

BOOK OF ABSTRACTS

XXI EUROFOODCHEM

22-24 November 2021

On-line conference

Probing the stability of the food colourant R-phycoerythrin from dried Nori flakes

Ana Simovic¹, Sophie Combet², Tanja Cirkovic Velickovic^{1,3,4,5}, Milan Nikolic¹, Simeon Minic^{1,*}

Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade -Faculty of Chemistry, Belgrade, Serbia

² Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France

³ Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea

⁴ Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

⁵ Serbian Academy of Sciences and Arts, Belgrade, Serbia

* sminic@chem.bg.ac.rs (corresponding author)

The high content of vitamins, minerals, antioxidants, and proteins makes red algae Porphyra sp. (Nori) superfood with exceptional health-promoting benefits. Its intense colour originates from R-phycoerythrin (R-PE), phycobiliprotein containing covalently attached tetrapyrrole chromophores: red phycoerythrobilin and orange phycourobilin. The present study aims to characterize the stability of R-PE, a natural colourant with a high potential for application in the food, cosmetic, and pharmaceutical industries. We purified R-PE from dried Nori flakes with a high purity ratio (A₅₆₀ /A₂₈₀ ≥5). Far-UV CD spectroscopic showed that α-helix is the dominant secondary structure (75%). The thermal unfolding of α -helix revealed two transitions (T_{m1} and T_{m2} at 56 and 72°C, respectively), ascribed to the different subunits of R-PE. Absorption measurements showed that high pressure (HP) induces dissociation of R-PE into subunits followed by subunit unfolding. Contrary to temperature, HP treatment showed a significant advantage under applied conditions: the protein unfolding is partly reversible, and the R-PE colour bleaching is minimized. Based on the fluorescence quenching approach, R-PE's binding affinities for Cu²⁺ and Zn²⁺ ions were 6.27x10⁵ and 1.71x10³ M⁻¹, respectively. Absorption and near-UV/VIS CD spectroscopy suggested conformational changes in protein chromophores upon metal ions binding. Far-UV CD spectroscopy did not reveal that metal binding affects R-PE structure. The obtained results give new insights into the stability of R-PE with a good usevalue in replacement of toxic synthetic dyes, preservation of R-PE red colour in fortified food and beverages by HP processing, and as a biosensor for Cu²⁺ in aquatic life systems.

Acknowledgments: This study was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Contract number: 451-03-9/2021-14/200168 and the European Commission, under the Horizon2020, FoodEnTwin Project, GA No. 810752.