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Abstract Liquids in oil-bearing porous media assume complex shapes that depend on the reservoir characteristics and the wetting
properties of the liquid. The wide variation in the geometry of rock formations makes it difficult to accurately predict the capillary
pressure of small volumes of liquid and hence the likelihood of being able to move it. Here, we consider the situation in which a
small volume of liquid surrounds an upright cylinder on a flat substrate and predict the shape that the liquid takes and its capillary
pressure. We validate our predictions by comparing with Surface Evolver simulations for a range of contact angles and cylinder
radii.

1 Introduction

The presence of small volumes of a liquid phase in a porous medium is common in processes such as enhanced oil recovery
[1], stimulation of plugged wells, environmental remediation [2], and drying via evaporation [3]. Capillary forces can cause the
spontaneous imbibition of the liquid phase into micro- or nano-sized pores in porous media, disrupting flow and affecting the
efficiency of these processes. Arrays of cylindrical pillars are often used as a canonical example of a microfluidic porous medium
[3–5], with the aim of optimizing parameters such as the pressure drop required to mobilize the liquid. It is therefore necessary to
have a good understanding of the distribution of liquid in the medium, i.e., both its location and its geometry.

The most important parameter governing the feasibility of, say, oil recovery is the capillary pressure (pc). This is the difference
in pressure between two phases coexisting in the porous medium and depends upon inter alia, each phase’s volume, relative surface
tensions (or contact angles), and pore geometry [6–10]. When regions of different fluids meet, the capillary pressures must equilibrate,
and this will determine if the fluid will remain trapped in the complex geometry or whether it can be recovered.

Wetting behavior is described by the contact angle at which interfaces meet, for example between the solid and the liquid and
between the air and the liquid. Small contact angles correspond to wetting liquids, with a strong affinity for the substrate, while large
contact angles are associated with non-wetting, or hydrophobic, surfaces [11]. Therefore, this parameter has a significant effect on
the shape of liquid interfaces in porous media.

The internal geometry of porous media itself may also be difficult to examine and to characterize. For this reason, many studies
now turn to manufactured microfluidic geometries to test theories against experiments [4,5,12–15]. One element of such a porous
medium might be a solid inclusion that spans the depth of the geometry. For simplicity, we consider such an idealized situation here,
described in Sect. 2.1, which allows us to make progress in developing a predictive model for the capillary pressure of a liquid in
contact with such an inclusion.

In Sect. 2.3, we derive two approximate solutions of the Young–Laplace equation [7], of increasing complexity, for the capillary
pressure of liquid surrounding a cylindrical inclusion, as studied experimentally by Chen et al. [3] in the context of evaporation.
We compare this with accurate Surface Evolver simulations, described in Sect. 2.2, to determine its range of validity. In our results
(Sect. 3) we explore in particular the effect of different contact angles on the shape and extent of this meniscus for a range of liquid
volumes.

The techniques that we use in our derivation are those used to establish the shapes of bubbles [16], menisci [17] and other liquid
interfaces in soft matter [18]. More usually, the interface rests on a liquid surface which also deforms [16,19], and it appears that
the case considered here, of a liquid meniscus on a solid substrate [20], has received less attention.
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2 Geometry and methods

2.1 Geometry

Our idealized porous medium consists of an upright circular cylinder with radius R∗ spanning the gap between two flat horizontal
parallel surfaces with separation H∗. The gap between the surfaces is filled with air except for a narrow meniscus of liquid around
the top and bottom of the cylinder. We assume that the gap between the surfaces is smaller than the capillary length, so that we can
neglect the effects of gravity. Since we expect the size of rock pores to be of order microns while the capillary length is of order
millimeters, this is likely to be a good approximation. Then by symmetry we need only consider the lower half of this geometry, as
shown in Fig. 1, and at such a scale we expect capillary pressures to be of order γ /H∗, where γ is the interfacial tension, of order
30 × 10−3 N/m.

As the liquid volume varies, the capillary pressure will vary from small values at large volumes, where the radius of curvature in
the (r, z) plane is large, to much larger values at small volumes. Where the liquid meets the cylinder and where it meets the plate
it does so at a particular angle, the contact angle. The contact angle is affected by the properties of the liquid and the surfaces it
contacts, so it could be different on the cylinder and the substrate. For simplicity, we take these two values to be the same, but the
results described below are straightforward to generalize to the case where they are different.

The contact angle, highlighted in Fig. 1b, is directly related to the balance between the surface tension of the liquid-air interface
and the surface tension of the wetting film on the solid walls via the Young equation [11]. If we denote the contact angle by θc then

cos θc = γw

γ
, (1)

where γw represents the difference in tension between the unwetted (outer) and wetted (inner) parts of the wall.
The shape of the interface is given by a solution of the Young–Laplace equation [7,21], which balances the capillary pressure

with the local mean curvature at each point of the interface. In this cylindrical geometry, the expression for the curvature is highly
nonlinear: it has two components, consisting of the principal radii of curvature in two perpendicular directions, and these both
vary with vertical position within the meniscus. Our prediction of the capillary pressure will therefore be an approximation, which
performs best for large rock structures within the porous medium (R∗ � H∗), and so to determine how accurate our prediction is
we will compare it with precise numerical solutions.

2.2 Numerical method

We work in dimensionless coordinates, with all lengths scaled by the gap height H∗. We define the dimensionless cylinder radius
to be R = R∗/H∗ and choose (without loss of generality) a dimensionless surface tension γ = 1. Then, a dimensionless capillary
pressure of pc = 1 in our results below corresponds to a dimensional capillary pressure of γ /H∗ = 30 × 10−3/10−6 = 103Pa.

To perform the simulations we use Surface Evolver [22], which finds the shape of fluid interfaces with given surface tension
and other energies under various constraints. Similar calculations have been performed for small pockets of liquid trapped between
spheres [23]. The situation that we consider is axisymmetric so that we need only consider the shape of the interface in the (r, z)
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Fig. 1 We seek the shape of a liquid meniscus around the base of a vertical cylinder with circular cross section. a 3D view, showing the lower half of the
cylinder of radius R∗ and height H∗, representing an idealized rock structure in a porous medium, and the liquid meniscus in blue. The wetting films on
the cylinder and on the substrate are not shown. b Since the meniscus is axisymmetric, it can be described by (dimensionless) radial position r and vertical
position z, and we consider only the r − z plane. We consider the case where the contact angles θc on the cylinder and the substrate are equal. In this plane
the interface has radius of curvature rc , surface tension γ , extent rmax in the radial direction, and height zmax
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plane (see Fig. 1), which consists of a curve connecting the cylinder to the substrate with the given contact angle at each end and a
specified enclosed volume.

This curve is discretized into roughly 25 straight elements. The contact angles are considered as further energies, and the system
is driven to a minimum of energy using a gradient descent method. In the simulations it is straightforward to vary the cylinder radius
R, the liquid volume V and the contact angle θc to explore all relevant parameters.

2.3 Mathematical models

In this relatively simple geometry, we can derive approximate formulae for the capillary pressure. The Young–Laplace equation for
an interface at equilibrium without gravity is

pc = pair − pliquid = γ C, (2)

in which the mean curvature C of the interface can be written [16]:

C = − [
1 + r2

z

]− 3
2

(

rzz − 1 + r2
z

r

)

, (3)

where subscripts denote derivatives. There are two terms here, corresponding to the two radii of curvature of the interface, one
around the cylinder and the other perpendicular to it in the r − z plane. Writing p̂c for pc/γ leads to the following equation for the
capillary pressure:

p̂c = [
1 + r2

z

]− 3
2

(

rzz − 1 + r2
z

r

)

. (4)

Equation (4) is too complex to find a closed-form solution. Instead, we assume that in typical porous media the size of the rock
structures is large, R � 1. We will consider two approximate solutions: the first will neglect the second term entirely, while the
second will approximate it.

2.3.1 Approximation 1: interface shape in the limit of large cylinder radius

The second term in the parentheses in Eq. (4), containing the factor 1/r , will be dominated by the first at large R, and in our
first approximation we choose to neglect it. As we shall see below, we are effectively approximating the interface as a circular arc
(precisely one-quarter of a circle if θc = 0) in the (r, z) plane.

Equation (4) becomes

p̂c = sign
(π

4
− θc

) rzz
[
1 + r2

z

] 3
2

, (5)

in which sign (π/4 − θc) reflects the fact that, in this approximation, the curvature of the interface will change sign at a contact
angle of π/4. That is, the capillary pressure will go from positive to negative and the liquid pressure will exceed the air pressure.

Following Teixeira et al. [16], we introduce a coordinate θ with cot θ = rz in Eq. (5) to give

p̂c = sign
(π

4
− θc

)
sin θ

dθ

dz
. (6)

Integrating gives the height of the interface in terms of the parameter θ :

z(θ) = sign
(π

4
− θc

)
(cos θc − cos θ) / p̂c with θ ∈

(
θc,

π

2
− θc

)
, (7)

although p̂c remains unknown at this stage. The maximum height reached by the meniscus on the cylinder occurs when θ = π/2−θc:

zmax = sign
(π

4
− θc

)
(cos θc − sin θc) / p̂c. (8)

This expression is shown in Fig. 4, which we describe once the value of p̂c is predicted.
Since the interface is now approximated by an arc of a circle, the maximum extent of the meniscus in the radial direction is

rmax = R + (cos θc − sin θc) / p̂c. (9)

We now replace θ from Eq. (6) using cot θ = cos θ√
1 − cos2 θ

= −rz to find the interface profile z(r). We substitute for cos θ from

Eq. (7) and integrate

− dr

dz
= cos θc − p̂cz

√
1 − (cos θc − p̂cz)2

(10)
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to obtain
(

z − cos θc

p̂c

)2

+
(

r −
(

R + cos θc

p̂c

))2

= 1

p̂2
c
. (11)

Clearly, this is the equation of a circle with radius 1/ p̂c and center (R + rc, rc), where rc = cos θc/ p̂c. The radius of curvature
increases, and the meniscus gets larger, as the capillary pressure decreases, as expected. As the contact angle changes the center of
curvature moves closer to the axes. We next determine the effect on the capillary pressure of changes in the contact angle.

2.3.2 Approximation 1: capillary pressure in the limit of large cylinder radius

Let us assume that R, θc and γ are given. We need to find the capillary pressure p̂c to completely solve the problem, which we do
by determining the liquid volume

V = 2π

∫ R+rc(1−tan θc)

R
z(r)rdr (12)

with z(r) from Eq. (11). The substitution r = R + rc

(
1 − cos θ

cos θc

)
allows us to resolve the integral:

V = 2πr2
c

{
R

[
1 − tan θc −

π
4 − θc

cos2 θc

]
+ rc

[
(1 − tan θc)

2

2
−

π
4 − θc

cos2 θc
+ 1 − tan3 θc

3

]}
. (13)

In keeping with our assumption that R is large, we retain only the first term, proportional to r2
c R, and neglect the second term

proportional to r3
c :

V ≈ 2πr2
c R

[
1 − tan θc −

π
4 − θc

cos2 θc

]
= 2π R

p̂2
c

[
cos2 θc − 1

2
sin(2θc) + θc − π

4

]
. (14)

Introducing the function f (θc) = cos2 θc − 1
2 sin(2θc) + θc − π

4 for the dependence on the contact angle then gives

p̂c ≈ sign
(π

4
− θc

)√
2π R f (θc)

V
, (15)

where 2π R/V is the reciprocal of the cross-sectional area of the meniscus. This dependence on contact angle precisely matches
the expression for a straight channel given by Ma et al. [24], who relate the capillary pressure to the area of the cross section of the
channel occupied by liquid. An advantage of our expression is that it allows us to relate the capillary pressure to the volume of the
cylindrical meniscus, p̂c(V ), rather than its cross-sectional area (which is more difficult to determine in an experiment).

2.3.3 Approximation 2: Interface shape dependent on cylinder radius

In the preceding approximation we completely neglected the second radius of curvature in the Young–Laplace equation to find a
closed-form solution of Eq. (4) in the shape of a circle. We now improve upon this prediction by introducing a dependence on the
cylinder radius R. We again assume that R is large and replace the radial position r in the denominator of the second term in Eq. (4)
with the cylinder radius R to give

p̂c = [
1 + r2

z

]− 3
2

(

rzz − 1 + r2
z

R

)

. (16)

This leads to a semi-analytic expression for the quantities of interest. (It is semi-analytic because we have to solve for the capillary
pressure numerically, even though we will find closed-form expressions for the shape and extent of the meniscus.)

Proceeding as before, and assuming for the moment that p̂c is positive, we introduce the coordinate θ : Eq. (16) becomes

p̂c = sin θ

(
dθ

dz
− 1

R

)
, (17)

which improves upon Eq. (6). We rearrange this into the more convenient form

dz

dθ
= R sin θ

R p̂c + sin θ
. (18)

In the same way we have

dr

dθ
= − R cos θ

R p̂c + sin θ
. (19)

These two equations allow us to find the shape of the meniscus implicitly.
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Of the two, Eq. (19) can be integrated more easily: using [25, §2.552.2] and evaluating the constant of integration at r = R gives

r(θ; R, p̂c, θc) = R
[
1 + ln

(
R p̂c + cos θc

) − ln
(
R p̂c + sin θ

)]
. (20)

Hence the maximum extent of the meniscus beyond r = R is

rmax(R, pc, θc) = R
[
1 + ln

(
R p̂c + cos θc

) − ln
(
R p̂c + sin θc

)]
, (21)

which is equivalent to Eq. (9) in the limit of large R.
We now integrate Eq. (18) using [25, §2.551.2, 2.551.3] and evaluate the constant of integration at z = 0. There are now two

branches of the solution depending on the value of R p̂c:

z(θ; R, p̂c, θc) = R [θ − θc]

+

⎧
⎪⎪⎨

⎪⎪⎩

2R2 p̂c√
(R p̂c)2−1

[
tan−1

(
R p̂c tan(θc/2)+1√

(R p̂c)2−1

)
− tan−1

(
R p̂c tan(θ/2)+1√

(R p̂c)2−1

)]
R p̂c > 1

2R2 p̂c√
1−(R p̂c)2

[
coth−1

(
R p̂c tan(θ/2)+1√

1−(R p̂c)2

)
− coth−1

(
R p̂c tan(θc/2)+1√

1−(R p̂c)2

)]
R p̂c < 1.

(22)

This generalizes Eq. (7) to smaller R. The height, zmax, of the meniscus is then found by evaluating this expression with θ = π
2 − θc.

In our first approximation the curvature of the interface changes sign when θc = π/4. In this second approximation, it is more
difficult to predict when this happens since the magnitude of the first term in parentheses in Eq. (17) depends on not only the contact
angle but also the liquid volume (and cylinder radius). However, only small changes to the expressions for r(θ) and z(θ), are required
for them to continue to work: we change the signs in front of the two trigonometric functions in Eq. (20), replace +1 with −1 in
Eq. (22), and take the absolute value of the capillary pressure in both formulae. In this way, we can extend the prediction to negative
p̂c, as shown in subsequent figures.

2.3.4 Approximation 2: capillary pressure dependent on cylinder radius

Before we can compare the interface shapes with the simulations, we need to determine the dependence of the capillary pressure on
the volume V of the meniscus (as well as on the parameters R and θc). This requires a further integration, for which we have not
been able to determine a closed form expression. Instead, we choose to evaluate the following integral numerically:

V = 2π

∫ π/2−θc

θc

z(θ)r(θ)
dr

dθ
dθ, (23)

substituting the appropriate expressions from eqs. (22), (20) and (19), respectively.
The results of evaluating this integral allow us to determine a value for p̂c corresponding to a particular liquid volume (for any

given values of R and θc). The dependence of p̂c on V is shown in Fig. 2: a strong decrease from a large value for small V . We can
now determine the interface shape, the extent of the meniscus in each direction (rmax and zmax) and the dependence of each of these
quantities on cylinder radius and contact angle.

3 Results

It is clear from our first approximation that as the meniscus increases in size the capillary pressure drops. The volume of the meniscus
is approximately its cross-sectional area A multiplied by the circumference of the cylinder, V = 2π R A, so for a larger cylinder
radius a given volume of liquid has to spread further around the circumference and its capillary pressure will increase. However, this
observation hides the details of the shape and capillary pressure of the meniscus, and in the following we therefore consider liquid
volumes that scale with R, with the expectation that the cross section of the meniscus remains roughly constant in shape. That is, we
fix the cross-sectional area A of the meniscus, and consider values that are small enough that zmax < H/2 so that the liquid regions
around the top and bottom of the cylinder never meet.

3.1 Interface shape

Our second approximation for the meniscus profile is found by plotting Eq. (22) against Eq. (20); examples are shown in Fig. 3a
in the case θc = π/18 and A = 0.5/2π for different R. The interface does indeed become closer to a circle as R increases, and
the first approximation, Eq. (11), works well for R above about 5. The second approximation shows excellent agreement with the
Surface Evolver simulation for R = 1, even though the premise for that approximation is that R is large.

In Fig. 4 we show the extent of the meniscus, i.e., values of rmax and zmax, for different contact angles and cylinder radii. The
radial extent of the meniscus rmax appears constant as the radius of the cylinder varies, while as R increases, the height of the
meniscus increases toward the prediction of Eq. (8). This circular approximation works well for R greater than about 20, but the
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(a) (b)

(c) (d)

(e)

Fig. 2 Profiles of p̂c against the scaled liquid volume of the meniscus for different values of the cylinder radius R. Each panel is for a different contact
angle θc . These are numerical integrations of Eq. (23), while the dotted line on each plot is the first approximation, Eq. (15). The horizontal axes are scaled
by the cylinder radius R to make the curves comparable, inspired by the form of Eq. (15)

second approximation captures more closely the variation of both zmax and rmax with R, except for a discrepancy in rmax at small
R for small contact angles.

3.2 Capillary pressure

3.2.1 Effect of cylinder radius

Figure 5a shows that with the meniscus cross-sectional area fixed at A = 0.5/2π and the contact angle fixed at θc = π/18 the
capillary pressure increases with R. In this respect, the capillary pressure follows a similar trend to zmax: as R increases, the capillary
pressure converges toward our first approximation, p̂c ≈ 1.57. The second approximation fits the simulated data extremely well,
with a small discrepancy only at small R.
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Fig. 3 Predicted interface shapes,
comparing a circle (our first
approximation, Eq. (11), dotted
line), the second approximation
(eqs. (20) and (22), solid lines)
and Surface Evolver simulations.
In each case the liquid area is
A = 0.5/2π and the appropriate
value of p̂c for the second
approximation is chosen from the
profiles in Figure 2. a Profiles in
the r − z plane for different
cylinder radii R and contact angle
θc = π/18. The simulation data
for R = 1 is shown as a dashed
line. b Profiles in the r − z plane
for different contact angles θc and
radius R = 1. The simulation data
is shown as solid black lines that
overlay the predictions (a) (b)

(a) (b)

Fig. 4 Predicted values of the extent of the meniscus in the radial (rmax − R) and vertical (zmax) directions compared with Surface Evolver simulations.
a With contact angle θc = π/18 and liquid area A = 0.5/2π , as in Fig. 3, the first approximation (eqs. (9) and (8) with p̂c from Eq. (15), shown as a
horizontal dotted line) is independent of radius R, while the second approximation (eqs. (21) and (22), shown as points) match the simulated data (solid
lines) for R greater than one. Note how little the value of rmax varies with cylinder radius R. b The dependence of the extent of the meniscus in the r and
z directions on the contact angle θc is shown for R = 1 and R = 10. The simulated data (solid lines) is in good agreement with the second approximation
for both values of R over a wide range of contact angles, while the first approximation is in broad agreement with the data for both rmax and zmax only for
large R and large θc

(a) (b)

Fig. 5 Effect of cylinder radius on capillary pressure. a Comparing simulated data (solid line) with our first (horizontal dotted line) and second (points)
approximations for constant meniscus area A = 0.5/2π and contact angle θc = π/18. b Capillary pressure for a range of areas A (multiplied by 2π ) and
cylinder radii R, with contact angle θc = π/18, as in Fig. 2b. Simulated data is shown as solid lines, showing better agreement at larger R and smaller θc
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(a) (b)

Fig. 6 Effect of contact angle and meniscus size on capillary pressure, comparing simulated data (solid lines) with our first (blue dotted lines) and second
approximations (points). a For different meniscus volumes with cylinder radius R = 1. b For different cylinder radii R and meniscus area A = 0.5/2π

Again for θc = π/18, Fig. 5b shows the capillary pressure for a range of values of the liquid cross-sectional area, comparing the
predictions with simulated data. For each value of R, the capillary pressure decreases as the meniscus area increases, most steeply
for small liquid areas and small cylinder radii. Although the first approximation works well for large R (here R = 20), the second
approximation performs better down to lower values of R.

3.2.2 Effect of contact angle

Representative interface shapes are shown in Fig. 3b for different contact angles. As the contact angle increases, the curvature
reduces, and hence so does the capillary pressure.

The same trend of decreasing capillary pressure with increasing volume is observed for all contact angles and all meniscus
volumes (Fig. 6a). The highest capillary pressures are found for the smallest contact angles, since as the contact angle increases, the
interface straightens out, and for the smallest liquid volumes, since the interface is more strongly curved closer to the cylinder. For
R = 1 the second approximation works well, more so at smaller liquid volumes/higher capillary pressures.

Figure 6b shows that our first approximation of the capillary pressure is indistinguishable from the data for all values of the
contact angle for large cylinders (R above about 20). The second approximation works much better at lower R, although for R as
low as one there is a discrepancy of about 10%, almost independent of the contact angle.

For certain values of the contact angle and liquid volume the capillary pressure (and hence the curvature of the interface) can
change sign; an example is shown in Fig. 6a for R = 1 and θc greater than π/6. When the capillary pressure is zero the meniscus
takes the form of a catenoid, with equation

z = R cos θc

[
cosh−1

(
1

sin θc

)
− cosh−1

(
r

R cos θc

)]
. (24)

Determining the volume in this case, using the integral in Eq. (12) with upper limit R/ tan θc, shows that the value of θc at which
the capillary pressure is zero decreases as the liquid volume increases, while for fixed volume it converges on π/4 as R increases.
Thus, for sufficiently small volumes the critical contact angle at which the capillary pressure changes sign is still π/4.

Figure 6a also suggests that there is a particular contact angle at which the capillary pressure is independent of the liquid volume
for given radius R. This occurs at θc = π/4 for large R, since the interface is flat (in the (r, z) plane). For smaller R, it occurs at
negative capillary pressure ( p̂c ≈ −0.5 for R = 1), so that the interface curvature has changed sign and it bulges outwards slightly.
The critical contact angle at which p̂c(θc) converges remains very close to θc = π/4.

4 Discussion and conclusions

We have described numerical simulations and two predictive models for the shape of the meniscus surrounding the base of a circular
cylinder attached to a flat horizontal substrate. In many ways this is simpler than the more familiar problem of the capillary rise of
liquid around a bubble at the surface of a liquid [16,17], and the different boundary condition at rmax allows us to make progress with
(i) a closed-form solution that works well at large R, i.e., cylinders that are many times wider than their height, and (ii) semi-analytic
solutions that works well for a much broader range of values of R, showing significant error only at large liquid volumes (when
gravity might be anticipated to have a further significant effect) and small R less than one. In this second approximation, Fig. 2
shows how the capillary pressure depends on liquid volume, removing the need for numerical calculations, with eqs. (20) and (22)
giving the shape of the meniscus.
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Notable features of the solutions we give are:

• The radial extent of the meniscus is much better described than the meniscus height by our first approximation, while the second
approximation captures both well; indeed, the radial extent of the meniscus appears almost independent of cylinder radius for
fixed cross-sectional area (Fig. 4a) down to R below 1 (in units of the channel depth);

• the critical contact angle at which the interface curvature/capillary pressure is zero decreases as the cylinder radius decreases
and as the meniscus volume increases (Fig. 6);

• there appears to be a particular contact angle at which the capillary pressure is the same, irrespective of the meniscus volume,
for given cylinder radius (Fig. 6a).

By establishing predictive models for the capillary pressure in this idealized geometry, we aim to provide quantitative results to
enable comparison with experiment. Providing results for capillary pressure and interface shape for a broader range of geometries,
for example cylindrical pillars with small radius R, different shapes of pillars, or more than one pillar, is the subject of ongoing
research.
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