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Different integral representations for the mass flux of inertial particles transported by turbulent
gas flows have been proposed. These are discussed and analysed. Each formulation provides its
own insights into the underlying physical processes governing the resulting flux. However none
of the representations, as it stands, provides an explicit closed-form expression in terms of known
statistical properties of the flow and parameters governing particle dynamics. We consider the
representations in terms of their potential for reduction to closed-form models. To enable an analysis
uncomplicated by the presence of many coupled interactions we confine our attention to the classic
test case of mono-disperse particles in homogeneous, isotropic turbulent flows, and subject to a
uniform gravitational field. The modification of the mean particle settling velocity resulting from
their preferential sampling of fluid velocities is captured by the flux representations. A distribution-
based symmetry analysis coupled with a correlation splitting technique is used to reduce and simplify
the terms appearing in the flux integrals. This prompts a strategy for closure modelling of the
resulting expressions in terms of correlations between the sampled fluid velocity and fluid strain-
rate fields. Results from particle-trajectory based simulations are presented to assess the potential

of this closure strategy.
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I. INTRODUCTION

Particle-number and particle-velocity distributions,
combined with statistical characterisations of turbulence,
play an important role in the study of particle transport
in turbulent flow. Equations governing the behaviour of
such distributions, or statistical moments derived from
these, provide a basis for exploring the physical behaviour
of disperse multiphase flows. In this context the notion of
the particle mass flux is fundamental; it is central to the
formulation of mass and momentum conservation equa-
tions.

To elaborate, consider inertial particles transported in
a turbulent flow with velocity field u(x,t). The cur-
rent work assumes that the particle density is much
higher (> 103 times) than that of the fluid, as is typi-
cal of gas-solid flows. Furthermore, the focus is on dilute
systems in which hydrodynamic interactions and inter-
particle collisions are considered negligible, as is appli-
cable in the regime of a low particle volume fraction.
Denote the position and velocity of an individual parti-
cle in the flow at time ¢ by x(¢) and v(¢). Within the
framework of a statistical description of turbulence the
velocity field u is treated as stochastic, and the parti-
cle mass flux, and other properties, are defined in terms
of ensemble averages () over realisations of this field
and the initial state 2° = (x(0),v(0)): In particular,
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the particle mass flux (strictly, the particle number den-
sity flux) is (o(x,t)v(t)), where o(x,t) = 6(z(t) — x)
is the fine-grain (single realisation) probability density
function (pdf) for the particle position. This flux can
be expressed in terms of the ensemble-averaged number
density p(x,t) = (o(x,t)) and the mean particle velocity
field v(x, ),

(e(x. ) v(t)) = p(x,t) (v(t)), = p(x, 1) V(x,1).

Here <v>x = V denotes a conditional average, based on
the sub-ensemble of realisations such that x(t) = x. The
continuity (number conservation) equation for the parti-
cle phase follows as

Oip = (0) = (-v-80) = —0-pv (1)

where 9y = §/0t and, in a Cartesian co-ordinate frame,
0= (81,82,83), 6j = 8/6%

The aim is to derive representations for the mass flux
pV appearing in (1) in the form

pv=pd—D- 8p (2)

where the convective (drift) velocity d and the gradient
diffusion tensor D are given explicitly in terms of known
statistical properties of u. This challenge has been ad-
dressed by a number of authors who, using quite distinct
methods, have developed alternative representations for
these convective and diffusive contributions to the mass
flux. Whilst the representations that emerge from these
different approaches are distinct, they do share common
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features. Most notably, all require closure modelling to
obtain explicit expressions. We compare and contrast
these different flux representations, both in terms of the
limits of their applicability as well as the potential for
closure analysis that they afford.

To permit precise and detailed analysis, and follow-
ing the seminal work by Maxey [1], we consider the test
case of mono-disperse particles settling under gravity in a
statistically stationary, homogeneous and isotropic flow.
This allows for a uniform particle concentration, p, gen-
erating a purely convective mass flux; Eq. (2) reduces to
VvV = d, so that any model for d can be assessed directly
via the evaluation of ¥V obtained from particle trajectory
based simulations.

Maxey’s work showed that the average settling rate
of particles in turbulence can be greater than that in
stationary fluid. The physical mechanism for this en-
hanced settling is attributable to the preferential sweep-
ing of particles, which originates due to a bias in the
sampling of downward regions of fluid flow. For small
particles this manifestation notably occurs through the
preferential concentration phenomenology, in which the
turbulent structures play a key role in the settling en-
hancement due to the associated bias in sampling of high-
strain, low-vorticity regions in the flow field by particles.
Flux representations that are amenable to closure mod-
els based on these physical features of the system are
therefore crucial, and are the subject of this paper.

Particle drift has also previously been investigated in
detail in the context of particle pair clustering [2, 3],
in which theories for the different mechanisms leading
to a spatial accumulation of particles were contrasted.
Additionally, consideration of particle drift from a PDF
perspective has previously been used to analyse gravita-
tional settling, but only in the case of dense suspensions
where the majority of the increase in settling velocity
is attributed to the higher particle volume fraction [4].
Modelling of the increase in settling velocity which oc-
curs due to the preferential sweeping by turbulence has
not been attempted using PDF methods before, and it is
this which the present study aims to address.

Investigation into the dependence of particle clustering
on mechanisms that act outside of the dissipation range
of turbulence has identified path history effects as being
a key factor across all scales [2, 5]. The effect of tra-
jectory history on clustering has also been studied via
the use of the deformation tensor which represents the
Eulerian-Lagrangian transformation along a trajectory,
both to evaluate the moments of the particle number
density [6-8], and further through the use of dynamical
systems approaches in which the Lyapunov exponents of
particles are used to quantify the rate of contraction and
compressibility of the particle velocity field [9, 10].

Section II summarises the various approaches, and re-
sulting flux representations, that have been developed.
Section III presents a distribution-based symmetry anal-
ysis; this not only reduces the complexity of derived flux
expressions, but also highlights important features of sta-

tistical correlations that appear within these. An ap-
proach to developing closure models is proposed in Sec-
tion IV. We make use of stochastic, particle-tracking sim-
ulations to assess the efficacy of both the underlying flux
representations and the associated closure strategy. Re-
sults from these simulation-based assessments are pre-
sented in Section V.

II. FLUX REPRESENTATIONS

A number of methodologies have been introduced for
constructing representations to pv. These can be divided
into two categories, depending on whether a particle mo-
mentum equation or a particle velocity field is introduced.
The first approach considers momentum transport [11]

O (ov) = (0v + 00) = =8 - pvW + (oF),  (3)

where F' governs particle dynamics through the equation
of motion

() = v(t) = F(a,v;u) . (4)

The majority of works focus on the classic linear drag
model

F(x,v;u)=71"" (u(x, t) — V) +g (5)

where 77! is the particle response rate, and g denotes
gravitational acceleration. In this work we are concerned
solely with systems that exhibit statistically stationary
and spatially uniform states in homogeneous turbulence,
(u) = 0. In such cases Eqs. (3), (5) give

PV = pvg+{ou), (6)

where v, = 7g denotes the gravitational settling veloc-
ity. Any deviation of the mean particle settling velocity ¥
from v is therefore a result of the preferential sampling
of the fluid velocity (ou). The challenge is to formulate
closures for this quantity, and to gain insight into the
physical mechanisms underlying the mass flux contribu-
tion emerging from this term. In passing we note that
this term is also central to the study of inhomogeneous
systems [12].

One approach to closing this drift flux term is that of
functional correlation splitting [13]. In the present con-
text this leads to the approximation (ou) ~ pR, with [14—
17]

t
R = /<ij(t;t’)8kRji(r,t' —0) d. (1)
3 X
In Eq. (7), r = z(t') — x; R is the two-point, two-time
correlation tensor for the homogeneous field u,

R(x' —x,t' —t) = (u(x',t)u(x,t)),



and H(t;t') is the particle response tensor. From Eqs. (4)
and (5) the differential system for H is

H=—T'(H-TH), (8)

with initial (¢ = ') conditions, H = O, # = L. The par-
ticle response tensor has the physical interpretation of
describing the effect of a perturbation in the fluid veloc-
ity field on the particle trajectory at subsequent times.
In Eq. (8) Tin(t) = Omu;((t),t). The dependence of
‘H on these fluid velocity gradients sampled along parti-
cle trajectories is a crucial feature of this representation,
and it is through T that the effect of gravity is implicit in
Eq. (8). This is in accordance with the interpretation of
enhanced drift being attributable to inhomogeneities in
the instantaneous distribution of particles, with preferen-
tial sampling of regions of high strain over those of high
vorticity. We return to this aspect of the representation,
and its implication for closure, in Section IV.

That k provides a description for the settling enhance-
ment of inertial particles which is consistent with the
mechanism of preferential sweeping can be seen in the
expression (pu) which is being modelled; a bias in the
sampling of downward regions of flow will be captured
within this average, and therefore also in Eq. (7). The
average <’HT : OR) appearing in K can be interpreted
as the force per unit mass that particles experience at a
given point in time as a result of fluid turbulence, with
the accumulation of these acceleration contributions over
the trajectory history resulting in the drift velocity de-
scribed by ®. This can be further elucidated by consider-
ing the definition of the response tensor H as a functional
derivative [15, 18]; it is then possible to express the av-
erage (H' : OR) in the form

(s Bt 9)

This representation provides the interpretation of <’HT :
OR) as the average response in the fluid correlation ten-
sor R as sampled by particles that results from a per-
turbation in the flow field u at an earlier time. This
makes it clear that it is the flow correlations experienced
by particles as a result of turbulence at all scales within
the flow that are responsible for the settling velocity in-
crease, and therefore the description (7) provided by &
offers a generalisation of the centrifuging mechanism [1].

Another important feature of this correlation splitting
approach is that it provides exact representations when
the underlying flow field u is Gaussian. This allows for
rigorous testing of closure models; the influence of non-
Gaussian features can either be assessed or eliminated.
It is however possible to extend the approach to account
for the non-Gaussian aspects of the flow; this is discussed
further in Section V A. The inclusion of higher order non-
Gaussian correlations within the particle phase is also
illustrated in the closure analysis presented in Section
V.

The second approach to constructing representations
for the flux pv invokes the concept of a particle veloc-
ity field. This is a subsidiary, stochastic field V(x,t)
associated with each realization of u, such that the cor-
responding particle density ¢(x,t) = <Q>ﬁ0, the ensemble
over initial states for a given realisation of u, satisfies

It follows that
t
o(x, 1) = P°(y°) exp | / oV, )dt'| . (10)
0

Here p° defines the distribution of the initial particle po-
sitions, and y’' = y(¢';x,t) is the solution to
dy’
-J 'V I7 tl
o (¥’ 1)
satisfying y(t;x,t) = x. In Eq. (10), y° = y(0;x,1).
From this the mass flux pv = (pV)" can be written as

pv = <p0(y°)V(X»t) exp —/G-V(y’,t’)dt’ > :
i (1)

Here the ensemble average is over all realisations of u,
with ¢’ defined accordingly in each.

A number of approaches for specifying V have been
developed: Maxey [1] constructed V based on expansion
of the particle equation of motion (4), (5) in terms of 7.
For small Stokes number St = 7/7;, where 7; is a char-
acteristic fluid time scale, this leads to

V=u+v,—7(0u+ (u+v,) 8u) +0(St?). (12)

Expanding the exponential in (11) then provides the fol-
lowing expression for the drift d (with p = p° uniform)

t

d=v, — O/<u(x,t) 8-V(y’,t’)> dt' +0(St?). (13)

Reeks adopted a different approach, relating the veloc-
ity field to the Jacobian J(t) = |det[@y(t;y°,0)/8y"]|
such that J = (8-V).J, and treating ¢ as a functional of
the process q(t') = (V,8-V). This permits a functional
expansion for <<pV> leading to the representation [19]

d%<V>—/<V*(x,t) (OV)' W) a4

the superscript * denoting zero-mean fluctuating vari-
ables.

A third formulation was developed by Chun et al. [20]
with a particle velocity field defined in terms of condition-
ally averaged particle velocities; V(x,t) = (v(t))Z

x,u’

an



ensemble, for a given realisation of u, over initial states 2°
such that x(t) = x. This leads to the representation

t

d~ _/<V(x, N OV 1)) d (15)

0

While there are clear similarities between the represen-
tations for d given by formulee (13), (14) and (15) there
are important differences: Maxey’s model is, by con-
struction, only appropriate in the small Stokes regime
(St < 1). However, it does benefit from a particle veloc-
ity field that is defined a priori, by Eq. (12). Conversely,
although the Reeks formulation given by Eq. (14) is valid
for all St (and is exact if the underlying process q is Gaus-
sian), the particle velocity field and its divergence must
be inferred from the Jacobian determinant J. Moreover,
the deformation tensor 8y/8y" defining J can exhibit
temporal singularities. At such time-points J = 0 and
-V is undefined (unbounded). This phenomenon, often
interpreted in terms of caustics associated with crossing
trajectories [6—8|, poses a serious problem when attempt-
ing to evaluate the drift given by formula (14). The ve-
locity field in the Chun et al. formulation is also problem-
atic; it is precisely defined but the conditioned average is
not a closed quantity. In principle this field and its di-
vergence could be computed numerically from trajectory
simulations, but in the absence of this it is difficult to
evaluate the drift given by formula (15).

In contrast to all of the flux representations based on
the notion of a particle velocity field, the formula given
by Eq. (7) is based directly on the average fluid velocity
sampled by particles, (ou). As such it perhaps provides
a more useful starting point for attempting to construct
closed-form expressions for the mass flux. We return to
this aspect of the work in section I'V. In preparation for
that we first consider the role of symmetry reductions in
helping to simplify the integrands in all the flux repre-
sentations so far discussed.

III. SYMMETRY REDUCTIONS

All of the above models for the drift velocity d must
respect basic symmetry properties inherent in the grav-
itational settling of particles in homogeneous flow. In
particular, with co-ordinate axes Ozjzoxs such that
gi = —gd1; it is evident that do = d3 = 0. The aim
here is to show that this condition is satisfied by each of
the models defined by (7), (13), (14) and (15). In this
respect the most challenging case is that of Eq. (7): From
this definition of K it is not obvious that s = k3 = 0.
Moreover, the representation of ®; involves a summation
of 9 terms. The symmetry analysis below addresses these
points. The method also prompts reductions in closure
expressions developed later, and translates naturally to
analysis of other representations for d.

To establish that %y, K3, as defined by Eq. (7), are
identically zero we first note that, intuitively, the pdf ¢(r)

4

of r = z(t')—x, satisfying x(t) = x, is an even function of
(ro,r3). That is ¢(r1, —12, —13) = @(r1,12,13), and hence
(r2) = (r3) = 0. We wish to formalize and extend this to
the distribution of Z(¢';x,t) = (r, ). Here we have the
interpretation that H(t;t'), like 7(¢'), is to be considered
for realisations such that x(t) = x. From Egs. (4), (5)
and (8) r and ‘H will satisfy

t

r(t') = h(t, t)v — 1/h(zt’, s)(u(s) + vg) ds, (16)

H(t;t') = h(t, ")+ %/h(t,s)l"(s) “H(s;t')ds, (17)

with h(t,s) = 7(1 — exp(—(t — s)/7)), v = @&(t), and
u(s) = u(r(s) + x,s). Now consider orthonormal
co-ordinate transforms X = P -x, such that the co-
ordinate axis in the gravitational direction is unchanged,
i.e. X1 = x1. Thus vy = P-vy, = v,. Define the process

Z{txt)=(FH) =P -r,P-H-P)=P(Z).

Then 7, H will satisfy the transformed versions of (16),
(17), involving x =P -x, v=P-v, u(x,t) = P - u(x,t),
and T =P-T-P". Since vy = v, it follows that Z con-
stitutes a valid realisation of the system associated with
the corresponding realisation u. Moreover, since the av-
eraged particle concentration field remains spatially uni-
form, the distribution of r, and therefore of H, will be

independent of x. It follows that the random variables A
and Z have the same distribution, that is ¢z (¢) = ¢, ().
From this it follows that, for any function F(¢),

(F(2)) = (F(2)) = (F(P(2))).

To apply this to the integrand of K in (7) we shall need
to consider sets of functions F,(¢) indexed by n € S3,
S = {1,2,3}. There are two cases of interest. The first
is when Fy(P(¢)) = —Fa(¢), in which case it follows
that (Fn(Z)) = —(Fu(Z)) = 0. The second case is
Fn(]P(C)) = Fm(C) giving <Fn(Z)> = <Fm(Z)>

To establish simplifications for & a number of sym-
metry transforms P need to be considered. Specifically,
Py, = diag(1,-1,—1), Py = diag(1,—1,1) and

100 10 0
ps=(001), PpP,=(00-1]}.
010 01 0

Table I gives the relationship between the components of
Z and those of Z for each of these four transforms.

Now consider the integrand <ij8kRji>x of ®;. Write
Hij (1) OkRyi(r, ¢ —t) = Frj(Z;t',t).

Then, in the transformed frame (omitting explicit ref-
erence to the time dependencies) Fj;i(Z) = Hpr;0R;i



m T H

+r +Hi1 —Hiz —His

—Ho1r +Haz +Hos
—Hsz1 +Hs2 +Hss

+r +Hi1 —Hiz +His
2 -7y —Ho1r +Hoo2 —Hoas
+173 +Hz1 —Hszz2 +Hass

( ) ( +Hi1 +Hiz +Haiz )

+Hz1 +Hszz +Hse
+Hor +Haz +Hoo

+71 +Hi1 —Hiz +Hie
4 —T3 —Hsz1 +Hzz —Hso
+1r2 +H21 —Haz +Hoo

TABLE I: Components of Z in terms of Z for P..

where 9 = P 0, and the relationship between the com-
ponents of R = P-R-PT and those of R follows the same
pattern as H, H set out in TABLE I. With P = Py,

J

8 = (01, —02,—03) and, from TABLE I,
Fa22(Z) = H2205Ras = Haz(—02)Roo = —Fa22(Z),

indicating (H2205R22) = 0. Likewise, using both Py and
P, it follows that <’ij3kRﬂ> =0,47=2,3,all k£ and 7,
and hence, as required, k5 = k3 = 0.

To simplify ®; use P3: Then o= (01,05, 02) and, for
example,

F221(z) = Hyp05Ro1 = HsgdsRay = F331(Z).
Therefore <H2262R21> = <H3383R31> . Similarly

(H1201R21) = (H1301Ran),
(H2102R11) = (H3105R11),
(H2302Rs1) = (H3205Ra1).

These results are seen to reflect the invariance of the sys-
tem with respect to the interchange of the co-ordinate
axes Oxy < Oxj3. Using these results, and the incom-
pressibility condition 8-R = 0, we obtain the following
reduced expression for the integrand in (7)

(Mr;ORj1) = ((H11 — Ha2)O1Ru1) + 2<<H1231R21> + (H2102R11) + <H2332R31>) . (18)

The remaining, non-zero contributions in (18) still re-
quire closure of course. This is considered in the next
section, where further symmetry-based reductions are in-
troduced. Here we note that, based on the relationship
between the components of T', the fluid velocity gradi-
ent tensor sampled along particle trajectories, and those
of ' = P-T'-P" we can deduce that all non-diagonal
components of (I'(¢)) are identically zero. Therefore, the
fluid rotation rates experienced by particles all have zero
mean values. That is () = L(I' —=T'T) = 0. Again
this is in accord with the expectation that particles ex-
perience no biasing in the x5 and x3 directions, and in-
dicates that the non-zero contribution to (I') is solely a
consequence of the averaged straining (X) = 2(I'+T'T)
experienced by particles. This highlights that, regardless
of the physical origin of the mechanism responsible for
modifying the gravitational settling velocity, this effect
is associated with the preferential sampling of 3 rather
than €. Nonetheless, this observation is not central to
the causal mechanisms which underlie the enhancement
in settling velocity, and so is not considered further in the
present work. Such symmetry-based deductions should
also be applicable to configurations with a higher particle
loading [21, 22] since effects such as three-way coupling,
originating from particle motion, are manifest through
wakes in the velocity field that serve to locally amplify
strain rates in the flow.

(

IV. CLOSURE MODELS

While the drift velocity representations provided by
Egs. (7), (13), (14) and (15) offer various insights into
the origin and nature of enhanced settling, these ex-
pressions do not, as they stand, constitute closed-form
models. The expressions can, in principle, be computed
and assessed from particle simulation studies but, with-
out closure of the underlying ensemble averages, they do
not offer explicit formule for the drift.

With regard to closures for K, previous studies have
invariably made use of Green’s function approximations
to the response tensor H. The influence of T, the
sampled fluctuating fluid velocity gradient tensor, is ne-
glected in (17), thus reducing # to a deterministic form,
namely Hy;(¢;t') = h(t,t')dx;. This has proved success-
ful in cases where (u) # 0, see for example [12, 23-25].
Here, however, in the zero-mean regime of homogeneous
isotropic flow, this level of modelling fails. The integrand
in (7) reduces to h(t,t'){d - R(r,t' —t)), which is iden-
tically zero for incompressible flows. This essential de-
pendence of ‘H on du again emphasises the crucial role
of fluid straining and vorticity on generating enhanced
gravitational settling, and demands more sophisticated
approaches to closure. To this end we make further use
of the correlation splitting technique: Given a random



variable X and a deterministic function G(x) then [13]
(XG(X)) = (x){(G(X)) + (15

where () denotes cumulants of X. In particular
(X) = (X), and (XX) = (X'X’), X' = X — (X).
Further, if X is Gaussian then all higher-order cumulants
are zero. Applying (19) to the integrand of %y gives (the
conditionality «(¢) = x in the ensembles being implicit)

(XX)-(0G(X))+ -

(MijOkRi1) =Y T (20)
n=1

in which the first 4 terms are given by the expressions

Ti= (Hi){OkRj1)

Ty = —(Hjmn ) (OnOrRj1)

T3 = (Hijrarp)(0p0n0kRj1)

T4 = —<<7‘[kj7“n7”p7‘q>><8q8p8nakRj1>
We can again make use of symmetries to simplify the
summations in each term of this expansion. Firstly, since
¢z, = ¢ it follows from TABLE I that, for all k£ # j,
Hy; has an even distribution and therefore zero-mean.
Further, Hos and H33 have the same distribution. These,

and the incompressibility condition 8-R = 0, reduce the
first term 77 to

Ty = (H11 — Ha2){(1Ru1) . (21)

To establish reductions in the second term 7T, define
Fnkj(’l“) = 8nakRj1(T,t/ — t). Then, with P = Py,

Fags(Z) = 8305Ro1 = (—02)(—D2)(—Ra1) = — Faza(Z)
implying that <8282R21> = 0. Similar consideration of

all the Fl;; under P; and P, establishes that the only
non-zero components of (9,0,R;1) are

glglgug 0201R21) = (0102Ra21 (22)
o 0301R31) = (0103R31
D305R11)

Transform P4 establishes <8232R11> = <8383R11>, and
<8231R21> = <6381R31>. Combining these, and using
0-R = 0, reduces the 27 terms in T3 to

Ty = 2{Ha172)(9205R11)
+ ({(Ha1 = Haz)r) = (Haora) ) (9101 Rn) . (23)

The cumulant expansion given by Eq. (20), when intro-
duced into the flux representation given by Eq. (7) offers
both a mechanism to formulate closures for this enhanced
flux, as well as a means to identify the dominant contri-
butions to this. These two avenues of investigation form
the cornerstone of this work, and the assessment of each
against numerical data is covered in sections VB and

V C. The expansion given by Eq. (20) reduces the clo-
sure problem to that of finding a strategy for construct-
ing models for the cumulant correlations, K* = (H)),
K? = (Hr), K? = (Hrr)) etc., and for the averages of
gradients in the fluid velocity correlation tensor R sam-
pled along trajectories. To these ends we make use of
the representations of r and #H given by Egs. (16), (17).
Eq. (16) can be rewritten as

() = (= v, + (E O = vy) = T [t s)uls)ds.

t/

(24)
whilst, substituting representation Eq. (17) for # recur-
sively into the right-hand side of the same equation leads
to the approximation

(1) ~ h(t, £)] + % / h(t, $)h(s,t)T(s)ds.  (25)

Eq. (25) is a leading-order approximation, which is found
to capture virtually all of the particle response behaviour
which is important in the context of gravitational set-
tling. The effect of including more detail from Eq. (17)
in an explicit description of H is negligible, and higher-
order contributions from Eq. (17) have therefore been
omitted in the present work.

Eq. (24) is a starting point for formulating closures
to the means of sampled gradients in R: Averaging over
trajectories such that «(t) = x, and noting that, since the
system under consideration is statistically homogeneous
and stationary, (u(s))x =& = (v) — v, gives the exact
relationship (r(¢')) = (¢'—¢){v). This prompts the simple
approximation (r) ~ r% = (t'—t)v,, and then the closure

(OkRj (r(t), ¢ — 1)) = Qi (r*)B(t' — t;71,)  (26)

where Q(r) = R(r, 0), and E(s; 77,) is a modified tempo-
ral decorrelation function that accounts for the influence
of particle sampling by replacing the fluid Eulerian in-
tegral timescale, 7, with a Lagrangian timescale, 7r,,.
A specific model for 7z, is given in the Section V where
results show that this closure strategy is very effective,
not only for (OR) but also for higher-order derivatives.

With regard to forming closures for the correlations
between H and r embedded in the cumulants K", we
note that Eqs. (24), (25) provide expressions for r and
“‘H in terms of, respectively, sampled fluid velocities u and
fluid velocity gradients I'. In consequence the cumulants
K" can be reduced to correlations between uw and I', and
these are amenable to further closure modelling.

Firstly, averaging Eq. (25) introduces the unclosed
term (T(s)), into the approximation for (#})). A rep-
resentation for this unclosed term can be derived using
the same approach used to represent (u)y in terms of K.



This gives (see Appendix C)

(27)

X

/ Hyoj (t;1") 0 Ok Ry (v, ft)> dt’ .
0

We note that the integrand in Eq. (27) is zero if m # i,
indicating that this approximation respects the symme-
try constraint that requires (I') and (H) to be diagonal.

J

t

(Hrjra) =

S

+

where v/, u’ and IV denote fluctuations about mean val-
ues. A natural closure for (I'(s1)u’(s2)) is obtained by

taking (T'(s1))(u(s2)) ~ 0 and then

(Dhjuny = (Oug (x(s1), 51) un (®(s2), 52) )
~ (0;Rpn(r(s1) — 7(s2), 51 — 52)) -

The closure strategy given by Eq. (26) can then be used.
For the correlation <I" (s) v/ >7 we relate particle velocities
to sampled fluid velocities via a particle-fluid stochastic
model [26], further details of which are outlined in Ap-
pendix D. This provides expressions for correlations be-
tween these velocities, and to conform with these we take

(31)

, VStg 1 ,
t .
vE 1+StE +1+StEu( )+ v

(32)

Here v/ is the root-mean-square velocity for the fluid,
Stg = 7/7E, and z is the standard normal deviate. The
correlation (I'(s) v') is therefore modelled as

(T'(s) V') ~ ﬁﬂ"'(s)u

and Eq. (31
strategy is used to model both (IV(s;)w’
(TV(s)V').

The effectiveness of these closures is discussed in the
next section. A similar approach could be considered for
terms T3 and Ty in expansion (20). This is not pursued
here since the results in Section V demonstrate that, in
the present context, the contribution of these terms to
the enhanced settling is secondary.

") (33)

) can then be used again. Thus the same

(s2)) and

h(t/,t)/h(t, s)h(s,t") (T}, (s)vy,) ds — Ti

A cumulant expansion in Eq. (27) gives
(HrjOmOkRji) = (M ) (OmOkRji)
+ <<ijrn>><8n6makRﬁ> +

Symmetry considerations reduce the first term in this
expansion to

<<ij>><8m8kRji> = 6im<H11 - H22><8m81R1i) .

(28)

(29)

Of course this introduces the mean value (H) again.
However, results show that this contribution is small
compared to the second term in Eq. (28). Indeed, the
dominant contributions in both Eqs. (20) and (28) are
those associated with the second-order cumulants. These
can be approximated by combining Egs. (24) and (25) to
get

t t

/h(t, sl)h(sl,t')/h(t’, 52)(Th;j(s1) Uy (52)) dsadsy,  (30)

t

V. RESULTS AND DISCUSSION

Various representations for the particle mass flux pv
were set out in section II. These all purport to capture
(subject to associated provisos) the increase in settling
velocity experienced by inertial particles in a gravita-
tional field. However, that this is the case is not im-
mediately obvious, and therefore it is instructive to as-
sess such models making use of particle-trajectory sim-
ulations. Results from such simulations also provide a
benchmark against which the closure modelling strategy
developed in section IV can be assessed. As noted in sec-
tion II, two of the formulations, Egs. (14) and (15), are
problematic in that they do not lend themselves easily to
a simulation study. We therefore confine our attention
to the flux representations given by Egs. (7) and (13).

In the case of the representation given by Eq. (7),
the claim is that this provides an exact description of
enhanced settling subject only to the underlying fluid
velocity field u conforming to a Gaussian distribution.
With this in mind we have adopted a kinematic sim-
ulation (KS) approach for generating stochastic fields.
This allows for the construction of velocity fields that
are not only strictly Gaussian, but that also reproduce
prescribed forms for fluid velocity correlations and tur-
bulent kinetic energy spectra consistent with the gen-
eral theory of homogeneous, isotropic turbulence. In this
way, with a closed form expression for R, we ensure that
no confounding factors have to be taken into account
when assessing our closure modelling. We have chosen
to simulate the velocity field u such that this reproduces
the Batchelor—Townsend energy spectrum. Details of the



simulation method are given in Appendix A.

By computing particle trajectories in these simulated
flows we can investigate the validity and accuracy of the
flux representations. Further, in the case of that given
by Eq. (7), we can assess both the relative contributions
to this flux from the terms T, in the expansion (20), and
the performance of the proposed closure models for these
terms. These investigations are presented next.

A. Assessment of Flux Representations

The representations for enhanced settling given by
Eqgs. (7) and (13) can be assessed from two measures
obtainable from simulation data: Firstly, by direct eval-
uation of the mean particle velocity ¥. This, of course,
provides the reference value, v — v,. Alternatively, from
Eq. (6), the preferentially sampled fluid velocity (ou)
should be equivalent.

Simulations were performed with a range of parameter
values, 0.05 < Stg < 5 and 0.05 <V, = |vg| < 2,in a
two-dimensional KS flow field. All simulations used 10°
particles and were run in parallel on 44 processors for a
period of 37+ 37E to achieve equilibrated statistical mea-
sures, and a further 477, for the sampling of statistics.
Fig. 1 shows corresponding results for the 3 measures of
enhanced settling; V—v,, (ou), and K. The last of these is
computed using the simulated particle trajectories to per-
form a direct numerical evaluation of the expression given
by Eq. (7). All results are normalised with respect to the
fluid root mean square velocity v/, and error bars repre-
sent the standard deviation from time-averaging. From
the figure it is seen that the modification in settling ve-
locity is always positive, which is consistent with the use
of the linear drag model (5) [27, 28], and furthermore
the peak increase of around 7% is in line with previous
findings using synthetic velocity fields [1].

The results are seen to substantiate the validity of the
enhanced flux representation provided by ® across the
full range of values of Stg and V,. This demonstrates
that, for a Gaussian flow field, the functional correlation
splitting approach in (7) is able to capture all the phys-
ical mechanisms which act to cause the increase in set-
tling velocity that is observed, and is therefore a suitable
framework for model development of this phenomenon.
The capacity of this formulation to capture the enhanced
settling stems from the interaction between H and R as
seen by particles that is intrinsic to Eq. (7). This implies
that it is the correlation between the path history of par-
ticles and the sampling of spatio-temporal flow structures
along trajectories which is responsible for the increase in
settling velocity, and this is in accordance with the pref-
erential concentration phenomenology [1, 29].

It is worth noting that in principle the functional
correlation splitting approach can be extended to in-
clude higher-order cumulants which account for the non-
Gaussian aspects of the flow [15], meaning that this ap-
proach is capable of capturing the range of various phys-
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FIG. 1: (Color online) Enhanced settling velocity.
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FIG. 2: (Color online) Enhanced settling velocity.
Comparison of (34) with |{ous)|/pv’, Vy/u' = 1.0.

ical mechanisms observed for particles settling in true
turbulence [21, 22, 28]. The additional contributions
are generalisations of the history integral given by K in
Eq. (7) and are infinite in number, however the expres-
sion for K remains the leading order contribution. Con-
sequently K would still be expected to capture the domi-
nant contribution to the drift velocity in true turbulence
across a range of Reynolds numbers. The methodology
can also be extended to non-linear drag models for de-
scribing the particle trajectories, in which case the func-
tional correlation splitting approach would be expected
to account for the phenomenon of loitering observed at
large St [27, 28].

Fig. 2 shows a similar comparison between the refer-
ence values (ou) and the representation given by equa-
tion (13), using expression (12) for V to reduce this to
the approximation

(ow) ~ 7p / (u(x.t) Bu: ou” @t )dr' . (34)
0

The results shown were obtained using a normalised
gravitational settling velocity V,/u’ = 1 which, from



Fig. 1, maximises the enhanced setting. As can be seen,
the agreement provided by approximation (34) is not
strong. Of course, by construction, we would not ex-
pect good agreement for St ~ (O(1). However, even
for St ~ O(0.1) the agreement is limited, and only the
underlying, qualitative trend is recovered. This demon-
strates that the centrifuge process identified by the small
St analysis is not the only mechanism responsible for en-
hanced settling, with other mechanisms predominant at
larger St. This is the case even in the simplified context
of a Gaussian flow field, and highlights the importance of
the multiscale effects that underlie this phenomenon [29].

The contrast with Fig. 1 is striking, and prompts fur-
ther assessment of the preceding analysis aimed at con-
structing closure models for the flux representation pro-
vided by Eq. (7). Results from these investigations are
presented next.

B. Relative Contributions of Cumulants

In terms of modelling, it is instructive to first numeri-
cally evaluate the terms in the cumulant expansion (20)
for the integrand of ®;, in order to ascertain the im-
portance of their relative contributions. Although the
flow field u is Gaussian, the resulting processes r and
‘H are not, and this necessitates the investigation of at
least some higher-order terms. We consider the first
four terms, T} to T4. These have been evaluated us-
ing simulated particle trajectories, and illustrative re-
sults are shown in Fig. 3. These results were obtained
using Sty = 0.1 and V, /v’ = 1.0, corresponding to the
maximum enhanced settling (Fig. 1). Fig. 3 shows the
(normalised) time evolution of the integrand (Hy;0kR;1)
together with the contributions to this of the different
expansion terms T),. It is immediately apparent that the
dominant contribution arises from 15, and is thus asso-
ciated with the second cumulant K? = (Hr)). The con-
tributions from the other terms, 77, T3, and Ty, are all a
full order of magnitude smaller, and consequently play a
substantially less significant role in determining the over-
all particle settling velocity. Nonetheless, the presence of
non-zero T3 and 74 highlights non-Gaussian aspects in
the joint distribution of » and H which arise from the
biasing that is inherent in particle trajectories.

Another way to illustrate the relative importance of
terms T; through Ty is by considering the cumulative
contribution of these to the overall behaviour of the inte-
grand (Hy;0xR;1). This is illustrated in Fig. 4. Clearly
T1 cannot, by itself, be considered a meaningful descrip-
tor of this average. However, the partial sum 77 + Tb
is seen to account for the majority of the average, due
to the dominant contribution of T5. The addition of T3
provides only marginally greater accuracy, whilst inclu-
sion of T, adds a slightly more substantial contribution.
At this level of description, the remaining deficiency is
concentrated around the peak amplitude of the average
(Hr;0kR; 1), and also at large time separations of (¢ —t').

+<(HT 8R)1>
—e—T1
-a-Ty
x* T3 4
Ty

:
0 02 04 06 08 1 12 14 16 18
(t—t)/e

FIG. 3: (Color online) Contribution of terms T;, to the
average <(’HT: OR)1), Stg = 0.1, V,/u' = 1.0.
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FIG. 4: (Color online) Partial sums of T,, as approx-
imations to ((#': dR)1), Stp = 0.1, V, /u' = 1.0.

This implies that contributions from additional terms,
Ts, T etc., in the expansion will make little discernible
difference, and justifies truncation of the expansion at
Ty. Furthermore, it is seen in Fig. 4 that the information
contained within 77 and 75 constitutes the majority of
the variation in (Hy;0xR;1), and is certainly sufficient to
capture the characteristic behaviour that is responsible
for the increase in particle settling velocity.

The relatively small contribution from 77 can be ex-
plained by recalling that, as deduced based on symmetry
arguments in section I1I, K!' = (H)) is diagonal. The
contraction with (OR.(r,t' —t)) then results in terms that
approximately cancel, in accord with the incompressibil-
ity condition 8 - R = 0. In contrast, K2 = (Hr)) in Ty
reflects to the interaction between r and H which is as-
sociated with the non-local path history effects that are
sampled along individual trajectories [2, 5], and only this
level of detail is sufficient to account for the majority of
the increase in particle settling velocity. This emphasises
that the mechanisms which underlie this phenomenon are
not directly dependent on average properties of either
the flow field or the particle phase, but rather the collec-
tive influence of the flow field on individual particles, and



specifically how the trajectory dependent response tensor
‘H and separation along trajectories r interact with each
other. This also explains why Green’s function approxi-
mations to the response tensor # are incapable of captur-
ing any of the settling velocity enhancement experienced
by particles; these approximations effectively model the
average particle response (#) by omitting the individual
trajectory history dependence of particles, and therefore
only have the capacity to include information contained
within 77. This highlights the necessity to account for
trajectory dependent history effects and, in particular,
the key role of the fluid velocity gradient tensor sampled
by particles. On this basis a carefully constructed closure
model for Ty will be sufficient to capture essential fea-
tures modifying the particle settling velocity. This is in
contrast to previous modelling work using the functional
correlation splitting approach in cases where (u) # 0
[12, 23-25]. In these scenarios the average particle phase
behaviour is more important than the individual trajec-
tory dependence on the flow field. Consequently, in such
flows, T rather than T3 gives the dominant contribution
to the mass flux.

C. Closure Model Assessment

The closure strategy outlined in section IV was applied
to the first two terms, 77 and T3, of the expansion (20).
The application to terms T3 and T4 was not considered;
partly because of the added complexity involved, but also
because, as we have just seen, these terms contribute a
relatively minor component to the overall mass flux. In
this section therefore attention is confined to assessing
the approach as applied to T and T5.

The model requires specification of a suitable La-
grangian decorrelation function in Eq. (26). We take

s

E(s;7rp) = exp [— e 52}. This is a natural variation

of the decorrelation function defined in Eq. (A2), with a
modification that seeks to accounts for the influence of
particle trajectories by replacing the fluid Eulerian inte-
gral timescale 7 with 77,. The specific model used for
Trp is the empirical relation [30]

TE — TL
TLp —TE — — ) (35)
P (1 -I-StE) 0.4(140.01 Stg)

where 77, is the Lagrangian fluid integral timescale as de-
termined from the specific flow field under consideration.
Use of Eq. (35) ensures that model (31) is physically con-
sistent with the correlation being that of fluid quantities
sampled by particles, and that the associated decorrela-
tion timescale is then representative of particle settling.

The ability of the proposed closure strategy to accu-
rately capture the increase in settling velocity depends
upon the effectiveness of the models for the various ex-
pressions in the expansion (20); specifically the spatial
derivatives of R evaluated along particle trajectories as
modelled in Eq. (26), and the cumulants {(#H)) and (Hr))

FIG. 5: (Color online) Evaluation of closure approxim-
ations (OR(r)) ~ OR(r"), Sty = 0.1, V, /u' = 1.0.
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FIG. 6: (Color online) Evaluation of closure approxim-
ations (00R(r)) ~ 8OR(r?), Sty = 0.1, V,/u' = 1.0.

themselves, which are modelled using Egs. (25), (27) and
(30). The former closure completely neglects the effect
of the covariance of r on the behaviour of the tensors
(OR(7,t'—t)) and (QOR(r,t’' —t)), and only accounts for
the influence of trajectories through the average statis-
tic Y. Despite this, the true behaviour of these terms
is well approximated by the models in terms of both the
magnitude and timescale of the decorrelations. This is il-
lustrated in Figs. 5 and 6 which compare closure approx-
imations with exact averages. Only the distinct, non-
zero components are plotted. These are consistent with
predictions from the symmetry analysis. In view of equa-
tions (22), (23), only the averages (91R11), (6101R11) and
(0202R11) are required in the closure. The figures show
that the proposed closures provide an acceptable level of
accuracy.

Closure of the second cumulant, {#r)), is based upon
approximation (31) for (I'u') coupled with the gradient
approximation (26). The latter, as just discussed, per-
forms well. The performance of the former is illustrated
in Fig. 7 where, again, all the distinct, non-zero compo-
nents are plotted. As can be seen, reasonable agreement
is obtained for all but one of the component averages:
The profiles for (I'yyu}) and (Tjyub) are noticeably dif-
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(T’(s) v'> ~ OR(r?), Stp = 0.1, V,/u' = 1.0.

1+St

ferent, whereas the corresponding closure approximations
are identical, and fit (I'|oub) very well. This discrepancy
is a consequence of introducing the isotropic correlation
tensor R in (31). This means that, irrespective of sub-
sequent closure of this term, the observed anisotropy in
the correlations cannot be captured. The decorrelation
time-scale associated with (I'j,u) is also seen to differ
significantly from the other terms. The behaviour of this
component is more characteristic O(t) exponential de-
cay, rather than the O(t?) form in the model decorrela-
tion function E(s; 71, ), which is seen to capture the other
correlation profiles very well. Again this reflects the par-
ticle sampling bias in these Lagrangian correlations. The
closure model for (I'v’), Eq. (33), is derived from that
for (I'u’ > Not surprisingly then, further deviations are
evident between the predicted model and the true decor-
relation profiles, Fig. 8. Nevertheless, on balance, the
results shown in Figs. 5-8 illustrate that the underlying
closures do capture essential features of the profiles. In
most cases they do so very well.

The acid test of the closures based on Egs. (31) and
(26) is made by evaluating the integrand (# :8R) of 7
using these models. In principle it is possible to derive
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FIG. 9: (Color online) Evaluation of model for
(H":8R),), St = 0.1, V, /u' = 1.0.

analytical expressions for the resulting model for this in-
tegrand. Here, however, model verification is undertaken
numerically since the calculations are computationally
trivial, consisting simply of a double integral in time.
This is in stark contrast with the computational effort
required to evaluate the unclosed expression from parti-
cle trajectory data.

The performance of the models for the terms 77 and 75
of the cumulant expansion (20) as evaluated using this
procedure is displayed in Fig. 9. Whilst the contribu-
tion from 77 is small in comparison to 75, the model for
T7 is seen to accurately account for this small compo-
nent. The model for 75 is also seen to give a reasonable
representation of the true behaviour, although there are
discrepancies in the predicted peak value and the decor-
relation timescale. The deficit in peak amplitude can be
attributed to the introduction of an isotropic approxima-
tion in Eq. (31), sacrificing the true anisotropic behaviour
shown in Fig. 8. The timescale discrepancy is manifest in
the introduction of a single time scale, Eq. (35), invoked
to model all decorrelations between fluid velocity and ve-
locity gradient components. Despite these variations the
overall model for the combined contributions of 77 and 15
is seen to capture important features in the time history
dependence of the average (#': OR). Clearly there is
scope for further refinements to the detailed modelling,
but these results demonstrate the potential of the pro-
posed methodology for constructing closures for particle
mass flux representations.

VI. CONCLUSIONS

The work presented in this paper has considered a
number of different representations for the particle mass
flux pv, and the effectiveness of these at describing the
modification in settling velocity that is exhibited by in-
ertial particles in a uniform gravitational field. With fo-
cus on the functional correlation splitting approach in
Eq. (7), an analysis of this flow configuration has high-



lighted the symmetries that are inherent in the quantities
associated with this framework. A cumulant expansion
of the unclosed average in Eq. (7) has further enabled
investigation into the importance of interactions involv-
ing the non-local path history effects which are sampled
along particle trajectories, and a closure model has been
constructed that is able to capture the essential features
of this underlying behaviour.

Importantly, the functional correlation splitting ap-
proach has been shown to account for the complete effect
of the increase in settling velocity that is exhibited by
particles in a Gaussian flow field. Two key factors that
play a role in this have been highlighted in the work:
The first of these is how the the fluid velocity gradient
sampled along particle trajectories influences the dynam-
ics of the particle response tensor H. The second is the
statistical spatio-temporal structure of the turbulence as
represented by the fluid velocity correlation tensor R.
Crucially it is the interaction between these two quanti-
ties that is responsible for recovering an exact represen-
tation of flux modification.

That the mass flux associated with small-scale effects
such as the increase in particle settling velocity can be
accurately represented by Eq. (7) is a consequence of this
framework being free of spurious drift [31]. This means
that the model description provided by the unclosed av-
erage in Eq. (7) does not suffer from the introduction
of any artificial effects in the fluid-point limit St — 0.
The phenomenon of preferential concentration is depen-
dent upon the correlation of particle spatial distribution
with the flow field structures and the functional correla-
tion splitting approach is able to fully capture this be-
haviour. This work therefore serves to demonstrate that
such a framework offers a conceptually sound approach
for representing and modelling small-scale flux contribu-
tions which arise from preferential sampling of the flow
by particles.

The other main contribution of this work is to high-
light the ability of the cumulant expansion (20) to ex-
tract the necessary behaviour from the unclosed average
<’HT: OR). Previously proposed closure approaches are
unable to reproduce such effects. In addition to delin-
eating the contributions individual cumulants make to
the overall behaviour, this expansion technique has the
advantage of reducing unclosed expressions to stochas-
tic quantities directly related to the underlying particle
equation of motion and fluid velocity field. This provides
a means to construct closures that are able to account for
the characteristic physical behaviour of even small-scale
fluxes, and thereby provides a fundamental representa-
tion of these phenomena.
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Appendix A: KS Flow Field

The simulation results in section V were obtained using
the technique of kinematic simulation, in which realisa-
tions of a stochastic velocity field u(x,t) are generated.
This zero-mean field is defined on a domain [—L, +L]*
(in d € {2, 3} dimensions) with periodic boundary condi-
tions, and such that the constraints of incompressibility,
homogeneity, isotropy, and statistical stationarity are all
satisfied. Then u(x,t) can be expressed in terms of its
Fourier series representation as

u(x,t) = ch(t) explik-x] (A1)
k

where k = fn = Akn, n € Z4%. The amplitude coeffi-
cients ci(t) € C? are defined via ci = zy x kexp [z wkt],
with zy = % ax (Ck - ié’k) and normally distributed ran-
dom variables (i, &k ~ N(O,UZI), and wyi ~ N(O,UUQJ)7
subject to the constraints (to give u € R?), ¢_x = —Cx,
& x = &k, w_x = —wg. This method of construction re-
sults in a two-point, two-time correlation tensor R(r, s)
expressible as a product of independent spatial and tem-
poral correlation functions, R(r,s) = Q(r)E,(s), with
the temporal correlations following a Gaussian profile

Eu.(s) = (exp[iwks] ) = exp [-3025°] . (A2)

The parameters ay and o, may be chosen so that spatial
correlations of the resulting field u conform to a given
form of Q. Consistent with an isotropic system this must
take the form

rirj

Qij(r) = o |0 —g() + Sig(r)|  (A3)

where r = |r|, and the longitudinal and lateral decorrela-
tion functions f(r), g(r) are related through incompress-
ibility by

1
(d-1)

g(r) = f(r) + rf(x), (A4)

with f(0) = ¢(0) = 1. Consistent with the standard
Batchelor-Townsend energy spectrum [32, 33|, the form
of f(r) is taken to be

f(r) =exp[—3 airQ] . (A5)

To reproduce this from the simulated velocity field the
parameters ay and o, are given by

_ -4 d _—(d+2) | k2 2
ax =4 (2m) 2(Ak) o, eXp =33 . (A6)
3
1 2
1o) = Y = (AT)



subject to oxL > 1. This specification of f(r) and E,(s)
also directly yields the longitudinal integral lengthscale
Lq; and FEulerian integral timescale 75 of the velocity

field as
L ——/ f(r)dr—— 50 1,
11 \/; k

TE:/O Ew(s)ds:\/ga L

Appendix B: Higher Order Derivatives of the
Two-Point Correlation Tensor for Isotropic Flow

(A8)

(A9)

Consistent with appendix A, and the decoupling of
spatial from temporal correlations in a kinematically sim-
ulated velocity field, write R(r,s) = Q(r)E,(s). Then,
using Eq. (A5), the homogeneous and isotropic spatial

J
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correlation tensor Q(r) takes the form

u'?
jS = m {01% Ir;r; — [0’1% 1'2 — (d — 1)] 5ﬂ} f(]f) . (Bl)

To simplify the presentation of the spatial derivatives of
this tensor it is convenient to introduce a sum over per-
mutations notation. Let 23 arj; denote the sum over all
permutations of the 3 symbols in the triple (k, j,7). That
is

23 Akji = Qkji + kij + Qi + Qjik + Qikj + aijr . (B2)

Sums over permutations of other n-tuples, e.g. >, bixji,
are defined similarly. Then, with the interpretation that
the partial derivative operator acts upon r in the follow-
ing, we have

2
0kQji = v o {02 TT;T; — ([02 r? — (d+ 2)]r65; + 3 Z rké-)} f(r) (B3)
ji d—1 k TkLjTs k ji T3 2 g TkOji
u'? o2
(91(9ij¢ = d_ i( {O’ﬁ Irer;r; — O‘lz ([Ul% 1‘2 — (d + 4)]1"l1"k5ji + % 24 rlrk(?ji)
+ ([01% r* — (d+2)]6udj; + %24 5lk5ji)} f(x) (B4)
UIQUI% 4 2
Om010kQji = — T {Ukrmrlrkrjri — o}, ([okr —(d+ 6)] T XiTk05; + 15 Z rmrlrkéﬂ)
—+ (l [O’kr — (d —+ 4)] 51‘]‘ 3 I'7n§lk + 8 ZS r7n§lk5ji) } f(I') (B5)
12 _4
OnOm 010k Qi = Z_Ulf {agrnrmrlrkrjri — O'ﬁ ([UﬁrQ —(d+ 8)] L IiT0,; + Tls Z rnrmrlrkéﬁ)
+of (7 [okr —(d+6) 6 532 Z L T Z rnrmélkéﬂ)
— (o = ()] 65 dumdus + 5 D Sumuyi) } (1) (B6)
[
Appendix C: Correlation Splitting for Velocity used to write
Gradient Flux Closure
p(x,t) <Fim(t)>x = <g (x,t) Omu; (%, 1) > . (C1)
Manipulation of the spatial derivative then yields
The expression for (I'(t))x given by Eq. (27) is ob- (00w = O(ow) — (wdmo) . (C2)

tained using the same functional correlation splitting
technique that produced Eq. (7). The derivation, out-
lined here, makes use of the particle number density
o(x,t) = 6(x(t)—x) and ensemble-averaged number den-
sity p(x,t) = (o(x,t)) introduced in section I. Recalling
that i (t) = Opu;(x(t),t), the properties of ¢ can be

The first term on the right-hand side of this expression
introduces &; again, Eq. (7). In the present context this
will be spatially uniform, and therefore the gradient in-
volved in the first term will be zero. For the second term,
the same correlation splitting approach can be utilised



[13, 15]. For a zero-mean Gaussian velocity field u this
results in

6(9mo) I 340
<uz mQ // i (%, 6% t)<5uj(x t’)dx/dt’>dx dt

(C3)
The functional derivative in this expression can be rewrit-
ten using the chain rule as [15]

5(am9)

s e~ 0@ =X Hig () OkOme (C4)
J )

with the response tensor H.(t;t") defined, as before, by

dxg(t)
t

A VN

(C5)

Using (C4) in (C3) produces the simplification

t

— [ (a5 R0, 0) 00,0

0

<uiam9> =
(C6)
Noting that H(¢;t') is independent of x, manipulation of

the spatial derivatives acting on g yields, in homogeneous
systems,

(1:0m0) / Hyos (1) O O Ry (¢ )t’;x,t)g> '
0

(C7)
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Hence, using the filtering property of ¢ we obtain from

Eq. (C2)

<8mui

X

t
/ Hij(t; 1) OmOkR i (2 (t )t’;x,t)> at’
0

(C8)
This enables a closure model for <I‘(t)>x to be con-
structed which is consistent with the procedure used for
(ou) in Section IV.

Appendix D: Model for the Steady-state
Particle-Fluid Correlations

The expression in Eq. (32) emanates from a PDF
model for the steady-state particle-fluid correlations [26].
Specifically, a generalised Langevin model is introduced
for u(z(¢),t), and along with Eq. (5) for the evolution of
v(t), the statistics of the joint particle-fluid distribution
p(u,v) can be derived. In particular, the distribution of
v(t) conditional on u(xz(t),t) can be obtained by mak-
ing use of the relationship p(v | ) = p(u,v)/p(u), and
yields a Gaussian with mean V(u) and covariance matrix
Oy given by

N 1
Stg 2
O = / D2
v 1+ Stp) (D2)

Specification of the particle velocity in accordance with
the Gaussian distribution p(v | u) is achieved using the
formula v = /@y, - z + V(u) where z is the stan-
dard normal deviate, from which it follows that using
Egs. (D1) and (D2) results in the expression given by
Eq. (32).
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