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Abstract
Pearl	millet	grains	are	naturally	rich	in	high	quality	starch,	dietary	fibre,	polyphe-
nols	and	important	micronutrients.	Grains	from	a	random	subset	of	the	global	di-
versity	panel	(PMiGAP)	comprising	166	pearl	millet	accessions	were	assessed	for	
total	starch	(TS),	rapidly	digestible	Starch	(RDS),	slowly	digestible	starch	(SDS)	
and	resistant	starch	(RS)	content	based	on	available	glucose	percentage	after	di-
gestion	at	various	time	points.	Highly	significant	genetic	variations	for	SDS,	RS	
and	other	starch	traits	were	evident	amongst	the	PMiGAP	accessions	leading	to	
the	 identification	 of	 best	 accessions	 for	 use	 in	 the	 future	 pearl	 millet-	breeding	
programmes.	To	identify	potential	candidate	genes	associated	with	these	starch	
traits,	 genome-	wide	 association	 studies	 (GWAS)	 were	 performed	 using	 78K	
single-	nucleotide	polymorphisms	(SNPs)	well	distributed	across	the	seven	chro-
mosomes	of	pearl	millet.	A	total	of	902	SNPs	showed	a	strong	association	with	
various	starch	traits	at	-	log	p-	value	range	from	4.0–	9.08.	A	total	of	364	probable	
candidate	genes	were	identified	in	the	flanking	regions	of	the	significantly	associ-
ated	SNPs	and	high	LD	(linkage	disequilibrium)	region,	which	explains	a	correla-
tion	between	nearby	variants.	Out	of	these,	19	probable	candidate	genes	exhibited	
functional	relationships	with	the	starch	biosynthesis	pathway.	Three	starch	syn-
thase	genes	(Pgl_GLEAN_10026059	and	Pgl_GLEAN_10027180)	were	found	to	
be	key	probable	candidate	genes	for	SDS	owing	to	their	prior	demonstrated	in-
volvement	in	amylose	biosynthesis.	Pgl_GLEAN_10018323,	encoding	β-	amylase	
and	Pgl_GLEAN_10009197,	encoding	α-	amylase	enzyme	were	identified	as	prob-
able	candidate	genes	for	RDS	content.	The	genetic	variability	being	reported	for	
SDS	and	RS	in	the	germplasm	panel,	and	the	SNP	markers	associated	with	such	
variability,	raises	the	possibility	of	developing	pearl	millet	varieties	with	low	gly-
caemic	index	using	conventional	and	molecular	breeding	approaches.
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1 	 | 	 INTRODUCTION

The	 World	 Health	 Organization	 (WHO)	 reports	 that	
around	422 million	people	worldwide	suffered	 from	dia-
betes	 (http://www.who.int/diabe	tes/en/)	 with	 the	 major-
ity	 of	 these	 living	 in	 low-		 and	 middle-	income	 countries.	
Consumption	 of	 diets	 with	 high	 glycaemic	 index	 (GI)	
foods,	low	disease	awareness	amongst	the	public,	limited	
health	care	facilities	and	the	high	cost	of	disease	manage-
ment	 are	 all	 factors	 contributing	 to	 an	 increasing	 preva-
lence	of	type	2	diabetes	(T2D).	Of	the	two	types	of	diabetes	
(Type-	1	and	Type-	2	diabetes),	Type-	2	diabetes	 (T2D)	 is	a	
major	form	accounting	for	90%	of	all	diabetes	cases	glob-
ally.	T2D	arises	as	a	 result	of	poor	 insulin	production	or	
insulin	resistance	in	the	body	system.	This	lack	of	insulin	
response	 means	 that	 T2D	 patients	 cannot	 utilize	 excess	
blood	glucose	 leading	 to	high	blood	glucose,	a	condition	
known	 as	 hyperglycaemia.	 Though	 advances	 in	 diabetic	
research	have	led	to	new	therapeutic	drug	protocols	being	
generated,	dietary	control	is	an	incomparable	and	ultimate	
preventive-	cum-	treatment	measure	for	this	condition.	Low	
GI	 foods,	 containing	 higher	 amount	 of	 slowly	 digestible	
starch	and	resistant	starch,	are	recommended	for	manag-
ing	T2D	as	they	release	glucose	more	gradually	reducing	
the	glycaemic	and	insulinaemic	responses	(Brouns	et	al.,	
2005;	 Haub	 et	 al.,	 2010;	 Robertson	 et	 al.,	 2003;	 Yamada	
et	al.,	2005;	Zenel	&	Stewart,	2015).	Starch	is	the	most	im-
portant	constituent	of	carbohydrate	and	can	be	classified	
into	three	main	fractions	based	on	its	in-	vitro	digestibility	
namely;	rapidly	digestible	starch	(RDS),	slowly	digestible	
starch	(SDS)	and	resistant	starch	(RS).	Of	these,	a	higher	
concentration	 of	 SDS	 and	 RS	 in	 food	 is	 particularly	 im-
portant	 in	 reducing	 the	 glycaemic	 and	 insulinaemic	 re-
sponses	(Tuncel	et	al.,	2019).	RS	in	food	completely	resists	
digestion	in	the	small	 intestine	and	passes	straight	on	to	
the	colon	where	 it	 serves	as	a	substrate	 for	 fermentation	
by	the	intestinal	microbiome	to	produce	short-	chain	fatty	
acids	 (Englyst	 &	 Cummings,	 1985).	 Replacing	 available	
carbohydrate	in	the	meal	with	SDS	and	RS,	therefore,	re-
duces	 postprandial	 glycaemia	 helping	 patients	 especially	
with	T2D	to	normalize	the	glucose	pressure.

Millets	 are	 collectively	 termed	 as	 nutraceutical	 cere-
als	due	to	their	nutritional	value	resulting	from	high	mi-
cronutrient	 and	 antioxidant	 levels.	 Compared	 to	 other	
cereals,	they	are	a	better	source	of	dietary	carbohydrates	
consisting	of	a	high	proportion	of	SDS	and	RS.	The	pop-
ularity	 of	 millet	 when	 combined	 with	 these	 nutritional	

properties	suggest	that	they	could	be	an	important	target	
to	 be	 exploited	 in	 improving	 public	 health	 and	 prevent-
ing	T2D	(Bitzur	et	al.,	2009;	Sone	et	al.,	2011).	Amongst	
millets,	 pearl	 millet	 (Pennisetum glaucum),	 has	 the	 best	
credentials	for	treating	T2D	as	it	has	relatively	high	SDS	
and	RS	content	with	a	low	GI,	in	addition	to	a	high	fibre	
content	 (β-	glucans).	 Despite	 its	 potential,	 no	 systematic	
study	has	yet	been	conducted	to	understand	the	extent	of	
genetic	variations	for	SDS	and	RS	content	in	pearl	millet	
germplasm	(Kam	et	al.,	2016)	and	how	such	variations	can	
be	best	utilized	in	pearl	millet-	breeding	programmes.

The	present	study	was	planned	to	assess	the	extent	of	
genetic	variability	for	total	starch	(TS)	and	of	its	compo-
nent	 traits—	rapidly	 digestible	 (RDS),	 slowly	 digestible	
(SDS)	and	resistant	starch	(RS)	using	a	subset	of	randomly	
selected	166 genotypes	 from	within	 the	world	collection	
of	345	Pearl	Millet	 inbred	Germplasm	Association	Panel	
(PMiGAP;	Sehgal	et	al.,	2015).	We	also	report	 the	candi-
date	 genes	 associated	 with	 such	 variability	 as	 detected	
using	genome-	wide	association	studies	(GWAS).

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Plant materials

The	pearl	millet	inbred	lines	used	in	this	study	comprised	
of	166	accessions	randomly	picked	from	within	the	pearl	
millet	 inbred	 germplasm	 association	 panel	 (PMiGAP),	
which	 represents	 pearl	 millet	 genetic	 diversity	 from	
across	the	world	(Sehgal	et	al.	(2015).	The	166 genotypes	
included	in	this	study	belonged	to	22	different	countries	
including	 40	 accessions	 from	 ICRISAT,	 15	 accessions	
from	India,	22	from	Niger,	10	from	Nigeria,	9	each	from	
Namibia,	 Zimbabwe,	 Togo	 and	 the	 remaining	 52	 from	
other	 locations	 (Table	 S1).	 Proportionally	 the	 largest	
number	of	genotypes	included	were	from	ICRISAT	as	a	
result	of	their	great	contribution	to	global	pearl	millet-	
breeding	 programmes.	 Other	 genotypes	 included	 were	
from	African	countries	 commonly	used	 in	pearl	millet	
breeding	across	the	globe.	Seeds	of	each	of	the	166	acces-
sions	were	multiplied	by	growing	them	in	uniform	field	
conditions	 at	 ICRISAT,	 Patancheru,	 India,	 following	
standard	 agronomic	 practices	 and	 seed	 multiplication	
protocols	 as	 described	 by	 Upadhyaya	 et	 al.	 (2008)	 and	
Ramya	et	al.	(2018).	Briefly,	each	accession	was	planted	
in	 three	 rows	 by	 maintaining	 15  cm	 between	 plants	

K E Y W O R D S

candidate	genes,	genome-	wide	association	studies,	germplasm,	marker-	trait	associations,	Pearl	
millet,	resistant	starch,	slowly	digestible	starch
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and	75 cm	between	rows.	Fertilizer	doses	of	100 kg/ha	
of	DAP	(di-	ammonium	phosphate)	were	applied	to	the	
field.	 Thinning	 and	 weeding	 was	 done	 as	 per	 the	 plan	
described	by	Ramya	et	al.	(2018).	Each	individual	head	
was	selfed	before	the	emergence	of	the	panicle	and	strict	
pollination	 was	 controlled	 to	 get	 pure	 seeds	 of	 each	
line.	Seeds	for	each	individual	accession	were	supplied	
to	 IBERS,	 Aberystwyth	 University,	 by	 ICRISAT	 using	
standard	Material	Transfer	agreements.

2.2	 |	 Estimation of various 
components of Starch

Starch	 digestibility	 analysis	 was	 performed	 for	 Rapidly	
Digestible	 Starch	 (RDS),	 Slowly	 Digestible	 Starch	 (SDS)	
and	Resistant	Starch	 (RS)	 fractions	 (Englyst	et	al.,	1992,	
1999).	 All	 analytical	 measurements	 of	 the	 milled	 sam-
ples	were	performed	in	duplicate	(two	replicates)	of	each	
accession	 to	 minimize	 any	 measurement	 errors	 on	 the	
starch	assay	of	individual	accession.	Samples	were	milled	
with	 a	 centrifugal	 mill	 (Fritsch	 Pulverisette	 14,	 0.5-	mm	
screen)	and	sample	weights	of	0.5 g	were	analysed.	After	a	
pretreatment	simulating	gastric	conditions,	samples	were	
incubated	 with	 an	 excess	 of	 amylolytic	 enzymes	 under	
conditions	controlled	 for	 temperature,	pH,	viscosity	and	
mixing.	Sub-	samples	were	taken	at	20 min	and	120 min	
as	 measures	 of	 the	 rate	 and	 extent	 of	 starch	 digestion,	
with	 released	 glucose	 determined	 by	 High	 Pressure	 Ion	
Chromatography	(HPIC)	with	pulsed	amperometry	detec-
tion	using	a	CarboPac	PA20	column	(Thermo	Scientific)	
and	a	20-	mM	Potassium	hydroxide	eluent.	The	RDS	frac-
tion	is	the	glucose	in	the	20 min	sub-	sample	and	the	SDS	
fraction	is	the	release	between	20	and	120 min.	The	RS	frac-
tion	is	the	starch	remaining	unhydrolysed	after	120 min,	
which	is	determined	following	alkali	dispersion	and	enzy-
matic	hydrolysis.	Available	starch	content	(AvST)	was	de-
rived	by	adding	the	RDS	and	SDS	content	and	used	as	an	
estimate	of	the	amount	of	starch	content	available	in	the	
small	intestine	for	absorption	from	food.	The	RS/TS	ratio	
was	calculated	to	find-	out	the	RS	percentage	correspond-
ing	to	total	starch	(TS).	These	fractions	were	also	used	in	
identifying	best	performing	PMiGAP	genotypes	for	use	as	
donors	 in	pearl	millet-	breeding	programme	 for	develop-
ing	varieties	that	are	high	in	SDS	and	RS	and	low	in	GI.

2.3	 |	 Statistical Analyses for phenotypic 
variability in PMiGAP genotypes

The	 mean	 values	 were	 calculated	 for	 each	 of	 the	 166	
PMiGAP	 genotypes	 for	 all	 the	 starch	 components	

measured	viz.	rapidly	digestible	(RDS),	slowly	digestible	
(SDS),	resistant	(RS),	total	starch	(TS),	available	starch	
(AvST)	and	RS/TS	ratio	expressed	as	a	percentage.	Broad	
sense	heritability	(H2)	was	estimated	from	the	variance	
components	 obtained	 by	 fitting	 both	 replications	 and	
genotypes	 as	 random	 terms	 as	 H2  =  σ2g/(σ2g  +  σ2e),	
where	 σ2g	 is	 the	 genotypic	 variance	 component	 and	
σ2e	is	the	residual	variance	component.	The	best	linear	
unbiased	prediction	(BLUP)	values	were	estimated	in	R	
package	 from	the	replicates	value	of	each	PMiGAP	 in-
bred	 lines.	 A	 linear	 mixed	 model	 in	 R	 package	 (lme4)	
was	used	to	predict	the	random	effects	where	genotypes	
have	 been	 considered	 as	 a	 random	 effect	 (Bates	 et	 al.,	
2015).	 Population-	wide	 outlier	 removal	 has	 been	 per-
formed	 by	 assessing	 deviation	 from	 a	 normal	 distribu-
tion.	The	BLUP	values	were	used	as	 the	 input	data	 for	
the	association	mapping	analysis.

The	 statistical	 analysis	 was	 performed	 using	 the	
JMPv.8	 software	 (SAS	 Institute,	 2008)	 to	 compare	 the	
range	 of	 mean	 values	 of	 the	 starch	 traits.	 The	 critical	
difference	and	coefficient	of	variation	values	were	calcu-
lated	using	mean	data	by	the	JMPv.8	software.	One	fac-
tor	analysis	of	variance	(ANOVA)	was	performed	using	
the	 replicated	 mean	 data	 of	 the	 166	 PMiGAP	 lines	 to	
identify	significant	differences	amongst	 these	PMiGAP	
lines.

2.4	 |	 SNP identification and genotyping

A	 total	 of	 166	 accessions	 of	 the	 PMiGAP	 association	
panel	were	used	for	genome-	wide	association	analysis.	
SNP	 data	 were	 derived	 from	 the	 publicly	 available	 da-
tabase	 (Varshney	 et	 al.,	 2017)	 where	 345	 Pearl	 Millet	
inbred	 Germplasm	 Association	 Panel	 (PMiGAP)	 lines	
were	 resequenced	 by	 the	 International	 Pearl	 Millet	
Genome	 Sequencing	 Consortium	 (ftp://cegre	sourc	
es.icris	at.org/).	 The	 initial	 SNP	 dataset	 containing	
28  million	 SNPs	 were	 filtered	 for	 site	 coverage	 (90%)	
and	minimum	minor	allele	frequency	(MAF)	of	0.01	for	
each	of	 the	166	accessions	as	described	 in	Yadav	et	al.	
(2021)	using	the	Tassel	ver.	5.2.64 software	tool.	Other	
SNP	 filtering	 criteria	 used	 in	 this	 study	 were	 no	 SSR	
motifs,	no	InDel	markers,	only	bi-	allelic	SNPs	and	SNP	
quality	 score	 ≥30.	 The	 filtering	 criteria	 used	 included	
flanking	 sequence	 length	 (100bp),	 no	 repeats	 in	 flank-
ing	 sequences	 (mono-		 and	 di-	nucleotide),	 GC	 content	
on	 the	 flanking	 sequences	 (minimum	 30.0%)	 and	 with	
minimal	flanking	markers	(maximum	1	SNP	from	both	
sides).	 Genetic	 variant	 annotation	 for	 SNPs	 and	 its	 ef-
fect	on	genes	and	protein	were	predicted	using	SnpEff	
(http://snpeff.sourc	eforge.net/).

ftp://cegresources.icrisat.org/
ftp://cegresources.icrisat.org/
http://snpeff.sourceforge.net/
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2.5	 |	 Hierarchical and Bayesian model- 
based cluster analysis

Hierarchical	cluster-	based	analysis	of	166	accessions	was	
performed	using	DARwin6.0.021	 (http://darwin.cirad.fr/
darwin;	Perrier	et	al.,	2003).	A	pair-	wise	dissimilarity	ma-
trix	was	calculated	using	Jaccard's	dissimilarity	coefficient	
to	assess	 the	genetic	variability	amongst	 the	 individuals.	
A	phylogenetic	tree	was	generated	using	the	unweighted	
neighbour-	joining	 (NJ)	 method	 keeping	 1000	 bootstrap	
replicates.	Principal	coordinate	analysis	(PCoA)	was	con-
ducted	for	166	individuals	for	clustering.

Population	structure	for	166	accessions	of	the	PMiGAP	
association	 panel	 was	 then	 further	 assessed	 using	 the	
STRUCTURE	 software	 (Falush,	 2003;	 Pritchard	 et	 al.,	
2000;	Rosenberg	et	al.,	2002).	Bayesian	model-	based	clus-
ter	 analysis	 was	 performed	 using	 basic	 parameters	 de-
scribed	 by	 Sehgal	 et	 al.	 (2015).	 A	 total	 of	 10,000	 burnin	
iterations	followed	by	20,000 Monte	Carlo	Markov	Chain	
(MCMC)	 replications	 were	 implemented	 to	 assign	 the	
subpopulation	grouping	for	each	K	ranging	from	1	to	16.	A	
total	of	6	repetitions	were	carried	out	for	each	value	of	K.	
The	optimum	K	was	analysed	using	Structure	Harvester	
by	 following	 the	 Evanno	 method	 to	 determine	 delta	 K	
(Earl	&	vonHoldt,	2012;	Evanno	et	al.,	2005).	Optimum	K	
was	then	considered	as	input	in	Genome-	wide	association	
analysis	(GWAS)	analysis.

2.6	 |	 Genome- wide association analysis

GWAS	 was	 carried	 out	 using	 Fixed	 and	 Random	 Model	
Circulating	 Probability	 Unification	 (FarmCPU)	 im-
plemented	 in	 the	 Genome	 Association	 and	 Prediction	
Integrated	 Tool	 (GAPIT)	 on	 an	 r	 platform	 for	 each	 of	
the	traits	such	as	RDS,	SDS,	RS,	TS,	AvST	and	RS/TS.	A	
FarmCPU	was	used	to	identify	associations	for	each	trait	
utilizing	the	kinship	matrix	(K)	and	Q-	matrix	as	random	
effects.	SNP	markers	with	a	p-	value < 0.001	were	consid-
ered	to	be	significant	but	a	threshold	to	declare	a	marker	
as	 highly	 associated	 was	 set	 to	 –	log10 ≤  3.0.	 Q–	Q	 plots	
and	Manhattan	plots	were	generated	using	the	r	package	
qqman	 (https://cran.r-	proje	ct.org/web/packa	ges/qqman/	
index.html).

2.7	 |	 Identification of candidate genes 
affecting starch- related trait

For	each	trait,	pair-	wise	LD	(linkage	disequilibrium)	was	
calculated	between	the	significant	SNP	and	every	neigh-
bouring	SNP	in	a	10 kb	surrounding	region	and	high	LD	(95%	
confidence	bounds	on	D	prime)	using	the	HAPPI-	GWAS	

programme	(Slaten	et	al.,	2020).	Haploblocks	were	identi-
fied	using	the	Haploview	programme	(Barrett	et	al.,	2004)	
implemented	 in	 the	 HAPPI-	GWAS	 program.	 A	 search	
for	candidate	genes	was	performed	using	the	gene	anno-
tated	GFF	file	from	the	database	(ftp://cegre	sourc	es.icris	
at.org/)	according	to	the	positions	of	the	closest	flanking	
significantly	associated	SNPs.	SNPs	were	filtered	at	a	5%	
minor	allele	frequency	(MAF)	and	LD	calculated	based	on	
D	prime.	The	genes	located	within	the	high	LD	region	of	
each	associated	SNP	were	considered	as	the	probable	can-
didate	genes	for	starch-	related	traits.	SNPs	that	were	sig-
nificantly	associated	with	the	trait	but	did	not	fall	within	
the	 regions	 of	 high	 LD	 were	 not	 considered.	 Homology	
based	 starch	 metabolism,	 starch	 biosynthesis	 and	 amyl-
ose	content	 related	genes	were	 identified.	The	 functions	
of	corresponding	genes	were	predicted	using	the	Blast2Go	
programme	(Conesa	et	al.,	2005).

3 	 | 	 RESULTS

3.1	 |	 Phenotypic variations for starch 
traits in the subset of PMiGAP germplasm 
panel

Phenotypic	diversity	was	determined	by	measuring	Rapidly	
Digestible	 Starch	 (RDS),	 Slowly	 Digestible	 Starch	 (SDS),	
Resistant	 Starch	 (RS),	 Total	 Starch	 (TS),	 Available	 Starch	
(AvST)	and	RS/TS	in	166	diverse	pearl	millet	(Pennisetum 
glaucum)	 inbred	 lines	 from	 within	 the	 PMiGAP	 panel	
(Table	S1).	The	RDS,	SDS,	RS	and	TS	content	was	expressed	
in	g/100 g	sample	and	RS/TS	ratio	is	as	%	TS.	The	TS	content	
in	166	pearl	millet	accessions	 ranged	 from	54.85 ± 0.2	 to	
73.85 ± 0.2	with	an	average	of	67.11 ± 0.2.	The	RDS	content,	
obtained	 after	 20  min	 enzymatic	 digestion,	 ranged	 from	
13.95 ± 0.1	to	34.08 ± 0.3	in	166	pearl	millet	accessions	with	
an	average	of	22.01 ± 0.2.	The	SDS	obtained	after	120 min	
enzymatic	digestion	was	used	as	an	estimation	of	SDS.	This	
ranged	from	33.8 ± 0.1	to	51.4 ± 0.0	in	166	accessions	with	an	
average	of	43.05 ± 0.2.	The	genotype	PMiGAP121 showed	
the	 lowest	RDS	and	SDS	content	 (13.95	and	33.8,	 respec-
tively),	 but	 the	 highest	 RS	 content	 (18.15).	 The	 highest	
RDS	content	(34.08)	and	SDS	content	(51.4)	was	recorded	
in	 PMiGAP293	 and	 PMiGAP120,	 respectively	 (Table	 S2).	
Similarly,	 the	 genotype	 PMiGAP201  showed	 the	 lowest	
RS	 content	 (0.47).	 A	 maximum	 TS	 content	 of	 73.85	 was	
observed	in	PMiGAP120	with	the	lowest	TS	content	54.85	
being	observed	in	the	PMiGAP001 genotype.	The	average	
AvST	content	was	65.09 ± 0.2	(with	a	range	47.85 ± 0.07	
and	 71.3  ±  0.0),	 which	 approximates	 the	 amount	 of	 the	
starch	that	would	be	passed	to	the	large	intestine	for	further	
digestion.	The	highest	AvST	content	(71.3)	was	observed	in	
genotype	 PMiGAP107	 whereas	 PMiGAP221  showed	 the	

http://darwin.cirad.fr/darwin
http://darwin.cirad.fr/darwin
https://cran.r-project.org/web/packages/qqman/index.html
https://cran.r-project.org/web/packages/qqman/index.html
ftp://cegresources.icrisat.org/
ftp://cegresources.icrisat.org/
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lowest	 (47.85).	 Data	 were	 also	 reported	 as	 RS/TS	 ratio	 in	
percentages,	 which	 allowed	 the	 quantification	 of	 RS	 con-
tent	based	on	the	corresponding	TS	value.	The	RS/TS	ratio	
ranged	from	0.73 ± 0.03%	(PMiGAP201)	to	27.44 ± 0.02%	
(PMiGAP221)	with	a	mean	value	of	2.98 ± 0.12%	(Table	S2).

3.2	 |	 Phenotypic statistical analysis

The	phenotypic	distribution	pattern	for	RDS,	SDS,	RS,	TS,	
AvST	 and	 RS/TS	 starch-	related	 values	 was	 assessed	 by	
plotting	 against	 frequency	 to	 assure	 the	 dataset	 particu-
larly	relevant	for	studying	the	genetic	basis	of	these	starch	
components.	Normal	 frequency	distribution	curves	were	
observed	 for	 the	PMiGAP	population	 for	all	 the	 thirteen	
starch-	related	 traits	 (Figure	 1).	 The	 analysis	 of	 variance	
demonstrated	significant	genotypic	variability	 for	starch-	
related	 traits	 such	as	RDS,	SDS,	RS,	TS,	AvST	 (available	
starch)	 and	 RS/TS	 ratio	 and	 confirmed	 the	 existence	 of	
highly	significant	genetic	differences	amongst	the	166	ac-
cessions	for	starch	traits	at	the	p-	value < 0.0001	(Table	1).	
Such	 highly	 significant	 genotypic	 variance	 observed	 for	
starch	traits	confirmed	the	suitability	of	the	subset	of	the	
PMiGAP	used	(of	166	individuals)	for	the	association	anal-
ysis.	Additionally,	all	the	starch-	related	traits	showed	high	
broad	sense	heritability	>90.00%	confirming	least	effect	of	
replications	on	the	phenotypic	starch	values	observed	for	
each	accession	(Figure	S1).

Pearson's	 correlation	 analysis	 revealed	 that	 out	 of	 15	
possible	pairs,	11	trait	pairs	were	significantly	correlated	

at	 the	 p-	value  <  0.01	 (Figure	 2).	 In	 addition,	 out	 of	 15	
possible	 pairs,	 7	 trait	 pairs	 showed	 positive	 correlation	
and	 8	 trait	 pairs	 showed	 negative	 correlation	 at	 the	 p-	
value < 0.01.	Correlation	analysis	further	highlighted	the	
positive	relationship	for	RDS	with	TS	(r	=	0.38)	and	AvST	
(r	=	0.61)	(Figure	2).	A	negative	correlation	was	observed	
between	RDS	and	RS	(r	=	−0.53)	but	no	significant	cor-
relation	was	found	between	RDS	and	SDS	(r	=	−0.09).	We	
noted	that	RS	was	negatively	correlated	with	RDS	with	an	
r	=	−0.53,	and	with	SDS	having	an	r	=	−0.14),	but	no	sig-
nificant	correlation	with	TS	with	r	=	0.04	(Figure	2).

3.3	 |	 Identification and distribution  
of SNPs

An	initial	set	of	28 million	SNP	variants	generated	by	rese-
quencing	the	Pearl	Millet	inbred	Germplasm	Association	
Panel	(PMiGAP)	was	filtered	by	minor	allele	 frequency	
(<0.01)	 and	 site	 depth	 (>90%).	 The	 SNPs	 were	 distrib-
uted	over	all	the	seven	chromosomes	of	pearl	millet	with	
the	 resulting	 78080	 retained	 for	 analysis.	 SNP	 variant	
rate	ranged	from	41.46	to	63.47	SNP	per	MB	with	an	av-
erage	of	49.77	SNPs	per	1MB	of	the	genome.	The	maxi-
mum	 SNP	 change	 rate	 was	 observed	 on	 chromosome	
5,	which	was	63.47	SNP	per	1Mb	region	of	the	genome,	
and	 the	 minimum	 on	 chromosome	 6	 (37.95).	 On	 aver-
age,	one	SNP	change	was	observed	at	every	20,037	bases	
in	 the	 genome.	 The	 highest	 number	 of	 SNPs	 were	 de-
tected	on	chromosome	1	(14,502	SNPs;	18.57%),	followed	

F I G U R E  1  Histogram	distribution	pattern	for	starch-	related	estimated	values	recorded	for	RDS	(Rapidly	digested	starch),	SDS	(Slowly	
digested	starch),	RS	(Resistant	starch),	TS	(Total	starch),	AvST	(available	starch)	and	RS/TS	ratio	(%)	in	pearl	millet	germplasm	association	
panel	(PMiGAP)	of	166 genotypes
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by	 chromosomes	 3	 (12,480	 SNPs;	 15.98%),	 2	 (12,402;	
15.88%),	 4	 (10,761;	 13.78%),	 5	 (10,092;	 12.92%)	 and	 6	
(9146;	11.71%)	whereas	minimal	SNPs	were	observed	on	
chromosome	7	 (8697;	11.13%).	Structural	annotation	of	
the	78,080	SNPs	revealed	the	presence	of	34,777	(~2.4%)	
SNPs	 in	 exonic	 regions,	 followed	 by	 66,260	 (46.75%)	 in	
intergenic	 regions.	 A	 total	 of	 1527	 (1.07%)	 suggested	
non-	synonymous	 changes	 whereas	 1922	 (1.35%)	 were	
synonymous	SNPs.	A	total	of	12,319	(8.69%)	SNPs	were	

located	in	intragenic	regions	and	130	(0.009%)	SNPs	were	
present	in	5′	UTR	regions	(Figure	S2).

3.4	 |	 Hierarchical and Bayesian model- 
based cluster analysis

Pair-	wise	 Jaccard's	 genetic	 dissimilarity	 was	 calculated	
for	the	166	accessions	of	pearl	millet	and	the	value	ranged	

Traits Source df
Sum of 
squares

Mean 
square F ratio Prob > F

RDS Genotypes 165 1760.6087 10.6704 64.663 <0.0001*

Error 166 27.3924 0.165

SDS Genotypes 165 2423.3847 14.6872 50.8341 <0.0001*

Error 166 47.9613 0.2889

RS Genotypes 165 958.69766 5.81029 206.184 <0.0001*

Error 166 4.6779 0.02818

TS Genotypes 165 2916.501 17.6758 75.2367 <0.0001*

Error 166 38.9993 0.2349

AvST Genotypes 165 3796.9993 23.0121 107.8488 <0.0001*

Error 166 35.4201 0.2134

RS/TS	ratio Genotypes 165 2191.31 13.2807 225.7657 <0.0001*

Error 166 9.7649 0.0588

T A B L E  1 	 ANOVA	results	for	RDS	
(Readily	digested	starch),	SDS	(Slowly	
digested	starch)	RS	(resistant	starch),	TS	
(Total	starch),	AvST	(available	starch)	and	
RS/TS	ratio	(%)	starch-	related	traits	in	166	
pearl	millet	lines	(one	factor)

F I G U R E  2  Prediction	of	correlation	between	starch-	related	estimated	values	for	RDS	(Rapidly	digested	starch),	SDS	(Slowly	digested	
starch),	RS	(Resistant	starch),	TS	(Total	starch),	AvST	(available	starch)	and	RS/TS	ratio	(%).	Scatterplot	matrix	and	Pearson's	correlation	
coefficients	(R)	for	each	pair	of	traits	and	*	represented	the	correlation	significance	at	the	>alpha	(0.5)
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from	0.11	to	0.80	with	a	mean	value	of	0.51.	More	than	70%	
of	the	pair-	wise	assessments	displayed	genetic	dissimilar-
ity	higher	than	0.5.	DARwin-	based	Unrooted	neighbour-	
joining	cluster	analysis	revealed	that	the	166	accessions	of	
pearl	millet	were	divided	into	six	groups	(Figure	S3).	Most	
of	the	accessions	originating	from	ICRISAT	were	grouped	
in	two	clusters;	however,	genetic	diversity	amongst	these	
accessions	was	not	as	high	as	it	was	observed	in	the	case	
of	 accessions.	 Principal	 coordinate	 analysis	 (PCoA),	 dis-
played	 no	 coherence	 for	 dispersion	 of	 the	 pearl	 millet	
germplasm	lines	in	relation	to	the	first	two	principal	coor-
dinates.	Based	on	measured	eigenvalues	the	first	principal	
coordinate	explained	23.78%	of	the	total	variation	whilst	
the	second	coordinate	could	explain	only	21.12%.	The	first	
five	coordinates	 together	could	explain	a	 total	of	87.21%	
of	the	variation.	Notably,	the	PCoA	analysis	inference	did	
not	show	specific	clustering	of	the	accessions	as	observed	
on	dendrogram	analysis.

Bayesian	 cluster	 analysis	 using	 the	 STRUCTURE	
programme	 estimated	 the	 membership	 probability	 (Q-	
matrix)	 of	 each	 PMiGAP	 accession	 and	 combined	 them	
into	a	number	of	hypothetical	subpopulations	(1–	16).	The	
optimum	 K	 value	 was	 determined	 using	 the	 method	 of	
Evanno	et	al.	 (2005)	and	maximum	∆K	peak	height	was	
observed	at	K = 6.	Thus,	Bayesian	model-	based	clustering	
revealed	 that	 the	166	 individuals	were	clustered	 into	 six	
groups	(K = 6)	(Figure	S4).	There	is	coherence	in	cluster-
ing	of	the	accessions	belonging	to	groups	1	and	2	by	phylo-
genetic	and	STRUCTURE	analyses,	whereas	accessions	in	
phylogenetic	groups	3	and	4	were	clustered	in	one	group	
by	Bayesian	analysis.	Thus,	for	practical	purposes,	phylo-
genetic	classification	could	form	a	basis	for	the	selection	
of	potential	parents	for	hybridization	studies.

3.5	 |	 Genome- wide association analysis 
(GWAS) for markers trait association

A	total	of	78K	high	quality	SNP	variants	were	identified	
from	the	166	PMiGAP	lines	for	use	in	association	analy-
sis	aimed	at	identifying	loci	associated	with	starch-	related	
traits	(such	as	RDS,	SDS,	RS,	TS,	AvST	and	RS/TS).	The	
GWAS	was	conducted	using	the	Fixed	and	random	model	
Circulating	 Probability	 Unification	 (FarmCPU)	 tool	 im-
plemented	 into	 the	 GAPIT	 software	 to	 avoid	 any	 con-
founding	problem.	A	total	of	6 starch-	related	traits	were	
taken	into	considerations	and	the	FarmCPU	model-	based	
association	mapping	showed	1132	SNP	makers	associated	
with	these	starch-	related	traits	at	p-	value = <0.001	(Table	
S3).	The	markers	associated	with	these	traits	(MTA)	were	
distributed	across	7	chromosomes.	Chromosome	5	dem-
onstrated	the	highest	number	of	MTAs	(382),	followed	by	
chromosome	 4	 (175  MTA),	 chromosome	 2	 (160  MTAs)	

and	chromosome	1	(120 MTAs).	Chromosome	7 showed	
the	lowest	number	of	MTAs.	A	total	of	1.4%	(1132)	mark-
ers	exhibited	associations	for	all	starch-	related	traits	at	the	
p-	value  =  <0.001.	 The	 trait	 with	 the	 highest	 number	 of	
a	 MTAs	 was	 available	 starch	 (AvST)	 (331),	 followed	 by	
SDS	 (193),	 RDS	 (184  MTA),	 RS	 (161  MTA)	 and	 RS/TS	
(156 MTA).	TS	was	the	trait	with	the	smallest	number	of	
MTAs	detected	(107 MTA).

A	total	of	85 markers	were	found	to	be	associated	with	
RDS	(–	log10	p-	value ≥ 3.0).	These	makers	were	further	vi-
sualized	into	Manhattan	plots	against	their	chromosomal	
positions	 and	 the	 observed	 p-	values	 (on	 a	 –	log10  scale)	
to	 demarcate	 the	 highly	 significant	 SNP	 markers.	 The	
Manhattan	plot	highlighted	the	most	strongly	associated	
SNPs	for	RDS	where	the	– log10	p-	value	ranged	from	3.0–	
4.94	 (Figure	 3).	 Chromosome	 5  had	 the	 largest	 number	
of	makers	associated	with	this	trait	followed	by	chromo-
somes	 1	 and	 2.	 Twelve	 SNP	 markers	 were	 found	 to	 be	
highly	associated	with	the	RDS	trait	at	p-	value	1.12 × 10−5–	
9.8 × 10−5.	The	Q–	Q	plots	between	observed	and	expected	
p-	values	 of	 association	 for	 RDS	 revealed	 an	 appropriate	
distribution	pattern	explained	by	the	model	fitting	involv-
ing	population	structure	and	kinship.	Gnome-	wide	asso-
ciation	analysis	 for	slowly	digested	starch	(SDS)	showed	
84	SNP	markers	to	be	significantly	associated	at	–	log10	p-	
value ≥ 3.0.	The	Manhattan	and	Q-	Q	plot	visualization	ex-
plained	that	significantly	associated	SNPs	were	recorded	
at	 the	 lowest	p-	value	 ranges	 from	9.7 × 10−4–	3.8 × 10−6	
(Figure	3).	Five	SNP	markers	were	found	to	be	highly	asso-
ciated	with	the	SDS	trait	at	p-	value	8.9 × 10−5–	3.8 × 10−6.	A	
further	78	SNP	markers	were	visualized	into	a	Manhattan	
plot	using	their	chromosomal	positions	and	the	observed	
p-	values	 (on	a	–	log10  scale)	and	 shown	 to	be	associated	
with	 the	 trait	 resistant	 starch	 (RS).	 The	 p-	values	 of	 the	
detected	associations	ranged	from	9.9 × 10−4–	1.7 × 10−5.	
Q–	Q	plot	visualization	for	RS	demonstrated	that	–	log10	p-	
value	ranged	from	3.0–	4.7.	Ten	SNP	markers	were	highly	
associated	markers	with	 the	 trait	RS	and	p-	value	ranged	
from	1.7 × 10−5–	9.8 × 10−5.

Association	analysis	was	also	performed	for	total	starch	
(TS)	content	and	fifty-	seven	SNP	markers	were	found	to	be	
highly	significant	at	–	log10	p-	value ≥ 3.0.	Manhattan	and	
Q–	Q	plot	visualization	revealed	the	high	–	log	10	p-	value	
raged	from	3.0	to	9.08	for	these	markers	(Figure	3).	Out	of	
57,	20	SNP	markers	exhibited	a	strong	association	with	TS	
content	based	on	the	FarmCPU	model	with	p-	value	rang-
ing	from	8.2	×	10−10	–		9.1	×	10−5.	These	markers	were	found	
to	be	distributed	on	chromosome	2,	3,	5	and	7	 for	TS	at	
lowest	p-	value	ranged	from	0.47–	6.4 × 10−5.	Interestingly,	
221	 SNPs	 were	 significantly	 (–	log10	 p-	value ≥  3.0)	 asso-
ciated	 with	 the	 trait	 available	 starch	 (AvST),	 which	 ap-
proximates	primary	digestion	of	millet	grain	starch	inside	
the	 small	 intestine.	 Of	 these,	 42	 SNP	 markers	 exhibited	
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significant	association	with	AvST	and	p-	value	ranged	from	
6.7 × 10−7–	9.1 × 10−5	 (Figure	3a).	These	SNPs	 for	AvST	
trait	were	confirmed	by	 the	Manhattan	plot	with–	log	10	
p-	values	 ranging	 from	3.0	–		6.1.	Chromosome	5 had	 the	
greatest	 number	 of	 maker	 associations	 for	 this	 trait	 fol-
lowed	 by	 chromosome	 2	 and	 7.	The	 p-	value	 was	 ranged	
from	0.35–	0.05.	QQ	(quantile-	quantile)	plots	displayed	lin-
ear	distribution	when	plotted	against	the	observed	and	the	
expected	distribution	of	p-	values	for	AvST	trait	(Figure	3).	
A	total	of	73	SNPs	were	significantly	(–	log10	p-	value ≥ 3.0)	
associated	with	RS/TS	ratio	and	6	SNP	markers	had	 the	
strongest	association	with	RS/TS	ratio	with	p-	value	rang-
ing	from	1.4 × 10−5–	6.5 × 10−5.

3.6	 |	 Identification of candidate genes

The	SNPs	significantly	associated	with	starch	traits	were	
mapped	onto	the	Pennisetum glaucum	reference	genome	
assembly	 (http://ceg.icris	at.org/ipmgs	c/genome.htmL)	
in	LD	blocks	(r2 > 0.6)	 in	20 kb	windows.	Genes	within	
these	regions,	in	addition	to	genes,	which	were	the	near-
est	 neighbours	 to	 significant	 SNPs,	 which	 were	 mapped	
in	LD	blocks,	were	considered	as	candidate	genes.	Three	
hundred	 and	 sixty-	four	 candidate	 genes	 were	 identified	
in	 the	 surrounding	 regions	 of	 the	 significantly	 associ-
ated	 SNPs.	 Out	 of	 these	 364,	 30	 (0.08%)	 SNP	 flanking	
genes	were	predicted	to	have	similar	 functions	 to	starch	
biosynthetic	 pathway-	related	 genes.	 Amongst	 them,	
starch	 synthase	 genes	 (PgSSIV;	 Pgl_GLEAN_10026059,	

Pgl_GLEAN_10018307)	 on	 chromosome	 2	 and	 (PgSSIV;	
Pgl_GLEAN_10027180)	 on	 chromosome	 3	 were	 identi-
fied	(Table	2).	Functional	annotation	revealed	that	these	
genes	 encode	 enzymes	 with	 molecular	 active	 sites	 in-
volved	in	the	initiation	and	formation	of	starch	granules	
and	 the	 conversion	 of	 amylose	 and	 amylopectin.	 This	
suggests	 that	 these	 genes	 may	 be	 acting	 as	 co-	factors	 in	
these	pathways	or	that	they	may	regulate	genes	through	
various	chemical	pathways	to	promote	the	accumulation	
of	 amylose	 and	 exhibit	 a	 key	 role	 in	 SDS	 accumulation.	
Pgl_GLEAN_10018323	encoding	β-	amylase	was	identified	
as	a	candidate	gene	for	RDS	content	and	is	involved	in	the	
chemical	reactions	and	pathways	resulting	in	the	break-
down	 of	 a	 polysaccharide,	 a	 polymer	 of	 many	 (typically	
more	than	10)	monosaccharide	residues	linked	glycosidi-
cally.	 Similarly,	 Pgl_GLEAN_10010158,	 which	 encodes	
a	lipase	with	an	essential	role	in	digestion,	transport	and	
processing	of	dietary	 lipids,	 showed	association	with	RS	
trait.

Furthermore,	some	candidate	genes	were	found	to	be	
directly	associated	with	starch-	related	biosynthetic	path-
ways	 across	 all	 SNP	 data	 sets	 including	 Alpha-	amylase	
(Pgl_GLEAN_10009197),	which	is	a	1,4-	α-	glucan	branch-
ing	enzyme	that	hydrolyses	1,4-	alpha-	glucosidic	linkages	
in	 starch-	type	 polysaccharide.	 Similarly,	 UTP—	glucose-	
1-	phosphate	 uridylyltransferase	 (Pgl_GLEAN_10018054)	
is	 an	 important	 part	 of	 the	 sucrose	 biosynthesis	 path-
way,	 providing	 Uridine	 diphosphate	 glucose	 to	 Sucrose-	
phosphate	 synthase,	 which	 converts	 UDP-	glucose	 and	
D-	fructose	 6-	phosphate	 into	 sucrose-	6-	phosphate,	

F I G U R E  3  GWAS-	based	Manhattan	plots	built	in	the	r	package	exhibiting	significant	P-	values	measured	by	FarmCPU	model	for	
six	starch-	related	traits	such	as	RDS	(rapidly	digested	starch),	SDS	(Slowly	digested	starch),	RS	(resistant	starch),	TS	(total	starch),	AvST	
(available	starch)	and	RS/TS	ratio	(%)

http://ceg.icrisat.org/ipmgsc/genome.htmL
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T A B L E  2 	 List	of	starch	biosynthesis	pathway-	related	candidate	gene	resided	around	significantly	associated	markers	for	starch-	related	
traits	such	as	RDS	(rapidly	digested	starch),	SDS	(Slowly	digested	starch),	RS	(resistant	starch),	TS	(total	starch),	AvST	(available	starch)	and	
RS/TS	ratio	(%)	in	pearl	millet

SNP Chr LD_start LD_end Gene_name Gene_start Gene_stop Gene_description

2_78761117 2 78751117 78771117 Pgl_GLEAN_10026059 78754684 78760614 Starch	synthase	4	(SSIV)

2_78764226 2 78754226 78774226 Pgl_GLEAN_10026059 78754684 78760614 Starch	synthase	4	(SSIV)

2_209171246 2 209161246 209181246 Pgl_GLEAN_10018307 209174406 209177486 Starch	metabolism

2_209175132 2 209165132 209185132 Pgl_GLEAN_10018307 209174406 209177486 Starch	metabolism

2_209175137 2 209165137 209185137 Pgl_GLEAN_10018307 209174406 209177486 Starch	metabolism

2_209175368 2 209165368 209185368 Pgl_GLEAN_10018307 209174406 209177486 Starch	metabolism

2_209175370 2 209165370 209185370 Pgl_GLEAN_10018307 209174406 209177486 Starch	metabolism

2_209175414 2 209165414 209185414 Pgl_GLEAN_10018307 209174406 209177486 Starch	metabolism

2_209176605 2 209166605 209186605 Pgl_GLEAN_10018307 209174406 209177486 Starch	metabolism

2_209177023 2 209167023 209187023 Pgl_GLEAN_10018307 209174406 209177486 Starch	metabolism

2_240852290 2 240842290 240862290 Pgl_GLEAN_10018139 240861948 240865137 Glycosyl	hydrolase

2_238687363 2 238677363 238697363 Pgl_GLEAN_10018323 238678164 238684627 Glycosyl	hydrolase	
family	14	(Beta-	
amylase	2)

2_233332164 2 233322164 233342164 Pgl_GLEAN_10020483 233329809 233331973 Laccase-	2

6_52460693 6 52450693 52470693 Pgl_GLEAN_10014787 52467150 52468373 GDSL-	like	Lipase/
Acylhydrolase

5_123963884 5 123953884 123973884 Pgl_GLEAN_10008133 123957354 123959329 Glutathione	peroxidase

7_26545865 7 26535865 26555865 Pgl_GLEAN_10010158 26547619 26548916 Lipase

5_81743637 5 81733637 81753637 Pgl_GLEAN_10004165 81734759 81737196 Glycosyltransferases

6_228035770 6 228025770 228045770 Pgl_GLEAN_10028958 228030965 228032731 Triose-	phosphate	
Transporter	family

1_57711273 1 57701273 57721273 Pgl_GLEAN_10033951 57719920 57722359 Succinate	
dehydrogenase

1_177130077 1 177120077 177140077 Pgl_GLEAN_10033763 177133813 177139238 GST

3_271851504 3 271841504 271861504 Pgl_GLEAN_10004992 271851237 271852953 GDSL-	like	Lipase/
Acylhydrolase

3_278097000 3 278087000 278107000 Pgl_GLEAN_10018027 278095601 278101572 Fucosyltransferase	
family	protein

6_189716192 6 189706192 189726192 Pgl_GLEAN_10020216 189701772 189706397 Glucose-	6-	phosphate	
isomerase

1_171668212 1 171658212 171678212 Pgl_GLEAN_10009197 171662291 171668844 Alpha-	amylase	
(1,4-	alpha-	glucan	
branching	enzyme)

1_171668441 1 171658441 171678441 Pgl_GLEAN_10009197 171662291 171668844 Alpha-	amylase	
(1,4-	alpha-	glucan	
branching	enzyme)

2_229744277 2 229734277 229754277 Pgl_GLEAN_10012155 229740512 229742334 Sugar	(and	other)	
transporter

2_241850181 2 241840181 241860181 Pgl_GLEAN_10018054 241852379 241856224 UTP-	glucose-	1-	
phosphate	
uridylyltransferase

3_295792947 3 295782947 295802947 Pgl_GLEAN_10027180 295793140 295800113 Starch	synthase	4	(SSIV)

3_295792973 3 295782973 295802973 Pgl_GLEAN_10027180 295793140 295800113 Starch	synthase	4	(SSIV)

3_295799961 3 295789961 295809961 Pgl_GLEAN_10027180 295793140 295800113 Starch	synthase	4	(SSIV)

5_145069275 5 145059275 145079275 Pgl_GLEAN_10031509 145067338 145067670 Sugar	(and	other)	
transporter
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UTP-	glucose-	1-	phosphate	 uridylyltransferase	 (Table	 2).	
Pearl	 millet	 predicted	 gene	 Pgl_GLEAN_10004992  hav-
ing	 similar	 function	 to	 GDSL-	like	 Lipase/Acylhydrolase,	
which	is	involved	in	many	cell	biological	processes	from	
maintaining	 lipid	 homeostasis	 to	 lipid	 signalling.	 A	
large	 number	 of	 candidate	 genes	 were	 predicted	 to	 be	
chloroplast-	related,	 to	 encode	 mitochondrial	 proteins	 or	
proteins	linked	to	stress	defence	mechanisms,	growth	and	
development.	Other	genes	showed	similarities	with	tran-
scription	factors	including	NAC	domain	transcript	factors,	
Myb	 domain	 transcript	 and	 auxin-	related	 transcriptome	
factors	(Table	S4).

4 	 | 	 DISCUSSION

Pearl	millet	[Penisetum glaucum	(L)	R.	Br.]	is	widely	cul-
tivated	 as	 a	 dietary	 staple	 in	 the	 arid	 and	 semi-	arid	 re-
gions	 of	 the	 world	 including	 areas	 of	 India	 and	 Africa.	
Consumption	of	proper	carbohydrate	plays	a	vital	role	in	
human	health	especially	in	regulating	blood	glucose	level	
(Ludwig,	2002).	Low	glycaemic	index	(GI)	foods	and	food	
products	 are,	 therefore,	 regularly	 recommended	 for	 dia-
betic	 patients	 as	 they	 avoid	 sudden	 spikes	 in	 blood	 glu-
cose	 levels	by	releasing	glucose	more	gradually	 (Ludwig	
et	al.,	2018).	In	general,	RDS	and	SDS	are	the	most	impor-
tant	 constituent	of	 carbohydrate	and	are	digested	 in	 the	
small	 intestine	 providing	 an	 important	 source	 of	 energy	
(Englyst	et	al.,	1996).

In	 our	 study,	 the	 glycaemic	 index	 (GI)	 was	 observed	
for	 the	 166	 pearl	 millet	 lines	 where	 the	 GI	 trend	 cor-
relates	with	an	increased	proportion	of	SDS	as	compared	
to	 RDS.	 Thus,	 the	 majority	 of	 pearl	 millet	 accessions	
(123)	 had	 relatively	 high	 SDS	 content.	 PMiGAP211	 and	
PMiGAP241 have	low	GI	value.	The	combination	of	SDS	
and	 RS	 contents	 identified	 ten	 pearl	 millet	 lines,	 which	
have	a	low	GI	value	but	relatively	high	SDS	content.	The	
best	entries	comprising	key	 starch	measuring	values	are	
shown	 in	Table	 S2.	 Based	 on	 SDS	 content	 and	 GI	 value	
ten	 accessions	 (PMiGAP051,	 PMiGAP120,	 PMiGAP148,	
PMiGAP167,	 PMiGAP173,	 PMiGAP211,	 PMiGAP212,	
PMiGAP221,	PMiGAP235,	PMiGAP241)	containing	high	
relative	SDS	content,	low	GI	value	and	low	GI	with	high	
relative	 SDS	 content	 were	 considered	 as	 best	 entries	 for	
further	 utilization	 in	 breeding	 programmes.	 Such	 acces-
sions	can	either	used	directly	(if	found	to	possess	superior	
agronomic	traits	as	well)	or	be	utilised	as	donors	in	gener-
ating	elite	pearl	millet	varieties	combining	high	yield	and	
low	GI	 through	molecular	and	genomics-	assisted	breed-
ing	methods.	 In	pearl	millet,	 relatively	 lower	RDS	levels	
were	found	(average	of	22.0	±	0.2	and	ranged	from	13.95–	
34.07	in	166	accessions	studied)	than	observed	in	rice	from	
59.28	–		72.73,	with	a	mean	value	of	65.42	 (Zhang	et	al.,	

2020).	This	further	confirms	the	superiority	of	pearl	mil-
let	over	rice	in	traits	contributing	to	a	low	GI.	Pearl	millet	
has	also	been	identified	as	a	good	source	of	RS	with	lev-
els	higher	than	major	cereals	like	wheat	and	rice.	In	our	
study,	we	observed	an	average	content	1.99	of	RS	(ranging	
from	 0.08–	1.99	 in	 166	 accessions	 evaluated),	 which	 was	
slightly	higher	than	observed	in	rice,	which	ranged	from	
0	–		3.47,	with	an	average	of	1.67	(Zhang	et	al.,	2020).	High	
levels	of	SDS	within	food	is	directly	associated	with	a	low	
glycaemic	index	(GI)	and	high	SDS	foods	can,	therefore,	
form	an	important	part	of	the	diet	to	help	mitigate	the	risk	
of	diverse	chronic	degenerative	diseases	such	as	type	2	di-
abetes	and	other	obesity-	related	disorders	(Jenkins	et	al.,	
2002;	Parween	et	al.,	2020).

Genetic	improvement	of	traits	contributing	to	low	GI	
(more	specifically	SDS	and	RS)	in	pearl	millet	is	almost	
non-	existent.	The	 scope	 for	 large	 scale	 phenotyping	 of	
starch	 digestibility	 by	 laboratory	 assay	 can	 be	 limited	
by	 the	 relatively	 low	 throughputs.	 Molecular	 markers,	
especially	the	SNP	markers,	hold	great	promise	in	sim-
plifying	 the	 selection	 of	 such	 traits	 in	 plant	 breeding	
programmes.	To	 this	end,	we	have	 identified	902	SNPs	
linked	to	various	starch-	related	traits,	which	on	further	
validation	 have	 the	 potential	 for	 use	 in	 targeted	 plant	
breeding	 programmes	 for	 improving	 the	 starch	 profile	
in	millet.	For	identifying	the	most	appropriate	SNPs,	we	
studied	the	population	structure	identifying	six	clusters	
within	 the	 166	 accessions.	 As	 reported	 in	 earlier	 stud-
ies	 (e.g.	Kanfany	et	al.,	2020;	Sehgal	et	al.,	2015;	Serba	
et	al.,	2019;	Varshney	et	al.,	2017),	genotypes	from	sim-
ilar	 geographies	 and	 agroecologies	 grouped	 together	
within	 clusters	 whilst	 those	 from	 diverse	 geographical	
and	 agroecological	 origins	 grouped	 into	 different	 clus-
ters.	Higher	density	markers	used	 in	 the	study	also	 fa-
cilitated	 analysis	 of	 linkage	 disequilibrium	 (LD)	 for	
finding	 the	most	appropriate	marker-	trait	associations.	
No	 correlation	 between	 the	 country	 of	 origin	 and	 ge-
netic	 diversity	 was	 observed	 probably	 due	 to	 the	 rela-
tively	limited	number	of	germplasm	accessions	used	in	
this	study.	Similar	observations	were	reported	by	Sehgal	
et	al.	(2015)	where	they	also	reported	six	subpopulations	
amongst	 the	PMiGAP	association	panel	of	345	entries.	
Moreover,	 population	 genomic	 analysis	 carried	 out	 by	
Kanfany	et	al.	 (2020)	 reported	 that	 the	pearl	millet	 in-
bred	 lines	derived	from	diverse	geographical	and	agro-
ecological	features	demonstrated	five	subgroups	mostly	
following	 pedigree	 differences	 with	 different	 levels	 of	
admixture.	 Serba	 et	 al.	 (2019)	 reported	 six	 subgroups	
utilizing	 model-	based	 clustering	 and	 hierarchical	 clus-
tering	analysis	of	82,112	SNPs	in	398	pearl	millet	acces-
sions	in	agreement	with	our	findings.

Using	 78K	 SNP	 markers	 and	 13  starch-	related	 phe-
notypic	 traits	 for	 166  genotypes	 collected	 from	 different	
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parts	of	the	world	we	report	ninety-	four	high-	confidence	
SNP	 markers	 associated	 with	 starch-	related	 traits.	
Furthermore,	 a	 total	 of	 364  genes	 were	 found	 to	 reside	
around	 the	 SNPs	 associated	 with	 starch	 traits	 such	 as	
RDS,	SDS,	RS,	TS,	AvST	and	RS/TS.	Thus,	19	candidate	
genes	 including	 Starch	 synthase	 (SSIV),	 amylases,	 Beta-	
D-	xylosidase,	 Glycosyl	 hydrolase,	 glucose	 phosphomu-
tase,	 Glycosyltransferases	 involved	 in	 the	 synthesis	 of	
glucuronoxylan	 hemicellulose	 in	 secondary	 cell	 walls,	
Triose-	phosphate	 Transporter	 family,	 Sugar	 (and	 other)	
transporter,	 Glucose-	1-	phosphate	 adenylyltransferase,	
beta-	1,4-	xylosyltransferase,	Succinate	dehydrogenase,	GST	
fucosyltransferase	 family	 protein,	 Glucose-	6-	phosphate	
isomerase,	Glucuronokinase	1	(Sugar-	1-	kinase)	and	UTP-	
glucose-	1-	phosphate	uridylyltransferase	were	found	to	be	
directly	associated	with	starch-	related	biosynthetic	path-
ways	across	all	selected	SNP	data	sets	that	were	found	to	
be	associated	with	starch	phenotypes.

Of	particular	 interest	was	 the	 identification	of	 starch	
synthase	 (PgSSIV)	 genes	 (Pgl_GLEAN_10026059,	 Pgl_
GLEAN_10018307	 and	 Pgl_GLEAN_10027180)	 are	 key	
genes	for	SDS	and	amylase	for	RS	accumulation	in	pearl	
millet.	In	other	studies,	Parween	et	al.	(2020)	also	inves-
tigated	and	found	that	alpha-	amylase/branching	enzyme	
is	 the	key	regulatory	gene	to	enhance	resistant	starch	 in	
rice.	Contrastingly,	the	findings	by	Zhang	et	al.	(2020)	who	
have	previously	 reported	 that	 starch	branching	enzymes	
IIa	(BEIIa)	are	closely	associated	with	RS	levels	in	Indica	
rice.	In	the	same	study,	Zhang	et	al.	(2020)	also	reported	
that	a	lipase	gene	(LOC_Os09g09360)	was	found	to	be	as-
sociated	with	SDS	through	GWAS	in	rice.

5 	 | 	 CONCLUSION

This	is	the	first	study	in	pearl	millet	to	report	the	extent	of	
genetic	variation	present	in	its	germplasm	for	starch	traits	
and	also	identifies	SNP	markers	associated	with	them.	It	
also	 reports	 the	 ten	best	germplasm	accessions	with	po-
tential	for	direct	cultivations	(if	found	high	yielding)	and/	
or	for	use	as	donors	in	breeding	future	pearl	millet	hybrids	
and	cultivars	possessing	both	high	yield	as	well	as	low	GI.	
Furthermore,	 this	 study	 also	 identifies	 candidate	 genes	
residing	 in	 regions	adjacent	 to	SNPs	 found	 to	be	associ-
ated	suggesting	 their	 involvement	 in	determining	starch	
content	 in	pearl	millet.	Validation	of	 these	genes	 is	cur-
rently	underway	in	our	laboratory	and	will	be	reported	in	
due	course.
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