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Abstract 

Short rotation coppice (SRC) willows are of interest as they provide a source of 

renewable carbon for bioenergy and biofuels. One of the major challenges facing 

future supply of willow biomass is sustaining sufficient yields in drought challenged 

environments, with research in this area limited to date.   

The effects of drought responses on Salix germplasm were studied in two pot 

experiments in a rain out shelter at Rothamsted Research using a split plot design. 

In both experiments, plants were subjected to two water treatments, drought 

stressed or well-watered. A temporary water stress was imposed by applying two 

cycles of drought within a growing season.  

Experiment 1 aimed to screen 56 diverse Salix genotypes, including subsets of 

existing genetic mapping populations, to identify potentially informative germplasm 

for further study in a more focused second pot experiment. Experiment 2 

contained 36 genotypes from two willow full-sibling genetic mapping populations, F 

and K8. Assessing the potential of mapping population progeny to segregate for 

drought traits of interest is an important aim of the study as it offers a potential 

route to the development of markers for drought tolerance trait selections within 

the Rothamsted Research willow breeding programme. 

Phenotypic and final harvest yield measurements were taken on all plants. Primary 

results reveal; that pot experiments were effective in producing a useful response 

to drought stress, that genotypic diversity for drought tolerance exists in Salix, an 

early drought coinciding with the exponential growth phase has a more negative 

effect on yield than a drought that occurs later in the growing season, and that top 

and middle leaf lengths may potentially offer the breeder a high throughput method 

of assessing the impact of drought on germplasm.   
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Chapter 1. General introduction 

1.1 Introduction  

Short rotation coppice (SRC) willows are of interest as they provide a source of 

renewable carbon for bioenergy and biofuels. Biomass has the potential to 

become a major primary energy source in the future and agricultural crops are 

predicted to become the largest source of biomass for energy (Berndes et al., 

2003). Cultivation of this low input perennial crop on light land, with low water 

holding capacity, where there are fewer profitable land use options, has the benefit 

of easing potential food versus fuel conflicts (Lovett et al., 2014; Weih et al., 2014).  

Future climate change predictions forecast that drought is likely to become more 

prevalent (Rahiz and New, 2013). These two factors combine to raise questions 

about the future sustainability of yield from current SRC willow varieties. Drought is 

a major limiting factor in agriculture and is considered the most important cause of 

yield reduction in crop plants (Boyer, 1982). SRC willow biomass production is 

limited by water availability, even in the cooler climate of northern Europe (Lindroth 

and Bath, 1999) and will be further limited in future climates when grown on lighter 

land.   

The native environment of willows are often riparian zones, however, willows are 

not always synonymous with the wetlands. Examples of species associated with 

more arid sites include; S. turnorii, S. silicicola, S. relli and S. planifolia, which 

originate from the Athabasca sand dunes in northern Saskatchewan, Canada, and 

S. psammophila which originates from Mu-us, an arid sandy area of Inner 

Mongolia.  

A number of pot experiments in Salix have been conducted by researchers. 

However, pot water deficit was controlled by maintaining a ‘fixed’ level of drought 

stress (Bonosi et al., 2010; McIvor, 2005; Rönnberg-Wästljung et al., 2005; Weih 

et al., 2011; Weih et al., 2006). This was achieved by calculating the water holding 

capacity of the pot and maintaining it at a fixed level e.g. 50%. Blum (2014) 

criticised this method of applying water stress treatment as it is not a true drought 

in terms of physiology as the plant undergoes short cycles of hydration and 

dehydration. These wetting cycles and their physiological consequences are likely 

to be unreal and unpredictable (Blum, 2014). A water deficit inflicted by stopping 

irrigation, so that the drought stress can progress slowly for at least a week until 

the first symptoms of the drought can be observed will be more favourable. 
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Although pot trials cannot mimic field conditions, this method of inducing drought 

stress is thought to be more realistic than inducing drought stress using the ‘fixed’ 

method. 

A number of studies have worked with existing SRC willow varieties (Bonosi et al., 

2010; Linderson et al., 2007; Toillon et al., 2013). However, much of the diversity 

within the genus Salix has not been assessed.  Bonosi et al. (2010) assessed 15 

genotypes response to a well-watered control and four levels of water shortage. 

Water deficit periods lasted; 4, 8, 12 and 30 days. This study represents the most 

diverse set of genotypes tested and it found that there was genetic variability in 

response to drought and that genotypes differed in their ability to respond to 

different water stress treatments. The study concluded that breeders should define 

what drought is relevant to them before choosing their selection criterion. Other 

studies contained fewer genotypes, four genotypes only were assessed in each of 

these studies; (McIvor, 2005; Wikberg and Ogren, 2004; Wikberg and Ögren, 

2007). Successive drought and re-watering cycles were investigated in Salix pot 

experiments (Doffo et al., 2016; Zhivotovsky and Kuzovkina, 2010) and in Populus 

pot experiments (Marron et al., 2003). A similar water regime will be selected as it 

allows water deficit inflicted by stopping irrigation to be used more than once.  

1.1.1 Climate change 

It is now acknowledged that human influence on the climate system is real and 

that climate change has had widespread impacts on human and natural systems. 

It has also been concluded that the more we disrupt our climate the more we risk 

severe, pervasive and irreversible impacts. However, with substantial and 

sustained reductions in greenhouse gas emissions the risks of climate change can 

be limited (IPPC, 2014). Used as an alternative to fossil fuels, woody biomass 

produced by sustainably managed SRC willow plantations have a role to play in 

mitigating greenhouse gas (GHG) emissions.  

To produce useful quantities of woody biomass, SRC plantations need to be 

productive in these future climates. In general, more frequent and prolonged 

summer droughts appear likely across northern latitudes. These predictions have 

raised questions about the future sustainability of yield from current SRC willow 

varieties. According to predictions, summer rainfall will decrease by as much as 

20% in the East of England by 2020. With this backdrop, identifying drought 

tolerance and/or water use efficiency and their mechanisms in willows is crucial so 
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that they may be introduced into the Rothamsted Research willow breeding 

programme.  

Although it is acknowledged that production of energy crops are not sufficient to 

reduce GHG emissions alone, energy crops, including SRC willow, form an 

important component in a portfolio of climate mitigation options to provide a 

sustainable energy resource to displace fossil fuels (Sims et al., 2006).  

The Renewable Energy Directive was implemented in the EU to stimulate the 

uptake of renewable energy in Europe (EC, 2013). Renewable sources currently 

provide 14.1% of the European (EU28) energy supply (EC, 2014), although the 

overarching target is to generate 20% by 2020 (EC, 2009). It is envisaged that this 

will be met through adoption of a number of technologies, though woody biomass 

could contribute up to two thirds of the target (EC, 2007): equivalent to 

approximately 124 million tonne of oil equivalent (Mtoe) (Atanasiu, 2010). In 2006, 

the European Environment Agency forecast that by 2020, a total of 19.3 million ha 

(100 Mtoe) of agricultural land could be diverted to dedicated bioenergy production 

while complying with good  agricultural practice, safeguarding sustainable 

production of biomass and without significantly affecting domestic food production 

(EC, 2005; EEA, 2006). However, although demand for woody biomass has 

increased continuously in recent years, new plantings have not materialised and 

the forestry sector is struggling to meet demand. The amount of forestry in the EU 

(1,039 million ha 27% of global forest land) does not provide the barrier to supply. 

Barriers come from complex government policies, landowners’ attitudes, technical 

and economical accessibility, environmental considerations and market conditions, 

all which combine to limit the mobilisation of woody biomass from forests. The 

direct effects of climate change could also reduce output from forests with 

increased tree mortality and associated forest dieback being predicted to occur in 

many regions over the 21st century, due to increased temperatures and drought 

(IPPC, 2014). 

Hartwich et al. (2014) suggest that due to SRC willow plantations’ high water 

abstraction rate, the cultivation of SRC should not be applied in areas with a 

negative climatic water balance. However, this recommendation was made for 

existing SRC varieties which do not have improved drought tolerance traits. Oliver 

et al. (2009) predicted that the physiological response of C3 Salicaceae trees to 

elevated CO2 may increase drought tolerance because of improved plant water 
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use and that consequently yields in temperate environments may remain high in 

the future. It should be acknowledged that this is only possible if adequate water is 

available and indeed that limited available water is the single most important factor 

that reduces global crop yields (Chaves, 1991).  

The challenge presented by climate change is therefore to improve productivity 

under conditions where there will be periodic drought stress imposed on crops. 

1.1.2 Land use issues and food vs fuel debate 

Another reason for pursuing drought tolerance and water use efficient traits in 

SRC willows is that plantations are likely to be grown on sub-optimal land to 

reduce competition with food crops. Such land often has a poor water holding 

capacity, making it not economic to grow high input food crops. Deep rooted 

perennials, such as SRC willows, may be more economic than food crops on 

these so-called marginal lands or on agriculturally degraded and abandoned lands 

(Valentine et al., 2012). Dedicated lignocellulosic ‘second generation’ perennials 

are seen as being less controversial than first generation energy crops. These 

first-generation crops, such as wheat. maize and oil seed rape for producing 

bioenergy often exacerbate the land use conflict between food production and 

energy production.  

1.2 SRC willow 

1.2.1 The genus Salix 

Willow (Salix spp.) is a very diverse group of catkin‐bearing trees and shrubs. 

Willow belongs to the family Salicaceae, which also includes the Populus genus.  

There are around 450 species of Salix worldwide (Argus, 1997). These are mainly 

distributed in the northern temperate and arctic regions with a small number of 

species being found in the tropics (Skvortsov, 1968). The centre of diversity is 

believed to be in Asia, with over 200 species in China. Around 120 species are 

found in the former Soviet Union, over 100 in North America, around 65 species in 

Europe, and one species is native to South America (Karp et al., 2011).  Willows 

are dioecious, thus obligate outcrossers, and highly heterozygous.  

1.2.2 Ploidy 

The haploid chromosome number of Salix is 19 (Hanley and Karp, 2014). Around 

40% of willow species are polyploid (Suda and Argus, 1968), ranging from triploids 

to the atypical dodecaploid S. maxxaliana with 2n=190 (Zsuffa et al., 1984). The 
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majority of current SRC willow varieties are diploid, although triploid, pentaploid 

and hexaploid hybrids are registered SRC varieties (Macalpine et al., 2008). 

Polyploid species of interest for bioenergy production include; tetraploid S. 

miyabeana and S. rehderiana and hexaploid S. dasyclados. Polyploid germplasm 

has not been used when developing current mapping populations. Diploid material 

has been used to produce mapping populations so difficulties in analysing 

complex polyploid data can be avoided.  

As assessing the potential of mapping population progeny to segregate for drought 

traits of interest is a key aim of the study. This is important as it offers a potential 

route to the development of genetic markers for drought tolerance trait selections. 

To allow the potential for this output diploid germplasm only will form the basis of 

this study. 

1.2.3 The domestication of SRC willow 

Domestication of SRC willows has been comparatively recent with breeding 

programmes being established from the 1980s (Ahman and Larsson, 1994; Kopp 

et al., 2001b; Larsson, 1997; Lindegaard and Barker, 1997; Macalpine et al., 2008; 

Stott et al., 1981; Zsuffa, 1979). Parental selections have come from shrub 

species of willow are utilised for bioenergy production because they perform well 

in short-rotation coppicing systems and can maintain vigorous growth through 

multiple harvest cycles. Breeders have concentrated on; yield, pest and disease 

resistance and selecting a growth habit that facilitates mechanical harvesting 

(Macalpine et al., 2008). Leaf rust Melampsora spp. has been the major disease 

selection criteria and willow beetles (Chrysomelidae) the major pest consideration, 

with some breeding programmes paying attention to pests including; Terminalis 

midge (Dasineura spp.), giant willow aphid (Tuberolachnus salignus), and sawfly 

larvae (Nematus pavidus) (Larsson, 1997).  To date drought tolerance and/or 

water use efficiency has not been included as selection criterion within breeding 

programmes. Research efforts have focused on screening existing varieties and 

genotypes for suitability in environments with a high risk of drought or where a 

temporary water stress is likely (Bonosi et al., 2010). Due to; future climate change 

predictions, cultivation on lighter land and unsuitable current varieties, there is a 

pressing need to assess the degree of genotypic diversity for drought tolerance 

traits so they can be included as criterion within breeding programmes.   
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1.2.4 Current state of play in commercial SRC willow breeding 

Current market conditions in England see 200 – 300 ha of SRC willows being 

planted annually, with the area of SRC willow plantations totalling ~5,000 ha. 

These market conditions have led breeders to focus on exploiting their existing 

pipeline, which takes >10 years from crossing to variety (Macalpine et al., 2010), 

rather than actively crossing. The Rothamsted Research breeding programme was 

crossing actively from 2004-2013 for biomass SRC willows.  

In Europe, there are 53 short‐rotation coppice (SRC) biomass willow cultivars 

registered with the Community Plant Variety Office (CPVO) for plant breeders’ 

rights (PBRs), of which ~25 are available commercially in the United Kingdom. 

There are eight patented cultivars commercially available in the US (Clifton-Brown 

et al., 2019). 

Other active breeding programmes in Europe include: Swedish based Salixenergi 

Europa AB, European Willow Breeding AB, and a programme at the University of 

Warmia and Mazury in Olsztyn (Poland). Cultivars are also being marketed by the 

European Willow Breeding Programme (EWBP) (UK), which was actively breeding 

biomass varieties from 1996 to 2002. There is one active willow breeding 

programme based at Cornell University, in North America. Cultivars are protected 

by plant breeders’ rights (PBRs) in Europe and by plant patents in the United 

States. 

1.2.5 Cultivation of SRC willow 

Willows are currently propagated commercially by planting winter‐dormant stem 

cuttings in spring. SRC willow best practice is well established (AFBI, 2015). 

Commercial planting systems for willow use mechanical planters that cut and 

insert stem sections from whips (~2 m long one-year old stems) into a well‐

prepared soil with a step planter. When commercial plantations are established, 

the industry standard is to plant intimate mixtures of ~5 diverse rust (Melampsora 

spp.) resistant varieties (McCracken and Dawson, 1997).  

After an establishment year, the perennial plantations are harvested on 2 – 4 year 

harvesting cycles and harvested mechanically with whole rod or direct cut and chip 

harvesters (Mitchell et al., 1999). 

Currently there are between 2200 – 5500 ha of SRC willow being commercially 

grown in the UK (Lovett et al., 2014), but this could rise significantly in the future 
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with predictions an area of 1.4 Mha of UK land to second generation bioenergy 

crops (Miscanthus, SRC willow and short rotation forestry (SRF) by the 2050s 

(Evans, 2017). 

1.2.6 End uses of SRC willow 

The renewable woody biomass from these perennial plantations is a substitute for 

fossil fuels. Life cycle analyses indicate that large greenhouse gas reductions are 

achievable from heat and power generated from SRC willow (Whittaker et al., 

2016).  

SRC willow plantations also bring benefits to the environment.  In comparison to 

conventional arable cropping, SRC willows require low agrochemical and fertiliser 

inputs and have great potential for carbon sequestration, bioremediation and 

enhancement of farmland biodiversity (Haughton et al., 2015). These advantages 

have led SRC willow to be among the sources of sustainable and renewable 

feedstocks for bioenergy and biofuel industries. 

1.3 Controlling the water stress environment  

Imposing drought stress on field grown SRC willow is challenging due to the crops 

physical size and its three-year harvest cycle. A three-year old SRC willow crop 

can measure over 5 m in height (Karp et al., 2011). In other crops researchers 

have controlled the water regime via irrigation alone by conducting field 

experiments in ‘desert’ environments, like those at International Maize and Wheat 

Improvement Centre’s (CIMMYT), Ciudad Obregon experimental station in NW 

Mexico (Monneveux et al., 2006) or by conducting experiments during the ‘dry 

season’. Such dry season or off-season approaches are suited to semi-arid tropics 

such as those conducted at International Rice Research Institute (IRRI) in the 

Philippines (Bernier et al., 2007). These approaches are not suited to UK 

conditions or the temperate climates where SRC willows are likely to be grown. 

Rainout shelters have the potential to induce water stress by intercepting 

precipitation. Stationary rainout shelters have been used successfully by Ober et 

al. (2004) in a study to assess genetic resources to improve drought tolerance in 

sugar beet (Beta vulgaris L.). The stationary rain out shelters allowed managed 

drought conditions to be inflicted on a diverse group of beet genotypes. Useful 

germplasm was identified to allow improvement in drought tolerance. A negative of 

this approach is that the stationary rainout shelter produced a significant effect on 

crop microclimate, a climate that was unlikely to occur in the control blocks. As 
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stationary rainout shelters are more cost-effective they are often preferred for 

larger screening as more genotypes can be tested in larger plots and with more 

replicates.  

Moveable rainout shelters offer benefits over stationary shelters as when rain is 

not forecast plants can be exposed to ambient conditions, alleviating the climatic 

differences between water treatments seen in stationary rainout shelters. Movable 

rainout shelters have been successfully used in many studies including those at 

the International Crop Research Institute for the Semi-arid Tropics (ICRISAT), 

India (Kashiwagi et al., 2005) and the National Key Laboratory of Crop Genetic 

Improvement, Huazhong Agricultural University, China (Yue et al., 2006). The cost 

of movable rainout shelters is often prohibitive, making them more suitable for 

smaller trials. There is also the risk with movable rainout shelters that unexpected 

precipitation can reach the drought treatments.  

However, due to the size and associated costs involved, rainout shelters are not 

appropriate for field grown SRC willow. Previous field grown experiments have 

simply used rain-fed and irrigated as their two water treatments (Linderson et al.; 

Monclus et al., 2006). This approach is feasible if grown at a site with light soil with 

a low water holding capacity, however it does leave the control of the water regime 

to the vagaries of the weather.  For these reasons a pot experiment will be 

explored.  

Drought stress has been inflicted in pots grown outside (Weih and Nordh, 2002; 

Wikberg and Ögren, 2007), however this is not an ideal approach as rain 

intercepted by the plants may run down the stem into the pot. If rain guards were 

too tight they may affect stem development and root/soil respiration. A promising 

methodology has been used at Ordos Sandland Ecological Station (OSES), China 

where seedlings were planted into ‘sand-pools’ (similar to lysimeter chambers) 

measuring 2.01 m3 (Xiao et al., 2005). Movable rain-out shelters were used when 

precipitation was forecast. This methodology represents an interesting half way 

between field and pot conditions and avoids some of the compromises associated 

with growing plants in pots.   

Numerous studies have been performed in pot experiments in Salix L. (Bonosi et 

al., 2010; McIvor, 2005; Rönnberg-Wästljung et al., 2005; Weih et al., 2011; Weih 

et al., 2006; Wikberg and Ogren, 2004), Salix L. and Populus L. combined studies 
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(Splunder et al., 1996) , Black Locust (Robinia pseudoacacia L.) (Mantovani et al., 

2014) and apple (Malus communis L.) (Ferrara and Flore, 2003). This is 

unsurprising as pot experiments are probably the most common in plant research. 

Not all papers detail exact protocols in their methodologies, it is assumed that pot 

size, pot colour, potting media and stress treatment were the same. Pot size is a 

concern with fast growing perennial plants as root confinement in a container/pot 

can have a negative effect on plant growth, despite the plant being adequately 

watered (Ismail and Davies, 1998).  

Sanchez (2013) warned that if experiments performed under controlled or semi 

controlled conditions do not properly model agronomic environments, then 

functional genomics of complex traits will likely serve no purpose in the 

advancement of biotechnology. Regardless of whether the goal of the study is 

gene discovery or not, the message serves as an excellent reminder about the 

importance of trial design.  The relevance of results described in (Rönnberg-

Wästljung et al., 2005) may not be applicable to the field situation. In this study a 

large number of plants, 1,920, were grown in small 1 l containers. Plants reached 

heights of over 130 cm in these pots. This small pot size, combined with the 

associated leaf area is likely to increase the drought effect, highlighting the 

importance of pot size choice in the experiment design phase. Plants in the 

drought treatment received circa 55% of the water given to the irrigated plants 

daily. This fixed level approach to applying the drought stress is discussed below. 

It should be acknowledged that conditions in (Rönnberg-Wästljung et al., 2005) 

are very different from that of the field and that results may be specific to the 

experiments environment.  

A number of previous pot experiments in Salix control pot water deficit by 

maintaining a ‘fixed’ level of drought stress. This is done by calculating the water 

holding capacity of the pot and maintaining it at a set level e.g. 50%. Blum, (2014), 

questioned this method of applying the stress treatment saying, ‘This is correct in 

terms of book-keeping but not in terms of physiology. The plant then undergoes 

short daily cycles of hydration and dehydration, the physiological consequences of 

which are unreal and unpredictable’. Inflicting a water deficit by stopping irrigation 

is the preferred method ensuring that the pot size is large enough for the drought 

stress to progress slowly for at least a week until the first symptoms of the drought 

stress are observed. 
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1.4 Plants response to drought 

In the context of a plant breeding programme drought is defined as an insufficient 

moisture supply which causes a reduction in plant production. An agricultural 

drought can cause a range of plant growth reductions from mild yield reductions 

up to a crop failure.   

Drought is initiated when demand for water is not matched by supply. When this 

demand is not met a plant will enter a state of water deficit. Drought is a complex 

phenomenon in plants, restricting normal growth, disturbing water relations and 

reducing water-use efficiency. 

In water stress conditions, the plants physiological processes are affected, and 

this is reflected in the plants phenotype. Depending on the severity, a water deficit 

may cause a reduction in cell size, reduced water use efficiency and a reduction in 

biomass production (Ashraf and Harris, 2005).  

1.4.1 Mechanisms of drought stress resistance 

Drought escape 

Drought escape is an adaptive mechanism which involves rapid plant development 

to enable the completion of the full life-cycle prior to a drought event. Flowering 

time and crop duration are key factors for this adaptation (Blum, 2010). This 

mechanism of drought stress escape is not suitable for a perennial crop like SRC 

willow. This mechanism is more suitable for annual seed-based crops. 

Drought avoidance  

Drought avoidance is the ability of plants to maintain a (relatively) higher tissue 

water content despite reduced water content in the soil. Lowering stomatal 

conductance and transpiration are key mechanisms in drought avoidance (Basu et 

al., 2016). Adaptive traits involving drought avoidance can involve the minimization 

of water loss and/or the optimization of water uptake. Optimizing water uptake can 

achieve higher tissue water status by maintaining the water uptake through 

increased rooting, hydraulic conductance, etc. under drought stress. In contrast, 

minimizing water loss uses water effectively through reduced loss of water by 

reducing transpiration, transpiration area, radiation absorption, etc. under drought 

stress condtions (Basu et al., 2016). 
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Drought tolerance 

Drought tolerance refers to the degree to which a plant is adapted to function 

under low plant water status. Plants in dry environments can be exposed to 

drought events where it is impossible for them to escape the adverse conditions. 

Drought tolerant plants have the ability to endure water stress through certain 

morphological or biochemical adaptations to avoid cell injury. The mechanism of 

drought tolerance involves the maintenance of turgor pressure through osmotic 

adjustment, increase in elasticity in cells, and decrease in cell size by protoplasmic 

resistance (Valliyodan and Nguyen, 2006) 

Drought avoidance and drought tolerance traits carry the largest potential for 

developing in SRC willow plantations and perennial energy crops.  

1.4.2 Phenotypic measurements to monitor plant water status and assess drought 

tolerance 

Measurements that have a potential to be high throughput will be of great interest. 

High throughput measurement methods with the capacity to be used in large 

mapping populations and field trials will be of great value. 

The measurements in Table 1.1 will be considered as possible approaches to 

assess and measure the effects of drought stress. In addition to the 

measurements listed, visual scores will be considered for use on experimental 

material. Dry matter yield, moisture content and portioning of the components of 

yield (including roots) will be considered at final harvest timepoints. Consideration 

will be given to throughput, availability of equipment and suitability to a pot 

experiment.  

Table 1.1 List of possible phenotypic measurements to monitor plant water status and 
assess drought tolerance and water use efficiency 
 

Trait or parameter Method 
Measurement 

environment 
Capacity/day 

Plant water status       

Leaf relative water content 

(RWC) 
leaf disk F,P,C ≤50 

Leaf water potential (pre-

dawn, mid-day)  

pressure chamber or 

psychrometry 
F,P ≤50 
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Physiology       

Air-canopy temperature 

differential 
infrared thermometry F,P >100 

Leaf chlorophyll content  SPAD meter F,P,C >100 

Photosynthetic efficiency 

(FPSII) 
chlorophyll fluorescence F,P,C >100 

Leaf rolling/wilting visual score F,P,C >100 

Leaf senescence visual score F,P,C >100 

Carbon isotope 

discrimination ratio 13C/12C, 

D 

mass spectrometry F,P,C 50-75 

Oxygen discrimination ratio 

18O/16O 
mass spectrometry F,P,C 50-75 

Drought stress ‘injury’ TBARS, FOX,CMS assays F,P,C ≤50 

Transpiration rate  Sap flow gauge F,P,C <10 

Xylem cavitation 

susceptibility  
acoustic emission sensors F,P,C <10 

Root and/or stem hydraulic 

conductivity  
high pressure flow meter L <10 

Leaf Morphology       

Leaf thickness digital thickness gauge F,P,C >100 

Stomatal density leaf impressions F,P,C >100 

Wax/glaucousness visual score F,P,C >100 

Specific leaf area leaf area meter, balance F,P,C 50-100 

Leaf succulence index leaf area meter, balance F,P,C 50-100 

Gas exchange       

Stomatal conductance Porometer F,P,C >100 

Maximum light-saturated 

photosynthetic rate 
IRGA F,P,C <50 

Intrinsic water use efficiency IRGA F,P,C <50 
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Non-stomatal limitations to 

photosynthesis  
IRGA (A/Ci curves) F,P,C <20 

Excess energy dissipation 

and mesophyll conductance 

IRGA + chlorophyll 

fluorescence 
F,P,C <20 

Water use/rooting       

Total soil water extraction 

during drought 

Capacitance-type soil moisture 

meter 
F 50-100 

Water use efficiency 
Soil moisture meter, biomass 

harvest 
F 50-100 

Water use efficiency Gravimetric P 50-100 

Depth of maximum root 

activity 
Soil moisture meter F 50-100 

Root length density  soil cores F <50 

Remote sensing       

Green canopy cover (NDVI) spectral ratio meter F >100 

Photochemical reflectance 

index (PRI) 
spectral ratio meter F >100 

Canopy temperature thermal imaging F,P >100 

Tree geometry, 

foliage:woody biomass 
LIDAR F,P <20 

Consideration is given to the type of environment in which the measurements can be made, and 
the maximum number of measurements that can be made (or number of samples that can be 
processed) per day. F, field; P, pot; C, controlled environment room; L, laboratory. 
 

In willows this will be observed in reduced height and biomass yields. 

Morphological changes including reduced leaf size area, decreased shoot:root 

ratio and increased root distribution; depth and root length were observed in a pot 

experiment studying S. alba, S. triandra and S. viminalis seedlings (Splunder et 

al., 1996). Stem height, biomass yield and leaf size will therefore be monitored. 

Whole plant leaf chlorophyll mass from a Salix pot experiment was shown to 

predict performance in the same genotypes grown in field conditions (Weih and 

Nordh, 2005) making high throughput SPAD readings of interest. Leaf traits have 

been shown to significantly correlate with growth parameters (Robinson et al., 

2004; Weih and Nordh, 2005), making them of great interest for further study. It is 
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proposed that; leaf counts, leaf measurements (lengths and width), leaf area, 

SPAD, sylleptic leaf counts and branch counts, and final harvest yield responses 

will be measured in experiment 1.  

1.5 Drought tolerance indices 

Different drought tolerance indices can be used for selecting genotypes response 

to drought stress. Gholinezhad et al. (2014) studied nine drought tolerance indices 

in an experiment exposing sunflower (Helianthus anuus L.) to; well-watered 

conditions, a mild, and severe drought stress. The study found in moderate 

drought conditions the indices; mean productivity (MP), stress tolerance index 

(STI), geometric mean productivity (GMP), harmonic mean (HARM) were suitable 

indicators for screening drought tolerant genotypes. In severe drought stress 

conditions, the following indices supported stable and high yield in both non-stress 

and stress treatments: mean productivity (MP), stress tolerance index (STI), 

geometric mean productivity (GMP), harmonic mean (HARM), stress non-stress 

production index (SNPI) and modified stress tolerance index in moderate and 

severe stress (MsSTI). Two further indices are also considered. Tolerance Against 

Stress (TOL) which Rosielle and Hamblin (1981) defined as the difference in yield 

between the stress and non-stress environments. A higher value of TOL indicates 

susceptibility of a given genotype to drought. Drought tolerance efficiency (DTE) 

(Fischer and Wood, 1981), provides a simple route to assess the difference in 

performance of each genotype in droughted and well-watered conditions. 

DTE > 1, shows that the genotype performs relatively better in drought than the 

well-watered control.  

DTE < 1, indicates that the genotype performs better in well-watered than in the 

drought treatment. 

DTE = 1, suggests the genotype has a stable performance across the different 

treatments.  

The suitability of drought tolerance indices will be assessed using data from the 

pot experiments 
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Table 1.2 Drought tolerance indices 
 

Index Name Equation Reference 

Drought tolerance 

efficiency (DTE) 
𝐷𝑇𝐸 = (

𝑌𝑠

𝑌𝑝
) 

(Fischer and Wood, 

1981) 

 

Yield Index (YI) 
𝑌𝐼 =

𝑌𝑠

𝑌𝑝̅̅̅̅
 

(Gavuzzi et al., 1997) 

Mean Productivity (MP) 
𝑀𝑃 =

𝑌𝑠 + 𝑌𝑝

2
 

(Rosielle and Hamblin, 

1981) 

 

Stress Tolerance Index 

(STI) 
𝑆𝑇𝐼 =

(𝑌𝑠)(𝑌𝑝)

(𝑌̅𝑝)2
 

(Fernandez, 1992) 

 

 

Tolerance Against Stress 

(TOL) 

 

𝑇𝑂𝐿 = (𝑌𝑝𝑖 − 𝑌𝑠𝑖) (Fernandez, 1992) 

 

Geometric Mean 

Productivity (GMP) 

𝐺𝑀𝑃 = √(𝑌𝑠)(𝑌𝑝) (Schneider et al., 1997) 

 

 

Harmonic Mean (HARM) 
𝐻𝐴𝑅𝑀 =

2(𝑌𝑝 × 𝑌𝑠)

𝑌𝑝 + 𝑌𝑠
 

(Jafari et al., 2012) 

 

 

Stress Non-Stress 

Production Index (SNPI) 
𝑆𝑁𝑃𝐼 = [

𝑌𝑝+𝑌𝑠

𝑌𝑝−𝑌𝑠
]

1
3 × [𝑌𝑝 × 𝑌𝑠 × 𝑌𝑠]

1
3 

(Farshadfar and Sutka, 

2002) 

 

Modified Stress Tolerance 

Index in Moderate and 

Severe Stress (MsSTI). 

𝑀𝑠𝑆𝑇𝐼 =
[(𝑌)]𝑠2

[(𝑌̅)]𝑠2
× 𝑆𝑇𝐼 

(Farshadfar and Sutka, 

2002) 

 

𝑌𝑠 and 𝑌𝑝 are stress and optimal (potential) yield of any given genotype.  

𝑌̅𝑠 and 𝑌̅𝑝 are average yield of all genotypes under stress and optimal conditions. 
 

1.6 Considerations associated with the Salicacae 

As a crop SRC willow falls between forestry and agriculture. Its woody and 

dioecious nature are uncommon in conventional agricultural crops and need some 

special consideration.  

As the yield component of the crop is above ground biomass, it makes the 

formation of yield under drought less complicated when compared to other crops 

where the economic yield component is just a proportion of the total biomass 

(grain, fruit, tuber etc).  
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1.6.1 Xylem cavitation 

Stems/trunks of tree species are particularly susceptible to xylem cavitation, 

generally with taller stems being more vulnerable. Willows and poplars are among 

the most vulnerable temperate tree to xylem cavitation (Cochard et al., 2007). 

Hydraulic conductance can decrease when water supply becomes limiting. It can 

also decrease when air enters conduits along the pressure gradient causing them 

to cavitate (embolise). Although xylem vessels can be refilled, their ability to do so 

can be lost with repeated cavitation. Stem xylem cavitation and the follow-on 

embolism can be a reason for reduced stem conductance. Xylem cavitation 

therefore will cause reduced leaf water status under drought stress. Cochard et al. 

(2007) found a negative correlation between cavitation resistance and above 

ground biomass production in Populus and Salix. Vulnerability to cavitation across 

clones was also found to correlate poorly with anatomical traits such as vessel 

diameter, vessel wall strength, and fibre wall thickness. Such anatomical traits 

were found to vary in a study of Salix species endemic to sand dunes in 

Saskatchewan, Canada using light and scanning electron microscopy (Cooper and 

Cass, 2001). Cochard et al. (2007) findings suggest that selection in a breeding 

programme for xylem cavitation resistance would lead to drought tolerant willows. 

However, this approach would also lead to a lower yielding biomass crop as the 

most resistant genotypes were also the lowest yielding. The Cavitron technique is 

also not currently high throughput and not capable of screening large populations. 

These results also agree with the findings of Wikberg and Ogren (2004). Results 

from these two studies go some way to explain an earlier study that hypothesised 

that fast-growing SRC cultivars would be more sensitive to water stress than a 

slower growing natural willow (Weih, 2001). This study found that the unimproved 

natural willow clone outperformed the bred variety when water was limited, and a 

low rate of fertilizer was applied and that the bred variety was only superior under 

optimum conditions. An interesting result, but it should be acknowledged these 

conclusions were based on juvenile growth from one season. A long-term field trial 

would be needed to validate results.  

Xylem cavitation resistance has been correlated with the increasing density of the 

wood in Salix (Wikberg and Ogren, 2004; Wikberg and Ögren, 2007), Salix, 

Populus and a number of other angiosperms and conifers (Hacke et al., 2001). 

Wood density could be a suitable high throughput proxy measurement for xylem 
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cavitation. Sennerby-Forsse (1989) found that there was a linear decrease of 

wood density from the base towards the top of the stems so any sampling would 

need to follow a strict protocol to ensure homogeneity of sample. It is 

acknowledged that xylem cavitation is prevented by closing stomata, a response 

to drought stress. This trait could be assessed in parallel with xylem cavitation. 

1.6.2 Sex and stress 

Diocy is found in 7.5% of flowering genera (Renner and Ricklefs, 1995) including 

in Salix and Populus, sister genera within the Salicaceae. It is generally 

hypothesised that in dioecious plants, pistillate plants have to pay a higher 

reproductive cost than staminate plants. Differences between sexes in Populus 

cathayana have been found with pistillate individuals suffering greater negative 

effects than staminate individuals when grown in drought stressed conditions (Xu 

et al., 2008). Further work on P. cathayana supported this and indicated that 

males were better equipped to survive drought stress as photosynthesis,  

antioxidant enzyme activities, damage to the integrity of cellular membranes and 

electrolyte leakage were less severe in males under drought stress (Xiao et al., 

2009; Zhang et al., 2012). The effects of drought stress between the sexes has not 

been specifically studied in detail in Salix. Despite being siblings, the female Tora 

and male Bjorn produced the most and least xylem vulnerability curves in a study 

consisting of two other unrelated genetically diverse genotypes (Cochard et al., 

2007). This study was not designed to compare gender, but it is interesting that 

two genotypes with the same pedigree can segregate so clearly for susceptibility 

(Tora) and resistance (Bjorn) to vulnerability to xylem cavitation.     

Although not drought stress, gender studies have been conducted on other abiotic 

and biotic stresses in Salix. In a study of gender in relation to growth, herbivory 

and disease in Salix viminalis L. populations (Ahman, 1997), no significant 

differences on growth rate or herbivory from lepidopterans (Earias clorana) and 

gall midges Dasineura ingeris and D. marginemtorquens between the sexes were 

found. However, there were some gender differences in susceptibility of 

Melampsora (an economically important foliar rust disease of SRC willow) 

depending on the reproductive stage. In another study, no differences in size were 

found between the two genders in native populations of S. cinerea in North Wales 

(Alliende and Harper, 1989). Yield assessments in this study were based on height 

only, the natural population studied consisted of plants of unknown ages, this does 



19 
 

not make ‘size assessment’ very robust. A study of S. reinii at varying altitudes in 

Japan contradicts the hypothesis that female plants have to pay a higher 

reproductive cost than males as females maintained higher reproductive biomass 

than males at all altitudes (Sakai et al., 2006). Interestingly the reproductive 

allocation for both sexes decreased at a similar rate as the abiotic stress increased 

(Kao et al., 1998). The author suggested that in response to this abiotic stress that 

female S. reinii will have a mechanism to compensate for the extra investment in 

reproduction irrespective of a changing environment. As shoot production did not 

change with altitude, it implies that S. reinii gave priority to vegetative investment 

at the cost of reproductive output at higher altitudes/ abiotic stress levels.   

These findings have so far led Salix breeders to ignore gender when selecting 

yield and resistance to certain insect pests. The evidence from studies in poplar 

suggests that the relationship between gender and drought stress should be 

investigated in Salix but that responses could be species specific. 

1.7 Rationale for the study 

One of the major challenges now facing future supply of willow biomass is 

sustaining sufficient yields in challenged environments. This has come to the fore 

for two reasons: climate change and the increasing need to grow the crops on 

sub-optimal land to reduce competition with food production for the world’s 

growing population. This project aims to identify a route to obtaining sustainable 

yields on sites where water resources are limited. It is hoped that this will be 

achieved by advances in understanding the physiology and growth of willow, and 

in the underlying key traits. 
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Chapter 2. Broad-range genotype pot experiment 

2.1 Introduction 

Currently drought tolerance has not been included as a selection criterion within 

Salix breeding programmes as it is not easy to screen for.  There is a pressing 

need to assess the degree of genotypic diversity for drought tolerance and 

consider how to use it in future breeding activity.   

This initial pot experiment aimed to screen diverse Salix germplasm to identify 

interesting families, populations and genotypes for further study. The inclusion of 

representative germplasm from selected mapping populations gives the potential 

to assess if mapping population progeny segregate for drought traits of interest. 

Potentially QTLs that underpin these key drought traits could be identified if 

segregating populations can be selected in conjunction with high throughput 

phenotyping techniques. 

The central hypothesis of this MPhil is: ‘It is possible to identify and select drought 

tolerant genotypes in short rotation coppice (SRC) willow’ 

 Hypotheses to be investigated in this chapter are;  

1. Useful genetic variation exists for drought tolerance traits in the genus Salix 

and can be identified in a pot experiment.  

2. Effective methodologies for screening drought tolerant willows can be 

developed.  

3. It is possible to identify and select for drought tolerant genotypes in SRC 

willow. 

4. The inclusion of progeny from mapping populations will allow segregating 

progeny from defined populations to be identified and selected for further 

study. 

2.2 Materials and Methods 

2.2.1 Plant material 

Rothamsted Research (RRes) maintains many unique germplasm resources 

including one of the largest willow collections in the world the UK National Willow 

Collection (NWC), twelve diploid mapping populations (mp) mp A – K and mp K8 

and one association mapping population (Hanley and Karp, 2014; Trybush et al., 

2008). All genotypes included in the pot experiment are maintained as coppiced 

collections either at Rothamsted Research, Harpenden, UK (51°48′30″N, 
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0°21′22″W) or in the case of the association mapping population, at Woburn 

Experimental Farm, Husbourne Crawley, UK (52°51.0"N, 0°35'33"W). 

 
Key     Figure produced in ‘Pedigree Viewer Version 6.5b’: 
Male parent    http://www-personal.une.edu.au/~bkinghor/pedigree.htm 
Female parent     

 Pedigree component not included in pot experiment 

Figure 2.1 Pedigree plot. 

 

Parents of all twelve mapping populations were included along with subsets of 

progeny from six of these mapping populations (Table 2.1). There were 14 

members of an S. viminalis association mapping population also included. Fig. 2.1 

shows the pedigree structure for 37 of the 54 test genotypes. Genotypes shaded 

grey in Fig. 2.1 were not included in the pot experiment. Only related genotypes 

are shown in the pedigree diagram; genotypes included in the pot experiment are 

listed in Table 2.1. Tora, Bjorn and Tordis are of note as they are commercial SRC 

varieties produced by Svalöv Weibull, Sweden and are currently marketed by 

SalixEnergi Europa AB. Tora and Bjorn have been subject to various water stress 

studies (Cochard et al., 2007; Weih, 2001; Weih and Nordh, 2002; Wikberg and 

Ogren, 2004). All germplasm to be studied is diploid. 
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Table 2.1 Salix germplasm used in 2014 pot experiment. 
 

ID Pedigree Comment 

nwc789 789 S. purpurea × viminalis 'Ulbrichtweide' D female parent 

K8 165 S3 × R13 B, C & D male parent 

D1 789 S. purpurea × viminalis 'Ulbrichtweide' × K8165   

D2 789 S. purpurea × viminalis 'Ulbrichtweide' × K8165   

D3 789 S. purpurea × viminalis 'Ulbrichtweide' × K8165   

D4 789 S. purpurea × viminalis 'Ulbrichtweide' × K8165   

K8 319 S3 × R13 E & G female parent 

nwc506 506 S. caprea × cinerea × viminalis 'Grandis'  E male parent 

E1 K8319 × 506 S. caprea × cinerea × viminalis 'Grandis'   

E2 K8319 × 506 S. caprea × cinerea × viminalis 'Grandis'   

E3 K8319 × 506 S. caprea × cinerea × viminalis 'Grandis'   

E4 K8319 × 506 S. caprea × cinerea × viminalis 'Grandis'   

nwc901 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' F female parent 

K8 290 * S3 × R13 F & I male parent 

F1 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F2 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F3 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F4 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

nwc1059 1059 S. repens  G male parent 

G1 K8 319 × 1059 S. repens   

G2 K8 319 × 1059 S. repens   

G3 K8 319 × 1059 S. repens   

G4 K8 319 × 1059 S. repens   

nwc628 628 (S. schwerinii × (S. vim × S. vim) 'Tora' K female parent, commercial SRC variety 

nwc56 56 S. triandra 'Baldwin'  
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K1 628 (S. schwerinii × (S. vim × S. vim) 'Tora' × 99 S. triandra 'Semperflorens'  

K2 628 (S. schwerinii × (S. vim × S. vim) 'Tora' × 99 S. triandra 'Semperflorens'  

K3 628 (S. schwerinii × (S. vim × S. vim) 'Tora' × 99 S. triandra 'Semperflorens'  

K4 628 (S. schwerinii × (S. vim × S. vim) 'Tora' × 99 S. triandra 'Semperflorens'  

S3 * Astrid × SW930984 K8 female parent 

R13 * Astrid × SW930984 K8 male parent 

K8 003 S3 × R13  

K8 002 S3 × R13  

nwc663 663 S. viminalis 'Pulchra Ruberrima' Association mapping population (UK NWC), B female parent 

nwc615 615 S. schwerinii 'K3 Hilliers' J female parent 

nwc627 627 (S. schwerinii × (S. vim × vim) 'Bjorn' J male parent, commercial variety 

nwc453 453 S. aurita  I female parent 

nwc432 432 S. daphnoides 'Fastigiate' H male parent 

nwc844 844 S. purpurea 'Uralensis'  

Tordis Tora × Ulv Commercial variety  

K8 411 S3 × R13 A female parent 

nwc1093 S. viminalis 'L81102' Association mapping population (UK NWC), K8 great grandparent 

003_CZ S. viminalis  Association mapping population (Czech natural population) 

024_CZ S. viminalis  Association mapping population (Czech natural population) 

33_CZ S. viminalis  Association mapping population (Czech natural population) 

77_CZ S. viminalis  Association mapping population (Czech natural population) 

64_CZ S. viminalis  Association mapping population (Czech natural population) 

13_CZ S. viminalis  Association mapping population (Czech natural population) 

IA159 S. viminalis  Association mapping population (Swedish population) 

S_Hallstad1 S. viminalis  Association mapping population (Swedish population) 

IA136 S. viminalis  Association mapping population (Swedish population) 

IA102 S. viminalis  Association mapping population (Swedish population) 
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IA162 S. viminalis  Association mapping population (Swedish population) 

IA143 S. viminalis  Association mapping population (Swedish population) 
 

* Genotype also present in 2014 pot experiment 

 

 

Figure 2.2 Dormant 15 cm woody cuttings.
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The study material offers the opportunity of assessing a broad-range of Salix 

germplasm, but also allows the potential for interesting families and populations to 

be identified for further study. The progeny included from mapping populations, 

(D1, D2, D3, D4, E1, E2, E3, E4, F1, F2, F3, F4, G1, G2, G3, G4, K1, K2, K2, K3, 

K4, K8002 and K8003 were chosen at random as there was no prior knowledge to 

the performance of mapping population progeny in drought conditions. Including 

this progeny gives the potential to select mapping populations of interest for further 

study, with the ultimate goal of assessing if mapping population progeny segregate 

for drought traits of interest. Potentially QTLs that underpin these key drought 

traits could be identified if segregating populations can be selected in conjunction 

with high throughput phenotyping techniques. 

Dormant woody cuttings were collected from field trials in January, cut to 15 cm 

lengths, labelled and wrapped in plastic and stored in a -4°C freezer until planting 

in May. 

2.2.2 Experimental design  

A split plot design with ± irrigation on main plots and genotype on split plots was 

used to conduct an experiment to assess the differences between the 

performance of 54 genotypes in 2014. The water treatment was applied on whole 

plots and genotype was applied on sub-plots. The ‘Design’ function in GenStat for 

Windows, 16th edition was used to plan the experiment. Appendix 1 details the 

experiment layout.  

Block 1 

Block 2 

Block 3 
 

N 

Figure 2.3 The blocking arrangement in a rain-out shelter (GH44). 

 

2.2.3 Planting and growth conditions 

Cuttings were removed from cold storage 24 hours before planting. Once 

defrosted, cuttings were soaked overnight in cold water to rehydrate before 

planting. Square black 11 l plant pots measuring 22 x 22 x 26 cm were placed in 

black polypropylene 25 cm diameter, 4 cm deep saucers. Pots were filled with a 
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homogeneous mix of 50:50 by volume of perlite and Rothamsted prescription mix 

(RPM) compost with added nutrients; (75% medium grade [L&P] peat, 12% 

screened sterilized loam, 3% medium grade vermiculite, 10% grit [5-mm screened, 

lime free], 3.5 kg “Osmocote Exact Standard 3-4M” per m3 (Scotts UK 

Professional, Ipswich, Suffolk).], 0.5 kg PG mix/m3 [Hydro Agri (UK) Ltd., Bury St. 

Edmunds, Suffolk], lime [approximately 3 kg/m 3 to pH 5.5–6.0], Vitax Ultrawet 

[wetting agent: 200 ml/m3]). Equal volumes of each growth medium were 

measured into a 90 l dustbin. The RPM and perlite were mixed thoroughly with a 

shovel until homogenous.  A piece of paper towel was placed in the bottom of the 

pot to prevent growth medium from escaping. Pots were filled with 3 kg of growth 

medium. Each pot was filled with a large shovelful, tapped on the ground then the 

additional growth media to obtain 3 kg per pot (±5g) was added, before being 

tapped on the floor again to ensure a similar bulk density. 

 

 

Figure 2.4 The open south facing side of GH44, the rain out shelter that housed 

the pot experiment. 

 

The experiment was located at Rothamsted Research in a rain out shelter (GH44). 

The area was designed for work requiring ambient temperatures, but also 

requiring cover from rain. GH44 (Fig. 2.4) has open netted sides and a polyethene 

roof, providing cover from rain fall. The shelter, manufactured by Clovis Lande, 

was erected in 2001. The area of the cage is 160 m2. The surface of the covered 

area is a concrete slab. The south facing side of the cage is open whilst the north 

and east facing sides are shaded by shrubs in the adjacent herbaceous borders. 

The higher light intensity from the southern edge appears to be the greatest 
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potential cause of heterogeneity. Fig. 2.3 details the blocking approach selected to 

mitigate this identified heterogeneity. 

Pots were placed in GH44 using a twin row design, with a spacing of 26 cm 

between pots in twin rows and 65 cm between pairs of rows. Pots were spaced at 

26 cm within each row, see Fig. 2.5. There was a 110 cm gap between the pots on 

the north and south edge of the experiment and the edge of GH44. Once 

arranged, pots were watered by filling to the brim individually with a hosepipe and 

lance fitted with a rose nozzle prior to planting. The pot experiment was planted on 

16th May 2014. Cuttings were inserted into the centre of each pot. Circa 1 cm of 

the cutting was left above the growth medium surface. Pots were watered to field 

capacity after planting. 

Pots were weeded as necessary. The insecticide Hallmark (100 g/l lambda-

cyhalothrin) was applied on 16th July 2014 at the recommended rate to control 

Terminalis midge (Dasineura spp.), aphids, willow beetles (Chrysomelidae) and 

sawfly larvae (Nematus pavidus). Pots were fertilised after the first drought stress 

period on 7th August 2014 with 5g of Osmocote Exact Standard 3-4M per m3 

(Scotts UK Professional, Ipswich, Suffolk) to ensure plants had sufficient nutrients.  

2.2.4 Irrigation regime 

All pots were watered by hand with a hosepipe until the beginning of June when a 

drip irrigation system was installed. Galcon 9001 irrigation controllers (Kfar Blum, 

Israel) were used to schedule watering. Water was delivered to each pot using a 

single Octa-Mitter adjustable stake dripper (Access Irrigation, Northampton, UK). 

From early June pots were watered once a day, two minutes per watering. In late 

June this was increased to twice a day. Irrigation was increased to three minutes, 

three times a day in late July. The drippers delivered approximately 0.4 l of water 

per minute to each pot. Irrigation was scheduled when the saucers were dry in an 

attempt to keep pots at pot capacity and avoid waterlogging. 

Two periods of water stress were applied to the drought whole plots by stopping 

the irrigation. The first drought (D1) started for all plants on 21st July and ended 

between 24th July and 28th July (3-8 days), when droughted pots were watered 

again. The second drought (D2) was initiated on 4th September in 2014 and pots 

were returned to watering from 11th September to 25th September (7-21 days).  
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During the drought periods, pot soil moisture was monitored daily using a Delta-T 

SM200 Soil Moisture Sensor and HH2 logger (Delta-T Devices Ltd, Cambridge, 

UK). The sensor was calibrated as per the manufacturer’s instructions.  Three 

measurements were taken per pot and the mean of these measurements was 

used. Each replicate of each genotype, within the drought whole plot, was 

exposed to the same duration of water stress in 2014, with the three replicates of 

each droughted genotype being returned to watering when the mean of the three 

droughted pots’ soil water content of 7 vol. % was reached. The first drought 

period lasted 3-8 days and the second drought period lasted for 7-21 days; the 

length of drought was dictated by the SM200 Soil Moisture Sensor readings. 

2.2.5 Experiment monitoring 

LogTag (Dorset, DT11 9EX, UK) temperature and humidity loggers were placed in 

each of the 6 whole plots (See Appendix 2 for LogTag locations). The sensors 

were suspended at 1 m above the ground from beams in GH44. The sensors were 

shielded from direct solar radiation by an 18 cm wide 8 cm deep cone covered in 

aluminium foil (See Fig 2.5).  Sensors logged hourly temperature and humidity 

values from 23rd May 2014 until the end of the experiment. Meteorological data 

was provided by the Environmental Change Network (ECN) automatic weather 

station at Rothamsted Research. This is located 400 m south of GH44 and data 

were available for the duration of the experiment. 

  

Figure 2.5 Suspended LogTag temperature loggers.  

Log Tag temperature loggers are circled in white. They were suspended under a cone lined in 
aluminium foil to shade the temperature sensors. 
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2.2.6 Phenotypic measurements 

Leaf emergence scores  

Pots were assessed at three-day intervals post planting and scored using the 1-7 

key presented in Fig. 2.6. Plants were considered fully emerged when they 

reached the score of 7 - fully unfolded leaves were observed, and stem extension 

has begun, stem >3cm.  

 

Figure 2.6 Shoot emergence score.  

Source: Prepared by March Castle, Rothamsted Research 
Developing buds were scored according to the above seven point scale adapted from (Weih, 
2009): Stage one, No sign of bud growth, tip of bud tightly pressed to the shoot; Stage two, bud 
swollen (1-4 mm length) tip of bud bending away from the stem; Stage 3, bud burst stage 1: green 
leaf tips visible <5mm; stage four, bud burst stage 2: green leaf tips >5mm; stage five, elongating 
new leaves bending away from each other; stage 6 one or more leaves perpendicular to the shoot 
axis, some stem may be visible (<3cm); stage 7, numerous, fully unfolded leaves observed, stem 
extension has begun, stem >3cm. 

 

Time points 

The experiment was planted on 16th May 2014. Measurements were taken; before 

drought 1 (BD1), during drought 1 (D1), starting 21st July and lasting 3 – 8 days, 

after drought 1 (AD1), before drought 2 (BD2), during drought 2 (D2), starting 4th 

September and lasting 7 – 21 days, and after drought 2 (AD2). 

Leaf counts 

Leaves derived from the main proleptic stems were counted and recorded at three 

time points, BD1, 11th July, AD1, 30th July and BD2, 28th August. The dominant 
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lead stems were marked and counted first. Subsequent stems were counted in a 

clockwise order from the lead stem. Immature leaves that had not reflexed from 

the growing tip were not counted. Fig. 2.7 shows a cluster of unfolded immature 

leaves that would not be counted.  

 

Figure 2.7 Leaves and growing tip.  

 

 

Figure 2.8 Lanceolate willow leaf with petiole visible. 

 

5 cm 
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Leaf measurements 

Leaf length and width measurements were taken on leaves on the lead stem at 

three time points, BD1, 15th July, AD1, 31th July and BD2, 1st September. Leaves 

were measured at three points on the stem at each time point; the top leaf (TL) ten 

leaves down from first reflexed leaf, the middle leaf (ML) the leaf attached at the 

mid-point of the stem, the bottom leaf (BL) ten leaves up from the lowest main leaf. 

Leaf lengths were taken from the tip of the lead to the point where the leaf blade 

ended, and the petiole started (See Fig. 2.8).  Leaf widths were taken at the widest 

point of the leaf.  

Leaf area calculations 

A crude area was calculated by multiplying Length (L) and width (W) of leaves. 

Leaf area, adjusted was calculated to account for the shape of leaves using a non-

linear regression developed in first year S. viminalis leaves (Verwijst and Wen, 

1996):  

leaf area (cm2) = (b0 + b1 cat)LWc 

where; b0 = 0.906, b1 = -0.036, cat = 1 (leaves on proleptic shoots), LW = leaf length 

x leaf width and c = 0.944  

The adjusted leaf area was then used to calculate the whole plant adjusted leaf 

area. This assumes that the TL, ML and BL are representative of a third of leaves 

respectively from the leaf counts. 

Chlorophyll meter readings 

On the second day of D1, 22nd July, a SPAD-502 meter, Konica Minolta Inc., was 

used to take non-destructive estimates of leaf chlorophyll concentrations. These 

were taken at the centre of TL, ML and BL, taking care to avoid the leaf midrib. 

These leaves were determined using the same leaf TL, ML and BL method as 

described above. An average value of TL, ML and BL was calculated and 

multiplied with the number of leaves on the leaf stem AD1 to give a lead stem total 

SPAD value. 

Sylleptic branch and leaf counts 

Leaves derived from the sylleptic branches were counted and recorded at three-

time points, BD1, 11th July, AD1, 2nd August and BD2, 2nd September. The 
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sylleptic branches on the dominant, marked lead stem were counted first. 

Subsequent stems were counted in a clockwise order from the lead stem. Leaves 

on the lowest sylleptic branches were taken first, before working systematically up 

the stem to the top. Similar to main stem leaf counts, immature sylleptic leaves 

that had not reflexed from the growing tip were not counted. Sylleptic leaf counts 

were recorded per branch, so a sylleptic branch count per stem could be 

calculated. 

 

Figure 2.9 Sylleptic branches protruding from the main proleptic stem on 29th July.  

(8 days after the start of D1). 
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2.2.7 Yield measurements 

The experiment was harvested between 18th - 25th September in 2014. Genotypes 

were harvested at the end of their second drought period. All replicates of each 

genotype were harvested on the same day. Stems were cut at the soil surface 

using secateurs. Fresh and dry weight analysis was performed in 2014 on all 

above ground biomass (leaves were not stripped from the stems). Dry weights 

were taken after the stems were cut into circa 2 cm sections and the biomass was 

dried in aluminium trays at 80°C for 48 hours.  

2.2.8 Statistical analyses 

The following split-plot analysis of variance (ANOVA) was used: 

y ~ Genotype*Irrigation + Block/MainPlot/SplitPlot  

where y represents any particular response, Genotype is the fixed model term 

denoting the genotype, Irrigation is the fixed model term denoting the treatment 

effect (-Irrigation or +Irrigation), Block is the random model term denoting the 

Block The slash (/) indicates the nesting of model terms, and the star (*) indicates 

that main effects and interactions should be fitted. The statistical significance of 

fixed effects was tested using F-tests.  

The predicted means for the relevant statistically significant model terms were 

output with standard error of the difference (SED), degrees of freedom and least 

significant difference (LSD) values at the 5% (p = 0.05) level of significance for 

their comparison. 

The Genstat (2015, 18th edition, © VSN International Ltd, Hemel Hempstead, UK) 

statistics package was used for all analyses. 

2.2.9 Drought tolerance indices 

The drought tolerance indices defined in Table 2.2 will be calculated from the dry 

matter yield results. 𝑌𝑠 are stress (drought treatment) and 𝑌𝑝 represent optimal 

(potential or well-watered) yield of any given genotype. 𝑌̅𝑠 and 𝑌̅𝑝 are average 

yields of all genotypes under stress and optimal conditions.  
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Table 2.2 Drought tolerance indices 
 

Index Name Equation 

Drought tolerance efficiency (DTE) 
𝐷𝑇𝐸 = (

𝑌𝑠

𝑌𝑝
) 

Yield Index (YI) 
𝑌𝐼 =

𝑌𝑠

𝑌𝑝̅̅̅̅
 

Mean Productivity (MP) 
𝑀𝑃 =

𝑌𝑠 + 𝑌𝑝

2
 

Stress Tolerance Index (STI) 
𝑆𝑇𝐼 =

(𝑌𝑠)(𝑌𝑝)

(𝑌̅𝑝)2
 

Tolerance Against Stress (TOL) 

 

𝑇𝑂𝐿 = (𝑌𝑝𝑖 − 𝑌𝑠𝑖) 

Geometric Mean Productivity (GMP) 𝐺𝑀𝑃 = √(𝑌𝑠)(𝑌𝑝) 

Harmonic Mean (HARM) 
𝐻𝐴𝑅𝑀 =

2(𝑌𝑝 × 𝑌𝑠)

𝑌𝑝 + 𝑌𝑠
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2.3 Pot experiment results 2014 

2.3.1 Meteorological data 

Fig. 2.10 shows the maximum and minimum daily temperatures inside the rainout 

shelter and from the Rothamsted Meteorological site. Whilst minimum 

temperatures were broadly similar to readings from the meteorological site 

(+0.58°C on average), maximum daily temperatures were elevated in the rain out 

shelter (+3.05°C on average). A maximum temperature in the rain out shelter of 

32.5°C (29.9°C at the Met. site) was recorded on 18th July. Days recorded with a 

maximum temperature exceeding 30°C were 2 and days exceeding a maximum 

temperature of 25°C totalled 45, including the period during D1.  

 

 

Figure 2.10 2014 maximum and minimum daily temperatures from Rothamsted 

Meteorological site and LogTag sensors in GH44. 

Drought periods marked in a stepped line to represent drought time range, D1, 3 – 8 days, D2, 7 – 
21 days. 

 

The temperatures of >30°C observed during mid-July in Fig. 2.10 mean that 

symptoms could be attributed to a combination of heat and drought stress. Abiotic 

stresses including drought and heat stress induce a cascade of physiological and 
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molecular events resulting, in some cases, in similar responses. Heat stress is 

defined as the rise in soil and air temperature beyond a threshold level for a 

minimum amount of time such that permanent harm to plant growth and 

development occur (Lamaoui et al., 2018). A study of two desert willow species, S. 

gordejevii and S. babylonica showed no effect of temperature up to 35°C (Yang et 

al., 2004). However, the temperature threshold level of the desert species is likely 

to be higher than many of the genotypes in this study, which are unknown, 

meaning that heat stress could have been a factor during this period. 

2.3.2 Results for key varieties in 2014 pot experiment 

Table 2.3 ANOVA results for key varieties in 2014 pot experiment. 
 

Timing Variate Geno Irrigation Geno.Irrigation 

    F pr. F pr. F pr. 

Leaf counts (leaf number)    

BD1 11/7/14 Lead stem  <.001 0.502 0.488 

BD1 11/7/14 Whole plant  <.001 0.485 0.971 

AD1 30/7/14 Lead stem  <.001 0.13 <.001 

AD1 30/7/14 Whole plant  <.001 0.243 0.868 

BD2 28/8/14 Lead stem  <.001 0.277 0.019 

BD2 28/8/14 Whole plant  <.001 0.571 0.728 

     

Leaf measurements (cm)    

BD1 15/7/14 Top leaf L  <.001 0.195 0.784 

BD1 15/7/14 Top leaf W  <.001 0.56 0.844 

BD1 15/7/14 Middle leaf L  <.001 0.874 0.672 

BD1 15/7/14 Middle leaf W  <.001 0.777 0.22 

BD1 15/7/14 Bottom leaf L  <.001 0.613 0.5 

BD1 15/7/14 Bottom leaf W  <.001 0.246 0.743 

     

AD1 31/7/14 Top leaf L  <.001 0.224 <.001 

AD1 31/7/14 Top leaf W  <.001 0.459 <.001 

AD1 31/7/14 Middle leaf L  <.001 0.302 0.34 

AD1 31/7/14 Middle leaf W  <.001 0.429 0.431 

AD1 31/7/14 Bottom leaf L  <.001 0.503 0.684 

AD1 31/7/14 Bottom leaf W  <.001 0.266 0.071 

     

BD2 01/9/14 Top leaf L  <.001 0.02 0.004 

BD2 01/9/14 Top leaf W  <.001 0.987 0.06 

BD2 01/9/14 Middle leaf L  <.001 0.031 0.051 

BD2 01/9/14 Middle leaf W  <.001 0.556 0.518 

BD2 01/9/14 Bottom leaf L  <.001 0.348 0.023 

BD2 01/9/14 Bottom leaf W  <.001 0.496 <.001 
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Timing Variate Geno Irrigation Geno.Irrigation 

    F pr. F pr. F pr. 

 
Leaf area calculations    

AD1 31/7/14 Top leaf LxW <.001 0.413 0.006 

AD1 31/7/14 Top leaf LxW adja <.001 0.399 0.004 

AD1 
31/7/14 Whole plant  
adjb leaf area <.001 0.276 0.003 

     

Chlorophyll meter during first drought    

D1 22/7/14 Top leaf SPAD <.001 0.148 0.439 

D1 22/7/14 Middle leaf SPAD 0.365 0.567 0.178 

D1 22/7/14 Bottom lead SPAD <.001 0.24 0.967 

D1 22/7/14 Mean SPAD <.001 0.436 0.205 

D1 22/7/14 Lead stem total leaf SPAD <.001 0.161 0.002 

     

Sylleptic branch and leaf counts    

BD1 11/7/14 Whole plant syll. branch <.001 0.707 0.766 

BD1 11/7/14 Whole plant syll. leaf <.001 0.796 0.955 

AD1 02/8/14 Whole plant syll. branch <.001 0.4 0.06 

AD1 02/8/14 Whole plant syll. leaf <.001 0.613 0.064 

BD2 02/9/14 Whole plant syll. Branch <.001 0.203 0.052 

BD2 02/9/14 Whole plant syll. Leaf <.001 0.168 0.123 

     

Final harvest yield responses    

AD2 Above ground biomass DW yield (g) <.001 0.416 0.055 

AD2 Above ground biomass FW yield (g) <.001 0.112 <.001 

AD2 Final harvest % DW <.001 0.002 <.001 
 

a Calculated using a non-linear regression (Verwijst and Wen, 1996) 
b Adjusted leaf area (Verwijst and Wen, 1996) to whole plant level  
 

Table 2.3 presents ANOVA results for varieties from different time points during 

the 2014 pot experiment. The residual plots indicated a random scatter with 

broadly homogeneous variability across the genotype by treatment combinations, 

so there was no need to transform the data.   

For all varieties investigated there was no interaction expected or observed 

between genotype and irrigation at the BD1 timepoint. 

Final harvest yield responses  

There were no main effects of the irrigation treatment for fresh or dry weight above 

ground biomass yield. There was a main effect of irrigation on the final harvest dry 

matter % (p = 0.002, F-test). ANOVA revealed a borderline interaction (p = 0.055, 
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F-test) for above ground biomass (stem and leaves) dry matter and a significant 

interaction for fresh weight above ground biomass and dry matter % (p = <0.001, 

F-test) between genotype and drought treatment in 2014. Differences between 

genotypes were significant (p < 0.001, F-test) for all final harvest yield responses.  

Control plants yielded 10.50% higher than the drought treatment. Maximum dry 

matter yields for control and drought treatment plants were 572.6 g and 368.6 g 

respectively, whilst minimum yields were 3.8 g for control plants and 6.78 g for 

drought treatment plants.  

Fig. 2.11 and 2.13 to 2.24 were sorted by family then within family performance for 

the well-watered control. Fig 2.11, 2.12 and 2.15 - 2.17 show final harvest yield 

responses. Fig. 2.13 and 2.14 and Table 2.3 show drought indices results. 

Fig. 2.11 shows that mpF’s parents, 901 and K8 290 (male parent K8 290 is 

grouped with other mpK8 family members) segregating at opposing ends of the 

yield range. Genotypes of mpK8 segregate for yield, however their parents S3 and 

R13 both rank above their progeny. 

Including Family in the fixed term model for ANOVA of dry weight above ground 

biomass yield: 

y ~ (Family/Genotype)*Irri + Block/MainPlot/SplitPlot 

Revealed no main effect of Irrigation (0.416, F-test) but interaction for Family (p = 

<.001, F-test), Genotype (p = <.001, F-test) and a Family.Irrigation interaction (p = 

0.019, F-test), but no interaction between Genotype and Irrigation (p = 0.837, F-

test).  Means for the families are plotted in Fig. 2.15. 

Drought tolerance indices 

Table 2.4 reveals that drought tolerance indices Geometric Mean Productivity 

(GMP), Mean Productivity (MP) and Harmonic Mean (HARM) produce the same 

results. These three indices highly correlate with Yield Index (YI) (r = 0.97) and the 

Stress Tolerance Index (STI) (r = 0.97). The Drought tolerance efficiency (DTE) 

and Tolerance Against Stress (TOL) have a strong negative relationship. Figs 2.13 

(DTE) and 2.14 (HARM) show results from each of these two broad classes of 

drought tolerance indices that can be used for selecting genotypes response to 

drought stress. 
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Figure 2.11 2014 Final harvest above ground biomass dry matter yield. 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 2.12 2014 Difference between (control – drought) in final harvest above ground biomass dry matter yield. 
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Table 2.4 Correlation coefficients between drought tolerance indices and 2014 final harvest dry matter yield 
 

  DTE YI MP STI TOL GMP HARM 

Well-watered 
control  
DM Yield (𝑌𝑝) 

Drought 
treatment  
DM Yield 
(𝑌𝑠) 

DTE  -          

YI  0.46  -        

MP  0.22  0.96   -       

STI  0.20  0.93  0.97  -      

TOL -0.92 -0.32 -0.05 -0.06  -     

GMP  0.22  0.97  1.00  0.97 -0.06  -    

HARM  0.23  0.97  1.00  0.97 -0.07 1.00  -   

Well-watered Control DM yield (𝑌𝑝) -0.05  0.85  0.96  0.92  0.23 0.96 0.95  -  

Drought treatment DM yield (𝑌𝑠)  0.46  1.00  0.96  0.93 -0.32 0.97 0.97 0.85  - 
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Figure 2.13 2014 Drought tolerance efficiency (DTE) index for final harvest above ground biomass dry matter yield 

Drought tolerance efficiency (DTE) formula 𝐷𝑇𝐸 = (
𝑌𝑠

𝑌𝑝
) 

Plotted maintaining family order on the x-axis from Fig. 2.11.  
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Figure 2.14 2014 Harmonic Mean (HARM) index for final harvest above ground biomass dry matter yield 

Harmonic Mean (HARM) formula  𝐻𝐴𝑅𝑀 =
2(𝑌𝑝×𝑌𝑠)

𝑌𝑝+𝑌𝑠
 

Plotted maintaining family order on the x-axis from Fig. 2.11.   
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Figure 2.15 2014 Final harvest above ground biomass dry matter yield by family. 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 2.16 2014 Final harvest above ground biomass fresh weight yield. 

Plotted maintaining family order on the x-axis from Fig. 2.11.  
With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels.  
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Figure 2.17 2014 Final harvest % dry matter. 

Plotted maintaining family order on the x-axis from Fig. 2.11.  
With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 

0%

10%

20%

30%

40%

50%

60%

70%
n
w

c
5
6

n
w

c
8
4

4

7
7

_
C

Z

IA
1

3
6

6
4

_
C

Z

IA
1

5
9

0
0

3
_

C
Z

0
2

4
_

C
Z

n
w

c
1
0

9
3

1
3

_
C

Z

IA
1

6
2

3
3

_
C

Z

IA
1

0
2

IA
1

4
3

S
_
H

a
lls

ta
d
1

n
w

c
6
6

3

D
4

D
3

D
2

n
w

c
7
8

9

D
1

E
1

E
3

E
4

E
2

n
w

c
5
0

6

F
1

F
2

n
w

c
9
0

1

F
3

F
4

G
3

G
2

G
1

G
4

n
w

c
1
0

5
9

n
w

c
4
3

2

n
w

c
4
5

3

n
w

c
6
1

5

K
1

K
4

K
2

K
3

K
8
 3

1
9

K
8
 2

9
0

K
8
 1

6
5

K
8
 3

K
8
 4

1
1

K
8
 2 S
3

R
1

3

n
w

c
6
2

7

n
w

c
6
2

8

T
o
rd

is

L
S

D
 (

5
%

)

Diversity mpAssoc. mpD mpE mpG mpHmpImpJ mpK mpK8 SRC -

D
ry

 m
a
tt
e
r 

(%
)

Well-watered control Drought treatment (two drought cycles, D1 & D2)



 

47 
 

Leaf counts 

The number of leaves on the lead stem (proleptic stem) leaves AD1 (p = 0.13, F-

test), Fig. 2.20, shows potential to be an informative measurement, but there are 

no significant main effects for irrigation. There was a significant interaction 

between genotype and irrigation for the number of leaves on the lead stem at 

times AD1 p=<.001, F-test) and BD2 (p = 0.019, F-test). Differences between 

genotypes were significant (p < 0.001, F-test) for all whole plant and lead stem leaf 

counts. 

Leaf measurements 

There was a significant main effect of irrigation at the time point BD2 on the top 

leaf length measurement (p = 0.02, F-test), Fig. 2.22, and middle leaf length 

measurement (p = 0.031, F-test), Fig. 2.23. There were useful interactions 

between genotype and irrigation for the top leaf length and width p=<.001, F-test) 

at time point AD1, and at time point BD2 top leaf length (p = 0.004, F-test) and 

bottom leaf length (p = 0.023, F-test), Fig. 2.23, and width p=<.001, F-test). 

Differences between genotypes were significant (p < 0.001, F-test) for all leaf 

length and widths at all time points. 

Leaf area calculations 

There was no main effect of irrigation for leaf area calculations. Adjusting leaf area 

on the whole plant basis provided the most significant genotype and irrigation 

interaction (p = 0.003, F-test). Differences between genotypes were significant (p 

< 0.001, F-test) for all leaf area calculations. 

Chlorophyll meter during first drought 

There was no main effect of irrigation for SPAD meter readings during D1.  

Summing SPAD leaf readings for the lead stem provided genotype and irrigation 
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interaction (p = 0.002, F-test). Differences between genotypes were significant (p 

< 0.001, F-test) for all leaves and calculations apart from the middle leaf. 

Sylleptic branch and leaf counts 

There was no main effect of irrigation for sylleptic branch or leaf counts at any time 

point. There were also no interactions between genotype and irrigation. 

Differences between genotypes were significant (p < 0.001, F-test) at all time 

points for sylleptic branch and leaf counts. 

Correlation matrix of traits measured and dry matter harvest yield 

Apart from expected correlations between the same measurement at different 

timepoints, Fig. 2.25 shows whole plant leaf count as the most promising trait to 

predict yield and that this is more useful than lead stem leaf count only. However, 

correlations are weak due to associated problems with drought infliction 

methodology, so firm conclusions cannot be made.     
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Figure 2.18 2014 After drought 1 (AD1) whole plant leaf count. 

Plotted maintaining family order on the x-axis from Fig. 2.11.  
With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels.  
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Figure 2.19 2014 After drought 1 (AD1) lead stem leaf count. 

 
Plotted maintaining family order on the x-axis from Fig. 2.11.  
With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 2.20 2014 Before drought 2 (BD2) lead stem leaf count. 

Plotted maintaining family order on the x-axis from Fig. 2.11. 
With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels.  
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Figure 2.21 2014 after drought 1 (AD1) 1top leaf length. 

Plotted maintaining family order on the x-axis from Fig. 2.11. 
With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels.  
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Figure 2.22 2014 Before drought 2 (BD2) top leaf length. 

Plotted maintaining family order on the x-axis from Fig. 2.11. 
With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels.  

0

5

10

15

20

25

n
w

c
8
4

4

n
w

c
5
6

K
8
 3

1
9

K
8
 1

6
5

K
8
 2

K
8
 3

K
8
 4

1
1

S
3

K
8
 2

9
0

R
1

3

IA
1

0
2

IA
1

6
2

IA
1

4
3

6
4

_
C

Z

IA
1

3
6

IA
1

5
9

n
w

c
6
6

3

0
2

4
_

C
Z

1
3

_
C

Z

0
0

3
_

C
Z

7
7

_
C

Z

n
w

c
1
0

9
3

3
3

_
C

Z

n
w

c
7
8

9

D
4

D
3

D
2

D
1

E
3

E
1

E
2

E
4

n
w

c
5
0

6

F
2

F
1

F
3

n
w

c
9
0

1

F
4

n
w

c
1
0

5
9

G
1

G
4

G
2

G
3

n
w

c
4
3

2

n
w

c
4
5

3

n
w

c
6
1

5

K
1

K
4

K
3

K
2

n
w

c
6
2

7

n
w

c
6
2

8

L
S

D
 (

5
%

)

Diversity mpK8 mpAssoc. mpD mpE mpF mpG mpHmpImpJ mpK SRC -

L
e
a
f 

le
n
g
th

 (
c
n
)

Well-watered control Drought treatment (two drought cycles, D1 & D2)



 

54 
 

 

 

Figure 2.23 2014 Before drought 2 (BD2) middle leaf length. 

Plotted maintaining family order on the x-axis from Fig. 2.11. 
With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 2.24 2014 Before drought 2 (BD2) bottom leaf length. 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 2.25 Correlation matrix of traits measured and dry matter harvest yield
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    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Yield DM (g) 1  -                               

Days to emerge 2 -0.38  -               

11 Jul Lead stem leaf count 3 0.61 -0.46  -              

11 Jul whole plant leaf count 4 0.65 -0.39 0.74  -             

30 Jul Lead stem leaf count 5 0.44 -0.29 0.63 0.47  -            

30 Jul whole plant leaf count 6 0.60 -0.31 0.61 0.83 0.69  -           

28 Aug Lead stem leaf count 7 0.48 -0.27 0.65 0.48 0.85 0.61  -          

28 Aug whole plant leaf count 8 0.65 -0.31 0.63 0.86 0.56 0.88 0.66  -         

31 Jul TL Length (cm) 9 0.32 -0.29 0.31 0.26 0.42 0.31 0.31 0.22  -        

31 Jul ML Length (cm) 10 0.42 -0.34 0.41 0.29 0.43 0.27 0.45 0.27 0.56  -       

31 Jul BL Length (cm) 11 0.43 -0.32 0.35 0.35 0.32 0.33 0.32 0.32 0.36 0.55  -      

1 Sept TL Length (cm) 12 0.35 -0.31 0.33 0.26 0.46 0.32 0.50 0.28 0.42 0.59 0.38  -     

1 Sept ML Length (cm) 13 0.42 -0.36 0.40 0.28 0.41 0.25 0.44 0.26 0.52 0.84 0.52 0.60     

1 Sept BL Length (cm) 14 0.39 -0.27 0.29 0.17 0.35 0.24 0.40 0.24 0.34 0.54 0.46 0.46 0.59  -   

15 Jul ML Length (cm) 15 0.56 -0.48 0.60 0.43 0.42 0.34 0.46 0.34 0.49 0.79 0.50 0.57 0.77 0.55  -  

15 Jul BL Length (cm) 16 0.46 -0.41 0.35 0.35 0.18 0.28 0.20 0.27 0.33 0.48 0.51 0.38 0.43 0.39 0.56  - 
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2.4 Discussion 

The drought periods were timed after the exponential growth phase of the logistic 

curve willow growth follows (Kopp et al., 2001a) in common with most plants. D1 

was initiated on 21st July and ended 3 – 8 days later, D2 started on 4th September 

and ended 7 – 21 days later. Inducing drought stress during the exponential 

growth phase is likely to have a greater impact on yield than droughts occurring 

later in the season when the growth rates are lower. The timing of D1 and D2, later 

than the exponential growth phase, whilst legitimate timings for summer droughts 

in the UK, are likely to explain the limited main effect of the drought treatment.  

In a pot experiment conducted by Doffo et al., (2016) in Argentina, responses of 

two willow genotypes, S. matsudana × alba and S. alba, dry matter yields were 

significantly reduced (Kruskal-Wallis test (p≤0.05). Both genotypes compared to 

controls to a cyclic drought consisting of; a two-week duration, followed by a two-

week recovery at field capacity, followed by a final two-week drought. In this study 

pot water deficit was controlled by maintaining a ‘fixed’ level of drought stress by 

watering 4.5 l sized pots with 50 ml of water every second day. Despite this 

experiment having a similar time from planting to first drought, their D1 occurred in 

October and November, southern hemisphere, (equivalent of April and May) when 

days were rapidly lengthening, and plants were growing exponentially. However, 

limiting water deficits are rare in April and May in the UK in field conditions.  

Leaf measurements 

ANOVA for top leaf length revealed a significant interaction (p = <.001, F-test) 

between genotype and drought treatment after drought 1. The bottom leaf length 

shows a weak interaction (p = 0.071, F-test) immediately after drought 1, but this 

was stronger before drought 2 (p = 0.023, F-test) implying a less immediate 

response to the drought. 

Savage and Cavender-Bares (2011), found the timing of drought-induced 

responses, such as drought-induced leaf senescence, varied significantly among 

the six diverse American native Salix species studied. The timing of 

measurements to capture the responses is therefore essential. 

The significant genotype and drought treatment interaction (p = <.001, F-test) BD2 

for bottom leaf width suggest drought-induced leaf senescence is an important 
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mechanism that helps the plant avoid losses through transpiration, so contributes 

to the maintenance of a favourable water balance. There was no 

genotype.irrigation interaction at AD1 timepoint, but the result suggest senescence 

has had time to be induced by BD2, one month after the end of D1. This concurs 

with findings that drought-induced leaf senescence occurs gradually and is 

characterised by specific macroscopic, cellular, biochemical and molecular 

changes (Munné-Bosch and Alegre, 2004). This study suggests that drought-

induced leaf senescence contributes to nutrient emobilisation during stress. So, 

allows the rest of the plant (i.e. the youngest organs) to benefit from the nutrients 

accumulated during the life span of the leaf.  

Calculating the leaf area adjusting top, middle and bottom leaf areas using: 

(Verwijst and Wen, 1996) then incorporating the whole plant leaf count revealed 

interaction (p = 0.003, F-test) between genotype and drought treatment after 

drought 1 shows an increased interaction from (p = 0.006, F-test) without using 

(Verwijst and Wen, 1996) adjustment, to (p = 0.004, F-test) with it for the top leaf 

only, increasing to (p = 0.003, F-test) at the whole plant level.  

The predictive power of whole plant leaf chlorophyll mass from a Salix pot 

experiment on field biomass production has been highlighted (Weih and Nordh, 

2005). It has also been shown as an important predictor of yield in a field 

experiment containing 12 diverse bioenergy hybrids and pure species (Bouman 

and Sylliboy, 2012). Our results concur with this. Leaf chlorophyll meter readings 

alone were not of use. However, when the SPAD readings were adjusted using 

the lead stem leaf count taken at the end of drought one (third of leaves x TL 

SPAD, one third of leaves x ML SPAD, third of leaves x BL SPAD), the ANOVA 

analysis revealed a significant interaction (p=0.003, F-test) between genotype and 

drought treatment. This metric needs further validation but has the potential to 

predict yield in pot and field conditions (Weih and Nordh, 2005). 

Planting density  

Although the pot experiment has a higher plant density than commercial SRC 

bioenergy plantations, the plant density used in the pot experiment is still viable.    

The twin row design, which facilitated access to the pot plants, is similar to the 

design of SRC plantations. However, the density of plants in the rain out shelter 

equates to 84,700 plants/ha-1, a higher density than the 15,000 plants/ha-1 
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recommended by SRC willow best practice guidelines (AFBI, 2015), and 

commonly adopted by the industry. The SRC planting density has been optimised 

for a three-year harvest cycle (Bullard et al., 2002). The experiment is not 

dissimilar to planting densities when willow plantations are grown for annual 

harvest. Whilst uneconomic, when grown for combustion markets at high 

densities, due to the prohibitive cutting costs, Bullard et al. (2002) found that S. 

viminalis could respond to higher densities of up to 111,000 plants/ha-1. A study 

using S. dasyclados ‘SV1’ also found that a 0.3 m x 0.3 m planting density 

(111,000 plants/ha-1) were productive producing 13 oven dried tonnes (Heckrodt) 

ha-1 year-1 (Kopp et al., 1997). Historically, annually harvested basket willow 

plantations containing S. triandra were planted at densities of 100,000 plants/ha-1 

to 135,000 plants/ha-1 (Macalpine, 2018). The high planting density would likely 

cause competition issues if the experiment were to continue over subsequent 

years, but the planting density used is appropriate for a one-year pot experiment.  

If adjusted to a 15,000 plants/ha-1 stocking density, yields from SRC varieties in 

the pot experiment are comparable to establishment year field yields, SRC family 

means equate to ~4 odt ha-1 for droughted plants and ~5 odt ha-1 for the well-

watered control.  

Yield penalty  

Control plants yielded 10.50% higher than the drought treatment plants. If the 

genotypes that had a negative difference between control and drought treatment 

(Fig. 2.12) are excluded, this value increased to a yield reduction of 18.7%. This is 

still a relatively low drought response. Researchers observed the yield reductions 

over the controls in the following studies: 35 – 60% in a pot experiment (Wikberg 

and Ögren, 2007), 92.04% nwc627 Bjorn, 86.74% nwc628 Tora and 84.97% 

Tordis yield reductions in SRC varieties where pot plants received ~82% less 

water for the entire season in a fixed drought, control yields were similar between 

studies (Weih and Nordh, 2002). In a field experiment in Sweden where the water 

treatments of rain fed and reduced water recharge (plastic sheeting installed 

between rows of plants) were implemented from 5th July until the end of the 

growing season, yield reductions of 35.89% were observed for nwc628 Tora and 

average yield reductions of 42.84% for the five other SRC willow varieties 

included, none of these genotypes were in common with this experiment.  



 

60 
 

The effect of two drought periods were shown by Zhivotovsky and Kuzovkina, 

(2010) who conducted a glass house experiment using two genotypes, biomass 

variety S. miyabeana ‘SX64’ and S. cinerea ’2007-10’ collected from a native 

population. After three weeks of growth, three water treatments were applied: 

control, no drought, one six-day drought, two six-day droughts with four days 

recovery. Stem dry matter results revealed average yield reductions of 17.57% for 

S. cinerea and 32.03% for S. miyabeana over the control when exposed to one 

drought period, and a 36.49% yield reduction over the control for S. cinerea and 

43.29% for the S. miyabeana over the control when two droughts were applied.  

The 11 – 19% yield penalty by adding the second drought is noted. Destructive 

yield assessments were not made in 2014, but stem height data would allow for 

analysis of the effects of repeated droughts on growth.   

Negative difference between control and drought treatment 

In a long-term pot experiment investigating flooding (Cerrillo et al., 2013), of four 

Salix genotypes; S. nigra ‘AN4’, S. babylonica × alba ‘131-27’, S. matsudana × 

alba ’13-44’ and S. babylonica × alba ‘395’, only one genotype, S. matsudana × 

alba ’13-44’ displayed a statistically significant reduction in growth when exposed 

to a three month summer flood (10 cm above soil level of pot). Fig. 2.16 shows 

mpE drought treatment out yielding the well-watered control. mpE could be a 

population sensitive to hypoxic or anoxic conditions associated with saturated soil. 

Although control plants were not submerged, when large 11 l pots contained small 

plants, there were occasions where plants could be considered over-watered. 

Although inundation is considered less stressful to willow plants than drought 

(Doffo et al., 2016) genotypes differ in their tolerance to inundation stress. mpE 

could be sensitive to over watering.  

The large negative difference between control and drought treatment shown Fig. 

2.12 for E2 can be explained by looking at the raw data.  

Table 2.4 E2 raw yield data and lowest soil moisture from D1.  
 

   + DM yield (g)  - DM yield (g) D1 vol. % 

Block 1 172.75 197.50 6.50 

Block 2 11.18 244.14 6.50 

Block 3 178.24 340.41 8.05 
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The low block 2 + yield is compounded by the high block 3 - drought high yield. 

There is a case for excluding data from the low block 2 + yield. However, the 

drought treatment plants would still have produced a greater yield than the control 

plants. The block 3 – irrigation plant not receiving a severe drought (8.05 vol. %) 

further compounded the result regarding genotype E2.  

Drought tolerance indices  

Drought tolerance indices harmonic mean (HARM), Fig. 2.14 and drought 

tolerance efficiency (DTE), Fig. 2.13 are more powerful at dissecting potential 

drought tolerance than Fig. 2.12 or the Fig. 2.11 the yield results.    

Tolerance Against Stress (TOL) and drought tolerance efficiency (DTE) indicators 

for screening drought tolerant genotypes. The following indices supported stable 

and high yield in both non-stress and stress treatments: mean productivity (MP), 

stress tolerance index (STI), geometric mean productivity (GMP), harmonic mean 

(HARM). For biomass plantation exposed to occasional drought stress, this latter 

group of indices form the more appropriate selection criteria as they will select for 

high yield in wetter and drier years. 

Drought infliction methodology 

The methodology of exposing plants within the drought whole plots to the same 

duration of water stress will not be repeated in future work. Whilst it is desirable to 

have the same drought duration, a more precise drought can be applied on a per 

plant basis. Fig. 2.26 shows the difficulties of attempting to induce drought on low 

yielding genotypes. The low yielding, small plants shown to the bottom right of Fig. 

2.26 represent plants with a small leaf area which were not able to dry down. They 

also illustrate the challenge of attempting to provide homogeneous conditions for a 

broad range of genotypes with different yield potentials, from biomass varieties 

(Tordis) to a slow growing unimproved native (nwc453 S. aurita). 
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Figure 2.26 Final yield of droughted plants and lowest growth media moisture 

content during D1.  

 

A more uniform soil moisture was obtained at D2, Fig. 2.27, as plants were larger 

and had a higher leaf count and therefore potentially higher transpiration rates 

(Fig.2.20). Despite this, some plants required 21 days to reach low soil moisture 

conditions, with replicates four genotypes’ pots, nwc453, nwc844, nwc432 and F2, 

not receiving a drought. nwc453 S. aurita, nwc844 S. purpurea, nwc432 S. 

daphnoides are unimproved pure species with low yield potential compared with 

other test genotypes. Natural variation between test genotypes explain the 

performance of these small varieties.   

 

Figure 2.27 Final yield of droughted plants and lowest growth media moisture 

content during D2. 
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The genotype diversity included in the pot trial made optimising conditions, pot 

size, watering regime difficult. Figs. 2.28 – 2.30 show the duration of D1, D2 and 

D1 + D2 and the drought treatments whole plots dry matter yields. These plots 

show the low yielding plants take longer to reach a water deficit after irrigation is 

withheld.  

 

Figure 2.28 Final yield of droughted plants and the number of days drought days 

D1 lasted. 

 

Figure 2.29 Final yield of droughted plants and the number of days D2 lasted. 
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Figure 2.30 Final yield of droughted plants and accumulated drought days. 

 

A water retention curve of the growth media should be conducted to demonstrate 

the relationship between the water content, θ, and the soil water potential, ψ. This 

soil moisture characteristic of the growth media used would be more informative 

than the Delta-T SM200 Soil Moisture data alone and would allow the wilting point 

(WP) and field capacity for the growth media to be determined.  

Syllepsis 

A sylleptic shoot is the newly developed lateral axis without the apical meristem 

passing through a dormant period (Remphrey and Pearn, 2006). The observation 

of wide spread syllepsis concurs with (Verwijst and Wen, 1996) who suggested 

that sylleptic shoots in S. viminalis mainly occur on establishment-year growth but 

are less prevalent on subsequent-years growth. This trait is therefore only likely to 

be relevant in field conditions in the establishment year. Syllepsis is a growth 

response that is part of a suite of responses which allows a rapid increase in 

carbon fixation capacity by increasing leaf area. Although no sylleptic leaf 

measurements were formally taken (only counts performed), sylleptic leaves were 

generally smaller and more ovate than proleptic shoot derived leaves. This also 

agrees with Verwijst and Wen’s (1996) finding that sylleptic leaves (more ovate) 

differ from more proleptic shoot leaves in size, shape and specific leaf area. Our 

finding that there was no interaction with water treatment at all time points, 

including before a drought treatment was initiated (BD1, measurements taken 41 

days after planting) could be explained by a finding in Populus where syllepsis was 
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linked to nitrogen availability. Pot experiments using Populus balsamifera ssp. 

trichocarpa × deltoides ‘UCC‐1’ found syllepsis was induced by nitrogen and that 

the response could be seen as early as 14 days after N was applied (Cooke et al., 

2005). Functions of sylleptic shoots can differ between the genera; with sylleptic 

shoots being larger and more permanent in Populus, and relatively small and 

prone to abscise at the end of the growing season in Salix (Ronnberg-Wastljung 

and Gullberg, 1999). Despite this potential difference in scale and longevity 

between the genera, (Ronnberg-Wastljung and Gullberg, 1999) found there was a 

genotype × nutrient interaction in Salix viminalis where more sylleptic shoots were 

produced in a higher nutrient environment. Wikberg and Ogren (2004) 

hypothesised that sylleptic shoots could be prone to abscission under drought 

stress due to a branch-sacrificing strategy. However, sylleptic branch abscission 

was not observed in the 2014 pot trial. As the experiment was harvested before 

autumn, no comments could be made to qualify the observation that leaf 

abscission from sylleptic shoots was more prevalent than on leaves from the main 

stem (Wikberg and Ogren, 2004).  

The 2014 fertilization regime aimed to avoid nitrogen being growth limiting, so that 

the study could focus on drought effects. As nitrogen has been cited to affect 

syllepsis more than drought and in Salix it’s likely to only be important in the 

establishment year, syllepsis will not be investigated in 2015. Counting 60,220 

sylleptic leaves at BD1, 110,445 sylleptic leaves at AD1 and 182,261 sylleptic 

leaves at BD2 took a significant effort, which in future studies could be used 

elsewhere. 

Lead stem leaf count 

Lead stem leaf counts after AD1 are more informative than whole plant leaf 

counts. The main effect for irrigation on the lead stem AD1 was (p=0.13, F-test), 

compared to (p=0.13, F-test) for whole plant leaf counts. The AD1 lead stem leaf 

count also shows a significant interaction between genotype and irrigation 

(p=<0.001, F-test). 

Stem numbers varied from 1 to 5 (mean 3.0) stems per plant in 2014. The 

variation in stem numbers is likely to mask the effect of drought on a whole stem 

basis. The lead stem leaf count is useful at capturing abscised leaves, but 

observations in the field suggest that leaf counts remain similar, but internode 
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spaces are reduced by drought, Fig. 2.31. Internode measurement or stem height 

maybe a more appropriate additional metric to capture this. 

 

Figure 2.31 Internode space on winter dormant nwc99 one-year old stem in 

January 2019 after the drought of 2018. 

Arrow to indicate short internode gaps caused by 2018 summer drought 
 

Selection of material for further work 

Previous studies in willow and poplar have found that productive genotypes 

displayed low levels of drought tolerance (reduction of biomass yield under 

drought stress), while the less productive genotypes had a greater potential to 

exhibit drought tolerance (Monclus et al., 2006; Weih, 2001). This study 

contradicts this previous work, finding that when exposed to two drought periods, 

productive willows are likely to perform best under drought and well-watered 

conditions. This should be tested under a more severe drought stress. 

If the selection criteria were to select varieties for commercial production in 

drought prone areas, genotypes Tordis, IA162 and IA159 (Fig. 2.11) would be 

selected as they produce good DM yields under drought conditions, but also have 

the ability to produce higher yields if a drought does not occur. This is important as 
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willow plantations have a long lifetime of (over 20 years) and may not be exposed 

to drought annually. It should be noted that many of the genotypes included in the 

2014 trial originate from mapping populations and do not have the yield potential 

of commercial varieties or the high productivity associated with S. viminalis, the 

species of members of the association mapping population. Moreover, this 

comparison should not be made as the aim of the 2014 pot trial was to select 

interesting families, populations and genotypes for further study. Although 

population numbers in this experiment are limited, the progeny of K8 and F 

produce segregating yield differences to the water treatments making them good 

candidates for further investigation. Populations K8 and F were therefore selected 

for further study in the 2015 pot trial. 

2.5 Conclusions 

This broad-range genotype pot experiment found that;  

1. Potentially useful genetic variation exists for drought tolerance traits in the 

genus Salix and it is possible to identify it in a pot experiment.   

2. Effective methodologies for screening drought tolerant willows have the 

potential to be developed.  

3. Some measurements have the potential to identify and select for drought 

tolerant genotypes in SRC willow (with further development). 

4. Segregating progeny from defined mapping populations can be identified 

and selected for further study. 

Conducting the 2014 pot experiment highlighted methodology improvements that 

are needed to allow pot experiments to be performed more precisely in the future. 

The expected main effects of the irrigation treatment for fresh or dry weight above 

ground biomass yield were not widely observed. Changes in the methodology of 

inducing the drought will be implemented in future work to address this. Changes 

will be achieved by returning replicates of a genotype to watering at separate time 

points, based on water deficit conditions in individual pots. In 2014 taking a mean 

soil moisture reading meant that some replicates were not exposed to a water 

deficit. The timing of the water deficits will also be changed so drought periods will 

coincide with the plants exponential growth phase. These two methodologies will 

be changed in future work.   
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Final harvest dry matter % gave the greatest main effect of irrigation (p = 0.002, F-

test). The top leaf length measurement could be a useful relatively high throughput 

measurement for breeders assessing the impact of drought on germplasm. The 

timing of the measurement to capture the physiological changes in the leaf due to 

reduced cell division and cell expansion caused by a drought needs to be refined.      

The significant genotype and drought treatment interaction (p = <.001, F-test) BD2 

for bottom leaf width suggest drought-induced leaf senescence is an important 

mechanism. Assessing drought-induced leaf senescence also has the potential to 

be a relatively high throughput measurement for breeders assessing the impact of 

drought on germplasm. 

The choice of drought tolerance indices is important when considering them as 

selection criteria. Geometric Mean Productivity (GMP), Mean Productivity (MP) 

and Harmonic Mean (HARM) support the selection of stable and high yield in both 

non-stress and stress treatments. These indices are appropriate for selecting 

material for biomass plantations exposed to occasional drought stress. These 

should be used if selecting for performance under both non-stress and stress 

conditions. 

Drought tolerance indices against stress (TOL) and drought tolerance efficiency 

(DTE) are useful tools for screening drought tolerant genotypes. All drought 

tolerance indices tested are useful for helping select segregating mapping 

populations for further study. mpF and mpK8 have been selected for further study 

based on output showing segregation from DTE and HARM indices.  
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Chapter 3. mpF and mpK8 pot experiment 

3.1 Introduction 

This second pot experiment aimed to screen greater numbers of progeny from 

mpK8 and mpF to further evaluate their potential to segregate for drought 

tolerance traits.  

The central hypothesis of this MPhil is: ‘It is possible to identify and select drought 

tolerant genotypes in short rotation coppice (SRC) willow’ 

 Hypotheses to be investigated in this chapter are;  

1. Useful genetic variation exists for drought tolerance traits in the mpF and 

mpK8.  

2. Effective methodologies for screening drought tolerant willows can be 

developed. 

3. It is possible to identify and select for drought tolerant genotypes in the mpF 

and mpK8. 

4. The inclusion of progeny from mapping populations will allow segregating 

mapping populations to be identified for further study at the field scale. 

5. Changes to the pot trial methodology will lead to a greater main effect of 

irrigation. 

3.2 Materials and Methods 

The methodology used in the 2015 pot experiment was broadly similar to that used 

in 2014 and detailed in the 2.2 materials and methods section. Differences to the 

2014 experiment are described below. 

3.2.1 Planting and growth conditions 

Pots and growth media were prepared using the same protocol as in 2014. In 

2015 additional pots were prepared so a ‘guard’ could be added, Fig. 3.2. Guard 

plants received the same water treatment as adjacent plants. Guard plants on the 

north and south edge could potentially receive water from precipitation as they 

were within 110 cm of the open edge of the rain out shelter, this gap had 

previously (2014) been left unoccupied to prevent rain blowing onto test pots. 
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N       × denotes a pot plant 

Figure 3.1 S. viminalis ‘Bowles Hybrid’ guard rows surrounding the experiment. 

 

The same rain out shelter, GH44, and irrigation equipment and timers were used 

to conduct the experiment as in 2014. Pots were placed in GH44 using a twin row 

design, with a spacing of 26 cm between pots between twin rows and 65 cm 

between pairs of rows. Pots were spaced at 26 cm within each row. Once 

arranged, pots were watered by filling to the brim individually with a hosepipe and 

lance fitted with a rose nozzle prior to planting.  

The pot experiment was planted on 1st May 2015. Cuttings were inserted into the 

centre of each pot. Circa 1 cm of the cutting was left above the growth medium 

surface. Pots were watered to field capacity after planting. 

Pots were weeded as necessary. Insecticide Hallmark (100 g/l lambda-cyhalothrin) 

was applied on 17th June 2015 at the recommended rate to control Terminalis 

midge (Dasineura spp.), aphids, willow beetles (Chrysomelidae) and sawfly larvae. 

Pots were each fertilised after the first drought stress period with 5g of Osmocote 

Exact Standard 3-4M per m3 (Scotts UK Professional, Ipswich, Suffolk) on 22nd 

July 2015 to insure plants had sufficient nutrients. 

Slug damage was observed in 2015 and Slugoides containing 3% w/w 

metaldehyde (Doff, Hucknall, UK) were applied on 28 May 2015 at the 

recommended rate. 

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × × × × × × × × × × × × ×
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3.2.2 Irrigation regime 

Two periods of water stress were applied to the drought whole plots by stopping 

the irrigation. Drought periods occurred on; 19th June and 10th August in 2015. 

During the drought periods, pot moisture was monitored daily using a Delta-T 

SM200 Soil Moisture Sensor and HH2 logger (Delta-T Devices Ltd, Cambridge, 

UK). The sensor was calibrated as per the manufacturer’s instructions. Three 

measurements were taken per pot and the mean of these measurements was 

used. In 2015 pots were returned to watering when individual pots soil water 

content of 7 vol. % was reached.  

All pots were watered by hand with a hosepipe through a rose nozzle until the 5th 

June when a drip irrigation system was installed. Galcon 9001 irrigation controllers 

(Kfar Blum, Israel) were used to schedule watering. Water was delivered to each 

pot using a single Octa-Mitter adjustable stake dripper (Access Irrigation, 

Northampton, UK). From 5th June pots were watered for three minutes per 

watering when needed. Watering occurred daily from 23rd July and twice a day 

from 1st August. The drippers delivered approximately 0.4 l of water per minute to 

each pot. Irrigation was scheduled when the saucers were dry in an attempt to 

keep pots at pot capacity and avoid waterlogging. 

Two periods of water stress were applied to the drought whole plots and adjacent 

guard row plants by stopping the irrigation. The first drought period (D1) began on 

19th June 2015 and lasted 14-31 days for individual genotypes, depending on their 

soil moisture level. The second drought period began on 10th August 2015 and 

lasted for 10-28 days, again with the length dependent on soil moisture level. 

During the drought periods, pot soil moisture was monitored daily using a Delta-T 

SM200 Soil Moisture Sensor and HH2 logger (Delta-T Devices Ltd, Cambridge, 

UK). The sensor was calibrated as per the manufactures instructions.  Three 

measurements were per pot and the mean of these measurements was used. Soil 

moisture measurement were taken daily taken daily on drought whole plots 

thought drought periods. In 2015 pots were returned to watering when individual 

pots soil water content of 7 vol. % was reached, unlike in 2014 when each 

replicate of each genotype was exposed to the same duration of water stress. 
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3.2.3 Plant material 

The 2015 pot experiment contained 36 willow genotypes from two different diploid 

families, 15 from mpF and 21 from mpK8. K8 290, from mpK8 is the male parent 

of mpF. Pedigrees of the 2015 study genotypes can be seen in Table 3.1 and in 

the pedigree plot, chapter 2 Fig. 2.1.  

Table 3.1 Salix germplasm 2015 pot experiment 
 

ID Pedigree Comment 

nwc901 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' F female parent 

K8 290 * S3 × R13 F & I male parent 

F1 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F2 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F3 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F4 * 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F6 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F7 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F8 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F9 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F10 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F11 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F12 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F13 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F14 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

F15 901 S. x alberti (S. integra × suchownesis) 'Pan 42' × K8 290  

S3 * Astrid × SW930984 K8 female parent 

R13 * Astrid × SW930984 K8 male parent 

K8 011 S3 × R13  

K8 013 S3 × R13  

K8 014 S3 × R13  

K8 018 S3 × R13  

K8 023 S3 × R13  

K8 040 S3 × R13  

K8 043 S3 × R13  

K8 044 S3 × R13  

K8 050 S3 × R13  

K8 057 S3 × R13  

K8 059 S3 × R13  

K8 060 S3 × R13  

K8 300 S3 × R13  

K8 307 S3 × R13  

K8 337 S3 × R13  

K8 341 S3 × R13  

K8 350 S3 × R13  

K8 353 S3 × R13  

 

* Genotype also present in 2014 pot experiment 
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In addition to the test genotypes cuttings of nwc672 S. viminalis ‘Bowles Hybrid’ 

were collected to act as a guard to prevent any edge effect. 

Dormant woody cuttings were collected from field trials in January, cut to 15 cm 

lengths, labelled and wrapped in plastic and stored in a -4°C freezer until removal 

in late April. 

mpF material was collected from CS/690 and Bowles Hybrid guards were 

collected from CS/564 Rothamsted Research (RRes), Harpenden, UK 

(51°48′30″N, 0°21′22″W) and mpK8 material was collected from CS/697 at 

Woburn Experimental Farm, Husborne Crawley, UK (52°51.0"N, 0°35'33"W)  

3.2.4 Experiment design  

A split plot design with three blocks of two plots was used to conduct an 

experiment to assess the differences between the performance of 36 genotypes in 

2015 under well-watered and droughted conditions. The water treatment was 

applied on whole plots and genotype was applied on sub-plots. The ‘Design’ 

function in GenStat for Windows, 16th edition was used to plan the experiment. 

Appendix 3 details the experiment layout.  

 

Figure 3.2 2015 pot experiment on 22nd June, 52 days after planting. 
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3.2.5 Experiment monitoring 

LogTag (Dorset, DT11 9EX, UK) temperature and humidity loggers were place in 

each of the 6 whole plots (See Appendix 4 for LogTag locations). The sensors 

were suspended at 1 m above the ground from beams in GH44. The sensors were 

shielded from direct solar radiation by an 18 cm wide 8 cm deep cone covered in 

aluminium foil (See Fig 2.5). Sensors logged hourly temperature and humidity 

values from 18th May 2015. LogTags were changed on 15th July for a model that 

recorded temperature only and 27th July for a model that recorded temperature 

and humidity. These changes were made because of concerns about battery life 

and because of procurement issues. Meteorological data was provided by the 

Environmental Change Network (ECN) automatic weather station at Rothamsted 

Research. This is located 400 m south of GH44 and data was available for the 

duration of the experiment.  

3.2.6 Phenotypic measurements 

 

Leaf emergence scores  

Pots were assessed at three-day intervals post planting and scored using the 1-7 

key presented in Fig. 2.6 until score 7 was reached (plants fully emerged, and 

stem extension begun). 

Time points 

The experiment was planted on 1st May 2015. Measurements were taken, before 

drought 1 (BD1), during drought 1 (D1), starting 19th June and lasting 14-31 days, 

before drought 2 (BD2), during drought 2 (D2), starting 10th August 2015, lasting 

10-28 days and after drought 2 (AD2). 

Leaf counts 

Leaves derived from the main proleptic stems were counted and recorded at two 

time points, BD1, 15th June and BD2, 6th August. The protocol described in 

chapter 2 was used.  

Leaf measurements 

Leaf length and width measurements were taken on leaves on the dominant stem 

at two time points, BD1, 17th June and BD2, 6th August. The leaf selection and 

measurement protocol described in chapter 2 were used.  
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Leaf area calculations 

The leaf area calculations described in chapter 2 based on Verwijst and Wen 

(1996) non-linear regression model. 

3.2.7 Yield measurements 

After D2, droughted plants were returned to watering. The experiment was 

harvested a block at a time with block 1 being harvested on 14th September, block 

2 on 15th September and block 3 on 17th September. Stems were cut at the soil 

surface using secateurs. Leaves (both proleptic and sylleptic) were separated from 

the stems and fresh and dry weight analysis was performed on these two 

components; stem and leaf. Dry weights were taken after the stems were cut into 

circa 2 cm sections and the biomass was dried in aluminium trays at 80°C for 48 

hours.  

3.2.8 Statistical analyses 

The following split-plot analysis of variance (ANOVA) was used: 

y ~ (Family/Genotype)*Irri + Block/MainPlot/SplitPlot 

where y represents any particular response, Family is the fixed model term 

denoting the family, Genotype is the fixed model term denoting the genotype, Irri is 

the fixed model term denoting the treatment effect (-Irrigation or +Irrigation), Block 

is the random model term denoting the Block The slash (/) indicates the nesting of 

model terms, in this case of Genotype in Family and the star (*) indicates that main 

effects and interactions should be fitted. The statistical significance of fixed effects 

was tested using F-tests.  

Following the modelling, plots of the residuals for the best model were made. The 

predicted means for the relevant statistically significant model terms were output 

with standard error of the difference (SED), degrees of freedom and least 

significant difference (LSD) values at the 5% (p = 0.05) level of significance for 

their comparison. 

The Genstat (2015, 18th edition, © VSN International Ltd, Hemel Hempstead, UK) 

statistics package was used for all analyses. 

3.2.9 Drought tolerance indices 

The drought tolerance indices defined in Table 2.2 will be calculated from the dry 

matter yield results. 𝑌𝑠 are stress (drought treatment) and 𝑌𝑝 the optimal (potential 
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or well-watered) yield of any given genotype. 𝑌̅𝑠 and 𝑌̅𝑝 are average yields of all 

genotypes under stress and optimal conditions.  

Table 3.2 Drought tolerance indices 
 

Index Name Equation 

Drought tolerance efficiency (DTE) 
𝐷𝑇𝐸 = (

𝑌𝑠

𝑌𝑝
) 

Yield Index (YI) 
𝑌𝐼 =

𝑌𝑠

𝑌𝑝̅̅̅̅
 

Mean Productivity (MP) 
𝑀𝑃 =

𝑌𝑠 + 𝑌𝑝

2
 

Stress Tolerance Index (STI) 
𝑆𝑇𝐼 =

(𝑌𝑠)(𝑌𝑝)

(𝑌̅𝑝)2
 

Tolerance Against Stress (TOL) 

 

𝑇𝑂𝐿 = (𝑌𝑝𝑖 − 𝑌𝑠𝑖) 

Geometric Mean Productivity (GMP) 𝐺𝑀𝑃 = √(𝑌𝑠)(𝑌𝑝) 

Harmonic Mean (HARM) 
𝐻𝐴𝑅𝑀 =

2(𝑌𝑝 × 𝑌𝑠)

𝑌𝑝 + 𝑌𝑠
 

 

3.3 Results 

3.3.1 Meteorological data 

Fig. 3.3 shows the maximum and minimum daily temperatures inside the rainout 

shelter and at the Rothamsted Meteorological site during the experiment period in 

2015.  
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Figure 3.3 2015 maximum and minimum daily temperatures from Rothamsted. 

Meteorological site and LogTag sensors in GH44. 

Drought periods marked in a stepped line to represent drought time range, D1, 14 – 31 days, D2, 
10 – 28 days. 
 

Whilst minimum temperatures were broadly similar to readings from the 

meteorological site (+1.10°C on average), maximum daily temperatures were 

elevated in the rain out shelter (+3.13°C on average). Compared to the 2014 

experiment in the same location, the difference in minimum temperatures was 

elevated by 0.52°C whereas the difference between maximum daily temperatures 

were broadly similar. A maximum temperature in the rain out shelter of 38.4°C 

(33.4°C at the Met site) was recorded on 1st July, 12 days into D1. Days recorded 

with a maximum temperature exceeding 30°C were 4 and 32 days exceeded 

25°C. The temperatures >30°C that occurred during drought 1 mean that heat 

stress could have been a factor during this period in addition to drought stress.  

3.3.2 Results for key varieties in 2015 pot experiment 
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Summary statistics 

The effect of the induced droughts on dry matter yield was greater in 2015 than in 

2014 (Table 3.3). Control plants yielded 48.58% higher than the drought treatment 

in 2015. Missing values were higher in 2015. This was due to slug damage during 

the establishment period in and resulted in the higher numbers of missing values. 

Members of mpF were more vulnerable to slug damage than mpK8, with 27 and 7 

missing values respectively. Whist slug damage is an occasional issue during the 

establishment phase of field plantings, damage had not been observed before in 

pot experiments. Slugs caused damage to emerging shoots below the growth 

media surface and was not observed until too late (27 days after planting). This 

application was timed too late to protect test material.     

 
Table 3.3 2014 and 2015 summary statistics for above ground biomass dry matter yield 
(g).  

2014 + 2014 - 2015 + 2015 - 

Number of observations 160 160 90 91 

Number of missing values 2 2 18 17 

Mean 223.8 200.3 204.5 103.1 

Median 228.2 217.3 205.3 98.4 

Minimum 3.776 6.78 17.5 20.6 

Maximum 572.6 368.6 363.5 220.3 

Lower quartile 158.6 145.1 150.9 60.88 

Upper quartile 283.5 260 258.9 144.2 

 

The square root of the residual was similar for experiments; 46.16 in 2014 and, 

43.71 in 2015. This allows for comparison to be made between the two 

experiments. 

Table 3.4 presents ANOVA results for varieties from three time points during the 

2015 pot experiment. The residual plots indicated a random scatter with broadly 

homogeneous variability across the genotype by treatment combinations, so there 

was no need to transform the data. 
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Table 3.4 ANOVA results for key varieties in 2015 pot experiment. 
 

Timing Variate Irri Family 
Family. 
Geno 

Family. 
Irri 

Family. 
Geno. 
Irri 

    F pr. F pr. F pr. F pr. F pr. 

Leaf counts (leaf number)      

BD1 15/6/15 Lead stem 0.806 <.001 <.001 0.665 0.255 

BD1 15/6/15 Whole plant 0.482 <.001 <.001 0.746 0.938 

BD2 06/8/15 Lead stem  0.126 <.001 <.001 0.359 0.46 

BD2 06/8/15 Whole plant  0.082 <.001 <.001 0.666 0.939 

       

Leaf measurements (cm)      

BD1 17/6/15 Top leaf L  0.11 <.001 <.001 0.219 0.668 

BD1 17/6/15 Top leaf W  0.166 <.001 <.001 0.328 0.609 

BD1 17/6/15 Middle leaf L  0.038 <.001 <.001 0.781 0.458 

BD1 17/6/15 Middle leaf W  0.174 <.001 <.001 0.011 0.562 

BD1 17/6/15 Bottom leaf L  0.363 <.001 <.001 0.171 0.284 

BD1 17/6/15 Bottom leaf W  0.486 <.001 <.001 0.866 0.651 

       

BD2 06/8/15 Top leaf L  0.019 0.004 <.001 0.018 0.468 

BD2 06/8/15 Top leaf W  0.153 0.078 <.001 0.827 0.405 

BD2 06/8/15 Middle leaf L  0.003 0.497 <.001 0.002 0.048 

BD2 06/8/15 Middle leaf W  0.007 0.005 <.001 0.042 0.448 

BD2 06/8/15 Bottom leaf L  0.026 <.001 <.001 0.657 0.613 

BD2 06/8/15 Bottom leaf W  0.168 0.007 <.001 0.7 0.504 

       

Leaf area calculations      

BD2 6/8/15 Top leaf LxW 0.068 0.004 <.001 0.451 0.606 

BD2 
6/8/15 Top leaf LxW 
adja 0.067 0.005 <.001 0.445 0.602 

BD2 6/8/15 Middle leaf LxW 0.002 0.026 <.001 0.002 0.212 

BD2 
6/8/15 Middle leaf 
 LxW adja 0.002 0.026 <.001 0.002 0.224 

BD2 
6/8/15 Whole plant 
adjbleaf area 0.043 <.001 <.001 0.129 0.742 

       

Final harvest yield responses (g)      

AD2 
Above ground biomass  
DW yield  <.001 0.018 <.001 0.359 0.029 

AD2 
Above ground biomass  
FW yield  <.001 <.001 <.001 0.119 0.681 

AD2 Stem DW yield  0.001 <.001 <.001 0.053 0.55 

AD2 Stem FW yield  0.001 <.001 <.001 0.215 0.662 

AD2 Leaf DW yield  <.001 <.001 <.001 0.155 0.515 

AD2 Leaf FW yield  <.001 <.001 <.001 0.036 0.666 
 

a Calculated using a non-linear regression (Verwijst and Wen, 1996) 
b Adjusted leaf area (Verwijst and Wen, 1996) to whole plant level  
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For all varieties investigated there was no interaction between genotype and 

drought treatment at the BD1 timepoint apart from middle leaf width. This middle 

leaf width result was unexpected as the drought regime had not been initiated at 

this time point. 

Final harvest yield responses 

There was a main effect of irrigation for all final harvest yield responses. ANOVA 

revealed an interaction (p = 0.029, F-test) between family, genotype and irrigation 

for above ground biomass dry matter yield. There was no Family.Irrigation 

interaction, but there was a significant (p < 0.001, F-test) Family.Genotype 

integration and there were differences between the mpF and mpK8 families (p < 

0.018, F-test).  

Fig. 3.4 – 3.6, 3.9 and 3.10 show final harvest yield responses sorted by family 

and performance for the well-watered control yield. Fig. 3.7 and 3.8 and Table 3.4 

present drought indices results. 

mpK8 and mpF have similar average above ground dry matter yield losses due to 

drought, 49.33% and 48.60% respectively, but Fig 3.5 shows the variation in 

response to the drought treatment. Mean mpK8 above ground dry yield are ~10% 

above mpF for both water treatments.  

Similar to 2014, mpF and mpK8 show useful segregation for yield under drought 

conditions. nwc901 and K8 290 (male parent K8 290, grouped with other mpK8 

family members) segregate at opposing ends of the yield range for mpF. 

Genotypes of mpK8 segregate for yield; however their parents (S3 and R13) rank 

is similar. This may be expected for mpK8 as S3 and R13 are full siblings. 

mpF and mpK8 drought responses vary from 19% – 95% and 30% – 71% 

respectively, Fig. 3.5 is useful to illustrate this variation. Fig. 3.4 shows the 

potential of F10, F11 and K8 043 have the desirable smallest decrease in yield 

under drought conditions, relative to the yield under well-watered conditions. F11, 

K8 043 and F10 have a yield loss of 19%, 40 % and 42 % respectively.  

For remaining final harvest yield responses; above ground biomass fresh weight 

yield, and fresh and dry weight stem and leaf components of yield, ANOVA 

revealed significant differences between the mpF and mpK8 families (p < 0.001, F-
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test) and a Family.Genotype (p < 0.001, F-test) interaction. There was a 

Family.Irrigation interaction for leaf fresh weight yield only. 

Drought tolerance indices 

Table 3.4 shows that drought tolerance indices Geometric Mean Productivity 

(GMP) and Harmonic Mean (HARM) produce the same results, similar to in 2014. 

These GMP and HARM indices highly correlate with Mean Productivity (MP) (r = 

0.99), Yield Index (YI) (r = 0.99) and the Stress Tolerance Index (STI) (r = 0.97). 

The Drought tolerance efficiency (DTE) and Tolerance Against Stress (TOL) have 

an inverse relationship, but these indices are not as closely associated as 2014. 

Figs 3.7 (DTE) and 3.8 (HARM) show results from these two broad classes of 

drought tolerance indices that can be used for selecting genotypes response to 

drought stress. 

Leaf counts 

Similar to 2014, lead stem leaf counts showed potential to be an informative 

measurement, although there was no significant main effect of irrigation. However, 

whole plant leaf counts, (p 0.082, F-test), had the potential to be more informative 

than lead stem leaf counts (p 0.0126, F-test), (Fig. 3.13) at BD2.The lead stem 

was more informative in 2014.  

There were significant differences between the mpF and mpK8 families (p < 0.001, 

F-test) and a significant (Family.Genotype: p < 0.001, F-test) interaction for leaf 

counts performed on the lead stem and whole plant basis BD1 and BD2. There 

were no interactions at the Family.Irrigation or Family.Genotype.Irrigation levels.  

Performing leaf counts on a whole plant basis will be slower through-put. 

Maximum mpK8 family whole plant leaf counts at BD2 were 396 leaves (S3), 207 

leaves/plant average and maximum leaves/plant for mpF were 367 for F14, with 

174 leaves/plant average. Lead stem leaf counts offer higher throughput with a 

maximum leaf count/stem of 124 for K8 059, average 88.2 leaves/stem and a 

maximum leaf count/stem of 121 for F7, 79.3 leaves/stem average. 

Stem numbers varied from 1 to 6 (mean 2.7) stems per plant in 2015 and this 

variation has not impacted on the whole plant leaf counts unlike in 2014. 
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Leaf measurements 

There was no interaction between genotype and drought treatment at the BD1 

timepoint apart from Middle leaf width. This result was unexpected as the water 

treatment had not been initiated. Significant differences between the mpF and 

mpK8 families (p < 0.001, F-test) and a significant (Family.Genotype: p < 0.001, F-

test) interaction was observed BD1. The mean middle leaf length was 15.8cm for 

droughted plants in mpK8 which was less than the control 16.84%, in mpF middle 

leaves were 8.89% shorter than the control at 16.4cm.  

BD2 there was a significant main effect of irrigation for top leaf length, (p 0.019, F-

test), Fig. 3.12, middle leaf length, (p 0.003, F-test) Fig. 3.13, middle leaf length, (p 

0.007, F-test) and bottom leaf length, (p 0.026, F-test).  

There were significant differences between the mpF and mpK8 families for top leaf 

length, (p 0.004, F-test), middle leaf width, (p 0.005, F-test), bottom leaf length, (p 

<0.001, F-test) and bottom leaf length, (p 0.007, F-test). There was a significant 

Family.Genotype interaction (p < 0.001, F-test) for all leaf length and width 

measurements at BD1. A significant Family.Irrigation interaction is seen for top 

leaf length (p 0.018, F-test), the strongest interactions are for the middle leaf at 

BD2. The middle leaf length has the only Family.Genotype.Irrigation interaction (p 

0.048 F-test).  

Leaf area calculations 

Leaf area calculations are more significant, main effect of irrigation (p 0.002 F-

test), but adjustments to leaf area using Verwijst and Wen’s (1996), non-linear 

regression model did not improve results apart from the significance of the 

between family difference. The calculated whole plant leaf area is reduced by 

30.71% over the control in mpK8 and 25.59% in mpF when means of the families 

are compared.  
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Figure 3.4 2015 Final harvest above ground biomass dry matter yield. 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 3.5 2015 Final harvest above stem biomass fresh weight yield (stem and leaf). 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 3.6 2015 Difference between (control – drought) in final harvest above ground biomass dry matter yield. 
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Table 3.5 Correlation coefficients between drought tolerance indices and 2015 final harvest dry matter yield 
 
 

  DTE YI MP STI TOL GMP HARM 

Well-watered control  
DM Yield (𝑌𝑝) 

Drought 
treatment  
DM Yield (𝑌𝑠) 

DTE   -          

YI  0.64  -        

MP  0.46 0.97  -       

STI  0.42 0.96 0.98  -      

TOL -0.22 0.53 0.72 0.69  -     

GMP  0.53 0.98 1.00 0.98 0.67  -    

HARM  0.58 0.99 0.99 0.97 0.62 1.00  -   
Well-watered Control DM yield 
(𝑌𝑝)  0.32 0.91 0.99 0.96 0.83 0.97 0.95  -  

Drought treatment DM yield (𝑌𝑠)  0.64 1.00 0.97 0.96 0.53 0.98 0.99 0.91  - 
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Figure 3.7 2015 Drought tolerance efficiency (DTE) index for final harvest above ground biomass dry matter yield 

Drought tolerance efficiency (DTE) formula 𝐷𝑇𝐸 = (
𝑌𝑠

𝑌𝑝
) 
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Figure 3.8 2015 Harmonic Mean (HARM) index for final harvest above ground biomass dry matter yield 

Harmonic Mean (HARM) formula  𝐻𝐴𝑅𝑀 =
2(𝑌𝑝×𝑌𝑠)

𝑌𝑝+𝑌𝑠
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Figure 3.9 2015 Final harvest above stem biomass fresh weight yield. 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 3.10 2015 Final harvest leaf dry matter yield. 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 3.11 2015 Before drought 2 (BD2) lead stem leaf count. 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 3.12 2015 Before drought 2 (BD2) top leaf length. 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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Figure 3.13 2015 Before drought 2 (BD2) middle leaf length. 

With LSD required for significance at p =0.05, and for comparing genotypes between different irrigation levels. 
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3.4 Discussion  

The greater drought effect in 2015 can be explained by the different methodology 

used between the two experiments. The timing of the drought periods, the length 

of the drought periods and the method of ending the drought period were changed. 

In 2015 the first drought took place 32 days earlier than in 2014 and coincided with 

the exponential phase of the logistic growth curve. Fig. 3.14 shows mean growth 

curves of lead stem height measurements for mpK8 male parent R13 for the well-

watered control and droughted plants. It demonstrates that bringing the drought 

periods forward will coincide with a higher growth rate.     

 

Figure 3.14 Mean weekly lead stem height measurements of mpK8 male parent 

R13 in 2014 pot experiment. 

2015 planting date and drought periods included for comparison. Drought periods shown in red 
(D1) and yellow (D2) (2015 drought periods indicated with a dashed line). Higher level of drought 
line indicates all plants being droughted, lower level of drought line indicates some plants have 
been re-watered.  
 

Inducing drought stress early in the growth phase has a greater impact on dry 

matter yield than a later drought. This agrees with Richard et al., (2019) who found 
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that an early drought has a negative effect on canopy development, resulting in 

lower SRC willow yields. 

 

Figure 3.15 Final yield of droughted plants and lowest growth media moisture 

content during D1. 

 

 

 

Figure 3.16 Final yield of droughted plants and lowest growth media moisture 

content during D2. 

The method of ending the drought period also contributed to an increased 
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seen in the soil moisture content plots, Fig. 3.15 & 3.16. These graphs both 

highlight small plants that were not exposed to a drought period, despite irrigation 

being withheld. F1, F7, nwc901, K9040 and K8044. All were slow to emerge and 

had low leaf areas. 

Drought tolerance indices harmonic mean (HARM), Fig. 3.8 and drought tolerance 

efficiency (DTE), Fig. 3.7 are more powerful at dissecting potential drought 

tolerance than Fig. 3.6 or the Fig. 3.4 yield results.    

Drought tolerance efficiency (DTE) is a useful indicator for screening drought 

tolerant genotypes. DTE values below 1 indicate that the genotype performs better 

in well-watered conditions than in the drought treatment. DTE values were 

generally lower in 2015 in a comparison across the two experiments. Of the 

common F population genotypes, the ranks of F1 (1), F4 (2) and F2 (4) were 

consistent across the experiments, the other comparable genotypes, nwc901, F3, 

S3, R13 and K8290 switched ranks between the experiments.  

 

Table 3.5 shows that drought tolerance indices Geometric Mean Productivity 

(GMP) and Harmonic Mean (HARM) produce the same results, similar to in 2014. 

These GMP and HARM indices highly correlate with Mean Productivity (MP) 0.99, 

Yield Index (YI) 0.99 and the Stress Tolerance Index (STI) 0.97. The Drought 

tolerance efficiency (DTE) and Tolerance Against Stress (TOL) have an inverse 

relationship, but these indices are not as closely associated as 2014. Figs 3.7 

(DTE) and 3.8 (HARM) show results from these two broad classes of drought 

tolerance indices that can be used for selecting genotypes response to drought 

stress. 

 

The indices supported stable and high yield in both non-stress and stress 

treatments: mean productivity (MP), stress tolerance index (STI), geometric mean 

productivity (GMP), harmonic mean (HARM). These make more appropriate 

selection criteria when selecting for biomass plantations exposed to occasional 

drought stress, this latter group of indices form the more appropriate selection 

criteria as they will select for high yield in wetter and drier years. 
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Yield reductions under drought were more similar to the findings of other drought 

studies in the Salicaceae conducted in pots with Salix (Bonosi et al., 2010; McIvor, 

2005), in field trials with Salix (Bonosi et al., 2013; Linderson et al., 2007) and in 

pots with Populus (Monclus et al., 2006). 

Genotypes in the 2015 experiment originate from mapping populations and do not 

have the yield potential of commercial varieties. This is reflected in the maximum 

yield presented in Table 3.2. These maximum yields would equate to 3.3 odt ha-1 

for droughted plants and 5.5 odt ha-1 for well-watered controls if adjusted to a 

typical SRC plantation density of 15,000 plants/ha-1. This compares to yields to ~4 

odt ha-1 for droughted plants and ~5 odt ha-1 for the well-watered control in 2014 

for of SRC biomass variety family means equate. The higher yield in 2015 can be 

explained by the longer growth season.  

Middle leaf length is the most meaningful leaf length measurement 17 – 34 days 

after a drought. It is a high through put measurement for breeders assessing the 

impact of drought on germplasm. The timing of measurements to capture the 

responses to drought is important. In 2014 the top leaf was the most interesting 

leaf 2 – 7 days after re-watering with effects of the drought being seen 34-39 days 

later, on both the top and middle leaf. 

This also informs which leaf could produce interesting measurements for other 

physiological measurements.  

The experiment aimed to increase the number of individual genotypes per family 

assessed. Fig. 3.4 shows dry matter differences are both more variable and 

greater among population mpK8 than population mpF. Population mpK8’s 

establishment was also more reliable, with 30% of mpF plants failing to establish. 

In the entire 2014 experiment only 1.25% of plants failed to establish. Both 

populations show useful segregation in their progeny using HARM and DTE 

drought tolerance indices Fig. 3.8 and 3.7 respectively. mpK8 has delivered a 

greater contrasting response to imposed drought from its progeny than population 

mpF. However, a combination on the reliability of mpK8 with regard to slug 

resilience / confidence in data (less missing values) and the strong multisite legacy 

of mpK8 field trial data (Hanley et al., 2002; Karp et al., 2011) and pre-existing 

genetic resources available has led to mpK8 population will being selected for 

future study.  
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Future work will focus on linking pot and field trial performance, mapping QTL and 

potentially analysing candidate genes within them (by transcriptomics and 

bioinformatic approaches). Ultimately, it is hoped that this will allow the 

identification of genomic regions linked to drought tolerance and water use traits, 

and that these can be incorporated into the willow breeding programme, resulting 

in SRC willow varieties that are more able to cope with drought periods. 

3.5 Conclusions 

The pot experiment containing mpF and mpK8 members and parents found that;  

1. Useful genetic variation exists for drought tolerance traits in the mpF and 

mpK8.  

2. Potentially useful leaf measurements for screening drought tolerant willows 

can be developed. 

3. Drought tolerance indices are suitable to identify and select for drought 

tolerant genotypes in the mpF and mpK8. 

4. The assessment of mpF and mpK8 material has shown that they both 

segregate for yield under drought conditions and are potentially suitable for 

further study at the field scale. 

5. Changes to the pot trial methodology have led to a greater main effect of 

irrigation. 

The methodology changes in re-watering and the timing of the drought produced a 

significant main effect of irrigation on all final yield responses. An early drought 

coinciding with the exponential growth phase has a more negative effect on yield 

than a drought that occurs later in the growing season. Future work will use routine 

slug control methods to mitigate the risk of plant damage at establishment. The 

use of guard plants improved experimental design. Further methodology changes 

should be considered if wider germplasm is to be studied within the same pot 

experiment. There are opportunities to monitor the water deficit and plant water 

status more closely and precisely. Relative growth rates, derived from non-

destructive estimates of yield such as stem diameter measurements or stem 

length should be recorded at regular intervals (weekly) through the experiment.  

Assessing the middle leaf length 17 – 34 days after a drought is a potential high 

throughput measurement for breeders assessing the impact of drought on 

germplasm. It also informs which leaf could be the subject of other physiological 
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measurements, for example gas exchange measurements, SPAD etc, making 

these measurements more impactful. 

The choice of drought tolerance indices has proven to be important when 

considering them as use as selection criteria. Geometric Mean Productivity (GMP) 

and Harmonic Mean (HARM) support the selection of stable and high yield in both 

non-stress and stress treatments. These indices are appropriate for selecting 

material for biomass plantations exposed to occasional drought stress. These 

should be used if selecting for performance under both non-stress and stress 

conditions.  
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4. Final conclusions 

Phenotypic measurements 

Top and middle leaf lengths may potentially offer the breeder a high throughput 

method of assessing the impact of drought on germplasm and is sufficiently high 

throughput to be applied to large genetic mapping populations. The timing of the 

measurement to capture the physiological impacts of drought is key and likely to 

vary among species. A further study with more time points would help build on this 

finding. This knowledge will inform which leaf could be the subject of other 

physiological measurements, for example gas exchange measurements, SPAD 

etc, this could make potential low-throughput measurements more impactful. 

Assessing drought-induced leaf senescence has the potential to be a relatively 

high throughput measurement for breeders assessing the impact of drought on 

germplasm. Results in 2014 revealed a significant genotype and drought treatment 

interaction (p = <.001, F-test) for bottom leaf width one month after a drought 

event. Drought-induced leaf senescence is an important mechanism and should 

be monitored during pot trials or during a drought event in a field experiment.  

The choice of drought tolerance indices are important when considering them as 

selection criteria. The specific indices should be matched to the selection goal of 

the breeder, with the output being suitable for the selected breeding zone. This 

study suggests that Geometric Mean Productivity (GMP), Mean Productivity (MP) 

and Harmonic Mean (HARM) support the selection of stable and high yield in both 

non-stress and stress treatments. These indices are appropriate for selecting 

material for biomass plantations exposed to occasional water deficit. This criteria 

of selecting for performance under both non-stress and stress conditions is 

appropriate for perennial energy crops in UK conditions currently. 

Drought tolerance indices against stress (TOL) and drought tolerance efficiency 

(DTE) are useful tools for screening drought tolerant genotypes. These indices will 

be more helpful if selecting material for breeding zones that have more regular and 

severe water deficits. 

Relative growth rates, derived from non-destructive estimates of yield such as 

stem diameter measurements or stem length should be recorded at regular 

intervals (weekly) through the experiment. 
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Experiments should be sized so it is possible to perform more regular soil water 

status monitoring and regular measurements are possible at key time points. Only 

yield measurements were taken after the second droughts in these studies. There 

would have been value in continuing regular measurements and scoring to study 

the consequences/recovery from the water deficit after re-watering the second 

drought cycle.   

If small, slow growing germplasm is to be studied in an experiment with larger 

material, it should be investigated if the experimental design can incorporate the 

material separately, so it doesn’t get shaded. It should be investigated if small 

plants can be planted in proportionally smaller pots, so dry down times can be 

similar to larger plants in bigger pots.  

Be mindful not to over-water the well-watered control. Aim not to exceed field 

capacity, so as not to flood plants and cause yield penalty by creating an anoxic 

environment.  

Integration into a breeding programme 

Future work will focus on linking pot and field trial performance, mapping QTL and 

analysing candidate genes within them (by transcriptomics and bioinformatic 

approaches). Ultimately, this could allow the identification of genomic regions and 

linked genetic markers associated with drought tolerance and water use traits, with 

this knowledge used to increase the efficiency of selection within the willow 

breeding programme. 

Identifying high throughput phenotyping techniques, such as top or middle leaf 

length measurements, gives the potential to phenotype the large full-sib mpK8, (n. 

947) progeny, at Woburn Experimental Farm, Husbourne Crawley, UK. Large 

populations such as this provide increased power to dissect complex drought traits 

into more defined components for molecular breeding and gene discovery. 

Selection via marker-assisted selection (MAS) would be a useful outcome, 

particularly for traits such as drought tolerance that may not be encountered within 

the conventional breeding programme selection pipeline.  

Drought stress scenario 

Drought timings are important, and the two pot experiments have demonstrated 

that an early drought coinciding with the exponential growth phase has the 
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potential for a more negative effect on yield than a drought that occurs later in the 

growth season.  

The timing, duration and frequency of the water stress will have implications on the 

experimental results. The breeder should carefully match drought scenarios in 

their experiments with meteorology data or future climate forecasts for their target 

breeding zone to insure maximum impact on their breeding programme.  

Flowering is widely recognised as the most drought sensitive plant growth stage in 

many cultivated crop species. However, in willow cultivation, the breeder is only 

concerned with stress at the vegetative growth stage. Ideotypes of interest with 

respect to the vegetative growth are: the plant’s capability to continue growing and 

developing during the drought stress and/or the ability to recover and regrow after 

a severe stress. For a plant’s capacity to maintain high plant water status during a 

water stress period, dehydration avoidance is highly desirable. This dehydration 

avoidance strategy could be achieved by osmotic adjustment as reflected in 

relative water content or by maintaining plant water potential (Blum, 2011). 
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Appendix 1 2014 pot experiment design 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

4 - 47 - 2 - 5 - 42 - 17 - 3 - 11 - 27 - 48 - 28 - 38 - 53 - 37 - 22 - 20 - 31 - 54 - 3 + 22 + 39 + 35 + 51 + 47 + 36 + 43 + 17 + 21 + 12 + 7 + 20 + 50 + 54 + 6 + 30 + 26 +

D2 64_CZ K8_165 D3 1093 F3 D1 E3 K2 13_CZ K3 432 IA162 nwc453 G3 G1 R13 IA143 D1 G3 844 615 IA136 64_CZ nwc627(Bjorn) 003_CZ F3 G2 E4 K8_319 G1 S_Hallstad1 IA143 D4 S3 K1

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

Block I 19 - 7 - 50 - 24 - 1 - 16 - 35 - 26 - 8 - 46 - 30 - 45 - 25 - 49 - 12 - 14 - 39 - 40 - 23 + 32 + 11 + 45 + 25 + 49 + 1 + 33 + 53 + 10 + 48 + 27 + 52 + 40 + 46 + 5 + 29 + 15 +

nwc1059 K8_319 S_Hallstad1 nwc628(Tora) nwc789 F2 615 K1 nwc506 77_CZ S3 33_CZ Baldwin IA159 E4 K8_290 844 Tordis G4 K8_3 E3 33_CZ Baldwin IA159 nwc789 K8_2 IA162 E2 13_CZ K2 IA102 Tordis 77_CZ D3 K4 F1

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

18 - 23 - 44 - 51 - 52 - 10 - 29 - 9 - 13 - 36 - 33 - 43 - 41 - 32 - 34 - 15 - 6 - 21 - 13 + 2 + 38 + 18 + 19 + 24 + 34 + 41 + 31 + 44 + 4 + 42 + 9 + 37 + 28 + 8 + 14 + 16 +

F4 G4 024_CZ IA136 IA102 E2 K4 E1 nwc901 nwc627(Bjorn) K8_2 003_CZ K8_411 K8_3 663 F1 D4 G2 nwc901 K8_165 432 F4 nwc1059 nwc628(Tora) 663 K8_411 R13 024_CZ D2 1093 E1 nwc453 K3 nwc506 K8_290 F2

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

15 - 49 - 44 - 33 - 50 - 37 - 19 - 27 - 54 - 40 - 30 - 12 - 31 - 47 - 41 - 6 - 5 - 36 - 28 + 30 + 2 + 15 + 5 + 49 + 22 + 47 + 31 + 24 + 1 + 14 + 20 + 13 + 39 + 54 + 44 + 16 +

F1 IA159 024_CZ K8_2 S_Hallstad1 nwc453 nwc1059 K2 IA143 Tordis S3 E4 R13 64_CZ K8_411 D4 D3 nwc627(Bjorn) K3 S3 K8_165 F1 D3 IA159 G3 64_CZ R13 nwc628(Tora) nwc789 K8_290 G1 nwc901 844 IA143 024_CZ F2

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

Block II 22 - 7 - 17 - 52 - 14 - 51 - 45 - 25 - 43 - 23 - 32 - 8 - 13 - 4 - 10 - 24 - 34 - 29 - 4 + 53 + 38 + 21 + 12 + 48 + 19 + 26 + 42 + 45 + 25 + 18 + 6 + 17 + 29 + 43 + 10 + 52 +

G3 K8_319 F3 IA102 K8_290 IA136 33_CZ Baldwin 003_CZ G4 K8_3 nwc506 nwc901 D2 E2 nwc628(Tora) 663 K4 D2 IA162 432 G2 E4 13_CZ nwc1059 K1 1093 33_CZ Baldwin F4 D4 F3 K4 003_CZ E2 IA102

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

38 - 53 - 20 - 35 - 39 - 18 - 9 - 11 - 26 - 2 - 48 - 16 - 3 - 46 - 1 - 42 - 28 - 21 - 23 + 41 + 7 + 46 + 51 + 3 + 11 + 33 + 34 + 9 + 8 + 27 + 35 + 50 + 37 + 32 + 40 + 36 +

432 IA162 G1 615 844 F4 E1 E3 K1 K8_165 13_CZ F2 D1 77_CZ nwc789 1093 K3 G2 G4 K8_411 K8_319 77_CZ IA136 D1 E3 K8_2 663 E1 nwc506 K2 615 S_Hallstad1 nwc453 K8_3 Tordis nwc627(Bjorn)

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

33 + 30 + 41 + 45 + 18 + 48 + 49 + 19 + 20 + 54 + 7 + 53 + 34 + 25 + 43 + 44 + 52 + 16 + 9 - 43 - 1 - 6 - 23 - 40 - 52 - 16 - 51 - 38 - 48 - 44 - 39 - 49 - 14 - 46 - 13 - 54 -

K8_2 S3 K8_411 33_CZ F4 13_CZ IA159 nwc1059 G1 IA143 K8_319 IA162 663 Baldwin 003_CZ 024_CZ IA102 F2 E1 003_CZ nwc789 D4 G4 Tordis IA102 F2 IA136 432 13_CZ 024_CZ 844 IA159 K8_290 77_CZ nwc901 IA143

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

Block III 23 + 36 + 46 + 1 + 4 + 32 + 40 + 27 + 12 + 13 + 21 + 47 + 22 + 6 + 31 + 38 + 24 + 42 + 10 - 34 - 50 - 53 - 19 - 21 - 32 - 31 - 41 - 11 - 28 - 22 - 29 - 45 - 3 - 8 - 35 - 24 -

G4 nwc627(Bjorn) 77_CZ nwc789 D2 K8_3 Tordis K2 E4 nwc901 G2 64_CZ G3 D4 R13 432 nwc628(Tora) 1093 E2 663 S_Hallstad1 IA162 nwc1059 G2 K8_3 R13 K8_411 E3 K3 G3 K4 33_CZ D1 nwc506 615 nwc628(Tora)

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

29 + 10 + 2 + 37 + 26 + 35 + 50 + 51 + 28 + 3 + 8 + 5 + 11 + 9 + 39 + 14 + 17 + 15 + 26 - 36 - 15 - 17 - 30 - 20 - 4 - 2 - 5 - 33 - 7 - 25 - 42 - 47 - 37 - 27 - 18 - 12 -

K4 E2 K8_165 nwc453 K1 615 S_Hallstad1 IA136 K3 D1 nwc506 D3 E3 E1 844 K8_290 F3 F1 K1 nwc627(Bjorn) F1 F3 S3 G1 D2 K8_165 D3 K8_2 K8_319 Baldwin 1093 64_CZ nwc453 K2 F4 E4

Design Key

Split-plot in 3 blocks, with ± irrigation on main plots and genotypes on Split-plots 1 Plot number

4 - Genotype code & drought water tratment (-)

Blockstructure D2 Genotype N

Block/W_Plot/S_Plot (= Block + Block.W_Plot+Block.W_plot.S_plot)

184 Plot number

Treatmentstructure 21 + Genotype code & control water tratment (+)

Genotype * Irrigation (= Gentype + Irrigation + Genotype . Irrigation) G2 Genotype
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Appendix 2 LogTag temperature sensor location within 2014 pot experiment  

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

4 - 47 - 2 - 5 - 42 - 17 - 3 - 11 - 27 - 48 - 28 - 38 - 53 - 37 - 22 - 20 - 31 - 54 - 3 + 22 + 39 + 35 + 51 + 47 + 36 + 43 + 17 + 21 + 12 + 7 + 20 + 50 + 54 + 6 + 30 + 26 +

D2 64_CZ K8_165 D3 1093 F3 D1 E3 K2 13_CZ K3 432 IA162 nwc453 G3 G1 R13 IA143 D1 G3 844 615 IA136 64_CZ nwc627(Bjorn) 003_CZ F3 G2 E4 K8_319 G1 S_Hallstad1 IA143 D4 S3 K1

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

19 - 7 - 50 - 24 - 1 - 16 - 35 - 26 - 8 - 46 - 30 - 45 - 25 - 49 - 12 - 14 - 39 - 40 - 23 + 32 + 11 + 45 + 25 + 49 + 1 + 33 + 53 + 10 + 48 + 27 + 52 + 40 + 46 + 5 + 29 + 15 +

nwc1059 K8_319 S_Hallstad1 nwc628(Tora) nwc789 F2 615 K1 nwc506 77_CZ S3 33_CZ Baldwin IA159 E4 K8_290 844 Tordis G4 K8_3 E3 33_CZ Baldwin IA159 nwc789 K8_2 IA162 E2 13_CZ K2 IA102 Tordis 77_CZ D3 K4 F1

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

18 - 23 - 44 - 51 - 52 - 10 - 29 - 9 - 13 - 36 - 33 - 43 - 41 - 32 - 34 - 15 - 6 - 21 - 13 + 2 + 38 + 18 + 19 + 24 + 34 + 41 + 31 + 44 + 4 + 42 + 9 + 37 + 28 + 8 + 14 + 16 +

F4 G4 024_CZ IA136 IA102 E2 K4 E1 nwc901 nwc627(Bjorn) K8_2 003_CZ K8_411 K8_3 663 F1 D4 G2 nwc901 K8_165 432 F4 nwc1059 nwc628(Tora) 663 K8_411 R13 024_CZ D2 1093 E1 nwc453 K3 nwc506 K8_290 F2

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

15 - 49 - 44 - 33 - 50 - 37 - 19 - 27 - 54 - 40 - 30 - 12 - 31 - 47 - 41 - 6 - 5 - 36 - 28 + 30 + 2 + 15 + 5 + 49 + 22 + 47 + 31 + 24 + 1 + 14 + 20 + 13 + 39 + 54 + 44 + 16 +

F1 IA159 024_CZ K8_2 S_Hallstad1 nwc453 nwc1059 K2 IA143 Tordis S3 E4 R13 64_CZ K8_411 D4 D3 nwc627(Bjorn) K3 S3 K8_165 F1 D3 IA159 G3 64_CZ R13 nwc628(Tora) nwc789 K8_290 G1 nwc901 844 IA143 024_CZ F2

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

22 - 7 - 17 - 52 - 14 - 51 - 45 - 25 - 43 - 23 - 32 - 8 - 13 - 4 - 10 - 24 - 34 - 29 - 4 + 53 + 38 + 21 + 12 + 48 + 19 + 26 + 42 + 45 + 25 + 18 + 6 + 17 + 29 + 43 + 10 + 52 +

G3 K8_319 F3 IA102 K8_290 IA136 33_CZ Baldwin 003_CZ G4 K8_3 nwc506 nwc901 D2 E2 nwc628(Tora) 663 K4 D2 IA162 432 G2 E4 13_CZ nwc1059 K1 1093 33_CZ Baldwin F4 D4 F3 K4 003_CZ E2 IA102

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

38 - 53 - 20 - 35 - 39 - 18 - 9 - 11 - 26 - 2 - 48 - 16 - 3 - 46 - 1 - 42 - 28 - 21 - 23 + 41 + 7 + 46 + 51 + 3 + 11 + 33 + 34 + 9 + 8 + 27 + 35 + 50 + 37 + 32 + 40 + 36 +

432 IA162 G1 615 844 F4 E1 E3 K1 K8_165 13_CZ F2 D1 77_CZ nwc789 1093 K3 G2 G4 K8_411 K8_319 77_CZ IA136 D1 E3 K8_2 663 E1 nwc506 K2 615 S_Hallstad1 nwc453 K8_3 Tordis nwc627(Bjorn)

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

33 + 30 + 41 + 45 + 18 + 48 + 49 + 19 + 20 + 54 + 7 + 53 + 34 + 25 + 43 + 44 + 52 + 16 + 9 - 43 - 1 - 6 - 23 - 40 - 52 - 16 - 51 - 38 - 48 - 44 - 39 - 49 - 14 - 46 - 13 - 54 -

K8_2 S3 K8_411 33_CZ F4 13_CZ IA159 nwc1059 G1 IA143 K8_319 IA162 663 Baldwin 003_CZ 024_CZ IA102 F2 E1 003_CZ nwc789 D4 G4 Tordis IA102 F2 IA136 432 13_CZ 024_CZ 844 IA159 K8_290 77_CZ nwc901 IA143

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

23 + 36 + 46 + 1 + 4 + 32 + 40 + 27 + 12 + 13 + 21 + 47 + 22 + 6 + 31 + 38 + 24 + 42 + 10 - 34 - 50 - 53 - 19 - 21 - 32 - 31 - 41 - 11 - 28 - 22 - 29 - 45 - 3 - 8 - 35 - 24 -

G4 nwc627(Bjorn) 77_CZ nwc789 D2 K8_3 Tordis K2 E4 nwc901 G2 64_CZ G3 D4 R13 432 nwc628(Tora) 1093 E2 663 S_Hallstad1 IA162 nwc1059 G2 K8_3 R13 K8_411 E3 K3 G3 K4 33_CZ D1 nwc506 615 nwc628(Tora)

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

29 + 10 + 2 + 37 + 26 + 35 + 50 + 51 + 28 + 3 + 8 + 5 + 11 + 9 + 39 + 14 + 17 + 15 + 26 - 36 - 15 - 17 - 30 - 20 - 4 - 2 - 5 - 33 - 7 - 25 - 42 - 47 - 37 - 27 - 18 - 12 -

K4 E2 K8_165 nwc453 K1 615 S_Hallstad1 IA136 K3 D1 nwc506 D3 E3 E1 844 K8_290 F3 F1 K1 nwc627(Bjorn) F1 F3 S3 G1 D2 K8_165 D3 K8_2 K8_319 Baldwin 1093 64_CZ nwc453 K2 F4 E4

36783 36782

36785

36828
36827

36784
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Appendix 3 2015 pot experiment design 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 37 38 39 40 41 42 43 44 45 46 47 48

25 + 10 + 23 + 17 + 9 + 14 + 21 + 8 + 35 + 18 + 28 + 19 + 16 - 9 - 28 - 31 - 8 - 15 - 3 - 25 - 36 - 30 - 4 - 26 -

F3 K8044 F1 K8337 K8043 K8060 901 K8040 F14 K8341 F7 K8350 K8307 K8043 F7 F10 K8040 K8300 K8011 F3 F15 F9 K8013 F4

13 14 15 16 17 18 19 20 21 22 23 24 49 50 51 52 53 54 55 56 57 58 59 60

Block I 13 + 26 + 1 + 12 + 29 + 33 + 32 + 15 + 6 + 20 + 16 + 22 + 23 - 33 - 24 - 7 - 21 - 27 - 22 - 17 - 18 - 14 - 11 - 32 -

K8059 F4 S3 K8057 F8 F12 F11 K8300 K8018 K8353 K8307 K8 290 F1 F12 F2 K8023 901 F6 K8 290 K8337 K8341 K8060 K8050 F11

25 26 27 28 29 30 31 32 33 34 35 36 61 62 63 64 65 66 67 68 69 70 71 72

36 + 24 + 2 + 4 + 3 + 7 + 11 + 5 + 31 + 27 + 34 + 30 + 29 - 34 - 2 - 13 - 12 - 10 - 6 - 5 - 1 - 35 - 20 - 19 -

F15 F2 R13 K8013 K8011 K8023 K8050 K8014 F10 F6 F13 F9 F8 F13 R13 K8059 K8057 K8044 K8018 K8014 S3 F14 K8353 K8350

73 74 75 76 77 78 79 80 81 82 83 84 109 110 111 112 113 114 115 116 117 118 119 120

25 - 13 - 8 - 31 - 9 - 30 - 2 - 23 - 29 - 12 - 14 - 10 - 11 + 23 + 26 + 29 + 12 + 5 + 32 + 27 + 28 + 10 + 33 + 21 +

F3 K8059 K8040 F10 K8043 F9 R13 F1 F8 K8057 K8060 K8044 K8050 F1 F4 F8 K8057 K8014 F11 F6 F7 K8044 F12 901

85 86 87 88 89 90 91 92 93 94 95 96 121 122 123 124 125 126 127 128 129 130 131 132

Block II 24 - 6 - 26 - 17 - 27 - 34 - 21 - 22 - 1 - 16 - 20 - 3 - 15 + 18 + 16 + 8 + 3 + 36 + 7 + 6 + 9 + 35 + 1 + 22 +

F2 K8018 F4 K8337 F6 F13 901 K8 290 S3 K8307 K8353 K8011 K8300 K8341 K8307 K8040 K8011 F15 K8023 K8018 K8043 F14 S3 K8 290

97 98 99 100 101 102 103 104 105 106 107 108 133 134 135 136 137 138 139 140 141 142 143 144

18 - 15 - 36 - 35 - 4 - 28 - 32 - 19 - 33 - 11 - 7 - 5 - 19 + 17 + 24 + 2 + 4 + 13 + 14 + 34 + 30 + 31 + 20 + 25 +

K8341 K8300 F15 F14 K8013 F7 F11 K8350 F12 K8050 K8023 K8014 K8350 K8337 F2 R13 K8013 K8059 K8060 F13 F9 F10 K8353 F3

145 146 147 148 149 150 151 152 153 154 155 156 181 182 183 184 185 186 187 188 189 190 191 192

11 - 1 - 35 - 24 - 29 - 27 - 12 - 20 - 17 - 33 - 5 - 23 - 2 + 8 + 30 + 35 + 21 + 29 + 15 + 5 + 14 + 23 + 20 + 28 +

K8050 S3 F14 F2 F8 F6 K8057 K8353 K8337 F12 K8014 F1 R13 K8040 F9 F14 901 F8 K8300 K8014 K8060 F1 K8353 F7

157 158 159 160 161 162 163 164 165 166 167 168 193 194 195 196 197 198 199 200 201 202 203 204

Block III 13 - 18 - 14 - 16 - 21 - 22 - 8 - 6 - 34 - 10 - 32 - 4 - 7 + 11 + 36 + 12 + 17 + 34 + 10 + 19 + 24 + 22 + 13 + 6 +

K8059 K8341 K8060 K8307 901 K8 290 K8040 K8018 F13 K8044 F11 K8013 K8023 K8050 F15 K8057 K8337 F13 K8044 K8350 F2 K8 290 K8059 K8018

169 170 171 172 173 174 175 176 177 178 179 180 205 206 207 208 209 210 211 212 213 214 215 216

7 - 26 - 25 - 3 - 31 - 36 - 28 - 30 - 9 - 19 - 2 - 15 - 4 + 31 + 27 + 26 + 3 + 18 + 16 + 25 + 1 + 32 + 33 + 9 +

K8023 F4 F3 K8011 F10 F15 F7 F9 K8043 K8350 R13 K8300 K8013 F10 F6 F4 K8011 K8341 K8307 F3 S3 F11 F12 K8043

N
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Appendix 4 LogTag temperature sensor location within 2015 pot experiment  

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 37 38 39 40 41 42 43 44 45 46 47 48

25 + 10 + 23 + 17 + 9 + 14 + 21 + 8 + 35 + 18 + 28 + 19 + 16 - 9 - 28 - 31 - 8 - 15 - 3 - 25 - 36 - 30 - 4 - 26 -

F3 K8044 F1 K8337 K8043 K8060 901 K8040 F14 K8341 F7 K8350 K8307 K8043 F7 F10 K8040 K8300 K8011 F3 F15 F9 K8013 F4

13 14 15 16 17 18 19 20 21 22 23 24 49 50 51 52 53 54 55 56 57 58 59 60

13 + 26 + 1 + 12 + 29 + 33 + 32 + 15 + 6 + 20 + 16 + 22 + 23 - 33 - 24 - 7 - 21 - 27 - 22 - 17 - 18 - 14 - 11 - 32 -

K8059 F4 S3 K8057 F8 F12 F11 K8300 K8018 K8353 K8307 K8 290 F1 F12 F2 K8023 901 F6 K8 290 K8337 K8341 K8060 K8050 F11

25 26 27 28 29 30 31 32 33 34 35 36 61 62 63 64 65 66 67 68 69 70 71 72

36 + 24 + 2 + 4 + 3 + 7 + 11 + 5 + 31 + 27 + 34 + 30 + 29 - 34 - 2 - 13 - 12 - 10 - 6 - 5 - 1 - 35 - 20 - 19 -

F15 F2 R13 K8013 K8011 K8023 K8050 K8014 F10 F6 F13 F9 F8 F13 R13 K8059 K8057 K8044 K8018 K8014 S3 F14 K8353 K8350

73 74 75 76 77 78 79 80 81 82 83 84 109 110 111 112 113 114 115 116 117 118 119 120

25 - 13 - 8 - 31 - 9 - 30 - 2 - 23 - 29 - 12 - 14 - 10 - 11 + 23 + 26 + 29 + 12 + 5 + 32 + 27 + 28 + 10 + 33 + 21 +

F3 K8059 K8040 F10 K8043 F9 R13 F1 F8 K8057 K8060 K8044 K8050 F1 F4 F8 K8057 K8014 F11 F6 F7 K8044 F12 901

85 86 87 88 89 90 91 92 93 94 95 96 121 122 123 124 125 126 127 128 129 130 131 132

24 - 6 - 26 - 17 - 27 - 34 - 21 - 22 - 1 - 16 - 20 - 3 - 15 + 18 + 16 + 8 + 3 + 36 + 7 + 6 + 9 + 35 + 1 + 22 +

F2 K8018 F4 K8337 F6 F13 901 K8 290 S3 K8307 K8353 K8011 K8300 K8341 K8307 K8040 K8011 F15 K8023 K8018 K8043 F14 S3 K8 290

97 98 99 100 101 102 103 104 105 106 107 108 133 134 135 136 137 138 139 140 141 142 143 144

18 - 15 - 36 - 35 - 4 - 28 - 32 - 19 - 33 - 11 - 7 - 5 - 19 + 17 + 24 + 2 + 4 + 13 + 14 + 34 + 30 + 31 + 20 + 25 +

K8341 K8300 F15 F14 K8013 F7 F11 K8350 F12 K8050 K8023 K8014 K8350 K8337 F2 R13 K8013 K8059 K8060 F13 F9 F10 K8353 F3

145 146 147 148 149 150 151 152 153 154 155 156 181 182 183 184 185 186 187 188 189 190 191 192

11 - 1 - 35 - 24 - 29 - 27 - 12 - 20 - 17 - 33 - 5 - 23 - 2 + 8 + 30 + 35 + 21 + 29 + 15 + 5 + 14 + 23 + 20 + 28 +

K8050 S3 F14 F2 F8 F6 K8057 K8353 K8337 F12 K8014 F1 R13 K8040 F9 F14 901 F8 K8300 K8014 K8060 F1 K8353 F7

157 158 159 160 161 162 163 164 165 166 167 168 193 194 195 196 197 198 199 200 201 202 203 204

13 - 18 - 14 - 16 - 21 - 22 - 8 - 6 - 34 - 10 - 32 - 4 - 7 + 11 + 36 + 12 + 17 + 34 + 10 + 19 + 24 + 22 + 13 + 6 +

K8059 K8341 K8060 K8307 901 K8 290 K8040 K8018 F13 K8044 F11 K8013 K8023 K8050 F15 K8057 K8337 F13 K8044 K8350 F2 K8 290 K8059 K8018

169 170 171 172 173 174 175 176 177 178 179 180 205 206 207 208 209 210 211 212 213 214 215 216

7 - 26 - 25 - 3 - 31 - 36 - 28 - 30 - 9 - 19 - 2 - 15 - 4 + 31 + 27 + 26 + 3 + 18 + 16 + 25 + 1 + 32 + 33 + 9 +

K8023 F4 F3 K8011 F10 F15 F7 F9 K8043 K8350 R13 K8300 K8013 F10 F6 F4 K8011 K8341 K8307 F3 S3 F11 F12 K8043

36783 36782

36785

3682836827

36784

54115 54116

54118 54119

54120 54121

65336

65339

65341

65337

65338

65340


