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Abstract: Starting raw materials, clay and diatomite, from coal mine Kolubara, Serbia were purified using heat and
chemical treatment. Porous silica ceramics were obtained at low forming pressure (40-80 MPa) and low sintering
temperature (1000- I300°C) in air. Boric acid as a low-cost additive was used. Sintered samples have average pore
si=e diameters ranging of macroporous for clay 0.1-10 jJJ/1 and for diatomite 0.05-5 jJJ/1. As-received and the
obtained samples were characteri=ed by XRD, SEM and mercUl)' porosimetl)' measurements. Relations between
mechanical characteristics ofsamples formed at different temperature were studied.
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1. INTRODUCTION

Manufacturing of porous materials from sediments materials, such as clay or diatomite, has become a matter
of increased interest because of the possibility of employing an easy, low cost, and green manufactUling
strategy while retaining characteristic features of the original material. Deposit areas of clay and diatomite
have a bigh economic potential. The sediments materials represent attractive materials for synthesis of
porous ceramics due to their low price, natural porosity (diatomite) and high abundance. Porous ceramics
provide an opportunity for combining impOltant properties of materials, such as high porosity with high
strength and high thennal and chemical stability. This combination of properties is very important for
various industrial applications such as filters, heat insulators, absorbents, catalyst supports and advanced
environmental applications, such as membranes or chromatography columns [1-11].
Herein, we report tbe utilization of the clay and diatomite as raw materials for the fabrication of porous
Si02 based material. We have employed a facile, low cost, and green strategy to fabricate these materials
by using the fused additive method with boric acid. In contrast to the processing of mono-fractional
starting materials by the foaming method, and chemical method of pore formation [12], involving
complicated processes and our process bas demonstrated improved perfomlance and efficiency.
Aqueous solution of boric acid was chosen to provide as sintering aid for grains of different mineral
origin. The effect of boric acid, pressure fanning, sintering temperature on the microstructure, porosity
parameters and mechanical properties of clay and diatomite monoliths have been studied [13-15]. The
present work is devoted to comparison of various specific properties (Young modulus and Poisson ratio)
of porous monoliths having a macropore size based on clay and diatomite.
The materials made of the modified clay and diatomite opens the possibility of obtaining composite
materials with desired properties, which will be the subject of future research.
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2. MATERIALS AND CARACTERISATIONS

2.1. Purification procedure of natural materials, clay and diatomite

Clay and diatomite were used as raw materials from the surface coal mine Kolubara, Serbia. Boric acid
(Alkaloid AD, Skopje, Macedonia) was used as sintering aid. These materials were purified by using
thermal and chemical treatments before processing. Organic impurities have been removed from the
materials by heat treatment (600°C, 2 h) in air. Afterwards, the materials were chemically treated in
aqueous solution of 0.5 M HCl (p.a. 37%, BDH Prolabo) (wt% 1: I 0). The suspensions were stirred for 6
h at 60°C. After decanting the liquid phase, the residual sediments were dried at 120°C until they
achieved their constant weight.

2.1.1 Preparation ofstarting mixtures
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Starting mixtures were prepared by homogenization of the purified clay or purified diatomite and boric
acid in the amount of 1wt%. The saturated aqueous solution of boric acid was prepared by dissolving
boric acid in distilled water at 25 °C, aided by a magnetic stirrer [16]. The prepared saturated aqueous
solution of boric acid was used in a quantity measured out to the solid weight of I wt%. The prepared
samples were denoted by Ca-b and Da-b in accordance with the processing conditions: a-applied pressure
and b-sintering temperature while labels for C and D represent clay and diatomite, respectively. The
powders were pressed into pellets under different uniaxial pressures: a = 40, 60, and 80 MPa. The pressed
samples were sintered at: b = 1000, 1150 and 1300 °C for 4 h in air.

2.2. Characterization

•
The complete chemical compositions of the as-received materials, clay and diatomite are listed in Table 1
[13,14].

Table 1. Chemical composition (wt%) ofthe as-received materials clay and diatomite

Element, wt.% AlP3 Fe203 Ti02 MgO CaO Na20 Kp Si02

Clay [13] 6.05 2.06 0.48 0.35 0.18 1.05 1.76 88.00
Diatomite [14] 12.28 3.29 - 0.44 0.70 0.12 1.01 73.68

Samples were characterized at room temperature applying X-ray powder diffraction (XRD) technique by
using the Ultima IV Rigaku diffractometer, equipped by Cu KaJ,2 radiation, generator voltage 40.0 kV
and current 40.0 mA. The range of 10-60° 2() was used for all powders in a continuous scan mode with a
scanning step size of 0.02° at a scan rate of 5 °/min. .

The mercury intrusion porosimetry was applied for measurements of pore size distribution and total
intrusion volume. The measurements were performed by automatic porosimeters Fisons-2000 series
(limiting pressure 200 MPa and pore diameters from 7.5 to 15000 nm) and Carlo Erba-120 macropore
unit (limiting pressure 0.1 MPa and pore diameter from 100,000 to 15,000 um), and by applying the data
processing programme, Milestone 200.
The morphology of clay and diatomite samples was investigated by using the Scanning Electron
Microscopy (SEM) - VEGA TS 5130 MM, Tescan. Poisson's ratio (;1din) and Young's modulus (Edin ) are
detennined on the basis of measuring ultrasonic velocity.
The measurements were performed by using the equipment OYO model 5210, according to the standard
testing procedure (SRPS B.B8.12).

3. RESULTS AND DISCUSSION

3.1. X-ray diffraction (XRD)

The XRD patterns of the as-received and treated clayey material powder or diatomite and samples with
boric acid, sintered at 1150 and 1300 °C are shown in Figure I.
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Figure 3. Pore size distribution versus pore
Diameter of samples:

D4o.8o-115o, and D40.80-1300.

Figure 2. Pore size distribution versus pore
diameter of samples:

C40,80-1150, and C40.80-1300.
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Figure 1. XRD patterns C I D60-1150. 1300: S smectite PDF: 29-1490, K kaolinite PDF: 89-6538,

Q quartz PDF: 33-1161, Cr cristobalite PDF: 89-3606.

o

For the clay samples by increasing the sintering temperature from 1150 to 1300 DC, average pore size
diameter significantly decrease (Figure 2). For the clay samples sintered at I 150°C the pore size
distribution curves over the entire range of diameters are situated from 2,5 to over I 0 ~m which is
substantially higher in comparison to the sample obtained at 1300 ec (0.15-1 ~m). The samples sintered
at 1150 °c have two peaks within the range from O.Ito 1 ~m, which indicates presence of group of
smaller diameter pores. The samples sintered at 1300 °c have a shoulder around 0.15 ~m which also
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Samples with 1 wt% of boric acid, obtained at the low forming pressures from 40 to 80 MPa and sintering
temperatures at 1150 and 1300 ec, were observed (Figures 2 and 3). The sample sintered at 1000 °C,
were damaged and disabled for use in further analyses because of their friable nature.

3.1 Mercury intrusion

In the X-ray pattern of the as-received and treated clayey material, were identified quartz (PDF No.33­
I 16 I) followed by the appearance of clay minerals of the kaolinite group, mica/illite (PDF No. 89-6538).
Cristoballite (PDF No. 82-1410) is formed by recrystallization of quartz and is present at 1150 and 1300
DC, in samples C60-1150andC60-1300.
The XRD-analysis revealed that the sample of the as-received diatomite had a typical opal structure
[17,18]. The XRD pattern shows broadening of the diffraction lines in the regions around 15-25 of 2B,
which is associated with presence of an amorphous silica phase. Cristoballite (PDF No. 82-1410) is the
major crystalline phase in the samples sintered at 1150 and 1300 DC, followed by peaks of quartz (PDF
No. 33-1161).
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indicates presence of another group of smaller diameter pores. A diminution of total pore volume and
porosity of the samples obtained at 1150 °c in compared to samples obtained at 1300 °c (Figure 2). Due
to pores merging, the average pore size diameters are higher for the samples sintered at 1150 °c (9.4 /lm)
in compared to samples obtained at 1300 °c (0.4 Ilffi). Sintering of B20 3 and Si02 [19] in the presence of
impurities in clay [13] leads to melting processes [20-25] which leads to pore merging. Figure 3 shows
the pore size distribution curves for the diatomite samples with boric acid, pressed at all applied pressure
and sintered at 1150 and 1300 DC, determined by mercury porosimetry. The pore size distribution from
0.25 to 5 11m for the samples 1150 °c and 1300 °c are observed. The samples sintered at 1150 °c have
peak within the range from 0.05 to 1 /lm, which indicates presence of group of smaller diameter pores.
Total pore volumes were lower for the samples sintered at 1300 °C compared to the samples sintered at
1150 °c (Figure 3). A diminution of average pore size versus the applied pressure is observed at the
samples obtained at the same temperature. Measurements confirm the well-known macropore character of
the clay and diatomite.

3.2. Scanning electron microscope (SEM)

Figure 4 shows the microstructure of as received clayey and diatomite materials and unpolished samples
with boric acid formed at 40 MPa and sintered at 1150 and 1300 ec, respectively.

Figure 4. Images ofsamples C / D40-1J50. /300-

Due to different microstructures of these starting materials, boric acid had different effects on the
formation of pores [13-15]. During the preparation of these as-received materials the reduction of
impurities by the acid and heat treatments, introduced changes in the structure and made both of the
materials, more porous. In the SEM image of the clayey investigated materials, grains mostly
agglomerated, are visible (Figure 4). The surface morphology of the clay sample with boric acid has a
large numbers of irregular connected pores and voids between particles for all investigated samples.
The SEM image of the as received diatomite shows frustules which have disk, capsule-shaped with
middle circular opening. Regularly spaced rows of fine pores run circularly along the disk walls in a form
of honeycomb with fine pores of dimensions ranging from micro to nanometer scale [17]. On the other
side, bimodal distribution of pores is easily noticed in the diatomite sample with boric acid, resulting from
the combination of the inherent fine porosity of the diatomite grains and larger intra-grain pores (Figure
4). The investigated diatomite samples have a significantly smaller pore diameter in comparison with the
samples of clay sintered at 1150 ec, which are also modified with boric acid [13-15]. All these
observations are in good agreement with the results obtained by mercury porosimetry.
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versus the applied preassure.

Clay samples modified by boric acid, sintered at 1150 and 1300 °c, have generally higher Young's
modulus in comparison to diatomite samples, also modified by boric acid (Figure 5). Young's modulus
slightly increases, as a function of the forming pressure (Figure 5). The samples of clay pressed at 60
MPa and sintered at 1150 and 1300 °c have lower Young's modulus in comparison to the samples
obtained at 40 and 80 MPa (Figure 5). Sintering of B20 3 and Si02 [19] in the presence of impurities in the
clay (Table 1) leads to low temperature eutectic reactions and melting processes [20-24]. The
consequences of the melting proces~es are the appearance of liquid phase, which produces glassy phase
upon cooling and therefore deteriorates the mechanical properties, like Young modulus [25]. Poisson's
ratio ranging 0.35-0.37 for all investigated clay and diatomite samples, at 1150 and 1300 0c.

Figure 5 shows a variation of Young's modulus versus fonning pressure (40, 60 and 80 MPa) in samples
of clay and diatomite with boric acid sintered at 1150 and 1300 0c.

3.2. Young modulus and Poisson ratio
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