using just the m chosen predictors.
3. Repeat steps 1 and 2 until there are n weak learners.
4. Predict by taking an average of the score prediction of the weak learners and classify the cate-

gory with the highest average score.

Performance evaluation measures
A variety of relevant evaluation metrics were adopted for the task of evaluating the performance of

the machine learning prostate cancer presence and risk prediction models.
Prostate cancer presence prediction models: Let jTPj be the total number of patients with cancer

who were correctly classified as having cancer; jTNj be total the number of individuals with benign

disease who were correctly classified as having benign disease; jFPj be the total number of individu-

als with benign disease who were incorrectly classified as having cancer; jFNj be the total number of

patients with cancer who were incorrectly classified as having benign disease; jPj be the total num-

ber of patients with cancer that exist in the dataset, where jPj ¼ jTPjþ jFNj; and jNj be the total

number of individuals with benign disease that exist in the dataset, where jNj ¼ jFPjþ jTNj. The fol-

lowing commonly used evaluation measures can be defined.

Accuracy¼
jTPjþ jTNj

jTPjþ jFPjþ jFNjþ jTNj
;2 ½0;1$: (2)

TPR¼
jTPj

jTPjþ jFNj
;2 ½0;1$: (3)

TNR¼
jTNj

jTNjþ jFPj
;2 ½0;1$: (4)

FNR¼
jFNj

jTPjþ jFNj
¼ 1% Sensitivity;2 ½0;1$: (5)

FPR¼
jFPj

jFPjþ jTNj
¼ 1% Specificity;2 ½0;1$: (6)

The closer the values of Accuracy, True Positive Rate (i.e. TPR, Sensitivity) and True Negative Rate
(i.e. TNR, Specificity) are to 1.0, then the better the classification performance of a system.

The Receiver Operating Characteristic (ROC) is an effective measure for evaluating the quality of
a prediction model’s performance. The ROC curve has an optimal ROC point which comprises two

values: the False Positive Rate (FPR) and the True Positive Rate (TPR) values. The optimal ROC point

is computed by function (Equation 7) for finding the slope, S.

S¼
CostðPjNÞ%CostðNjNÞ

CostðNjPÞ%CostðPjPÞ
(
N

P
; (7)

where CostðNjPÞ is the cost of misclassifying a positive class (i.e. cancer) as a negative class (i.e.
benign); CostðPjNÞ is the cost of misclassifying a negative class, as a positive class; P, and N, are the

total instance counts in the cancer and benign class, respectively. The optimal ROC point is identi-

fied by moving the straight line with slope S from the upper left corner of the ROC plot (FPR¼ 0,

TPR¼ 1) down and to the right, until it intersects the ROC curve.
The Area Under the ROC Curve (AUC) is another important performance evaluation metric which

reflects the capacity of a model capacity to discriminate between the data obtained from individuals

with benign disease and patients with cancer. The larger the AUC, the better the overall capacity of

the classification system to correctly identify benign disease and cancer.
Prostate cancer risk prediction models: When applying the above-mentioned measures to evalu-

ate the performance of the risk prediction models, the Positive class, P, was changed to be the

High-risk group and the Negative class, N, was changed to be the L/I group.
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Background: Although immunotherapy has emerged as the “next generation” of cancer

treatments, it has not yet been shown to be successful in the treatment of patients

with prostate cancer, for whom therapeutic options remain limited to radiotherapy and

androgen (hormone) deprivation therapy. Previous studies have shown that priming

natural killer (NK) cells isolated from healthy individuals via co-incubation with CTV-1 cells

derived from an acute lymphoblastic leukemia (ALL) enhances their cytotoxicity against

human DU145 (metastatic) prostate cancer cells, but it remains unknown to what extent

NK cells from patients with prostate cancer can be triggered to kill. Herein, we explore the

phenotype of peripheral blood NK cells in patients with prostate cancer and compare the

capacity of CTV-1 cell-mediated priming and IL-2 stimulation to trigger NK cell-mediated

killing of the human PC3 (metastatic) prostate cancer cell line.

Methods: The phenotype of resting, primed (co-incubation with CTV-1 cells for 17 h) and

IL-2 activated (100 IU/ml IL-2 for 17 h) NK cells isolated from frozen-thawed peripheral

blood mononuclear cell (PBMC) preparations from patients with benign disease (n = 6)

and prostate cancer (n = 18) and their cytotoxicity against PC3 and K562 cells was

determined by flow cytometry. Relationship(s) between NK cell phenotypic features and

cytotoxic potential were interrogated using Spearman Rank correlation matrices.

Results and Conclusions: NK cell priming and IL-2 activation of patient-derived NK

cells resulted in similar levels of cytotoxicity, but distinct NK cell phenotypes. Importantly,

the capacity of priming and IL-2 stimulation to trigger cytotoxicity was patient-dependent

and mutually exclusive, in that NK cells from ∼50% of patients preferentially responded

to priming whereas NK cells from the remaining patients preferentially responded to

cytokine stimulation. In addition to providing more insight into the biology of primed
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and cytokine-stimulated NK cells, this study supports the use of autologous NK cell-

based immunotherapies for the treatment of prostate cancer. However, our findings also

indicate that patients will need to be stratified according to their potential responsiveness

to individual therapeutic approaches.

Keywords: natural killer (NK) cells, priming, CTV-1, cytotoxicity, phenotype, prostate, cancer, TNF receptors

INTRODUCTION

The 2012 GLOBOCAN project revealed prostate cancer to be the
4th most common cancer in the world, with 1.1 million cases
reported. Prostate cancer typically occurs in men over the age
of 50 yrs and is the most common male cancer in the developed
world (1). In 2014, there were 45,406 new cases of prostate cancer
reported and 12,082 deaths from the disease (33 per day) in the
UK (2).

Patients with confirmed prostate cancer are stratified
according to the D’Amico risk classification (i.e., low,
intermediate, and high risk) which predicts the likelihood
of a patient suffering biochemical recurrence following treatment
(3, 4). Stratification is based on the patient’s clinical tumor, node
and stage of metastasis (TNM), serum prostate specific antigen
(PSA) levels, and biopsy Gleason score (3, 4). Due to the slow
growing nature of prostate cancer, patients with low risk disease
are typically assigned to active surveillance, as the disease is
unlikely to progress within their life time. In contrast, patients
at intermediate and high risk, and young patients at low risk
undergo active treatment as disease progression is more likely in
these individuals (5).

The primary treatment for advanced metastatic prostate
cancer is androgen (hormone) deprivation therapy (ADT), with
upfront chemotherapy if medically fit and with good renal
function. Although the majority of patients initially respond to
ADT, as evidenced by disease regression and disease stability (5),
it is inevitable that disease will progress and become hormone-
resistant. At this point, second-line hormone therapy followed
by further hormone manipulation therapy is considered, but will
typically deliver only a very limited effect.

Immunotherapy involving stimulating the patient’s own
immune system to retarget their cancer is emerging as the next
generation of cancer treatment (6). Currently, the only approved
immunotherapy for treating castration-resistant prostate cancer
is Sipuleucel-T immunotherapy which has been shown to
improve the median overall survival by 4.1 months compared
to a placebo group (7). Although preventing tumor-mediated
immunoregulation using immune checkpoint inhibitors such as
Ipilimumab has shown some success in treating immunogenic
cancers such as melanoma and non-small cell lung cancer,
their use in patients with prostate cancer has not been shown
to improve overall survival (8). However, some evidence of
beneficial effects have been observed and clinical trials testing
Ipilimumab in combination with other standard prostate cancer
treatments (e.g., ADT) are ongoing (9).

Natural killer (NK) cells were first identified on the
basis of their natural cytotoxicity toward cancerous cells and

a number of NK cell-based immunotherapies are now in
development (10–15). As reviewed by Sabry and Lowdell
(16), the cytotoxic function of NK cells is controlled by the
balance of signals transduced via activating and inhibitory
receptors following ligation with stress ligands and MHC
class I molecules, respectively (Dynamic Equilibrium Theory).
Bryceson et al. demonstrated that natural cytotoxicity requires
the co-engagement of multiple activating receptors (17, 18).
Furthermore, work by Lowdell et al. led to the hypothesis that the
natural cytotoxicity mechanism can be divided into two discrete
stages; “priming” and “triggering” (16, 19, 20). For this, they
hypothesized that the “priming” signal can be delivered either
by the ligation of the appropriate number and combination of
activating receptors with their target ligands or via an activating
cytokine (e.g., IL-2). The “triggering” signal requires the ligation
of at least one additional activating receptor to its target ligand
that is specific to stressed cells (16).

Tumor primed NK cells (TpNK) can be generated in vitro
by co-incubating resting NK cells with the acute lymphoblastic
leukemia (ALL) cell line CTV-1 (19). Phenotypically, tumor
primed NK cells appear distinct from resting NK cells in that they
exhibit reduced expression of activating receptors (e.g., CD16,
NKG2D, NKp46), both in terms of intensity and proportion,
whereas both the proportion and intensity of expression of
co-receptors (e.g., CD69 and CD25) are up-regulated (19, 20).
Priming NK cells from healthy volunteers in this way has been
reported to enhance their cytotoxicity against NK cell-resistant
tumor cell lines such as the humanmetastatic prostate cancer cell
line DU145 (20).

The therapeutic potential of an autologous NK cell-
based therapy requires that patient-derived NK cells can
be appropriately triggered. Herein, we determined whether
activation of NK cells isolated from thawed peripheral blood
mononuclear cell (PBMC) preparations derived from patients
with prostate cancer by either co-incubation with mitomycin
C treated CTV-1 cells or stimulation with IL-2 enhanced their
capacity to kill the human metastatic disease-derived prostate
cancer cell line PC3.

Tumor priming and IL-2 stimulation of patient-derived NK
cells resulted in similar levels of cytotoxicity, but distinct NK
cell phenotypes. Importantly, the capacity of priming and IL-
2 stimulation to trigger cytotoxicity was patient-dependent and
mutually exclusive, in that NK cells from ∼50% of patients
preferentially responded to tumor priming, whereas NK cells
from the remaining patients preferentially responded to IL-
2 stimulation. In addition to providing more insight into
the biology of tumor primed and cytokine-stimulated NK
cells, this study supports the use of autologous NK cell-based

Frontiers in Immunology | www.frontiersin.org 2 January 2019 | Volume 9 | Article 3169



Improving the Diagnostic Yield of Prostate Cancer – Masood A. Khan 
________________________________________ 

 

170 | P a g e  
 

 

 

 

 

 

 
 

 

Hood et al. Triggering of Prostate Cancer Patient-Derived NK Cells

immunotherapies for the treatment of prostate cancer. However,
our findings also indicate that patients will need to be
stratified according to their potential responsiveness to individual
therapeutic approaches.

METHODS

Patients and Ethical Approval
Ethical approval for the study cohort (Ethical Approval Number
14/ES/1014) was obtained from the East of Scotland Research
Ethics Service (EoSRES). Patients suspected of having prostate
cancer who attended the Urology Clinic at Leicester General
Hospital (Leicester UK) between 14th August 2014 and 3rd
December 2015 were given the opportunity to take part in
the study and provide a peripheral blood sample. Approval
for the collection of peripheral blood from healthy volunteers
was obtained from the Nottingham Trent University College of
Science and Technology Human Ethics Committee (Application
Number 435). Healthy volunteers and patients were given
information sheets detailing the nature of the study and those
wishing to take part were provided the opportunity to discuss
and ask questions. All participants provided informed consent
and were assigned a number to maintain anonymity. Participants
provided a 60mL peripheral blood sample which was obtained by
venepuncture. Of the 24 individuals who attended the Urology
Clinic at Leicester General Hospital and were included in the
study, 6 were diagnosed as having benign disease, and 18 patients
were diagnosed with prostate cancer, as determined by TRUS
biopsy. Gleason scores of the 18 cancer patients were; Gleason
6 (n = 3), Gleason 7 (n = 5), Gleason 9 (n = 8), and Gleason 10
(n= 2).

Cell Culture
The CTV-1 cell line was purchased from the Leibniz-Institut
DSMZ—Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH (Braunschweig, Germany) and maintained
in RPMI 1640 (LONZA) supplemented with 10% v/v fetal bovine
serum (FBS) (Hyclone) and 1% v/v L-Glutamine (LONZA).
The PC3 cell line was purchased from ATCC and maintained in
Hams F-12K (Kaighn’s) medium (GIBCOTM) supplemented with
10% v/v FBS and passaged using 1X trypsin—versene (LONZA).
The K562 cell line was purchased from ATCC and maintained
in iscove’s modified dulbecco’s medium (IMDM) (LONZA)
supplemented with 10% v/v FBS.

Peripheral Blood Mononuclear (PBMC)
Isolation
Peripheral blood (60ml) was collected using standard procedures
and aliquoted (30ml) into two sterile 50ml polypropylene
FalconTM tubes containing 300 µl of heparin (1,000 IU/ml,
Sigma). Samples were immediately transferred to the John van
Geest Cancer Research Centre at Nottingham Trent University
(Nottingham, UK) and processed immediately upon receipt—all
samples were processed within 2 h. Blood was diluted 1 in 3 with
phosphate buffered saline (PBS, LONZA) and layered over Ficoll
Paque (GE Healthcare Life Sciences) in LeucoSep R© tubes (20ml
per tube). The tubes were subsequently centrifuged at 800 g for
20min. The PBMC layer was collected and washed twice with

PBS before being counted using trypan blue dye exclusion (Santa
Cruz Biotechnology). PBMCs were frozen down in 90% v/v FBS,
10% v/v Dimethyl sulfoxide (DMSO) at 106 cells per vial and
stored in liquid nitrogen.

NK Cell Isolation and Activation
PBMCswere defrosted, washed and rested for 30min in complete
medium (RPMI 1640 supplemented with 10% v/v FBS and 1% v/v
L-Glutamine). Natural killer (NK) cells were isolated bymagnetic
beads using the human NK cell negative selection isolation kit
(Miltenyi Biotec) according to the manufacturer’s instructions
and counted using trypan blue with the cells exhibiting a viability
of >98%. Flow cytometry analysis revealed that following
isolation, the purity of the NK cells averaged 82%. CTV-1 cells
were pelleted, counted by trypan blue exclusion, re-suspended
to a concentration of 7 × 106 viable cells/ml and then treated
with 33µg/ml Mitomycin C (Sigma) for 2 h at 37◦C, 5% v/v
CO2. Following treatment, the cells were washed three times with
PBS and then re-suspended in complete medium and recounted.
For each patient, NK cells were activated by (1) co-incubation
with mitomycin C treated CTV-1 cells at a 1:2 (NK:CTV-1) ratio
in complete medium or (2) incubation in complete medium
containing 100 IU/ml of IL-2 (PeproTech). As a control, resting
NK cells were incubated at a concentration of 2× 106 cells/ml in
complete medium for 17 h overnight.

Cytotoxicity Assay
The non-adherent K562 cells were pelleted at 400 g for 5min,
whereas the adherent PC3 cells were harvested using 1X Trypsin-
Versene and then pelleted at 300 g for 5min. Both cell lines were
counted using trypan blue dye exclusion (>95% viability) and
were used as target cells. Target cells were stained with 200 nM
MitoTrackerTM Green FM (ThermoFisher Scientific) in RPMI
1640 alone at a concentration of 2× 106 viable cells/ml for 20min
at 37◦C, 5% v/v CO2 in the dark. Following incubation, the target
cells were washed three times with PBS and then re-suspended
in IMDM (K562) or Hams F-12K (Kaighns) medium (PC3). The
cells were then recounted using trypan blue dye exclusion (>95%
viability) and diluted to a concentration of 1.0 × 106 viable
cells/ml.

NK cells activated overnight for 17 h were pelleted, re-
suspended in fresh complete RPMI medium, counted (NK cells
are smaller in size compared to CTV-1 cells) and diluted to a
concentration of 1.0 × 106 NK viable cells/ml. NK cells (150 µL,
150,000 cells) were co-incubated with target cells (30 µL PC3 or
K562, 30,000 cells) plus an additional 120 µL complete medium
in 12 × 75mm polycarbonate tubes for 3 h at 37◦C, 5% v/v CO2.

As a control, target cells were also analyzed alone for background
death. For this, 10µl of Propidium Iodide (50µM/ml) was added
to each tube prior to sample analysis. Samples were acquired on
a Beckman Coulter GalliosTM flow cytometer. For each tube a
minimum of 5,000 events were acquired and data analyzed using
the Beckman Coulter KaluzaTM v1.3 software.

Characterizing the NK Cell Phenotype
To measure the phenotype of both resting and activated NK
cell populations, 1.5 × 105 NK cells were added to 12 ×

75mm tubes and washed with Wash Buffer (PBS + 0.5% w/v
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TABLE 1 | Monoclonal antibody panel 1.

Antibody Fluorochrome Clone Supplier

CD2 FITC TS1/8 BioLegend

CD96 PE NK92.39 BioLegend

CD56 ECD N901 Beckman Coulter

CD16 PerCP-Cy5.5TM 3G8 BioLegend

CD137 PE-Cy7 4B4-1 BioLegend

CD69 APC FN50 BioLegend

CD3 Alexa FluorTM 700 UCHT1 BioLegend

CD19 Alexa FluorTM 700 HIB19 BioLegend

CD107a APC-Cy7TM H4A3 BioLegend

LIVE/DEADTM dye ThermoFisher scientific

TABLE 2 | Monoclonal antibody panel 2.

Antibody Fluorochrome Clone Supplier

DNAM-1 FITC 11A8 BioLegend

NKG2D PE 5C6 eBioscience

CD56 ECD N901 Beckman Coulter

CD16 PerCP-Cy5.5TM 3G8 BioLegend

NKp46 PE-Cy7TM 9E2 BioLegend

GITR APC ebioAITR BioLegend

CD3 Alexa FluorTM 700 Cr24.1 BioLegend

CD19 Alexa FluorTM 700 HIB19 BioLegend

OX40 APC-Cy7TM Ber-ACT35 BioLegend

LIVE/DEADTM Dye Violet ThermoFisher scientific

BSA, 0.02% w/v sodium azide). NK cells were incubated with
antibody panels (detailed in Tables 1, 2) for 15min in the
dark at room temperature. The cells were washed with PBS,
after which they were incubated with 1ml of LIVE/DEADTM

Fixable Violet solution (ThermoFisher Scientific) according to
the manufacturer’s instructions. Cells were washed with Wash
Buffer and re-suspended in IsotonTM II diluent Beckman Coulter.
Data were acquired on a Beckman Coulter GalliosTM flow
cytometer and analyzed using Beckman Coulter KaluzaTM v1.2
software.

Statistical Analysis
Graphs were created using GraphPad Prism v7. All datasets
were assessed for Gaussian distribution. Significant differences
in the expression of NK cell receptors between resting NK cells,
CTV-1 primed NK cells and IL-2 stimulated NK cells were
assessed by repeated measures two way ANOVA with a Tukey
multiple comparisons ad-hoc test. Correlations between receptor
expression and cytotoxic killing were assessed using two tailed
non-parametric Spearman Correlation tests.

RESULTS

Optimisation of the NK Cell Priming Assay
and Generation of Evidence to Suggest
That Down-Regulation of Activating
Receptors Does not Necessarily Indicate
NK Cell Dysfunction
It has previously been reported that NK cells from healthy
individuals can be primed by co-incubation with CTV-1 cells,

thereby enabling them to kill human DU145 prostate cancer
cells (20). During optimisation of our methods utilizing healthy
cells, NK cells were primed using different NK:CTV-1 ratios
(i.e., 2:1, 1:1, 1:2, and 1:4) and their cytotoxicity against PC3
cells (metastatic prostate cancer cell) assessed. As a reference,
the cytotoxic capacity of CTV-1 primed NK cells against K562
(chronic myelogenous leukemia) cells and resting NK cells
against both K562 and PC3 cell lines was also determined.

Resting NK cells from three healthy individuals killed 2.7,
10, and 8.8% of PC3 cells and 68.6, 83.7, and 43.8% of K562
cells, respectively (Figures 1A–C). Priming with CTV-1 cells
enhanced the cytotoxicity of NK cells from the healthy volunteers
against PC3 cells: For two healthy volunteers (1 and 3), PC3
lysis was maximal at the 1:2 ratio (lysed PC3 cells; 35.5 and
26.5%, respectively), whereas for the third (healthy volunteer
2) PC3 lysis was maximal at the 1:1 ratio (34% lysed cells)
(Figures 1A–C). In general, increasing the proportion of CTV-
1 cells within the priming ratio beyond that which induced a
peak level of cytotoxicity resulted in a reduced lysis of PC3 cells.
Interestingly, for the NK cells from healthy volunteers 1 and
2, priming with CTV-1 cells reduced their cytotoxicity against
K562 cells compared to their resting NK cell counterparts. The
reduction in K562 lysis increased further as the proportion of
CTV-1 cells in the priming ratio increased (Figures 1A,B). For
healthy volunteer 3, priming at the 2:1 ratio resulted in a 34.6%
increase in the killing of K562 cells, with further increases in
the proportion of CTV-1 in the priming ratio resulting in a
reduced lysis of K562 cells (Figure 1C). Analysis of the NK cell
phenotype before and after priming revealed that the reduction
in K562 lysis significantly correlated with a down-regulation in
the proportion of NK cells expressing the activating receptors
NKG2D (rs = 0.780, P = 0.0015) and NKp46 (rs = 0.643, P =

0.0153) (Figures 1D,E). For subsequent experiments, NK cells
were primed at the 1:2 NK:CTV-1 ratio.

Influence of CTV-1 Priming or IL-2
Activation on the Cytotoxicity of NK Cells
From Patients With Prostate Cancer
Against K562 and PC3 Cells
Next, we wished to assess the influence of CTV-1 priming and IL-
2 (100 U/ml) activation on the cytotoxicity of NK cells isolated
from thawed PBMC preparations derived from patients with
prostate cancer against PC3 and K562 cells. Sufficient NK cells to
perform both the priming and IL-2 stimulation assays were only
obtained from 21 of 24 patients (5 benign, 16 cancer). Sufficient
NK cells to test the priming assays, but not the IL-2 stimulation
assays were obtained from one of the individuals with benign
disease. Only the phenotype and function of resting NK cells was
possible for the remaining two patients with prostate cancer.

As shown in Figure 2A, resting NK cells from 7 of 22 patients
killed between 56 and 87% of K562 cells, whereas the NK cells
from the other 15 patients only killed between 4.8 and 23.1% of
K562 cells. Priming at a 1:2 NK:CTV-1 ratio for 17 h decreased
NK cell-mediated killing of K562 cells (median −40.7%, range
−11.4% to −58.8%) for 9 out of 22 patients, whereas a small
increase in killing of K562 cells was observed for the other 13
patients (median +7%, range +0.6% to +33.4%). Stimulation of
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FIGURE 1 | Optimisation of the NK:CTV-1 priming ratio using NK cells from healthy volunteers. NK cells were isolated from thawed PBMCs that had previously been

generated from the peripheral blood of healthy individuals and co-incubated with mitomycin C treated CTV-1 cells at ratios 2:1, 1:1, 1:2, 1:4 for 17 h at 37◦C. NK cells

incubated in isolation were used as controls. The phenotype and cytotoxic function of the primed NK cells were then assessed by flow cytometry. For each priming

ratio, the ability of primed NK cells to lyse K562 cells and PC3 cells at a 5:1 effector to target ratio were measured. (A–C) Cytotoxicity against K562 and PC3 cells for

three healthy volunteers. (D,E) Significant correlation between K562 lysis and expression of activating receptors NKG2D and NKp46 on primed NK cells, respectively.

the NK cells with 100 IU of IL-2 over 17 h resulted in increased
killing of K562 cells (median +17.4%, range +6.4% to +46.9%)
for all but one individual, for whom killing decreased by 1.6%
(Figure 2B). IL-2 stimulation was more effective at enhancing
the NK cytotoxicity toward K562 cells, whereas priming often
resulted in a reduction in lysis (Figure 2C).

Although resting NK cells from the majority of patients
exhibited low cytotoxicity against PC3 cells (median 3.6%,
range 0% to 32.1%), cytotoxic potential was enhanced following
priming with CTV-1 (median 14.4%, range 6.2% to 44.2%)
(Figure 2D). This increased ability to kill PC3 cells was
comparable to that which was induced by IL-2 stimulation
(median 15.7%, range 2.8% to 61.9%) (Figure 2E). Due to the
large range of cytotoxic responses against PC3 cells that were
observed for activated NK cells (by either method), the patients
from whom these were isolated were divided into two groups;
(1) those that functionally responded better to NK cell priming
than IL-2 stimulation (10 out of 21 patients) and (2) those that
functionally responded better to IL-2 stimulation than NK cell

priming (11 out of 21 patients). As shown in Figure 2F, those
patients that responded better to NK cell priming exhibited a
median increase in killing of PC3 cells of +19% (range of +6%
to +36.5%) compared to a median increase of +5.3% (range
−3.9% to +19.1%) when NK cells were stimulated with IL-2.
For the patients that responded better to IL-2 stimulation, the
median increase in lysis of PC3 cells was +26.5% (range +8.4%
to +40.3%) compared to a median increase of +4.9% (range
−20.8% to+15.2%) when the NK cells were primed (Figure 2G).

Patients were then grouped according to whether priming
increased or decreased K562 lysis (Figure 2H). For each
group, the increase in cytotoxic response toward PC3 cells
against that achieved when the NK cells were stimulated
with IL-2 were compared (Figures 2I–K). NK cells from all
but one of the patients that exhibited a reduced cytotoxicity
against K562 cells after priming with CTV-1 cells (n = 9)
exhibited a better cytotoxic response to PC3 cells when
stimulated with IL-2 (Figures 2J,K). In contrast, NK cells
from 9 of 11 patients that exhibited an increased cytotoxicity

Frontiers in Immunology | www.frontiersin.org 5 January 2019 | Volume 9 | Article 3169



Improving the Diagnostic Yield of Prostate Cancer – Masood A. Khan 
________________________________________ 

 

173 | P a g e  
 

 

 

 

 

 

 
 

 

Hood et al. Triggering of Prostate Cancer Patient-Derived NK Cells

FIGURE 2 | Influence of CTV-1 priming and IL-2 activation on the cytotoxicity of patient-derived NK cells against K562 and PC3 target cells. NK cells were isolated

from thawed PBMC samples derived from peripheral blood of patients with benign prostate disease and patients with prostate cancer. For each patient, the NK cells

were either primed with mitomycin C treated CTV-1 cells at a 1:2 ratio or activated with 100 IU IL-2, after which their ability to lyse K562 cells and PC3 cells at a 5:1

effector to target ratio was measured using flow cytometry. Comparison of cytotoxic responses toward K562 cells; (A) resting NK cells vs. primed NK cells, (B) resting

NK cells vs. IL-2 activated NK cells, (C) change in lysis of K562 cells effected by priming compared to IL-2 activation. Assessment of cytotoxic responses toward PC3

cells; (D) resting NK cells vs. primed NK cells (E) resting NK cells vs. IL-2 activated NK cells, (F) patient-derived NK cells that lysed more PC3 cells following priming

compared to following IL-2 activation (G) patient-derived NK cells that lysed more PC3 cells following IL-2 activation than following priming. (H–K) Alternative analysis

of data presented in (A, D, F, G) by grouping patients according to increased or decreased lysis of K562 cells following priming.

against K562 cells after priming exhibited a better cytotoxic
response to PC3 cells compared to that which was induced
following stimulation with IL-2 (Figures 2J,K). Overall,
these findings demonstrate that CTV-1 priming can enhance
cytotoxic responses of patient NK cells toward a metastatic
prostate cancer cell line, that is comparable to that of IL-
2 stimulation, and that this enhancement appears to be
irrespective of disease severity. Furthermore, these results
also demonstrate that the responsiveness to NK cell CTV-1
priming and IL-2 activation is patient-dependent, thereby
suggesting that treatment plans will need to be tailored
to the patient in order to achieve an appropriate level of
efficacy.

Correlation Between the Phenotype and
Cytotoxic Function of Resting NK Cells and
NK Cells Following CTV-1 Priming or IL-2
Activation
In parallel with the assessment of cytotoxic function, the
phenotype of the patient-derived NK cells before and after
activation was interrogated using the antibody panels described
in Tables 1, 2. In order to associate NK cell phenotype with
cytotoxic function, we performed a correlation matrix with the
percentage of resting NK cells expressing each receptor and the
percentage of K562 and PC3 lysis (Supplementary Figure 1). We
observed significant positive correlations between the percentage
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of K562 lysis and the percentage of resting NK cells expressing
NKp46 (activating receptor), CD69 (early activation marker),
CD137 and GITR (TNF receptors). Furthermore, there was
a significant positive correlation between the percentage of
NK cells expressing CD69 and both TNF receptors. Graphical
representations of a selection of these correlations are shown
in Figure 3. Although the percentage of K562 lysis correlated
with the percentage of NK cells expressing NKp46 (rs =

0.516, P = 0.0099), thereby reflecting what was observed in
our experiments with healthy volunteers (Figure 3A), the most
prominent correlation appeared to be between the percentage of
K562 lysis and the proportion of NK cells expressing CD69 (rs=
0.688, P = 0.0002) (Figures 3B). As shown in Figure 3B, NK cell
preparations that preferentially responded to IL-2 stimulation
(green), as previously measured by a greater cytotoxic response
to PC3 cells, generally exhibited a greater proportion of CD69+

NK cells compared to NK cell preparations that preferentially
responded to priming (blue).

It is plausible that thawing PBMCs up-regulated CD69 on
a greater proportion of the NK cells recovered from the IL-
2 responders and that further activation of these NK cells by
priming reduced their cytotoxic potential. Resting NK cells have
been reported not to express CD137 and to only express low levels
of GITR. However, both receptors are up-regulated following
NK cell activation (21, 22). This may account for the significant
positive correlations between CD69 expression and both CD137
and GITR expression (rs= 0.638, P= 0.0008 and rs= 0.713, P <

0.0001, respectively) reported herein (Figures 3C,D).
There was no correlation between the percentage of K562

lysis and the percentage of PC3 lysis exhibited by CTV-1 primed
NK cells (Figure 4A). However, there was a significant positive
correlation when comparing the percentage change in lysis of
K562 cells against the percentage change in lysis of PC3 cells
induced by priming (rs = 0.687, P = 0.0004) (Figure 4B). In
contrast, as shown in Figures 4C,D, only the percentage of K562
lysis and the percentage of PC3 lysis exhibited by IL-2 stimulated
NK cells were positively correlated (rs= 0.672, P= 0.008). Taken
together, it appears that CTV-1 priming and IL-2 activation
differentially regulate NK cell function. Since NK cell function
is controlled by signals delivered via activating and inhibitory
receptors expressed on the NK cell surface, it is likely that the
disparities in NK cell function are due to the differences in the
way the activation methods influence the expression of relevant
NK cell receptors.

Influence of CTV-1 Priming and IL-2
Activation on CD16, NKG2D, NKp46 and
CD69 Expression
Having observed differences in NK cell-mediated cytotoxic
responses following tumor priming and IL-2 stimulation, we next
wanted to determine whether these two approaches differentially
regulate the expression of NK cell activating receptors. Our
initial analysis on the total NK cell population revealed that
CTV-1 priming down-regulated the percentage of NK cells
expressing the activating receptors CD16, NKG2D, andNKp46 in
conjunction with an up-regulation in the percentage of NK cells

expressing CD69. These results supported the observations made
by Lowdell et al. (19, 20).

The analysis was then focussed on the CD56dim NK cell
subset which can be subdivided into three subpopulations based
on CD16 expression; CD56dimCD16high, CD56dimCD16low, and
CD56dimCD16neg. The down-regulation of CD16 expression
by CTV-1 priming altered the proportions of these three
CD56dim subpopulations. Representative density plots and gating
strategies are shown in Figures 5A,B. A decrease in the median
percentage of CD56dimCD16high NK cells (resting 72.6 vs. primed
48.7%) was observed, whereas there was an increase in the
median percentage of CD56dimCD16low NK cells (resting 17.7
vs. primed 32.7%), and CD56dimCD16neg NK cells (resting
3.2 vs. primed 11%). In comparison, the proportion of the
CD56dimCD16+/− subpopulations was not significantly altered
following stimulation with IL-2 and remained significantly
different to that of the CTV-1 primed NK cell subpopulations
(Figure 5C).

Having observed alterations in the proportions of
CD56dimCD16+/− subpopulations following NK cell priming,
the expression of NKG2D, NKp46, and CD69 on these
subpopulations was analyzed in order to determine whether
their expression differed between the three subpopulations.
As a comparison, the phenotype of IL-2 stimulated NK cells
was also determined. As shown in Figures 5D,E, compared to
resting NK cells, priming significantly decreased the proportion
of NK cells within the three CD56dimCD16+/− subpopulations
expressing NKG2D and NKp46. In contrast, only the proportion
of the CD56dimCD16neg NK cells expressing NKp46 was
decreased following IL-2 stimulation, whereas the proportion
of all three CD56dimCD16+/− subpopulations expressing
NKG2D was increased by IL-2 stimulation compared to resting
NK cells. When resting, the median proportion of the three
CD56dimCD16+/− NK cell subpopulations expressing CD69
ranged between 73.6 and 79.7% (Figure 5F). IL-2 stimulation
significantly increased the proportion of NK cells within the
three subpopulations expressing CD69 (median 94.4% to
97.1%). Interestingly, priming significantly upregulated the
expression of CD69 on only a proportion of NK cells within the
CD56dimCD16low and CD56dimCD16neg NK cell subpopulations.
The median expression for the two subpopulations was 84.9 and
89.7%, respectively (Figure 5F). Despite observing alterations
to the proportion of CD56dimCD16+/− subpopulations
expressing CD69 following activation by either method,
only the IL-2 stimulated NK cell subpopulations exhibited
a significant increase in intensity of CD69 expression
(Supplementary Figure 2).

Influence of CTV-1 Priming and IL-2
Activation on the Expression of TNF
Receptors and the CD107a Degranulation
Receptor and Their Differential Effects on
the Expression of DNAM-1 and CD96
In addition to determining the influence of CTV-1 priming on
the expression of NK cell activating receptors and co-receptors
that have previously been described by Lowdell et al. (19, 20),
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FIGURE 3 | Correlations between phenotype and cytotoxic function of resting NK cells. NK cells were isolated from thawed PBMCs that had previously been

generated from the peripheral blood of patients with benign prostate disease and patients with prostate cancer and rested over 17 h. NK cell phenotype and cytotoxic

function against K562 cells were subsequently analyzed using flow cytometry. Correlations between phenotype and function were evaluated using non-parametric

Spearman Rank correlation matrix. Graphical representations of selected significant correlations are shown; (A,B) % of K562 lysis vs. % of NK cells expressing NKp46

and CD69, respectively, (C,D) % of NK cells expressing CD69 vs. those expressing CD137 and GITR, respectively. Green dots indicate patients whose NK cells

responded better to IL-2 stimulation. Blue dots indicate patients whose NK cells responded better to being primed. Black dots indicate patients for which only priming

experiments were undertaken due to low NK cell numbers.

their influence on the expression of additional receptors was
examined. Lowdell et al. have previously shown that the priming
of NK cells using CTV-1 cells requires cell-to-cell contact (19).
We therefore decided to measure the expression of CD107a on
the surface of the primedNK cells. Since the primedNK cells used
for phenotyping came from the same pool of cells as those used
for the functional assays, we did not include monensin during the
17-h co-incubation between patient-derived NK cells and CTV-1
cells.

IL-2 stimulation and CTV-1 priming significantly increased
the proportion of all three CD56dimCD16+/− NK cell
subpopulations expressing CD107a. However, the proportion
of primed CD56dimCD16low and CD56dimCD16neg NK cell
subpopulations expressing CD107a was significantly higher than
their IL-2 stimulated counterparts (Figure 6A). A significant
increase in the median fluorescence intensity (MFI) of CD107a
expression was also only observed for primed CD56dimCD16low

and CD56dimCD16neg subpopulations. IL-2 stimulation did
not significantly increase their intensity of CD107a expression
(Supplementary Figure 3A). Interestingly, it was observed that
proportionally, CD56dimCD16neg NK cells were more able to

up-regulate the CD107a receptor, whereas the CD56dimCD16high

subpopulation were the least able to up-regulate the CD107a
receptor (Figure 6A). This was true for both primed and IL-2
stimulated NK cells.

Tumor necrosis factor (TNF) receptors such as OX40, CD137,
and GITR are up-regulated on the surface of activated NK cells.
Although well studied in T cell biology, little is known about the
role these receptors play in NK cell immunity (23). We wanted
to observe whether these receptors are up-regulated on CTV-
1 primed NK cells and play a role in the triggering of NK cell
cytotoxic responses. Resting patient-derived NK cells expressed
very little CD137 (median 1.29%, range 0.23% to 6.91%) and
OX40 (median 1.05%, range 0.11% to 5.68%) in contrast to
expression of GITR (median 26% range 3.63% to 95%). Priming
significantly increased the proportion of CD56dimCD16low

and CD56dimCD16neg subpopulations expressing the three
TNF receptors. This contrasts with IL-2 stimulation which
significantly upregulated expression of the three TNF receptors
on each CD56dimCD16+/− subset (Figures 6B–D). Similar to the
up-regulation of CD107a, the CD56dimCD16neg subpopulation
exhibited the greatest proportion of cells expressing the TNF
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FIGURE 4 | Comparing the capacity of primed and IL-2 activated NK cells to lyse K562 cells and PC3 cells. NK cells were isolated from thawed PBMCs generated

from the peripheral blood of patients with benign prostate disease and patients with prostate cancer. For each patient, the NK cells were either primed with mitomycin

C treated CTV-1 cells at a 1:2 ratio or activated with 100 IU IL-2, after which their ability to lyse K562 cells and PC3 cells at a 5:1 effector to target ratio was measured

using flow cytometry. As assessed by Spearman Rank correlations, the ability of activated NK cells (primed or IL-2 stimulated) to lyse K562 cells compared to PC3

cells are shown (A) direct comparison between % of lysed K562 cells vs. % of lysed PC3 cells by primed NK cells (B) change in lysis of K562 cells vs. change in lysis

of PC3 cells by NK cells upon priming, (C) direct comparison between % of lysed K562 cells vs. % of lysed PC3 cells by IL-2 (100 IU) activated NK cells, (D) change in

lysis of K562 cells vs. change in lysis of PC3 cells by NK cells after IL-2 activation. Green dots indicate patients whose NK cells responded better to IL-2 activation.

Blue dots indicate patients whose NK cells responded better to being primed. Black dots indicate patients for which only priming experiments were done due to low

NK cell numbers.

receptors following NK cell activation by either method. Again,
proportionally the CD56dimCD16high subpopulation was the
least able to up-regulate the TNF receptors. Furthermore, in the
context of primed NK cells, that on average exhibited the greatest
up-regulation of both CD137 and CD107a, co-expression of these
two markers on the same primed NK cell was rarely observed.
However, it should be noted that the majority of primed NK cells
did not express either marker (Supplementary Figure 4). Due to
the antibody panel design it was not possible to directly assess the
co-expression of CD107a with OX40 and GITR.

Expression of the adhesion receptors DNAM-1 and CD96
(TACTILE) was also determined. It has been proposed that
DNAM-1 is involved in the recognition stage of forming an
immunological synapse and ligates with the nectin-like protein
CD155 on the surface of the target cell (24, 25). CD96 is thought

to compete with DNAM-1, along with the inhibitory receptor
TIGIT, for ligation with CD155 (25). CTV-1 priming upregulated
DNAM-1 expression by the CD56dimCD16neg subpopulation,
both in terms of the proportion of NK cells expressing
the receptor (Figure 6E) and the intensity of expression
(Supplementary Figure 2B). Priming also significantly increased
the intensity of DNAM-1 expression on CD56dimCD16low

NK cells (Supplementary Figure 2B). In comparison, IL-2
stimulation only increased the intensity of CD96 expression on
the CD56dimCD16high and CD56dimCD16low subpopulations
(Supplementary Figure 2B). The change in expression of
CD96 following CTV-1 priming was different to that of
DNAM-1. The proportion of NK cells expressing CD96 within
all three CD56dimCD16+/− subpopulations decreased after
priming, with the intensity of CD96 expression only decreasing
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FIGURE 5 | Influence of priming and IL-2 activation on CD16 expression by CD56dim NK cells and the expression of NKG2D, NKp46, and CD69 expression by

CD56dim NK cell subpopulations expressing different levels of CD16. For each patient, isolated NK cells were either primed with mitomycin C treated CTV-1 cells at a

1:2 ratio or activated with 100 IU IL-2, after which their expression of CD16, NKG2D, NKp46, and CD69 was measured by flow cytometry and compared to that of

resting NK cells. (A,B) Strategies for the gating of live, single cell, NK subpopulations based on CD56, and CD16 expression for both resting and primed NK cells,

respectively. (C) Box and whisker plot comparing the proportion of CD56dimCD16high, CD56dimCD16low, CD56dimCD16neg populations before and after priming,

and IL-2 activation. For each CD56dim subpopulation before and after NK cell activation, box and whisker plots analyzing the proportion of NK cells expressing (D)

NKG2D, (E) NKp46, and (F) CD69. Statistical analysis was performed using two way ANOVA repeated measure tests combined with Tukey’s multiple comparisons

test and 95% confidence intervals. *< 0.05, **< 0.01, ***< 0.001, ****< 0.0001.

on the CD56dimCD16neg subpopulation (Figure 6F and
Supplementary Figure 3E). In contrast, IL-2 stimulation only
significantly upregulated the intensity of CD96 expression on the
CD56dimCD16low and CD56dimCD16neg NK cell subpopulations
(Supplementary Figure 3E).

Correlations Between Changes in NK Cell
Phenotype and Changes in Cytotoxic
Function Following CTV-1 Priming and IL-2
Activation
Lowdell et al. have proposed that the NK cell cytotoxic
mechanism can be split into two stages; priming and triggering

(16, 19). It was suggested that the CD69 receptor acts
as a triggering receptor, but that more triggering receptors
exist (19). In an attempt to assign potential “priming” and
“triggering” attributes to the NK cell receptors that were
measured in this study, for each patient we calculated (1)
the change in expression of all receptors measured and (2)
the change in lysis of K562 and PC3 cells, following NK
cell activation and performed a series of non-parametric
correlation matrices using data on receptor expression on
total NK cells (Supplementary Figure 5) and data on receptor
expression by the three CD56dimCD16+/− subpopulations
(Supplementary Figure 6). Key significant correlations from
these matrices were selected and XY scatter plots created in
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FIGURE 6 | Influence of priming and IL-2 activation on the phenotype of CD56dim NK cell subpopulations. For each patient, isolated NK cells were either primed with

mitomycin C treated CTV-1 cells at a 1:2 ratio or activated with 100 IU IL-2, after which the expression of CD107a, CD137, OX40, GITR, DNAM-1, and CD96 by

CD56dimCD16high, CD56dimCD16low, CD56dimCD16neg NK subpopulations was measured by flow cytometry and compared to that of resting NK cells. Box and

whisker plots show the proportion of each NK cell subpopulation expressing (A) CD107a, (B) CD137, (C) OX40, (D) GITR, (E) DNAM-1, (F) CD96. Statistical analysis

was performed using two way ANOVA repeated measure tests combined with Tukey’s multiple comparisons test and 95% confidence intervals. *< 0.05, **< 0.01,

***< 0.001, ****< 0.0001.

order to better observe and interpret these correlations from a
biological point of view. We color coded the points to identify
patients who preferentially responded to IL-2 stimulation for
the lysis of PC3 cells (green) and patients who preferentially
responded to CTV-1 priming (blue). Data from patients from
whom too few NK cells were recovered to perform both the
priming and IL-2 stimulation experiments are colored black.

Only the expression of the activating receptors NKp46
and DNAM-1 correlated with the lysis of K562 and PC3
cells (Figure 7). A decrease in the proportion of NK cells
expressing NKp46, as result of CTV-1 priming, positively
correlated with a decrease in the ability of the NK cells
to kill both K562 cells (rs = 0.487, P = 0.0252) and
PC3 cells (rs = 0.457, P = 0.0372) (Figures 7A,B). Despite
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all three CD56dimCD16+/− subpopulations down-regulating
NKp46 (Figure 5E) following NK cell priming, only changes in
the phenotype of the CD56dimCD16low and CD56dimCD16neg

populations significantly correlated with the decrease in lysis
of both target cells (Figures 7C–F). The data revealed a trend
that those patients whose NK cells preferentially responded to
IL-2 stimulation, thereby enhancing their ability to lyse PC3
cells, tended to down-regulate more NKp46 than the NK cells
from patients that preferentially responded to tumor priming
(Figures 7D,F). Changes in the proportion of NK cells expressing
DNAM-1 in the three CD56dimCD16+/− subpopulations as a
result of priming were small (<6%) (Figures 7G,H). An increase
in the proportion of CD56dimCD16low NK cells expressing
DNAM-1 positively correlated with the lysis of K562 (rs =

0.567, P = 0.0073). In contrast, a decrease in the proportion
of CD56dimCD16high NK cells expressing DNAM-1 negatively
correlated with an increase in the lysis of PC3 cells (rs = 0.661,
P = 0.0011).

In contrast to primed NK cells, lysis of K562 and PC3 cells
by IL-2 stimulated NK cells did not correlate with the change
in expression of any activating receptors (Figure 8). Instead, the
lysis of K562 cells only positively correlated with an increased
proportion of CD69 positive cells (rs = 0.558, P = 0.0085)
(Figure 8A). However, this increase in the proportion of CD69
positive cells negatively correlated with the ability of the IL-
2 stimulated NK cells to lyse PC3 cells (rs = −0.506, P =

0.0193) (Figure 8B). Interestingly, an increase in the proportion
of NK cells up-regulating the TNF receptors CD137 and OX40
following stimulation with IL-2 positively correlated with an
increase in the ability of the NK cells to kill PC3 cells (rs =

0.484, P = 0.0261 and rs = 0.461, P = 0.0353, respectively)
(Figures 8C,D).

NKG2D has been commonly reported to be an important
activating receptor for the recognition and killing of cancer
cells, including prostate cancer (26–29). However, changes in
the proportion of NK cells expressing NKG2D after NK cell
priming did not correlate with the ability of the primed NK
cells to lyse K562 and PC3 cells in the current study. Instead,
proportionally, NKG2D expression positively and significantly
correlated with the expression of CD96 and the three TNF
receptors (Figures 9A–D). The results showed that a priming-
induced reduction in the proportion of NK cells expressing
NKG2D was associated with a reduction in the proportion
of NK cells expressing CD96 (rs = 0.459, P = 0.0362)
(Figure 9A). As previously shown in Figures 6B–D, priming up-
regulated CD137, OX40, and GITR expression. The correlations
in Figures 9B–D show that the up-regulation of these TNF
receptors on primed NK cells was associated with retaining
NKG2D on the surface of primed NK cells. The greater the
proportion of primed NK cells down-regulating NKG2D, then
the smaller the proportion of NK cells up-regulating CD137 (rs=
0.466, P = 0.0331), OX40 (rs= 0.529, P = 0.0136), and GITR (rs
= 0.529, P = 0.0136). Interestingly the expression of CD69 also
correlates with the expression of CD96 and the expression of the
three TNF receptors. The greater the proportion of primed NK
cells down-regulating CD96 expression the lower the proportion
of primed NK cells up-regulating CD69 expression (rs= 0.551, P

= 0.0097) (Figure 9E). In general, an increased proportion of NK
cells up-regulating CD69 expression upon CTV-1 priming was
associated with an increased proportion of NK cells expressing
CD137 (rs = 0.662, P = 0.0011), OX40 (rs = 0.603, P = 0.0038),
and GITR (rs = 0.902, P < 0.0001) (Figures 9F–H). However,
it was noted that an up-regulation in the expression of all three
receptors also occurred in the absence of an up-regulation in
the expression of CD69. Considering that the up-regulation of
the three TNF receptors on NK cells correlates with CTV-1
priming and the expression of CD69, it was not surprising that
expression of the three TNF receptors positively, and significantly
correlated with each other (Figures 10A–C). However, only the
expression of GITR positively correlated with the expression of
CD96 (Figure 10D). In general, the greater the proportion of NK
cells down-regulating CD96, then the lower the proportion of NK
cells up-regulating GITR (rs= 0.455, P = 0.0384).

Although priming resulted in a positive correlation between
CD69 expression and TNF receptor expression, IL-2 stimulation
resulted in a negative correlation between the expression of CD69
and that of the TNF receptors CD137 and OX40. As shown
in Figures 10E,F, respectively, an increase in the proportion
of NK cells up-regulating CD69 negatively correlated with the
proportion of NK cells up-regulating CD137 (rs = −0.710, P <

0.0001) and OX40 (rs = −0.565, P = 0.0076). Interestingly, NK
cells from those patients that already included a high proportion
of NK cells expressing CD69 prior to IL-2 stimulation appeared
more likely to up-regulate CD137 and OX40. Similarly to primed
NK cells, a highly significant positive correlation between the
up-regulation of OX40 and CD137 by IL-2 stimulated NK cells
was observed (rs = 0.741, P = 0.0001) (Figure 10G). In contrast
to primed NK cells, no significant correlation was observed
between the proportion of IL-2 stimulated NK cells expressing
GITR and those expressing CD69. However, the proportion of
IL-2 stimulated NK cells up-regulating NKG2D did positively
correlate with the proportion of NK cells up-regulating GITR (rs
= 0.603, P = 0.0038) (Figure 10H). Overall, it appears that NK
cell priming and IL-2 activation differentially regulate CD137,
OX40, and GITR expression.

DISCUSSION

NK cells have immunotherapeutic potential for the treatment
of cancer due to their natural ability to kill cancerous cells
and a number of NK cell-based immunotherapies are now in
development (10–15).

One approach has previously been proposed by Lowdell et al.
who discovered that CTV-1 cells (ALL cell line) could “prime”
NK cells from healthy volunteers and enhance their ability to kill
NK cell-resistant cancer cell lines such as the DU145 metastatic
prostate cancer cell line (19, 20). Furthermore, Lowdell et al.
also noted that NK cells undergo alterations in phenotype upon
priming (19, 20). Most notably, primed NK cells down-regulated
their expression of activating receptors NKG2D, NKp46, and
NKp80 and this was associated with enhanced cytotoxic function
(20). This is in contrast to the down-regulation of NK cell
activating receptors and resulting inhibition of NK cell cytotoxic
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FIGURE 7 | Correlation between changes in expression of NKp46 and DNAM-1 by patient-derived NK cells following priming with changes in their ability to lyse K562

and PC3 cells. Using phenotypic profiles from patients with prostate cancer, a Spearman Rank correlation matrix was performed to identify correlations between the

changes in NK cell phenotype and cytotoxic potential after priming at a 1:2 NK:CTV-1 ratio. Correlation between changes in the proportion of NK cells expressing

NKp46 and target cell lysis; (A,B) killing of K562 and PC3 cells by the total NK cell population, (C,D) killing of K562 and PC3 cells by the CD56dimCD16low NK cells,

(E,F) killing of K562 and PC3 cells by CD56dimCD16neg NK cells. Correlation between changes in the proportion of CD56dimCD16low NK cells expressing DNAM-1

(Continued)
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FIGURE 7 | and change in the lysis of K562 cells (G). Correlation between changes in the proportion of CD56dimCD16high NK cells expressing DNAM-1 and change

in lysis of PC3 cells (H). Green dots indicate patients whose NK cells responded better to IL-2 activation. Blue dots indicate patients whose NK cells responded better

to being primed. Black dots indicate patients for which only priming experiments were done due to low NK cell numbers.

FIGURE 8 | Correlation between changes in CD69, CD137, and OX40 expression by patient-derived NK cells after activation with IL-2 and changes in their ability to

lyse K562 and PC3 cells. Using phenotypic profiles from patients with prostate cancer, a Spearman Rank correlation matrix was performed to identify correlations

between the changes in NK cell phenotype and cytotoxic potential after activation with 100 IU IL-2. Correlation between change in % of patient NK cells expressing

CD69 following IL-2 stimulation and changes in the % of K562 cell lysis (A) and % of PC3 lysis (B). (C,D) Correlation between changes in the % of patient NK cells

expressing CD137 and OX40 and changes in the % of PC3 cell lysis after IL-2 stimulation. Green dots indicate patients whose NK cells responded better to IL-2

activation. Blue dots indicate patients whose NK cells responded better to being primed.

functions which is generally associated with exposure of NK
cells to immunosuppressive cytokines (e.g., TGF-β) produced by
tumors and suppressive immune cell populations (e.g., Tumor
AssociatedMacrophages, TAMs) (16, 20, 30). Therefore, not only
is the priming of NK cells using CTV-1 cells a method of NK
cell activation with potential immunotherapeutic application,
it may also serve as a model that can be used to improve
our understanding of the mechanisms involved in NK cell
cytotoxicity. Although the application of CTV-1 primed NK cells
in a clinical setting has to date been limited, the adoptive transfer
of CTV-1 primed NK cells into humans has shown that primed
NK cells can promote durable complete remission in some high
risk patients with acute myeloid leukaemia (AML) who were not
candidates for hematopoietic cell transplantation (31).

The aim of this study was to compare and contrast the
influence of CTV-1 priming and IL-2 activation of NK cells, an
approach which has been shown to have immunotherapeutic
potential in a number of settings (14, 15), from patients
with prostate cancer on their ability to kill the NK cell-
resistant cell line PC3 which is considered to represent an
aggressive form of metastatic prostate cancer (32). We also

wanted to understand how changes in the phenotype of
primed and IL-2 activated NK cells influence their cytotoxic
function.

Irrespective of disease status (i.e., benign, low grade cancer
or high grade cancer) our data showed that patient-derived
NK cells respond to being primed with CTV-1 cells and that
this triggered an increase in their ability to lyse PC3 prostate
cancer cells (up to 37%). This increased ability to lyse PC3 cells
was comparable to that of IL-2 stimulation. Importantly, the
capacity of priming and IL-2 stimulation to trigger cytotoxicity
was patient-dependent, in that NK cells from ∼50% of patients
preferentially responded to CTV-1 priming whereas NK cells
from the remaining patients preferentially responded to IL-
2 stimulation. Such patient-specific responsiveness has been
observed in other immunotherapeutic settings such as the use
of checkpoint inhibitors (33, 34) and reiterates the need for the
development of “companion diagnostics” that can identify those
patients that will benefit from a defined immunotherapy (35).

In general, CTV-1 priming and IL-2 stimulation enhanced
NK cell cytotoxicity against PC3 cells. However, although IL-2
stimulation always enhanced K562 lysis, priming did not. K562
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FIGURE 9 | Correlations between changes in NKG2D and CD69 expression by patient-derived NK cells after priming with changes in TNF receptor and CD96

expression. Using phenotypic profiles from patients with prostate cancer, changes in the proportion of NK cells expressing each receptor after priming at a 1:2

NK:CTV-1 ratio were calculated. Using these calculations, a Spearman Rank correlation matrix was performed to identify correlations between the expression of NK

cell receptors. Graphical representations of significant correlations between receptors expressed by primed NK cells are shown; (A) NKG2D vs. CD96, (B) NKG2D vs.

CD137, (C) NKG2D vs. OX40, (D) NKG2D vs. GITR, (E) CD69 vs. CD96, (F) CD69 vs. CD137, (G) CD69 vs. OX40, (H) CD69 vs. GITR. Green dots indicate patients

whose NK cells responded better to IL-2 activation. Blue dots indicate patients whose NK cells responded better to being primed. Black dots indicate patients for

which only priming experiments were done due to low NK cell numbers.
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FIGURE 10 | Correlations between expression of TNF receptors, NKG2D, CD69, and CD96 by patient-derived NK cells after priming or IL-2 activation. Using

phenotypic profiles from patients with prostate cancer, changes in the proportion of NK cells expressing each receptor after priming or activation with 100 U/ml IL-2

were calculated. Using these calculations, Spearman Rank correlation matrices for primed NK cells and IL-2 stimulated NK cells were used to identify correlations in

expression of NK cell receptors. Graphical representations of significant correlations between pairs of receptors expressed by primed NK cells are shown; (A) CD137

vs. GITR, (B) GITR vs. OX40, (C) CD137 vs, OX40, (D) GITR vs. CD96. Graphical representations of significant correlations between pairs of receptors expressed

(Continued)
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FIGURE 10 | by IL-2 stimulated NK cells are shown; (E) CD69 vs. CD137, (F) CD69 vs. OX40, (G) CD137 vs. OX40, (H) NKG2D vs. GITR. Green dots indicate

patients whose NK cells responded better to IL-2 activation. Blue dots indicate patients whose NK cells responded better to being primed. Black dots indicate

patients for which only priming experiments were done due to low NK cell numbers.

cells areMHC class I negative cells and are thus highly susceptible
to lysis by NK cells as they do not provide MHC class I-triggered
inhibitory signals to the NK cell. Yet despite this, NK cells from
only 7 of the 22 patients in our study were able to lyse>56% of the
K562 cells within the timeframe of the cytotoxicity assay, whereas
NK cells from the remaining patients lysed <24%. Although
it might be assumed that NK cells from these patients were
exhibiting a degree of cytotoxic dysfunction, our data suggest that
this is not the case, as the NK cells from these patients responded
better to being primed by CTV-1 cells, thereby enabling them to
increase their lysis of PC3 cells to greater extent than when they
were stimulated with IL-2. In contrast, NK cells from the seven
patients that exhibited a high level of K562 lysis at rest responded
poorly to being primed with CTV-1 cells.

Overall our data questions current understanding of NK cell
dysfunction. It appears that NK function is determined by (1)
the composition and phenotypes of the NK cell populations at
rest, (2) the type of stimulus used to activate the NK cell (i.e.,
cytokine or a combination of membrane bound ligands), and
(3) the effect this stimulus has on the NK cell phenotype which
then determines their ability to lyse subsequent targets. Our data
suggest that NK cells need the correct stimulation to achieve a
functional response and a failure to respond to one target (or
stimulus) does not necessarily indicate a failure to respond to
another.

Our observations support the notion that theNK cell cytotoxic
mechanism can indeed be divided into the two stages; “priming”
and “triggering,” first postulated by Lowdell et al. (16, 19). Our
data suggest that only a proportion of the NK cells can respond
to an activation stimulus and this is likely due to the vast number
of different NK cell subpopulations that exist in one individual,
with each subpopulation expressing a different combination of
receptors, as has been reported by Horowitz et al. (36). Although
the NK cell activating and inhibitory receptor repertoire appears
to be large, NK cells do not appear to express all the receptors
at the same time. Therefore, when NK cells are stimulated with
a cytokine (e.g., IL-2) or come into contact with a target cell
expressing a specific combination of ligands, only a proportion of
the NK cells are capable of responding. IL-2 stimulation had no
effect on the expression of CD16, but did increase the proportion
of NK cells expressing NKG2D, CD69, CD107a, CD137, OX40,
GITR, and also the intensity of CD96 expression. However, it
should be noted that the correlation between the expression
of CD69 and the two TNF receptors CD137 and OX40 was
negative, which is in contrast to the positive correlation exhibited
by primed NK cells. In the case of priming, down-regulation
of CD16 appeared to be an important indicator of response to
stimulus, although not exclusively as a small proportion of the
CD56dimCD16high population upregulated CD107a expression
which is indicative of degranulation. Similar to interactions
between NK cells and K562 cells, cell-to-cell contact between NK

cells and CTV-1 cells has been reported to down-regulate or lead
to the shedding of CD16 (19, 37–39). We found that the shedding
of CD16 on a proportion of NK cells following priming with
CTV-1 cells decreases the proportion of CD56dimCD16high NK
cells in the NK cell population which coincided with an increase
in the proportion of CD56dimCD16low or CD56dimCD16neg

NK cells. This observation is analogous to that observed by
Jewett et al. who observed that loss of CD16 expression by
NK cells following exposure to K562 cells was only observed
on those NK cells that could form conjugates with the NK
cells (37). In our study, analysis of the three CD56dimCD16+/−

subpopulations following priming with CTV-1 cells revealed a
link between the extent of CD16 shedding and the up-regulation
of the activation marker CD69 similar to that observed by Jewett
et al. (37). Additionally, we observed the up-regulation of three
TNF receptors (CD137, OX40, GITR) and the up-regulation of
the degranulation receptor CD107a. Compared to resting NK
cells, both CD56dimCD16low NK cells and CD56dimCD16neg NK
cells significantly upregulated all five receptors. Proportionally,
a greater percentage of NK cells within the CD56dimCD16neg

subpopulation expressed the CD107a and TNF receptors
compared to the CD56dimCD16low subpopulation. In contrast,
the CD56dimCD16high subpopulation only significantly up-
regulated CD107a. The extent of TNF receptor up-regulation
on primed NK cells positively correlated with the up-
regulation of CD69, which itself correlated positively with the
expression of CD96. Interestingly, only the CD56dimCD16low

and CD56dimCD16neg subpopulations significantly up-regulated
CD69 expression, therefore explaining the absence of TNF
receptor up-regulation on the CD56dimCD16high subpopulation.

To put our observations into context with the literature, our
data suggest that successful priming of NK cells by tumor cells
involves the ligation of multiple NK cell activating receptors,
two of which appear to be NKG2D and CD96. Interestingly the
expression of NKG2D and CD96 positively correlates with each
other, with the down-regulation of one being associated with
the down-regulation of the other. Retention of CD96 expression
at the NK cell surface is important for NK cell activation,
as measured by CD69 expression. The retention of NKG2D
and the up-regulation of CD69 at the cell surface of primed
NK cells appears to be important for the up-regulation of the
TNF receptors. It is unclear whether the down-regulation of
the activating receptors that occurs with priming to a degree
is the result of ligation with ligands expressed on the CTV-1
cell surface or due to exposure of immunosuppressive cytokines
secreted by CTV-1 cells, despite them having been treated with
mitomycin C. The data suggest that both NKG2D and CD96
are required for priming NK cells, but not for the triggering
of cytotoxic granule release. In contrast, the activating receptor
NKp46 showed no association with NK cell activation, but did
appear to correlate with target cell lysis of both K562 and PC3
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cells, thereby suggesting a role in the triggering of cytotoxic
responses. Strangely, CD107a did not positively correlate with
K562 and PC3 lysis. This may be due to the fact that we did
not use monensin to retain CD107a expression on the surface
of the primed NK cells, which is common practice in indirect
cytotoxic killing assays (40). Although monensin was not used,
we still observed CD107a expression on the surface of NK cells
17 h post co-incubation with CTV-1 cells, thereby suggesting that
NK cells continue to kill CTV-1 cells over this length of time.
Interestingly, following contact with CTV-1 cells over this 17 h
period, which for some primed NK cells resulted in a cytotoxic
response, the same primed NK cells could lyse a metastatic
prostate cancer cell line which is typically resistant to lysis by
resting NK cells. At this point we do not know whether it is
the same primed NK cells lysing both CTV-1 and PC3 cells. A
study by Jewett et al. revealed that NK cells dissociated from
MHC class I deficient K562 cells following initial conjugation
display anergy resulting in decreased cytotoxic function due to a
reduced ability to form conjugates (37). Subsequent work by this
group revealed that the NK cells that formed conjugates could be
further subdivided into “binders” and “killers”. The “binders” and
“killers” displayed “split anergy” with “binder” NK cells forming
conjugates for a longer period of time compared to “killers.” As
a result, “binders” suffered from target induced inactivation and
induction of apoptosis (39). Although we did not specifically
set out to measure conjugation between NK cells and CTV-1
cells, we did observe a reduction in the number of viable NK
cells as a result of priming (data not shown) which suggests that
conjugates between NK cells and CTV-1 cells may also promote
a split anergy. However, in contrast to K562 cells, CTV-1 cells
enhance the ability of NK cells to kill PC3 cells, suggesting that
CTV-1 (MHC class I positive) cells do not impair the ability
of primed NK cells to form conjugates with subsequent target
cells.

Enhanced cytotoxic function by NK cells following initial
exposure to acute lymphoblastic leukemia cells has been observed
in other studies. A study by Pal et al. revealed that upon primary
exposure to acute B cell precursor leukemic cell lines, healthy NK
cells acquired a mode of functional memory enabling them to
enhance their cytotoxic capacity against the same cell line upon
secondary exposure (41). However, in contrast to the CD56dim-
based phenotype of the CTV-1 primed NK cells described in this
study, the tumor induced memory-like NK cells described by Pal
et al. were instead associated with the CD56bright subpopulation.
NK cells appear to be relatively “plastic” and their immune
response depends on the extent and type of external stimuli they
receive.

To fully realize the immunotherapeutic potential of CTV-1
primed NK cells, further characterization of their phenotype,
function, and the mechanisms involved in their generation
is required (42). Current immunotherapeutic strategies have
shown little or no efficacy for the treatment of prostate cancer
and therefore new alternative strategies need to be explored
(9, 43). This study supports a role for stratified NK cell-
based therapeutics in the prostate cancer setting and warrants
further investigation. However, it should be noted that one
limitation of this study was the use of only one allogenic

metastatic prostate cancer cell line (i.e., PC3 cells) as a target
for primed and IL-2 activated NK cells in vitro and an
inability to undertake profiling of cytokine responses following
priming and activation due to limited sample availability. Further
assessment of cytotoxic responses against multiple metastatic
prostate cancer cell lines and/or primary prostate cancer cell
lines are needed and, ideally, these would be combined with an
assessment of “triggering” receptor ligand interactions in order
to further interrogate the efficacy of using CTV-1 primed and
IL-2 activated NK cell populations for the treatment of prostate
cancer.

Our study also highlights an area for further investigation
which concerns the role of TNF receptors in NK cell biology.
A limitation of the current study is that the analysis was
limited to the co-expression of CD137 and CD107a. The data
suggested that these two receptors are rarely co-expressed and
therefore CD137 does not appear to be associated with the
triggering of NK cell cytotoxic responses. However, since we
did not use monensin in our experiments to retain CD107a
expression at the cell surface, we cannot completely rule out this
possibility. TNF receptors act as co-stimulatory receptors that
provide bidirectional signaling between effector cells and their
targets (23). Currently, the majority of information regarding
TNF receptors has been derived from T cell studies, although
information regarding their function in the setting of NK cells
is beginning to emerge. It has been shown that ligation of
OX40 with OX40L expressed on activated T cells and activated
monocytes promotes NK cell proliferation (44, 45). Ligation of
GITR with GITRL secreted by tumor cells or with agonistic
anti-GITR antibodies results in down-regulation of NK cell
cytotoxic responses, proliferation and IFN-γ production, while
promoting NK cell apoptosis (21, 46). Ligation of CD137
with CD137L expressed on AML cells from patients also
reduced NK cell cytotoxicity and IFN-γ production. Blocking
CD137 and CD137L interactions restored NK cell cytotoxicity,
but not IFN-γ production (22). In our study, co-incubation
of NK cells with CTV-1 cells induced the expression of
all three TNF receptors, thus representing an opportunity
not only to investigate these receptors, but also to further
manipulate the primed NK cell response in a therapeutic setting
using monoclonal antibodies that target these receptors. Such
antibodies are currently in development or/and undergoing
clinical trials (47, 48).

In summary, this study presents a comprehensive,
comparative analysis of changes in NK cell phenotype and
function following priming by CTV-1 cells and activation by
IL-2 and new insights into the correlation between changes in
phenotype and function. Although the findings demonstrate
that the priming and activation of NK cells has potential as
an immunotherapy for the treatment of prostate cancer, it
also shows that not all patients will benefit from a particular
therapeutic approach. Our interrogation of the consequences
of priming and activation on NK cell biology provides an
opportunity to predict and optimize therapeutic potential.
Our findings also confirm that the targeting of TNF receptors
and other pathways using monoclonal antibodies may further
enhance the cytotoxic potential of NK cells by blocking
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NK cell-directed inhibitory signals, as has been discussed
previously (15).
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