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Abstract. Climatically driven perturbations (e.g. intense drought, fire, sea surface temperature rise) can bring
ecosystems that are already stressed by long-term climate change and other anthropogenic impacts to a point of collapse.
Recent reviews of the responses of Australian ecosystems to climate change and associated stressors have suggested

widespread ecosystem collapse is occurring across multiple biomes. Two commonly cited case studies concern forested
wetland ecosystems:mangrove forest dieback in northernAustralia (2015–16) and riverine forest dieback in the south-east
of the continent (2002–09).We present an alternative interpretation that emphasises the dominant signal of climate change
effects, rather than the interdecadal signal of climate variability that drives wetland forest dynamics. For both the south-

east Australian riverine forests andmangroves of northern Australia, aerial extent remains greater after dieback than in the
early 1990s.We interpret dieback and defoliation in both systems as a dry phase response and provide evidence of a current
and near-future climate change trajectory of increased areal extent and cover (i.e. tree colonisation and range infilling). In

both case studies, climate change-driven increases in tree cover and extent are occurring at the expense of wetland
grasslands and the important ecosystem functions they support.

Received 11 August 2021, accepted 18 October 2021, published online 9 November 2021

Concerns raised over Australian forested wetlands

The effect of a warming climate on patterns of tree recruitment,

growth and mortality is a topic of considerable debate (Allen
et al. 2015; Hartmann et al. 2015). Observations of woody
vegetation growth at regional and continental scales suggest an
overarching pattern of biomass increase in the absence of local

deforestation, an outcome of CO2 fertilisation, increased water
use efficiency, a warmer atmosphere and locally enhanced
atmospheric water content (Sittaro et al. 2017; Song et al. 2018;

Wang et al. 2018). The expansion of woody vegetation into

grasslands has been described from North America (Van Auken
2009), semi-arid and tropical Australia (Fensham et al. 2005),

Europe (Maestre et al. 2009), India (Misra 1983) and China
(Peng et al. 2013), contributing to an increase in tree canopy
cover across the globe (Song et al. 2018). However, the com-
bination of elevated temperatures and severe drought appear to

be increasing treemortality in several biomes, including tropical
and boreal forests (Sitch et al. 2015; Birch et al. 2019; Locosselli
et al. 2020). The increasing coincidence of drought and higher

temperatures (‘hotter droughts’) is likely to increase the
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prevalence and speed of tree mortality under climate change
(Allen et al. 2015; McDowell et al. 2020), increasing the vul-

nerability of forests already exposed to increased fire risk
(Kirchmeier-Young et al. 2019) and insect predation
(Pureswaran et al. 2018).

Short-term extreme climate events, superimposed on the
background stress of climate change and other anthropogenic
stressors, have been proposed to explain recent widespread

changes in Australian ecosystems in recent reviews (Harris
et al. 2018; Australian Academy of Science 2021; Bergstrom
et al. 2021). Of these ecosystems of concern, two may be

categorised as forested wetlands: mangrove forests of northern
Australia and riverine (river red gum) forests of the south-east of
the continent (Fig 1). Across the north of Australia, extreme low
rainfall corresponding to a negative phase of the El Niño–

Southern Oscillation and a positive phase of the Indian Ocean
Dipole, coincided with a low sea level anomaly and record high
air temperatures contributing to conditions of extreme water

stress (Asbridge et al. 2016; Bergstrom et al. 2021), reducing
mangrove cover by ,6% in the Gulf of Carpentaria in 2015
(Duke et al. 2017). River red gum forests, the most widespread

wetland forests in the south-east of the continent, have been
reduced from their pre-European extent due to forestry, land
clearing and changes to flood regimes due to irrigation develop-
ment, with an estimated 60% of the pre-European extent of

floodplain forest retained in Victoria and 68% in New South
Wales (Mac Nally et al. 2011). Widespread declines in the
condition of riverine forests occurred throughout the Murray–

Darling Basin during the Millennium Drought (Mac Nally et al.
2011), a period of prolonged below-average rainfall extending
from 1997 to 2010 (van Dijk et al. 2013).

Here, we consider trends in mangrove and river red gum
forest cover, reviewing the most extensive available mapping

(Bowen et al. 2017; Lymburner et al. 2020; Saintilan et al.

2021), applying common mapping protocols to assess changes
in spatial distribution and canopy cover through time. Although

phases of drought clearly affect canopy condition and mortality
rates in both forest types, we provide evidence of an overarching
pattern of long-term expansion in forest cover, a likely outcome

of global climate drivers. This expansion is associated with a
concerning trend of a loss in the extent of wetland grasslands, a
vegetation community that makes unique contributions to wet-

land biodiversity.

Observations of forested wetland resilience and expansion

In common with many Eucalyptus species, the river red gum

Eucalyptus camaldulensis sheds its leaves to reduce transpira-
tion as an adaptation to drought and water stress, but recovers its
canopy rapidly by epicormic growth following improvement in

soil moisture conditions (Cunningham et al. 2007; Doody et al.
2015; Souter 2019), as evident during and following the Mil-
lennium Drought (Colloff and Baldwin 2010; Wen et al. 2012;

Wen and Saintilan 2015; Curtis et al. 2019). The species can
survive decadal-long periods between inundation (Colloff 2014;
Doody et al. 2015; Shaeri Karimi et al. 2021), although with
greatly reduced canopy cover. Long-term mapping of some of

the most extensive E. camaldulensis forests (the Barmah–
Millewa Forest and the Macquarie Marshes) using historical
aerial photography suggests a substantial increase in extent at

the expense of wetland grassland communities over recent
decades. For example, in the Barmah–Millewa Forest (358500S,
1458000E), the largest stand of E. camaldulensis in Australia,

Gulf of CarpentariaGulf of Carpentaria

Macquarie Marshes

Barmah-Millewa Forest

Macquarie Marshes

Barmah-Millewa Forest

Mangrove

River red gum

Murray–Darling Basin

Kakadu National ParkKakadu National Park

Fig. 1. Spatial distribution of forested wetlands of concern: river red gum forests in the Murray–Darling Basin,

and mangrove distribution, showing the locations of Kakadu National Park and the Gulf of Carpentaria.
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forest extent has expanded since the 1940s (Bren 1992; Colloff
et al. 2014; Saintilan et al. 2021), primarily into areas previously

occupied by flood-dependent Moira grass Pseudoraphis spi-

nescens. Under natural recruitment regimes, E. camaldulensis
stands in the forest were at higher densities and higher canopy

cover following the Millennium Drought compared with the
historical, pre-logging era in the previous century (McGregor
et al. 2016). In the Macquarie Marshes (308430S, 1478320E),
E. camaldulensis forest extent increased between 1991 and 2013
(Bino et al. 2015; Bowen et al. 2017; Saintilan et al. 2021).
Although mortality has been reported during and after the Mil-
lenniumDrought (Catelotti et al. 2015), dead trees were clustered

primarily in areas that were already identified as stressed
(Table 1) during a benchmark survey in 1993 (Bacon 1996).

In the case of the mangroves in northern Australia, the same

trend of long-term expansion applies. Progressive landward and
seaward extension over the period 1987–2015 was identified
using a time-series of Earth observation datasets in Kakadu

National Park in the Northern Territory (NT; Asbridge and
Lucas 2016) and the Gulf of Carpentaria (Queensland and NT;
Asbridge et al. 2016). The landward extension was attributed to
sea-level fluctuation consistent with trends across the continent

(Saintilan et al. 2014), facilitating the incursion of salt water
(particularly through networks of tidal creeks), leading to
greater propagule dispersal, allowing mangroves to establish

and, in some cases, rapidly colonise low-lying flood plains
(Lucas et al. 2018; Asbridge et al. 2019).

Landsat-based satellite observations of annual mangrove

cover at the continental scale between 1988 and 2017 show an
expansion in mangrove extent and a thickening of mangrove
canopy cover, particularly since the early 1990s and along low-

lying coastal plains (Lymburner et al. 2020). Maximum man-
grove extent in the Gulf of Carpentaria was attained c. 2011
(Fig. 2), with subsequent decline, most obvious in 2015, revers-
ing gainsmade in the previous two decades (Fig. 2) and affecting

mangroves recruited in that period (Asbridge and Lucas 2016;
Asbridge et al. 2016, 2019; Lymburner et al. 2020). The
expansion and contraction in mangrove cover in the Gulf of

Carpentaria is suggestive of a response to modes of climate and
sea level variability (the El Niño–Southern Oscillation and the
Indian Ocean Dipole) superimposed on a longer-term trend of

increasing extent and canopy cover (Fig 2).
Detailed space- and air-borne observations from the West

Alligator River, Kakadu National Park, also show that the extent
of mangroves following the 2015 defoliation and dieback was

greater than the1991 referencepoint due to the longer-termpattern
of landward encroachment and on-going seaward expansion in
some areas associated with estuary infill and sediment redistribu-

tions (Asbridge et al. 2019). Phases of contraction and subsequent
expansion in extent and canopy cover have occurred previously in
relation to El Niño events, associatedwith reductions in sea levels

and an increase in pore water salinity (Lovelock et al. 2017).

Consistency with global patterns of change and climate
drivers

Tree cover expansion in large wetland complexes in Australia is
consistent with trends in wetlands across the globe, covering a
wide range of climatic, biogeographical and geomorphological

settings. Tree cover expansion has been documented as

replacing wetland grasslands in many of the world’s most iconic

wetlands, including the Pantanal (Barbosa da Silva et al. 2016;
Arieira et al. 2018), the Florida Everglades (Martin et al. 2009)
and the Okavango Delta, where 27% of open grassland has been

replaced by mixed woodland (Hamandawana and Chanda
2010). High-latitude and alpine sedgeland bogs and fens have
also been subject towoodyencroachment (Elmendorf et al. 2012),
including on theQinghai–Tibet plateau (Brandt et al. 2013) and in

Alaska (Berg et al. 2009), Canada (Favreau et al. 2019), the US
(Stine et al. 2011), Europe (Middleton et al. 2006) and Tasmania,
Australia (Bowman et al. 2008).

The drivers of woody encroachment into wetland grasslands,
whether inland or coastal, may vary between settings depending
on the biophysical characteristics of the landscape and the

degree of anthropogenic influences (Saintilan and Rogers
2015). Many changes have been driven primarily by climate,
particularly changes in temperature and atmospheric carbon

dioxide (CO2). Increased temperatures have led to changes in
the frequency and intensity of wildfires. This has provided
opportunities for tree recruitment in dryland savannas (Van
Auken 2000; Kgope et al. 2010), although a return to historical

fire regimes has, in some cases, been insufficient to reverse the
trend of woody encroachment (Wigley et al. 2010). Warmer
temperatures have also allowed altitudinal and latitudinal

expansion of tree ranges, and decreased frost frequency has
been associated with mangrove proliferation at high latitudes in
the US (Cavanaugh et al. 2014; Osland et al. 2017).

In dryland grasslands at the arid limits of tree growth,
elevated atmospheric CO2 may facilitate woody plant survival
by conferring higher water use efficiency (Idso 1992; Polley

Table 1. Branch condition scores in the 1993 survey of Bacon (1996)

and in the 2011 survey of Catelotti et al. (2015), separating plots

identified as stressed and healthy in the Bacon (1996) survey

Branches were scored from 1 (main branch dead) to 5 (no dead branches).

Differences in condition are non-significant for healthy plots. Data show the

mean� s.d. The stressed plots P-values are based on paired t-tests

1993 2011 P-value

Stressed plots

17 2.81� 0.66 3.25� 0.43 0.140

15 1.40� 0.49 0.0� 0.0 0.003

6 2.55� 0.48 0.0� 0.0 ,0.001

2 2.95� 0.52 1.48� 1.56 ,0.001

4 2.14� 1.03 2.43� 0.82 0.418

8 2.67� 0.59 0.42� 1.11 ,0.001

10 2.91� 0.67 0.0� 0.0 ,0.001

13 2.68� 0.67 1.9� 1.6 0.093

Healthy plots

16 3.64� 0.55 2.86� 1.06 0.024

14 3.46� 0.72 2.77� 1.37 0.125

5 3.55� 0.35 2.43� 0.82 0.002

1 3.15� 0.71 2.80� 1.33 0.308

3 3.27� 0.51 2.20� 1.47 0.016

7 3.56� 0.63 2.50� 1.58 0.111

9 3.08� 0.67 0.15� 0.53 ,0.001

11 2.67� 0.47 3.00� 0.00 0.348

12 2.50� 0.00 1.33� 0.94 0.164
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et al. 1997). By contrast, many wetland grassland communities
gain little benefit from this increase and are being replaced by

woody encroachment. These communities include Sporobolus

virginicus saltmarsh and freshwater grasslands of P. spinescens
(Moira grass) andPaspalum distichum (water couch), which use

the C4 photosynthetic pathway. However, rushes and sedges that
use the C3 pathway, including Juncus kraussii in the saltmarsh
and Typha spp. (cumbungi) in freshwater systems, seem more

resistant to colonisation by woody vegetation during and fol-
lowing drought (Saintilan et al. 2014, 2021; Sandi et al. 2019),
although differences in growth habit and location may also
confer resilience to larger, thicker rushes and reeds. Atmo-

spheric CO2 fertilisation may be an important factor contribut-
ing toEucalyptus survival on the outer flood plains of Australian
semi-arid rivers where water diversions for irrigation have

resulted in decreases in the inundation extent and frequency of
flood events (Sims et al. 2012; Saintilan and Rogers 2015).
Elevated CO2 concentrations may also facilitate mangrove

colonisation of ‘physiologically dry’ environments, such as
hypersaline upper intertidal saltmarsh, reinforcing the benefit
of increased inundation frequency associated with sea level rise

(McKee and Rooth 2008).

Implications for wetland grasses and trees

The fate of Australian forested wetlands in a þ38C warmer
world may differ from trends observed under current warming
(Australian Academy of Science 2021). While we argue that a

continuation of mangrove expansion into northern Australian
coastal flood plains is likely during coming decades, there is

little evidence to suggest that large mangrove forests can persist
in situ for long periods under rates of sea level rise projected by
the end of the present century under high or even mid-range

climate change projections (Saintilan et al. 2020; Breda et al.

2021). The benefits to tree growth conferred by the CO2 ferti-
lisation effect may diminish under hotter drought conditions.

Such droughts are projected to become more frequent and
severe, given the increased prevalence of the dry phase of two
key Australian climate drivers in recent decades, namely the
Indian Ocean Dipole (Abram et al. 2020) and the Southern

Annular Mode (Dätwyler et al. 2018). An increase in the fre-
quency of short-term mortality events may tip the balance
towards river red gum and mangrove forest decline in some

settings. These declines may be exacerbated by successive cli-
mate events and processes that affect ecosystems in different
ways and progressively compromise the ability of ecosystems to

recover (Asbridge et al. 2018).
On current observations, we expect the immediate effect of

climate change will be a continued expansion in the extent of

mangrove and river red gum during coming decades. Based on
patterns of recent mangrove expansion (Asbridge et al. 2016;
Lymburner et al. 2020) and projections of landward retreat with
sea level rise, the trend of mangrove expansion into broad

coastal and estuarine flood plains of northern Australia will
likely continue (Lovelock et al. 2015; Schuerch et al. 2018;
Asbridge et al. 2019), furthering the contraction of coastal
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floodplain freshwater wetlands in the region (Bowman et al.

2010; Saintilan et al. 2019).

The capacity for river red gum to survive extended drought
by accessing a range of water sources (lateral seepage from
rivers, saline groundwater, rainfall and palaeo-channel reservoirs)

and reducing water uptake by shedding its canopy (Mensforth
et al. 1994; Doody et al. 2015) makes it unlikely that drought-
mediated declines will be widespread or persistent. This is

particularly because river red gum is the most broadly distri-
buted Eucalyptus species throughout arid Australia and is
widespread across a range of climatic and biogeographical
settings (Colloff 2014). Reductions in flooding frequency also

promote the invasion of reed beds and freshwater grasslands by
river red gum (Bren 1992; Colloff 2014; Bowen et al. 2017).
Although spike-rush (Eleocharis spp.) swamps have shown

some post-drought recovery (Wassens et al. 2017), this has
not been observed for the wetland grasslands dominated by
P. spinescens and P. distichum, which may have suffered

permanent losses at several locations, often to river red gum
(Vivian et al. 2015; Wassens et al. 2017; Saintilan et al. 2021).

The decline ofwetland grasslands has important implications
for maintaining or enhancing biodiversity, including through

conservation and land management and ecosystem restoration.
The wetland grasslands of the Murray–Darling Basin are pre-
ferred feeding habitat for a diverse range of species, including

herbivorous waterbirds (Braithwaite and Frith 1969; Colloff
2014) and mammals (e.g. kangaroos; Iles et al. 2010). Temper-
ate coastal saltmarshes that overlap in range with temperate

mangrove distribution are used as feeding habitat by migratory
shorebirds and endemic grassland birds, many of which are
endangered, including the orange-bellied parrot Neophema

chrysogaster, the yellow chat Epthianura crocea macgregori

and the slender-billed thornbill Acanthiza iredalei rosinae

(Spencer et al. 2006; Kelleway et al. 2017). Three species of
threatened microbats, namely Chalinolobus dwyeri, Mormop-

terus norfolkensis and Saccolaimus flaviventris, were found to
feed exclusively in saltmarsh habitats (Gonsalves et al. 2012).

Conclusions

The defoliation response of forest wetland trees to drought is

easily monitored at broad spatial scales. On the Australian con-
tinent, where phases of the El Niño–Southern Oscillation and the
Indian Ocean Dipole have driven sharp downturns in canopy
extent, these changes have been widely reported. Case studies of

forest decline, specifically the mangroves of northern Australia
and the river red gum forests of the Murray–Darling Basin, have
been posited as exemplars of ecosystem collapse under climate

change in recent reviews (Harris et al. 2018; Bergstrom et al.

2021; and references therein). We have argued that detailed
mapping both cases demonstrates an overarching trend of wet-

land tree proliferation at the expense of wetland grasslands.
Fortunately, from a conservation perspective, the vulnerabil-

ity of temperate and subtropical coastal saltmarsh to climate

change has been recognised, including through their listing as a
vulnerable or threatened ecological community under state and
commonwealth legislation (Rogers et al. 2016). The potential of
‘blue carbon’ benefits also provides a further incentive for

restoration under national emissions reduction initiatives

(Kelleway et al. 2020). Conservation outcomes for freshwater
wetland grasslands have received less attention, despite con-

cerns raised by reserve managers of a trend towards tree
monocultures in freshwater floodplain wetlands (Fazey et al.

2006). Hence, there is an urgent requirement to consider the

future changes in these ecosystems, particularly given further
impacts of climate change on water availability and ongoing
discussions on environmental water policy, management and

allocation (Chen et al. 2021; Kirsch et al. 2021). This is
becoming paramount given that changes in the flooding fre-
quency and depth favour ongoing eucalypt expansion into core
grassland habitat.

Data availability

The data used in generating Fig. 1 are available at https://www.
star.nesdis.noaa.gov/socd/lsa/SeaLevelRise/LSA_SLR_time-
series_global.php and http://dea-public-data.s3-website-ap-

southeast-2.amazonaws.com/?prefix=mangrove_cover/v2.0.2/
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