Changes in ambient air quality and atmospheric composition and reactivity in the South East of the UK as a result of the COVID-19 lockdown

D.J. Gregg^{1,4}, K.P. Wyche¹, M. Nichols², H. Parfitt³, P. Beckett³, K.L. Smallbone¹, P.S. Monks⁴

1: Centre for Earth Observation Science, University of Brighton, UK. 2: Hydrock Consultants Ltd., UK.

3: Phlorum Ltd., UK.

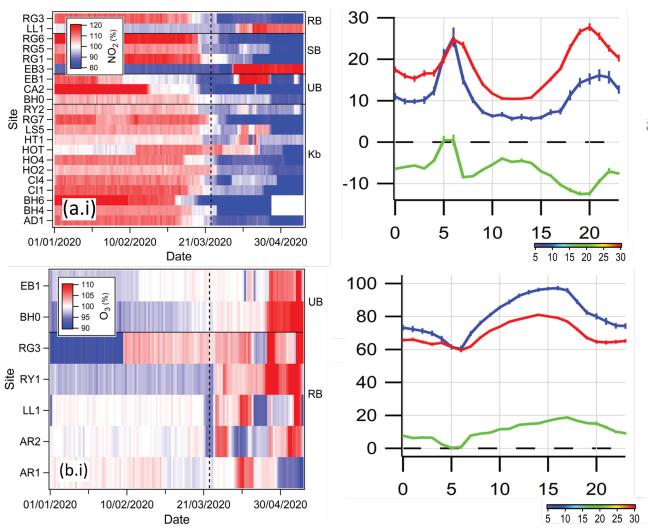
4: Department of Chemistry, University of Leicester, UK.

Bold: Presenting Author

University of Brighton

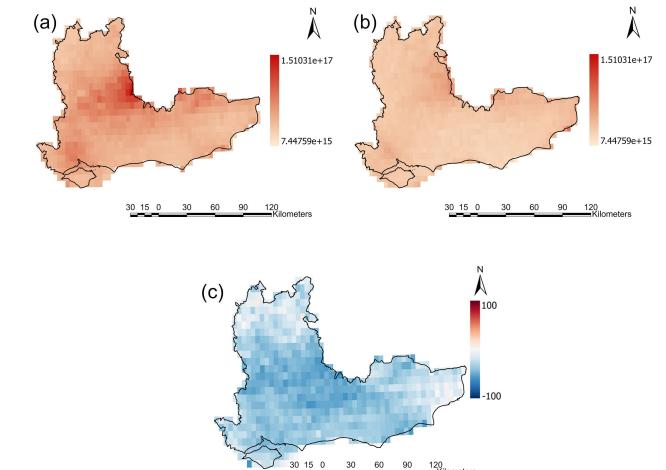
Centre for Earth Observation Science

X

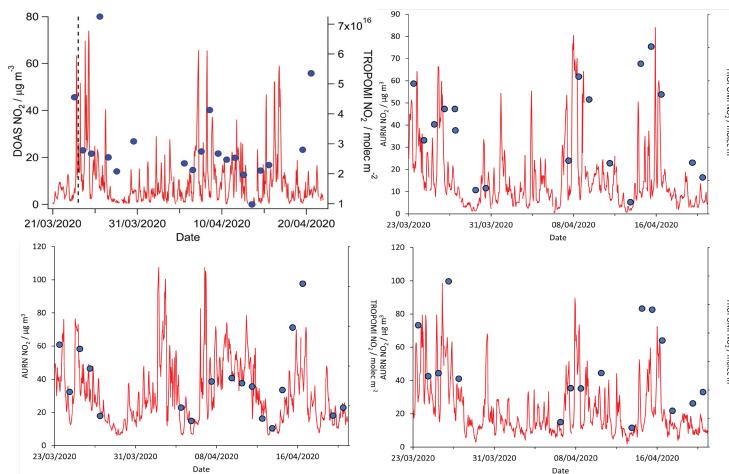


Background & Questions

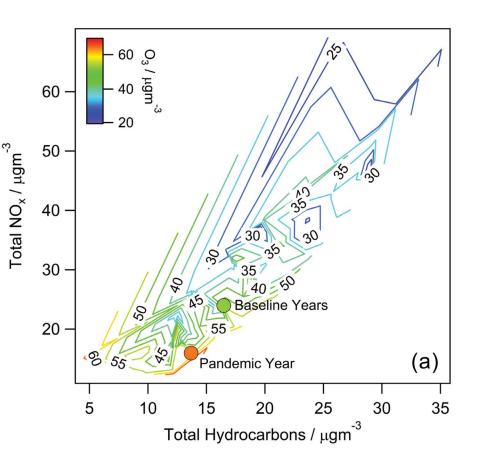
- COVID-19 led to reductions in anthropogenic activity and emissions of air pollutants (the `anthropause')
- Early remote sensing showed NO_2 down by ~30% across China; ~40% across central Europe
- Such dramatic, rapid reduction in air pollutants across species emissions
 spectrum, globally, is entirely unique
 resultant impacts on chemical processes and composition need
 investigating
- With reductions in NO_x and poorly characterised changes in VOCs what will be the impact on secondary pollutants, inc. O_3 ?
- What will be the impact on oxidative capacity?
 - Will we experience a shift in size distribution of particulate numbers?
 - How will PM composition change?


In-situ measurements

- Reductions in de-weathered NO₂, relative to the 2020 mean, occurred at 18 in-situ monitoring stations which monitored NO₂
 - Increases in NO₂ were seen at multiple sites along the south coast
- Concentrations at kerbside sites were reduced to ~62% of the 2015– 2019 average, representing an average 38% reduction in deweathered NO₂ concentrations
- The typical bi-modal diurnal profile was maintained


TROPOMI daily average NO₂

- TROPOMI confirms findings from analysis of in-situ monitor observations made by the in-situ networks
- NO₂ concentrations fell across the region in 2020 compared to same period in 2019
- In-line with the in-situ monitors, TROPOMI measured a decrease in the concentrations of NO₂ across the entire region during the lockdown, with the regional average value falling by 33%


In-situ measurements

- TROPOMI measured NO₂ values in Brighton, UK were be 59% of those measured during lockdown than rest of year
 - Compares favourably with DOAS, which recorded NO₂ values that were ~64%
- A similar relationship between in-situ and TROPOMI measurements is shown in Birmingham, London and Manchester, using AURN monitoring sites.
- Loose relative correlation between TROPOMI and in-situ measurements
 - Higher in-situ measurement means higher TROPOMI measurement

In-situ measurements

- Ambient NOx species decreased in concentration to a greater extent than total ambient NMHC during the UK lockdown relative to pre-pandemic years
 - 33% decrease in 2020 compared to 17% in during 2015-2019 baseline.
- NMHC:NOx ratio increased from 0.70 to 0.87 creating an NMHC limited regime
 - Caused ambient O3 to increase in the presence of sufficient actinic flux
 - Atmosphere transitioning to a higher O3 concentration isopleth

Thank you

linktr.ee/dgregg95 Connect and network

bit.ly/wyche21 See our paper