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Fuzzy Rule Interpolation with K-Neighbours
for TSK Models

Pu Zhang, Changjing Shang and Qiang Shen

Abstract—When a fuzzy system is presented with an in-
complete (or sparse) rule base, fuzzy rule interpolation (FRI)
offers a useful mechanism to infer conclusions for unmatched
observations. However, most existing FRI methodologies are
established for Mamdani inference models, but not for Takagi-
Sugeno-Kang (TSK) ones. This paper presents a novel approach
for computing interpolated outcomes with TSK models, using
only a small number of neighbouring rules to an unmatched
observation. Compared with existing methods, the new approach
helps improve the computational efficiency of the overall inter-
polative reasoning process, while minimising the adverse impact
on accuracy induced by firing those rules of low similarities with
the new observation. For problems that involve a rule base of a
large size, where closest neighbouring rules may be rather alike
to one another, a rule-clustering-based method is introduced.
It derives an interpolated conclusion by first clustering rules
into different groups with a clustering algorithm and then,
by utilising only those rules that are each selected from one
of a given, small number of closest rule clusters. Systematic
experimental examinations are carried out to verify the efficacy
of the introduced techniques, in comparison with state-of-the-art
methods, over a range of benchmark regression problems, while
employing different clustering algorithms (which also shows the
flexibility in ways of implementing the novel approach).

Index Terms—TSK models, Fuzzy rule interpolation, Rule
clustering, K-nearest rules, Nearest rule clusters.

I. INTRODUCTION

One successful methodology to implement practically effec-
tive knowledge-based systems is through the use of fuzzy rule
based reasoning. The underlying idea of a fuzzy rule-based
system is to represent domain knowledge in the form of fuzzy
“if-then” rules by employing fuzzy sets to describe imprecise
variable values. These rules may be directly provided by
domain experts or obtained via data-driven learning. A fuzzy
system works generally by checking whether a novel input
matches the antecedent of any rule in the set of collected
rules (namely, the rule base), with the output computed as the
corresponding rule consequent [1, 2]. Particularly, supported
with fuzzy logic and fuzzy set theory, imprecise and linguistic
terms can be readily described and their associative relation-
ships explicitly represented, enabling the inference process to
be performed that resembles human reasoning.

Different types of fuzzy rule inference system exist in
the literature. Takagi-Sugeno-Kang (TSK) models [3] are one
of the conventional that are the most applied. Within such
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a model, fuzzy sets are used to depict the values of rule
antecedents and polynomials to describe the consequents.
Firing a rule of this form results in crisp conclusions. As
such, TSK models are very suitable for solving regression and
prediction problems, over continuously-valued domains.

Whilst being generally powerful, conventional rule based
systems all suffer from an important limitation, be they fuzzy
or not. That is, if the input domain is not completely covered,
a novel observation may not always match any rule in the
given rule base. In this case, they are unable to produce
any conclusion by applying any of the classical rule-firing
methods. Such rule bases are termed sparse ones (although
this is often taken to simply imply an incomplete rule base)
in the literature. To rectify, or at least to reduce the adverse
impact of this limitation, fuzzy rule interpolation (FRI) has
been introduced [4]. If a newly presented input or observation
does not match any of the rules available, FRI can help by
generating an intermediate rule through the approximation of
those rules close to the observation, from which a potentially
relevant conclusion may then be obtained. FRI has been widely
applied in performing practical pattern recognition problems
and has obtained satisfactory results, such as computer vision
and image processing [5]; medical diagnosis [6] and risk
analysis [7]; and cyber security and network security [8].

A good number of FRI approaches have been established
over the past few decades. Just considering the popular fam-
ily of transformation-based fuzzy rule interpolation (T-FRI)
techniques [9] that generally follow the seminal work on
linear interpolation [10], there have been many distinct FRI
mechanisms reported in the literature, including: adaptive in-
terpolation [11], higher-order interpolation [12], and weighted
FRI techniques [13]. However, these exemplified techniques
are all developed for Mamdani models rather than for TSK
models.

TSK inference extension (TSK+) [14] is a recently proposed
fuzzy interpolative reasoning method for fuzzy systems em-
ploying TSK models. Instead of relying upon computing the
matching degrees, it uses a distance metric-based similarity
measure to perform interpolative reasoning, by manipulating
all rules contained within the rule base. In so doing, when
an input matches no rule, a certain output is still obtained.
Although TSK+ offers a useful means for innovative inference,
it has its own shortcomings. Particularly, it is not sufficiently
efficient for many practical applications given its nature of
fundamentally requiring the use of all given rules, incurring
significant computational overheads. Besides, redundant or
possibly, irrelevant rules are also included in any attempt to
compute the output. This may introduce undesirable biases into
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the final interpolated outcomes, thereby reducing the system
accuracy.

To address these limitations, a different approach, interpo-
lation with (just) K closest neighbours, is proposed in this
paper. The work presents two advancements in developing
FRI methodologies for TSK models, through two novel imple-
mentations of the approach: (i) interpolation with K Closest
Rules (KCR) for sparse rule bases of a small size, and (ii)
interpolation with K Closest Rule Clusters (CRC) for those
of a large size. The underlying principle for both is to perform
interpolation using a small number, K of distinctive rules
close to an unmatched observation. This follows the common
practice as with the state-of-the-art techniques developed for
Mamdani models. In so doing, rules with low similarities to an
unmatched observation are not fired and hence, their adverse
impact on model accuracy minimised, while incurring less
computation. In addition, the problem of lacking diversity of
rules being involved in subsequent interpolation, caused by the
situation where a large-sized sparse rule base is present but
the K nearest rules may be very similar with one another, is
resolved. To provide flexibility in implementing the proposed
approach, ensuring that it does not rely on any specific clus-
tering algorithm, the implementation for the second method is
herein systematically evaluated using five different clustering
techniques.

To have a fair comparison over different methods, a range
of experimental studies are systematically carried out on
different benchmark datasets. Statistic analyses of the results
demonstrate that KCR improves the performance over TSK+
and CRC for cases involving sparse rule bases of a small size,
and that for cases involving rule bases of a large size, CRC
outperforms TSK+ and KCR. Of course, both KCR and CRC
offer superior results over the existing approach TSK+. The
most recent work as reported in [15] provides a novel approach
that makes it possible to automatically select fuzzy rules for
interpolation. Having recognised this, experimental studies are
also conducted to compare KCR and CRC with this existing
approach, with favourable results.

The remainder of this paper is structured as follows. For
academic completeness, Section II briefly reviews the infer-
ence process of the conventional fuzzy systems that use a TSK
model, the procedure of TSK+, and the five popular clustering
algorithms that are subsequently used for rule clustering.
Sections III and IV detail the two aforementioned methods,
respectively introduced for interpolation with K closest rules
and that with K closest rule clusters. Section V presents and
discusses the experimental results, in comparison with state-
of-the-art alternatives. Finally, Section VI concludes the paper
and points out interesting future work.

II. BACKGROUND

This section presents the directly relevant background ma-
terial, including an outline of TSK fuzzy inference systems
and TSK+, and a brief description of five popular clustering
algorithms each of which may be used to facilitate the rule
clustering-based interpolation method.

A. TSK Model-Based Fuzzy Reasoning Systems

The TSK fuzzy systems were originally presented by Tak-
agi, Sugeno, and Kang in 1985 [3]. A TSK model uses fuzzy
sets to represent rule antecedents and polynomials to do the
consequents, with the computed conclusions represented in
crisp values. As presented in Fig. 1, for an unknown observa-
tion, the TSK model-based system first calculates the matching
degrees between the observation and the rule antecedent in
each rule. The weight of a certain rule is then determined by
an integrating operation (usually implemented by a minimum
operator) on the resulting individual matching degrees. The
final outcome is computed by the weighted average of the
corresponding rule consequents. A more detailed description
of a TSK system and its working is outlined in Alg. A1, as
provided in Appendix A.

Fig. 1. Illustrative example of TSK inference process.

If a new observation does not match any rule, the weight
αi that is calculated for each rule will be 0. This implies that
neither sub-conclusion nor final result can be derived using
traditional approximate reasoning. Thus, any attempt to utilise
the conventional TSK model will fail. This is due to the fact
that the system utilises a sparse rule base, or more precisely,
an incomplete fuzzy rule base, namely it does not cover the
full problem domain. As indicated previously, FRI has been
developed to compute the corresponding conclusions for such
unmatched observations, by exploiting the approximation of
the rules close to them, although the substantial majority of
the existing techniques are aimed at interpolative reasoning
with Mamdani models [4].

B. TSK Inference Extension (TSK+)

TSK+ [14] represents the current state of the art, providing
a fuzzy inference mechanism that extends the original TSK
inference to cope with sparse rule bases. Different from the
conventional TSK approach that works based on calculating
the matching or overlapping degrees with an observation,
TSK+ works by employing a similarity measure modified from
the Euclidean distance metric [16] to assess any potential
relationships between the observation and every given rule.
The similarities so measured between the observation and each
rule are always positive (with a similarity degree larger than
zero). Therefore, each and every rule in the given rule base
will be involved in the computation of the inferred conclusion.
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In so doing, if an observation matches no rules at all in the
rule base, an approximate conclusion is still estimated. The
inference procedure of TSK+ is summarised in Alg. A2, in
Appendix A.

Fundamentally, TSK+ applies all given rules. This clearly
is not efficient, especially for problems that involve a large
(however incomplete) rule base. More importantly, redundant
or even possibly irrelevant rules are also included in every
attempt to compute the final output. This may introduce a
certain undesirable bias or noise into the computation process
for the generation of the conclusion, further to the introduction
of significant computational overheads.

C. Clustering Algorithms

A brief introduction to five popularly used and readily
available clustering algorithms is given here. Each of these can
be adopted to implement the rule clustering procedure that is
required in the subsequent development when facing a large-
sized rule base. Any one of these may be employed to carry
out the intended task, but these are collectively reviewed to
facilitate comparison, in an effort to make an informed choice
of the potentially most suitable.

1) K-means [17]: As one of the most widely used fuzzy
clustering algorithms, it clusters instances into K groups by
iteratively updating cluster centres and assigning instances to
their closest centres. The underlying objective function (known
as the inertia or within-cluster sum-of-squares error) is defined
as follows:

Jw(U, V ) = ΣNj=1ΣKi=1‖xji − vi‖2 (1)

where U denotes the set of data instances, xji expresses that
the j-th instance belongs to the i-th cluster, V stands for the
set of cluster centres and vi ∈ V , ‖xj − vi‖2 denotes the
Euclidean distance between the object xji and the centre vi,
K is the number of cluster centres, and N is the number of
instances.

This algorithm requires the number of clusters to be pre-
specified. Many methodologies have been introduced in the
literature to determine the number of clusters, K, such as those
through the use of: the Elbow method [18], the Silhouette-
based technique [19], and the Bayesian Information Criterion
[20]. The Elbow method is fast and effective, as it determines
the value of K simply based on the criterion that adding
another cluster does not lead to much improved modelling
outcome (with respect to the above objective function), and
hence it is employed in this paper.

2) Gaussian Mixture Models (GMM) [21]: Being another
classical clustering algorithm, this method works by presum-
ing that the distribution of instances conforms to the linear
combination of multiple Gaussian distribution functions. This
combination function is defined by:

p(xj) = ΣKi=1πjiN (xj |µi, σi) (2)

where xj denotes an instances to be clustered, πji represents
the probability that the instance xj belongs to the i-th cluster,

and µi and σi stand for the mean and standard deviation of
the i-th Gaussian model respectively.

Theoretically, this model can fit any type of data distribu-
tion. The expectation maximisation (EM) algorithm [22] is
the most commonly used algorithm to construct GMM. In
particular, to identify the optimal partitions of GMM, the log-
likelihood function to be maximised is given by

log(

N∏
j=1

p(xj)) = ΣNj=1log(ΣKi=1πjiN (xj |µi, σi)) (3)

The corresponding parameters are updated iteratively such
that:

µi =
1

Ni
ΣNi=1γjixj

σi =
1

Ni
ΣNi=1γji(xj − µi)(xj − µi)T

πji =
Ni
N

(4)

where Ni = ΣNj=1γji and γji represents the conditional
probability which is calculated by:

γji =
πjiN (xj |µi, σi)

ΣKi=1πjiN (xj |µi, σi)
(5)

3) Fuzzy C-means (FCM) [23]: This conventional clus-
tering algorithm has been popularly applied in dealing with
various problems (e.g., for fuzzy rule base generation [13] and
social network modelling [24])). Unlike any crisp clustering
method (say, K-means and GMM), FCM allows a data instance
to belong to different clusters at the same time with different
membership degrees. It works by assigning each instance a
membership degree to every cluster, based on the measurement
of the distance between the instance and an individual cluster
centre. The closer an instance to a cluster centre, the higher
the membership degree. To identify the optimal partitions of
FCM, the objective function to be minimised is defined by

Jw(U, V ) = ΣNj=1ΣKi=1(uij)
w‖xj − vi‖2 (6)

where xj denotes an instance, w is a parameter that signifies
the weight of each element, K stands for the number of cluster
centres, N is the number of instances, V is the set of cluster
centres with vi ∈ V , U is the matrix of membership degree
and uij ∈ U represents the membership degree of the instance
xj belonging to the cluster with the centre vi, and ‖xj − vi‖2
expresses the similarity between the instance xk and the centre
vi.

The procedure of this algorithm is summarised in Alg. A3,
in Appendix A. Particularly, the membership uik and the
centre vi are updated iteratively such that

vi =
ΣNj=1(uij)

wxj

ΣNj=1(uij)w
(7)

uij = (ΣKn=1(
‖xn − vi‖
‖xj − vn‖

)2/w−1)−1 (8)
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4) Kernel Fuzzy C-means (K-FCM) [25]: Being an exten-
sion to the standard FCM, it works by applying a kernel-
induced distance measure to replace the original Euclidean
distance. Kernel function is a nonlinear mapping that trans-
forms a low dimensional input data space into a feature
space with a much higher dimension, aiming at turning the
original nonlinear problem into a potentially linear one so as to
facilitate problem solving [26]. The following Gaussian radial
basis function (GRBF) is one of the commonly used kernel
functions, and the one employed in this paper, because no
additional parameters are required:

KN(xj , vi) = exp
−‖xj − vi‖2

σ2
(9)

where xj denotes an instance, vi stands for a cluster centre
and σ2 represents the variance of the instance.

As it is a direct extension of FCM, the algorithm procedure
is omitted here. However, note that adapted from its original,
the underlying objective function is now:

Jw(U, V ) = ΣNj=1ΣKi=1(uij)
w(1−KN(xj , vi)) (10)

with Eqn. 7 and Eqn. 8 respectively transformed to:

vi =
ΣNj=1(uij)

wKN(xj , vi)xj

ΣNj=1(uij)wKN(xj , vi)
(11)

uij = (ΣKn=1(
1−KN(xj , vi)

1−KN(xj , vn)
)1/w−1)−1 (12)

5) Suppress Fuzzy C-means (S-FCM) [27] : This is another
extension of FCM, following the motivation for improving on
its convergence speed [28]. It is developed on the basis of the
rival-checked fuzzy c-means clustering algorithm (RCFCM)
[29] that speeds up FCM with competitive learning capacity.
The underlying mechanism of this approach is to magnify the
largest membership degree, upj while suppressing the others.
In order to achieve such an objective, a membership modifying
mechanism is added after iteratively updating the membership
degrees U , such that

upj <= 1− α
∑
i6=p

uij = 1− α+ αupj

uij <= αuij

(13)

where upj > uij , i 6= p and 0 ≤ α ≤ 1.

III. INTERPOLATION WITH K CLOSEST RULES (KCR)

From the specification as well as the application of TSK+,
it is easy to reveal that those rules nearest to an unmatched
observation generally have a much higher similarity degree
than others. This indicates that the interpolated outcomes may
be mainly determined by those closest rules, with the rest
typically contributing substantially less. Note that in the FRI
literature, it is often assumed that the interpolated conclusion is
estimated by a certain aggregation of those neighbouring rules
to the observation [4]. That is, the nearest rules are (normally
correctly) considered to contain the most relevant information

whilst those rules far away from the observation are less
relevant. Indeed, distant rules may introduce adverse biases
into the results, with their use becoming counter-productive.
As far-away rules generally have relatively smaller similarity
measures against the observation, such biases do not necessar-
ily impose much influence upon the interpolated results, but
they do induce significant computational overheads if there are
many rules in the rule base (despite its incompleteness). Thus,
such biases or the use of remote rules should be minimised,
for both the efficiency and the effectiveness of the interpolative
reasoning process.

To address the aforementioned issue, a significantly revised
inference procedure, termed interpolation with K closest rules
(KCR) is introduced in this section. It employs the same simi-
larity measure (17) as the one used in TSK+. The underpinning
idea is that only K nearest neighbouring rules to a given
unmatched input are exploited in performing the interpolation,
rather than involving all the rules in the sparse rule base.

A. KCR Algorithm

Without losing generality, let a TSK sparse fuzzy rule base
consist of m rules with each involving n antecedent variables
and being defined by

Ri : if x1 is Ai1, ..., xn is Ain,
then fi(x1, ..., xn) = ai0 + ai1x1 + ...+ ainxn

(14)

where Ai1, ..., Ain are the fuzzy sets respectively taken by the
rule antecedent variables x1, ..., xn and ai0, ai1, ..., ain are the
parameters specifying the polynomials of a rule’s consequent.

Given an observation O(B1, ..., Bn), the KCR algorithm
can be summarised as shown in Alg. 1.

Algorithm 1: Interpolation with K Closest Rules
Input: Rule base {Rj}; Unmatched observation O
Output: Interpolated conclusion f(B1, ..., Bn)

1) Computation of Euclidean distances between individual
rules and given observation O.

2) Selection of K nearest rules with Quickselect [30]
(which is exploited purely for efficiency).

3) Computation of similarity measures between O and
each Ri that is one of selected K nearest rules:
S(Ai1, B1), ..., S(Ain, Bn)

4) Determination of weight of each such rule Ri:
αi = S(Ai1, B1) ∧ ... ∧ S(Ain, Bn)

5) Integration of resultant K similarities to obtain
interpolated rule with consequent parameters:

a0 =
ΣKi=1αiai0

ΣKi=1αi
, ...., an =

ΣKi=1αiain
ΣKi=1αi

(15)

6) Execution of interpolated rule to yield interpolated
consequent: f(B1, ..., Bn) = a0 + a1B1 + ...+ anBn

7) Return: f(B1, ..., Bn).
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B. Similarity Measurement

Algorithm 1 works via the employment of similarity mea-
sures. To offer a flexibility in practical applications, as well
as to provide an opportunity for comparative evaluation of the
algorithm, two distinct similarity measurement methods are
introduced here.

1) Similarity with Distance Factor (Similarity-DF): This is
the same as with similarity measurement means utilised in
TSK+. It is a revised version of the measurement presented
in [16], with a distance factor (DF ) employed to reinforce
its sensitivity. Note that as empirically shown in the literature
(e.g., [31]), the use of what type of membership function has
little impact upon the outcomes of fuzzy rule-based inference
provided that the membership functions are appropriately
tuned with training data. From this observation and also, for
computational simplicity, this work utilises triangular mem-
bership functions to represent fuzzy values unless otherwise
stated.

For illustration, suppose that two normalised fuzzy sets are
given, represented by triangular membership function A =
(a1, a2, a3) and A′ = (a′1, a

′
2, a
′
3) [32]. Then, the similarity

degree between these two fuzzy values S(A,A′) is defined
and computed by

S(A,A′) = (1− d(A,A′)) ·DF

DF = 1− 1

1 + e−sα+β

(16)

where d(A,A′) =
Σ3

i=1|ai−a
′
i|

3 and α represents the Euclidean
distance between the gravity centres (namely, the representa-
tive values [9]) of the two fuzzy values, s is an adjustable
parameter that determines the sensitivity of the similarity
measure to the distance measure (the larger the value of s
the more sensitive DF to α), and β is a sufficiently large
integer (which is empirically set to 5) to ensure that DF is
approximately normalised as 1 when d becomes 0.

2) Similarity Based on Distance Measures (Similarity-d):
As one of the most widely applied similarity measurement
method [33], this measures the similarity between two fuzzy
sets directly based on the inverse of the distance metric
between them:

S(A,A′) =
1

1 + d(A,A′)
(17)

where, again, d(A,A′) =
Σ3

i=1|ai−a
′
i|

3 .
Following the above specifications of these similarity mea-

surement methods, it is clear that the larger the value of
S(A,A′), the nearer and hence, the more similar the two
fuzzy sets A and A′. In particular, S(A,A′) reaches the
maximum value if and only if A and A′ are identical. Owing
to their generality, both can be effective and applicable to
capture and reveal the similarities between fuzzy sets (as to
be experimentally verified later, while Similarity-DF generally
performs better than Similarity-d, at the cost of a little extra
computation).

C. KCR Complexity

In Alg. 1, two distance metrics are exploited. The first is
for the use of Euclidean metric to efficiently determine nearest
rules, without resorting to the more complicated similarity
measurement. The second utilisation takes place to find the
similarity measures. However, in this latter use, it only plays
a small part in helping capture the essential relationships be-
tween an observation and the rules. Importantly, the similarity
measurement and hence, the second round of application of
distance metric is only applied K times for K selected rules
rather than for all the rules in the rule base. Typically, K is
substantially smaller than the number of the rules available. As
such, the proposed approach significantly reduces the running
time that would otherwise have to be taken if TSK+ is applied.
Furthermore, the employment of Quickselect helps reduce the
effort required to select the nearest rules.

Indeed, given m rules each involving n antecedent attribute,
the time complexity of KCR is O(mK+nK), where O(mK)
is the time complexity taken to implement the selection of
K closest rules. In comparison, TSK+ has a complexity of
O(mn) since all rules are fired to derive the final conclusion.
Note however that generally, K is much smaller than m or
n. Thus, the proposed approach has a significantly lower time
complexity.

IV. INTERPOLATION WITH K CLOSEST RULE CLUSTERS
(CRC)

KCR is efficient. However, when KCR is applied to solve
problems that involve a large-sized sparse rule base, the K
nearest rules with the greatest similarity degrees may appear
to be rather more similar amongst themselves than the rest.
This may be expected intuitively, as illustrated in Fig. 2. Thus,
if only these K rules are taken to implement interpolation, the
results will be also similar to the linear combination of their
consequents regardless of what similarity measures may be.
Of course, this potential problem is not unique to KCR, but it
can arise in TSK+ as well, despite that all rules are involved in
rule interpolation there. This is simply because the similarities
of the selected K rules are much larger than those measured
over the rest. That is, the final interpolated result in TSK+ is
also mainly determined by those nearest ones.

The above analysis prompts the need to extend the diversity
of rules selected for use in the rule interpolation process, in an
effort to avoid the involvement of far too many similar rules.
Driven by this consideration, a clustering-aided interpolative
reasoning process is presented here, termed interpolation with
K closest rule clusters (CRC) hereafter.

In CRC, to maximise computational efficiency, all fuzzy
values appearing in the rule antecedents are approximately
represented using their representative values, which are firstly
clustered into different groups, by the use of a clustering
method. Those in the same cluster can be intuitively regarded
as containing similar information about the mappings between
the antecedents and the consequents; after all, they have been
deemed to belong to the same cluster. Then, K clusters
nearest to an unmatched observation are selected, with K
being a small number, where the distance between a cluster
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Fig. 2. Rules selected with respect to unmatched observation using KCR,
where rule antecedents and observation are represented by their representative
values (implemented as centres of gravity).

and an observation is determined by the use of the Euclidean
measurement between the cluster centre and the observation.
From each selected cluster, the rule that is the closest to the
observation is then taken as an element of a set of K nearest
rules to be used for interpolation. Thus, rules measured without
necessarily having the higher similarity measures are able to
contribute to the creation of the final interpolated consequent.

Note that through the afore-described rule selection process,
the rule that is of the overall closest distance to the observation
is always included to participate in rule interpolation. This is
obvious as it always is the representative of a certain cluster
of rules since it has the greatest similarity to the observation
amongst the entire rule base. Fig. 3 presents an illustrative
example of rule clusters and rules selected from the closest
clusters that are produced by the CRC algorithm.

Fig. 3. Rules selected with respect to unmatched observation using CRC,
where rule antecedents and observation are represented by their representative
values (implemented as centres of gravity).

A. CRC Algorithm

The above-described intuition for the development of the
CRC procedure is summarised as given in Alg. 2, where
the similarity measurements are obtained in the same way as
with KCR. In this algorithm, it is assumed, without losing
generality, that a sparse rule base contains m rules (with each
specified as per Eqn. 14) and an observation O(B1, ..., Bn)
(which does not match any of the rules) are given. Note
that any of the five different clustering algorithms outlined
in Section II-D (and indeed many other clustering methods if
preferred) can be employed here to perform rule clustering.

Algorithm 2: Interpolation with K Closest Rule Clus-
ters
Input: Rule base {Ri}; Unmatched observation O
Output: Interpolated conclusion f(O)

1) Clustering all rules into C different clusters using
representative values of involved fuzzy values
throughout.

2) Computation of Euclidean distances between
observation O and all centres of the C clusters and
selection of K nearest clusters (with K being normally
much smaller than C).

3) Calculation of distances between O and each rule of
cluster Ci that is taken from K clusters and that has
not been considered so far, i ∈ {1, . . . ,K}.

4) Selection of nearest rule Ri in Ci as its representative.
5) Determination of weight of rule Ri via similarity

measures: αi = S(Ai1, B1) ∧ ... ∧ S(Ain, Bn)
6) Reiteration of Steps 3, 4 and 5 for all K selected

clusters, returning K rules and corresponding
similarities.

7) Integration of K similar rules to obtain interpolated
rule, resulting in consequent parameters:

a0 =
ΣKi=1αiai0

ΣKi=1αi
, ...., an =

ΣKi=1αiain
ΣKi=1αi

(18)

8) Execution of interpolated rule with O, resulting in final
consequent outcome:
f(B1, ..., Bn) = a0 + a1B1 + ...+ anBn

9) Return: f(B1, ..., Bn).

B. CRC Complexity

The time complexity of the proposed CRC procedure is
O(KC + KG + nK), where O(KC) and O(KG) represent
the complexity incurred for K clusters selection and that for
K rules selection with one from each cluster, respectively;
and G is the largest number of the rules contained within any
single cluster. Compared with KCR, whose time complexity is
O(mK +nK), CRC can also help to reduce the computation
cost incurred to perform similarity measurement. CRC does
not require the computation of the distances between the
observation O and all given rules, but only those from O to
the centres of clusters and those to the rules in the K selected
clusters. In so doing, O(KC+KG) is in general, smaller than
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O(mK). In other words, the time complexity can generally be
lower than that of CRC. Thus, the complexity of the proposed
approach is further reduced in comparison to that of TSK+.

C. Integration of KCR and CRC

Both KCR and CRC procedures can be integrated into
a single algorithm, in conjunction with the conventional
inference mechanism for TSK models. This integration is
straightforward, as shown in Fig. 4. It works by the use of just
a small number of closest rules to infer the final conclusion
while the conventional method is stuck when an observation
matches no rules.

Fig. 4. TSK fuzzy inference enhanced with two rule interpolation procedures.

V. EXPERIMENTAL EVALUATION

The performance of the above-introduced novel FRI ap-
proach for TSK models is experimentally evaluated, in com-
parison to the state-of-the-art techniques, including the afore-
mentioned TSK+ and the automated rule selection (AutoRS)
based method [15], over ten benchmark datasets. The ro-
bustness and effectiveness of the presented approach are also
demonstrated by observing the consistency and efficiency of
utilising different clustering methods in supporting CRC.

A. Experimental Setup

1) Datasets used: The datasets run include one nonlinear
mathematical model and nine real-world benchmark datasets
(for regression problems) that have been taken from the
UCI machine learning [34], function approximation [35] and
evolutionary learning repositories [36]. The details of these
employed benchmark datasets are summarised in Table I. For
illustration the threshold for determining large-sized sparse

rule bases is empirically set to 95, in order to help evaluate
the performance of KCR and CRC in relation to the sizes
of the sparse rule bases concerned. Note that the Polynomial
dataset in the table is produced by randomly sampling from
the following 3-dimensional nonlinear function:

F (x, y) = sin(
x

π
) · sin(

y

π
) (19)

This nonlinear function has been used to produce a benchmark
dataset in [14] and [37], and the random sampling method has
been frequently employed in the literature (e.g., [38] and [39]).

TABLE I
DETAILS OF BENCHMARK DATASETS

Dataset Feature no. Instance no. Output Domain Rule no.
Dee 6 365 [0.765853,5.11875] 20

AutoMPG6 5 392 [9.0,46.6] 40
Stock 9 950 [34,62] 90
Laser 4 993 [0.0, 255.0] 100

Friedman 5 1200 [0.6640, 28.5903] 120
Polynomial 2 2000 [-1,1] 200

Quake 3 2178 [5.8,6.9] 200
Delta ail 5 7129 [-0.0021, 0.0022] 500
Delta elv 6 9517 [-0.014, 0.013] 1000

Pole 26 14998 [0.0,100.0] 1500

2) Performance Evaluation Criteria: To enable thorough
evaluation and fair comparison, experimental results are re-
ported using the average obtained from 10×10-fold cross-
validation per dataset. Training sets are used to create sparse
fuzzy rule bases (see next) and testing sets to assess the
performance, in terms of RMSE (root-mean-square error, in
relation to the ground truth). The smaller the value of RMSE
is, the higher accuracy the approach has.

3) Sparse Rule Base Generation: In this experimental
study, sparse fuzzy rule bases are artificially created from
the dense fuzzy rule bases that are induced from the original
datasets. This enables a challenging comparison of the FRI re-
sults (against those attainable using a full set of rules, although
in real applications the full coverage of the problem domain
is not assumed). In particular, a sparse rule base is generated
by randomly removing a number of rules from the original
dense rule base that has been learned by employing a data-
driven learning method. To emphasise on the sparsity of the
knowledge available, in order to compare against conventional
approximate reasoning and state-of-the-art FRI mechanisms
(both running on TSK models), only 80% rules are retained
to form the sparse fuzzy rule base for each problem case.

The following simple data-driven fuzzy rule learning pro-
cedure is employed to generate the original dense rule base:
The data instances in a given training dataset are clustered into
different categorises using fuzzy c-means [23]. Since fuzzy c-
means allows an instance to belong to more than one cluster
with different membership values, the worst rule-learning
assumption is made here, with the least biased threshold of
0.5 membership value used to determine whether an attribute
is taking on a certain fuzzy set as its value. The polynomial
consequent of an emerging rule is learned through the popular
linear regression approach as described in [40].
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For computational simplicity apart from fairness in com-
parison, as indicated previously, only triangular membership
functions are used throughout to represent fuzzy values. The
three parameters of a triangular membership function are
implemented by the infimum, centre and supremum of the
corresponding cluster. Note that, if fine-tuned membership
functions are available and employed, improved performance
attainable by all interpolation approaches examined can be
expected. The number of rules in the created sparse fuzzy
rule base for each dataset is listed in Table I.

For easy illustration, consider the sparse rule base generated
from the polynomial dataset. The following are two (randomly
taken) examples of the learned rules:
• If x1 is A1 = (0.092, 0.159, 0.227) and x2 is A2 = (0.727,

0.767, 0.808),
then fi(x1, ..., xn) = −1.759x1 + 0.468x2 + 0.029

• If x1 is A1 = (0.437, 0.455, 0.472) and x2 is A2 = (0.388,
0.413, 0.438),
then fi(x1, ..., xn) = −1.214x1 − 0.764x2 + 1.441

Results from running the TSK model consisting of 200
such rules (taken from the sparse rule base) without FRI
are illustrated in Fig. 5. The two sub-figures reflect the
results viewed from a different inspection angle of the same
inference process. In particular, Fig. 5(a) gives a sideview of
the outcomes of running on the entire sparse rule base, and
Fig. 5(b) shows a bird’s-eye view. As there are substantial
amounts of space that are not covered by the learned rules,
plenty of observations have matched no rule, resulting in
missing values in the output domain. These two sub-figures
collectively demonstrate the poor outcome of just exploiting
the incomplete knowledge in the given problem domain,
without the support of FRI.

Fig. 5. Inference results running TSK model on sparse rule base without FRI
on Polynomial dataset: (a) sideview and (b) bird’s-eye view.

4) Algorithmic Parameters: For completeness, the parame-
ters used to implement KCR and CRC for the experiments on
different datasets are listed in Table II. Note that the number
of selected rules, K for both KCR and CRC is determined
by a trial and error process. Particularly, the processes of
determining the K for KCR and CRC are exemplified on the
polynomial dataset, as shown in Fig. 6 and Fig. 7 respectively.
For CRC, the Elbow method is employed to determine the
number of clusters required.

5) Automated Rule Selection (AutoRS): A key issue con-
cerned within this work is the determination of the number of

TABLE II
SETTING FOR KCR AND CRC ON DIFFERENT DATASETS

Dataset KCR CRC
Selected rules (K) Rule clusters Selected rules (K)

Dee 3 5 2
AutoMPG6 3 5 2

Stock 3 5 2
Laser 3 10 3

Friedman 4 10 3
Polynomial 3 20 3

Quake 3 20 4
Delta ail 5 50 5
Delta elv 9 80 5

Pole 4 100 5

Fig. 6. Model RMSE vs. number of rules K on KCR.

neighbourhood rules, K used to perform FRI. In the imple-
mentation, K may be a fixed number empirically justified by a
trial and error process as indicated above. However, automated
rule selection (AutoRS) [15] provides a novel approach that
makes automatic selection of fuzzy rules useful for subsequent
rule interpolation. Therefore, the proposed approach is also
compared with AutoRS which represents the most recent
development in the area of FRI. The details of AutoRS are
out of the scope of this paper, but its main procedure can be
summarised as shown in Alg. A4, presented in Appendix A.

B. Results and Discussion

1) On Use of Different Similarity Measurement Methods:
Table III presents the means and standard deviations of the
interpolation results produced by KCR and CRC (with FCM
employed as the clustering method). Each FRI mechanism
is supported by the use of either of the two similarity mea-
surement methods introduced previously. As can be seen, the
FRI algorithms employing Similarity-DF can produce better
results on all bar one dataset than those using Similarity-d. In
particular, the effectiveness of utilising Similarity-DF is more
obvious on more complex datasets. However, note that KCR
with Similarity-d leads to the best inference outcome on the
dataset Dee. One possible reason for this is that selected rules
have similar weights concerning the conclusion whilst their
distances to the observation are different. Having taken notice
of the generally superior results of using Similarity-DF, in the
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TABLE III
PERFORMANCE OF EMPLOYING DIFFERENT SIMILARITY MEASUREMENT METHODS IN KCR AND CRC (WITH FCM AS REPRESENTATIVE)

Dataset KCR CRC with FCM
Similarity-d Similarity-DF Similarity-d Similarity-DF

Dee 0.367 ± 0.130 0.539 ± 0.204 0.498 ± 0.207 0.623± 0.304
AutoMPG6 4.010 ± 2.716 3.419 ± 1.384 3.627 ± 3.161 3.667 ± 1.503

Stock 2.703 ± 2.458 1.099 ± 0.362 8.095 ± 6.604 1.144 ± 0.402
Laser 14.98 ± 10.20 12.45 ± 6.51 22.76 ± 20.30 11.29 ± 5.95

Friedman 2.909 ± 1.712 3.400 ± 2.110 1.654 ± 1.033 1.615 ± 1.204
Polynomial 0.083 ± 0.011 0.088 ± 0.034 0.245 ± 0.091 0.037 ± 0.011

Quake 1.414 ± 0.764 1.152 ± 0.897 1.638 ± 3.129 0.575 ± 0.479
Delta ail 1.516 ± 0.582 0.860 ± 0.630 1.477 ± 0.357 0.358 ± 0.243
Delta elv 2.880 ± 2.012 2.175 ± 1.872 2.420 ± 1.247 0.327 ± 0.280

Pole 101.67 ± 42.99 90.26 ± 23.48 50.34 ± 21.75 13.70 ± 12.75

TABLE IV
PERFORMANCE OF DIFFERENT RULE SELECTION METHODS ON SMALL-SIZED SPARSE RULE BASES

Dataset
Mean ± Standard deviation

TSK+ AutoRS KCR CRC CRC CRC CRC CRC
with Kmeans with GMM with FCM with K-FCM with S-FCM

Dee 0.572±0.222 0.554±0.201 0.539±0.204 0.620±0.302 0.623±0.302 0.623±0.304 0.597±0.207 0.597±0.258
AutoMPG6 3.467±1.419 3.267±1.313 3.419±1.384 3.681±1.551 3.645±1.470 3.667±1.503 3.579±1.477 3.642±1.514

Stock 1.141±0.390 1.149± 0.385 1.099±0.362 1.131±0.402 1.116±0.411 1.144±0.402 1.137±0.435 1.129±0.409

Fig. 7. Model RMSE vs. number of rules K on CRC.

following presentation of the experimental investigations, only
Similarity-DF is adopted to measure similarity.

2) On Rule Bases of a Small Size: Table IV shows the
means and standard deviations of FRI results, which are
averaged outcomes over 10×10-fold cross-validation, for each
of the eight compared approaches on the datasets that involve
the number of rules being less than or equal to 90. In this table,
the notion of “CRC with C” stands for a procedure whose
employed clustering method is “C” to create rule clusters, with
“C” indicating one of the following: Kmeans, GMM, FCM, K-
FCM or S-FCM. The comparison with the conventional TSK
models is not included herein, due to the fact that TSK models
alone cannot derive any conclusion when an observation does
not match any of the rules in the rule base. Naturally, if
compared, all rule interpolation algorithms would significantly
outperform the direct utilisation of the TSK models involving
a sparse rule base across all problems.

As can be seen from Table IV, regarding those models

comprising a sparse rule base of a small size, on average, the
overall best results are obtained by KCR. AutoRS also works
well; and TSK+ has slightly lower accuracies (despite having
a higher computational complexity), which is due to the fact
that all rules are involved, bringing forward adverse biases.

Independent of which of the five clustering methods is used,
the CRC algorithm does not work well on small sized sparse
fuzzy rule bases. This can be expected as those potentially
highly relevant rules are most likely to have been clustered
into one single cluster whilst the other clusters of rules offer
little useful information to the conclusion. Thus, all rules bar
one contribute misleading information to the calculation of the
final results, leading to inaccurate interpolated outcomes.

3) On Rule Bases of a Large Size: Table V presents the
means and standard deviations of interpolation results returned
by each of the eight compared methods, regarding the five
TSK models that involve sparse rule bases of a large size. All
algorithms are ranked according to their means and standard
deviations of the results on each dataset, while those of the
same results are deemed to have the same rank. The lower the
ranking value, the higher the model accuracy. In summary,
the bottom row of this table provides the total rank values
calculated by the sum of individual ranks across all seven
benchmark datasets.

Clearly, CRC outperforms the rest consistently for such
more complex datasets. Examining the experimental results
more closely, CRC supported by K-FCM has highly impres-
sive results on the Quake, Delta ail and Delta elv datasets,
significantly improving the accuracy of the existing methods.
Interestingly, this indicates that the kernel function (Eqn. 9)
applied in K-FCM has the ability to make the clustering results
more suitable for the distribution of the corresponding sparse
rule bases.

As reflected by these experimental outcomes, the utilisation
of any of the five clustering algorithms enables CRC to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

outperform the other algorithms that do not involve clus-
tering on the sparse rule bases, when these rule bases are
of a significant size. This demonstrates the significance of
clustering-aided FRI. Indeed, these results positively reflect
the intuition that similar-rule crowds do have negative impact
upon the accuracy of the final interpolated conclusions. With
the support of clustering, CRC successfully avoids involving
otherwise far too many similar rules and extends the diversity
of rules used for subsequent interpolation. These results also
confirm that whilst all (the sparse) rules are exploited to derive
the final outcome, TSK+ does not resolve the problem well.
Importantly, the narrow-banded standard deviation values as
shown in Table V demonstrate the robustness of the proposed
approach.

4) Further Examination on Performance: In general, CRC
performs excellently for large-sized sparse rule bases, as
demonstrated above. However, to systematically exploit the
proposed approach as per Fig. 4, a threshold is required to
determine the threshold at which to decide on whether KCR
or CRC is to be used (although in the event when it is
unrealistic to identify such a threshold, both methods may
be applied to provide suggestions that are still useful for
interpolative decision-making). According to Table I, on the
stock and laser datasets, the sparse rule bases include 90 or
100 rules. Consider Tables IV and V, by comparing against
the outcomes achieved on the other datasets, algorithms with
and without clustering have more similar results on these
two datasets. Therefore, borrowing the underlying idea of the
Elbow method, the threshold of large-sized sparse rule bases
can be determined as at least including 95 rules (the average
number between 90 and 100). This is the empirical basis upon
which the preceding experiments have been conducted.

Apart from the issue of determining the threshold, there are
occasional situations where the generality of CRC outperform-
ing KCR for large datasets does not necessarily hold. This is
evident by considering the cases where CRC supported by K-
FCM or S-FCM is utilised to carry out interpolative reasoning
with the sparse rule bases which are induced from the poly-
nomial dataset. Fig. 8 depicts the distribution of the results
in a box-plot, across all methods investigated. As revealed
by this figure, CRC with K-FCM or S-FCM is significantly
underperformed than its peers, in comparison to CRC with
K-means, GMM or the original version of FCM. To analyse
the causes of such occasional performance deviation, the rules
selected for a given observation on the polynomial dataset are

outlined in Table VI, represented by their indices. It can be
seen that rule 36 is the nearest to the particular observation and
is always selected by all rule selection methods. Rules selected
by K-FCM and S-FCM are clearly distinct from the ones that
lead to satisfactory results. The likely reason for this is that
these two clustering algorithms fail to derive appropriate rule
clusters on this dataset, adversely affecting the subsequent rule
selection.

Fig. 8. Box-plot of interpolative results on polynomial dataset.

Another interesting observation is that what KCR selected
are the top three rules also selected by AutoRS. However,
with another two rules selected (and employed) on top of
these three, AutoRS performs relatively worse than KCR.
Note that rule 21 is selected by AutoRS, which is also
taken by the top performers like CRC with GMM or FCM
(both of which happen to utilise the same selected rules).
However, AutoRS underperforms in comparison to the two
CRC implementations. This is probably due to the fact that
those three rules (of indices 36, 21 and 57) jointly offer the
best information for producing accurate outcomes. Although
rule 21 is also taken by AutoRS, it is being treated as the
one of the lowest weight (as it is taken the last amongst the
five rules selected in order). Thus, its potential contribution is
delimited, whilst adding more computation costs to reach the
(less well) interpolated result.

To qualitatively visualise the strengths of the proposed ap-
proach, Fig. 9 illustrates the best inference results produced by
the method without clustering (KCR) and that with clustering

TABLE V
PERFORMANCE OF DIFFERENT RULE SELECTION METHODS ON LARGE-SIZED SPARSE RULE BASES

Dataset
Mean ± Standard deviation

TSK+ AutoRS KCR CRC CRC CRC CRC CRC
with Kmeans with GMM with FCM with K-FCM with S-FCM

Laser 13.858±6.210 12.970±6.686 12.456±6.510 11.218±6.050 11.513±6.046 11.292±5.949 12.033±6.262 11.790±6.840
Friedman 3.325±2.02 3.632±1.948 3.400±2.110 1.753±1.151 1.567±1.0002 1.615±1.204 1.528±1.168 1.522±1.112

Polynomial 0.119±0.040 0.103±0.040 0.088±0.034 0.038±0.009 0.037±0.011 0.037±0.011 0.088±0.055 0.105±0.062
Quake 1.155±0.750 1.147±0.895 1.152±0.897 0.663±0.474 0.683±0.523 0.575±0.479 0.408±0.319 0.497±0.396

Delta ail (e-4) 1.788±1.449 0.951±0.604 0.860±0.630 0.357±0.230 0.359±0.241 0.358±0.243 0.243±0.161 0.359±0.246
Delta elv (e-4) 4.778±1.582 7.216±3.256 2.175±1.872 0.525±0.472 0.602±0.208 0.327±0.280 0.299±0.230 0.360±0.422

Pole 100.97±73.54 75.50±26.15 90.26±23.48 39.24±13.06 45.59±15.90 13.70±12.75 15.50±14.75 19.31±18.98
Rank 52 47 48 24 27 16 16 24
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TABLE VI
INDICES OF SELECTED RULES FOR ONE OBSERVATION ON POLYNOMIAL

Approach Indices of selected rules
TSK+ All rules in sparse rule base
AutoRS [36, 39, 41, 45, 21]
KCR [36, 39, 41]
CRC with Kmeans [36, 22, 59]
CRC with GMM [36, 21, 57]
CRC with FCM [36, 21, 57]
CRC with K-FCM [36, 41, 21]
CRC with S-FCM [36, 45, 56]

(CRC with FCM), over the polynomial dataset. Together with
Fig. 5, it can be seen that the novel approach introduced
herein enables appropriate conclusions to be generated for
data instances unmatched by the sparse rules. Additionally, for
this particular dataset, CRC with FCM can produce smoother
results than KCR.

Fig. 9. Inference results using KCR (a) and using CRC with FCM (b), on
Polynomial dataset.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a novel approach for performing
fuzzy rule interpolation (FRI) with TSK models. The work
has been motivated by the observation that existing FRI
approaches are almost completely devised for reasoning with
Mamdani models, whilst the very few developed for TSK
models are inefficient. It makes two particular contributions to
the FRI literature: (i) For models involving a sparse rule base
of a small size, the implementation of the approach (KCR)
derives accurate interpolation using only a small number of
closest rules to an unmatched input. (ii) For models comprising
a sparse rule base of a large size, the implementation (CRC)
first employs a clustering method to categorise the rules into
groups and then, performs interpolation by just utilising one
closest rule from each of a small number of the resulting
rule clusters. The paper has presented results of systematic
comparative experimental studies over a range of benchmark
datasets, demonstrating the efficacy of both implementations.

This original work has offered many opportunities for fur-
ther development. For example, whilst five clustering methods
have been considered to support the realisation of CRC,
they may not be the best to generate the most appropriate
categories for all sparse rule bases. More clustering algo-
rithms, particularly modified fuzzy c-means algorithms (e.g.,
the global fuzzy c-means [41] and the possibilistic fuzzy c-
means [42]) may be adopted as the alternative to strengthening

the performance. Another point is regarding the specification
of the required algorithmic parameters, such as the number of
closest rules and that of the nearest clusters. Currently, they are
empirically set; creating an automated method to determine
these parameters from the training data requires significant
further research. Also, AutoRS offers a means for automated
selection of the number of closest rules for interpolation, how
it may be integrated with the proposed approach to minimise
human intervention is worth investigating.

Another important issue is the determination of whether a
given rule base is a large or a small one, in order to facilitate
an informed choice of which FRI method to use. While the
size of a rule base is typically related to that of the datasets
concerned, it may also be affected by a number of other factors
(e.g., the number of domain features and the distribution of
data objects). An automated mechanism to decide on a rule
base’s size is clearly desirable. In the present implementations,
all rule antecedent variables are treated equally. This gives
rise to a further interesting piece of active research, aiming
at extending weighted representations as per the most recent
work of [7, 13] to accommodating interpolation with TSK
models. Furthermore, for many real-world problems, the inputs
are usually time-dependent, the requirements of fuzzy systems
may change over time. Therefore, designing a novel system
that can dynamically maintain and enrich the sparse fuzzy rule
base is also desirable.

APPENDIX A

The procedures of fuzzy rule inference methods and their
associated algorithms are outlined here for easy reference.

Algorithm A1: Inference with TSK models
Input: Rule base {Ri}; Observation O
Output: Conclusion f(O)

1) Calculation of matching degrees between individual
antecedent variables of each rule Ri and their
counterparts in observation O:
D(Ai1, B1), ..., D(Ain, Bn)

2) Determination of weight of Ri via aggregating all
matching degrees:
αi = D(Ai1, B1) ∧ ... ∧D(Ain, Bn)
where ∧ is implemented by minimum (or alternative if
preferred).

3) Computation of rule consequent polynomial with O as
input for each of k matched rules, resulting in
sub-conclusions:
fi(B1, ..., Bn) = ai0 + ai1B1 + ...+ ainBn

4) Integration of all sub-conclusions, obtaining final
outcome for consequent by computing weighted
average:

f(B1, ..., Bn) =
Σki=1αifi(B1, ..., Bn)

Σki=1αi
(20)

5) Return: f(B1, ..., Bn).
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Algorithm A2: TSK extension
Input: Rule base {Ri}; Observation O
Output: Interpolated conclusion f(O)

1) Calculation of similarities between observation O and
each rule Ri: S(Ai1, B1), ..., S(Ain, Bn)

2) Determination of weight of rule Ri:
αi = S(Ai1, B1) ∧ ... ∧ S(Ain, Bn)

3) Integration of all similarity measures, obtaining
interpolated rule with following consequent parameters:

a0 =
Σmi=1αiai0

Σmi=1αi
, ...., an =

Σmi=1αiain
Σmi=1αi

(21)

4) Computation of interpolated outcome with observation
O as input to interpolated rule:
f(B1, ..., Bn) = a0 + a1B1 + ...+ anBn

5) Return: f(B1, ..., Bn).

Algorithm A3: Fuzzy C-means
Input: Instances xj ; Number of cluster K
Output: Instances with label; Cluster centres V ;

Matrix of membership degree U
1) Initialisation of U (0) randomly.
2) Specification of maximum iteration number L,

termination condition ε, and counter k, k = 0, 1, ...L
3) Computation of V (k) with U (k) and Eqn. 7.
4) Updating of U (k+1) by V (k) and Eqn. 8.
5) Evaluation of ‖U (k+1) - U (k)‖, if it is less than ε or

k = L, stop; otherwise, set U (k) = U (k+1) and return
to Step 3.

6) Return: Labeled instances; V (k + 1); U(k + 1).

Algorithm A4: AutoRS for interpolation
Input: Rule base {Ri}; Observation O
Output: Selected rule set for interpolation U(R)

1) Initialisation of candidate rule set, U ′(Rk): for each
antecedent attribute, iteratively adding rules from
nearest to furthest until emerging rule set satisfies
either of following conditions:

a) ∃Ri, Rj ∈ U ′(Rk), Rep(Aik) > Rep(Bk) and
Rep(Ajk) < Rep(Bk)(i < j)

b) ∃Ri, Rj ∈ U ′(Rk), Rep(Aik) < Rep(Bk) and
Rep(Ajk) > Rep(Bk)(i < j)

c) ∃Ri ∈ U(R), Rep(Aik) = Rep(Bk)

where Rep(Aik) stands for representative value of k-th
antecedent fuzzy set of i-th fuzzy rule, and Rep(Bk)
for that of k-th feature of unmatched observation O.

2) Assignment of initial U(R) to largest candidate rule.
3) Verification if U(R) satisfies either of conditions

indicated in Step 1 for all other features, if so, stop;
otherwise, update U(R) = U(R) ∪ U ′(Rk).

4) Post pruning of U(R): for each Ri ∈ U(R), if
U(R)− {Ri} still satisfies any one condition, update
U(R) = U(R)−Ri; otherwise, retain Ri.

5) Iteration of Step 4 with i = i+ 1.
6) Return: U(R).
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