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Abstract

Motivation: The biases in CoDing Sequence (CDS) prediction tools, which have been based on historic genomic
annotations from model organisms, impact our understanding of novel genomes and metagenomes. This hinders
the discovery of new genomic information as it results in predictions being biased towards existing knowledge. To
date, users have lacked a systematic and replicable approach to identify the strengths and weaknesses of any CDS
prediction tool and allow them to choose the right tool for their analysis.

Results: We present an evaluation framework (ORForise) based on a comprehensive set of 12 primary and 60 sec-
ondary metrics that facilitate the assessment of the performance of CDS prediction tools. This makes it possible to
identify which performs better for specific use-cases. We use this to assess 15 ab initio- and model-based tools rep-
resenting those most widely used (historically and currently) to generate the knowledge in genomic databases. We
find that the performance of any tool is dependent on the genome being analysed, and no individual tool ranked as
the most accurate across all genomes or metrics analysed. Even the top-ranked tools produced conflicting gene col-
lections, which could not be resolved by aggregation. The ORForise evaluation framework provides users with a rep-
licable, data-led approach to make informed tool choices for novel genome annotations and for refining historical
annotations.

Availability and implementation: Code and datasets for reproduction and customisation are available at https://
github.com/NickJD/ORForise.

Contact: nicholas@dimonaco.co.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Whole genome sequencing, assembly and annotation is now widely
conducted, due predominantly to the increase in affordability, auto-
mation and throughput of new technologies (Land et al., 2015). The
prediction of protein-coding genes, specifically their corresponding
CoDing Sequence (CDS) in prokaryote genomes has often been seen
as an established routine. This is in part due to a number of assump-
tions and features, such as the high density (protein-coding genes
contribute �80–90% of prokaryote DNA) and the lack of introns
(Lobb et al., 2020; Salzberg, 2019). However, this process involves

the complex identification of a number of specific elements, such as:
promoter regions (Browning and Busby, 2004), the Shine–Dalgarno
(Dalgarno and Shine, 1973) ribosomal binding site and operons
(Dandekar et al., 1998), which all contribute to identifying gene
position and order. Additionally, the role of horizontal gene transfer
(Jain et al., 1999) and pangenomes further complicates an already
difficult process and likely contributes to errors and a lack of data
held in public databases (Devos and Valencia, 2001; Furnham et al.,
2012). Finally, our ability to characterize the functions of regions of
DNA [which has been generally reserved for model organisms
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(MOs) and core genes (Russell et al., 2017)] is being outstripped by
the rate of genomic and metagenomic sequence data generation
from non-MOs and non-core gene DNA sequences.

Before the turn of the century, it was understood that a great
deal of work was still needed to address these issues. Studies had
shown that many existing CDS prediction tools systematically
failed to identify or accurately report genes whose features lay out-
side a rigid set of rules, such as non-standard codon usage, those
which overlap other genes or those below a specified length (Burge
and Karlinb, 1998; Guigo, 1997). Since then, a systematic over-
view of 1474 prokaryotic genome annotations in GenBank con-
cluded ‘the cause of the high rates of missed genes is less clear,
largely due to a lack of information about the annotation methods
used’ (Wood et al., 2012). Interestingly, while the majority of
missed genes reported were under 300 nt, the annotation tools,
which performed the incomplete annotations were developed to re-
port CDSs at a minimum length of 110 nt. While there has been
much work to address the problem of incomplete annotation,
many gene types continue to be absent or under-represented in
public databases (Huvet and Stumpf, 2014; Warren et al., 2010),
such as short/small-ORFs (short ORFs) (Duval and Cossart, 2017;
Storz et al., 2014; Su et al., 2013). This means that CDS prediction
methodologies that use information from existing sequences are in
turn ill-equipped to identify genes belonging to these underrepre-
sented/missing gene types. It is therefore of paramount importance
that we understand the limits of current CDS predictors as our reli-
ance on automated genome annotation of novel genomes contin-
ues to increase (Brenner, 1999). Measures to compare both novel
and contemporary CDS prediction tools are not well established or
universally employed and novel tool descriptions tend to focus on
algorithmic improvements rather than carrying out a systematic
assessment of where the strengths or weaknesses in their
approaches lie. This prevents researchers from gaining meaningful
insight into the specific features of genes, which led to them being
missed or partially detected, resulting in a lost opportunity to im-
prove our understanding of prokaryote genome content.

Genome annotation is challenging and is not a single step pro-
cess. CDS prediction, often the first step, is fast, with little user in-
put, but may require augmentation by different methods to
supplement the initial predictions. One example is a tool, such as
smORFer (Bartholomäus et al., 2021), that specializes in finding
short ORFs through the use of RNA-seq, which can detect transcrip-
tion events under certain environmental conditions. Further exam-
ples use sequence conservation scores and homology searches that
can use existing database knowledge (Badger and Olsen, 1999;
Dunne and Kelly, 2017; ÓhÉigeartaigh et al., 2014). Furthermore,
pipelines are constructed [such as PROKKA (Seemann, 2014) and
NCBI’s PGAP (Tatusova et al., 2016)] to automate these further
rounds of annotation. However, the underlying CDS prediction
tools are still core components of these pipelines and are still widely
used as standalone tools.

Previous studies, which have evaluated prokaryotic CDS predictors
generally only compared a small number of tools, focussing on algo-
rithm design, and did not go into depth when reporting prediction ac-
curacy with few other informative metrics used (Al-Turaiki et al.,
2011; Mathé et al., 2002). A more recent study, BEACON (Kalkatawi
et al., 2015), considered a small range of metrics including genes
‘denoted as identical, similar, unique with overlap or unique without
overlap’ to either a reference annotation or from the output of three
pipelines (PGAP, AAMG and RAST). Unfortunately, the types of
genes missed were also not investigated further, leading to a lack of
understanding of not only why and how they were missed, but also
the impact on our biological understanding of the genome as a whole.

Many prediction methods used today are iterations of original
concepts and thus are as in flux as the genomic databases them-
selves. Future development of CDS prediction techniques is now
harnessing the recent advances in machine learning and other com-
putational methods. While previous methods involve the construc-
tion of models built from organism-specific parameters, such as
codon usage, guanine-cytosine (GC), complex motifs and average
CDS length (Besemer and Borodovsky, 1999; Stanke and

Morgenstern, 2005), opinions are shifting on the use and import-
ance of MOs (Hunter, 2008; Levy and Currie, 2015; Russell et al.,
2017). The volume of prokaryotic protein-coding gene sequences
have enabled advanced machine-learning approaches, such as neural
networks to predict CDSs that share common characteristics with a
selection of previously annotated genes. One such example, Balrog
(Sommer and Salzberg, 2021) predicts protein-coding genes by train-
ing from an array of non-hypothetical protein-CDSs from thousands
of bacterial prokaryote genomes and aims to provide gene predic-
tion across diverse species. Machine-learning models can be poor at
making predictions for classes (e.g. genes) whose training data ex-
hibit high levels of bias, error, are under-represented for specific
groups (e.g. gene families) and groups for which they have not been
trained (Schafer and Graham, 2002). In addition to this, prokaryotic
gene families are chronically under-sampled (Warren et al., 2010). It
is becoming clear that even with these advances in computational
approaches, it is unlikely that we will ever be capable of identifying
the complete picture of CDS gene diversity without exhaustive ex-
perimental work.

To address these concerns, we extensively evaluate a collection
of 15 widely used CDS prediction tools that form the basis of most
of the annotations deposited in public databases and therefore have
largely been used to build the genomic knowledge used by the scien-
tific community. We provide a comparison platform developed to
allow researchers to compare 12 primary and a further 60 secondary
metrics to systematically compare the predictions from these tools
and study the effect on the resulting genome annotations for their
species of interest. This allows for in-depth and reproducible analy-
ses of aspects of gene prediction that are often not investigated and
allows researchers to understand the impact of tool choice on the
resulting prokaryotic gene collection.

2 Materials and methods

2.1 Current Ensembl genome annotations
Six bacterial MOs and their canonical annotations were downloaded
from Ensembl Bacteria (Howe et al., 2020) (available at https://
github.com/NickJD/ORForise/tree/master/Genomes). Bacillus subtilis
BEST7003 strain (assembly ASM52304v1), Caulobacter crescentus
CB15 strain (assembly ASM690v1), Escherichia coli K-12 ER3413
strain (assembly ASM80076v1), Mycoplasma genitalium G37 strain
(assembly ASM2732v1), Pseudomonas fluorescens UK4 strain (as-
sembly ASM73042v1) and Staphylococcus aureus 502A strain (as-
sembly ASM59796v1) were chosen for their scientific importance,
range of genome size, GC content, assumed near complete and high
quality genome assembly and annotation provided by Ensembl
Bacteria. They are presented in Table 1 and further information
regarding these MOs can be found in Supplementary Section S1.

For each of the chosen MOs, two data files were downloaded
from Ensembl Bacteria; the complete DNA sequence (*_dna.tople-
vel.fa) and the general feature format (GFF) file (*.gff3) containing
the position of each gene. The current collection of CDS genes pre-
sented in the MO annotations from Ensembl [Current Ensembl
Annotation (CEA)] was taken as the reference annotations for this
study. Prokaryotic genomes exhibit high levels of gene density, often
with little extraneous DNA, which is ‘commonly perceived as evi-
dence of adaptive genome streamlining’ (Sela et al., 2016).
Unannotated DNA represents between �10% and 20% of the six
MO genomes selected and while an additional 0.38–2.22% is attrib-
uted to non-coding annotations, there is still a measurable portion
of each genome without any annotation. This study focuses specific-
ally on the identification of CDSs, which constitute the significant
majority of annotated genomic regions in the six genomes studied
(82.76–90.62%, see Table 1).

The CDSs from each of the six genomes exhibit a range of differ-
ences, which are known to impact the ability of prediction tools to
identify them. These include, but are not limited to, GC content,
codon usage and gene length. The GC content varies from 31.69%
to 67.21% for these genomes, and even within a single genome, the
CDS GC content varies widely (see Supplementary Fig. S1 for
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distributions). Furthermore, the canonical ATG start codon is used
between 68.58% and 90.67% of the genes for the six genomes (see
Supplementary Table S1 for more detail).

Additionally, M.genitalium uses the codon translation table 4,
meaning one of the three universal stop codons (TGA/UGA) is in-
stead used to code for tryptophan (Dybvig and Voelker, 1996),
whereas the other five MOs use the universal translation table 11
(see Supplementary Tables S1 and S3 for more detail). While a simi-
lar median CDS length is shared across the six genomes, B.subtilis
and P.fluorescens have a number of long genes (>8000 nt, see
Supplementary Fig. S2) and S.aureus contains the 31,421nt ‘giant
protein Ebh’ (Cheng et al., 2014), which is more than twice the
length of the next largest CDS in this study. The diversity across the
rest of prokaryotes is likely to be as great as, or greater than,
reported here for these six.

The Sequence Ontology (Eilbeck et al., 2005) describes an ORF
as ‘The in-frame interval between the stop codons of a reading frame
which when read as sequential triplets, has the potential of encoding
a sequential string of amino acids’. However, it is conventional for
ORFs to be reported as regions of DNA encompassed by a start and
stop codon as a start codon is expected to indicate the start of DNA
transcription (Brent, 2005). We acknowledge the difference in onto-
logical definition and during this study, we refer to the region of
DNA between an in-frame start and stop codon that is predicted to
encode for an amino acid (protein) sequence, as a predicted CDS.

2.2 Prediction tools
This study specifically investigates CDS predictors, tools which
apply complex filtering after the identification of ORFs across a re-
gion of DNA. This is different to ORF finders, which return unfil-
tered ORFs (Stothard, 2000) that meet a set of pre-defined rules,
such as length and in-frame start and stop codons. This filtering is
unique to each tool and dependent on properties, such as codon
usage, GC content, CDS length, overlap and similarity to known
genes and other more sophisticated parameters modelled on analysis
of previously studied genes and genomes. Without such filtering
methods, CDS predictors would typically report many false posi-
tives, such as nested or heavily overlapping CDSs. An example of fil-
tering can be found in in the GeneMark (Borodovsky and McIninch,
1993) algorithm, which reports multiple variations of the same CDS
with confidence scores. For this study, we chose the longest for each
CDS after assessing the results.

We selected 15 different CDS prediction tools, some of which
required a model (a rigid set of parameters adjusted to a particular or-
ganism), and the others, which predicted ab initio from sequence. The
tools, which required a model were: GeneMark.hmm with E.coli and
S.aureus models (Lukashin and Borodovsky, 1998); FGENESB with
E.coli and S.aureus models (Salamov and Solovyevand, 2011);
Augustus with E.coli, S.aureus and Homo sapiens models (Keller et al.,
2011); EasyGene with E.coli and S.aureus models (Nielsen and Krogh,
2005); GeneMark with E.coli and S.aureus models (Borodovsky and
McIninch, 1993). Those which did not require a model were:
GeneMarkS (Besemer et al., 2001); Prodigal (Hyatt et al., 2010);
MetaGeneAnnotator (Noguchi et al., 2008); GeneMarkS-2 (Lomsadze
et al., 2018); MetaGeneMark (Zhu et al., 2010); GeneMarkHA

(Besemer and Borodovsky, 1999); FragGeneScan (Rho et al., 2010);
GLIMMER-3 (Delcher et al., 2007); MetaGene (Noguchi et al., 2006);
and TransDecoder (Haas et al., 2013). The two groups are referred to
as ‘model-based’ and ‘ab initio’ henceforth and can be seen in Table 2.
The group ab initio included a number of tools, which were designed
for fragmentary and metagenomic studies: MetaGeneMark, MetaGene,
MetaGeneAnnotator and FragGeneScan. In addition, TransDecoder
was developed to predict coding regions within transcript sequences,
often in eukaryotes. To emulate the annotation process of a novel or
less studied genome or metagenome, each tool was run using its default
parameters. More information regarding each group and tool, and the
parameters used to run them, can be found in Supplementary Section S3
‘Prediction Tools’.

Whole genome annotation ‘pipelines’, such as PROKKA
(Seemann, 2014) and NCBI’s PGAP (Tatusova et al., 2016) were
not included, but the initial CDS prediction components embedded
in these pipelines, such as Prodigal and GeneMarkS-2, were included
in the study. Multiple separate tools from the GeneMark family
(Besemer and Borodovsky, 2005) were included (some superseded)
due to their extensive use and impact on genomic knowledge over
the last three decades.

2.3 Comparison method
A systematic software platform ORForise (ORF Authorise) was
built to perform a fair, comparative, and informative analysis of the
different tools examining different aspects of their predictions.
Version 1.0 of the platform, written in Python3 (Van Rossum and
Drake, 2009), was used and is freely available at https://github.com/
NickJD/ORForise. It has been designed to process the standardized
GFF3 format as well as the individual output formats produced by
each tool listed in this study.

In this platform, we endeavoured to choose a wide range of met-
rics that clearly and representatively capture the many intricacies of
the predictions. A number of metrics used in previous studies, such
as the number of CDSs predicted, accurate identification of start
positions or the number of genes correctly detected, can give some
indication of the ‘accuracy’ of each tool. However, it was found dur-
ing our analysis that there were many complexities in the prediction
results, which would not be represented by these high-level metrics.
For example, predicted CDS regions may overlap with one or more
known CEA genes but be inaccurately extended or truncated on ei-
ther the 5’ or 3’ end. It is also common for smaller CEA genes to be
mistakenly encompassed by larger predicted CDSs and while the nu-
cleotide regions of these genes are technically within the predicted
regions, even if in-frame, they do not represent the true protein-
CDS. Furthermore, different types of inaccuracies may be more or
less important, depending on the aim of any given study. Therefore,
clear and specific measures of accuracy that describe the detection of
the entire locus of a gene are needed. Figure 1 illustrates how we de-
termine correct CEA gene detection, but also explains its nuances
and complexities. An example of this is the definition of short
ORFs, which in prokaryotes are often described as having lengths of
100–300 nt (Duval and Cossart, 2017; Storz et al., 2014; Su et al.,
2013). However, due to hard-coded cutoffs in many of the tools, we
chose the ‘upper-bound’ of 300 nt or 100 codons to define short

Table 1. An overview of genome composition for the six MOs selected to evaluate CDS prediction tools compiled from data held by

Ensembl bacteria

Model organism [assembly] Genome size (Mbp) Genes [CDSs] Genome density [CDSs] GC content (%)

B.subtilis BEST7003 [ASM52304v1] 4.04 4133 [4011] 88.91% [87.60%] 43.89

C.crescentus CB15 [ASM690v1] 4.02 3875 [3737] 90.60% [90.23%] 67.21

E.coli ER3413 [ASM80076v1] 4.56 4257 [4052] 86.28% [84.35%] 50.80

M.genitalium G37 [ASM2732v1] 0.58 559 [476] 92.03% [90.62%] 31.69

P.fluorescens UK4 [ASM73042v1] 6.06 5266 [5178] 84.75% [84.20%] 60.13

S.aureus 502A [ASM59796v1] 2.76 2556 [2478] 83.93% [82.76%] 32.92

Note: Data are presented for all genes and CDS genes in bold square brackets. Note the relatively broad differences in genome size, gene density (percentage

covered with annotation) and GC content.
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ORFs. We iteratively developed 72 metrics to help provide the most
accurate and informative representation of a tool’s prediction qual-
ity. Additionally, as part of the ORForise platform, we provide a
number of Python3 post-analysis scripts developed to aid in the in-
terrogation between the CEA gene annotations and the CDSs pre-
dicted by each of the tools studied. These scripts were used to
extract characteristics that are useful in the investigation of why spe-
cific CEA genes are detected, missed or incorrectly reported.

2.4 Aggregated tool predictions
An extension to the ORForise comparison platform was built
(Aggregate_Compare) to investigate whether an aggregation of pre-
dictions from a number of top-performing tools would perform bet-
ter than individual tools. The CDS predictions from the selected
tools are combined into a single data structure with duplicate CDSs
filtered out, but alternative predictions for the same locus retained
and ordered according to start position. The same comparison algo-
rithm could then be employed on the set of unique CDS predictions
identified by this union of the outputs of the selected tools (Prodigal,
GeneMark-S-2, MetaGeneAnnotator, MetaGeneMark and
GeneMark-S—chosen due to their individual performance) and as
with the singular tool comparison, for every CEA gene, the CDS,
which deviated the least from the correct locus was selected as the
closest match.

2.5 Discovering additional ORFs
To enable the aggregation of different CDSs from contemporary and
new annotations, we provide GFF_Intersector to create a single GFF
representing the intersection of two existing annotations. This also
provides an option to allow the retention of CDSs that have a user-
defined difference (default minimum 75% coverage and in-frame).
Additionally, we also provide the GFF_Adder tool, which produces
a new GFF containing CDSs from an existing annotation, plus the
new CDSs, filtered to remove any that overlap existing CDSs by
more than 50 nt (user definable).

3 Results

3.1 Metrics for comparison of tools
A total of 72 different metrics were chosen for this exhaustive evalu-
ation in order to give the broadest possible scope to compare and
contrast the performance of the tools. The full definitions for each

of these metrics can be found in Supplementary Section S5 and are
intended to be used as a resource for the community when deciding
which tool to apply to both novel and contemporary genome anno-
tation work. The following are 12 of the most informative metrics,
selected for their ability to represent both a broad range and depth
of different attributes which have been used to distinguish the pre-
diction tools.

• M1 Percentage of Genes Detected
• M2 Percentage of Predicted CDSs that Detected a Gene
• M3 Percentage Difference of Number of Predicted CDSs
• M4 Percentage Difference of Median Predicted CDS Length
• M5 Percentage of Perfect Matches
• M6 Median Start Difference of Matched Predicted CDSs
• M7 Median Stop Difference of Matched Predicted CDSs
• M8 Percentage Difference of Matched Overlapping Predicted

CDSs
• M9 Percentage Difference of Matched Short Predicted CDSs
• M10 Precision
• M11 Recall
• M12 False Discovery Rate

M1, Percentage of Genes Detected, is often used as the main in-
dicator of tool performance in other comparisons but interpreted
differently between studies. Here, it is characterized as a predicted
CDS, which is in frame with a CEA gene and has captured at least
75% of its nucleotide sequence (Fig. 1A). In contrast to M1, which
indicates when underprediction (or false negatives) occurs, M2 sug-
gests when overprediction (or false positives) has occurred.

For M3, M4, M8 and M9, Percentage Difference was used to
identify differences between predicted and CEA metrics:
100*(Predicted CDS metric—Ensembl Gene Metric)/Ensembl
Gene Metric. The best score for a metric using the Percentage
Difference calculation is 0, as 0 represents no deviation from the
CEA annotations. The ‘Matched CDSs’ identifier used for M6,
M7, M8 and M9 represent the CDSs, which have correctly
detected an CEA gene. M6 and M7 are calculated by taking the
median codon position differences recorded for mispredicted start
or stop codons. Metrics, such as the Percentage of Perfect Matches
(M5) can give a clearer overview of a tool’s ‘accuracy’ or perform-
ance, as it is common for a tool to misidentify either the exact start
or stop locus of a detected CEA gene, while metrics, such as
Median Start Difference of Matched Predicted CDSs (M6) can
help establish the level of inaccuracy.

Fig. 1. Illustration of how predicted CDSs are classified as having detected or not

detected the CEA genes. Predicted CDSs are compared to the genes held in Ensembl.

(A) The predicted CDS covers at least 75% and is in-frame with Ensembl gene and

therefore it is recorded as detected. (B) The predicted CDS covers <75% of the

Ensembl gene and therefore is recorded as not detected. (C) The predicted CDS cov-

ers part of an Ensembl gene but is out of frame (dotted outline) and therefore is

recorded as missed. (D) The use of alternative stop codons causes the predicted CDS

to be truncated or divided into two CDSs that span the Ensembl genes and therefore

is recorded as missed

Table 2. Version number and reference for all tools used in this

study

No. Tool name Version Reference

1 Augustus 3.3.3 Keller et al. (2011)

2 EasyGene 1.2 Nielsen and Krogh (2005)

3 GeneMark.hmm 3.2.5 Lukashin and Borodovsky (1998)

4 GeneMark 2.5 Borodovsky and McIninch (1993)

5 FGENESB ‘2020’ Salamov and Solovyevand (2011)

6 Prodigal 2.6.3 Hyatt et al. (2010)

7 GeneMarkS 4.25 Besemer et al. (2001)

8 GeneMarkS 2 ‘2020’ Lomsadze et al. (2018)

9 GLIMMER 3 3.02 Delcher et al. (2007)

10 GeneMark (H.A) 3.25 Besemer and Borodovsky (1999)

11 TransDecoder 5.5.0 Haas et al. (2013)

12 FragGeneScan 1.3.0 Rho et al. (2010)

13 MetaGene 2.24.0 Noguchi et al. (2006)

14 MetaGeneMark ‘2020’ Zhu et al. (2010)

15 MetaGene

Annotator

2008/8/19 Noguchi et al. (2008)

Note: Tools 1–5 inclusive are model-based tools. Tools 6–15 inclusive are

ab initio-based tools. Where no version number is available, the year when

the tool was used is listed in single quotes.
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The tools were ordered by totalling the rankings for each of these
12 metrics, across the 6 MOs. Supplementary Results S1 contains
the results used for the ranking. This ranking, based on a wide range
of different performance measures, allows for a comparative over-
view of contemporary and future tools, and is presented in Figure 2.
This figure also shows the Percentage of Genes Detected (M1) with
an overlay of the Percentage of Perfect Matches (M5), demonstrat-
ing the inconsistency between the two metrics for each tool.
Metrics, such as Percentage of Genes Detected (M1) and Percentage
of Predicted CDSs that Detected a Gene (M2), are informative and
can be representative of a tool’s prediction quality, however, they do
not convey the complete picture when presented in isolation. This is
of particular importance for those working with metagenomic or
other fragmentary assemblies, as the likelihood of incomplete frag-
ments and chimeric sequences is higher and can lead to varying mis-
predictions. Although the overall prediction quality of genes was
high across most of the tools and genomes in this study, the add-
itional metrics produced can be used to identify strengths and weak-
nesses inherent to them. For example, GeneMark.hmm (S.aureus
model and genome), MetaGeneMark and MetaGeneAnnotator,
GeneMarkS were all ranked highest for Percentage of Genes
Detected (M1) for at least one MO, while Prodigal and GeneMarkS
were ranked highest twice (GeneMarkS and GeneMark.hmm were
ranked joint highest for S.aureus). However, when inspecting the 12
metrics (Supplementary Fig. S3), it was clear that there were com-
plex differences between the prediction results of not only the high-
est scoring tools, but also the lower ranked tools, which were often
ranked high for some metrics in some of the genomes.

While no tool or group of tools consistently ranked highest or
equally across the 12 metrics or MOs, MetaGeneAnnotator ranked
best for B.subtilis and M.genitalium, GeneMarkS-2 ranked best for
C.crescentus and Prodigal ranked best for E.coli, P.fluorescens and
S.aureus.

The combination of multiple metrics can be used to determine
which tool should be used between two candidate tools with the
same or similar Percentage of Genes Detected (M1). For
M.genitalium, both GeneMarkS and MetaGeneMark obtained an
M1 score of 39.50%, but MetaGeneMark reported a higher
Percentage of Perfect Matches (M5) (65.96% compared to 61.17%)
than GeneMarkS (see Fig. 2) and is thus more accurate.

In addition, GeneMarkS is ranked first for Percentage of Genes
Detected (M1) when applied to P.fluorescens with 99.29%,

compared to Prodigal, which is ranked 4th with 98.49%. However,
Prodigal has the highest Percentage of Perfect Matches (M5),
92.86% versus 87.03% for GeneMarkS, which means that more of
the CEA genes identified by Prodigal were exact matches. In this in-
stance, choosing either Prodigal or GeneMarkS as the overall highest
performing tool is not arbitrary.

3.2 Model-based versus ab initio tools
It was evident that the performance of model-based tools was less
consistent across the six MOs than the ab initio tools. They could
perform as well as or better than a number of ab initio tools when
the model selected was the same as the genome annotated.
However, if genome and model were not the same, they often pro-
duced predictions of extremely low quality. For example,
GeneMark with the E.coli model only predicted 71 CDSs for
S.aureus’s 2478 CEA genes, of which only 18 CDSs detected a CEA
gene. However, while it could be expected that mixing different
models and genomes could cause poor quality predictions from
model-based tools, there were instances in which both model and
genome were the same and the prediction performance was also
poor. In particular, in the case of EasyGene using the S.aureus
model, only 49.31% of S.aureus CEA genes were detected, a con-
trast from the �99% detected by the majority of ab initio tools.

Intriguingly, Augustus (a model-based tool) when employed
with the E.coli model, was able to detect 96.64% of P.fluorescens
genes. Both genomes are Gammaproteobacteria, and thus Augustus
may be identifying common features of their genes. While this shows
that model-based tools can perform well even when their model and
target genomes are different, when Augustus was applied to
S.aureus using the S.aureus model, it was only able to detect
20.53%, but unexpectedly detected 78.91% when using an
H.sapiens model. This is indicative of the inconsistency of model-
based prediction tools and the genome models they employ. In con-
trast, through the ranking approach, we employed, the model-based
tool GeneMark.hmm with the E.coli model ranked higher (7/21)
than a number of ab initio tools in both the overall ranking and for
individual metrics. Furthermore, GeneMark.hmm with the S.aureus
model was joint top in detecting the highest number of S.aureus
CEA genes with GeneMarkS. Additionally, for each of the model-
based tools, the E.coli model performed better across the six MOs
than the S.aureus model.

Fig. 2. The result of all 15 gene prediction tools (21 with chosen models) on the 6 MO genomes, ordered by the summed ranks across the 12 metrics. The Y axis represents the

Percentage of Genes Detected (M1) by each tool in black and the Percentage of Perfect Matches (M5) in white. M5, which represents the ability for a tool to detect the correct

start codon, has more variance between the tools than M1. Each column on the X axis represents a different tool (some model-based tools were run multiple times). There is

considerable variation in how well each tool performs across the different genomes, while all tools perform relatively poorly on the M.genitalium genome
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3.3 GC content
No significant variation was observed between the CEA gene me-
dian GC content and that of the predicted CDSs from each tool,
even for those with poor predictions (see Supplementary Results S2).
As can be seen in Supplementary Figure S1, each of the six genomes
exhibits CEA genes with a wide range of GC content profiles, irre-
spective of their genome’s median value. We note that the GC con-
tent of genes missed by Prodigal is lower for all six MOs, but within
the 25–75th percentile range for all CEA genes (Supplementary Fig.
S1 and Table S4). Notably, E.coli and P.fluorescens genes, which
were missed by Prodigal are nearly 10% lower in GC content than
both detected and partial genes.

3.4 Overlapping CDSs
The overall number of CDSs predicted to have an overlap with an-
other CDS varied across each of the tools and MOs, with cases of
both positive and negative percentage differences when compared to
the CEA annotations (see Supplementary Results S2 ‘Full Prediction
Metrics’). Proportionally, the number of overlapping CDSs reported
by ab initio tools are closer to the number of overlapping CEA genes
than those reported by the model-based group.

Most model-based tools underpredict the proportion of overlap-
ping CDSs with the exception of GeneMark E.coli for P.fluorescens,
which predicted 2073 overlapping CDSs compared to the 1251
reported by Ensembl (see Supplementary Tables S5 and S6 and re-
sult S1 and S2).

Correct detection of CEA overlapping genes is also a problem.
By totalling and averaging the Percentage Difference of Matched
Overlapping Predicted CDSs (M8), we were able to observe a clear
difference between the two tool groups with respect to their ability
to detect correct overlapping CEA genes (see Supplementary Tables
S5 and S6). The inability of the tools to account for the unusual na-
ture of the M.genitalium genome was shown again with an average
M8 across all tools of �88.21%, compared to the average of
�27.77% for the other five genomes.

Furthermore, when making predictions for E.coli, while model-
based tools, such as Augustus and EasyGene with the E.coli model
can closely predict the proportion of overall overlapping CDSs
(Percentage Difference of �1.42% and �2.30%, respectively), due
to the poorer performance of these tools for correctly detecting CEA
genes, their M8 scores for matched overlapping CDSs were substan-
tially lower than the average score of the ab initio tools (grouped
average of �52.89% as opposed to �23.62%—see Supplementary
Table S6). Prodigal exemplifies this difference between the two tool
groups. It was able to predict all overlapping CEA from
P.fluorescens and S.aureus, whereas even when paired with the same
model and genome, model-based tools continued to perform poorly.

3.5 Short ORFs
The lengths of detected, partially matched and missed CEA genes
when predicted by Prodigal are summarized in Supplementary
Figure S4. It shows that the CEA genes, which were missed by
Prodigal for each genome were substantially shorter in length than
the genes, which were detected, except for M.genitalium. For the
other five MOs, whose combined median length of missed genes is
317, less than half the combined median length of 837.5 of those
detected (Supplementary Fig. S4 and Results S2), it is alternative
start codon selection, which influences whether a predicted CEA is
shortened or elongated.

The proportion of short CEA genes in the six genomes below
300 nt ranged from 4.8% to 13.6% for each of the six MOs. All
tools predicted many short CDSs for M.genitalium because they
were incorrectly truncated due to its alternative stop codon usage.
On average, ab initio tools were shown to be more likely to correctly
detect short CEA genes across the other five MOs (see
Supplementary Tables S7 and S8). Interestingly, unlike overlapping
genes, short ORFs were more often overpredicted, but few were ac-
tually accurate when compared to the CEA. However, ab initio tools
were much better suited to reporting the correct proportion of short
predicted CDSs for all six genomes, often reporting the same

proportion (see Supplementary Table S7). While M.genitalium does
exhibit the highest divergence in proportional reporting of short pre-
dicted CDSs, ab initio tools were still less divergent (see

Supplementary Table S9).

3.6 Partial matches
The number of missed CEA genes was low across the tools studied,

with the exception of M.genitalium and some outliers from the
model-based tools, such as GeneMark, Augustus and EasyGene.
However, we also found many genes that were incorrectly reported

on the 5’ or 3’ end. These misannotations, which we have called
‘partial matches’ if in the correct frame and accounting for �75% of

a CEA gene, constitute either an elongation or truncation of the pro-
tein product of the gene and therefore potentially have an unknown
impact on the resultant sequence. A large number of genes were in-

correctly reported on the 3’ end for M.genitalium by each tool.
These 3’ truncated CDSs are explained by the alternative use of
TGA as tryptophan in M.genitalium (tools incorrectly assume this

encodes a stop codon). The stop codons predicted for M.genitalium
by all the prediction tools were the same ‘TGA, TAG, TAA’ as for

the CEA genes of the other five MOs. Interestingly, one CEA gene in
E.coli, which used CTT as a stop codon, was missed by all tools ex-
cept for FGENESB with its E.coli model. FGENESB incorrectly

reported the very next codon, a TGA, as the stop position. This
78 nt CEA is the only example, we found of a tool extending a CEA

gene not from M.genitalium. Augustus with the Human model
made a number of non-standard predictions due to its propensity to
search for multiple CDSs for each gene but this is to be expected and

is not reported in these results. Unlike 3’ misprediction, a large num-
ber of genes from all six genomes were predicted with alternative

start codons (see Supplementary Results S2). This was true for all
tools and especially a problem for C.crescentus with a relatively low
68.58% ATG start codon usage for all CEA genes. The CEA genes

for which Prodigal was unable to obtain a ‘Perfect Match’ (M5),
was just 37.40%. Prodigal used a much higher level of ATG
(80.87%) for this set of partially matches genes. This misidentifica-

tion of start codon usage was a consistent problem among all the
tools and genomes studied. However, for E.coli, the level of mis-

identification was lower. As an example, the number of times the
correct or incorrect start codons were selected by Prodigal, across all
six MOs, including the number of incorrectly chosen instances of

the start codon (e.g. a different ATG further upstream of the real
ATG) can be seen in Supplementary Table S2.

3.7 Aggregated tool predictions
Combined prediction approaches have previously been utilized to
harness the prediction power from multiple tools to increase the
number of detected CEA genes (Tatusova et al., 2016; Yok and

Rosen, 2011). For each of the MOs, taking the union of the top 5
tool predictions did provide a small increase in the number of Genes
Detected (M1) (and a reduction of partial matches) compared to

that of the ‘best tool’ [tool with highest percentage of Genes
Detected (M1)] for any particular organism. However, even with

this extreme case of using the union of all predicted CDSs, the in-
crease in M1 was negligible (average increase of 0.47%) and came
at the expense of predicting a large number of additional incorrect

CDSs, as can be seen in Supplementary Table S10. Even in the case
of M.genitalium, the M1 was not improved more than 0.21% with

the union prediction.

3.8 Improving historic annotations
Using the GFF_Adder tool, we investigated the potential of Prodigal
to add additional CDSs to the CEA annotations. There are more

than 60 additional predicted CDSs that can be found for each of our
MOs, and more than 270 for E.coli and P.fluorescens (see
Supplementary Table S11).

6 N.J.Dimonaco et al.
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4 Discussion

4.1 Ab initio tools usually perform better than

model-based
We found that ab initio tools usually perform better than model-based
tools. While no one tool performed the best or worst across all met-
rics, the ab initio tools Prodigal, GeneMarkS-2, MetaGeneAnnotator,
MetaGeneMark and GeneMarkS were ranked first–fifth, respectively,
across our 12 metric ranking (Supplementary Fig. S3 and Results S1
and Supplementary Rankings).

Strains of the same species can exhibit large intraspecies variation
(Van Rossum et al., 2020). Additionally, genes resulting from horizon-
tal transfer, which is more frequent within species (Van Rossum et al.,
2020), are likely to contain features from the donor strains, which the
rigid model-based methods are unable to recognize. GeneMark, a
model-based tool, published in 1993, even when both target genome
and model were E.coli, was identified as one of the worst performing
tools in this study, possibly driven by the well-known large open pange-
nome of this species (Lukjancenko et al., 2010). The same was
observed for S.aureus. While model-based tools can perform well even
when their model and target genomes are different, in the case of
Augustus, when applied to the C.crescentus genome using the S.aureus
model, it was only able to detect 3.93% of CEA genes, but unexpected-
ly detected 78.75% when using the H.sapiens model. Unsurprisingly,
model-based predictors have therefore fallen out of development and
use over the last decade and ab initio-based tools, such as Prodigal,
GeneMarkS-2 and GLIMMER3 have become ubiquitous.

4.2 Codon usage has a large influence on accuracy
We found that codon usage has a large influence on accuracy due to
its influence on start and stop codon choice, even in MOs.

The re-coding of a stop codon as an amino acid is rare and seems
to be taxa specific (Dybvig and Voelker, 1996). While many of the
tools offered the ability to change codon tables (often accounting for
TGA specifically), the correct codon tables or codon preferences for
each genome cannot be known in advance of annotation of a novel
organism. Despite this, we would expect that they should be able to
predict a significant proportion of genes, even in the absence of the
knowledge of a different codon usage table. Some tools, such as
Prodigal will assess a genome using both the universal and
Mycoplasma translation table, however remarkably this did not in-
crease the accuracy of the tool when analysing M.genitalium gen-
ome (see Fig. 2). Overall TGA was never predicted as tryptophan-
coding in this genome by any tool (see Supplementary Results S2).

While ATG is used for 80% of start codons in the canonical anno-
tations for most prokaryote genomes, some species and even some
species-spanning gene families have been shown to use very different
start codon profiles (Villegas and Kropinski, 2008). The use of different
start codons in prokaryote genomes has often been correlated to the
genome-wide GC content: at extreme low and high GC (<30% and
>80%), ATG and GTG, respectively, are often more prominent. In
our study, the extreme example of this was C.crescentus, which uses
ATG as a start codon only 69% of the time. This is likely driven by its
GC content of 67%. All of the tools performed poorly at predicting the
correct start codon in this species (Fig. 2). This has been reported in
the literature, specifically in relation to the lack of translation initiation
sequence motifs traditionally used by prediction tools to identify the
frame and start locus of a gene (Schrader et al., 2014). This is not
unique to C.crescentus and as shown in Supplementary Table S2, for
all six MOs incorrect start codon selection resulted in either elongated
or truncated CDSs (see Supplementary Results S2). The analysis of
E.coli exhibited the lowest divergence between CEA and predicted start
codon selection (see Supplementary Results S2 for more detail), pos-
sibly as a result of its historic use as a MO and having the largest use of
the canonical ATG start codon in this study. Studies continue to inves-
tigate the possible fluidity of gene start codon selection and how some
genes recorded in genomic databases may either have been annotated
with the wrong start codon, or even require the annotation of multiple
alternative start positions and therefore start codons (Baranov et al.,
2015; Meydan et al., 2019; Villegas and Kropinski, 2008).

4.3 Metagenomic annotation approaches are suitable

for whole genome sequences
Interestingly, tools made specifically for metagenomic and frag-
mented genome annotation performed better than most single gen-
ome tools (tools ranked third, fourth and sixth were developed for
metagenome annotation), possibly indicating that even ‘complete’
genomes may themselves still harbour elements of sequencing and
assembly error which these types of algorithms have been designed
to account for. Most genomes submitted to databases, such as the
NCBI Genome repository (Haft et al., 2018), are incomplete and
can contain hundreds of fragments which can make gene prediction
an even more difficult task. As S. Salzberg said in 2019
‘Paradoxically, the incredibly rapid improvements in genome
sequencing technology have made genome annotation less, not
more, accurate’ (Salzberg, 2019). This indicates that future annota-
tion work performed on non-model and more diverse organisms
may benefit from approaches implemented by metagenomic tools.

4.4 Short genes and overlapping genes are often

misreported
We found that short genes and overlapping genes are often misre-
ported and that many tools still have hard-coded limitations and
weightings against these types of genes, with model-based tools per-
forming especially poorly.

It has been well established in the literature that short genes are
likely under-represented across genomic databases, and therefore,
possibly even within the Ensembl data used in this study (Duval and
Cossart, 2017; Storz et al., 2014; Su et al., 2013). The growing ac-
ceptance that short genes are not only common in prokaryotic
genomes but also have important roles (Andrews and Rothnagel,
2014), is at odds with many tools still containing hard-coded limita-
tions for minimum CDS length and algorithmic weights against short
CDSs. As might be expected because of its re-coding of TAG,
M.genitalium proved challenging for all tools to accurately identify
CDSs, resulting in the early truncation of a large proportion of CEA
genes and an increase in predicted short CDSs. This often led to the
tools predicting additional spurious short CDSs in the missed regions
(a result that can be seen in the low M10 Precision metric for this gen-
ome). However, for the other genomes, most tools also predicted too
many short CDSs (9.07% and 39.10%, for ab initio- and model-
based tools, respectively), but paradoxically still managed to miss a
large proportion of Short CEA genes in the Ensembl annotations
(missing 26.38% and 53.69% for ab initio- and model-based tools,
respectively) (see Supplementary Tables S7–S9 and Results S2).

For overlapping genes, while ab initio tools performed better
than model-based tools (see Supplementary Tables S5 and S6), in
general they both under-predicted the number of overlapping CEA
genes across the genomes (on average �6.07% and �30.15% for ab
initio- and model-based tools, respectively) (see Supplementary
Tables S5 and S6 and Results S2). No tool was able to correctly de-
tect more than 20% of M.genitalium’s overlapping CEA genes.
Overlapping and nested genes have now become an area of renewed
interest for their potential impact on genomic organization and evo-
lution (Huvet and Stumpf, 2014; Krakauer, 2000). For example,
mokC in E.coli, believed to be a regulatory peptide, completely
overlaps hokC and enables hokC expression (Pedersen and Gerdes,
1999) and no tool was able to detect both genes correctly.

Overall, the tools struggled to handle overlapping gene loci, and
often returned either only one or neither of the overlapping coding
regions in their predictions. This may be due to the manner in which
many tools filter multiple candidate ORFs for a single locus leading to
sub-optimal predictions. For example, Prodigal reports a CDS in
C.crescentus on the positive strand at 23 760–24 074 when the CEA
CDS is 23 550–24 170 on the negative strand. The unallocated space
(24 074–24 170) resulted in Prodigal reporting the next downstream
CDS starting at 24 091 instead of 24 133 (as in the Ensembl annota-
tion), erroneously including 5’ UTR in the predicted CDS. There are
now tools to identify putative short ORFs in both prokaryotes and
eukaryotes using additional evidence, such as RNA expression data
(Bartholomäus et al., 2021; Ji et al., 2020; Miravet-Verde et al., 2019).
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Our results suggest that the identification of short and overlapping
CDSs cannot be done independently without the potential for unfore-
seen consequences for annotation accuracy.

4.5 Historic bias affects gene prediction today
Overall, we have observed an increase in accuracy in tools over time
as can be seen with the different versions of GeneMark compared
here: the overall rankings of model-based GeneMark (1993) (with
E.coli/S.aureus models), ab initio GeneMarkS (2001) and ab initio
GeneMarkS-2 (2018) are 20/17, 5 and 2, respectively. However,
GeneMarkS (2001) performed better than its successor GeneMarkS-2
(2018) for 5 out of the 12 metrics in Supplementary Figure S3 includ-
ing Percentage of Genes Detected (M1) in P.fluorescens, M.genitalium
and B.subtilis (see Supplementary Results S1 and Supplementary
Rankings). The performance of GeneMarkS (2001) in M1 may reflect
its use for an extended period of time in the NCBI Prokaryote
Annotation Pipeline. Possibly as a result of this, many of the CEA
genes GeneMarkS (2001) detected were originally identified by the
tool itself. Similarly, all model-based tools performed at their best
across the 12 metrics and 6 MOs when using their E.coli model, hint-
ing at the impact of historical research in this organism. Advances in
the realms of machine learning and statistical modelling have the
greatest potential to address these issues but are also likely to be the
most prone to historical biases in the databases. Many of the rules,
such as standard CDS length and codon usage, are inferred from pre-
viously identified CDSs. The existence of annotation errors and omis-
sions in various sequence databases is well established and unlikely to
be resolved in the near future without significant coordination be-
tween repositories (Klimke et al., 2011). Additionally, much of the se-
quence information derived from MOs will become less relevant as
greater numbers of novel organisms are sequenced (Hunter, 2008).

These issues have been raised previously: In 2009, the ‘Best
Practices in Genome Annotation’ meeting report listed a number of
areas of concern put forward by attendees (Madupu et al., 2010)
including tool choice, strategy to update and correct previous annota-
tions, tracking of changes in databases, prioritization of certain genes
for experimental evaluation, documenting processes and keeping up
with technological advances. The work presented here addresses the
issue of tool choice, but many of the recommendations are yet to be
realized. The lack of any previous detailed systematic overview of
method performance may also have played a part in these biases not
being addressed to date. Our study has shown that tool selection needs
to be fully informed by its intended purpose and the tool’s weaknesses.

4.6 Current and future techniques are needed to

continue annotation improvements
It is clear from both this and previous studies that combinatory
approaches are fundamental in bridging the gap to the next stage of
genome annotation. This has clearly already begun with pipelines,
such as PROKKA and PGAP, which utilize a collection of techniques,
most notably, advanced homology searching to complete annotations
where traditional CDS predictions fail or produce competing predic-
tions. However, this can also lead to conflicting annotations. As
noted, homology searches are only as good as the database being
used. The presence or absence of homology does not indicate whether
an ORF is a true CDS gene, especially in the nuanced field of alterna-
tive ORFs (Orr et al., 2020). Further complications involving alterna-
tive ORFs, many of which are overlapping, can be found with new
evidence in E.coli, where ‘Ribosome profiling revealed out-of-frame
internal minimal ORFs in 13 E. coli genes. Mutation of the start
codon. . . in one gene, yecJ, resulted in an increase in translation of the
main-ORF, suggesting that these minimal ORFs also can modulate
translation of the main-ORF’ (Meydan et al., 2019).

As users of computational genomic techniques, we must realize
when we have reached the limit of what is possible with the contem-
porary data available. This, together with other studies, proposes
that the linchpin required for the next step in genome annotation, is
not even more techniques reliant on current genomic knowledge,
but instead more experimental work and species agnostic
approaches. However, the near unlimited scope of growth

conditions, environmental pressures et cetera, has made the prospect
of experimentally validating all potential CDS regions unfeasible.
Finally, while great strides have been made in experimentally vali-
dating difficult to characterize gene types, one such study ‘. . . sug-
gest[s] substantial numbers of small proteins remain undiscovered in
E. coli, and existing bioinformatics techniques must continue to im-
prove to facilitate identification’ (VanOrsdel et al., 2018).

5 Conclusion

We have presented a comprehensive set of metrics, which distinguish
CDS prediction tools from each other and make it possible to identify
which performs better for specific use-cases. The ORForise evaluation
framework enables users to evaluate new and existing annotations and
generate consensus and aggregate gene predictions. We have demon-
strated that certain types of genes, such as short genes, overlapping
genes and those with alternative codon usage, are still elusive, even to
the most advanced ab initio techniques. Worryingly, the performance of
any tool seems to depend on the genome that is being analysed. For in-
stance, Prodigal, which ranked best overall, was ranked first for E.coli,
S.aureus and P.fluorescens, MetaGeneAnnotater was ranked first for
B.subtilis and M.genitalium and GeneMarkS-2 was ranked first for
C.crescentus (see Supplementary Rankings). Additionally, no individual
tool ranked as the most accurate across all genomes for the Percentage
of Genes Detected (M1) (the single metric historically used to assess
tool performance) or any other individual metric. This is likely to have
a measurable impact on downstream genomic and pangenomic studies.
However, overall, we found Prodigal to be one of the most well-
rounded tools, not only detecting the highest number of CEA genes for
two very diverse MOs (E.coli and M.genitalium), but also performing
overall best when ranked across the 12 metric rankings and 6 MOs. It
was also overall best for Perfect Matched genes (M5). However, as out-
lined earlier, it was not always ranked first for all genomes, further sug-
gesting that users should choose tools carefully, based on the organism
and question they are studying. Finally, we advise against generating
aggregated ab initio annotations from multiple tools where no existing
annotation is available for the genome, as this results in poor overall
performance. However, additional cycles of annotation with tools
designed to identify putative CDSs in the unannotated regions, show
promise for improving current prokaryotic genomic knowledge.
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