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Abstract

Capsules (vector-valued neurons) have recently become a more active area of research

in neural networks. However, existing formulations have several drawbacks including

the large number of trainable parameters that they require as well as the reliance on

routing mechanisms between layers of capsules.

The primary aim of this project is to demonstrate the benefits of a new formula-

tion of capsules called Homogeneous Vector Capsules (HVCs) that overcome these

drawbacks.

Using HVCs, new state-of-the-art accuracies for the MNIST dataset are established

for multiple individual models as well as multiple ensembles.

This work additionally presents a dataset consisting of high-resolution images of

13 micro-PCBs captured in various rotations and perspectives relative to the camera,

with each sample labeled for PCB type, rotation category, and perspective categories.

Experiments performed and elucidated in this work examine classification accuracy of

rotations and perspectives that were not trained on as well as the ability to artificially

generate missing rotations and perspectives during training. The results of these

experiments include showing that using HVCs is superior to using fully connected

layers.

This work also showed that certain training samples are more informative of class

membership than others. These samples can be identified prior to training by analyzing

their position in reduced dimensional space relative to the classes’ centroids in that

space. And a definition and calculation both for class density and dataset completeness

based on the distribution of data in the reduced dimensional space has been put forth.

Experimentation using the dataset completeness calculation shows that those datasets

that meet a certain completeness threshold can be trained on a subset of the total

dataset, based on each class’s density, while improving upon or maintaining validation

accuracy.
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Chapter 1

Introduction

The general trend in recent neural network research is towards larger and larger model

capacities as measured in the number of trainable parameters. Along with this trend

towards increased model capacities there exists the trend toward using more and

more additional training data. While such research is not without merit, additional

research needs to continue to be carried out on smaller scale networks that require

less data. There are several reasons for this. First, giga-scale networks are well

beyond current hardware capabilities for performing on-device inference with real-time

classification requirements. Second, the high cost of resources in terms of time and

energy expenditure for the both the data collection for, and training of, giga-scale

networks is unnecessary and wasteful for many real world network tasks, which may

not require as many classes to be classified or have high accuracy requirements.

In this work, a series of studies will be performed on smaller scale networks and

datasets with two main goals. The first goal will be to achieve improved accuracy while

simultaneously easing the burden of hyper-parameter tuning for smaller networks. The

second goal will be to arrive at an analytical method of measuring the sufficiency of a

dataset in terms of the samples required to achieve a target accuracy prior to training

any network on that data. Special attention will be paid towards achieving these goals

using a specific class of neural networks referred to as capsule neural networks.

1.1 Background

In [1], the authors argued that standard convolutional neural networks are “misguided”

in their usage of neurons that are composed of singular scalars to summarize their

activation. The authors proposed (a) the concept of a “capsule”, which is comprised of

multiple scalar values and (b) posited that these capsules would be capable of recogniz-

ing a “visual entity over a limited domain of viewing conditions and deformations” [1] and

that the capsule’s members would include both the probability that the entity is present
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as well as a set of “instantiation parameters” that “may include the precise pose, lighting

and deformation relative to the canonical version of that entity” [1]. In their work, they

(c) demonstrated that capsules could learn the x and y coordinates of a visual entity

and (d) made a convincing case that capsules could learn to identify “any property of

an image that we can manipulate in a known way” [1].

Research into capsules did not progress much until a pair of papers were pre-

published on arXiv in late 2017. The first of these two papers ([2]) received an especially

significant amount of attention, due to the fact that it published results on par with the

state-of-the-art for both the standard MNIST [3] and smallNORB [4] datasets using

a relatively shallow network in combination with capsules. Additionally, the network

described in the first paper was shown to be highly effective at segmenting highly

overlapped digits from the MNIST data. Both papers utilized an iterative routing mech-

anism between layers of capsules. They referred to the method in the first paper as

“Dynamic Routing” and used a different method in the second paper based on the

Expectation-Maximization algorithm [5]. The architecture described in the second paper

([6]) improved upon the state-of-the-art classification accuracy for smallNORB by 45%.

The architectures described in both papers used two layers of capsules in order

to make the final classification and used matrix multiplication between them. In both

papers, in addition to learning the weights used in the matrix multiplications using

backpropagation, a routing algorithm was employed to iteratively “refine” the weights of

the matrices. The authors interpret the first set of capsules as “parts” and the second

set as “wholes” and the routing algorithm as a method for finding agreement about

which whole is best described by the particular set of parts [1][2].

Both papers published results on relatively small data sets. In both cases this was

due to the high computational cost associated with using a routing algorithm. Additionally,

the architecture from the first paper requires a large number of parameters per output

class (147,456) just for the weights between capsule layers, making datasets with a

large number of output classes (like the 1,000 classes in ImageNet) intractable.

Another important thread of neural network research is choosing the best optimization

algorithm and its hyperparameters. Stochastic Gradient Descent (SGD) with momentum

is simple and effective but requires careful tuning of both the learning rate η and the

schedule for decaying that learning rate as training progresses. Though guidance has

emerged in the form of rules-of-thumb [7], it is none-the-less true that the choice of

the learning rate and rate decay scheme remain a matter of trial-and-error and heavily

dependent on the data being trained on. As such, alleviating the need to carefully tune

a single learning rate has emerged as an important research area.

The most successful strategy for alleviating the need to carefully tune the learning

rate has been to maintain separate learning rates for every trainable parameter and to

learn each of these learning rates based on the magnitude of previous gradient updates
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to those parameters. This method in general is referred to as adaptive gradient descent.

Research into this began in earnest with AdaGrad [8] and has continued to be an active

area of research up to the present, with the most popular adaptive method currently

being Adam [9]. Adaptive methods of gradient descent are popular for several reasons.

First, because they adapt a learning rate for every parameter, they are able to learn

sparse, yet highly informative features differently than more dense information that may

be less predictive. Second, they reduce the need for careful tuning of the learning rate

and learning rate decay by allowing the learning rate to be “learned” from the data.

And third, they tend to approach a convergence much earlier in the training scheme

compared to non-adaptive methods for the same data and network.

Unfortunately, adaptive gradient descent methods have some weaknesses. First,

sparsely occurring features that are not highly informative have overweight influence

relative to less sparsely occurring features. And second, empirically, they are prone to

overfitting and creating a generalization gap between the in-sample and out-of-sample

predictions. This has led some researchers to state that the generalization gap of adap-

tive gradient descent methods is an open problem [10] and has led other researchers to

recommend not using adaptive methods at all [7]. Indeed, the best performing convolu-

tional neural networks (CNNs) of the past few years have all used non-adaptive gradient

descent methods and hand-tuned learning rate decay schemes [11][12][13][14][15][16].

1.2 Justification

In this work, the prevalent paradigm of using full matrix multiplication between capsule

layers and using routing mechanisms to refine the weights between those layers will

be challenged. A systematic study of how to form the first layer of capsules is carried

out along with proposing and studying using the Hadamard product, rather than matrix

multiplication, between the capsule layers. In addition it will be shown that superior

classification accuracy can be achieved in the absence of any routing mechanism.

Additionally in this work, it will be shown that this capsule method is superior when

using the popular Adam adaptive gradient descent method than when using hand-tuned,

non-adaptive gradient descent methods.

Finally, an investigation into an analytical definition of sufficient data is undertaken.

In that investigation, a means of identifying a priori which training samples improve

test accuracy, and which do not, is established. Additionally proposed is a means of

allowing the training procedure itself to determine which samples to train with during

the training process, shortening training time and focusing the training on only those

samples that are informative to the classification.
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1.3 Contributions

The contribution to the sciences presented in this work are as follows:

1. An analysis of the technologies behind current state of the art in neural networks

for image classification, specifically analyzed by both network size, in terms of

trainable parameters, and by the amount of training data used. Presented in

chapter 3 and the contents of which have been accepted for publication in the

Proceedings of Computing Conference 2022 to be held in London, UK 14–15 July,

2022 [17].

2. A new capsule formulation, which has been named Homogeneous Vector Cap-

sules (HVCs) and demonstration of its effectiveness using two different network

architectures and three different datasets of increasing difficulty. Additionally

demonstrated is the ability for HVCs to achieve superior results using the Adam

adaptive gradient descent optimizer, solving the open problem of the generaliza-

tion gap of adaptive gradient descent methods [10]. Presented in chapter 4 and the

contents of which have been published in IEEE Access, vol. 9, pp. 48519–48530,

2021 [18].

3. A neural network design that achieves superior accuracy to the previously best

performing capsule network in terms of MNIST validation accuracy, setting a new

state of the art for the MNIST dataset, while using dramatically fewer trainable

parameters and without using a computationally expensive routing mechanism

as compared to the previously best performing capsule network. This network

is trained and evaluated specifically on the MNIST dataset to make it directly

comparable to the previously best performing capsule network. Presented in

chapter 5 and the contents of which have been published in Neurocomputing, vol.

463, pp. 545–553, 2021 [19].

4. A study of the ability for both a convolutional neural network using fully connected

layers and a convolutional neural network using HVCs to accurately classify a

newly created dataset of micro-PCBs1 in a diversity of rotations and perspectives

relative to the presence (or absence) of those rotations and perspectives in the

training data. Presented in chapter 6 and the contents of which have been

published in Intelligent Decision Technologies, vol. 238, pp. 209–219, 2021 [20].

5. A study of the ability to use the distance for training samples from their classes

centroids in a reduced dimensional space to indicate their impact on validation

accuracy. The results of this study enable researchers to identify a priori which

1Publicly available at: https://www.kaggle.com/frettapper/micropcb-images
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training samples improve test accuracy and which do not. Presented in chapter 7

and the contents of which have been submitted for publication.

6. A definition for class density that is used to determine, on a per-class basis, the

sufficiency of the data for the classification task, as well as a study of using this def-

inition to dynamically reduce the training data in any class such that the definition

indicates excess data is present. The results of this study enable researchers to

allow the training procedure to select which samples to train with during the training

process, shortening training time and focusing the training on only those samples

that are informative to the classification. Additionally presented is a method for

calculating an unstructured, high-dimensional dataset’s completeness such that

when a dataset demonstrates a certain level of completeness (experimentally

shown to be > 10), it can be reduced using the density definition. Presented in

chapter 8 and the contents of which have been submitted for publication.
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Figure 1.1: Visualization of the links between the studies in this work forming the overall

research direction of this work.
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Chapter 2

Literature Review

This work will study a combination of factors that, when taken together, provide the

basis for achieving high accuracy when using neural networks for classification. In order

to achieve a high level of accuracy, a network must be constructed such that it can be

easily trained to identify the features that combine to form the classes equivariantly

and then trained with a sufficient and representative dataset. In terms of structure, this

work will study capsule networks and multi-path networks and their ability to be trained

with adaptive gradient descent. In terms of sufficient and representative datasets, this

work will study data augmentation in general, the ability for data augmentation to supply

known missing affine and non-affine transformations as well as perform studies on what

samples constitute informative training samples with the goal of arriving at a metric for

calculating a dataset’s completeness.

2.1 Equivariance

Prior to the relatively recent successes of deep learning, computer vision research

emphasized the encoding of knowledge of geometric models of the objects to be

recognized. In the absence of existing CAD models, a computer vision engineer of this

era would need to devise some method of intuiting objects’ geometric properties from

the data available and manually inputting the information into the target system [21][22].

Obviously, this is not a scalable solution. In the mid-1990s researchers turned their

attention to the mechanisms employed by biological vision systems and began to focus

on the appearance of objects in the 3-D world as projected onto 2 dimensions in order to

both classify and estimate the pose of objects. In 1995, researchers put forth a method

for capturing objects of interest from a multitude of positions relative to the camera

and, importantly, publicly released their dataset that included 20 objects captured in 90

different poses with 5 positions for the lighting source for a total of 450 images for each

of the 20 objects [23]. This dataset would come to be known as the COIL-20 dataset.
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Early methods for attempting to classify objects in varying 2-D projections of the

3-D world used classic computer vision methods for identifying edges and contours.

For example, in [24], the authors measured the similarity of objects after identifying

correspondences between images and then using those correspondences to construct

an estimated aligning transform. They were able to achieve an impressive 2.4% error

rate on the COIL-20 dataset when trained from an average of just 4 of the 2-D projections

of each 3-D object.

Several years later, researchers generated a larger more difficult dataset, the NORB

dataset (NYU Object Recognition Benchmark) [4]. This dataset included higher resolu-

tion images than COIL-20 and contained not just variations in the objects’ rotations, but

also their perspectives relative to the camera.

Also, worthy of note is the Multi-PIE dataset [25], which is composed, not of objects,

but of faces, from 337 different subjects from 15 different viewpoints and having 6

different expressions, for the purposes of facial recognition. Recognizing a specific

face among a group of faces, as opposed to recognizing a four-legged animal among

cars and airplanes, is a significant challenge because, assuming a lack of deformity, all

faces are made up of the same sub-parts in similar locations (e.g., two eyes above a

nose, which is above a mouth).

In the past several years, the vocabulary in the field has matured and turned to

describing the relationships between features of 2-D projections of 3-D objects as being

equivariant, a term borrowed from the representation theory of finite groups. Translation

equivariance in convolutional neural networks (CNNs), for example, is demonstrated

when shifting an image that is fed into a network produces the same result as shifting

the output feature maps of the original image in the same direction. For computer vision

applications, the ideal would be for all possible 2-D projections of a 3-D object to possess

a calculable or learnable representation of their equivariant properties. One principal

area of research involved in achieving better equivariance involves novel neural network

architectural elements designed to facilitate it [26][27][28][29].

Invariance is the special case of equivariance wherein the transformation is a null

transformation. CNNs are especially adept at successfully identifying features in a

translationally invariant manner. In [1], the authors critiqued this as being an undesirable

property. They noted that individual features of a larger image are not translationally

invariant to one another, but rather possess a specific non-null translational equivariance

relative to one another (such as in a person’s face, the position of the eyes relative to

the nose and the nose relative to the mouth). They also noted that the quite successful

computer vision system SIFT [30], used hand-engineered feature detectors that were

128-dimensional vectors called keypoint descriptors. In that work, they put forth a novel

neural network architectural element they called capsules that would act much like the

scalar-valued neuron, but be vector valued like the keypoint descriptors of SIFT. Using
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backpropagation, the capsules could then, if exposed to the same objects from different

2-D projections, implicitly learn a vector of values for the equivariance of the feature

that capsule detected. In [6], the authors applied capsules to the smallNORB dataset

(which is a subset of NORB) and achieved a new state-of-the-art test error rate.

Chapter 6 presents a case study of equivariance using a dataset specifically crafted

for this work. The subject matter of the dataset is small, printed circuit boards (micro-

PCBs), which like human faces, have features that exist equivariantly to one another.

The experiments in chapter 6 include CNNs with fully connected layers and CNNs with

homogeneous vector capsules.

2.2 Capsule Networks

Inspired by the work of [31], [32] put forth a neural network architecture similar to

that used by [2] in that it utilized vector neurons, rather than scalar neurons, which

shared common inputs and outputs. As their work was inspired by the physiology of

primate brains, they characterized the structure as minicolumns, the term used for the

analogous structure in primate brains. It is noteworthy that their architecture did not

use any analog to the routing mechanism employed by [2] and [6]. While performing

comparably with traditional CNNs on the MNIST dataset, it performed worse than the

architecture employed by [2].

A comparison the effects of various forms of image degradation (additive white

gaussian noise, salt and pepper noise, etc.) on MobileNet [33], VGG16 & VGG19 [11],

Inception v3 [13], and CapsNet [2] was performed by [34] and the authors found that

CapsNet was far more robust against the degradation methods they tested than any of

the others. They hypothesize that this is not only due to the presence of the capsule

neurons and/or dynamic routing, but also due to the shallower nature of CapsNet, having

gone through fewer layers of convolutions.

The first application of capsule networks in the bioinformatics domain applied a

capsule network to the task of protein gamma-turn prediction [35]. Novel to their

experiments is that they prepended the capsules portion of the network with an inception

block ala [13] rather than a simple convolution. They achieved a new state-of-the-art

performance on the GT320 benchmark [36] for gamma-turn prediction with an MCC

(Matthew Correlation Coefficients—the metric used for this task) of 0.45, beating the

previous state-of-the-art of 0.38.

Shortly after the CapsNet architecture was pre-published, [37] ventured to apply it

to more complex datasets than MNIST—Fashion MNIST [38], SVHN [39], and CIFAR-

10 [40]. Additionally, they experimented with a greater range of affine deformations

than the small amount of translation used in the original experiments. Their conclusion
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was that the CapsNet architecture is “unlikely to work on other classification tasks, let

alone machine learning tasks in general”. They also concluded that the design was “not

making full use of routing to encode” the spatial relationships between the components

of the objects the network was classifying. They hypothesized that a neural network, as

opposed to a routing algorithm, would better accomplish the goal of reweighting the

coefficients used to determine the agreement between capsule layers. This method

was experimented with by [41], though they were unable to produce any significant

results. Additionally, they hypothesized that for data more complex than MNIST, deeper

networks may be required.

2.3 Multi-Path Networks

Many of the best performing convolutional neural networks (CNNs) of the past several

years have explored multiple paths from input to classification [12][13][14][42][43][44].

The idea behind multiple path designs is to enable one or more of the following to

contribute to the final classification: (a) different levels of abstraction, (b) different

effective receptive fields, and (c) valuable information learned early to flow more easily

to the classification stage.

In [14] (and subsequent extensions [45][46][47][48]) the authors added extra paths

through the network with residual blocks which are meta-layers that contained one or

more convolutional operations as well as a “skip connection” that allowed information

learned earlier in the network to skip over the convolutional operations. Similarly, in [12]

and [13], the authors presented a network architecture that made heavy use of inception

blocks, which are meta-layers that branch from a previous layer into anywhere from

3 to 6 branches of varying layers of convolutions. Then the branches were merged

back together by concatenating the filters of those branches. Let n be the average

number of branches of different length (in terms of successive convolutions) and m be

the number of successive inception blocks. Then n×m effective receptive fields and

levels of abstraction are present at the output of the final inception block. Additionally,

the designs presented in both of these papers included two output stems (one branching

out before going through additional inception blocks and the other after all inception

blocks) each producing classification predictions. These classifications were combined

via static weighting to produce the final prediction.

In contrast to the aforementioned work, chapter 5 presents a network design that

produces 3 output stems, each coming after a different number of convolutions, and

thus representing different effective receptive fields and levels of abstraction. Chapter 5

details experiments that include statically weighted combinations as in [12] and [13] as

well as investigating learning the branch weights simultaneously with all of the other
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network parameters via backpropagation. Again, in contrast to the aforementioned

work, in these experiments, each of the separate classifications were performed with

capsules rather than simple fully connected layers.

2.4 Adaptive Gradient Descent

One of the best performing CNNs to be published in the past several years is Inception

v3 [13]. To train their architecture, they used the RMSProp1 optimizer, which is indeed

designed to be an adaptive gradient descent method. RMSProp adapts each parameter

in the model using Equation 2.1:

1√
E[g2] + ε

(2.1)

E[g2] is the exponential moving average of the past squared gradients for the

parameter and the intended purpose of the ε parameter is to provide numeric stability by

mitigating the danger of division by zero, and thus implementations default this value to

1× 10−10, which would create a range of possible values for the per-parameter adaptive

term of 0 to 1× 106. By using a value of 1.0 when training Inception v3, they limit this

range to 0 to 1, thus setting an upper bound five orders of magnitude less than intended

for this term. While still technically adapting each parameter, the range of adaptation is

so dampened that RMSProp with a 1.0 ε should be considered as quasi-adaptive at

best. As such, this work agrees with Chen and Gu [10] that effectively utilizing (truly)

adaptive gradient descent methods with convolutional neural networks remains an open

problem relative to Inception v3.

The Adam optimizer [9] has an analogous per-parameter adaptive term for each

of the past squared gradients shown in Equation 2.2 (in addition to another term not

relevant to this discussion for past gradients that givesAdam amomentum-like behavior):

1√
v̂t + ε

(2.2)

v̂t is the bias corrected exponential moving average of the past squared gradients

for the parameter. Here again, the Adam optimizer employs the use of an ε that

implementations default to 1×10−10. Since in Adam, the ε is moved out from underneath

the radical, Adam is able to adapt each parameter by five orders of magnitude more

than RMSProp (with a range of 0 to 1× 1010).

1RMSProp is an unpublished, adaptive learning rate method introduced by Geoffrey Hinton in

Lecture 6e of a now no longer available Coursera course. See: http://www.cs.toronto.edu/~tij-

men/csc321/slides/lecture_slides_lec6pdf
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2.5 Data Augmentation

In [3], the authors experimented with the number of training samples used in the training

of the architecture of their convolutional neural network design. Not surprisingly, they

discovered that a larger number of training samples leads to a better test accuracy which

is indicative of the network “generalizing” better. The theoretical basis for this has been

understood in the context of neural networks since [49]. In [3], the authors saw that while

only having 60,000 training samples available, that the trajectory of the accuracy their

network achieved was trending towards better accuracy in the presence of additional

training samples. The authors sought to verify this hypothesis and thus, “artificially

generated more training examples by randomly distorting the original training images” [3].

The authors found that by applying combinations of planar affine transformations to

the original training samples (including translation, scaling, and shearing) to generate

new samples, that the accuracy of their network did indeed increase. This method for

generating new samples has proven to be so effective that it is considered standard

practice to apply it whenever training a convolutional neural network for more than an

exceedingly small number of epochs and has come to be referred to generally as data

augmentation. Standard data augmentation transformations for image data have since

been expanded to include generally any affine transformation, including rotation and

reflection. Additionally, non-affine transformations are sometimes considered, such as

the elastic deformation introduced by [50].

Recent research into data augmentation strategies has been focused in two areas:

dynamic determination of the augmentations to be performed and where the augmenta-

tion should be performed, i.e., in data-space or feature-space. Data-space augmentation

involves transforming the actual input data before feeding it into the neural network.

This includes all of the techniques thus far discussed. Feature-space augmentation,

in contrast, involves analyzing the distribution of features detected inside the network

for the classes the network classifies and performing linear interpolation between the k

nearest neighbors in that space and adding “synthetic” data points at those locations

for that class [51]. Experiments performed by [52] comparing both data-space and

feature-space augmentation using the MNIST dataset demonstrated that while both

methods achieved marginally higher test set accuracy, data-space augmentation did

more so. The conclusion they drew from this is that in cases where label-preserving

transformations in data-space are known, data-space augmentation should be preferred.

However, if a given application does not have a well understood relationship between a

class’s label and what data-space augmentation methods would preserve that label,

then feature-space data augmentation can still be used, as it is application independent.

Given this, it seems natural to search for methods of dynamically discovering label-

preserving methods of data-space augmentation. Research into this has been especially
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active in recent years. [53] approach this by formulating this as a search problem

over the multi-set of common transformation operations. The augmentation methods

they consider include the affine transformations of shearing, translation, rotation as

well as a slew of RGB channel manipulations, including adjustments to posterization,

contrast, and brightness. They quantized the probability of applying a transformation

and the range of the transformations so that the entire search space, including what

transformations to apply, is discretized, and thus allowed them to use a discrete search

algorithm. By limiting the maximum number of transformations to be applied to 5, they

created a search space with a size of approximately 2.9× 1032. Clearly, an exhaustive

search was not an option, so they employed a search algorithm using Reinforcement

Learning. The reward signal for their algorithm was how well the policy generalized to a

classifier network that used the policy in question.

Another direction dynamic data augmentation strategy discovery has taken recently

involves creating synthetic data points but in data-space, rather than feature-space [51].

This direction differs from the previously mentioned data-space methods in that it does

not involve a preselected group of transformations, but rather, seeks to create new data

points “in between” existing data points. [54] and [55] approach this by employing the use

of generative adversarial networks (GANs) to generate new images from combinations

of inter-class images or by applying various external “styles” to the dataset images. [56]

also employed the use of an additional network beyond the classifier network. In their

approach, a generative network is prepended to the classifier network. The generative

network accepts multiple inter-class samples and generates a new sample from them,

and then feeds the sample into the classifier network. The novel idea they employed

involved allowing the backpropagation from the classifier network to continue into the

generative network, causing the generative network to “converge to the best choices to

train [the classifier network] for that specific task, and at the same time, it is controlled

by [a loss function] in a way that ensures that the outputs are similar to other members

of its class.”

In [57], the authors employed three forms of data augmentation: random translation,

random horizontal flipping, and altering the RGB channel intensities. Given the success

of the network they designed, the methods they used have become the standard starting

point for most data augmentation strategies since. Their network was designed to work

on the ImageNet dataset. In the case of MNIST images, of the three methods they

used, only random translation applies. This is because horizontal flipping is not a label-

preserving transformation for the Hindu-Arabic digits. For example, horizontally flipping

an image of a 5 would result in an image that should be classified as a 2. Additionally,

altering RGB channel intensity does not apply because the MNIST digits are greyscale.

Thus, leaving only translation from the methods they employed as both label-preserving

and applicable to the MNIST dataset.
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In [2], the authors state that the data augmentation strategy they used was limited

to shifting the training images randomly by up to 2 pixels in either or both directions,

but otherwise no other affine transformations or deformations were performed. This is

consistent with the data augmentation methods used by [57] when applied to the MNIST

dataset. The limit of only 2 pixels for the translation is hypothesized to be chosen to

ensure that the translation is label-preserving. As the MNIST training data has varying

margins of non-digit space in the available 28×28-pixel canvas, using more than 2

pixels randomly, would be to risk cutting off part of the digit and effectively changing

the class of the image. For example, a 7 that was shifted too far left could become

more appropriately classed as a 1, or an 8 or 9 shifted far enough down could be more

appropriately classed as a zero.

The highly structured nature of the MNIST training data allows for an algorithmic

analysis of any image that will provide the translation range available for that specific

image that will be guaranteed to be label-preserving. Figure 2.1 shows an example

of an MNIST training image that has an asymmetric translation range that, as long as

any translations are performed such that the digit part of the image is not moved by

more pixels than are present in the margin, will be label-preserving. In other words,

the specific training example shown in Figure 2.1 could be shifted by up to 8 pixels to

the left or 4 to the right and up to 5 up or 3 down, and after doing so, all of the pixels

belonging to the actual digit will still be in the resulting translated image.

Figure 2.1: Example MNIST digit w/annotated margins.

2.6 PCB Datasets

Printed Circuit Boards (PCBs) are like the human face in that, for a given PCB, the

individual elements (such as capacitors, resistors, and integrated circuits (ICs)) are

not present invariantly relative to one another, but rather at very specific locations

relative to one another. Compared to the human face, even on small PCBs, there are a
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greater number of features with greater similarity to one another (some modern small

surface-mounted capacitors and resistors are nearly indistinguishable from one another,

whereas eyes, noses, and mouths are quite distinctive from one another).

In [58], the authors put forth a small, medium-resolution dataset of a variety of PCBs

and applied SIFT and other similar methods to the task of locating and categorizing

the components on the board (i.e., identifying resistors vs. capacitors vs. ICs). This

dataset has a very small number of images and annotates the category and locations of

the components on the PCBs. Likewise, work by [59], [60], and [61] introduced similar

datasets at higher resolutions. The unifying characteristic of these datasets is that

they all captured relatively few images of any one PCB, all from a completely neutral

perspective (i.e., the camera directly above the PCB), and that the intended purpose was

for classification and categorization of the many sub-components on the PCBs. Other

work has further focused on detecting specifically only surfacemounted components [62],

through-hole components [63], on-board printed text [64], or manufacturing defects [65].

Again, all of these were focused on analysis of the individual sub-components of the

PCBs. The motivation in all of these cases is to facilitate automated analysis to optimize

recycling practices.

There are indeed a truly massive number of different PCBs that do or could exist. As

such, the analysis of sub-components does make sense for the general case—so that

knowledge of the specific make and model of a PCB is not a prerequisite to knowing

the sub-components used in it. However, if the distribution of PCB makes and models

follows a Pareto distribution (a presumed conjecture not demonstrated here), then it

stands to reason that a small number of PCB makes and models could be far more

common. Assuming this hypothesis, a candidate for the types of PCBs that would be

more common are those that are general-purpose, affordable, and small. This work

refers to this class of PCBs as micro-PCBs. In those cases, accurately classifying the

make and model of the PCB, rather than attempting to locate and categorize every

sub-component, could, through a bill of materials, accurately identify all of the sub-

components on such PCBs. In this case, robustness to environmental factors during

image acquisition through a wider range of rotations and perspectives becomes an

enabling factor for implementations.

2.7 Dataset Density and Completeness

k-Nearest Neighbor (kNN) [66] and other so called “instance-based” methods are also

sometimes called “memory-based” because building the model from the training data

involves storing the training instances. During evaluation, the sample being evaluated

is compared to each stored instance in order to find the best classification for it. Thus,
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evaluation is an O(n) operation, where n is the number of stored instances. Because

the computation cost during evaluation is so high, these algorithms are also sometimes

called “lazy learners”.

Prior to the relatively recent pivot to large, over-parameterized neural networks

for classification, these instance-based methods were some of the most widely used

for classification. As such, a fair amount of research went into reducing the number

of training samples that had to be “memorized” both to ease the memory require-

ments and to speed up evaluation. Early methods for doing this include Condensed

Nearest Neighbor (CNN) [67], Selective Nearest Neighbor (SNN) [68], and Edited

Nearest Neighbor (ENN) [69]. More recently a slew of other methods have been

investigated [70][71][72][73][74].

However, after the success of AlexNet [57], research into classification methods

pivoted to large, over-parameterized neural networks. Shortly after that, some research

into reducing training dataset size was conducted [75], however, the focus was on

acceptable loss of accuracy, rather than maintaining or improving accuracy.

More recently, the focus has shifted to adding training data beyond datasets’ canon-

ical training set in order to improve accuracy. This trend is elucidated in detail in

chapter 3.

Data density is of interest in the classification domain mostly in cases where there

exists a class imbalance problem, which can be quite common in many real-world data

collection scenarios (for example credit card fraud detection [76][77]). In this context,

the interest is in increasing the density of the data in the minority class via synthetic

sample creation [51] or in under-sampling the majority class [78]. In [79] and [80],

the authors showed that generating synthetic minority class samples from data near

the boundaries of the classes produced superior results as compared to completely

randomly sampling from the entire minority class. In the clustering domain, data density

has been analyzed to produce more intelligent clustering algorithms that do not require

the prior selection of the number of clusters (as is required for k-means clustering) [81].

Studies in data density are replete in the literature for low-dimensional data, such

as in those cited in the prior paragraph. However, data density is less studied in high-

dimensional data. This is most likely due to the fact that distance measurements in

high-dimensional space produce near uniform distances [82], a phenomenon colloquially

referred to as the curse of dimensionality.

As has been put forth and stands to reason, data quality is context dependent [83].

Most of the context in the existing literature is on highly-structured, often relational, data

for which there are known domains and constraints for well-defined groups (tuples) of

atomic values [84][85]. Further, there is no universally agreed upon definition of data

quality, let alone a universal method for measuring it. However, there is widespread

agreement on some things, such as having high levels of the following attributes:
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timeliness, accuracy, consistency, and completeness [86].

2.8 Summary

Capsule Networks

This work agrees with these hypotheses put forth in [37] and [41] and chapter 4 elucidates

experiments that, (1) use a neural network approach, rather than a routing approach,

when transforming between capsule layers, and (2) use deeper networks for classifying

image data that is much more complex than MNIST.

Multi-Path Networks

An analysis of the existing literature shows that of the many branching methods explored,

those that produced multiple final classifications merged those classifications via static

weighting, which presupposes the relative importance of each output. Chapter 5 includes

and compares the results of both statically weighting the classification branches and

learning the weights of the classification branches via backpropagation.

Adaptive Gradient Descent

Chapter 4 details experiments comparing RMSProp with an ε set to 1.0 with two different

learning rate schedules and theAdam optimizer with and without a learning rate schedule.

These experiments are performed on both Inception v3 and a simple monolithic CNN

on three different datasets of increasing difficulty.

Data Augmentation

Data augmentation is used in all experiments in this work. For the experiments detailed

in chapter 4 the data augmentation is the same as was used in [13]. The experiments

detailed in chapter 5 take advantage of the highly structured nature of the MNIST dataset

and employ a range of data augmentation techniques informed by that structure. The

experiments in chapter 6 are tailored to the micro-PCB dataset detailed in that chapter

and take advantage of the fact that the images in that dataset are coded for rotation and

perspective, and a detailed set of experiments on the ability of data augmentation to

supply missing rotations and perspectives is performed. The experiments in chapter 7

and chapter 8 use the same data augmentation as was used for the experiments in

chapter 4 or chapter 5 depending on the dataset being used.
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PCB Datasets

Chapter 6 details a set of experiments aimed at classifying micro-PCBs from a variety

of rotations and perspectives and performs a study on classification accuracy when the

test dataset includes rotations and perspectives not seen during training.

Dataset Density and Completeness

In chapter 7, in order to reclaim meaningful differences when measuring the distances

between samples, Uniform Manifold Projection and Approximation (UMAP) [87] is

used to reduce high-dimensional image data to 3 dimensions. Then, a study of which

samples best inform the classification task, relative to each class’s centroid in the

reduced dimensional space, is performed.

In chapter 8, the focus on quality will be in the sense of completeness. Only a

dataset comprised of low-dimensional data with very limited domains could ever be

considered complete in the strictest definition of the term. For the high-dimensional,

unstructured data studied in this work, completeness will be demonstrated in chapter 8 by

removing data from the dataset, based on a target density threshold, while maintaining

classification accuracy.
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Chapter 3

Exploding Dataset Sizes and the

Current State of the Art in Image

Classification

In [88], the authors pose the question: “Are we done with ImageNet?”. They ask if

the recent progress on the Imagenet-1K [89] evaluation benchmark is continuing im-

provement on generalization or the result of the deep learning for image classification

community learning some latent properties of the labeling procedure. The latter possi-

bility is interesting, and in their work, they do some good analysis and provide a better

set of labels, which should be considered for use going forward. However, for now, the

original labels remain the standard benchmark and the means by which comparisons

among the best models are made. Papers with Code [90] has become the best-known

record of the state-of-the-art methods for all types of deep learning tasks, including

image classification. On Papers with Code, in the case of Imagenet, the performance is

ranked by top-1 accuracy achieved. This chapter examines the technologies behind the

top 40 best ranked accuracies, which are reported in 22 papers (some papers present

multiple models which rank multiple times).

Image classification, until very recently, has been the domain of convolutional neural

networks. However, since 2020, transformer networks have seen great success for

this task, as well. The analysis in this chapter will be organized based on whether

the networks being discussed use (a) transformers, (b) convolutions (all of which use

specifically EfficientNet [91] networks), (c) a hybrid of the transformers and convolutions,

or (d) neither. Additionally, 6 of the papers (accounting for 10 of the top 40 results)

attribute their results to innovations related to the training procedure, rather than on any

network architecture. All 6 of these papers used convolutional neural networks, 5 of

which used EfficientNet networks and 1 of which used ResNet ([92]) networks.

The work presented in this chapter has been accepted for publication in the Proceedings of Computing

Conference 2022 to be held in London, UK 14–15 July, 2022 [17].
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3.1 Transformer Networks

Since [93] and later [94], transformer networks have been dominating NLP deep learning

tasks. As such, computer vision researchers have been looking into ways to take that

success and transfer it to their domain. They have done so with a fair amount of success,

with the caveat that such success in most cases has required unprecedentedly large

networks with unprecedentedly large sets of additional training data. The fact that this

chapter includes non-transformer-based networks trained without additional training

data that are competitive with these networks suggest that it remains an open question

whether or not transformer-based networks will entirely supplant convolutional neural

networks in computer vision tasks. See Table 3.1 for a comparison of the transformer-

based models reviewed here.

In [99], the authors introduce ViT. ViT is currently the vision transformer network

that most recent transformer networks compare themselves to or use as a basis for

their designs. Inspired by the success of transformers applied to the NLP domain, the

authors endeavored to create a network for the vision domain out of transformers sans

convolutions entirely, and in their own words “with the fewest possible modifications” to

existing transformer designs. The authors note that applying self-attention naively to

entire images means attending every pixel to every other pixel and thus represents a

quadratic complexity relative to the image’s size, which would not scale well to usable

input sizes. The insight they leveraged was that 16×16 patches of an image could

be treated much like words are treated in NLP applications. Prior attempts at fully

transformer-based networks [107] failed to achieve competitive results on ImageNet-1k

evaluation accuracies due to having not attempted to scale up the networks parameters

and additional training data. Again, in their own words, the authors discovered that “large

scale training trumps inductive bias”—the inductive bias being that which is introduced

by convolutions.

In [95], the authors conducted a systematic study of the relationships between data

size, compute budget, and achieved accuracy across a spectrum of ViT models [99].

Unsurprisingly, they discovered that bigger models with larger compute budgets result

in higher accuracies, with the caveat that there exists sufficient data to train the model.

In the largest models they studied, even 300M samples was insufficient to saturate

the models’ achievable accuracy. Additionally, they found that the larger models were

more sample efficient, meaning they achieve the same accuracy as smaller models

after training for fewer steps. Another important observation that the authors made was

that for more than two orders of magnitude, compute budget and accuracy followed

a power-law, and at the high end of the compute budget, the largest models were not

tending toward perfect accuracy, suggesting that a model with infinite capacity would

achieve less than perfect accuracy. The authors noted that similar effects have been
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Table 3.1: Transformer Networks

Rank top-1 # of Addt’l. Paper Title

Acc. Params. Training

Samples

2 90.45% 1843M 3B Scaling Vision Transformers [95]

4 90.35% 14700M 3B Scaling Vision with Sparse Mixture of Ex-

perts [96]

8 88.87% 460M 300M TokenLearner: What Can 8 Learned Tokens

Do for Images and Videos? [97]

9 88.64% 480M 1.8B Scaling Up Visual and Vision-Language Rep-

resentation Learning With Noisy Text Supervi-

sion [98]

11 88.55% 632M 300M An Image is Worth 16×16 Words: Transform-

ers for Image Recognition at Scale [99]

14 88.36% 7200M 300M Scaling Vision with Sparse Mixture of Ex-

perts [96]

15 88.23% 2700M 300M Scaling Vision with Sparse Mixture of Ex-

perts [96]

16 88.08% 656M 300M Scaling Vision with Sparse Mixture of Ex-

perts [96]

18 87.76% 307M 300M An Image is Worth 16×16 Words: Transform-

ers for Image Recognition at Scale [99]

20 87.54% 928M 14M Big Transfer (BiT): General Visual Represen-

tation Learning [100]

21 87.5% 173M 14M CSWin Transformer: A General Vision Trans-

former Backbone with Cross-Shaped Win-

dows [101]

22 87.41% 3400M 300M Scaling Vision with Sparse Mixture of Ex-

perts [96]

24 87.3% 197M 14M Swin Transformer: Hierarchical Vision Trans-

former using Shifted Windows [102]

26 87.1% 296M 0 VOLO: Vision Outlooker for Visual Recogni-

tion [103]

27 86.8% 193M 0 VOLO: Vision Outlooker for Visual Recogni-

tion [103]

32 86.5% 356M 0 Going deeper with Image Transformers [104]

35 86.4% 150M 0 All Tokens Matter: Token Labeling for Training

Better Vision Transformers [105]

37 86.3% 271M 0 Going deeper with Image Transformers [104]

38 86.3% 307M 0 BEiT: BERT Pre-Training of Image Transform-

ers [106]

39 86.3% 86M 0 VOLO: Vision Outlooker for Visual Recogni-

tion [103]

40 86.1% 271M 0 Going deeper with Image Transformers [104]
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observed in generative models and the authors of that work referred to this phenomenon

as the “irreducible entropy” of the task [108]. This further supports the hypothesis that

there is a ceiling on the achievable accuracy for the ILSVRC 2012 Imagenet validation

set [88]. They observed a similar saturation at the lower end of the compute budget

scale, where smaller models achieved better accuracy than the power-law would predict.

Mixture of Experts (MOE) is a method of combining the outputs of multiple sub-

models called experts using a router mechanism. Generally, these have been studied

since the early 1990s [109][110][111]. More recently, they have been applied to computer

vision tasks [112]. In [96], the authors endeavored to combine MOEs with transformers.

They designed a network that, while containing a large number of parameters, not

all parameters get used during inference and they demonstrate the network’s ability

to achieve competitive results while using as little as half of the computational power

available in the network on any sample. Interestingly, the router mechanism they

designed doesn’t route entire images, but rather individual patches of the images, so

that different transformers in the network operate on different patches, possibly of a

single image. Additionally, they created a fixed buffer size per expert in their mixture to

encourage load balancing among the experts which encourages the overall model not

to end up favoring only a small subset of the experts.

The network designed by the authors of [97] is another design based on transformers.

Transformers for visual tasks work by splitting the input into patches. The authors noted

that in most cases, of the 200–500 patches produced for images of typical training

sizes, about 8 or 16 of them were the most informative. They propose a mechanism

that the call “TokenLearner” which, prior to the transformer block, learns which patches

are significant and passes only those to the transformer. In so doing, they were able

to reduce the total number of FLOPs by half and maintain classification accuracy. In

addition to the TokenLearner module that precedes the transformer block, they devised

a “TokenFuser” module that follows the transformer block which maps the result of the

transformer operation back to the input’s original spatial resolution, which allows the

input and output of the set of operations to maintain the same tensor shape, making

them easier to fit into a model’s overall architecture.

In [101], the authors grapple with the fact that in transformer-based architectures for

vision tasks, global self-attention is an extremely expensive operation (quadratic in com-

plexity) compared to local self-attention, which limits interactions between tokens. Their

attempt to find a middle option is to introduce what they term a “Cross-Shaped Window”

(CSWin), which is an attention mechanism that involves computing self-attention for

vertical and horizontal stripes of the input image in parallel. In addition, they introduce

a new positional encoding scheme they call “Locally-enhanced Positional Encoding”

(LePE), which they claim, “handles the local positional information better than existing

encoding schemes”, “naturally supports arbitrary input resolutions”, and is “especially
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effective and friendly for downstream tasks”. LePE differs from other positional encoding

schemes by, rather than being concatenated into the input before the transformer block

as with absolute positional encoding (APE) [93] and conditional positional encoding

(CPE) [113], moving the encoding inside the encoding block as with relative positional

encoding (RPE) [114][102]. But rather than happening inside the softmax operation that

uses the queries, keys, and values, LePE is applied directly to the values only.

[102] precedes and is cited by [101] and the two papers share an author. The

approaches are also quite similar, though the leap from a network of transformers like

are present in ViT to what the authors propose in this work is a little more apparent.

In this work, the authors note that the spatial position of the patches of the images

(the tokens) being used by all layers in ViT are the same. The authors argue that it

is better to think of how the patches are divided up as being subject to a window that

shifts across the image in subsequent layers. This allows for connections between

overlapping regions in the image to be learned by combinations of transformers. This

network is trained entirely on publicly available data, using the 14M image ImageNet-22k

dataset for additional training data.

The authors of [104] start with a network similar to ViT, consisting of a series of

transformer blocks with residual connections between them. They then altered this

design in two specific ways. They posit that a problem with the ViT architecture is that

the class token being passed along with the image patches through every transformer

layer is asking the optimizer to optimize two contradictory objectives. Those objectives

being learning the self-attention for the patches and learning the information that leads

to the correct classification. In order to combat this, they propose using two different

processing stages, the first of which is not passed the class token so that the transformers

in this stage can focus solely on learning the self-attention, and only in this stage does

the self-attention get updated. In the second stage, the class token is added, and

the transformers begin learning the classification. Additionally, they added a learnable

diagonal matrix they call the “LayerScale” which they multiply the output of a transformer

block by before concatenating together with the path that skipped over that transformer

block. They refer to this architecture as CaiT (Class-Attention in Image Transformers).

This network is trained without using any additional training data.

In [105], the authors propose a method they call “token labelling”. The idea behind it

is to have each token coming out of a transformer block learn a K-dimensional vector

for the classification for that specific patch, where K is the number of classes, and the

vector components represent the probabilities of that patch belonging to each class.

And then for the final classification, these are averaged together across the patches

and then combined with the overall image class to form a final prediction. A drawback

to this method is that before doing this, each patch’s probability for each image must be

generated and stored. This network is trained without using any additional training data.
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The authors of [106] attempt to take the methods of BERT [94], which are applied to

the natural language processing (NLP) domain and apply them to the vision domain.

They call their attempt BEiT. To do this requires a pre-pre-training step that creates

discrete token values for each patch of each image via an autoencoder. Then, during

pre-training, a transformer-based BEiTEncoder is trained to encode image patches into

their corresponding tokens, with the caveat that some of the image patches fed into the

network are masked out. Then for the final task of image classification, the pre-trained

model has an additional classifier network appended. This network is trained without

using any additional training data.

The authors of [103] took note of the fact that all of the best performing transformer-

based vision models were using large amounts of additional training data to achieve

their results. This motivated them to study the use of transformers while training on

only the actual Imagenet 1k training data. Their findings were that a major factor

in this is the larger patch sizes (typically 16×16 or 14×14) that most transformer

architectures use due to their quadratic complexity. The authors posit that this fails to

encode sufficiently fine-grained information. Their solution, which at first seems counter-

intuitive, is to increase the patch size to 28×28, which for images of size 224×224
means an 8×8 embedding. Then, within each of those patches, use a sliding window

attention mechanism to relate the fine-grained information within those patches together.

A series of these transformer blocks make up the first stage of their design. The second

stage of their design is to split each of those embeddings into 2×2 embeddings of size

14×14 and again apply the sliding window attention mechanism. This network is trained

without using any additional training data and is the highest ranked network to do so.

In their own words, the authors of [100] “aim not to introduce a new component or

complexity, but to provide a recipe that uses the minimal number of tricks yet attains

excellent performance on many tasks”. They refer to this “recipe” as Big Transfer

(BiT). In their work, they show that BiT can be pre-trained once and then fine-tuned

quite cheaply on the task it is transferred to using a simple heuristic for choosing the

hyperparameters for the fine-tuning training. They call this heuristic the “Bit-HyperRule”.

In their study they found that they could limit the hyperparameters that need fine-tuned

to the learning rate schedule and whether or not to use MixUp [115] after transferring.

The first step in their heuristic is to categorize the size of the dataset they are transferring

to. They class datasets with fewer than 20k labeled examples as small, datasets with

more than that, but less than 500k labeled examples as medium, and everything else

as large. Then after transfer, for small datasets, they train for 500 steps, for medium,

10,000 steps, and for large, 20,000 steps, decaying the learning rate by a factor of

10 after 30%, 60%, and 90% of the training steps. They use MixUp with α = 0.1 for

medium and large datasets. The network they designed is based on ResNet-v2 [116],

but instead of using Batch Normalization (BN), they use Group Normalization (GN) [117]
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and add Weight Standardization (WS) [118] to all of the convolutions. The authors argue

that batch normalization is a poor choice for transfer learning due to the requirement to

update running statistics and show that the combination of GN and WS has a significant

positive impact on transfer learning tasks. This network is trained entirely on publicly

available data, using the 14M image ImageNet-22k dataset for additional training data.

3.2 Convolutional (EfficientNet) Networks

EfficientNet [91] is a model family that consists of progressively larger models which have

been optimized for computation and parameter efficiency using Neural Architecture

Search [119], which is a reinforcement learning method that learns the best neural

network architecture to use for a given task. See Table 3.2 for a comparison of the

EfficientNet networks reviewed here.

Table 3.2: Convolutional (EfficientNet) Networks

Rank top-1 # of Addt’l. Paper Title

Acc. Params. Training

Samples

12 88.5% 480M 300M Fixing the train-test resolution discrepancy: Fix-

EfficientNet [120]

23 87.3% 208M 14M EfficientNetV2: Smaller Models and Faster Train-

ing [121]

25 87.1% 66M 300M Fixing the train-test resolution discrepancy: Fix-

EfficientNet [120]

28 86.8% 120M 14M EfficientNetV2: Smaller Models and Faster Train-

ing [121]

30 86.7% 43M 300M Fixing the train-test resolution discrepancy: Fix-

EfficientNet [120]

34 86.4% 30M 300M Fixing the train-test resolution discrepancy: Fix-

EfficientNet [120]

In [121], the authors of the original EfficientNet paper continue their work by intro-

ducing EfficientNetV2. In their study, they argue that the scale of regularization needs

to be proportional to the original image size of the dataset’s images. This includes

varying the regularization on a single network design based on the original image size

of the dataset it is being trained with. Networks that work with smaller images, should

use less regularization, and networks that work with larger images should use more

regularization. In their prior work, the authors scaled up the number of layers in every

stage of their network by the same factor. In this study, they show that gradually adding

additional layers in the later stages is superior. Their prior work achieved the then
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state-of-the-art top-1 accuracy of 84.4%. This extension to that work achieved 87.3%

top-1 accuracy—nearly a 4% absolute improvement.

The work in [120] can appropriately be seen as an extension of their earlier work [122].

In both papers, the authors note that there exists a discrepancy between the prevalent

data pre-processing operations during training vs. evaluation. It is common to extract

random rectangles from training images and scale them to a certain size each epoch as

a form of data augmentation, but during evaluation, the common practice is to choose a

central crop of equivalent size. This differing approach during training and evaluation

results in varying typical scales of the objects trained on compared to objects of the

same class during evaluation, and crucially, unlike with the case of translation, CNNs

do not respond to scale differences in a predictable manner. In both works, the authors

combat the scale discrepancy by allowing the network to learn how to resize the images

during both training and evaluation. The details of the method by which they accomplish

this are quite involved and beyond the scope of this work. The interested reader is

referred to the original works. In the first paper, the authors applied their method to

ResNet networks and trained only with the 1.2M training images that are a part of the

standard Imagenet-1k training set. In the second paper, they applied their method

to EfficientNet [91] networks and used the standard Imagenet-1k training set with an

additional 300M images for training.

3.3 Transformer/Convolution Hybrid Networks

Two of the works reviewed in this chapter, including the top-ranking design, endeavored

to use a combination of transformers and convolutions in their designs. See Table 3.3

for a comparison of the transformer/convolution hybrid networks reviewed here.

Table 3.3: Transformer/Convolution Hybrid Networks

Rank top-1 # of Addt’l. Paper Title

Acc. Params. Training

Samples

1 90.88% 2440M 3B CoAtNet: Marrying Convolution and Attention

for All Data Sizes [123]

3 90.45% 1470M 3B CoAtNet: Marrying Convolution and Attention

for All Data Sizes [123]

19 87.7% 277M 14M CvT: Introducing Convolutions to Vision Trans-

formers [124]

The authors of [123] note that convolutional neural networks perform well due to

their natural locality bias and tend to generalize well and converge relatively quickly,

whereas networks employing transformers perform well because of their ability to find
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global interactions more easily than CNNs but have been shown to require much more

data and many more parameters. In their work, the authors endeavored to combine

the benefits of both convolution and attention by summing a global static convolution

kernel with the attention matrix prior to the softmax normalization inside the transformer

block’s attention heads. They refer to this as relative attention. Because the global

context required for relative attention has a quadratic complexity with respect to the

spatial size of the input, the direct application of relative attention to the raw image is

not computationally tractable. Thus, their overall network architecture begins with an

initial stem of traditional convolutional operations, which they refer to as stage 0, that

down-samples the input image to feature maps half of the original image’s size. Then,

stage 1 and 2 are Squeeze and Excitation [125] blocks that each further reduce the

size of the filter maps by half. It is at this point the filter maps have attained a size that

relative attention is able to cope with. As such, stages 3 and 4 are made up of a series of

relative attention transformer blocks before the network goes on to a final global pooling

and fully connected layer that leads to the output classification probabilities. Residual

connections are made between each stage and before the feed-forward network of

each transformer block. The authors pre-trained their networks on Google’s internal

JFT-3B dataset [95], which as the name implies, consists of 3 billion images. It is worthy

of note that training their best performing network took 20.1K TPUv3-core days.

The authors of [124] start with ViT as a basis for their design and then introduce 3

changes. First, at the beginning of each transformer, they introduce what they call a

convolutional token embedding, which involves reshaping the token sequence going

into the transformer back into their 2D spatial positions and performing an overlapping,

striding convolution. Then, they replace the linear projection before each self-attention

block with what they call “convolutional projection”, which uses depth-wise separable

convolutions [126] on the 2D-reshaped token map. This replaces the linear projection

used by ViT that is applied to the query, key, and value embeddings. Finally, they

remove the positional encoding that is usually present in the first stage of a transformer

block. The question regarding the necessity of positional encoding in transformers used

for vision tasks had been previously raised and studied [113]. Notably, this is the highest

rank achieved using less than 300M additional training samples, as well as being the

highest-ranking design to use a public dataset (Imnagenet-22k) for its additional 14M

samples of training data.

3.4 Using Neither Transformers nor Convolutions

A single network using neither transformers nor convolutions ranks among the top 40

state-of-the-art networks reviewed in this chapter (see Table 3.4).
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Table 3.4: Networks Using Neither Transformers nor Convolutions

Rank top-1 # of Addt’l. Paper Title

Acc. Params. Training

Samples

17 87.94% 431M 300M MLP-Mixer: An all-MLP Architecture for Vi-

sion [127]

The authors of [127] begin their introduction with the observation that “As the his-

tory of computer vision demonstrates, the availability of larger datasets coupled with

increased computational capacity often leads to a paradigm shift”. Ironically, their ar-

chitecture involves avoiding the usage of the canonical paradigm shifting methods of

convolutions and transformers and instead is made up entirely of simple multi-layered

perceptrons (MLPs). Their architecture uses exclusively matrix multiplication, reshap-

ing and transposition, and scalar nonlinearities. They use two different types of MLP

layers. One which works independently on image patches, which “mix” the per-location

features, and one which works across patches, which “mix” spatial information. They

build their architecture from a series of “Mixer” layers, each of which is made up of each

of the two types of “mixer” MLPs, each of which is two fully-connected layers and a

GELU [128] nonlinearity. Mixer layers also include residual connections around the

mixing sub-layers.

3.5 Innovations Related to Training Procedures

In the remaining works reviewed in this chapter, the authors credit their achievement of

state-of-the-art results not on the design of the network they used, but rather on other

innovations related to the training of the networks (see Table 3.5).

Pseudo-labeling [134] involves using a teacher network that generates pseudo-

labels on unlabeled data that is fed into a student network in tandem with labeled data.

Eventually, the student outperforms the teacher. In [129], the authors extended on this

idea by allowing the teacher to receive feedback from the student and then to adapt.

Specifically, how well the student performs on the labeled data is fed back to the teacher

as a reward signal for the quality of the pseudo-labels it generated. This surprisingly

simple idea leads to the highest ranked design reviewed in this chapter that does not

use transformers.

The work presented in [132] is clearly the prior steppingstone that led to [129]

reviewed above, as the methods described are quite similar, and the papers share 3

authors. The first key difference in this work is the attention they pay to the role of noise

in the teacher-student training process, thus the name NoisyStudent. They never inject
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Table 3.5: Innovations Related to Training Procedures

Rank top-1 # of Addt’l. Paper Title

Acc. Params. Training

Samples

5 90.2% 480M 300M Meta Pseudo Labels [129]

6 90% 390M 300M Meta Pseudo Labels [129]

7 89.2% 527M 300M High-Performance Large-Scale Image Recog-

nition Without Normalization [130]

9 88.64% 480M 1.8B Scaling Up Visual and Vision-Language Rep-

resentation Learning With Noisy Text Supervi-

sion [98]

10 88.61% 480M 300M Sharpness-Aware Minimization for Efficiently

Improving Generalization [131]

13 88.4% 480M 300M Self-training with Noisy Student improves Ima-

geNet classification [132]

29 86.78% 377M 0 Drawing Multiple Augmentation Samples Per

Image During Training Efficiently Decreases

Test Error [133]

31 86.5% 438M 0 High-Performance Large-Scale Image Recog-

nition Without Normalization [130]

33 86.45% 255M 0 Drawing Multiple Augmentation Samples Per

Image During Training Efficiently Decreases

Test Error [133]

36 86.3% 377M 0 High-Performance Large-Scale Image Recog-

nition Without Normalization [130]
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noise in the teacher model so that when it generates pseudo labels, those labels are as

accurate as possible. However, when training the student, they inject considerable noise

using RandAugment [135], dropout [136], and stochastic depth [137]. The second key

difference is that rather than having the single student feedback to the single teacher,

in this work, the authors follow a self-training framework [138] consisting of three steps.

The first step is training the teacher with labeled data. The second step is to generate

pseudo labels for unlabeled data with the teacher. The third step is to train the student

with a mixture of labeled and pseudo-labeled data. These steps are repeated several

times, each time promoting the prior student to be the new teacher and creating a new

student model. The authors compare their method to Knowledge Distillation [116] but

note that in that work the student was often smaller so that it could infer faster and did

not inject noise so aggressively. They say that their method could be thought of as

Knowledge Expansion in that the student is larger, with greater capacity and taught in a

difficult environment made up of more noise.

In [98] the authors note that there are no publicly available labeled datasets of

the order being used by many of the state-of-the-art network designs (e.g., JFT-300M

and JFT-3B). This is due in large part to how costly and labor intensive it is to curate

such datasets. In their work, they describe a process of downloading 1.8B images

accompanied with alt-text from the internet, and rather than doing labor intensive

curation, instead opt to only perform a small amount of filtering to the alt-text. Although

they don’t give a detailed explanation of their filtering process, it would stand to reason

that they would filter out words that occurred very infrequently or extremely frequently.

After the filtering process, they then have multiple noisy “labels”, one per word in the

alt-text, per image. Prior to doing training for the image classification task, they trained a

different model to embed the image and alt-text pairs of their 1.8B image dataset into a

shared embedding space where matched pairs were pushed together, and unmatched

pairs were pushed apart. They then used this embedding to give each of the images’

associated alt-text words different weights as labels.

The majority of networks, especially very deep networks like ResNets [92], employ

Batch Normalization (BN) [139]. BN has the effect of smoothing the loss landscape

which allows for larger learning rates and larger batch sizes. However, BN is a costly

operation, behaves differently during training than it does evaluation, and breaks the

independence among the training examples in each batch. Furthermore, BN results in a

tight coupling of batch size to network performance such that when the batch size is too

small, the network performs poorly. The authors of [130] believe that in the long term,

reliance on BN will impede progress in neural network research. They noted that by

suppressing the scale of the activations on residual branches in ResNets, networks can

be trained effectively without BN. Specifically, they propose Adaptive Gradient Clipping

(AGC) which works by clipping the gradients based on the ratio of gradient norms to
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parameter norms. The authors note that their work is closely related to recent work

studying “normalized optimizers” [140][141][142] which ignore gradient scale and instead

choose adaptive learning rates inversely proportional to the gradient norms. They state

that “AGC can be interpreted as a relaxation of normalized optimizers, which imposes

a maximum update size based on the parameter norm but does not simultaneously

impose a lower-bound on the update size or ignore the gradient magnitude”.

The authors of [131] point out that with the heavily overparameterized models

that are commonly in use, minimizing the training loss, which is the usual goal when

training neural networks, can easily result in a suboptimal model. They propose a

simple, yet effective approach of not only minimizing the training loss but while doing so,

simultaneously minimizing the curvature of the loss landscape in the neighborhood of the

loss. Among their other results, notably, they show that when using Sharpness-Aware

Minimization (SAM), they achieve robustness to noisy labels “on par with that provided

by state-of-the-art procedures that specifically target learning with noisy labels”. In their

related work section, they note that similar superior generalization had previously been

observed by achieving wider minima, not by explicitly searching for such, but by arriving

at it by evaluating on a moving average of the prior training weights [143].

The usual approach to online data augmentation is to draw n samples from the

training data, augment each of them with whatever augmentation procedure is being

followed and then submit that batch of n augmented images to the training procedure.

In [133], similar to earlier work as in [144] and [145], the authors perform a study of the

consequences of drawing n samples, augmenting each of them c times and submitting

a batch of size cn to be trained. One of their key findings is that for integer values of c

greater than 1, higher accuracies were achieved, even in the presence of fixed batch

sizes, which means the number of unique images in each batch was fewer. The authors

noted that this was especially true in the cases of large batch sizes. The authors state of

such models that “despite their superior performance on the test set, large augmentation

multiplicities achieve slower convergence on the training set.” Perhaps it is not “despite”

this but at least in part because of this. The authors also note that prior work has found

that observations of the regularizing effect of large learning rates was proportional to the

batch size used [146][147][148]. An interesting hypothesis put forward by the authors is

that this observation is a specific case where c is held at 1 of the more general principle

that the regularizing effect of large learning rates is proportional to the number of unique

training samples in the batch.
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3.6 Summary

The general trend towards larger and larger model capacities as measured in the

number of trainable parameters is readily apparent (see Figure 3.1). One thing that

could be overlooked, though, is that along with the trend towards increased model

capacities there exists the trend toward using more and more additional training data

(see Figure 3.2), the two largest sets of which are not publicly available.

These trends present problems for independent researchers, researchers who are

University faculty, and smaller labs. The first such problem is simply the availability of

data. The creation of Imagenet represents a turning point in the history of computer

vision. Up to that point, dataset sizes were most commonly measured in the 10s of

thousands of samples. Imagenet has provided a mega scale dataset and has become

the de-facto measure of state of the art as a result. The second problem is the compute

power required to train giga scale models on giga scale data. For example, the highest

ranked model had to be trained for 20,100 TPUv3-core days. The published price for

this much compute is over $300,000 and would take 10 days using the largest TPUv3

pod that exists. On a consumer GPU like an NVIDIA GeForce RTX 3090, it would take

approximately 18 years to train this model. As such, state-of-the-art research is now

dominated by large corporations like Google, Microsoft, and Facebook.

What can the deep learning computer vision community do to re-democratize the

research of state-of-the-art methods? The directions that have been pursued recently

should not be abandoned nor should such research be ceded to large corporations.

Instead, additional vectors of research should be explored. One such vector would be

the study of network architectures that can cope better with less data and less fine tuning.

This work explores using Homogeneous Vector Capsules in a variety of architectures

to accomplish just that. Another such vector would be the data (as opposed to the

network design) used to train these models with. Prioritizing the collection of new

standard benchmark datasets that fill the gaps between CIFAR-100 and Imagenet and

between Imagenet and the internal giga scale datasets of large corporations should

be considered. And furthermore, researching and developing analytical methods of

measuring sufficiency in data completeness should be investigated, as opposed to

simply assuming more data will always be better. Chapter 7 and chapter 8 pursue this

direction.
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Figure 3.1: The number of model parameters used to achieve the top 40 best accuracies

on the ILSVRC 2012 Imagenet validation set.

Figure 3.2: The amount of extra training data used to achieve the top 40 best accuracies

on the ILSVRC 2012 Imagenet validation set.
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Chapter 4

An Investigation of Capsule Dynamics

In this chapter, a new method of learning between capsules layers is presented and

compared to previous methods present in the literature. Then a series of experiments

across a wide variety of parameters is investigated. These parameters include using:

• 3 different datasets of increasing difficulty

• 4 different optimization strategies

• 3 methods of constructing the first layer of capsules from the preceding filter maps

• 2 different network architectures

These parameters result in 192 combinations for which one experiment of each is

conducted.

4.1 Capsule Layers Configuration

In [2] the authors proposed two final layers of capsules. The first of which has 8

dimensions shaped as a vector and the second of which has 16 dimensions, also

shaped as a vector. The transformation between the two layers of capsules is a typical

matrix multiplication, wherein every pair of capsules has an associated 16×8 matrix of

trainable parameters and is multiplied by each of the 8-dimensional vector capsules

and summed to form the input into the 16-dimensional capsule. In Equation 4.1, an

equivalent transformation simplified to two and four dimensions for clarity is presented.
a b

c d

e f

g h

 ·

[
x1

x2

]
=


ax1 + bx2

cx1 + dx2

ex1 + fx2

gx1 + hx2

 (4.1)

The work presented in this chapter has been published in IEEE Access, vol. 9, pp. 48519–48530,

2021 [18].

34



In this equation, as well as in Equation 4.2 and Equation 4.3, the variables a through h

represent learned weights that are being applied in the transformation, and the variables

x1 through x2 (in Equation 4.1) and x4 (in Equation 4.2 and Equation 4.3) represent the

values computed from the previous operation in the network. In each case, the second

matrix on the left-hand side of the equation is the first capsule and the matrix on the

right hand side is the second capsule.

A problem with this transformation in Equation 4.1 becomes apparent when viewing it

as an overdetermined system of linear equations in matrix form: every dimension in the

second layer of capsules, beyond the dimensions in the first layer, are at best redundant

and more probably, due to the random initialization of the weights, a challenge to the

optimization algorithm used during backpropagation to reconcile multiple differing losses

derived from each activation in the previous layer.

Also, it should be noted that each dimension of the second layer of capsules is a

linear combination of all dimensions of the first layer of capsules. This is a desirable

property in a fully connected layer in a neural network. However, with the interpretation

and empirical verification in [2] of the dimensions of a capsule as being distinct features

of a given sample, it is the hypothesis of this work that this entangling of distinct features

from one layer into all features in the next layer is an undesirable property.

In their follow-up work [6], the authors switched to using an equivalent number of

dimensions in neighboring capsule layers, though they did not cite their motivation for

doing so as to alleviate the problem of an overdetermined system. Additionally, they

shaped their capsules as matrices rather than vectors. The authors noted that this

reshaping had the effect of reducing the number of trainable parameters (for every pair

of capsules) from being the product of the dimensions of the two layers of capsules

to being only the number of dimensions of a single layer of capsules. This method

of matrix capsules requires that the number of dimensions in neighboring layers be

both equivalent and a perfect square. In Equation 4.2, an equivalent transformation

simplified to four dimensions is presented:[
a b

c d

]
·

[
x1 x2

x3 x4

]
=

[
ax1 + bx3 ax2 + bx4

cx1 + dx3 cx2 + dx4

]
(4.2)

In addition to alleviating the problem of an overdetermined system and significantly

reducing the number of trainable parameters, this formulation results in only the square

root of the total number of features in the first layer being entangled with each feature

in the second layer.

This work proposes a new method for the transformation from one layer of capsules

to the next. Rather than using the typical transformation matrix, the proposed method

involves using a transformation vector and rather than using the typical matrix multi-

plication, the proposed method involves using the Hadamard product (element-wise
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multiplication). This method is shown in Equation 4.3, simplified to four dimensions for

clarity: 
a

b

c

d

�


x1

x2

x3

x4

 =


ax1

bx2

cx3

dx4

 (4.3)

This method goes back to using vectors for the shape of the capsules and requires

that the neighboring layers of capsules be of equivalent dimension, thus these capsules

are called homogeneous vector capsules. With the constraint of requiring equivalent

dimensions in the capsule layers, this method comes with the following benefits:

1. Because this method uses the Hadamard product rather than typical matrix multi-

plication, the drawback of using the more intuitive vector shape for a capsule is

removed, as the number of trainable parameters per pair of capsules stays equal

to the number of dimensions in the capsules (as in [6]), rather than being that

number of dimensions squared (as in [2]).

2. By the nature of the Hadamard product, this method cannot suffer from the problem

of an overdetermined system.

3. This fully disentangles features from the dimensions in the first layer of capsules

from differing dimensions in the subsequent layer of capsules. i.e., each dimension

in the first layer maps to one and only one dimension in the second layer.

4. This eliminates all of the addition operations used in matrix multiplication for a

modest reduction in computational cost.

5. Whereas the number of dimensions in [6] must be a perfect square, HVCs can

be composed of any number of dimensions that evenly divides the number of

neurons being input into them.

4.2 Experimental Design

The experiments in this chapter are designed to compare (a) baseline neural network

architectures that use the standard approach of transforming the final convolutional

layer in the network as in Figure 4.1 with (b) reshaping the final set of feature maps into

j n-dimensional vector capsules, where j · n is the total number of weights coming out

of the final set of feature maps. When doing this, the final classification is done, rather

than with scalar output neurons, with y n-dimensional vector capsules as in Figure 4.2,

that are reduced to predictions by computing the Euclidian norm of the vectors.
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Figure 4.1: The standard approach to transforming the final convolutional layer into

class predictions.

Figure 4.2: Using homogeneous vector capsules to transform the final convolutional

layer into class predictions.
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4.2.1 Networks

The experiments in this chapter are conducted using two convolutional neural network

architectures. The first network is a typical simple monolithic CNN featuring a series

of 3×3 convolutions interspersed with max pooling operations (see Table 4.1). The

motivation behind this design was to examine the effect of capsules on a simple, widely

understood and easily implemented architecture with a low number of parameters (in

this case ~ 1.6M to ~ 22.1M, depending on the number of output classes and the capsule

configuration). No drop-out or L2 (or any other form) of regularization was used with

this architecture. The second network is the popular Inception v3 architecture [13]. This

network was chosen due to its good performance given the relatively low number of

parameters it uses (~ 23.2M to ~ 156.1M, depending on the number of output classes

and the capsule configuration).

4.2.2 Datasets

The experiments in this chapter used three datasets of increasing difficulty:

• The full-sized Imagenette [149], a subset of ImageNet consisting of 10 easily

classified classes: tench, English springer, cassette player, chain saw, church,

French horn, garbage truck, gas pump, golf ball, and parachute.

• The full-sized Imagewoof [149], a subset of ImageNet consisting of 10 more

closely related classes, all of which are dog breeds: Australian terrier, Border

terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback,

Dingo, Golden retriever, and Old English sheepdog.

• Food-101 [150], a challenging and noisy dataset consisting of 101 classes of

images retrieved from the now defunct foodspotting.com.

4.2.3 Optimization Strategies

The experiments in this chapter used four different optimization strategies. RMSProp

has been a popular choice for optimizing convolutional neural networks since [13]. This

strategy which is denoted O1 (see Table 4.2) is the strategy used in [13] whereas the

strategy denoted O2 is the strategy employed by the official TensorFlow implementation

of Inception v3 published on github.com1 which results in slightly higher accuracy. In

addition, two other optimization strategies were experimented with. O3 is the Adam

optimizer with the defaults suggested in [9], and O4 is the Adam optimizer with a slowly

decaying base learning rate.

1https://github.com/tensorflow/models/blob/master/research/slim/train_image_classifier.py
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Table 4.1: The stem of the simple monolithic CNN.

Operation Feature Maps Output Shape

3×3 convolution w/stride 2 32 149×149×32
3×3 convolution w/stride 1 32 147×147×32
3×3 convolution w/stride 1 32 145×145×32
2×2 max pool w/stride 1 N/A* 72×72×32
3×3 convolution w/stride 1 64 70×70×64
3×3 convolution w/stride 1 64 68×68×64
3×3 convolution w/stride 1 64 66×66×64
2×2 max pool w/stride 1 N/A* 33×33×64
3×3 convolution w/stride 128 31×31×128
3×3 convolution w/stride 1 128 29×29×128
3×3 convolution w/stride 1 128 27×27×128
2×2 max pool w/stride 1 N/A* 13×13×128
3×3 convolution w/stride 1 256 11×11×256
3×3 convolution w/stride 1 256 9×9×256

The baseline experiments were classified through a fully connected layer after flattening

the final set of feature maps as in Figure 4.1. All other experiments used HVCs as in

Figure 4.2.

* Max-pooling is a sub-sampling operation that involves no trainable parameters.

Table 4.2: Optimizers used for all experiments.

Optimizer Description

O1 RMSProp w/epsilon 1 and 0.045 learning rate exponentially decaying

every 2 epochs by 0.94

O2 RMSProp w/epsilon 1 and 0.1 learning rate exponentially decaying

every 30 epochs by 0.16

O3 Adam w/0.001 learning rate

O4 Adam w/0.001 learning rate exponentially decaying every epoch by

0.96
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4.2.4 Capsule Configuration

The experiments in this chapter explored 3 different methods of transforming the final

set of feature maps into capsules. The first method creates multiple capsules for each

distinct x and y coordinate of the feature maps (see Figure 4.3). The second method

creates a single capsule for each distinct x and y coordinate of the feature maps (see

Figure 4.4). The intuition behind these two methods is that each position in the feature

map represents a meaningful feature and that using capsules to “group” these together

from multiple filter maps encourages the feature maps to cooperate. The difference

being that in the multiple capsule case, multiple disparate groups are allowed, wherein

the single capsule case, only one such group is allowed. The third method creates

a single capsule for each distinct feature map (see Figure 4.5). The intuition behind

this method is the standard interpretation of a feature map (i.e., it represents a single

feature per map). However, rather than allowing each dimension of the feature map to

learn independently through a fully connected layer, capsules are used to maintain the

cohesion among the dimensions.

The experiments in this chapter included eight variations of the simple monolithic

CNN architecture (see Table 4.3). The first such variation, denoted S1, is the baseline

model that flattens the final set of feature maps and then classifies through a layer of

fully connected neurons. Variations S2 through S6 reshape the final set of feature maps

as in Figure 4.3. Variation S7 reshapes the final set of feature maps as in Figure 4.4.

Variation S8 reshapes the final set of feature maps as in Figure 4.5. In variations S2

through S8, after the first layer of capsules are shaped, they are then classified through

the second set of capsules that form the HVC pairs.

The experiments in this chapter included eight variations of the Inception v3 archi-

tecture (see Table 4.4). The first such variation, denoted I1, is the baseline model as

described in [13]. Variations I2 through I6 reshape the final set of feature maps in both

the main and auxiliary branches as in Figure 4.3. Variation I7 reshapes the final set of

feature maps in both branches as in Figure 4.4, and Variation I8 reshapes the final set

of feature maps in both branches as in Figure 4.5. In variations I2 through I8, after the

first layer of capsules are shaped each branch is then classified through the second set

of capsules that form the HVC pairs.

Unique to the Inception v3 architecture relative to the simple monolithic CNN is that,

in the baseline model I1 and models I2 through I6, the final operation before the flattening

operations in both the main and auxiliary outputs reduce the feature maps to 1×1. In the

main branch, this is accomplished via global average pooling [151] and in the auxiliary

branch, this is accomplished by performing a 5×5 convolution on a set of 5×5 feature

maps. Both of these methods effectively collapse the spatial information present in the

preceding operations into a single scalar value per feature map. Despite this, these
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Figure 4.3: Segmented Z-Derived Capsules.

In this example, the filter maps have been converted into two 2-dimensional capsules

for each distinct x and y coordinate of the feature maps. The first 2 of 18 such capsules

are highlighted in red and blue respectively. Models S2, I2, I3, I4, I5, and the main

output of I6 use this method.

Figure 4.4: Unbroken Z-Derived Capsules.

In this example, the filter maps have been converted into a single 4-dimensional capsule

for each distinct x and y coordinate of the feature maps. The first 2 of 9 such capsules

are highlighted in red and blue respectively. Models S4, I8, and the auxiliary output of

I6 use this method.

Figure 4.5: XY-Derived Capsules.

In this example, the filter maps have been converted into four 9-dimensional capsules,

each made from an entire feature map. The first 2 of 4 such capsules are highlighted in

red and blue respectively. Models S3 and I7 use this method.
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Table 4.3: Models used for the experiments conducted using a simple monolithic CNN.

Model Capsule Configuration HVC Dimensions # of HVCs

S1 No capsules — This is the baseline model

S2 See Figure 4.3 8 2,592

S3 See Figure 4.3 16 1,296

S4 See Figure 4.3 32 648

S5 See Figure 4.3 64 324

S6 See Figure 4.3 128 162

S7 See Figure 4.4 256 81

S8 See Figure 4.5 81 256

Table 4.4: Models used for the experiments conducted using the Inception v3 architec-

ture.

Main Out HVCs Aux Out HVCs

Model Capsule Configuration Dimensions # Dimensions #

I1 No capsules — This is the baseline model

I2 See Figure 4.3 8 256 8 16

I3 See Figure 4.3 16 128 16 8

I4 See Figure 4.3 32 64 32 4

I5 See Figure 4.3 64 32 64 2

I6 See Figure 4.3 128 16 128 1

I7 See Figure 4.4 2,048 64 128 25

I8 See Figure 4.5 64 2,048 25 128
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global operations have been empirically shown to be effective in maintaining models’

ability to achieve good generalization and accuracy, all while significantly reducing the

number of trainable parameters. Generally, these global operations precede a final

fully connected layer from which classification is performed. The larger the number of

classes being classified, the more pronounced the reduction in trainable parameters

is. For two of the Inception v3 experiments, I7 and I8, these global operations were

removed, which results in the final set of feature maps in the main branch being 8×8
and the final set in the auxiliary branch being 5×5. This in turn results in an increasing

number of parameters in the model as the number of output classes increases (see

Table 4.5).

4.2.5 Additional Experimental Parameters

Additional experimental parameters are as follows:

• All activations were ReLU preceded by batch normalization [139].

• Loss for the Inception v3 experiments was computed using the label-smoothing

regularization method as in [13], whereas categorical cross-entropy was used for

the simple monolithic CNN experiments.

• All experiments ran for 100 epochs.

• Evaluations were performed using the exponential moving average of past weights

as in [143], with a decay factor of 0.999.

• A batch size of 32 was used for Imagenette and Imagewoof. A batch size of 96

was used for Food-101 for models S1-S8 and I1-I6 and a batch size of 68 for

models I7 and I8 (see Table 4.3 and Table 4.4). These batch sizes were dictated

by the constraints of the available hardware.

• An image size of 299×299 for all images in all datasets, in all cases augmented

using the strategy employed by the official TensorFlow implementation of Inception

v3 published on github.com.2

2https://github.com/tensorflow/models/blob/master/research/slim/preprocessing/

inception_preprocessing.py
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4.3 Experimental Results

4.3.1 The Simple Monolithic CNN

As can be seen in Table 4.6 and Figure 4.6, models S2-S8, which used HVCs, wildly

outperformed the baseline model S1 with all optimization strategies, on all three datasets

tested. The experiment for the baseline model S1 when using optimization strategy

O2 was not able to learn to a better accuracy than random guessing on Imagenette

and Imagewoof and actually “learned” to achieve an accuracy of 0% on Food-101. The

average accuracy of the experiments of the baseline model S1 with all optimization

strategies, on all three datasets, excluding those experiments where the model had

not learned to an accuracy better than random guessing, is 64.55%. The average

accuracy of the experiments for models S2-S8 with all optimization strategies, on all

three datasets is 76.92%. This is a relative improvement of 19.16%. For all three

datasets, the best performing experiments used optimization strategy O4, which was

the Adam optimizer with an appropriately small ε resulting in the intended adaptability

along with a slowly decaying base learning rate.

6 out of 12 of the combinations of optimization strategy and dataset achieved their

highest accuracy with model S7, which used the method that creates a single capsule

from each distinct x and y coordinate of the feature maps. 4 out of 12 of the combinations

achieved their highest accuracy with model S6, which used the method that creates

2 capsules from each distinct x and y coordinate of the feature maps. This suggests

that deriving 1 or 2 capsules for each distinct x and y coordinate of the feature maps is

superior to deriving a higher number of capsules from each such x and y coordinate

(models S2-S5) or deriving the capsules from entire, individual feature maps (model

S8).

4.3.2 Inception v3

Optimization strategies O1 and O2 are the two optimization strategies published and

used to train Inception v3 on ImageNet [13]. It would be understandable, yet naïve, to

assume that these optimization strategies would be superior choices in general. But

as can be seen in Table 4.7 and Figure 4.7, only occasionally did either strategy O1 or

O2 outperform O3, and only once did O2 outperform O4. This demonstrates that the

hyperparameters are finely tuned, not just to the network architecture, but also to the

data.

The only times the baseline model I1 outperformed all capsule models I2-I8 was

for the Food-101 dataset when using optimization strategies O1 and O2. The best

performing capsule model outperformed the baseline model I1 by an average of 1.32%
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across all optimization strategies and datasets.

3 out of 12 of the combinations of optimization strategy and dataset achieved their

highest accuracy with model I7. This stands in contrast to the experiments on the simple

monolithic CNN where twice as many combinations were superior for the analogous

model S7. The two architectures are too dissimilar to draw any firm conclusions, but a

reasonable hypothesis is that there are two factors contributing to this. First, creating a

single capsule for each distinct x and y coordinate of all feature maps of the main output

for Inception v3 results in 2,048 dimensional capsules (as the final set of feature maps is

2,048 in number) compared to only 256 dimensions for the capsules coming out of the

final set of feature maps in the simple monolithic CNN. Second is the presence of the

auxiliary output stem in Inception v3. 5 out of 12 combinations achieved their highest

accuracy with model I6 and 3 out of 12 with I5. These results are less conclusive than

those with the simple monolithic CNN and permit fewer firm conclusions. However,

these experiments do suggest that a single capsule to a small number of capsules for

each distinct x and y coordinate of all feature maps is the superior choice.

4.3.3 Optimization Strategy

For models S1-S8 and for all three datasets tested, optimization strategy O4 achieved

the highest accuracy. The second highest accuracy was achieved with strategy O1 twice

and with O2 once. For models I1-I8 and for all three datasets, optimization strategy O3

achieved the highest accuracy twice and O4 once.

With the Food-101 dataset, arguably the most difficult of the three datasets tested,

baseline model S1 performed better with the quasi-adaptive optimization strategy O1

than with either of the truly adaptive strategies O3 or O4. And yet, strategy O2 achieved

a top accuracy of 0% for this model. O1 and O2 are the same optimization algorithm

but parameterized differently. Further, these parameterizations were not ad-hoc, but

rather parameterizations that are published along with the Inception v3 architecture

and perform well on the ImageNet dataset with that architecture. This underscores just

how important hyperparameter choice can be and how closely related to both network

structure and dataset it truly is. This in turn underscores the relative utility of an adaptive

gradient descent method that is less reliant on hyperparameter choice.

With adaptive gradient descent methods, there is a base learning rate η that is the

same for all parameters and a separate per-parameter learning rate that is adapted

based on previous gradient updates to that parameter. The two are multiplied together

to determine each parameter’s actual update. With the Adam optimizer, the suggested

base learning rate η is 0.001 and the range of possible values for the per-parameter

update are 0 to 1010. After being multiplied together, this gives a range of possible

per-parameter updates of 0 to 107. This is exactly what optimization strategy O3 uses
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for each parameter for the duration of the training. Optimization strategy O4 starts with

this range for each parameter, and then gradually decays the base learning rate η over

the epochs of training such that the resultant per-parameter updates are eventually

constrained to a range of 0 to 104. This is similar to, but far less extreme (by four orders

of magnitude) than the dampening effect caused by using a large ε in the denominator

of the per-parameter term of an adaptive gradient descent method (contra its intended

purpose), as is the case with optimization strategies O1 and O2. Further, when decaying

the base learning rate in the manner of optimization strategy O4, the dampening is

applied gradually over time as the parameter values descend the loss landscape, rather

than statically for the duration of training (as in the case of a large ε).

Effectively, by allowing the learning rates of different parameters to change based

on what has previously been learned, an adaptive gradient descent method attempts

to achieve the goals of exploitation and exploration simultaneously. Exploration is

achieved by decoupling each parameter from a single learning rate and exploitation is

achieved by the coupling of each parameters’ own learning rate to what had previously

been learned. Using an adaptive gradient descent method with a large ε greatly reduces

the amount of per-parameter exploitation possible. This shoulders the machine learning

engineer with the task of choosing just the right hyperparameters to balance this small

amount of variability in exploitation with the proper amount of exploration—the very

thing adaptive gradient descent methods are meant to alleviate. This is why using a

large ε is characterized as quasi-adaptive in this work. By using a truly adaptive gradient

descent method (one with an appropriately small ε) and then decaying the base learning

rate during training, the simultaneous explore/exploit nature of the method is preserved

early in training and then slowly shifted to be more exploitative on average, but still

allowing each parameter to have its own still rather large range of possible explore vs.

exploit dispositions.

4.4 Summary

The experimentation detailed in this chapter demonstrates that:

1. Using HVCs on an advanced neural network architecture like Inception v3 in-

creases the achievable accuracy by a small but significant margin.

2. Using HVCs on a simple monolithic CNN increases the achievable accuracy

massively.

3. Deriving 1 or 2 capsules from each distinct x and y coordinate of all feature maps

outperforms both deriving a larger number of capsules in the same manner and

deriving capsules from entire, individual feature maps.
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Figure 4.6: Classification accuracy on 4 simple CNN models, 3 different datasets, and

4 different optimization strategies.

Each chart is cross-referenced in Table 4.6

Imagenette

O1 O2 O3 O4

(1a) (1b) (1c) (1d)

Imagewoof

O1 O2 O3 O4

(1e) (1f) (1g) (1h)

Food-101

O1 O2 O3 O4

(1i) (1j) (1k) (1l)
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Figure 4.7: Classification accuracy on 8 Inception v3 models, 3 different datasets, and

4 different optimization strategies.

Each chart is cross-referenced in Table 4.7

Imagenette

O1 O2 O3 O4

(2a) (2b) (2c) (2d)

Imagewoof

O1 O2 O3 O4

(2e) (2f) (2g) (2h)

Food-101

O1 O2 O3 O4

(2i) (2j) (2k) (2l)
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And thus, that using HVCs enable convolutional neural network researchers to:

1. Use adaptive gradient descent methods when training CNNs without experiencing

a generalization gap.

2. Save time and compute cycles searching for the best learning rates and learning

rate decay schedules to use to train their network with a non-adaptive gradient

descent method and instead use an adaptive gradient descent method that does

not require this fine-tuning.

In conclusion, it is worth noting that due to constraints in terms of the available

computational budget in conjunction with the wide coverage of parameters experimented

with in this chapter resulted in only a single trial of each experiment being executed.

In those cases where the accuracies between 2 individual experiments are near each

other, firm conclusions cannot be drawn until additional trials are conducted. However,

comparing groups of experiments together allows for the experiments in the classes to

be treated as individual trials. For example, each capsule configuration of the simple

monolithic CNN (S2-S8) was statistically significantly superior to the baseline (S1) when

taking all combinations of dataset and optimization strategy as the trials.
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Table 4.5: Trainable parameters used by models and number of classes.

Models Final Feature Map Dimensions Classes # of Parameters

S1-S8 9×9
10 1.6M

101 3.5M

1000 22.1M

I1-I6 1×1
10 22.3M

101 22.5M

1000 24.5M

I7-I8
8×8
5×5

10 23.2M

101 35.4M

1000 156.1M

The difference between the number of trainable parameters for otherwise equivalent

models using fully connected layers vs. HVCs is negligible. For S1 vs. any of S2 through

S8, the former has only 0.16% fewer parameters. As models get larger the difference

lessens and eventually inverts. For example, the difference between I1 and any of I2

through I6 when classifying 1000 classes is 0.007% fewer parameters for the HVC

models.
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Table 4.6: Classification accuracy on 8 simple monolithic CNN models, 3 different

datasets, and 4 different optimization strategies.

Dataset
Cross Reference
to Figure 4.6 Optimizer

Models (see Table 4.3)

S1 S2 (8d) S3 (16d) S4 (32d)

Imagenette

1a O1 82.99% 85.02% 84.22% 85.43%

1b O2 9.68% 85.66% 84.38% 86.68%

1c O3 81.15% 85.78% 85.81% 85.76%

1d O4 86.96% 88.11% 88.50% 88.91%

Imagewoof

1e O1 21.49% 73.39% 76.00% 75.18%

1f O2 10.45% 72.03% 57.45% 62.06%

1g O3 45.72% 69.54% 75.64% 77.23%

1h O4 69.16% 79.18% 79.84% 81.48%

Food-101

1i O1 69.89% 69.84% 71.83% 71.57%

1j O2 0% 55.41% 69.29% 71.23%

1k O3 54.98% 61.27% 62.60% 63.10%

1l O4 68.64% 69.55% 71.33% 72.28%

Dataset
Cross Reference
to Figure 4.6 Optimizer

Models (see Table 4.3)

S5 (64d) S6 (128d) S7 (256d) S8 (81d)

Imagenette

1a O1 87.58% 86.91% 85.09% 86.24%

1b O2 85.86% 85.71% 88.65% 87.12%

1c O3 87.12% 87.65% 86.14% 82.30%

1d O4 89.14% 89.32% 89.63% 88.42%

Imagewoof

1e O1 78.43% 76.31% 79.59% 77.41%

1f O2 70.31% 68.21% 73.44% 71.85%

1g O3 77.72% 75.77% 78.64% 77.28%

1h O4 80.81% 81.58% 80.81% 79.97%

Food-101

1i O1 71.99% 72.32% 72.46% 71.45%

1j O2 71.95% 72.22% 71.75% 70.73%

1k O3 63.59% 63.32% 62.98% 64.30%

1l O4 72.22% 72.60% 72.31% 71.33%

The first column in each row is a cross-reference to the charts in Figure 4.6. The model

parentheticals refer to the number of capsule dimensions. For example, S2 (8d) refers

to model S2 which uses 8-dimensional capsules.
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Table 4.7: Classification accuracy on 8 Inception v3 models, 3 different datasets, and 4

different optimization strategies.

Dataset
Cross Reference
to Figure 4.7 Optimizer

Models (see Table 4.4)

I1 I2 (8d) I3 (16d) I4 (32d)

Imagenette

2a O1 90.24% 89.50% 89.65% 89.60%

2b O2 88.99% 88.73% 89.73% 90.37%

2c O3 91.14% 92.09% 91.29% 91.03%

2d O4 92.42% 91.73% 92.62% 92.67%

Imagewoof

2e O1 79.71% 81.28% 81.17% 81.63%

2f O2 79.48% 79.84% 80.02% 80.89%

2g O3 85.99% 86.22% 85.63% 85.45%

2h O4 84.73% 85.19% 84.81% 85.12%

Food-101

2i O1 80.00% 77.86% 77.88% 78.20%

2j O2 82.52% 80.51% 81.15% 81.76%

2k O3 84.03% 84.43% 84.47% 84.33%

2l O4 82.30% 82.97% 82.95% 82.98%

Dataset
Cross Reference
to Figure 4.7 Optimizer

Models (see Table 4.4)

I5 I6 I7 I8

(64d) (128d) (2,048d/128d) (64d/25d)

Imagenette

2a O1 89.16% 91.29% 88.63% 86.12%

2b O2 90.60% 91.01% 88.55% 85.43%

2c O3 90.09% 89.98% 92.16% 91.29%

2d O4 92.67% 92.67% 92.42% 92.47%

Imagewoof

2e O1 80.48% 84.14% 74.67% 69.65%

2f O2 81.89% 83.38% 78.02% 69.01%

2g O3 86.24% 86.24% 86.73% 84.55%

2h O4 84.89% 85.22% 85.71% 85.32%

Food-101

2i O1 78.13% 78.32% 78.01% 76.05%

2j O2 81.86% 81.03% 79.56% 76.99%

2k O3 84.49% 84.06% 82.42% 82.13%

2l O4 83.22% 82.92% 80.55% 79.43%

The first column in each row is a cross-reference to the charts in Figure 4.7. The model

parentheticals refer to the number of capsule dimensions. For example, I2 (8d) refers

to model I2 which uses 8-dimensional capsules.
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Chapter 5

Demonstrating the Irrelevance of

Routing Mechanisms

Chapter 4 proposed a capsule design that used element-wise multiplication between

capsules in subsequent layers and relied on backpropagation to do the work that prior

capsule designs were relying on routing mechanisms for. This capsule design is referred

to as homogeneous vector capsules (HVCs). This chapter directly extends the work

of [1] and [2] on capsules specifically as applied to MNIST by applying HVCs to MNIST.

The intent behind the design in this chapter is to show that the accuracies achieved in

these prior works can be surpassed when using HVCs and without requiring the use of

expensive routing algorithms.

5.1 Capsule Networks Applied to MNIST

Capsules have become a more active area of research since [2], which demonstrated

near state-of-the-art performance on MNIST [152] classification (at 99.75%) by using

capsules and a routing algorithm to determine which capsules in a previous layer feed

capsules in the subsequent layer. MNIST is a classic image classification dataset of

hand-written digits consisting of 60,000 training images and 10,000 validation images.

Studying MNIST, due to the more highly structured content as compared to many other

image datasets, allows for the use of more informed data augmentation techniques

and, when using capsules, the ability to investigate the capsules’ interpretability. In [6],

the authors extended their work by conducting experiments with an alternate routing

algorithm. Research in capsules has since focused mostly on various computationally

expensive routing algorithms ([153][154]). By using the design presented in this chapter,

the computationally expensive routing mechanisms of prior capsule work is avoided

The work presented in this chapter has been published in Neurocomputing, vol. 463, pp. 545–553,

2021 [19].
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and the performance of [2] on MNIST is surpassed, all while requiring 5.5× fewer

parameters, 4× fewer epochs of training, and using no reconstruction sub-network.

5.2 Experimental Design

5.2.1 Network Architecture

The starting point for the network design used for the experiments in this chapter is

a conventional convolutional neural network following many widely used practices.

These include stacked 3 × 3 convolutions, each of which with ReLU [155] activation

preceded by batch normalization [139]. The common practice of increasing the number

of filters in each subsequent convolutional operation relative to the previous one is

also followed. Specifically, the first convolution uses 32 filters, and each subsequent

convolution uses 16 more filters than the previous one. Additionally, the final operation

before classification is to softmax the logits and to use categorical cross entropy for

calculating loss.

One common design element found in many convolutional neural networks which

was intentionally avoided was the use of any pooling operations. This work agrees

with Geoffrey Hinton’s assessment [156] of pooling (a method of down-sampling) as

an operation to be avoided due to the information it “throws away”. With the MNIST

data being only 28 × 28, there is no need to down-sample. In choosing not to down-

sample, there is a potential dilemma of how to reduce the dimensionality as operations

descend deeper into the network. This dilemma is solved by choosing not to zero-pad

the convolution operations and thus each convolution operation by its nature reduces

the dimensionality by 2 in both the horizontal and vertical dimensions. This work deems

choosing not to zero-pad as preferable in its own right in that zero padding effectively

adds information not present in the original sample.

Rather than having a single monolithic design such that each operation in the network

feeds into the next operation and only the next operation, the design employed creates

multiple branches. After the first two sets of three convolutions, in addition to feeding to

the subsequent convolution, the network also branches off the output to be forwarded

on to an additional operation (detailed next). Thus, after all convolutions have been

performed, the network has three branches.

1. The first of which has been through three 3× 3 convolutions and consists of 64

filters each having an effective receptive field of 7× 7 of the original image pixels.

2. The second of which has been through six 3 × 3 convolutions and consists of

112 filters each having an effective receptive field of 11× 11 of the original image

pixels.
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3. The third of which has been through nine 3× 3 convolutions and consists of 160

filters each having an effective receptive field of 15 × 15 of the original image

pixels.

For each branch, rather than flattening the outputs of the convolutions into scalar

neurons, the filters are instead transformed into vectors to form the first set pf capsules

in the pairs of homogeneous vector capsules. This operation is represented by “Caps

1(a)”, “Caps 2(a)” and “Caps 3(a)” in Figure 5.1.

Then element-wise multiplication is performed on each of those capsules with a

set of weight vectors (one for each class) of the same length. This results in n×m
weight vectors where n is the number of capsules transformed from filter maps and m

is the number of classes. Then summation is performed, per class (m), of each of the n

vectors to form the second capsule in each pair of homogeneous vector capsules. After

this, batch normalization is applied and then ReLU activation. The process elucidated in

this paragraph is represented by “Caps 1(b)”, “Caps 2(b)” and “Caps 3(b)” in Figure 5.1.

After the pairs of capsules for each branch, the second capsule vector in each pair

is reduced to a single value per class by summing the components of the vector. These

values can be thought of as the branch-level logits.

Before classifying, the three branch-level sets of logits need to be reconciled with

the fact that each image only belongs to one class. This is accomplished by stacking

each class’s branch-level logits into vectors of length 3. Then, each vector is reduced by

summation to a single value to form the final set of logits to be classified from. Figure 5.1

shows the high-level view of the entire network.

Chapter 4 detailed experiments with a variety of methods for constructing the first

layer of capsules out of the preceding filter maps. This chapter experiments with 2 of

these methods. The first method, referred to as XY-Derived Capsules (see Figure 4.5),

constructs each capsule from each distinct feature map, whereas the second method,

referred to as Unbroken Z-Derived Capsules (see Figure 4.4) constructs each capsule

from each distinct x and y coordinate of the combination of all of the feature maps.

No weight decay regularization [157], a staple regularization method that improves

generalization by penalizing the emergence of large weight values, was used. Nor was

any form of dropout regularization [158][159], which are regularization methods designed

to stop the co-adaptation of weights, used. Nor was a reconstruction sub-network, as

in [2], used. These decisions were made in order to investigate the generalization

properties of the chosen network design elements in the absence of other techniques

associated with good generalization. In addition, no “routing” mechanism, as in [2]

and [6], was used, preferring to rely on traditional trainable weights and backpropagation.
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5.2.2 Merge Strategies

In [12] and [13], the authors chose to give static, predetermined weights to both output

branches and then added them together. In this chapter, for both XY-Derived Capsules

and Unbroken Z-Derived Capsules, three separate experiments of 32 trials each are

conducted in order to investigate the effects of predetermined equal weighting of the

branch outputs compared to learning the branch weights via backpropagation:

1. Not learnable. For this experiment, the three branches are merged together with

equal weighting in order to investigate the effect of disallowing any one branch to

have more impact than any other.

2. Learnable with randomly initialized branch weights. (Abbreviated as Random

Init. subsequently.) For this experiment, randomly initialized weights are learned

via backpropagation.

3. Learnable with branch weights initialized to one. (Abbreviated as Ones Init.

subsequently.) For this experiment, the weights are learned via backpropagation.

The difference with the Random Init. experiment being that in these experiments,

the weights are initialized to 1. These experiments are conducted in addition to

the Random Init. experiments in order to understand the difference between

starting with random weights and starting with equal weights that are subsequently

allowed to diverge during training.

5.2.3 Data Augmentation

Most (but not all [160][161]) of the state-of-the-art MNIST results achieved over the

past decade have used data augmentation [162][159][44]. In addition to the network

design, a major part of the work detailed in this chapter involves applying an effective

data augmentation strategy that includes transformations informed specifically by the

domain of the data. For example, excess rotation is avoided so that images of one

class do not end up being more like a different class (e.g., rotating an image of the digit

2 by 180 degrees to create something that would more closely resemble a malformed

5). Nor was translation allowed such that the image content would move off of the

canvas and perhaps cut off the left side of an 8 and thus create a 3. Choosing data

augmentation techniques specific to the domain of interest is not without precedent (see

for example [44] and [2], both of which used data augmentation techniques specific to

MNIST).

By modern standards, in terms of dataset size, MNIST has a relatively low number

of training images. As such, judicious use of appropriate data augmentation techniques

is important for achieving a high level of generalizability in a given model. In terms
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of structure, hand-written digits show a wide variety in their rotation relative to some

shared true “north”, position within the canvas, width relative to their height, and the

connectedness of the strokes used to create them. Throughout training for all trials,

every training image in every epoch was subjected to a series of four operations in

order to simulate a greater variety of the values for these properties.

1. Rotation. First, each training image is randomly rotated by up to 30 degrees in

either direction. Whether to actually apply this rotation was chosen by drawing

from a Bernoulli distribution with probability p of 0.5 (a fair coin toss).

2. Translation. Second, each training image is randomly translated within the avail-

able margin present in that image. In [2], the authors limited their augmentation to

shifting the training images randomly by up to 2 pixels in either or both directions.

The limit of only 2 pixels for the translation ensured that the translation is label-

preserving. As the MNIST training data has varying margins of non-digit space in

the available 28×28-pixel canvas, using more than 2 pixels randomly, would be

to risk cutting off part of the digit and effectively changing the class of the image.

For example, a 7 that was shifted too far left could become more appropriately

classed as a 1, or an 8 or 9 shifted far enough down could be more appropriately

classed as a zero. The highly structured nature of the MNIST training data allows

for an algorithmic analysis of each image that will provide the translation range

available for that specific image that will be guaranteed to be label-preserving.

Figure 2.1 shows an example of an MNIST training image that has an asymmetric

translation range that, as long as any translations are performed such that the

digit part of the image is not moved by more pixels than are present in the margin,

will be label-preserving. In other words, the specific training example shown in

Figure 2.1 could be shifted by up to 8 pixels to the left or 4 to the right and up to 5

up or 3 down, and after doing so, all of the pixels belonging to the actual digit will

still be in the resulting translated image. The amount within this margin to actually

translate a training image was chosen randomly. Whether to translate up or down

and whether to translate left or right were drawn independently from a Bernoulli

distribution with probability p of 0.5 (a fair coin toss).

3. Width. Third, each training image’s width is randomly adjusted. MNIST images

are normalized to be within a 20 × 20 central patch of the 28 × 28 canvas. This

normalization is ratio-preserving, so all images are 20 pixels in the height dimen-

sion but vary in the number of pixels in the width dimension. This variance not

only occurs across digits, but intra-class as well, as different peoples’ handwriting

can be thinner or wider than average. In order to train on a wider variety of these

widths, each image’s width is randomly compressed and then equal zero padding
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is applied on either side, leaving the digit’s center where it was prior. This was

inspired by a similar approach adopted in [44]. In this work, each training sample

is compressed within a range of 0–25%.

4. Random Erasure. Fourth, each training image is subjected to the random erasure

(setting to 0) a 4× 4 grid of pixels chosen from the central 20× 20 grid of pixels

in each training image. The X and Y coordinates of the patch were drawn inde-

pendently from a random uniform distribution. This was inspired by the random

erasing data augmentation method in [163]. The intention behind this method is

to expose the model to a greater variety of (simulated) connectedness within the

strokes that make up the digits. An alternative interpretation would be to see this

as a kind of feature-space dropout.

5.2.4 Training

The training methodology used in chapter 4 is followed in the experiments detailed

in this chapter and training is performed with the Adam optimizer [9] using all of the

default/recommended parameter values, including the base learning rate of 0.001. Also,

as in both chapter 4 and [2], the base learning rate is exponentially decayed. For the

experiments in this chapter, which trained for 300 epochs, an exponential decay to the

learning rate at a rate of 0.98 per epoch is applied.

Test accuracy was measured using the exponential moving average of prior weights

with a decay rate of 0.999. [143]

5.3 Experimental Results

5.3.1 Individual Models

32 trials were executed for both of the capsule construction methods (XY-Derived

Capsules and Unbroken Z-Derived Capsules) and each of the three merge strategies

(see subsection 5.2.2). Each trial had weights randomly initialized prior to training and,

due to the stochastic nature of the data augmentation, a different set of training images.

As a result, training progressed to different points in the loss surface resulting in a range

of values for the top accuracies that were achieved on the test set. See Table 5.1.

5.3.2 Ensembles

Ensembling multiple models together and predicting based on the majority vote among

the ensembled models routinely outperforms the individual models’ performances.
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Figure 5.1: The proposed network from input to classification.

Table 5.1: Test Accuracy of the Individual Models

HVC Configuration Experiment Min Max Mean Std. Dev.

Using XY-Derived

Capsules

Not Learnable 99.71% 99.79% 0.997500 0.0002190

Random Init. 99.72% 99.78% 0.997512 0.0001499

Ones Init. 99.70% 99.77% 0.997397 0.0001885

Using Z-Derived

Capsules

Not Learnable 99.74% 99.81% 0.997731 0.0001825

Random Init. 99.73% 99.80% 0.997684 0.0002023

Ones Init. 99.72% 99.83% 0.997747 0.0002509

In all cases, using the Z-Derived Capsules was superior to using the XY-Derived

Capsules. For Z-Derived Capsules, no merge strategy produced statistically significantly

superior test accuracy. For XY-Derived Capsules, the only statistically significant test

accuracy result was that the Ones Init. strategy produced inferior accuracy. It should be

noted that, though no strategy produced statistically significantly superior test accuracies,

when branches were allowed to learn their weights, the weights learned were statistically

significant. (Bold indicates a surpassing of the previous state of the art for individual

models on MNIST.)
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Ensembling can refer to either completely different model architectures with different

weights or the same model architecture after being trained multiple times and finding

different sets of weights that correspond to different locations in the loss surface. The

previous state of the art of 99.82% was achieved using an ensemble of 30 different

randomly generated model architectures [164]. The ensembling method used in this

chapter uses the same architecture but with different weights. The majority vote of the

predictions for all possible combinations of the weights produced by the 32 trials was

calculated. See Table 5.2.

5.3.3 Branch Weights

What follows are visualizations of the final branch weights (after 300 epochs of training)

for each of the branches in all 32 trials of the experiments wherein the branch weights

were initialized to one for both HVC configurations.

Figure 5.2 shows that for all trials, the ratio between all three learned branch weights

is consistent, demonstrating that the amount of contribution from each branch plays

a significant role. Figure 5.3 shows a similar, though less pronounced consistency

between the first branch’s weight and the other two branches, however, branches two

and three show no significant difference. Strikingly, using XY-Derived Capsules shows

that branch three (the one having gone through all nine convolutions) has learned to

be a more significant contributor. When using Z-Derived Capsules, branch one (the

one having gone through only three convolutions) has learned to be a more significant

contributor, but only slightly. Indeed, in the latter configuration, the contributions from

all three branches are much more equal.

The experiments with randomly initialized branch weights showed the same relative

weight of the branches for the magnitude of the weights learned. However, when the

initial random branch weight was a negative number, it learned the negative value of that

magnitude, and backpropagation took care of flipping the signs of weights as needed

further up the network.

Because the models using Z-Derived Capsules are clearly superior to XY-Derived

Capsules, unless otherwise stated, all analyses throughout the remainder of this work

will restrict attention to these 96 trials, and thus, when the text reads “all 96 trials”, it

should be understood that this refers to all 96 trials using Z-Derived Capsules.

5.3.4 Troublesome Digits

Across all 96 trials there was total agreement on 9,912 out of the 10,000 test samples.

(See Appendix A for the complete set of 88 digits that were predicted correctly by at

least one model and incorrectly by at least one model.) There were only 14 digits that
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Table 5.2: Test Accuracy of the Ensembles

HVC Configuration Accuracy Not Learnable Random Init. Ones Init.

Using XY-Derived

Capsules

99.82% 1,183 2,069 1,292

99.83% 4 21 19

99.84% 0 0 1

99.85% 0 0 0

99.86% 0 0 0

99.87% 0 0 0

Using Z-Derived

Capsules

99.82% 121,731,146 554,104,195 1,279,126,811

99.83% 17,746,467 148,600,238 426,947,909

99.84% 1,587,152 17,319,668 34,635,994

99.85% 89,384 533,318 1,113,217

99.86% 4,029 1,226 9,920

99.87% 184 0 64

Shown here are the number of ensembles that were generated that either matched the

previous state of the art of 99.82% or exceeded it.

Figure 5.2: Final branch weights (after 300 epochs) for all 32 trials of the experiment

using XY-Derived Capsules and for which the branch weights were initialized to one.
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were misclassified more often than not across all 96 trials. This shows that although

the accuracies of the models in the three experiments were quite similar, the different

merge strategies of the three experiments did have a significant effect on classification.

Across all 96 trials, only 5 samples were misclassified in all models. Those samples,

as numbered by the order they appear in the MNIST test dataset (starting from 0) are

1901, 2130, 2597, 3422, and 6576 (see Figure 5.4).

5.3.5 MNIST State of the Art

Table 5.3 presents a comparison of previous state-of-the-art MNIST results for both single

model evaluations and ensembles along with the results achieved in the experiments

detailed in this chapter.

How long a model takes to train is an important factor to consider when evaluating

a neural network. Indeed, it is an enabling factor during initial experimentation as

faster training leads to a greater exploration of the design space. Table 5.4 presents

a comparison of the number of epochs of training used in experiments for the results

achieved in the networks shown in Table 5.3. Across all 96 trials, the design achieved

peak accuracy in an average of 168 epochs, with a minimum peak achieved in 38

epochs and a maximum peak achieved at epoch 296. Since all trials were allowed to

run for up to 300 epochs, that is the number reported in Table 5.4.

5.3.6 Interpreting Capsules’ Dimensions

By adding a reconstruction sub-network to the overall network, it can be trained not just

to classify the input digits, but also to reconstruct them. Then, by following the method

in [2], the effects of perturbing individual dimensions of the second set of capsules in

a pair of HVCs can be examined. The experiments using Z-Derived Capsules had

capsules with 64, 112, and 160 dimensions. When perturbing only one of that many

dimensions the changes to the resulting constructed images are very subtle. So another

set of experiments with no branches, reconstruction, and using multiple 8-dimensional

capsules for each distinct x and y coordinate of the feature maps were performed. By

perturbing one of only eight dimensions the effects are more visible and allows for an

interpretation of the meaning of values in the digits’ capsules (see Table 5.5).

5.3.7 Ablation Experiments

In each of the following set of experiments, a comparison is made between the first 10

trials of the 32 trials for the Ones Init. merge strategy with 10 trials each of the additional

experiments.
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Figure 5.3: Final branch weights (after 300 epochs) for all 32 trials of the experiment

using Z-Derived Capsules and for which the branch weights were initialized to one.

9 4 5 6 7

1901 2130 2597 3422 6576

Figure 5.4: The Most Troublesome Digits

Table 5.3: Current and Previous MNIST State of the Art Results

Paper Year Accuracy

Single Models

Dynamic Routing Between Capsules[2] 2017 99.75%

Lets keep it simple, Using simple architectures to outperform 2016 99.75%

deeper and more complex architectures[160]

Batch-Normalized Maxout Network in Network[161] 2015 99.76%

APAC:Augmented PAttern Classification with

Neural Networks[162] 2015 99.77%

Multi-Column Deep Neural Networks for Image Classification[44] 2012 99.77%

Using the method proposed in this work 2021 99.83%

Ensembles

Regularization of Neural Networks using DropConnect[159] 2013 99.79%

RMDL:Random Multimodel Deep Learning for Classification[164] 2018 99.82%

Using an ensemble of the method proposed in this work 2021 99.87%
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Table 5.4: Epochs of Training

Paper Epochs

Dynamic Routing Between Capsules[2] 1,200

APAC:Augmented PAttern Classification with Neural Networks[162] 15,000

Multi-Column Deep Neural Networks for Image Classification[44] 800

Regularization of Neural Networks using DropConnect[159] 1,200

RMDL:Random Multimodel Deep Learning for Classification[164] 120

The method proposed in this work 300

Neither [160] nor [161] report on how many epochs their designs were trained for.

Table 5.5: Dimensional Perturbations

Rightward tilt

Top curl and height of lower loop

Length of lower stroke

Angle of the top part of one stroke

Sharpness of the angle of the lower two

curves

Width of entire digit

“Hook” in the initial part of the stroke

Width of lower loop

Lean angle

Each row shows the reconstruction when one of the 8 dimensions in a digit’s capsule is

perturbed by intervals of 0.1 in the range [-0.5, 0.5].
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In [2], the authors used a custom loss function they called margin loss combined

with the mean squared error of the difference between the input images and the result

of reconstructing them. This work relied solely on categorical cross-entropy and did not

use a reconstruction loss, as reconstruction adds a considerable number of parameters

to the model (2.1M). Two additional sets of experiments were conducted to understand

the effect of the chosen loss strategy (which used categorical cross-entropy and no

reconstruction). The first used margin loss and reconstruction, and the second used

categorical cross-entropy and reconstruction. There was no statistically significant

difference among the three loss methods (see Table 5.6).

In order to understand the relative importance of using HVCs vs. a fully connected

layer and 3 branches vs. a single branch, a series of experiments that ablated these

components of the architecture was performed. Table 5.7 shows that HVCs are statis-

tically significantly superior to a fully connected layer for both 1 and 3 branches and

shows that 3 branches are superior to 1 branch for both HVCs and a fully connected

layer.

In [2], the authors used translation, by a maximum of 2-pixels, as the only data

augmentation method. In this work, a method for translating by up to the full margin

available in any given direction was used. Then experiments were conducted comparing

the effect of using only 2-pixel translation, only maximum margin translation, and the full

suite of data augmentation methods. Using the full suite of data augmentation methods

was shown to be statistically superior to either of the other two methods. Surprisingly, the

experiments show that the 2-pixel translation method just barely crossed the threshold

of being statistically significantly superior to the full margin translation method (see

Table 5.8).

The result obtained by when using 2-pixel translation as the only data augmentation

strategy allows for a direct comparison to the work of [2]. This work obtained the same

level of accuracy as they did, but using 5.5× fewer parameters, 4× fewer training

epochs, no reconstruction sub-network, and requiring no routing mechanism.

5.3.8 Additional Datasets

In order to better understand the effect of the Z-Derived HVCs and additional branches,

additional sets of paired experiments were performed for several additional datasets

wherein the first set of experiments in a pair used the network design as described

in this chapter and the second set of experiments excluded the Z-Derived HVCs and

additional branches. These second sets of experiments thus use a very small and

typical convolutional neural network with 9 3×3 convolutions and a final fully connected

layer.

For MNIST and Fashion-MNIST the data augmentation strategy discussed in sub-
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section 5.2.3 was used. For CIFAR-10 and CIFAR-100, this data augmentation strategy

is inappropriate, so a very typical strategy of randomly flipping the images horizontally

and applying random adjustments to brightness, contrast, hue, and saturation was

used.

For all four datasets, the model that included Z-Derived HVCs and 3 branches

achieved the higher mean accuracy with statistical significance (see Table 5.9).

The fact that the accuracies for Fashion-MNIST [38], CIFAR-10, and CIFAR-100 [40]

were not competitive with current state of the art for those datasets is not especially

surprising for several reasons. First, the network detailed in this chapter was designed for

optimal accuracy on classification of Hindu-Arabic numerals which are highly structured

and significantly simpler than the types of data in the other three datasets. Second,

due to the significantly simpler nature of MNIST, the network used a small number of

parameters (1.5M). For comparison, models competitive with state of the art for CIFAR-

10 and CIFAR-100 use 10s and even 100s of millions of parameters. Finally, models

competitive with state of the art for CIFAR-10 and CIFAR-100 use additional training

data beyond the canonical set for each, and these experiments used no additional

training data.

5.4 Summary

This chapter proposed using a simple convolutional neural network and established

design principles as a basis for a network architecture. Then it presented a design that

branched out of the series of stacked convolutions at different points to capture different

levels of abstraction and effective receptive fields, and from these branches, rather than

flattening to individual scalar neurons, used Homogeneous Vector Capsules instead.

Additionally investigated were three different methods of merging the output of the

branches back into a single set of logits. Each of the three merge strategies generated

models that could be ensembled to create new state of the art results.

Beyond the network architecture, this chapter proposed a robust and domain specific

data augmentation strategy aimed at simulating a wider variety of renderings of the

digits.

In doing this work, new MNIST state of the art accuracies for both a single model

and an ensemble were established.
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Table 5.6: Comparison of Loss Methods

Loss Method Mean Accuracy Std. Dev.

Categorical Cross-Entropy (no reconstruction) 99.7741% 0.000186455

Categorical Cross-Entropy (with reconstruction) 99.7740% 0.000245764

Margin Loss (with reconstruction) 99.7820% 0.000198997

Table 5.7: Comparison of Network Structures

Network Structure Mean Accuracy Std. Dev.

Using HVCs and 3 branches 99.7741% 0.000186455

Using HVCs and 1 branch 99.7140% 0.000185472

Using a fully connected layer and 3 branches 99.7550% 0.000111803

Using a fully connected layer and 1 branch 99.6870% 0.000141774

Table 5.8: Comparison of Data Augmentation Strategies

Data Augmentation Strategy Mean Accuracy Std. Dev.

Translation (full margin), rotation, width adjustment,

and random erasure

99.7741% 0.000186455

Translation only (max. 2 pixels) (as in [2]) 99.7570% 0.000195192

Translation only (using full margin) 99.7430% 0.000118743
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Table 5.9: Effects of Z-Derived HVCs and Branching on Additional Datasets

MNIST

Network Architecture Max Mean Std. Dev. p-value

Z-Derived HVCs and 3 Branches 99.81% 99.7741% 0.0001864
1.824× 10−7

A Fully Connected Layer with 99.71% 99.6870% 0.0001417

1 Branch

Fashion-MNIST

Network Architecture Max Mean Std. Dev. p-value

Z-Derived HVCs and 3 Branches 93.89% 93.6850% 0.0016391
5.243× 10−6

A Fully Connected Layer with 93.36% 93.0410% 0.0014616

1 Branch

CIFAR-10

Network Architecture Max Mean Std. Dev. p-value

Z-Derived HVCs and 3 Branches 89.23% 88.9290% 0.0015514
0.020898

A Fully Connected Layer with 89.06% 88.7500% 0.0017515

1 Branch

CIFAR-100

Network Architecture Max Mean Std. Dev. p-value

Z-Derived HVCs and 3 Branches 64.15% 63.8260% 0.0026743
6.859× 10−6

A Fully Connected Layer with 62.96% 62.3760% 0.0035046

1 Branch

MNIST results come from the same experiments detailed in Table 5.7 and are repeated

here to facilitate ease of comparison. 10 trials of each unique type of experiment were

conducted in order to establish statistical significance.
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Chapter 6

Case Study: Creating a micro-PCB

Dataset

Prior studies in capsule networks ([1][2][6]) have demonstrated their ability to capture

the equivariant properties of the source material. Printed Circuit Boards (PCBs) are like

the human face in that, for a given PCB, the individual elements (such as capacitors,

resistors, and integrated circuits (ICs)) are not present invariantly relative to one another,

but rather at very specific locations (equivariantly) relative to one another. Compared to

the human face, even on small PCBs, there are a greater number of features with greater

similarity to one another (some modern small surface-mounted capacitors and resistors

are nearly indistinguishable from one another, whereas eyes, noses, and mouths are

quite distinctive from one another). This chapter presents a dataset consisting of high-

resolution images of 13 micro-PCBs captured in various rotations and perspectives

relative to the camera, with each sample labeled for PCB type, rotation category, and

perspective categories. Then presented is the design and results of experimentation

on combinations of rotations and perspectives used during training and the resulting

impact on test accuracy. The results of the experimentation show when and how well

data augmentation techniques are capable of simulating rotations vs. perspectives not

present in the training data. All experiments are performed using CNNs with and without

homogeneous vector capsules (HVCs) and investigate and show the capsules’ ability

to better encode the equivariance of the sub-components of the micro-PCBs.

6.1 Image Acquisition

A total of 8,125 images of the 13 micro-PCBs (see Figure 6.2) were captured for the

dataset using a Sony SLT-A35, 16 Megapixel DSLR Camera, in Advanced Auto mode

The work presented in this chapter has been published in Intelligent Decision Technologies, vol. 238,

pp. 209–219, 2021 [20].
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and using a polarization filter. After cropping the excess area around the micro-PCBs in

each image, the average size of all images is 1949×2126 (width×height). The micro-

PCBs were captured in 25 different positions relative to the camera (see Figure 6.1)

under ideal lighting conditions using (4) 85-Watt CFL Full Spectrum 5500K color bulbs

each producing approximately 5,000 lumens.

In each position, eachmicro-PCBwas captured in 5 different rotations (see Figure 6.3

and Figure 6.4). This creates 125 unique orientations of each micro-PCB relative to

the camera. Each unique orientation was captured 4 times and coded for training and

then another micro-PCB of the same make and model was captured once and coded

for testing. Thus, no micro-PCB that is used in training is the same that is used in

testing. Although the micro-PCBs coded for training are nearly identical to those coded

for testing, very subtle differences exist in some cases (see Figure 6.5). In total, each

micro-PCB in the dataset has 500 training images and 125 test images, creating an

overall train/test split of 6,500/1,625.

The micro-PCBs being placed in 25 different positions in the capture surface results

in the creation of 25 unique perspectives of each micro-PCB relative to the camera.

This work refers to the position directly under the camera as the neutral perspective, the

8 positions directly adjacent to the neutral position as “near” perspectives and the outer

16 positions as “far” perspectives. To fully distinguish the 25 perspectives, when looking

down from the camera’s position to the capture surface, this work refers to those that

are to the left or above the camera as “negative” and those that are to the right or below

the camera as “positive”. In each perspective, each micro-PCB was rotated across 5

rotations manually without attempting to place them in any exact angle. Instead, each

micro-PCB was placed (1) straight, which this work refers to as the neutral rotation,

(2–3) rotated slightly to the left and right, which this work refers to as the left shallow

and right shallow rotations respectively, and (4–5) rotated further to the left and right,

which this work refers to as the left wide and right wide rotations respectively.

The goal of computer vision applications is to learn true representations of the objects

and not merely to memorize pixel intensities and locations. The manual placement of the

micro-PCBs as well as placing them in rotation without measurement helps to facilitate

learning the true representation by introducing small perturbations in the positions of

the micro-PCBs.

After image acquisition, an edge detection algorithm was used to detect the left

and right edges of each image. Using the left edge, the angle of each micro-PCB

relative to an ideal neutral was computed. See Table 6.1 for statistics regarding these

angles. The distance of the left edge to the right edge at the bottom and top of each

image was then measured and between the two distances was created. This ratio

is representative of the true perspective along the y-axis. See Table 6.2 for statistics

regarding these ratios. The presence of various connectors on the top edge of the

70



micro-PCBs made algorithmically determining an accurate top edge of the micro-PCBs

impossible, so ratios to be representative of the true perspective along the x-axis are

presented. However, a reasonable estimate can be calculated using the corresponding

ratio for the y-axis multiplied by the ratio of an image’s width to its height.

6.2 Experimental Design

Chapter 4 detailed experiments using a simple monolithic CNN. In those experiments, a

baselinemodel that used the commonmethod of flattening the final convolution operation

and classifying through a layer of fully connected scalar neurons was compared with

a variety of configurations of homogeneous vector capsules (HVCs). That chapter

demonstrated that classifying through HVCs is superior to classifying through a layer of

fully connected scalar neurons on three different datasets with differing difficulty profiles.

This chapter extends that work to include this micro-PCB dataset. In all experiments

performed, comparisons are made between classifying through a fully connected layer

of scalar neurons to the best performing HVC configuration for the simple monolithic

CNN in chapter 4. In these experiments, the network using a fully connected layer is

labeled M1 and the network using HVCs is labeled M2.

In addition to investigating the impact of HVCs on this dataset, this chapter investi-

gates (a) the ability of the networks to accurately predict novel rotations and perspectives

of the micro-PCBs by excluding training samples with similar rotations and perspectives

and (b) the ability of data augmentation techniques to mimic the excluded training

samples.

Table 6.3 shows rotations and perspectives that were used during training for exper-

iments E1-E9. Testing always included all images from all rotations and perspectives.

For these experiments, data augmentation techniques were not used to simulate the

rotations and perspectives that were excluded during training. Table 6.4 and Table 6.5

show, for experiments A1-A16, both which rotations and perspectives were used during

training, as well as whether data augmentation techniques were used to simulate the

excluded rotations, excluded perspectives, or both. Again, testing always included all

images from all rotations and perspectives.

For all experiments, including those in which data augmentation techniques were

not used to simulate the rotations and perspectives that were excluded, a small amount

of random translation was applied during training in order to encourage translational

invariance. This translation was limited to no more than 5% in either or both of the x

and y directions.
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Figure 6.1: A depiction of the image acquisition environment.

Each micro-PCB were captured in 25 different positions in a 5× 5 grid on the capture

surface such that each position was 6 inches from its horizontal and vertical neighbors.

The camera was positioned 16 inches directly above the central position in the grid.

The light sources were placed 16 inches outside of the grid in the four corners of the

grid and 32 inches above the capture surface, each with diffusion material directly in

front of the bulbs.

Table 6.1: Angles of Rotated Images

Position Min Mean Std. Dev. Max

Left Wide 10.43 21.31 4.50481 32.78602043

Left Shallow 4.23 12.39 3.59036 23.72892221

Neutral 0 2.475 2.04823 12.76094982

Right Shallow 0.16 14.73 4.46218 31.52155152

Right Wide 0.76 24.31 5.27139 42.84832537

Values are in degrees and represent the absolute value of the deviation from a true

neutral rotation.

Table 6.2: Ratios of micro-PCB Width Differences

Position Min Mean Std. Dev. Max

Negative Far 0 12.71% 6.27130 48.18%

Negative Near 0 7.94% 5.05283 29.66%

Neutral 0 4.40% 3.50910 20.90%

Positive Near 0 7.09% 3.59487 26.76%

Positive Far 0 11.45% 4.36561 23.13%

Edge detection algorithms were used to identify the left and right edges of the micro-

PCBs. The values here are absolute values of ratios of the width between the detected

edges at the bottom and top of the image.
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Figure 6.2: The 13 micro-PCBs for which images were acquired.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

(a-c) Arduino Mega 2560 from 3 different manufacturers. (d) Arduino Due. (e) Beagle-

bone Black. (f) Raspberry Pi 1 B+. (g) Raspberry Pi 3 B+. (h) Raspberry Pi A+. (i-j)

Arduino Uno from 2 different manufacturers. (k) Arduino Uno WiFi Shield. (l) Arduino

Uno Camera Shield. (m) Arduino Leonardo.
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Figure 6.3: Examples of one of the manufacturer’s Arduino

Mega 2560 captured from two different extreme perspectives

on the capture surface relative to the camera.

Figure 6.4: Examples of the Arduino Due captured in the neutral perspective position

from the five different rotations each micro-PCB was captured from.

(a) Printing on the capacitors present on

one manufacturer’sArduino Uno that dif-

fers between the micro-PCB coded for

training and the one coded for testing.

(b) Printing on the USB receiver present

on the Beaglebone Black that differs be-

tween the micro-PCB coded for training

and the one coded for testing.

Figure 6.5: Examples of inconsequential printing differences present on the micro-PCBs

that were coded for training vs. those coded for testing.
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Table 6.3: Experimental Design for Experiments Excluding Rotations and Perspectives

Train Rotations Train Perspectives

Experiment
Left Left Right Right Neg. Neg. Pos. Pos.

Wide Shallow Shallow Wide Far Near Near Far

E1 X X X X X X X X
E2 X X X X X X
E3 X X X X

E4 X X X X X X
E5 X X X X
E6 X X

E7 X X X X
E8 X X
E9

Checkmarks indicate training included images for the specified rotations or perspectives.

Table 6.4: Experimental Design for Experiments using Data Augmentation to Simulate

the Excluded Rotations and Perspectives

Train Rotations Train Perspectives

Experiment
Left Left Right Right Neg. Neg. Pos. Pos.

Wide Shallow Shallow Wide Far Near Near Far

A1 X X X X X X
A2 X X X X

A3 X X X X X X
A4 X X X X
A5 X X X X
A6 X X X X
A7 X X
A8 X X
A9 X X

A10 X X X X
A11 X X
A12 X X
A13 X X
A14

A15

A16
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Table 6.5: Experimental Design for Experiments using Data Augmentation to Simulate

the Excluded Rotations and Perspectives

Experiment Augment Excluded Rotations Augment Excluded Perspectives

A1 X
A2 X

A3 X
A4 X X
A5 X
A6 X
A7 X X
A8 X
A9 X

A10 X
A11 X X
A12 X
A13 X
A14 X X
A15 X
A16 X

Checkmarks in the second and third column indicate if data augmentation was used

to simulate the excluded rotations, perspectives, or both. Checkmarks in the following

columns indicate training included images for the specified rotations or perspectives.
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6.3 Experimental Results

6.3.1 Experiments E1-E9

Table 6.6 and Table 6.7 show the results from experiments E1-E9 wherein data aug-

mentation was not used to simulate the excluded rotations and perspectives.

These experiments showed that model M2 (using HVCs) is superior to model M1

(using a fully connected layer) for all 9 experiments, though this was statistically signifi-

cant for only 8 of the 9 experiments. Both models M1 and M2 were better able to cope

with excluded rotations than excluded perspectives. This is not especially surprising

given that rotation is an affine transformation whereas perspective changes are not.

For both M1 and M2, accuracy was especially poor when excluding all non-neutral

perspectives (experiments E3, E6, and E9) to the point that the accuracy for model

M1 for experiments E3 (including all rotation variants) and E9 (including no rotation

variants) was equivalent to that of random guessing. A surprising result is that model M1

for experiment E6 (which included only the near rotation variants) had a mean accuracy

that was approximately twice as accurate as either E3 or E9 (for model M1). One of

the trials for model M1 experiment E6 achieved an accuracy approximately four times

higher than the mean accuracy. Indeed, the standard deviation of the trials for model

M1 experiment E6 was more than an order of magnitude higher than the standard

deviations of either E3 or E9 (for model M1). Most surprising for model M1 was that

the maximum accuracy achieved by one trial of E8 (which included no rotation variants

and only near perspective variants) was 100%. There is not enough data to come to

any firm conclusion regarding this anomaly, but a reasonable hypothesis is that the loss

manifold for model M1 for the training data used in E8 contains many global minima

and that the less structured nature of fully connect layers relative to HVCs allows for

greater exploration of the loss manifold. The fact that E8 was the one experiment for

which model M2 was not shown to be statistically significantly superior to model M1

would seem to support this.

6.3.2 Experiments A1-A16

Table 6.9 and Table 6.10 show the results from experiments A1-A16 wherein data

augmentation was used to simulate the excluded rotations and perspectives.

These experiments showed that model M2 (using HVCs) is superior to model M1

(using a fully connected layer) for 11 out of 16 experiments, though this was statistically

significant for only 8 of the 16 experiments. Model M1 is superior twice with statistical

significance. The lack of statistical significance in 8 out of the 16 experiments is due to

the high variance across trials for the experiments using model M1. A large contributor to

77



Table 6.6: Results of Experiments Excluding Rotations and Perspectives using Model

M1 (Fully Connected)

Experiment Mean Max Std. Dev.

E1 93.28% 96.90% 0.02025

E2 92.30% 92.30% 0

E3 9.78% 11.76% 0.01415

E4 92.30% 92.30% 2.58× 10−8

E5 25.14% 35.10% 0.06826

E6 18.10% 71.67% 0.19831

E7 22.89% 41.01% 0.10565

E8 44.98% 100.00% 0.44777

E9 10.10% 13.05% 0.01831

Table 6.7: Results of Experiments Excluding Rotations and Perspectives using Model

M2 (HVCs)

Experiment Mean Max Std. Dev. p-value

E1 99.45% 100.00% 0.01117 0.00033

E2 98.84% 99.14% 0.00244 6.68× 10−12

E3 39.45% 42.55% 0.02703 2.11× 10−8

E4 98.92% 99.45% 0.00533 3.05× 10−9

E5 89.74% 91.63% 0.02087 3.71× 10−8

E6 34.29% 42.73% 0.05567 0.02304

E7 78.62% 81.77% 0.02368 2.95× 10−6

E8 46.48% 50.37% 0.03487 0.91692

E9 27.61% 36.45% 0.05395 0.00013

In all cases, model M2 achieved a higher mean accuracy. 5 trials of each of experiments

E1-E5, E7, and E9 were conducted. 10 trials of E6 were conducted in order to establish

statistical significance. After 10 trials of experiment E8, the higher mean of accuracy of

model M2 was not shown to be statistically significant.

78



the higher variances is the unusual number of trials using model M1 that achieved 100%

test accuracy. The present theoretical understanding of non-convex optimization beyond

its NP-hardness is limited to a small number of special cases ([165][166][167][168]),

none of which apply to modern CNNs for image classification. As such, only conjecture

based on observation regarding this phenomenon can be offered. This conjecture being

that the loss manifold of the test data has an unusually large number of local minima

near the global minimum, and further that using an adaptive gradient descent method

along with a fully connected layer for classification allows training to proceed in a highly

exploratory manner (as opposed to an exploitative manner). Of the experiments that

had trials which achieved 100% test accuracy with model M1, none of them included

the far perspectives in their training and only 2 out of the 6 included even the near

perspectives (A11 and A12), neither of which included any rotations. 3 out of the 6

(A2, A7, and A11) fully simulated the excluded rotations and perspectives with data

augmentation. One experiment (A12) had a trial that achieved 100% test accuracy with

model M1 without attempting to simulate the excluded far perspectives. One experiment

(A8) had a trial that achieved 100% test accuracy with model M1 without attempting to

simulate either the excluded far or near perspectives. And one experiment (A16) had a

trial that achieved 100% test accuracy with model M1 without attempting to simulate

either the excluded wide or shallow rotations.

6.3.3 Comparing Experiments E1-E9 with Experiments A1-A16

Table 6.11 shows a comparison of mean accuracies achieved by the trials of experiments

E1-E9 with those of experiments A1-A16, grouping the experiments together by the

rotations and perspectives that were excluded during training. Not surprisingly, in all

cases, the experiments that included data augmentation to replace some or all of the

excluded samples achieved higher mean accuracy. In 9 out of the 16 comparisons,

the superiority was statistically significant. Of those that did not produce a statistically

significant difference, (1) experiments E2 andA1 each excluded only the far perspectives,

(2) experiments E4 and A3 each excluded only the wide rotations, (3) experiments

E8, A12, and A13 excluded all rotations and the far perspectives, and (4) experiments

E9, A14, A15, and A16 excluded all rotations and all perspectives. In 6 out of 7

these comparisons, the data augmentation was attempting to synthesize excluded

perspectives. As perspective warp is a non-affine transformation, it makes sense that

synthesizing excluded perspectives with it meets with limited (but not no) success.
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Table 6.8: Comparing Results with and without Augmentation of Excluded Rotations

and Perspectives

Model Experiment Mean

Accuracy

Experiment Mean

Accuracy

p-value

M2 E2 98.84% A1 99.27% 0.05656

M2 E3 39.45% A2 48.90% 0.02243

M2 E4 98.92% A3 99.40% 0.11293

M2 E5 89.74% A4 96.37% 0.00016

M2 E5 89.74% A5 94.52% 0.00727

M2 E5 89.74% A6 92.51% 0.04678

M1 E6 18.10% A7 83.44% 2.46× 10−5

M1 E6 18.10% A8 58.13% 0.01604

M2 E6 34.29% A9 45.04% 0.00358

M2 E7 78.62% A10 93.85% 1.05× 10−6

M1 E8 44.98% A11 98.03% 0.02226

M1 E8 44.98% A12 72.77% 0.26219

M2 E8 46.48% A13 49.68% 0.32177

M2 E9 27.61% A14 35.07% 0.31777

M2 E9 27.61% A15 34.29% 0.09152

M1 E9 10.10% A16 40.46% 0.05605

Horizontal lines in this table are used to group together experiments E1-E9 with their

counterpart experiments A1-A16 based on the samples that were used during training.

For example, E5 and A4-A6 were all trained on the subset of training samples that

excluded the wide rotations and the far perspectives.
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Table 6.9: Results of Experiments using Data Augmentation to Simulate the Excluded

Rotations and Perspectives using Model M1 (Fully Connected)

Experiment Mean Max Std. Dev.

A1 92.30% 92.30% 0

A2 35.73% 100.00% 0.39620

A3 90.76% 92.30% 3.44× 10−2

A4 22.73% 26.17% 0.03215

A5 23.82% 31.40% 0.05243

A6 20.87% 29.62% 0.05037

A7 83.44% 100.00% 0.15976

A8 58.13% 100.00% 0.37197

A9 10.00% 11.45% 0.00899

A10 24.14% 29.43% 0.04385

A11 98.03% 100.00% 0.04406

A12 72.77% 100.00% 0.39731

A13 23.72% 51.54% 0.20104

A14 21.01% 61.82% 0.22826

A15 18.88% 53.63% 0.19435

A16 40.46% 100.00% 0.42248

Table 6.10: Results of Experiments using Data Augmentation to Simulate the Excluded

Rotations and Perspectives using Model M2 (HVCs)

Experiment Mean Max Std. Dev. p-value

A1 99.27% 99.69% 0.00357 8.44× 10−11

A2 48.90% 58.56% 0.06991 0.48483

A3 99.40% 99.82% 0.00284 0.00052

A4 96.37% 97.48% 0.00785 2.95× 10−11

A5 94.52% 95.75% 0.02143 2.93× 10−9

A6 92.51% 93.97% 0.01614 1.53× 10−9

A7 36.44% 44.58% 0.06076 0.00027

A8 40.87% 44.95% 0.03404 0.33187

A9 45.04% 53.51% 0.05463 6.05× 10−7

A10 93.85% 94.70% 0.01037 5.33× 10−10

A11 49.62% 62.87% 0.10311 1.10× 10−5

A12 58.00% 69.77% 0.08962 0.44100

A13 49.68% 57.27% 0.08771 0.02941

A14 35.07% 39.96% 0.05824 0.21863

A15 34.29% 41.56% 0.05613 0.12698

A16 36.11% 47.48% 0.06581 0.82585

In 11 out of 16 experiments, model M2 achieved a higher mean accuracy. 5 trials of

all experiments were conducted. In all but 4 experiments, there was greater variance

across trials with model M1.
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6.3.4 Experiments Including All Rotations and Perspectives Dur-

ing Training and Using Data Augmentation to Synthesize

Variations of Those Rotations and Perspectives

Table 6.11 shows the results of a final set of experiments wherein all training samples

were included, and for each training sample, a range of rotation and perspective warp

augmentations were applied. Each training sample was subjected to a random rotation

drawn from a normal distribution with a zero mean and the standard deviation for its

rotational label (see Table 6.1). For example, if the training sample was labeled as

left wide, it was rotated by a random amount chosen from a normal distribution with a

mean of 0 degrees and a standard deviation of 4.50481 degrees. Perspective warp

transformations were applied using the same procedure with standard deviations for its

perspective label (see Table 6.2).

As is shown in Table 6.11, model M1, using a fully connected layer, achieved a

mean accuracy of 94.52%, surpassing 15 out of 16 of the experiments detailed in

Table 6.9 (for model M1). Experiment A11 performed slightly better, but it should be

noted that that experiment also used data augmentation for both rotation and perspective

warp, with the difference being that experiment A11 excluded all of the rotated training

samples, and the far perspectives. Model M2, using HVCs, achieved a mean accuracy

of 99.06%, surpassing 14 out of 16 of the experiments detailed in Table 6.10 (for model

M2). Experiment A1 and A3 performed slightly better, but once again, it should be

noted that those experiments also used data augmentation that covered the rotations

and perspectives of the training samples that were excluded. Model M2’s maximum

accuracy was 100% surpassing the maximum accuracy of all experiments (for model

M2) A1-A11.

6.4 Regarding Synthesizing Alternate Perspectives

The experiments detailed in this chapter demonstrate that using data augmentation to

supply excluded and/or greater variations of rotations works better than data augmen-

tation to supply excluded and/or greater variations of perspective. Indeed, rotation is

generally considered a staple data augmentation technique irrespective of the subject

matter. As mentioned earlier, this is because rotation is an affine transformation and as

such, rotating the image produces the same result as rotating the capturing apparatus

would have. Perspective warp of captured 3-D subject matter is not affine. Moving

the capturing apparatus to a different perspective relative to 3-D subject matter will

produce larger or smaller patches of components that extend into the third dimension

(see Figure 6.6). While the simulation of perspective differences did improve upon
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Table 6.11: Results of Experiments with no Exclusions and Using Data Augmentation

Model Mean Max Std. Dev.

M1 (Fully Connected) 94.52% 96.90% 0.02009

M2 (Capsules) 99.06% 100.00% 0.01862

10 trials were conducted for each model. M2, using homogeneous vector capsules, is

shown to be superior with a p-value of 5.52× 10−5.

Figure 6.6: A Comparison of Actual vs. Simulated Perspective

The image on the left shows a micro-PCB actually captured

in a negative far position. The image to the right shows the

same micro-PCB captured from a neutral position and then

subjected to an (exaggerated) perspective warp. The anno-

tating boxes show important differences between an image

actually captured from a perspective position vs. simulating a

perspective.
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accuracy as compared to when not using such, the results of the experiments detailed in

this chapter show that, when possible, capturing a variety of perspectives during training

is the best avenue for generating higher accuracy during subsequent evaluations that

could include analogous perspective varieties.

6.5 Summary

The results of the experiments performed and elucidated in this chapter show that (1)

classification of these micro-PCBs from novel rotations and perspectives is possible,

but, in terms of perspectives, better accuracy is achieved when networks have been

trained on representative examples of the perspectives that will be evaluated. (2) That,

even though perspective warp is non-affine, using it as a data augmentation technique

in the absence of training samples from actually different perspectives is still effective

and improves accuracy. (3) And that using homogeneous vector capsules (HVCs) is

superior to using fully connected layers in convolutional neural networks, especially

when the subject matter has many sub-components that vary equivariantly (as is the

case with micro-PCBs), and when using the full training dataset and applying rotational

and perspective warp data augmentation the mean accuracy of the network using HVCs

is 4.8% more accurate then when using a fully connected layer for classification.

The experiments in this chapter have been limited to using the same simple mono-

lithic CNN as presented in chapter 4, with and without HVCs. The focus of these

experiments was on the excluding rotations, excluding perspectives, and which data

augmentation methods could compensate for these exclusions. Given the novel nature

of this dataset, important future work should include all of these factors, but additionally

as applied to a variety of neural network architectures, such as Inception v3.
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Chapter 7

Towards an Analytical Definition of

Sufficient Data

Chapter 3 demonstrated the trend towards massively increasing the training data

used in neural network for image classification research. As the amount of additional

training data has continued to grow, the accuracy being achieved on the Imagenet-

1K [89] evaluation benchmark seems to be approaching a horizontal asymptote. This

is supported by [95], wherein the authors observed that for more than two orders of

magnitude, compute budget and accuracy followed a power-law, and at the high end

of the compute budget, the largest models were not tending toward perfect accuracy,

suggesting that a model with infinite capacity would achieve less than perfect accuracy.

Knowing that perfect accuracy is unachievable, at least in the case of the Imagenet-1K

benchmark, motivates a study of the sufficiency of data required to achieve a desired

accuracy. In addition, as was noted in the conclusion of chapter 3, achieving state-of-the-

art accuracy, again in the case of the Imagenet-1K benchmark, is prohibitively expensive

in terms of the training resources required as well as requiring a model comprised of

2.4B parameters, which is excessively large for on-device or real-time inferences on

presently available consumer hardware. All this is to say that simply aiming for the

highest possible accuracy should not precede the definition of the problem the model

will be applied to. Once accuracy and performance requirements are defined, then

there exists an unknown amount of training data required to meet those requirements.

In this chapter, a step is made towards being able to identify the data sufficient to meet

stated requirements a priori to experimentation.

The experimental results of the previous chapter demonstrated that for the micro-

PCB dataset, a portion of the data could be excluded from training and models could

achieve comparable accuracy when using data augmentation to simulate the particular

attributes of the excluded data, particularly when those models used HVCs. The micro-

The work presented in this chapter has been submitted for publication.
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PCB dataset consists of images coded for rotation and perspective and that allowed for

data augmentation techniques to simulate known excluded rotations and perspectives.

The next step in this line of research was to investigate datasets that consist of

images that are not coded in any way beyond their class membership. When no coding

is available, the goal then becomes to extract metrics from the image data that can be

acted upon.

Since the primary goal in classification is to distinguish between classes, finding

metrics that are indicative of those classes, or more specifically, indicative of those

classes relative to the other classes, is a corollary goal. The main hypothesis being

tested in this chapter is that there exists a distance metric that can be leveraged during

the training of a CNN in order to improve or at least maintain testing accuracy by using

that metric to exclude a portion of the training data.

An obvious candidate for a distance metric is Euclidian distance from the centroid

for the class. An obvious problem with Euclidian distance is the curse of dimensionality

that results in near uniformity of distance from the centroid among samples when

measuring distance in a large number of dimensions. For example, take a small 3-class

dataset, consisting of 10 images in each of the classes cat, dog, and truck derived

from a Google Image search for each of the 3 terms “cat”, “dog” and “truck” as shown

in Figure 7.1. These images are 180 pixels square and made up of 3 color channels.

Thus, the dataset is 97,200-dimensional. Fortunately, there exists a class of non-linear

dimensionality reduction techniques that can learn to represent high-dimensional data

in lower dimensions. These include t-distributed stochastic neighbor embedding (t-

SNE) [169] and Uniform Manifold Approximation and Projection (UMAP) [87]. Due to

its relative speed (as compared to t-SNE) and strong theoretical foundations, UMAP is

quickly becoming one of the most popular non-linear general dimensionality reduction

algorithms in use. Figure 7.2 shows the result of using UMAP to reduce the dog,

cat, truck dataset to 2 and 3 dimensions. In this low-dimensional space the Euclidian

distances for each sample from each class’s centroid take on meaningful differences

among themselves.

Figure 7.3 shows 2 and 3-dimensional UMAP reductions of the micro-PCB training

data. When viewed as a collection of small epsilon balls around each point it is difficult

to observe much useful structure. Compare these with Figure 7.4, which shows a

3-dimensional reduction of the micro-PCB training data produced with UMAP after

removing the outliers from each class (those points more than one standard deviation

away from their class’s centroid) and enclosing the points in a convex hull. Using

this visualization method, it is possible to observe interesting structure that was is not

apparent in the visualizations in Figure 7.3. In the micro-PCB dataset, there are three

classes of micro-PCBs that are of the same model (Arduino Mega 2560) but produced

by different manufacturers. The boards’ components and layouts are the same, differing
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Figure 7.1: A Small 3-Class Dataset Consisting of Cats, Dogs, and Trucks

Figure 7.2: Visualization of 2-Dimensional and 3-Dimensional Reductions of the Cat,

Dog, Truck Dataset. The circles (in 2D) and spheres (in 3D) represent the classes’

centroids.
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almost entirely by the colors of the substrates and the colors of plastics used for the

pins. The reduction resulted in these classes being tightly clustered together and mostly

separate from the remaining classes. A similar tight clustering is exhibited with the two

Arduino Unos created by different manufacturers, the two different generations of the

Raspberry Pi B+, and the two different Arduino shields.

Figure 7.3: Visualization of 2-Dimensional and 3-Dimensional Reductions of the micro-

PCB Dataset

Figure 7.4: Visualization of 3-Dimensional Reduction of the micro-PCB Dataset (Ex-

cluding Outliers)

The ability for this 3-dimensional UMAP reduction to effectively separate the classes

such that important semantic information of the micro-PCB dataset emerges in the

locations of the samples in the reduced space serves as evidence that a distance metric

can indeed be leveraged.
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The experiments detailed in this chapter use the dimensional reduction of each

sample as produced by UMAP to determine what samples to exclude during training.

These experiments are performed on standard benchmark datasets in order to make

the results comparable to other research. It should be noted that with all experiments

detailed in this chapter, all exclusionary methods were applied only to the training set of

each dataset and only during training. All testing for all experiments used the entire test

set of each dataset.

7.1 Network Architecture and Training

For all experiments, regardless of the dataset used:

1. The network used for training consisted of a single set of stacked 3×3 convolutions,

wherein the first convolutional operation produced 32 feature maps.

2. All subsequent convolutional operations in the network produced an additional 16

feature maps.

3. After all convolutional layers in the network a set of Unbroken Z-Derived HVCs

were used to produce the final classification.

4. Optimization was performed with the Adam optimizer with an initial learning rate

of 0.001 that was exponentially decayed every epoch by 0.98.

5. Training proceeded for 300 epochs.

However, because different datasets are formed from images with different sizes,

differing number of color channels, and differing complexity of the features present,

some slight differences were required depending on the dataset being trained on.

7.1.1 Training on MNIST, Fashion-MNIST, and EMNIST-Digits

These datasets are composed of single color-channel images comprised of the simplest

features relative to the other datasets. They all also use the smallest initial image size

of 28×28 pixels. Thus, the network used on these datasets consisted of the fewest

convolutional layers (9) and thus the fewest final set of feature maps (160). No padding

was used during the convolutional operations, so the final set of feature maps were

10×10. When training this network, a batch size of 120 was used. Data augmentation

used during the training for these datasets was uniform and the same strategy as

described in chapter 5.
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7.1.2 Training on CIFAR-10 and CIFAR-100

These datasets are composed of 3 color-channel images comprised of more complex

features than MNIST, Fashion-MNIST, and EMNIST-Digits [170]. Additionally, the

images are slightly larger at 32×32 pixels. By using a similar network as with MNIST,

Fashion-MNIST, and EMNIST-Digits, but with 2 more convolutional layers and thus

192 feature maps coming out of the final layer, the final set of feature maps were also

10×10. As in the case with MNIST, Fashion-MNIST, and EMNIST-Digits, when training

this network, a batch size of 120 was used. Data augmentation used during the training

for these datasets was uniform and the same strategy as used for the experiments in

chapter 4.

7.1.3 Training on Imagenette

This dataset is composed of 3 color-channel images that are substantially larger than

CIFAR-10 and CIFAR-100 with more complex features. The raw images vary in size

but were all resized to 299×299. To cope with the larger image size, 15 convolutional

layers were used with the first convolutional layer having a stride of 2 and, given the

addition of 16 feature maps per convolutional operation, this resulted in the presence of

256 feature maps after the final convolution. Max pooling was applied after the fifth and

tenth convolutional operations. Using this configuration, the final set of feature maps

were 10×10, consistent with all other datasets experimented on. Due to the larger

number of parameters required for this network, a batch size of 32 was used, as was

dictated by the constraints of available hardware. Data augmentation used during the

training for this dataset was the same strategy as used for the experiments in chapter 4.

7.2 Baseline Results

All subsequent experiments detailed in this chapter involve excluding some subset of

the training data during training. In order to understand the impact of those exclusions, a

set of baseline experiments was conducted for which all training samples were included

for all of the investigated datasets. The results of those experiments are presented in

Table 7.1. For these experiments and all subsequent experiments, five trials of each

were conducted.
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Table 7.1: Baseline Results Wherein No Training Samples Were Excluded

Dataset Accuracy Standard Deviation

MNIST 99.716% 0.000162481

Fashion-MNIST 93.404% 0.001380724

CIFAR-10 89.146% 0.001518684

CIFAR-100 61.896% 0.001786169

Imagenette 92.390% 0.002333238

7.3 Data Reduction Strategies

7.3.1 Experimental Design

For the first set of data reduction experiments detailed in this chapter, the high-

dimensional image data was reduced using UMAP to 3 dimensions. Then, three data

reduction strategies for selecting the data to exclude during training were devised. For

the first two data reduction strategies, the 3-dimensional centroid for each class was

calculated. The Lateral Exclusion data reduction strategy excluded samples furthest

from the centroid (compare Figure 7.5 to Figure 7.6). The Central Exclusion data

reduction strategy excluded samples nearest to the centroid (compare Figure 7.5 to

Figure 7.7). The Random Exclusion data reduction strategy excluded samples randomly

(compare Figure 7.5 to Figure 7.8). Then for each data reduction strategy experiments

were conducted excluding 1%, 2%, 5%, 10%, 25%, and 50% of the training data. These

experiments were conducted on CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, and

Imagenette.

7.3.2 Experimental Results

Table 7.2 shows the results of the experiments for the MNIST dataset. Using the

Random Exclusion strategy was inferior in all cases. Using the Lateral Exclusion

strategy produced a mean accuracy of 0.002% greater than when using the Central

Exclusion strategy when 2% of the data was excluded, which is not a statistically

significant difference. For all other levels of exclusion, using the Central Exclusion

strategy was statically significantly superior. When excluding 5% of the training data

using theCentral Exclusion strategy, the accuracy achieved was higher than the baseline

that included all samples, though not enough trials were conducted to confirm this as

statistically significant. When excluding 10%, the accuracy was identical to that of the

baseline. When using the Central Exclusion strategy, only when excluding 25% or 50%

was the accuracy statistically significantly lower than the baseline.

Table 7.3 shows the results of the experiments for the Fashion-MNIST dataset. In all
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Figure 7.5: Visualization of 2-Dimensional

Data Generated for 3 Relatively Well Sep-

arated Classes (All Points)

Figure 7.6: Visualization of 2-Dimensional

Data Generated for 3 Relatively Well Sep-

arated Classes (Lateral Exclusion Visual-

ized)

Figure 7.7: Visualization of 2-Dimensional

Data Generated for 3 Relatively Well Sep-

arated Classes (Central Exclusion Visual-

ized)

Figure 7.8: Visualization of 2-Dimensional

Data Generated for 3 Relatively Well Sep-

arated Classes (Random Exclusion Visual-

ized)
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cases, the Central Exclusion strategy proved statistically significantly superior to either

of the other two strategies. The Lateral Exclusion strategy was superior to the Random

Exclusion strategy in all but the case of 2% exclusion. However, this superiority was

only shown to be statistically significant in the case of the 25% exclusion. There was no

statistically significant difference from the baseline when excluding either 1% or 2% of

the training data.

The experiments performed on CIFAR-10 (see Table 7.4) demonstrated the greatest

amount of ambiguity among all datasets. All three exclusion strategies outperformed the

baseline for exclusions of both 1% and 2%, although not enough trials were conducted

to show this to be statistically significant. The Lateral Exclusion strategy achieved the

highest accuracy when excluding 1%, the Random Exclusion strategy achieved the

highest accuracy when excluding 10%, and the Central Exclusion strategy achieved

the highest accuracy in all other cases. The statistically significant differences occurred

when excluding 5%, 25%, and 50%. When excluding 5% the Central Exclusion strategy

was statistically significantly superior to both of the other two strategies. When excluding

25% and 50%, the Central Exclusion strategy was superior to both of the other two

strategies, but only statistically significantly superior to the Lateral Exclusion strategy.

Table 7.5 shows the results of the experiments for the CIFAR-100 dataset. In all

cases, the accuracy when using the Central Exclusion was superior to the other two

strategies. The superiority was shown to be statistically significant in the cases of

the 10%, 25%, and 50% exclusion experiments. There was no statistically significant

difference from the baseline when excluding either 1% or 2% of the training data.

Table 7.6 shows the results of the experiments for the Imagenette dataset. The

Random Exclusion strategy achieved a statistically insignificant superior accuracy

relative to the other two methods for the 1% and 2% exclusion experiments. For the

remainder of the experiments, theCentral Exclusion strategy achieved a higher accuracy

than the other two methods, although this was only statistically significant for 3 out of 4

such experiments (5%, 25%, and 50% exclusion). There was no statistically significant

difference from the baseline when excluding 1% the training data.

After examining these 5 datasets, it can safely be concluded that, in general, the

Central Exclusion strategy is the superior strategy among the three. In no experiments

did either of the other two strategies show a statistically significant superiority to it.

Excluding data resulted in equivalent or superior accuracy over the baseline for experi-

ments using 3 of the 5 datasets, including CIFAR-10 when excluding 1%, 2%, or 5%,

CIFAR-100 when excluding 1%, and MNIST when excluding 5% or 10%. However, due

to the high variance across trials, this was not able to be demonstrated as statistically

significant. Similarly, no experiment for any dataset when excluding 1% or 2% was

shown to be statistically significantly inferior to the baseline.
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Table 7.2: Data Reduction Strategy Experimental Results — MNIST

Lateral Exclusion Central Exclusion Random Exclusion

Excl. % Acc. Std. Dev. Acc. Std. Dev. Acc. Std. Dev.

Baseline Accuracy — 99.716%

1% 99.702% 1.47× 10−4 99.714% 1.74× 10−4 99.694% 4.90× 10−5

2% 99.714% 2.42× 10−4 99.712% 1.17× 10−4 99.696% 2.33× 10−4

5% 99.676% 1.62× 10−4 99.720% 1.67× 10−4 99.658% 1.83× 10−4

10% 99.658% 1.17× 10−4 99.716% 1.20× 10−4 99.638% 2.32× 10−4

25% 99.546% 2.58× 10−4 99.698% 2.14× 10−4 99.526% 2.33× 10−4

50% 99.190% 3.03× 10−4 99.686% 2.65× 10−4 99.236% 2.58× 10−4

Table 7.3: Data Reduction Strategy Experimental Results — Fashion-MNIST

Lateral Exclusion Central Exclusion Random Exclusion

Excl. % Acc. Std. Dev. Acc. Std. Dev. Acc. Std. Dev.

Baseline Accuracy — 93.404%

1% 93.114% 7.89× 10−4 93.346% 8.71× 10−4 93.032% 1.33× 10−3

2% 92.896% 6.56× 10−4 93.324% 1.75× 10−3 92.940% 1.66× 10−3

5% 92.096% 1.33× 10−3 93.198% 5.49× 10−4 92.084% 7.42× 10−4

10% 91.088% 1.34× 10−3 93.184% 6.47× 10−4 91.032% 4.71× 10−4

25% 89.096% 9.00× 10−4 92.162% 9.45× 10−4 88.932% 5.38× 10−4

50% 85.690% 4.24× 10−4 88.692% 2.31× 10−3 85.558% 1.71× 10−3

Table 7.4: Data Reduction Strategy Experimental Results — CIFAR-10

Lateral Exclusion Central Exclusion Random Exclusion

Excl. % Acc. Std. Dev. Acc. Std. Dev. Acc. Std. Dev.

Baseline Accuracy — 89.146%

1% 89.332% 2.83× 10−3 89.280% 1.86× 10−3 89.318% 1.18× 10−3

2% 89.148% 8.93× 10−4 89.206% 1.21× 10−3 89.148% 1.04× 10−3

5% 89.054% 1.45× 10−3 89.224% 1.30× 10−3 89.086% 8.09× 10−4

10% 88.708% 6.97× 10−4 88.620% 1.87× 10−3 88.838% 1.94× 10−3

25% 87.098% 1.44× 10−3 87.930% 4.00× 10−4 87.878% 4.29× 10−3

50% 84.044% 1.32× 10−3 85.900% 1.13× 10−3 85.706% 7.40× 10−3
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Table 7.5: Data Reduction Strategy Experimental Results — CIFAR-100

Lateral Exclusion Central Exclusion Random Exclusion

Excl. % Acc. Std. Dev. Acc. Std. Dev. Acc. Std. Dev.

Baseline Accuracy — 61.896%

1% 61.926% 2.37× 10−3 61.940% 3.72× 10−3 61.888% 4.26× 10−3

2% 61.766% 2.63× 10−3 61.866% 1.90× 10−3 61.594% 2.44× 10−3

5% 61.262% 3.26× 10−3 61.414% 2.07× 10−3 61.102% 3.81× 10−3

10% 60.410% 2.72× 10−3 61.044% 2.53× 10−3 60.012% 2.41× 10−3

25% 57.440% 2.25× 10−3 59.158% 2.01× 10−3 57.206% 4.07× 10−3

50% 50.754% 2.48× 10−3 53.868% 4.45× 10−3 51.334% 3.94× 10−3

Table 7.6: Data Reduction Strategy Experimental Results — Imagenette

Lateral Exclusion Central Exclusion Random Exclusion

Excl. % Acc. Std. Dev. Acc. Std. Dev. Acc. Std. Dev.

Baseline Accuracy — 92.390%

1% 92.288% 1.46× 10−3 92.300% 3.71× 10−3 92.316% 2.34× 10−3

2% 92.022% 2.14× 10−3 92.196% 2.28× 10−3 92.342% 2.19× 10−3

5% 91.896% 6.77× 10−4 92.214% 1.57× 10−3 91.994% 8.36× 10−4

10% 91.544% 2.91× 10−3 91.844% 2.91× 10−3 91.680% 1.94× 10−3

25% 90.422% 2.20× 10−3 90.998% 2.35× 10−3 90.342% 1.78× 10−3

50% 87.998% 3.55× 10−3 88.174% 2.56× 10−3 87.914% 5.66× 10−3
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7.4 The Cardinality of the Dimensionality of the Re-

duced Space

7.4.1 Experimental Design

To test the hypothesis that 3-dimensions was the appropriate choice for the dimensional

reduction, an additional set of experiments using the Central Exclusion data reduction

method, and excluding 1%, 2%, 5%, 10%, 25%, and 50% of the training data were

conducted. This set of experiments used 2, 5, and 10 dimensional reductions and were

conducted on CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, and Imagenette.

7.4.2 Experimental Results

Executing 5 trials of each of 6 different amounts of excluded data results in 30 total

trials per dataset and number of dimensions being used to determine the exclusion.

For each of the 2, 5, and 10 dimensional reductions the mean accuracy achieved

across all 30 trials was compared to the 30 trials of the experiments that used a

3-dimensional reduction. Table 7.7 shows the results of those comparisons. The

comparisons showed no statistically significant difference between any paired sets of

30 trials. 5 out of 15 experiments showed a statistically insignificant superiority when

using a 3-dimensional reduction, including all 3 comparisons of MNIST and 2 out of 3

comparisons of Imagenette. Although, not reaching a reasonable threshold for statistical

significance (p < 0.05), the MNIST comparisons had the lowest p-values. At first, this

may seem surprising, but upon reflection, it seems reasonable that points UMAP places

far from a class’s centroid in 3 dimensions would also be likely to be placed far from the

class’s centroid in 2, 5, or 10 dimensions as well.

7.5 Distributions of the Dimensional Reductions

UMAP generates numeric values for each dimension of the reduction performed. Vi-

sualizations of 2-dimensional and 3-dimensional reductions are usually generated by

drawing these points as small epsilon balls around the positions of those numeric

values. While these visualizations can provide some sense of where the classes’ data

are located in space, drawing convex hulls that surround each class’s points provides a

sharper distinction between the boundaries of the classes in the space. Figure 7.9 and

Figure 7.10 show the result of drawing these hulls around the 3-dimensional reductions

of the full MNIST and Imagenette training data, respectively. These visualizations

make it clear that when including all of the training data, there is very little distinction of
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Table 7.7: Comparison of Mean Accuracies for Exclusions Based on Differing Dimen-

sional Reductions

Dataset Dimensions Accuracy 3D Accuracy p-value

MNIST 2 99.7000% 99.7077% 0.111615712

MNIST 5 99.7027% 99.7077% 0.232822313

MNIST 10 99.6977% 99.7077% 0.083150845

Fashion-MNIST 2 92.3803% 92.3177% 0.44224238

Fashion-MNIST 5 92.4217% 92.3177% 0.405938742

Fashion-MNIST 10 92.3490% 92.3177% 0.471922235

CIFAR-10 2 88.3677% 88.3600% 0.490392657

CIFAR-10 5 88.3710% 88.3600% 0.486238005

CIFAR-10 10 88.3747% 88.3600% 0.481346744

CIFAR-100 2 59.9347% 59.8817% 0.471617385

CIFAR-100 5 60.0760% 59.8817% 0.396706608

CIFAR-100 10 59.9790% 59.8817% 0.448318135

Imagenette 2 91.3237% 91.2877% 0.463151304

Imagenette 5 91.2153% 91.2877% 0.427306126

Imagenette 10 91.2417% 91.2877% 0.453380991

boundaries in the space.

However, when excluding some of the data furthest from each class’s centroid, the

classes’ hulls start to separate, in some cases, partially and in some cases entirely. The

amount of data that must be elided to achieve this is referred to in this dissertation as

Dataset Severability.

Definition 7.1 (Dataset Severability). Dataset Severability is a qualitative judgment

regarding the number of outliers that must be removed from each class in an m-

dimensional reduction of the dataset so that structure and/or clustering is able to be

observed.

Figure 7.11 and Figure 7.12 show well severed classes for visualizations of the

MNIST and EMNIST-Digits training data, respectively. In each case, the data within

three standard deviations of all dimensions was included, and data outside of these

bounds was omitted. This means that high severability is achieved by excluding ≈
0.27% of the outliers for these datasets. Despite consisting of images with the same size

and number of color channels (monochromatic) as MNIST and EMNIST-Digits, Fashion-

MNIST shows a dissimilar level of severability until all but one standard deviation from

the centroid has been excluded (excluding ≈ 31.73%).

Especially interesting in the case of the Fashion-MNIST reduction is that there is a

readily identifiable semantic difference between each of the four completely severed

sets of overlapping hulls. The set of “overlapping” hulls consisting of the single class
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“trouser” contains the only class in the dataset that is legwear. The set of “overlapping”

hulls consisting of the single class “bag” contains the only class in the dataset that is

not a type of clothing that covers any part of the body. The set of overlapping hulls

consisting of the classes “sneaker”, “sandal”, and “ankle boot” contains the only classes

in the dataset that are footwear. Finally, the set of overlapping hulls consisting of the

classes “pullover”, “coat”, “shirt”, “dress”, and “t-shirt” contains the only classes in the

dataset that primarily cover the torso.

Imagenette (Figure 7.14), CIFAR-10 (Figure 7.15), and CIFAR-100 (Figure 7.16)

require all but those samples within half a standard deviation of each class’s centroid to

be elided before structure emerges (excluding ≈ 61.71%). Of these three, the reduction

of CIFAR-10 displays the most interesting semantic relationships among the classes’

hull’s locations in space. The classes on the left of the visualization in Figure 7.15 are

all man-made (specifically vehicles) whereas the classes on the right are all lifeforms.

Especially interesting among the lifeforms is that all of the mammals are grouped

together with the one amphibian (frog) on the outer edge of the group.

In Figure 7.17 through Figure 7.36 the values of each of the 3 dimensions of the

reductions for each individual class of the training data for MNIST and Imagenette are

plotted. The first thing that can be learned from looking at the MNIST plots is that the

reduction for each class produces values significantly different than the others and

further, the values in each dimension of each class are tightly grouped in the number

line, with the noticeable exception of the third dimension of the class that represents

the digit 1. It is worth noting that the stylization of the Hindu-Arabic numeral ’1’ contains

most of its information in 2-dimensions (accounting for translation) thus providing an

explanation for the larger variance in the third dimension. The plots of the Imagenette

classes, on the other hand, are much more similar to one another and display greater

variance in each of the 3 dimensions.

7.6 Summary

The experiments performed in this chapter show that, for the datasets examined, certain

training samples are more informative of class membership than others. These samples

can be identified a priori to training by analyzing their position in reduced dimensional

space relative to the classes’ centroids. Specifically, it was demonstrated that samples

nearer the classes’ centroids are less informative than those that are furthest from it.

For the five datasets investigated, it was shown that there was no statistically significant

difference from the baseline when excluding up to 2% of the data nearest to each class’s

centroid. For CIFAR-100, superior accuracy was achieved when excluding 1% of the

data nearest to each class’s centroid. For CIFAR-10, superior accuracy was achieved
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when excluding 5% of the data nearest to each class’s centroid. And for the MNIST

dataset, identical accuracy to the baseline was achieved when excluding 10% of the

data nearest to each class’s centroid.

Additionally, Dataset Severability was defined in this chapter to be a qualitative, yet

quantifiable, judgement regarding the separation of classes in a reduced dimensional

space. High severability was demonstrated for MNIST and Fashion-MNIST, whereas

low severability was demonstrated for CIFAR-10, CIFAR-100, and Imagenette. Those

datasets that demonstrated high severability all achieved higher accuracies in the

experiments in this chapter compared to the accuracies of those experiments for the

datasets that demonstrated low severability.

One limitation of the approach used in this study is that it was limited to analyzing

benchmark datasets of natural images. These benchmarks are thus subject to the

potential for sampling bias and latent properties of the labeling process. The next

step in this line of research will be to generate synthetic datasets with well understood

distributions and then apply the methods discussed to those.

Figure 7.9: Visualization of 3-Dimensional

Reduction of MNIST

Figure 7.10: Visualization of 3-Dimensional

Reduction of Imagenette
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Figure 7.11: Visualization of 3-Dimensional

Reduction of MNIST w/ Classes Labeled

(Excluding Outliers)

Figure 7.12: Visualization of 3-Dimensional

Reduction of EMNIST-Digits w/ Classes La-

beled (Excluding Outliers)

Figure 7.13: Visualization of 3-Dimensional

Reduction of Fashion-MNIST w/ Classes

Labeled (Excluding Outliers)

Figure 7.14: Visualization of 3-Dimensional

Reduction of Imagenette w/ Classes La-

beled (Excluding Outliers)
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Figure 7.15: Visualization of 3-Dimensional

Reduction of CIFAR-10 w/ Classes Labeled

(Excluding Outliers)

Figure 7.16: Visualization of 3-Dimensional

Reduction of CIFAR-100 w/ Classes La-

beled (Excluding Outliers)

Figure 7.17: MNIST Reduction Distribu-

tions — Class ‘0’

Figure 7.18: MNIST Reduction Distribu-

tions — Class ‘1’

Figure 7.19: MNIST Reduction Distribu-

tions — Class ‘2’

Figure 7.20: MNIST Reduction Distribu-

tions — Class ‘3’
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Figure 7.21: MNIST Reduction Distribu-

tions — Class ‘4’

Figure 7.22: MNIST Reduction Distribu-

tions — Class ‘5’

Figure 7.23: MNIST Reduction Distribu-

tions — Class ‘6’

Figure 7.24: MNIST Reduction Distribu-

tions — Class ‘7’

Figure 7.25: MNIST Reduction Distribu-

tions — Class ‘8’

Figure 7.26: MNIST Reduction Distribu-

tions — Class ‘9’
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Figure 7.27: Imagenette Reduction Distri-

butions — Class ‘Tench’

Figure 7.28: Imagenette Reduction Distri-

butions — Class ‘English Springer’

Figure 7.29: Imagenette Reduction Distri-

butions — Class ‘Cassette Player’

Figure 7.30: Imagenette Reduction Distri-

butions — Class ‘Chain Saw’

Figure 7.31: Imagenette Reduction Distri-

butions — Class ‘Church’

Figure 7.32: Imagenette Reduction Distri-

butions — Class ‘French Horn’
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Figure 7.33: Imagenette Reduction Distri-

butions — Class ‘Garbage Truck’

Figure 7.34: Imagenette Reduction Distri-

butions — Class ‘Gas Pump’

Figure 7.35: Imagenette Reduction Distri-

butions — Class ‘Golf Ball’

Figure 7.36: Imagenette Reduction Distri-

butions — Class ‘Parachute’
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Chapter 8

Class Density and Dataset

Completeness

The fact that the previous chapter showed the Central Exclusion data reduction strategy

to be the superior strategy suggests that too much data that is too similar within a single

class impedes, or at least does not help, the model’s ability to classify accurately. This

implies a set of experiments that, rather than reducing the same percentage of each

class of the training data, tests reducing potentially differing amounts of data in each

class relative to some measure of that class’s density.

Definition 8.1 (Class Density). The class density of a class is a measure of the aggre-

gate concentration of the data points in the class.

The hypothesis being tested in this chapter is that there exists a positive correlation

between the accuracy of the predictions for that class and the density of data within

that class. Once confirmed, a subsequent hypothesis will be tested. That hypothesis

being that using the Central Exclusion data reduction strategy to reduce the density of

the more dense classes to achieve parity among the classes will produce equivalent or

superior overall accuracy.

Three candidates for the calculation of a class’s density were initially considered,

all of them based on the distribution of points in each dimension of any m-dimensional

reduction. The three candidates are based on the minimum (see Equation 8.1), the

maximum (see Equation 8.2), and the mean (see Equation 8.3) standard deviation of

the m gaussians of the m-dimensional reduction.

For all three candidate calculations, the density for class i is calculated using a

statistic (min, max, or mean) of the σi standard deviations of the m gaussians of the

m-dimensional reduction for class i.

The densities were calculated using each of these calculations for each of the classes

for MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and Imagenette. Then the individual

The work presented in this chapter has been submitted for publication.
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dmin
i = min (σi)

−1
(8.1)

Min-Derived Density Calculation

dmax
i = max (σi)

−1
(8.2)

Max-Derived Density Calculation

di =

(
1

m

m∑
k

σik

)−1

(8.3)

Mean-Derived Density Calculation

class accuracies for every class in each of these datasets were averaged across the five

trials of the baseline experiments. Then correlations were calculated, using the Pearson

Product-Moment Correlation Coefficient (PPMCC), between the class densities and the

class accuracies looking for a correlation between higher accuracy and higher density.

The results of this correlation study are presented in Table 8.1, Table 8.2, Table 8.3,

Table 8.4, and Table 8.5 (a tabulation of the correlation of the individual classes in

CIFAR-100 has not been tabulated here due to the large number of classes). The study

showed that on average, all candidate calculations showed a moderate correlation.

However, the min and max candidates each had a dataset for which the correlation

was negative (MNIST and Fashion-MNIST respectively). Aside from having no datasets

with a negative correlation, the mean candidate also had the highest mean correlation.

Notably, CIFAR-10, and CIFAR-100 had the weakest non-negative correlation for all

three candidates. When excluding these datasets, the difference in the mean correlation

between the min and max candidates and the mean candidate was even greater. As

such, the mean candidate, Equation 8.3, has been chosen for the calculation of class

density.
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Table 8.1: Mean Correlation Between Datasets’ Class Accuracies and Class Densities

for Each Candidate Class Density Calculation

Density Calculation Dataset Correlation Correlation Excluding

CIFAR-10/CIFAR-100

Min-Derived Density

(Equation 8.1)

MNIST -0.12523 -0.12523

Fashion-MNIST 0.71220 0.71220

CIFAR-10 0.29943 —

CIFAR-100 0.12966 —

Imagenette 0.40819 0.40819

Mean 0.28485 0.33172

Max-Derived Density

(Equation 8.2)

MNIST 0.62710 0.62710

Fashion-MNIST -0.10550 -0.10550

CIFAR-10 0.27080 —

CIFAR-100 0.15321 —

Imagenette 0.33469 0.33469

Mean 0.25606 0.28543

Mean-Derived Density

(Equation 8.3)

MNIST 0.59902 0.59902

Fashion-MNIST 0.46572 0.46571

CIFAR-10 0.14169 —

CIFAR-100 0.13030 —

Imagenette 0.37388 0.37387

Mean 0.34212 0.47954

Class # Accuracy Density (di)

0 99.94% 1.20361

1 99.75% 0.90039

2 99.79% 0.96696

3 99.96% 1.23406

4 99.57% 0.95438

5 99.44% 0.91778

6 99.71% 1.09510

7 99.65% 1.18253

8 99.81% 0.91090

9 99.50% 0.87517

Correlation Coefficient 0.59902

Table 8.2: Class Accuracy vs. Class Den-

sity using the Mean-Derived Density Cal-

culation (Equation 8.3) — MNIST

Class # Accuracy Density (di)

0 89.44% 0.78580

1 98.97% 0.78724

2 90.45% 0.88673

3 88.85% 0.94408

4 93.40% 0.80576

5 98.73% 0.82540

6 80.40% 0.55017

7 98.13% 1.21943

8 99.26% 0.72068

9 96.46% 1.09453

Correlation Coefficient 0.46572

Table 8.3: Class Accuracy vs. Class Den-

sity using the Mean-Derived Density Cal-

culation (Equation 8.3) — Fashion-MNIST
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Class # Accuracy Density (di)

0 93.68% 0.67526

1 96.49% 0.69478

2 90.34% 0.56108

3 86.04% 0.53370

4 96.20% 0.59826

5 91.48% 0.59085

6 93.88% 0.70907

7 86.70% 0.69479

8 94.08% 0.56492

9 94.95% 0.74751

Correlation Coefficient 0.37387

Table 8.4: Class Accuracy vs. Class Den-

sity using the Mean-Derived Density Cal-

culation (Equation 8.3) — Imagenette

Class # Accuracy Density (di)

0 90.97% 0.72625

1 95.01% 0.65924

2 85.27% 0.69837

3 75.59% 0.71100

4 88.89% 0.75716

5 81.51% 0.78188

6 92.85% 0.76589

7 92.78% 0.74160

8 94.28% 0.78661

9 93.99% 0.79986

Correlation Coefficient 0.14169

Table 8.5: Class Accuracy vs. Class Den-

sity using the Mean-Derived Density Cal-

culation (Equation 8.3) — CIFAR-10
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8.1 Dynamic Data Reduction

8.1.1 Experimental Design

Using the Mean-Derived Density Calculation (Equation 8.3), another set of experiments

was conducted. In these experiments, the training data in each class was reduced using

the Central Exclusion data reduction strategy by the number of samples necessary

to ensure all classes in the training data that had a density greater than a target

density value were reduced by the number of samples needed to achieve that target

density value. In order to find how many samples would need to be excluded, a binary

search through each class’s samples, ordered by distance from the class’s centroid

was performed. The binary search terminated and selected the threshold distance for

inclusion after 9 iterations, which was sufficient to choose the number of samples to be

included to within a margin of .05% of the total number of samples in the class.

While studying dynamic data reduction, two additional sets of experiments were con-

ducted. The first set was conducted on the micro-PCB dataset introduced in chapter 6.

Data augmentation used during the training for the micro-PCB dataset was uniform

and the same strategy as used for the experiments in chapter 4. The second set was

conducted on EMNIST-Digits, which is a dataset with the same format as MNIST and

with the same domain of interest, namely the Hindu-Arabic numerals. The difference is

that EMNIST-Digits contains exactly four times as many samples in both the training

and test sets. This allows for an investigation into whether the test accuracy achieved

after reducing data to achieve a target threshold per class is sensitive to or independent

of the number of samples used for training. Data augmentation used during the training

for EMNIST-Digits was uniform and the same strategy as used for the experiments in

chapter 5.

Each of MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and EMNIST-Digits were

subjected to this method using target density levels of 1.0, 0.9, 0.8, 0.7, 0.6, and

0.5. These target densities were chosen because they produced a similar number

of excluded samples for these datasets. However, in the case of Imagenette and

the micro-PCB dataset, the UMAP dimensional reduction produced values in each

dimension with much larger variances (thus producing smaller densities). This is due to

the fact that the UMAP algorithm assumes that the population in the higher dimensional

space from which the data is sampled is uniformly distributed on some manifold. Since

Imagenette and the micro-PCB dataset are both higher dimensional than the other

datasets as well as having fewer samples in the training set, UMAP assumes the values

of these samples in the higher dimensional space represent a much broader range

of possible values for the assumed uniformity of the population. Therefore, a larger

number of approximately evenly spaced target densities was chosen specifically for
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each of Imagenette and of the micro-PCB dataset.

8.1.2 Experimental Results

Table 8.6 through Table 8.12 show the results of these experiments. Bold typeface in

the Accuracy columns indicate that the accuracy matched or exceeded the accuracy of

the baseline.

For the MNIST dataset, there was no statistically significant difference (p < 0.05)

between the accuracy of the baseline and the accuracies of the experiments with target

densities 1.0, 0.9, 0.8, and 0.7. These target densities resulted in reducing the training

dataset size by 4.4%, 7.8%, 15%, and 22.6%, respectively.

For the Fashion-MNIST dataset, there was no statistically significant difference

(p < 0.05) between the accuracy of the baseline and the accuracy of the experiment

with target density 1.0 which resulted in reducing the training dataset size by 2.0%.

For the CIFAR-10 dataset, there was no statistically significant difference (p < 0.05)

between the accuracy of the baseline and the accuracies of the experiments with target

densities 1.0, 0.9, 0.8, and 0.7. These target densities resulted in reducing the training

dataset size by 0.2%, 0.2%, 0.2%, and 4.2%, respectively.

For the CIFAR-100 dataset, there was no statistically significant difference (p < 0.05)

between the accuracy of the baseline and the accuracies of the experiments with target

densities 1.0 and 0.8. These target densities resulted in reducing the training dataset

size by 0.4% and 2.3%, respectively. The experiment with a target density of 0.9

produced a statistically significantly superior accuracy while reducing the dataset size

by 0.4%.

For the Imagenette dataset, there was no statistically significant difference (p < 0.05)

between the accuracy of the baseline and the accuracies of the experiments with target

densities 0.70, 0.65, 0.60, and 0.55. These target densities resulted in reducing the

training dataset size by 0.3%, 2.4%, 5.1%, and 9.2%, respectively.

For the micro-PCB dataset, there was no statically significant difference (p < 0.05)

between the accuracy of the baseline and the accuracies of the experiments with target

densities 0.25, 0.20, 0.15, 0.10, 0.075, and 0.05. These target densities resulted in

reducing the training dataset size by 5.4%, 15.8%, 30.5%, 42.9%, and 53.2%, respec-

tively. Of particular note with the micro-PCB dataset is that the baseline accuracy of

100% was able to be achieved with 53.2% of the training samples removed.

For the EMNIST-Digits dataset, there was no statistically significant difference

(p < 0.05) between the accuracy of the baseline and the accuracies of the experiments

with target densities 1.0, 0.9, and 0.8. These target densities resulted in reducing the

training dataset size by 3.1%, 7.2%, and 13.4%, respectively.
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Table 8.6: Class Accuracies Achieved at Target Densities — MNIST

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 99.716% 0.000162481 —

1.0 95.6% 99.714% 0.000080000 0.41537

0.9 92.2% 99.732% 0.000172047 0.10664

0.8 85.0% 99.708% 0.000097980 0.21179

0.7 77.4% 99.716% 0.000135647 0.50000

0.6 69.4% 99.682% 0.000116619 0.00468

0.5 61.0% 99.694% 0.000080000 0.02062

Table 8.7: Class Accuracies Achieved at Target Densities — Fashion-MNIST

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 93.404% 0.001380724 —

1.0 98.0% 93.298% 0.000928224 0.11917

0.9 96.4% 93.202% 0.000982649 0.02214

0.8 93.2% 93.254% 0.000611882 0.04111

0.7 86.4% 92.994% 0.001330564 0.00135

0.6 78.2% 92.574% 0.001089220 6.52× 10−6

0.5 68.8% 91.922% 0.001750885 4.90× 10−7

Table 8.8: Class Accuracies Achieved at Target Densities — CIFAR-10

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 89.146% 0.001518684 —

1.0 99.8% 89.342% 0.002688048 0.11994

0.9 99.8% 89.154% 0.002361864 0.47798

0.8 99.8% 89.346% 0.002151836 0.08366

0.7 95.8% 89.192% 0.001828004 0.35438

0.6 86.2% 88.700% 0.002044505 0.00452

0.5 75.4% 88.064% 0.002030369 1.37× 10−5

Table 8.9: Class Accuracies Achieved at Target Densities — CIFAR-100

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 61.896% 0.001786169 —

1.0 99.6% 62.186% 0.003273286 0.07923

0.9 99.6% 62.220% 0.002830548 0.04444

0.8 97.7% 61.876% 0.003501200 0.46072

0.7 93.1% 61.642% 0.002057571 0.04963

0.6 85.4% 60.398% 0.003592993 3.58× 10−5

0.5 75.1% 59.108% 0.001561282 5.71× 10−9
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Table 8.10: Class Accuracies Achieved at Target Densities — Imagenette

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 92.390% 0.002333238 —

0.70 99.7% 92.104% 0.002514438 0.0670

0.65 97.6% 92.486% 0.001497465 0.2541

0.60 94.9% 92.250% 0.003331066 0.2553

0.55 90.8% 92.120% 0.002728369 0.0855

0.50 85.1% 91.798% 0.001984339 0.0024

0.45 78.6% 91.434% 0.001416474 5.60× 10−5

0.40 72.2% 90.650% 0.002086145 1.91× 10−6

0.35 65.1% 90.026% 0.003338622 1.38× 10−6

0.30 57.6% 89.626% 0.001276871 1.51× 10−8

0.25 49.8% 88.206% 0.002298347 2.95× 10−9

0.20 41.7% 86.304% 0.005313229 1.40× 10−8

0.15 32.5% 83.866% 0.00475546 4.73× 10−10

0.10 22.4% 79.134% 0.004674441 1.26× 10−11

0.05 9.15% 43.564% 0.037764248 2.72× 10−9

Table 8.11: Class Accuracies Achieved at Target Densities — micro-PCB

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 100.000% 0 —

0.25 94.6% 100.000% 0 N/A

0.20 84.2% 100.000% 0 N/A

0.15 69.5% 100.000% 0 N/A

0.10 57.1% 100.000% 0 N/A

0.075 46.8% 100.000% 0 N/A

0.05 34.5% 99.912% 1.48× 10−3 0.13399

0.04 25.6% 99.024% 9.49× 10−3 0.03687

0.03 17.2% 75.112% 5.52× 10−2 9.14× 10−6

0.02 11.8% 48.088% 2.24× 10−1 0.00085

0.01 6.90% 18.800% 5.45× 10−2 8.78× 10−10

Table 8.12: Class Accuracies Achieved at Target Densities — EMNIST-Digits

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 99.790% 0 —

1.0 96.9% 99.790% 6.32456E-05 0.50000

0.9 92.8% 99.786% 4.89898E-05 0.07056

0.8 86.6% 99.782% 9.79796E-05 0.07056

0.7 79.8% 99.784% 4.89898E-05 0.01998

0.6 71.5% 99.772% 4.00000E-05 9.27× 10−6

0.5 62.8% 99.766% 1.01980E-04 0.00076
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8.2 Dynamic Data Reduction Redux

8.2.1 Experimental Design

As was noted in the previous section, the UMAP dimensionality reduction algorithm

makes assumptions about the distribution of the data in the higher dimensional space

that results in density values that are dependent on the dataset. In order to account for

this, the Mean-Derived Density Calculation (Equation 8.3) has been modified to include

a normalization term.

In Equation 8.4, di is the density of class i among all n classes. σi and σj are the

standard deviations of the m gaussians of the m-dimensional reduction for classes i

and j, respectively.

di =
1

n

n∑
j

(
1

m

m∑
k

σjk

)
·

(
1

m

m∑
k

σik

)−1

(8.4)

Mean-Derived and Normalized Density Calculation

Table 8.13 through Table 8.18 show a comparison of the densities calculated using

the Mean-Derived Density Calculation (Equation 8.3) vs. the Mean-Derived and Nor-

malized Density Calculation (Equation 8.4) (a comparison of the individual classes in

CIFAR-100 has not been tabulated here due to the large number of classes).

As in the previous section, but instead using the Mean-Derived and Normalized

Density Calculation (Equation 8.4), another set of experiments was conducted. In

these experiments, the training data in each class was reduced using the Central

Exclusion data reduction strategy by the number of samples necessary to ensure all

classes in the training data that had a density greater than a target density value were

reduced by the number of samples needed to achieve that target density value. Each

of MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, Imagenette, the micro-PCB dataset,

and EMNIST-Digits were subjected to this method using target density levels of 1.1,

1.05, 1.0, 0.95, and 0.9.
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Class # Mean-Derived
Mean-Derived
and Normalized

0 1.20360 1.20888

1 0.90039 0.79448

2 0.96696 0.96549

3 1.23407 1.19742

4 0.95438 0.97185

5 0.91778 1.00717

6 1.09510 1.10083

7 1.18253 1.12287

8 0.91090 0.92615

9 0.87517 0.87516

Table 8.13: Mean-Derived Density Calcu-

lation (Equation 8.3) vs. Mean-Derived

and Normalized Density Calculation (Equa-

tion 8.4) — MNIST

Class # Mean-Derived
Mean-Derived
and Normalized

0 1.18447 1.22587

1 0.69633 0.72067

2 1.04573 1.08228

3 1.16389 1.20457

4 0.96319 0.99685

5 0.96351 0.99719

6 1.11844 1.15753

7 0.99621 1.03103

8 0.90471 0.93633

9 0.85151 0.88128

Table 8.14: Mean-Derived Density Calcu-

lation (Equation 8.3) vs. Mean-Derived

and Normalized Density Calculation (Equa-

tion 8.4) — EMNIST-Digits

Class # Mean-Derived
Mean-Derived
and Normalized

0 0.67526 1.05405

1 0.69478 1.09361

2 0.56108 0.84936

3 0.53370 0.93503

4 0.59826 0.95569

5 0.59085 0.92904

6 0.70907 1.10913

7 0.69479 1.12181

8 0.56492 0.89294

9 0.74751 1.17047

Table 8.15: Mean-Derived Density Calcu-

lation (Equation 8.3) vs. Mean-Derived

and Normalized Density Calculation (Equa-

tion 8.4) — Imagenette

Class # Mean-Derived
Mean-Derived
and Normalized

0 0.72625 0.98098

1 0.65924 0.89047

2 0.69837 0.94332

3 0.71100 0.96038

4 0.75716 1.02273

5 0.78188 1.05613

6 0.76589 1.03452

7 0.74160 1.00172

8 0.78661 1.06252

9 0.79986 1.08041

Table 8.16: Mean-Derived Density Calcu-

lation (Equation 8.3) vs. Mean-Derived

and Normalized Density Calculation (Equa-

tion 8.4) — CIFAR-10
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Class # Mean-Derived
Mean-Derived
and Normalized

0 0.27756 1.00728

1 0.26071 0.94615

2 0.25507 0.92565

3 0.26446 0.95975

4 0.27365 0.99307

5 0.30833 1.11895

6 0.27437 0.99571

7 0.28613 1.03837

8 0.28186 1.02288

9 0.27820 1.00959

10 0.27685 1.00467

11 0.27626 1.00253

12 0.27582 1.00096

Table 8.17: Mean-Derived Density Calcu-

lation (Equation 8.3) vs. Mean-Derived

and Normalized Density Calculation (Equa-

tion 8.4) — micro-PCB

Class # Mean-Derived
Mean-Derived
and Normalized

0 0.78581 0.95250

1 0.78725 0.95424

2 0.88674 1.07483

3 0.94408 1.14435

4 0.80576 0.97669

5 0.82540 1.00049

6 0.55017 0.66688

7 1.21943 1.47810

8 0.72068 0.87355

9 1.09453 1.32671

Table 8.18: Mean-Derived Density Calcu-

lation (Equation 8.3) vs. Mean-Derived

and Normalized Density Calculation (Equa-

tion 8.4) — Fashion-MNIST
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8.2.2 Experimental Results

Table 8.19 through Table 8.25 show the results of these experiments. Bold typeface in

the Accuracy columns indicate that the accuracy matched or exceeded the accuracy of

the baseline.

For the MNIST dataset, there was no statistically significant difference (p < 0.05)

between the accuracy of the baseline and the accuracies of any of the experiments with

target densities. These target densities resulted in reducing the training dataset size by

4.2%, 8.0%, 11.8%, 17.2%, and 24.2%, respectively.

For the Fashion-MNIST dataset, all target densities were statistically significantly

inferior to the baseline (p < 0.05). This is consistent with the results from the prior

section as the highest target density resulted in removing 15% of the data whereas the

only statistically insignificant data reduction using Equation 8.3 elided just 2% of the

data.

For the CIFAR-10 dataset, there was no statistically significant difference (p < 0.05)

between the accuracy of the baseline and the accuracies of the experiments with target

densities 1.1, 1.05, and 1.0. These target densities resulted in reducing the training

dataset size by 0.2%, 1.1%, and 5.4%, respectively.

For the CIFAR-100 dataset, all target densities were statistically significantly inferior

to the baseline (p < 0.05). This is consistent with the results from the prior section as

the highest target density resulted in removing 5.7% of the data whereas statistically

insignificant data reduction using Equation 8.3 was only achieved when eliding 2.3% of

the data.

For the Imagenette dataset, there was no statistically significant difference (p < 0.05)

between the accuracy of the baseline and the accuracies of the experiments with target

density 1.1. This target density resulted in reducing the training dataset size by 1.7%.

This is inconsistent with the results from the prior section as statistically insignificant

data reduction using Equation 8.3 was achieved when eliding as much as 9.2% of the

data.

For the micro-PCB dataset, all target densities achieved 100% test accuracy while

reducing the training dataset size by 0.5%, 0.5%, 2%, 8.4%, and 19.9%, respectively.

For the EMNIST-Digits dataset, there was no statistically significant difference

(p < 0.05) between the accuracy of the baseline and the accuracies of the experiments

with target densities 1.1 and 1.05. These target densities resulted in reducing the training

dataset size by 5.1% and 8.5%, respectively. After 5 trials, a statistical significance

to the superior accuracy of the experiment with target density of 1.0 was narrowly

missed (p < 0.07). Of worthy note for this dataset is the remarkable consistency and

low variance across trials for the baseline (which all achieved the same accuracy of

99.79%) and across trials for each of the target densities. The trials for target density
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1.1 produced two accuracies of 99.79% and three accuracies of 99.78%. The trials for

target density 1.05 produced one accuracy of 99.79%, three accuracies of 99.78%, and

the lowest accuracy of all trials of 99.76%. The trials for target density 1.0 produced two

of the highest accuracies at 99.8% and three at 99.79%. The trials for target density

0.95 produced three accuracies of 99.78% and two of 99.77%. The trials for target

density 0.9 produced one accuracy of 99.79%, two accuracies of 99.78%, and two

accuracies of 99.77%.

Table 8.19: Class Accuracies Achieved at Target Densities — MNIST

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 99.716% 0.000162481 —

1.10 95.8% 99.722% 0.000172047 0.31288

1.05 92.0% 99.714% 0.000101980 0.42001

1.00 88.2% 99.730% 0.000209762 0.16106

0.95 82.8% 99.720% 0.000167332 0.37022

0.90 75.8% 99.706% 0.000185472 0.22038

Table 8.20: Class Accuracies Achieved at Target Densities — Fashion-MNIST

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 93.404% 0.001380724 —

1.10 85.0% 84.058% 0.004762100 1.35× 10−10

1.05 82.6% 83.752% 0.001151347 3.16× 10−14

1.00 74.6% 83.526% 0.001400857 5.39× 10−14

0.95 74.2% 82.834% 0.001293986 2.30× 10−14

0.90 65.8% 81.716% 0.002239286 1.44× 10−13

Table 8.21: Class Accuracies Achieved at Target Densities — CIFAR-10

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 89.146% 0.001518684 —

1.10 99.8% 89.104% 0.001504128 0.35230

1.05 98.9% 89.166% 0.002129413 0.44112

1.00 94.6% 89.130% 0.002399167 0.45652

0.95 86.6% 88.742% 0.002066301 0.00679

0.90 75.8% 88.140% 0.001052616 2.24× 10−6
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Table 8.22: Class Accuracies Achieved at Target Densities — CIFAR-100

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 61.896% 0.001786169 —

1.10 94.3% 61.194% 0.002620382 0.00110

1.05 90.2% 60.736% 0.001651181 6.04× 10−6

1.00 84.5% 58.470% 0.001255388 5.78× 10−10

0.95 78.0% 57.134% 0.004187410 1.43× 10−8

0.90 70.1% 55.368% 0.003521023 3.81× 10−10

Table 8.23: Class Accuracies Achieved at Target Densities — Imagenette

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 92.390% 0.002333238 —

1.10 98.3% 92.224% 0.000705975 0.10516

1.05 94.2% 92.126% 0.001473228 0.04602

1.00 88.8% 92.080% 0.000748331 0.01762

0.95 82.7% 91.316% 0.002465441 0.00011

0.90 73.9% 90.428% 0.002318103 1.12× 10−6

Table 8.24: Class Accuracies Achieved at Target Densities — micro-PCB

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 100.000% 0 —

1.10 99.5% 100.000% 0 N/A

1.05 99.5% 100.000% 0 N/A

1.00 98.0% 100.000% 0 N/A

0.95 91.6% 100.000% 0 N/A

0.90 80.1% 100.000% 0 N/A

Table 8.25: Class Accuracies Achieved at Target Densities — EMNIST-Digits

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 99.790% 0 —

1.10 94.9% 99.784% 4.90× 10−5 0.01998

1.05 91.5% 99.778% 9.80× 10−5 0.01998

1.00 87.2% 99.794% 4.90× 10−5 0.07056

0.95 80.7% 99.776% 4.90× 10−5 0.00022

0.90 73.4% 99.778% 7.48× 10−5 0.00624
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8.3 Proposed Dataset Completeness Metric

The experiments in this chapter have demonstrated that, for the datasets studied, there

exists an amount of redundant data in each such dataset and that that data can be

located near the centroid of a dimensional reduction of the data.

This observation inspires the possibility of a measure of the dataset complete-

ness that can be used a priori to determine whether or not the data distributed in the

lower-dimensional space is capable of leading to optimal or near-optimal classification

accuracy.

Equation 8.5 represents an attempt to capture this measure numerically in a single

value, such that the closer the value is to zero, the completeness of the dataset is lower,

or from another point of view, there exists room for improvement. In this equation, d are

the densities of the classes as calculated using Equation 8.4. As such, the equation

simply multiplies the standard deviation of the class densities by the range of density

values. Thus, and simply, the greater variance among the class densities, the lower the

completeness of the data.

q =
1

σd · (max (d)−min (d))
(8.5)

Dataset Completeness Calculation

Table 8.26 shows this calculation as applied to the training datasets used in this

chapter. MNIST, EMNIST-Digits, CIFAR-10, and the micro-PCB dataset all had values

for completeness > 10 and all of these datasets were shown to have had excess

data in their training data sets. Fashion-MNIST and CIFAR-100 each had values for

completeness< 10 and both of these datasets were shown not to have had an excess of

data in their training data sets. Imagenette was inconsistent with this. It is hypothesized

that in the case of Imagenette, that the lower number of training samples coupled with

the complexity of the features that comprise the subject matter, compared to the other

datasets, dominates any ability to elide redundant data. Table 8.27 shows the same

calculation as applied to the validation data of the studied data sets. Consistent with the

training data, the validation data had values for completeness > 10 for MNIST, EMNIST-

Digits, CIFAR-10, and the micro-PCB dataset, and Fashion-MNIST and CIFAR-100

each had values for completeness < 10.
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Table 8.26: Statistical Properties and the Completeness of Training Datasets

Training Dataset Std. Dev. Range Completeness

MNIST 0.1304920 0.4143995 18.492560

EMNIST-Digits 0.1470203 0.5051971 13.463625

Fashion-MNIST 0.2176022 0.8112188 5.664984

CIFAR-10 0.0568050 0.1899450 92.680124

CIFAR-100 0.1623155 0.8421434 7.315669

Imagenette 0.1056541 0.3211061 29.475744

micro-PCB 0.0450495 0.1933003 114.835613

Table 8.27: Statistical Properties and the Completeness of Validation Datasets

Validation Dataset Std. Dev. Range Completeness

MNIST 0.1308110 0.4797679 15.933995

EMNIST-Digits 0.1268322 0.3672039 21.471530

Fashion-MNIST 0.2274090 0.8411320 5.227911

CIFAR-10 0.0495897 0.1651205 122.125472

CIFAR-100 0.1321202 0.7995342 9.466595

Imagenette 0.1223012 0.3698493 22.107753

micro-PCB 0.1455047 0.4808525 14.2925951
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8.4 Summary

In this chapter, a definition for class density along with several methods for calculating

such was put forth. Analysis of seven datasets showed that Equation 8.4, derived from

the normalized mean standard deviations of the data points in lower dimensional space,

was the appropriate choice for the calculation for density. Additionally, a definition

for dataset completeness was put forth in Equation 8.5, which showed that those

datasets that met a certain completeness threshold (experimentally demonstrated to

be > 10 for the datasets studied) were candidates for eliding redundant data using

Equation 8.4. The experiments showed that for all datasets except Imagenette, datasets

with a completeness of > 10 could be reduced to a target density of at most 1.0 and

achieve accuracy that is statistically insignificantly different from the baseline. Unique

to Imagenette is the relatively low number of training samples. That combined with the

large image size coupled with the complexity of the features that comprise the subject

matter and the assumptions made by UMAP suggest that there is a lower bound on the

number of training samples such that any elision whatsoever risks underfitting in the

training procedure.

As was the case in chapter 7, a limitation of the approach used in this study is that it

was limited to analyzing benchmark datasets of natural images. These benchmarks

are thus subject to the potential for sampling bias and latent properties of the labeling

process. The next step in this line of research will be to generate synthetic datasets

with well understood distributions and then apply the methods discussed to those.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

The advent of convolutional layers led to considerable improvement in the performance

of neural networks in image classification tasks as compared to networks composed

entirely of fully connected layers [3]. This is correctly attributed to the convolutional

layers’ ability to extract localized features that are more complicated than a single pixel.

The feature extractors do this by assigning meaning to the spatial relationships among

pixels that are close to each other. Such meaning is absent when using fully connected

layers. As the term “fully connected” implies, in fully connected layers every pixel is

able to be associated with every other pixel without regard to their relative positions in

the image. Giving meaning to spatial relationships among the pixels can be understood

as enforcing constraints upon which neurons are allowed to be associated with each

other using trainable parameters. Understood in this way, the success of convolutional

neural networks can thus be understood as, in part, resulting from applying constraints

on which neurons are allowed to affect other neurons in the next layer.

Homogeneous vector capsules can be interpreted as performing a similar function, at

the output stage of a convolutional neural network, as convolutional layers perform at the

input stage. In the traditional design of the classification stage of a CNN, every neuron

is able to adapt independently during backpropagation. This work hypothesizes that this

fact combined with the fact that adaptive gradient descent methods adapt independent

learning rates for every parameter imparts two orders of adaptability—or stated another

way, “too much” “freedom” (to adapt to the training data). This would indeed result in

overfitting and a generalization gap as has been observed when using adaptive gradient

descent with CNNs. By reshaping the output of the final convolutional layer into vectors

and then connecting those vectors to a classification layer also composed of vectors,

groups of n-dimensional vectors of neurons are constrained to train together.

Using HVCs in combination with multiple branches capturing different levels of
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abstraction and effective receptive fields which were allowed to learn their own weights

resulted in establishing new state of the art accuracies for the MNIST dataset for multiple

individual models as well as multiple ensembles. This accomplished using 5.5× fewer

parameters, 4× fewer epochs of training, and using no reconstruction sub-network

compared to the previous state-of-the-art capsule network.

This work additionally presented a dataset consisting of high-resolution images of

13 micro-PCBs captured in various rotations and perspectives relative to the camera,

with each sample labeled for PCB type, rotation category, and perspective categories.

The results of the experiments performed and elucidated on this dataset show that (1)

classification of these micro-PCBs from novel rotations and perspectives is possible,

but, in terms of perspectives, better accuracy is achieved when networks have been

trained on representative examples of the perspectives that will be evaluated. (2) That,

even though perspective warp is non-affine, using it as a data augmentation technique

in the absence of training samples from actually different perspectives is still effective

and improves accuracy. (3) And that using homogeneous vector capsules (HVCs) is

superior to using fully connected layers in convolutional neural networks, especially

when the subject matter has many sub-components that vary equivariantly (as is the

case with micro-PCBs), and when using the full training dataset and applying rotational

and perspective warp data augmentation the mean accuracy of the network using HVCs

is 4.8% more accurate then when using a fully connected layer for classification.

This work also showed that certain training samples are more informative of class

membership than others. These samples can be identified a priori to training by an-

alyzing their position in reduced dimensional space relative to the classes’ centroids.

Specifically, it was demonstrated that samples nearer the classes’ centroids are less

informative than those that are furthest from it. This led to the definition of Dataset

Severability, which is a qualitative, yet quantifiable, judgement regarding the separation

of classes in a reduced dimensional space. Those datasets that demonstrated high

severability all achieved higher accuracies in the experiments in this work compared to

the accuracies of those experiments for the datasets that demonstrated low severability.

Finally, a definition for class density along with several methods for calculating such

was put forth. Analysis of seven datasets showed that the calculation proposed in

chapter 8, derived from the normalized mean standard deviations of the data points

in lower dimensional space, was the appropriate choice for the calculation for density.

Additionally, in chapter 8, a definition for a proposed dataset completeness metric was

put forth, which showed that those datasets that met a certain completeness threshold

(experimentally demonstrated to be > 10 for the datasets studied) were candidates for

eliding redundant data. The experiments showed that for all datasets except Imagenette,

datasets with a completeness metric of > 10 could be reduced to a target density of

at most 1.0 and achieve accuracy that is statistically insignificantly different from the
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baseline. Unique to Imagenette is the relatively low number of training samples. That

combined with the large image size and the assumptions made by UMAP suggest

that there is a lower bound on the number of training samples such that any elision

whatsoever risks underfitting in the training procedure.

In summary, this work showed how to achieve higher or equivalent validation accu-

racy using a combination of HVCs and a priori analysis of training samples by reducing

the overall training effort both in terms of having to finely tune the optimization method

as well as in terms of the number of training samples used.

At a higher level, and in a bigger-picture sense, the work presented in this dissertation

has demonstrated methods for making the training of neural networks simpler and less

reliant on a “more data is always better” mentality. This in turn has the potential to lead

to massive savings in future neural network training efforts and data collection efforts,

which in turn leads to massive savings in energy expenditure and carbon footprints

associated with those efforts.

9.2 Future Work

Transformers [93] as applied to computer vision tasks [99] is a very new area of study

and was not experimentally investigated in this work. As was noted in chapter 3,

transformer-based networks are known for needing a large amount of training data. A

future direction for what was started in this work will include investigating whether or not

HVCs and/or the analytical methods developed in chapter 7 and chapter 8 can reduce

this burden.

Additionally, the conclusion of chapter 3 noted that the establishment of datasets

that fill the gaps between CIFAR-100 and Imagenet-1K and between Imagenet-1K and

the internal giga-scale datasets of large corporations would benefit the computer vision

community. Future work should consider seeking grant funding to establish these.

Constraints on the computational resources available limited the study presented in

chapter 4 to only three datasets. This study should be expanded to include additional

datasets, most notably the Imagenet-1K benchmark. Additional base network architec-

tures beyond Inception v3 and a simple monolithic CNN should also be investigated.

Finally, multiple trials of all of these, as well as the experiments already conducted,

should be undertaken so that more fine grained comparisons among the results can be

made and investigated for statistical significance.

The results presented in chapter 5 should also be extended to additional network

architectures, notably architectures capable of dealing with images sized larger than

those in MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100, and then as a result,

to additional datasets. Additionally, an analysis of the digits in MNIST in reduced
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dimensional space relative to the methods elucidated in chapter 7 and chapter 8 should

be performed. This analysis should pay special attention to the position of the (a)

88 digits that were predicted incorrectly by at least one model, (b) the 14 digits that

were predicted incorrectly more often than not, and (c) the 5 digits that were predicted

incorrectly in all models. An additional systematic study on how many branches and

after how many convolutions those branches should come after would be beneficial

in the case of deeper networks designed for larger images, perhaps investigating the

possibility of learning these properties during training.

Chapter 6 included experiments on data that is known to have differing perspectives.

Perspective warp is not generally performed in most data augmentation procedures. A

systematic study into whether perspective warp data augmentation should be applied

using the benchmark datasets used elsewhere in this work should be undertaken.

The work presented in chapter 7 and chapter 8 should be performed on additional

datasets. Notably, the Imagenet-1K benchmark. Additionally, synthetic datasets with

well understood distributions should be generated and then have these methods applied

to them.

Additionally, the work presented in chapter 7 and chapter 8 took advantage of UMAP

for dimensionality reduction. Current implementations of UMAP require the entire

dataset to fit in memory. Creating an implementation of UMAP that uses mini-batches

and stochastic gradient descent to circumvent this requirement should be attempted so

that this method can be applied to datasets larger than can fit entirely in memory.

Finally, the work presented in this dissertation focused exclusively on the supervised,

classification task. All of the methods discussed and studied should be applied to (a)

other computer vision tasks including segmentation, objection detection, and generative

models, (b) transformer networks, (c) other learning regimes such as self-supervised

and semi-self-supervised learning, pseudo labeling and using teacher-student networks,

and (d) non-image data, particularly time-series data. Additionally, the work done on

analyzing the dimensional reductions and density of class data should be coupled with

research into data augmentation with the goal of using the reduced dimensionality and

density information to inform data augmentation strategies.
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Appendix A: Digits Disagreed Upon in

the Studies Performed in Chapter 5

What follows is the complete set of 88 digits that were predicted correctly by at least

one model and incorrectly by at least one model in the ensemble of models using

Z-Derived capsules from chapter 5. These in combination with the digits from Figure 5.4

represent the complete set of digits that were not predicted correctly by all 96 trials of

the Z-Derived ensemble experiments. Each image is captioned first by the class label

in the test data set associated with the image, then the number of trials that predicted it

correctly, and last the index of the digit in the test data. For example, the first image

presented below has a class label of 3, 95 trials predicted that correctly, and it exists at

index 87 in the MNIST test data.

3 9 9 2 9 5 6 4 3 7 8 6 2

95 6 95 24 85 70 92 74 94 95 95 66 95

87 193 214 321 359 412 445 447 449 468 582 625 659

4 7 4 3 6 4 3 4 9 7 5 1 8

93 95 95 95 91 58 95 95 18 94 38 91 95

708 726 740 938 1014 1112 1114 1147 1232 1260 1393 1403 1530

0 5 6 8 1 5 1 9 0 1 6 2 6

95 66 91 94 94 85 95 22 86 90 54 72 74

1621 1737 1822 1878 2018 2040 2266 2293 2326 2355 2454 2462 2654
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9 4 1 9 1 6 5 6 7 9 9 9 2

85 20 95 92 93 95 92 7 78 95 95 94 82

2720 2771 2803 3005 3073 3365 3558 3762 3808 3821 3859 3869 4176

1 3 8 2 1 6 6 3 9 9 4 6 7

4 93 95 80 84 93 70 49 87 28 95 95 45

4201 4443 4497 4504 4507 4571 4699 4740 4761 4823 4860 4934 5654

5 3 0 7 8 1 4 8 7 1 8 4 7

93 93 95 94 46 92 95 86 30 71 50 8 94

5937 6371 6597 6599 6625 8020 8061 8279 8316 8376 8408 8527 9015

2 7 3 7 2 9 6 5 2 0

91 59 95 90 82 94 94 26 95 78

9123 9505 9636 9637 9664 9692 9698 9729 9839 9850
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