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Abstract 

Life cycle assessment (LCA) has been increasingly applied to livestock production systems to estimate their 
environmental footprints, but the degree of uncertainties associated with these values is known to be generally 
high. This thesis explores novel methods of LCA modelling to reduce uncertainty associated with environmental 
footprints of meat production systems, with the view to contribute to objective and transparent debates about 
the role of livestock in global food security. Three innovative approaches are proposed in this thesis. First, as 
information on individual animals is often unavailable, livestock data are often aggregated at the time of 
inventory analysis. To investigate the level of bias caused by this aggregation, Chapter 3 uses primary data 
collected at the North Wyke Farm Platform in Southwest England and calculates emission intensities for 
individual animals and their intra-farm distributions, providing a step towards deriving optimal animal selection 
strategies based on livestock LCA. Second, the severity of greenhouse gas emissions from agricultural production 
is known to vary spatially and temporally, yet available LCA frameworks often fail to sufficiently consider these 
differences due to data constraints. To evaluate the degree of avoidable uncertainties attributable to this 
practice, Chapter 4 conducts an original field experiment to derive site-specific nitrous oxide emission factors, 
which are subsequently used in Chapter 5 to compare LCA results derived under these localised values and 
generic alternatives intended for the widest possible users. Finally, while LCA results are typically communicated 
in the form of environmental burdens per output of mass, it is gradually becoming recognised that product 
quality also needs to be accounted for to truly understand the value of each farming system to society. Using 
data from seven livestock production systems encompassing cattle, sheep, pigs, and poultry, Chapter 6 develops 
new methods to incorporate nutritional values of meat products into livestock LCA.  
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1.1 Background 
In order to support the projected global population of 9.15 billion people at mid-century, a 70% 

increase in total global food production is believed to be required (FAO, 2009) unless drastic measures 

are taken to improve  global distribution of food (Ingram, 2011). In the context of animal production, 

outputs from meat and dairy enterprises worldwide must be increased, respectively, by at least 53% 

and 48% under current levels of food waste (Thornton, 2010), and possibly more if the FAO’s 

nutritional recommendations for animal protein are proactively followed to address malnutrition, 

defined as both under nutrition (lack of food) and availability of micro-nutrients (hidden hunger) 

through a balanced diet (FAO, 2014). Worldwide livestock production, however, is estimated to 

generate 7.1 Gt CO2-eq of greenhouse gases (GHG) each year, with beef and dairy cattle contributing 

61%, followed by pigs, poultry (meat and eggs) and small ruminants at 9%, 8% and 6.5%, respectively 

(Gerber et al., 2013). The enormity of the sector’s impact on climate change, accompanied by many 

equally important environmental issues caused by livestock—including but not limited to: 

eutrophication, soil compaction and erosion, and biodiversity losses—demonstrate the urgency of 

identifying economically and environmentally sustainable methods of livestock production which are 

critical to ensure long-term food security (Eisler et al., 2014). 

With considerably lower environmental footprints associated with “white” meat produced 

from monogastric animals relative to ruminant livestock (de Vries and de Boer, 2010), improving the 

efficiency of pig production systems holds less potential to reduce climate impacts. Nevertheless, pig 

production has considerable detrimental effects to local soils and watercourses due to acidification 

resulting from ammonia (NH3) emissions and eutrophication from nitrate (NO3
-) and phosphate (PO4

3) 

losses. Most intensive piggeries also demand vast amounts of human-edible crops, which account for 

around 64% of total feed (Wilkinson, 2011), that could potentially be used elsewhere to directly feed 

the human population (McAuliffe et al., 2016). Similarly, feedlot-based beef production systems, 

which tend to show a lower level of GHG emissions intensity than pasture-based systems (Pelletier et 

al., 2010b, Peters et al., 2010, Nguyen et al., 2010a), are known to be the least efficient users of cereals 

and legumes in the intensive agri-food industry, when compared to pigs (Steinfeld, 2006). Pastoral 

systems for ruminant production, on the other hand, can utilise land unsuitable for arable crop 

production by converting forages to valuable sources of protein and bioavailable micro-nutrients for 

humans (van Zanten et al., 2016) without driving the food-feed competition for resources (Wilkinson, 

2011, Wilkinson and Lee, 2018). Given this apparent trade-off and the fact that expected population 

growth will likely increase demand for human-edible crops and animal-originated protein at the same 

time, improving the environmental and production efficiency of both monogastric and ruminant 
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systems seems to form, at least for the foreseeable future, part of the solution package for the global 

issue of food security. 

A primary means to evaluate environmental footprints of production systems is life cycle 

assessment (LCA) (de Vries et al., 2015). Although the method itself is applicable and indeed adopted 

by a wide range of industries far beyond agriculture, what separates agriculture from other industries, 

and in particular modern manufacturing, is the high degree of uncertainties associated with physical, 

chemical and biological processes that underpin its production systems. A case in point is described 

by Dudley et al. (2014), who examined differences in environmental performance between multiple 

US feedlot systems; using the Monte Carlo (MC) technique, the authors calculated global warming 

potential (GWP) at a range of 2.5 – 9.6 kg CO2-eq/kg liveweight (LW). Such a wide confidence interval 

demonstrates the unreliable nature of point-estimates provided by LCA models that do not capture 

realistic variability (Chen and Corson, 2014). Furthermore, this also highlights the importance of 

efforts to improve our understanding of uncertainties through methodological development as well 

as more intensive data collection. 

Uncertainties in LCA studies arise from various sources, of which perhaps the most important 

is the variability inherent in life cycle inventory analysis (LCI) data and in life cycle impact assessment 

(LCIA) methodology. The latter, however, has been shown to have negligible effects on a study’s 

outputs once the timescale of analysis (e.g. 20 years, 100 years or 500 years) has been clearly defined 

in the case of GWP (Reckmann et al., 2013). Uncertainties associated with LCI, on the other hand, have 

considerable impacts on environmental footprints arising from different farming systems, and are also 

of stronger relevance to a large population of practitioners. Nonetheless, LCA studies often omit MC 

analysis (Imbeault-Tétreault et al., 2013), which is one of the most common approaches for assessing 

uncertainty in LCI along with scenario and sensitivity analyses (Curran, 2012). A recent review of 

uncertainty analysis (Igos et al., 2018) identified three levels of assessment within the LCA framework: 

(1) sensitivity and scenario analyses to examine the effects of individual parameters within a system 

(basic); (2) use of characterisation factors and analysis of expertly designed scenarios via MC 

(intermediate); and (3) careful consideration of correlations between variables and fundamental 

reasons behind uncertainties (advanced). Although some livestock LCAs consider uncertainty during 

model interpretation, the level of detail varies from study to study and, with the exception of a few 

studies (Leinonen et al., 2012, Mackenzie et al., 2015), seldom go further than what Igos et al. (2018) 

would have classified as “basic” analysis—as will be discussed in Section 1.5. 

The overarching aim of this thesis, therefore, is to explore novel methods of LCA modelling to 

reduce uncertainty associated with environmental footprint of meat production systems and thereby 
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contribute to objective and transparent debates about the role of livestock in global food security. 

Data will primarily be drawn from the North Wyke Farm Platform (NWFP), an intensively instrumented 

cattle-grazing farm located in southwest England, in order to accurately quantify the degree of 

uncertainty associated with different modelling strategies. However, pig systems will also be 

considered to account for environmental implications of monogastric animal production, and findings 

from both analyses will be integrated at the end to derive policy implications across the livestock 

industry. 

1.2 Life cycle assessment methodology 
The framework for carrying out an LCA is directed by International Organization for Standardization 

(ISO) 14040 guidelines (ISO, 2006). Figure 1.1 outlines the four different phases of an LCA study as 

defined by Curran (2012). Each step is iterative and may require revisiting a previous phase as, for 

example, data availability changes or the goal of the study needs revision. 

1.2.1 Goal and scope definition 

The first step involves detailing the overall goal of the study. This includes identifying the audience 

and what will be achieved by the study. The scope of the study must be clearly defined by delineating 

system boundaries, such as from the extraction of raw materials to the farm gate, and choosing an 

appropriate functional unit (FU). The FU is the unit to which all burdens and benefits will be scaled; in 

the case of livestock LCA, for instance, the production of 1 kg of LW at the farm gate is one of the most 

frequently used FU. This unit should represent a realistic output and function from the system; other 

examples, therefore, include 1 kg of LW delivered to the slaughterhouse, 1 kg of carcase weight 

produced at the slaughterhouse and 1 kg of meat consumed by humans. 

1.2.2 Life cycle inventory analysis 

The LCI requires gathering input and output data for all relevant processes within the system 

boundary. These data may be for foreground processes (usually primary data from the system directly 

under examination) or background processes (usually secondary data pertaining to processes 

upstream and downstream from the foreground processes), and can be acquired from various 

sources. For example, data on transportation and associated emissions are available in the ecoinvent 

life cycle inventory database (Wernet et al., 2016) while those associated with crop production for 

concentrated feeds are found in agricultural databases, such as Agri-Footprint (Durlinger et al., 2017). 

Foreground data, usually representing the processes directly affected by decision making within a 

system, are generally gathered from surveys or examinations of local record. On the other hand, 

primary data for flows to nature (e.g. emissions from GHGs and losses of N and P) are either sourced 

from direct measurements or calculations, the latter often derived from Intergovernmental Panel on 

Climate Change (IPCC) guidelines (IPCC, 2006).  
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1.2.3 Life cycle impact assessment 

Although impact categories studied vary depending on the goal of a study, GWP, acidification potential 

(AP) and eutrophication potential (EP) are included in many LCAs. Once the relevant inventory data 

have been collected, the next stage requires classifying emissions and losses to their relevant impact 

categories. For instance, NH3 from pig slurry can contribute to soil acidification and freshwater 

eutrophication, and therefore, NH3 emissions should be considered in both AP and EP impact 

categories. On the other hand, CO2 emissions are largely irrelevant for AP and EP but critically 

important for GWP. Figure 1.2 demonstrates a simplified characterisation process (Baumann and 

Tillman, 2004) while Table 1.1 presents impact factors adopted under the Leiden Institute of 

Environmental Sciences (CML) impact assessment (Heijungs et al., 1997). The LCIA stage quantifies the 

impact level of the data collected during LCI. Once the inventory has been specified by LCI, this process 

can be largely automated in practice using LCA software such as SimaPro (www.pre-

sustainability.com) or GaBi (www.gabi-software.com). 

1.2.4 Interpretation 

The final stage of an LCA involves interpreting the results and communicating them appropriately to 

the intended audience. During this phase, collected LCI data are tested for accuracy and uncertainty 

through statistical analysis. A brief breakdown of these tests is displayed in Table 1.2. After the data 

have been tested, it must be determined how they will be presented. This will largely depend on the 

goal of the study, as LCA studies can generate conclusions and policy implications with varying 

complexity. 

1.3 LCA applied to meat production systems 
LCA has been applied to all four of the globally important meat sectors (beef, pork, chicken and lamb), 

albeit at different levels of investigation into system-wide uncertainties. Frequently cited examples of 

works on the poultry and sheep sectors include Pelletier (2008) and Biswas et al. (2010), respectively. 

For the pig sector, the author of this thesis has previously carried out an extensive literature review 

(McAuliffe et al., 2016) outside the current research. 

For the beef sector, de Vries et al. (2015) summarised a wide range of LCA studies from around 

the world. It is noteworthy, however, that the popularity of beef LCA research has increased 

substantially over the last three years. According to Scopus, there were 14, 26 and 24 papers 

published, respectively, in 2014, 2015 and 2016 under the search criteria “life cycle assessment” and 

“beef”; in 2017, this number jumped to 45. This growth in interest is likely a consequence of reports 

concluding that beef production, and particularly grazing systems, are extremely heavy contributors 

to global GHG emissions when evaluated on a mass-based FU (Springmann et al., 2016). Motivated by 

such a rapid increase in attention, the remainder of this subsection gives an overview of beef LCAs 
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that have been published after de Vries et al. (2015). The selection of papers was conducted in March 

2018 based on a Scopus search with keywords listed above and publication years of 2015 – 2018. The 

first 100 studies returned were then filtered according to the following rules: (1) written in English 

language; (2) primarily focuses on beef systems (rather than dairy systems or other species); and (3) 

is not primarily designed for end-point modelling. These criteria resulted in 14 papers. 

In Brazil, Dick et al. (2015) conducted an LCA of beef cattle in two grassland systems. The first 

system was based on traditional grazing practices where animals can wander freely and receive little 

or no supplementation. The second system, termed “improved”, involved weekly rotational grazing 

and the introduction of winter forage species. The system boundary was from raw material extraction 

to farm gate and the FU was 1 kg liveweight gain (LWG). Data on beef production within the two 

systems were sourced from published literature, and GHG emissions were calculated according to 

IPCC guidelines. GWP for the traditional system was found to be 22.52 kg CO2-eq per kg LWG, while 

GWP for the improved system was 9.16 kg CO2-eq per kg LWG. This dramatic reduction in GWP was 

attributed to higher quality forage with increased digestibility in the alternative system, resulting in 

faster weight gains.  

Mogensen et al. (2015) carried out a carbon footprint (CF) of beef production systems in 

Denmark and Sweden. The system boundary was from cradle to farm gate and the FU was 1 kg carcase 

weight (CW). Five Danish and four Swedish beef farming scenarios were developed, which were 

categorised depending on intensive or extensive production, and dairy or beef bred cattle. For feed 

production (pasture, silage and concentrates), C sequestration was considered based on IPCC 

guidelines and published literature. Grass-clover swards were included as part of an arable rotation 

where the swards remained for two to three years in a five-year rotation. Greenhouse gas emissions 

were estimated using a combination of IPCC values, e.g. for direct nitrous oxide (N2O) and indirect N2O 

via NH3 and NO3
-, and published book values for Nordic conditions (e.g. methane (CH4) from enteric 

fermentation and manure management). The resultant CF ranged from 8.9 to 17 kg CO2-eq per kg CW 

for the dairy-bull fattening systems, while the CF for cow-calf systems ranged from 23.1 to 29.7 kg 

CO2-eq per kg CW. Carbon sequestration resulted in GWP mitigation across all scenarios; amongst 

them, CO2 reduction was largest in the grass-based systems, although these systems still generated 

the highest CF values despite elevated C uptake. 

Wiedemann et al. (2015) utilised LCA to examine the environmental impact of Australian beef 

and lamb being exported to the US. The system boundary was from cradle (in Australia) to the 

distribution warehouse in the US, and the FU was 1 kg retail ready meat. For beef systems, the study 

considered beef cattle bred in rangelands and finished on pasture, and dairy steers finished on grain 



20 
 

feedlots for either 115 days or, for specialised breeds such as Wagyu, 330 days. Farm level data were 

obtained from governmental surveys and published case studies. Regionally tailored herd models 

were used to calculate feed intake and for predicting GHG emissions. Data on slaughtering and 

processing (such as cutting and chilling) were derived from an industry survey of meat processing 

plants in Australia. GWP ranged from 23.4 to 27.2 kg CO2-eq per kg beef, with the grass-finished cattle 

performing least favourably. Across the three scenarios, the farming phase generated the highest 

GWP (93%), meat processing accounted for 4%, transportation 3%, while the warehousing had 

negligible impacts. However, the authors also considered differences in human edible protein 

conversion efficiency. Under this FU, pasture-based beef production performed considerably better 

than grain-fed beef by converting more non-human-edible protein into human-edible protein. 

In an effort to capture temporal variations in on-farm GHG emissions, Hyland et al. (2016) 

assessed the CF of 15 livestock enterprises over two time periods three years apart (2009/10) and 

2012/13). In addition to calculating farm-level emissions intensities, the authors also used a range of 

sensitivity analyses to investigate potential mitigation strategies. The system boundary of the study 

was set as cradle to farm gate, and the FU as 1 kg LW. Across the 15 livestock enterprises examined, 

five specialised in lamb, four specialised in beef, while six were mixed beef and sheep farms. Emissions 

intensities were calculated according to IPCC (2006) tier 1 and 2 guidelines. In tackling the issue of 

mixed farming allocation, where possible Hyland et al. (2016) used system expansion; however, in 

certain cases this was not possible due to a lack of differentiation and economic allocation was used 

instead. Between two data periods, lamb emissions were found to increase by 12%, while beef 

emissions decreased by 12%. However, these differences were not found to be statistically significant. 

Unsurprisingly, CH4 emissions primarily resulting from enteric fermentation were the greatest GHG 

burdens across all enterprises. Regarding the scenario analysis aimed at reducing on-farm emissions, 

the authors suggested that the primary focus for farmers should be on improved resource use 

efficiency. The inclusion of legumes such as red (Trifolium pratense) and white (Trifolium repens) 

clover on suitable soils was also highlighted as an important technique to reduce fertiliser 

requirements. 

Examining the impacts of Canadian grazing management strategies on GHG intensities from 

beef herds, Alemu et al. (2017) modelled a typical herd structure of 120 cows, four bulls and their 

progeny over an eight-year period. A range of different grazing strategies were considered: light 

continuous grazing for all cattle; heavy continuous grazing for all cattle; light continuous grazing for 

cow-calf pairs and moderate rotational grazing for backgrounded cattle; and heavy continuous grazing 

for cow-calf pairs and moderate rotational grazing for backgrounded cattle. The system boundary was 

set as cradle-to-farmgate, and results based on two FUs (LW and CW) were reported side-by-side. The 
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authors used Holos (a Canadian whole-farm model) to estimate farm-level emissions, and soil carbon 

changes were considered using the Introductory Carbon Balance Model, while farm management data 

were sourced from previous management studies. Emissions intensities were found to have narrow 

ranges (14.5 – 16.0 kg CO2-eq/kg LW; 24.1 – 26.6 kg CO2-eq/kg CW) across the grazing scenarios; 

however, GHG emissions tended to decrease as stocking density increased. Inclusion of soil as a carbon 

sink reduced impacts by up to 25%. The authors highlight the complexities in crediting a grassland 

system as a carbon sink due to the extremely dynamic nature of carbon flows. 

Berton et al. (2017) applied the LCA method to examine the environmental footprint of the 

integrated French-Italian beef production system. The system boundary was set as cradle to farmgate; 

however, unlike many other studies, this boundary accounted for a cow-calf operation in one country, 

France, with animals ready for fattening transported to another country, Italy. All inputs and outputs 

(including transportation) associated with each stage were accounted for, and impacts were scaled to 

a FU of 1 kg LW (described as bodyweight). The authors considered a range of impact categories made 

up of GWP, AP, EP, cumulative energy demand (CED) and land use (LU) reported as land occupation. 

Regarding allocation of burdens to coproducts of the cow-calf operation, a mass approach was 

adopted along with a sensitivity analysis to consider the effect of this assumption. Forty French farms 

and 14 Italian farms were modelled based on best available data. The authors found that the burdens 

arising directly from the farms were greater than upstream processes in general; the only exception 

to this finding was CED, where energy demand was higher for off-farm processes for production of 

feed and agrochemicals. In terms of total impacts, the authors highlighted positive correlations 

between direct environmental burdens (GWP, AP and EP) and resource requirements (CED and LU) 

and pointed out that agricultural policy design needs to account for multiple indicators rather than 

focusing on one. 

In Italy once again, Buratti et al. (2017) compared the CF of conventional and organic beef 

production systems. Data were collected from two case study farms in the Umbria region of Italy, both 

of which operated as cow-calf systems rather than specialist fattening operations. The system 

boundary was from cradle to farmgate, and the FU was 1 kg LW of heifers and bullocks ready for 

slaughtering. Feed production primarily occurred on each of the farms, and burdens arising from 

fodder were modelled based on production data provided by the farms. The few imported products 

were treated as background processes and sourced from ecoinvent V3. Fertilising strategies differed 

between the enterprises. For example, the ‘organic’ system solely used livestock manure to fertilise 

feed crops, while the ‘conventional’ system used mineral N in addition to manure. Both systems 

transported excess manure to nearby but external cropland. GHG emissions were estimated using 

IPCC (2006) tier 2 guidelines for all foreground sources, and, regarding enteric fermentation, the 
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authors estimated Ym values (CH4 conversion factors) according to the DE% (digestible energy) of the 

feed. The authors reported that lower GHG emissions were generated when producing organic feed 

due largely to lower mineral N requirements; however, interestingly, this did not translate to total CF 

rankings. The conventional system had a lower CF than the organic system, primarily driven by the 

shorter finishing times required. 

de Figueiredo et al. (2017) examined the GHG balance and CF of three pasture-based beef 

finishing systems in Brazil. Three pasture systems all consisting of Brachiaria were defined as: a 

degraded pasture receiving no external inputs; a managed pasture receiving annual fertiliser with 

animals receiving strategic supplementation consisting of maize bran (82%), milled soybean (14%), 

urea (3%) and mineral salt (1%) for a six-month period during dry season at a rate of 4 g/kg 

bodyweight; and a crop-livestock-forest integration system, a more complex system involving 

afforestation and rotational crop production and the same supplementation described under 

managed pasture. Both values were calculated using IPCC (2006) guidelines; the GHG balance was 

reported in terms of land area (1 ha), whereas the CF was reported as 1 kg LW leaving the farmgate. 

On an area basis, degraded pasture was found to have the lowest GHG balance, due to considerably 

lower stocking rates and no fertiliser requirement. Nevertheless, this finding was reversed in terms of 

1 kg LW and degraded pasture was found to be the least efficient system due to low animal 

productivity. Between the two improved pastures, managed pasture was found to have considerably 

lower emissions (in terms of LW) than crop-livestock-forest, with livestock productivity again being a 

key factor. The crop-livestock-forest system brings its own merits in terms of other impact categories 

not assessed, such as improved biodiversity and utilising land to produce timber and crops as 

coproducts from the system. Overall, the authors conclude that land designated as degraded pasture 

should be improved wherever feasible. This study further questions the use of area as a FU for system-

level environmental evaluation. 

Florindo et al. (2017) used LCA methodology in combination with life cycle costing (LCC) to 

evaluate both the CF and economic performance of beef cattle in the Brazilian Midwest. The authors 

point out that LCA studies often recommend mitigation strategies to reduce environmental footprints 

while failing to account for economic viability, a trade-off they explicitly consider. Primary data for the 

study, including machinery costs and management activity, were collected directly from a beef farm 

comprising 1,350 ha of grassland. The farm maintains 1830 animals consisting of breeding stock as 

well as growing and finishing cattle. As part of the diversification strategy, the farm is split into four 

different production systems, differentiated by feeding regimes, stocking densities and slaughter 

weights. Feeding regimes were determined as with or without strategic supplementation which varied 

depending on the life stage of the cattle (e.g. creep feed). The protein mineral supplement included 
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cornmeal (36%), soybean meal (12%) and urea (11%). Creep feed was made up of 30% cornmeal and 

51% soybean meal, while a 14% protein ration provided based on LW consisted of 72% cornmeal and 

18% soybean meal. GHG emissions were calculated according to IPCC (2006) tier 2 guidelines. 

Regarding LCC, the production system with the longest duration in terms of grazing was found to be 

the most cost-effective feed source, due to reduced supplementary feeding requirements. However, 

despite this positive aspect, it also resulted in the largest total financial cost due to lower stocking 

densities, and therefore, greater capital expenditure for land-use. The same finding was true for GHG 

emissions; higher stocking rates and lower grazing durations generated lower CFs, despite the 

subsequent lower finishing weights. This demonstrates the benefits of strategic supplementation, 

particularly in geographical regions affected by severe weather (extremely dry seasons in this 

instance). 

Utilising interdisciplinary skills and expertise, Hessle et al. (2017) examined how Swedish beef 

and milk production systems could be environmentally and economically optimised under a range of 

different scenarios. Input was provided by experts in economics, LCA and supply chain management. 

The focus of this study was the environmental comparison of the reference situation (business-as-

usual) with three hypothetical yet realistic scenarios. The three expertly-designed scenarios were 

based around Swedish environmental objectives and set as follows: an ‘ecosystem’ scenario aimed at 

reducing impacts on biodiversity; a ‘nutrient’ scenario which focused on optimising plant nutrient use 

and supply; and a ‘climate’ scenario primarily concerned with reducing anthropogenic GHG impacts. 

The overarching goal of each alternative scenario was to maintain or improve production efficiency, 

while simultaneously mitigating environmental impacts. Once the study panel had agreed upon the 

alternative systems, LCA models were constructed using a combination of literature and expert 

opinion. In most instances, the improved systems demonstrated reduced negative impacts. However, 

there were notable trade-offs; for example, the ecosystem scenario required more land being used as 

grassland to improve biodiversity, which in turn caused negative impacts on eutrophication 

(freshwater and marine) and cumulative energy demand across both beef and dairy systems. Despite 

this, the authors concluded that a common denominator in improving these livestock systems was 

more efficient use of resources such as energy and feed. 

Tichenor et al. (2017) analysed differences in environmental performances between 

intensively managed grass-fed beef production and confinement dairy beef production systems in the 

Northeast of the USA. The system boundary was from cradle to farmgate and the authors considered 

hot carcase weight as the FU to maximise comparative potential with previous US studies. The impact 

categories considered were GWP, AP, EP, fossil fuel demand, water depletion and LU. For dairy beef, 

the authors adopted biophysical allocation at the ratio of 9.4:0.4:90.2 for beef/veal/milk, respectively. 
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They also considered economic allocation in a sensitivity analysis, at the rate of 7.8:0.9:91.3. Across 

GWP, EP, AP and LU, grass fed was found to have higher burdens than dairy beef. On the other hand, 

dairy beef required more fossil fuel and water than grass fed. The authors also considered impacts on 

a per ha basis, which resulted in lower AP and EP burdens for grass fed. A sensitivity analysis to account 

for carbon sinks in grassland was also considered. While this inclusion substantially reduced the GWP 

of grass fed, it was not enough to offset the benefits of productivity from DB. The authors echoed the 

argument of Berton et al. (2017) that future research should consider multifaceted aspects of grass 

fed systems that are socially important. 

Wiedemann et al. (2017) examined resource use and GHG emissions associated with seven 

Australian feedlot beef systems. The authors adopted a gate to gate approach, with a primary focus 

on impacts arising from the grain-finishing stage. The FU for comparisons between the finishing stages 

was 1 kg LWG, while values for the entire system (including cow-calf enterprise) were reported as 1 

kg LW. Three classes of cattle were considered: short-fed (55 – 80 days) for domestic market; mid-fed 

(108 – 164 days) and long-fed (> 300 days) for alternative export markets. Similar to Hyland et al. 

(2016), Wiedemann et al. (2017) found that CH4 emissions aggregated across enteric fermentation and 

manure management were the most significant contributors to emissions intensities. Across the three 

management strategies, long-fed generated more GHG emissions than mid-fed which in turn 

generated more emissions than short-fed, due largely to the length of production cycles. The same 

rankings were observed for fossil energy demand (as MJ). However, the opposite rankings were noted 

for water consumption, an impact category with high importance in the arid regions of Australia. While 

the differences were not significant between short- and mid-fed, long-fed cattle had considerably 

lower freshwater usage due to reduced irrigated water usage. In terms of cradle to gate analysis, the 

finishing systems were found to contribute 26 – 44% of the total emissions intensity, with higher 

maximum impacts (up to 72%) recorded for total energy demand. The authors note that switches from 

pasture based to grain-based systems have reduced Australia’s national emissions intensity from beef 

cattle, but these switches have been met with a trade-off of increased national energy demand. This 

signifies the complexities of drawing conclusions across multiple impact categories. 

Willers et al. (2017) sought to identify environmental hotspots in semi-intensive beef 

production systems in Brazil’s Northeast. The study accounted for two farms: the cow-calf operation 

and a separate but nearby finishing system. Similar to most beef LCA studies, the authors adopted a 

cradle to farmgate system boundary and a FU of 1 kg LW leaving the finishing farm. Primary data were 

gathered from the managers of both farms, while background processes were sourced from ecoinvent 

V2. The authors considered five impact categories: GWP (reported as climate change); AP (reported 

as terrestrial acidification); EP (reported as freshwater eutrophication), LU (reported as agricultural 
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land occupation) and fossil fuel depletion (FD). Following Berton et al. (2017), Willers et al. (2017) used 

mass allocation to disentangle burdens arising from coproducts at the cow-calf stage. Regarding the 

identification of hotspots, the authors diverted from conventional approaches and considered pasture 

processes as separate entities to their modelled livestock. This resulted in an unusual attribution of 

the overall burdens, whereby “grassland production” has higher effects on all impact categories than 

“livestock burdens”, making inter-study comparison of the results (de Vries et al., 2015) rather 

difficult. 

Bragaglio et al. (2018) analysed the environmental footprints of a range of different beef 

production systems in Italy utilising data collected from 25 farms. The systems studied were: 

specialised extensive; high grain fattening; intensive cow-calf constantly kept in confinement; and 

native breed (Podolian) maintained on pasture and finished in housing. The authors considered GWP, 

water depletion, LU, AP and EP within a system boundary set as cradle to farmgate and a FU of 1 kg 

LW. In terms of GWP, the intensive systems (high grain fattening and cow-calf confinement) were 

found to have lower impacts due largely to improved growth rates. However, the authors found that 

the systems with durations of pasture grazing (specialised extensive and Podolian) had lower AP than 

cow-calf confinement. There was no significant difference noted for water depletion, while high grain 

fattening and Podolian demonstrated the lowest burdens in terms of water quality (EP). Significantly 

higher LU was required for specialised extensive and Podolian; however, the authors also 

acknowledged that competition with human edible feed was lower for the grazing systems, 

particularly Podolian. A theme recurrent throughout grazing livestock LCA studies, namely the 

omission of ecosystem services and other societal benefits (e.g. improved animal welfare and meat 

quality) provided by grassland systems, is also highlighted by the authors. Bragaglio et al. (2018) 

conclude by acknowledging the importance of future LCA studies addressing these aspects of livestock 

systems that are more difficult to quantify. 

Table 1.3 summarises the analytical approaches adopted by the 14 papers reviewed above, 

with a particular attention to their treatment of uncertainty. Overall, it demonstrates a considerable 

gap in knowledge within the livestock LCA community of uncertainty inherent in various farming 

systems, a key issue initially raised in Section 1.1. For example, none of the 14 studies used individual 

livestock data, which means intra-herd distributions of animal properties and performances could not 

be considered. Eight out of 14 papers did use farm-level aggregated data; however, only one of these 

studies included primary information on forage quality, a parameter widely known to be affected by 

farm management and, in turn, contribute to the uncertainty surrounding CH4 emissions by enteric 

fermentation. Furthermore, none of the studies adopted site-specific emission factors for calculating 

GHG emissions. This is unsurprising given the timeframe required to measure GHG fluxes; yet, this 
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also opens an opportunity to improve accuracy of on-farm emissions intensity at relatively low cost. 

Finally, only three studies conducted MC analysis, reiterating the lack of attention bestowed upon 

uncertainty on the whole (Imbeault-Tétreault et al., 2013). All papers reported uncertainty complexity 

Tier 1, defined by Igos et al. (2018) as the inclusion of sensitivity and scenario analyses. The three 

papers identified in Table 1.3 which included MC analysis did not comply with the prerequisites for 

Tier 3, or advanced, uncertainty complexity, defined as using statistical analyses, such as correlation 

coefficients, to explain acknowledged uncertainties.  

1.4 The North Wyke Farm Platform 
As already mentioned in Section 1.1, studies carried out in this thesis, primarily Chapters 3, 4 and 5, 

will make extensive use of high-resolution data collected at the NWFP so that the degree of 

uncertainty surrounding LCA models can be quantitatively evaluated. While information specific to 

each analysis will be provided within the respective chapter, it would be useful to summarise here the 

overall farm design that is relevant across multiple chapters. Given the NWFP’s role as a UK National 

Capability facility, this design was largely beyond the author’s control. 

The NWFP is located in Devon, a southwest county of England, UK (50°46’10”N, 3°54’05”W) 

and consists of three hydrologically isolated small-scale (21 ha) pasture-based livestock farms locally 

known as “farmlets” (Figure 1.3). Each of the three farmlets is composed of seven fields as well as a 

winter housing facility and operates under a different pasture management system, with swards of: 

(1) permanent pasture (PP), which has not been reseeded for at least 20 years; (2) white clover 

(Trifolium repens cv. Aberherald)/high sugar perennial ryegrass (Lolium perenne cv. AberMagic) mix 

(WC), which aims to maintain 30% ground cover by white clover; and (3) high sugar perennial ryegrass 

monoculture (HS), which utilises the latest improved grass varieties under a regular reseeding 

programme. PP can be seen as business as usual, or a control, as approximately 82% of English 

grasslands are managed as permanent pastures; the remaining 18% are typically reseeded every 3-5 

years (DEFRA, 2017). Of the latter 18%, 74% of livestock farmers sow at least part of their land with a 

clover mix (i.e. WC), while 62% of farmers include high sugar grasses in their swards (DEFRA, 2018). 

When successfully established, clover is generally considered to be beneficial both economically and 

environmentally because its nitrogen (N)-fixing properties reduce inorganic N requirements (Andrae, 

2016). Grasses with higher levels of water soluble carbohydrate, on the other hand, are thought to 

reduce N losses to urine by improving N (or protein) use efficiency in the rumen while simultaneously 

improving production performance (Parsons et al., 2011). 

The NWFP’s cattle enterprises act as a finishing operation. Every autumn, 30 Charolais × 

Hereford-Friesian spring-born calves enter each farmlet at the point of weaning. At this time, animals 
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are blocked between sexes and then randomly allocated to the farmlets from an adjacent but separate 

cow-calf enterprise, of which grasslands are permanent pasture similar to the PP system. After 

entering the NWFP, animals are typically housed from October to April to avoid destruction of soil 

structure during the wet season, then moved and kept outdoors on their respective pastures until 

they reach target weights of ca. 555 kg for heifers and 620 kg for steers and estimated meat quality 

scores (RPA, 2011) of “R” (conformation) and “4L” (fat). If animals do not meet these finishing criteria 

at pasture, a second housing period may be required. Throughout housing periods, animals are fed 

silage comprising grasses and legumes harvested from their own allocated systems (PP, WC or HS). 

While the NWFP’s general principle is to finish cattle solely off pasture and silage, depending on the 

quantity and quality of silage produced in any year, strategic supplementary feed to balance energy 

and protein demands may be used and recorded. When strategic feeding occurs, its quantity is set at 

a uniform rate across animals within each farmlet. Cattle are housed in barns deep-bedded with barley 

(Hordeum vulgare) straw, and farmyard manure (FYM) produced is stored temporarily in middens until 

spreading in the next spring following first silage cut. Animals on each farmlet are rotated across the 

seven fields, which are also used for sheep grazing and silage production. Cattle and sheep never 

occupy the same field at the same time. 

Data collection on the NWFP began in 2011, when it was established with the support of the 

Biotechnology and Biological Sciences Research Council (BBSRC) as a national capability. Prior to 2013, 

all three farmlets were composed of permanent pastures largely (>60%) dominated by perennial 

ryegrass. Between 2013 and 2015, the WC and HS farmlets were reseeded with white clover and high 

sugar perennial ryegrass, with the choice of cultivars based on the recommendation list of latest 

germplasms according to the National Institute of Agricultural Botany (NIAB). Throughout this 

transition period, the WC and HS fields underwent ploughing, ring rolling, harrowing, herbicide 

spraying, drill seeding and flat rolling; the PP system remained unaltered (Table 1.4). On crop 

establishment, the HS (and PP) pastures started receiving standard N, P and K fertilisation and FYM, 

whereas the WC fields received a significantly lower amount of N, predominately in the form of FYM. 

Soil tests were conducted to assess nutrient status and health post-ploughing. The WC and HS soils 

were found to be generally acidic, resulting in a one-off application of lime to neutralise the acidity at 

variable rates between 150 kg/ha and 725 kg/ha. In addition, the WC system was found to be low in 

P levels, and consequently required higher levels of P2O5 application than the other two systems in 

the first year. Further information on the NWFP’s history, soils and hydrology is provided elsewhere 

(Orr et al., 2016). 
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1.5 Thesis outline and structure 
The remainder of the thesis will be split into six chapters, each with a distinct objective as detailed 

below. Collectively, they are designed to address the overall aim of the thesis: to reduce uncertainty 

associated with environmental foot-printing of meat production systems. 

Chapter 2: 

Objective 1: Quantify the environmental performance of livestock production systems using steady-

state herd data that can act as a baseline for methodological comparison. 

This first exercise is carried out using national-level datasets for pig production. Three impact 

categories (GWP, AP and EP) are considered under three production efficiencies (average, top 25% 

and top 10%). Implicitly, this approach assesses the environmental footprint of a “representative 

animal”, whereby all animals within a given herd, or within a whole country in some cases, are 

assumed to perform equally. The results from this investigation form the comparative basis for 

subsequent methodological developments within this thesis and will also feed into the monogastric–

ruminant comparison carried out as part of the final objective (Chapter 6). Uncertainty assessment in 

Chapter 2 aligns with complexity Tier 1 (basic) and Tier 2 (intermediate) as described by Igos et al. 

(2018). 

Chapter 3: 

Objective 2: Develop a novel approach to calculate carbon footprints of individual animals that 

constitute a herd. 

This chapter calculates gate-to-gate (partial) CFs of all finishing cattle on the NWFP in 2015/2016. 

Pasture and silage quality are analysed to improve the accuracy of animal-originated GHG emissions, 

and in particular CH4 emissions arising from enteric fermentation. The primary novelty of this study 

lies in the discovery that poorly performing animals with slower growth rates generate exponentially, 

rather than linearly, higher levels of greenhouse gas emissions. This suggests that representative 

animal approaches commonplace in the literature (and reproduced in Objective 1) may, in fact, be 

underestimating environmental burdens by failing to account for uncertainty caused by these extreme 

livestock. At the same time, the study also demonstrates the potential to drastically reduce GWP from 

cattle production through selection of environmentally friendlier, more productive animals. 

Consideration of uncertainty in Chapter 3 would be classified as complexity Tier 3 (advanced) 

according to Igos et al. (2018) due to the inclusion of correlation analysis i.e. between average daily 

gain (ADG) and GWP. Tiers 1 (sensitivity and scenario analyses) and 2 (MC analysis) are also addressed. 
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Chapter 4: 

Objective 3: Derive site-specific emission factors for GHG emissions from soils through a static chamber 

field experiment. 

Following the literature review in Section 1.3, it became clear that livestock LCA studies heavily relied 

on IPCC emission factors, which may or may not be applicable to specific sites of each study. In order 

to reduce this uncertainty, this chapter develops site-specific emission factors for the NWFP through 

a field experiment using static chambers. Plots are established on each of the three farmlets and 

received treatments of cattle urine and dung. Following a six-month sampling campaign, emission 

factors are developed for the subsequent use in LCA. 

Chapter 5: 

Objective 4: Evaluate the impacts of utilising site-specific emission factors on farm-level uncertainty in 

carbon footprint. 

Combining the animal-by-animal method developed in Chapter 3 and emission factors derived in 

Chapter 4, the penultimate chapter provides a full CF model of beef production at the NWFP over two 

production cycles from 2014 – 2017, including the suckler herd that supplies calves from outside the 

NWFP boundary. In addition to the N2O emission factors based on original measurements, site-specific 

CH4 conversion factors are also derived using a dataset from an experiment external to this thesis. 

Using on-site emission factors is shown to affect overall footprints, resulting in this instance with 

increases to the CF point estimate. Furthermore, the confidence interval for GWP is found to be 

narrower under on-site emission factors. Based on these findings, potential benefits of local GHG 

measurements are discussed. As in Chapter 3, uncertainty assessment in Chapter 5 covers all three 

Tiers defined by Igos et al. (2018).  

Chapter 6: 

Objective 5: Propose new LCA metrics (functional units) that can represent human nutritional value of 

different livestock production systems without end-point modelling. 

Similar to the vast majority of agri-food LCA studies, Chapters 2, 3 and 5 all employ LCA based on a 

mass-output of a livestock production system. One of the major criticisms against this approach is that 

it can only account for product quantity rather than quality. To demonstrate that meat produced 

under different management strategies can have a profound effect on product quality, the final 

chapter looks ahead to potential approaches for more accurate comparisons of livestock systems 

within the LCA framework. Linking findings from Objective 1 (pork) and Objectives 2, 3 and 4 (beef), 
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the study considers how relative CFs of beef, chicken, lamb and pork production systems are altered 

when the FU is changed to account for levels of omega-3 polyunsaturated fatty acids contained in the 

final products, and, more generically, the nutrient density of meat produced under different farming 

systems. The chapter concludes with a discussion on the implications and necessities of including 

product quality in comparative livestock LCA.  

Chapter 7: 

The final chapter provides a general conclusion and a discussion on the contribution to science 

achieved through this thesis. Additionally, major limitations and future opportunities are identified 

and discussed.    
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Table 1.1. Severity factors for selected chemicals associated with each impact category (Heijungs et al., 1997). These 
values determine how much an individual substance contributes to overall environmental footprints. 

Impact category Substance Factor 

GWP (CO2-eq) Methane (CH4) 25 

 
Nitrous oxide (N2O) 298 

AP (SO2-eq) Ammonia (NH3) 1.6 

 
Nitrogen oxides (NOX) 0.5 

 
Nitrogen dioxide (NO2) 0.5 

EP (PO4
3--eq) Ammonia (NH3) 0.35 

 
Chemical Oxygen Demand (COD) 0.022 

 
Nitrate (NO3) 0.1 

 
Nitrous oxide (N2O) 0.27 

 
Nitrogen oxides (NOX) 0.13 

  Phosphorus (P) 3.06 

Note: IPCC (2013) have since updated GWP factors. CH4 and N2O now equate to 28 and 265 CO2-eq, 
respectively. These updated values are used in Chapters 3 and 5 while the older values adopted by 
the CML impact assessment (encompassing GWP, AP and EP) are used in Chapter 2. 
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Table 1.2. Overview of tests for validating data and uncertainty (Bauman and Tillman, 2004). These are standard 
considerations in LCA to determine the representativeness of data utilised in a given study. 

Type of test  Purpose of test 

Completeness check 
 

Check for data gaps in inventory or 
completeness of inventory 

Consistency check 
 

Check appropriateness of life cycle modelling 
and methodological choices given the defined 
goal and scope 

Uncertainty analysis 
 

Check the effect of uncertain data 

Sensitivity analysis 
 

Identify and check the effect of critical data 

Variation analysis 
 

Check the effect of alternative scenarios and 
life cycle models 

Data quality assessment 
 

Assess the degree of data gaps, approximate 
data and appropriate data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



33 
 

Table 1.3. A breakdown of various topics covered in the reviewed literature. Although some studies examine a range of impact categories, emission factors reported here pertain to GWP 
only.  

Study LWa change (over time) No. of animal categoriesb Farm data source Feed quality Emission factors Monte Carlo analysis 

Dick et al. (2015) ADGc split between first 

year and subsequent 

years 

9 National statistics Existing literature IPCC Tier 2  

Mogensen et al. (2015) Fixed ADG per system 6 Existing literature Existing literature Danish specific & IPCC 

Tier 2 

 

Wiedemann et al. (2015) Fixed ADG 4 (beef only) Farm National statistics Australian specific ✓ 

Hyland et al. (2016) Monthly LWG for 

growing stock 

Unspecified Farm National statistics UK specific & IPCC 

Tiers 1 & 2 

 

Alemu et al. (2017) Fixed ADG per category 7 Existing literature and 

experimental data 

Measured data IPCC Tier 2 and 

Canadian specific 

 

Berton et al. (2017) ADG varied across three 

points of time on each 

farm 

5 Farm Existing literature French specific and 

Tier 2 IPCC 

 

Buratti et al. (2017) Fixed ADG per animal 

category 

7 Farm Existing literature IPCC Tier 2  

de Figueiredo et al. (2017) Fixed ADG per system Unspecified Existing literature Unspecified Brazilian specific and 

IPCC Tier 1 

 

Florindo et al. (2017) ADG varied by age and 

scenario 

4 Farm Unspecified IPCC Tier 2  

Hessle et al. (2017) Unspecified 5 National statistics Existing literature IPCC (unspecified tier)  

Tichenor et al. (2017)d Unspecified 6 Existing literature Not applicabled Not applicabled  

Wiedemann et al. (2017) ADG varied by farm and 

scenario 

3 Farm National statistics Australian specific ✓ 

Willers et al. (2017) Unspecified 4 Farm Unspecified IPCC (unspecified tier) ✓ 

Bragaglio et al. (2018) Fixed ADG per system 3 Farm Existing literature IPCC Tier 2  

a Liveweight; b By age, sex and breed; c Average daily gain; d Only examines land use. 
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Table 1.4. Farm activities carried out under each system of the North Wyke Farm Platform. The white clover (WC) and 
high sugar grass (HS) farmlets underwent reseeding between 2013 and 2015 whilst the permanent pasture (PP) farmlet 
remained unchanged. 

Activity PP WC HS 

Ploughing  ✓ ✓ 

Rolling ✓ ✓ ✓ 

Harrowing  ✓ ✓ 

Seeding  ✓ ✓ 

Fertiliser spreading ✓ ✓ ✓ 

Herbicide spraying  ✓ ✓ 

FYM spreading (solid) ✓ ✓ ✓ 

Liming  ✓ ✓ 

Mowing ✓ ✓ ✓ 

Silage making ✓ ✓ ✓ 
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Figure 1.1. The systematic steps involved in carrying out an LCA study. Definition of goal and scope is often an iterative 
process whereby data restrictions identified during inventory analysis may require reassessment of, for example, system 
boundaries. A study’s interpretation is often dependent on the intended audience, with scientific reports typically 
containing more rigorous analysis than a company’s in-house product comparisons.  
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Figure 1.2. Emissions and losses characterised into appropriate impact categories. Sourced from Bauman and Tillman 
(2004). Similar to Table 1.1, this graph demonstrates how individual substances contribute to overall environmental 
footprints. 
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Figure 1.3. Map of the North Wyke Farm Platform in Devon, UK. Green = permanent pasture (PP); Blue = white 
clover/high sugar grass (WC); Red = high sugar grass monoculture (HS).  
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Chapter 2 - Environmental trade-offs of pig production systems under 

varied operational efficiencies 
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2.1 Introduction 
As discussed in Chapter 1, ruminant animals are the primary drivers of agriculture-related global 

warming through enteric fermentation. Notwithstanding, recent evidence suggests that production of 

monogastric animals also require significant attention, as they compete for human edible-food and 

land resources—more so than pasture-based ruminant livestock, and also contribute to the 

environmental burden through water and atmospheric pollution (Wilkinson and Lee, 2018). In 

particular, pork is the most consumed meat globally (OECD, 2017), and its production is estimated to 

emit 668M tonnes CO2-eq/yr, or 9% of total livestock emissions (Gerber et al., 2013). As the author of 

this thesis previously concluded following a comprehensive review of recent pig life cycle assessment 

(LCA) studies (McAuliffe et al., 2016), it is imperative to develop pig production systems, as part of a 

food security framework, that provide the right balance between economic, environmental and 

societal sustainability. To date, various authors have demonstrated that improved sow efficiency, 

through higher numbers of piglets born alive and reduced dry periods, can decrease environmental 

burdens (Reckmann and Krieter, 2015). Furthermore, higher feed conversion efficiency (FCE) has also 

been shown to reduce the environmental impact and land-use per pig unit, as emissions and losses 

associated with the feed production stage become smaller (Nguyen et al., 2011). However, research 

investigating these effects on the system-wide footprint is rather limited, and, consequently, the 

environmental benefit of economically improved pig operations is not clearly understood. 

In order to fill this gap in literature and at the same time provide a baseline for methodological 

development carried out later in the thesis, this chapter applies a common LCA framework to national-

level information of intensive pig production systems in the Republic of Ireland (RoI) and investigates 

their environmental performances under different production efficiencies. RoI was selected as a case 

exemplar primarily for three reasons: (1) the lack of previous LCA studies covering the pig industry; (2) 

the quality and detailedness of industry statistics; and (3) the proximity of production systems to those 

in the UK, where cattle production data were obtained for subsequent chapters. Pig production is the 

third most important agricultural sector in RoI based on gross agricultural output (Teagasc, 2016). Yet, 

contrary to the country’s beef and dairy sectors that have previously been examined for their 

environmental impacts (Casey and Holden, 2005, Casey and Holden, 2006), and despite nationwide 

discussions on the merits of LCA in national GHG (greenhouse gas) evaluations (Schulte et al., 2011), 

the Irish pig industry has not been the subject of a systems study to date. 

As of June 2015, there were 1.54 million pigs in RoI and, with an annual net production of just 

over 276,000 tonnes, the national self-sufficiency rate was 195%; nearly half of total production was 

exported. Similar to many parts of the UK, most pig production in RoI occurs on large-scale integrated 

units, where piglets are born, weaned and fattened on the same farm. On these farms, feed is typically 
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purchased from specialised production mills, but with the recent volatility of international cereal 

prices, a small number of Irish pig farmers have constructed their own on-farm mills to minimise costs 

and maximise nutritional control over their feed formulations. In addition to the baseline analysis 

whereby feed is assumed to be mass-produced, the present study investigates the effect of this ‘local 

feed’ movement on the environment footprint. While a range of LCA studies have considered 

differences in feed composition (Garcia-Launay et al., 2014, Ogino et al., 2013, Stone et al., 2012), no 

identified studies have considered the location and the ownership of feed mills. 

In RoI, 7.4% of the total agricultural land is used for arable crop production and the country is 

close to self-sufficiency (encompassing human, animal and industrial uses) for major cereals (DAFM, 

2009). However, many feed mills source a significant portion of cereal ingredients from overseas, 

especially when the international market is in a favourable condition (in regard to cereal prices and 

exchange rate). Replacing these cereals with domestically grown barley (Hordeum vulgare) and wheat 

(Triticum spp.) could potentially contribute to lower total transport distances, more efficient use of 

manure (nutrient balancing) and, perhaps to a lesser extent, long-term food security. The present 

study tests this hypothesis by investigating whether the reduced transportation, when coupled with 

domestic conditions for crop production (and the associated emissions), would alter the overall LCA 

results. Finally, four sets of sensitivity analyses and a MC analysis are conducted to evaluate the effects 

of uncertainties associated with model assumptions commonplace amongst LCAs using aggregate 

statistics. The sources of uncertainties considered are: different allocation methods, land use change 

(LUC), utilisation of pig manure by crop farmers, on-farm energy usage, and EFs for on-farm activities. 

2.2 Materials and methods 
In this study, LCA was applied to the Irish pig industry under both a typical industry setting (baseline 

analysis) and altered production systems (scenario analyses).  

2.2.1 Goal, scope and functional unit 

The primary goal of this study was to compare environmental performances of intensive pig 

production units operating at different efficiencies and evaluate the effectiveness of alternative 

strategies to improve sustainability of the industry. The system boundary for the baseline analysis was 

set as being from the ‘cradle’, or the production of input materials, to the end of the slaughtering 

process (Figure 2.1). The environmental performance of each system was evaluated with the 

functional unit of 1 kg carcase weight (CW), of finishers and cull sows combined, as measured at the 

time when the intermediate product (dressed carcase) exits from the slaughterhouse. This functional 

unit was adopted to represent a wide range of pigmeat both (a) directly sold to retailers, as well as (b) 

initially distributed for secondary processing. Consequently, secondary processing and supply chain 

distribution beyond the abattoir were excluded from the model. The aforementioned review by the 
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author of this thesis has noted, however, that cross-system comparison of environmental 

performances is extremely challenging when scopes and functional units are not shared between 

different analyses (McAuliffe et al., 2016). Motivated by this criticism, outputs based on the auxiliary 

functional unit of 1 kg liveweight (LW), as measured at the time when the intermediate product (live 

animal) exits from the farm gate, is also reported in this study. For the conversion of LW to CW, a kill-

out rate of 76% was assumed based on data from 2014 (Teagasc, 2014). 

2.2.2 Life cycle inventory analysis (LCI) 

2.2.2.1 Feed production 

Feed composition data for the baseline analysis were obtained from a large-scale commercial mill in 

RoI. These data were representative of commercially available feed rations used in the Irish pig 

industry during February 2015. Diet formulations were distinguished between dry sows, lactating 

sows, weaners and finishers, and replacement gilts that have reached the finishing weight but are yet 

to be served were assumed to consume the same amount of feed as dry sows. The major ingredients 

for these feed rations included barley, maize (Zea mays), soybean (Glycine max) products and wheat 

(Table 2.1). All rations were formulated using the principle of least-cost rationing and balanced for 

macro and micro nutrients through the addition of supplements (mineral premix and synthetic amino 

acids: SAA) to meet animal requirements (maintenance and production). Environmental implications 

of using premix supplements were considered to be the same as the production of calcium carbonate 

(Mosnier et al., 2011). Environmental burdens of SAA, of which mass accounted for < 1% of total mass 

of ration, were excluded from the current LCA model due to unavailability of commercial sensitive 

data pertaining to the exact SAA composition within the recipe. A similar approach has been employed 

by Dourmad et al. (2014) and Nguyen et al. (2010b) and, while SAA have a large environmental 

footprint when evaluated on a per kg basis (Garcia-Launay et al., 2014; Mosnier et al., 2011), those 

arising from their production process at a system-level are generally small due to minimal quantities 

mixed into the feed (Strid Eriksson et al., 2005). No medicines or growth-promoting agents were 

included in the compound feed rations. The nutritional composition of the feed ingredients presented 

in Table 2.2 was compiled based on data from (FAO, 2015a). Background data for crop production 

together with associated yields and environmental burdens were sourced from the Agri-footprint 

database (Durlinger et al., 2017), in which impacts of pesticide application events were considered, 

while those of upstream production were not. Based on data provided by the mill manager, it was 

assumed that 11 kWh of national grid electricity were used to produce 1000 kg of the mixed feed. As 

this feed was wet-mix, heat was not required for compression. 

Information on origins and transportation of crop ingredients was provided by the mill and an 

importation company. As of February 2015, soybean products were imported from Argentina and 
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shipped from Rosario Harbour. French maize, wheat and beet (Beta vulgaris) pulp were transported 

from Boulogne. Barley and wheat from the UK were delivered from Liverpool, while premix 

supplements were transported by road from Belfast. All sea-based cargo was delivered to Ringaskiddy 

harbour in Cork, RoI, and the nautical distances were calculated using Portworld (2016). From 

Ringaskiddy, these ingredients were transported using trucks, and the road-based distance for this 

segment was calculated using a geographical information system (Table 2.2). 

The environmental burdens arising from crops with multiple outputs were allocated by means 

of economic allocation. While splitting the responsibility of downstream emissions and losses into 

multiple upstream production processes could potentially disrupt mass and energy balances 

(Weidema and Schmidt, 2010), system expansion to cover the entire value chain of upstream products 

such as soybean oil and rapeseed (Brassica napus) meal was considered to be impractical given the 

scope of the present study (Ardente and Cellura, 2012). Following the recommendation by preceding 

studies that assignment of environmental burdens between crop co-products is best carried out by 

way of economic allocation (Williams et al., 2006), this method was adopted for background crop 

processes of the baseline analysis. Economic values of co-products were adopted from the Agri-

Footprint database (Durlinger et al., 2017), of which primary data originate from Vellinga et al. (2013). 

2.2.2.2 Pig production 

Herd performance data were based on national statistics compiled by Teagasc (2014). These data 

covered 84,000 sows or 56% of the national breeding population. While farm size in the original record 

ranged from less than 100 sows to over 2,500 sows, the present study was carried out for the average 

herd size of 752 sows. Three sets of productivity data were used in this study (Teagasc, 2014): those 

representing farms with an average herd performance (AVG), the top 25% farms (T25) and the top 

10% farms (T10), as measured by the number of pigs produced per sow and FCE of growing pigs. 

Consequently, three representative farms were set up for the baseline analysis (Table 2.3). 

Herd dynamics, including the schedule of replacement, was mathematically estimated for 

each of the three representative farms under the assumption that they are operating at steady state. 

Adult males were excluded from the inventory because of the disproportionally large number of 

sperm doses produced by a single boar under artificial insemination systems (Knox, 2016). The derived 

information shows that animals on the T10 herds tend to stay on farm for a longer period of time than 

the T25 herds, but meanwhile consume less than the T25 farms (Table 2.3). The number of piglets 

born alive per sow was highest for T10, and this led to the higher sow feed intake, particularly at the 

farrowing stage (Teagasc, 2014). The T10 herds also had the lowest mortality rates across all stages of 

production. Carcase yields between the three categories were similar, suggesting that the difference 
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in production efficiency is mostly attributable to better management of nutrition and health, rather 

than the difference in the target market. Based on local data provided by McCutcheon (2012), energy 

usage on farm was assumed to be 28 kWh per head (including both sows and finishers), of which 53% 

was consumed in the form of metered electricity and 47% in the form of processed light fuel oil used 

predominately for underfloor heating and ambient temperature regulation. 

Pig manure in RoI is typically utilised as an organic fertiliser. On the majority of pig farms, 

animals are housed on slatted floors, where manure drains, assisted with water hosing, into an 

underground storage tank. Manure is usually stored in temporary tanks for less than one month, and 

then pumped out to an outside storage tank where it remains until receiving farmlands are ready for 

nitrogen (N) application. The pig units are typically large-scale indoor enterprises, and most pig 

farmers do not own enough land for arable production to spread the entire manure-output on (Nolan 

et al., 2012). Consequently, the manure is often transported to nearby arable farms for utilisation. In 

this study, it was assumed that manure was transported 10 km to receiving farmland. Diesel energy 

required for spreading manure was assumed to be 21 MJ per 1000 kg (Nguyen et al., 2010b, Reckmann 

et al., 2013), mostly attributable to the use of a tractor and manure spreader. Both the positive and 

negative effects of pig manure were considered in the baseline analysis, the former as a cause to 

reduce the demand for manufactured fertiliser and the latter as a source of ammonia (NH3), methane 

(CH4), nitrate (NO3
-), nitrous oxide (N2O) and phosphate (PO4

3-) losses. 

2.2.2.3 Slaughterhouse process 

Most LCA studies that include the slaughterhouse within the system boundary demonstrate that, in 

comparison to primary production, the environmental impacts arising from this process are minor 

(Nguyen et al., 2011). Since primary data from Irish slaughterhouses were unavailable, data for the 

slaughtering process were taken from Reckmann et al. (2013), as their production environment in 

Germany was deemed most similar to the Irish situation. These authors report energy usage and 

emissions associated with the abattoir, while assuming that waste products and by-products are 

disposed of as biodegradable materials. Detailed inventory data prepared for the baseline analysis can 

be found in Table 2.4. Water use was not included due to the finding by Reckmann et al. (2013) that 

it had minimal impacts on global warming potential (GWP), acidification potential (AP) and 

eutrophication potential (EP). The carcase yield (kill-out %) for each representative farm, obtained 

from Teagasc (2014), is listed in Table 2.3. 

2.2.2.4 Emissions and losses 

Emission factors used in this study are provided in Table 2.5. The parameters for CH4 emissions were 

taken from the Irish National Inventory Report (Duffy et al., 2017), while N2O emissions were 

calculated using IPCC (2006) guidelines. NOX and NH3 emissions were calculated according to the 
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methodology reported in Nguyen et al. (2011). Nutrient contents in manure were estimated using the 

nutrient balance, where the N, P and K contents in body tissues were subtracted from those in feed 

(Poulsen et al., 2001). Once applied to farmland under typical Irish conditions, 50% of manure N and 

100% of manure P and K were assumed to become available for plant uptake (Government of Ireland, 

2010). For P, 3% of this value is assumed to become lost through leaching (Nguyen et al., 2011). The 

potential impact of using site-specific EFs (rather than region-specific EFs) on uncertainties of LCA 

results will be investigated in Chapters 4 and 5. 

The reduction in GHG emissions due to avoided production of manufactured fertiliser was 

estimated to be 6.6 kg CO2-eq/kg fertiliser N (Wernet et al., 2016), 2.7 kg CO2-eq/kg fertiliser P and 

0.8 kg CO2-eq/kg fertiliser K (Nielsen et al., 2007). Energy savings associated with reduced on-farm 

activities were assumed to be 0.4 MJ diesel/1000 kg fertiliser N (Nguyen et al., 2011). The associated 

reduction in emissions from soil was accounted for in Table 2.5. Reduced emissions from P and K 

application were not included in the model due to their small quantities, which were assumed to be 

spread together with N fertiliser. The complete LCI data for 1000 kg LW at the farm gate are given in 

Table 2.6. 

2.2.3 Impact assessment and interpretation 

SimaPro 8.1 (www.simapro.com) was used to model the studied systems. The three impact categories 

previously identified to be important for pig LCA studies (McAuliffe et al., 2016), namely GWP, AP and 

EP were estimated for the three representative farms with varying levels of productivity using the 

(CML, 2013) baseline impact assessment method. The outputs for the baseline analysis were 

expressed, respectively, in units of kg CO2-eq/kg CW, g SO2-eq/kg CW and g PO4-eq/kg CW. Of the 

various sources of uncertainties surrounding LCA outputs, the effect of those inherent in livestock 

performance and farm management was assessed through: (a) the comparison of the three 

representative farms as discussed in Section 2.2.2, and (b) a range of scenario and sensitivity analyses 

as outlined below. Furthermore, the effect of uncertainties related to on-farm emissions was 

evaluated by means of Monte Carlo analysis and the resultant outputs were compared pairwise 

between the three representative farms. For the latter procedure, parameters were randomly drawn 

over 1000 iterations from the distributions summarised in Table 2.7. 

2.2.3.1 Scenario analyses 

For the first scenario analysis to examine the environmental implications of on-farm feed milling (see 

Section 2.1), data were collected from a small-scale farm-operated mill in the south of RoI. The data 

inventory presented on the right-hand side of Table 2.1 replaced the baseline inventory on the left-

hand side. Based on information provided by the mill manager, it was assumed that 30 kWh of 

electricity was used to process 1000 kg of feed, the level far above what was assumed for the large-
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scale specialist mill (11 kWh) in the baseline analysis. Since the mill is located adjacent to the piggery, 

the on-road transportation process linking the feed mill to the representative farms was eliminated 

from the model (Table 2.6). For the second scenario analysis to examine the consequences of reduced 

transport distances, all imported cereals in the baseline inventory were replaced by domestically 

produced counterparts of the same quantity. To be consistent with the baseline analysis, data related 

to domestic crop production were also sourced from Agri-footprint (Durlinger et al., 2017). 

2.2.3.2 Sensitivity analyses 

The economic allocation method was used in the baseline analysis to separate environmental burdens 

associated with crops with more than a single material flow. A sensitivity analysis was conducted, here 

using mass-allocation, in order to test the robustness of the baseline results. This analysis was 

performed on all crops that had multiple outputs, for example, meal and oil produced from soybean 

and rapeseed. 

Due to the relatively small scale of the Irish pig industry, the baseline analysis of the present 

study assumed that changes in feeding strategy on Irish farms would not cause LUC elsewhere in the 

world. Recent research has shown, however, that the inclusion of LUC in the assessment of soybean 

production systems can increase the resultant GHG emissions by as much as nine-fold when the entire 

crop-growing area is assumed, somewhat unrealistically, to have been forest previously (Maciel et al., 

2016). Under a more reasonable assumption, a UK study by Audsley et al. (2009) posited that, when 

LUC is included in the model, up to 40% of the country’s food-sector emissions would originate outside 

the country. Given the significance of such a potential impact, a sensitivity analysis to examine the 

potential effect of LUC was conducted using information compiled by Durlinger et al. (2017) in 

conjunction with PAS2050-1 (BSI, 2011). Emissions arising from LUC were estimated for rapeseed 

(Germany), soybean (Argentina) and wheat (RoI, Denmark and the UK). For production of barley (RoI 

and the UK), maize (France) and sugar beet (France), land transformation was deemed unnecessary 

(Durlinger et al., 2017). 

In addition, several on-farm assumptions were deemed to require sensitivity analyses. First, 

the inclusion of the fertiliser offsetting effect in the baseline analysis (where manure N, P and K replace 

inorganic nutrients) implicitly assumes that pig manure is perfectly utilised by receiving farmers. 

Although pig manure is a useful by-product, it is difficult in reality to match demand and supply 

without wastage. Therefore, a sensitivity check was conducted to examine the effect of this offsetting 

on the overall results by assuming the other extreme case, whereby manure is applied to arable land 

in addition to manufactured fertilisers (i.e. in excess of crop nutrient requirements), resulting in no 

reduction in fertiliser production. Additionally, while the on-farm energy usage in this study was 
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assumed to be 28 kWh per head, preceding studies show that this value ranges widely across pig farms 

in RoI. Therefore, using the upper limit (45 kWh per head) and lower limit (18 kWh per head) reported 

by McCutcheon (2012), two additional versions of models with high and low energy usage (retaining 

the electricity–fuel oil ratio of 53:47) were generated to examine the effects of this value on the overall 

environmental footprint. 

2.3 Results and discussion 
The environmental impact per kg CW obtained from the baseline analysis is displayed in Table 2.8. A 

detailed breakdown of contributions from all system processes is provided in the Appendix to the 

current chapter (Tables A2.1-A2.3). 

2.3.1 Global warming potential 

GWP of the average (AVG) farm was estimated to be 3.5 kg CO2-eq/kg CW, with the 95% confidence 

interval (accounting for uncertainties surrounding on-farm emissions) ranging between 3.1-3.9 kg CO2-

eq/kg CW. Based on the point estimate, the largest GWP hotspot was emissions arising from feed 

production, accounting for 58% of the total impact (Table 2.8) at a level comparable to other European 

studies (MacLeod et al., 2013, Parsons et al., 2011). Of feed-related impacts, the finisher diet 

accounted for 65%. Maize had higher emissions than other crops driven primarily by its mass input, 

wet-mill processing into maize bran and, to a lesser extent, more intensive fertiliser usage when 

compared to wheat and barley (Durlinger et al., 2017). Road and sea transport together accounted for 

8% of total feed-related emissions. Transportation from Argentina by cargo ship generated 19% of the 

GWP attributable to soybean products, the only group of feed ingredients originating outside Europe. 

All other crop ingredients had considerably lower sea transportation impacts (< 2%). 

On the farm, CH4 emissions from manure management and enteric fermentation respectively 

generated 23% and 5% of total GWP, closely following the results reported by MacLeod et al. (2013). 

N2O emissions arising from manure storage produced 3% of total GWP, while N2O emissions from 

manure application produced 7%. The usage of national grid electricity accounted for 4% of total 

emissions, while light fuel oil burned in a non-condensing boiler was shown to have a relatively small 

effect (1%). Of emissions displaced in the arable sector, the reduction of N production resulted in a 

9% saving of total emissions; on the other hand, the effect of replacing P and K fertiliser production 

was less profound (1%). Slaughtering accounted for 9% of total GWP/kg CW, of which electricity was 

responsible for 79%. This result is similar to the finding by Reckmann et al. (2013), who reported that 

7% of total GWP was generated at the slaughterhouse. Contributions from other processes, including 

farm traction and transport of feed from mill to farm, were all comparatively minimal. 
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2.3.2 Acidification potential 

AP for the AVG farm was estimated to be 43.8 (38.5-48.7) g SO2-eq/kg CW. NH3 emissions from 

manure storage (indoor and outdoor combined) and application to crop fields respectively accounted 

for 26% and 28% of the total AP, making NH3 losses the largest contributor to this impact category. 

Avoided NH3 emissions from replaced inorganic fertiliser resulted in a 4% decrease from the level of 

AP that would otherwise have been produced, again insufficient to offset the large emissions arising 

from manure application. Environmental burdens resulting from NOX were negligible (< 1%). Feed 

production accounted for 45% of the total AP, of which finisher feed represented 66%. These figures 

are comparable with Nguyen et al. (2011) where feed generated 36% of AP, while Reckmann et al. 

(2013) reported a slightly lower 23% contribution from feed. In the current study, maize (27%) and 

barley (26%) were the highest feed-related hotspots. Sea-based transportation accounted for 1.4% of 

total AP. The slaughterhouse generated 3% of the total AP, of which SO2 emissions from combustion 

during electricity production accounted for 83%. 

2.3.3 Eutrophication potential 

EP for the AVG farm was estimated to be 32.1 (28.0-36.5) kg PO4-eq/kg CW. Feed production was the 

highest contributor to EP, accounting for 51% of the total value. Similar to AP, barley and maize were 

the primary sources, producing 28% and 22% of feed-related burdens, respectively. Losses of 

eutrophying substances such as NH3, NO3
-and PO4

3- were the primary sources of EP from crop 

production. NH3 emissions from farm management and manure spreading generated 17% of the total 

EP, while losses of NO3
- from organic fertiliser application amounted to 19%. Environmental burdens 

associated with PO4
3- from manure application on the receiving arable farms were low (1%). The 

slaughterhouse had a higher impact on EP than GWP and AP, totalling to 13%. The majority (85%) of 

these burdens stemmed from higher biochemical oxygen demand (BOD), chemical oxygen demand 

(COD), and increased losses of N and P to water. 

2.3.4 Effect of herd performance 

As discussed in Section 2.2.2, the three representative farms with different levels of productivity (AVG, 

T25 and T10) were differentiated by feed intake, mortality, growth rates and, to a lesser extent, 

carcase yields. Table 2.8 indicates that improvements in production efficiency generally lead to 

smaller environmental footprints. Between the average (AVG) farm and the T10 farm, a 9% 

improvement in feed conversion ratio (from 2.49 to 2.27 kg/kg, as calculated from Table 3) is met by 

6%, 12% and 15% decreases in GWP, EP and AP (p = 0.01, p = 0.03 and p < 0.01 based on Monte Carlo 

pairwise comparisons), respectively. It should be noted, however, that the present method used a 

fixed emission factor per head for CH4 from manure production, which was not adjusted for reduced 

feed use per kg meat production. These percentages should therefore be seen as the lower limits, 
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rather than the expected values, for the effect of improved farm productivity. Differences in GWP, EP 

and AP between the AVG and the T25 farms were also found to be systematic (p < 0.01, p = 0.05 and 

p < 0.01, respectively). Further discussions on approaches to account for individually different levels 

of manure-originated CH4 emissions are given in Chapter 3. 

The differences in environmental performances between the two improved herds were not 

as clear-cut (all p > 0.10). The T25 herd finished pigs in less time than T10 while the T10 herd consumed 

less feed in total (Table 2.2), leading both their CH4 emissions and the overall GWP to be comparable 

against one another. However, the T25 herd generated more N and caused larger losses of NH3 and 

NO3
- due to higher feed intake, and as a result larger AP and EP were predicted compared to T10. As 

a consequence, environmentally speaking, neither of the improved herds were strictly preferable over 

the other herd demonstrating the complexities of trade-off assessments. Economically speaking, 

lower costs associated with less feed consumption, together with increased throughput of liveweight 

generally led T10 to have higher profit margins, followed closely by the T25 herds (Teagasc, 2014). 

Based on the observation that the farms with higher levels of productivity (T25 and T10) generated 

lower environmental footprints than the AVG herd, it is plausible to conclude that improvements in 

animal performance metrics are more likely to be positively correlated with environmental 

sustainability. This finding is in agreement with Nguyen et al. (2011). 

2.3.5 Scenario and sensitivity analyses 

Figure 2.2 summarises main findings from the scenario and sensitivity analyses for the average (AVG) 

farm. Detailed results for all three herds (with different production efficiencies) are provided in Table 

2.9. All values are reported as percentage change from the baseline results. 

2.3.5.1 Scenario analyses 

Some notable differences were observed as a result of replacing feed from the large-scale commercial 

mill with feed from the small-scale on-farm mill; GWP reduced by 13%, AP increased by 14% and EP 

increased by 6-7%. These differences between the commercial and on-farm feed mills were largely 

driven by the ingredients, rather than the milling method. For example, the lower GWP associated 

with the on-farm mill primarily resulted from lower maize bran usage (associated with 0.82-0.84 kg 

CO2-eq per kg on a dry matter basis) compensated for by larger quantities of cereals (0.34-0.36 kg CO2-

eq for barley and 0.26-0.33 kg CO2-eq for wheat, both on a dry matter basis), a combination that tends 

to generate a lower carbon footprint due to reduced energy requirements for wet milling of maize 

(Durlinger et al., 2017). Although more electricity was used per 1000 kg feed produced at the on-farm 

mill, this had little impact on the overall GWP (< 1%). Increases in AP and EP are explained by the larger 

quantities of soybean meal included in the diets, which has the highest CP content (51.8%) of all the 

ingredients. This resulted in larger quantities of N in manure, increasing potential losses of NH3 and 
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NO3
- (Tables A2.4-A2.6). For example, NH3 emissions (measured in g SO2-eq) and NO3

- losses 

(measured in g PO4-eq) were both 33% higher using the on-farm mill diets. These findings alone 

warrant further research on economic-environmental trade-offs surrounding feeding strategies, as 

‘least-cost’ ration formulations are solely driven by the market price of commodities and do not reflect 

differences in upstream processing requirements or indeed environmental costs attributable to 

different rations. More immediately, these conflicting results demonstrate the complex nature of 

interpreting LCA studies and disseminating results to key stakeholders (Guinée et al., 2011). On one 

hand, advising farmers to include more wheat and barley and less maize (particularly processed maize 

such as bran) seems to be a logical assessment as the present result suggests subsequent GWP 

decreases. However, as burdens generated from high protein crops such as soybean products produce 

higher levels of N in manure resulting in higher AP and EP (Garcia-Launay et al., 2014, Mosnier et al., 

2011, Ogino et al., 2012), it is not immediately clear which option is environmentally more desirable 

when their FCE are comparable. This trade-off needs to be analysed in a local context, taking factors 

such as the current level of water quality into consideration, before recommendations are 

communicated with pig producers in the region. In any case, the composition of the ration is a direct 

consequence of the nutrient demands of the pig and the availability and price of feed ingredients in a 

particular region, and therefore any potential amendments in formulation are likely to be limited. 

Despite lower distances travelled and higher yields achieved under Irish conditions, replacing 

imported wheat and barley with domestically-grown cereals had minimal effects (1%) across all impact 

categories. The slight increases observed to GWP and AP are mainly attributable to increased 

emissions, which was triggered by Irish farmers’ general preference towards organic fertilisers (not 

limited to pig manure) compared to French and UK farmers (Durlinger et al., 2017). Marginally lower 

EP values occurred as less NO3
- was leached on Irish crop farms, due to a higher retention rate of crop 

residues and less usage of inorganic fertilisers. The present finding that the replacement of imported 

cereals with domestic crops does not considerably alter the LCA results supports the view by Dalgaard 

et al. (2007), who argued that the ‘food miles’ concept (Paxton, 1994) was inaccurate and misleading 

in an environmental context.  

2.3.5.2 Sensitivity analyses 

Replacing the economic allocation method with the mass allocation method for all feed crops resulted 

in GWP and EP increasing by 6%, and AP increasing by 5%. These changes are due to the relatively low 

economic values (per a given mass) associated to the crop co-products used for pig feed. However, 

the new output values were largely proportional to the original values and did not affect the relative 

ranking amongst the three representative farms. 
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The inclusion of LUC for all crops increased GWP by 78%-81% from the baseline results. These 

changes were predominantly driven by land transformation from forest to arable land, including CO2 

emissions of 13,902 kg/ha for Argentinian soybean production. In the purely local context, because of 

the relative scale of the Argentinean soybean sector compared to the Irish pig sector, any increase in 

soybean demand in RoI will more likely be met by destination switch or perhaps altered crop choice 

rather than development of new arable land. On the global scale, however, the above finding supports 

the argument by Meul et al. (2012) that, in order to reduce carbon footprints, pig feed producers 

around the world should minimise LUC sensitive crop ingredients, such as soybean, by adopting low 

CP diets. 

As discussed, the baseline result accounted for reduced production of N fertiliser owing to pig 

manure. When fertiliser offsetting was excluded from the model, GWP rose by 12-13 % from the 

corresponding baseline results. Exclusion of avoided NH3 and NO3
- increased AP and EP by 4% and 1%, 

respectively. While these results are sensitive to the soil type and weather and, therefore, cross-site 

comparisons are not straightforward, the values above are in line with other studies adopting similar 

approaches (Nguyen et al., 2011, Reckmann et al., 2013). 

Finally, changing the assumption regarding on-farm energy usage using the upper and lower 

limit values reported by McCutcheon (2012) did not greatly affect the baseline results. High energy 

use resulted in a 2-3% increase in GWP, while the increases in AP and EP were even smaller (1% and < 

1%, respectively). Low energy usage decreased GWP by 1-2%, with little effect (< 1%) observed for AP 

and EP. These findings suggest that the environmental footprint of pig production systems is not 

sensitive to the farm’s strategy about energy usage. 

2.3.6 Comparisons with previous research and system boundaries 

A recent review by the author of the thesis categorised pig LCAs into three themes: feed, whole-

system, or waste (McAuliffe et al., 2016). Of these three themes, Table 2.10 offers a comparison of 

the current results with 14 other whole-system studies. Reviewing numerous LCA studies conducted 

in the area of food production, Roy et al. (2009) posited that cross-study comparisons are difficult due 

to different model assumptions and system boundaries. Indeed, some studies set the system 

boundary to the farm gate, while others include the abattoir (Table 2.10). To navigate this limitation, 

the current study adopted two functional units (CW and LW), which allowed a broader interpretation 

of results. For example, Dourmad et al. (2014) report similar values of GWP, AP and EP for France using 

LW as the functional unit, whereas the GWP and AP values estimated by Nguyen et al. (2011) for 

Denmark based on CW are also comparable to the present study. Furthermore, while Nguyen et al. 

(2011) and Halberg et al. (2010) adopt a different metric for EP (g NO3-eq), when the baseline EP from 
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the current study is recalculated according to the same impact assessment method (Wenzel et al., 

1997), the result (310 g NO3-eq/kg CW) is only slightly higher than the value reported by Nguyen et al. 

(2011) and slightly lower than that by Halberg et al. (2010) (Table 2.10). It is therefore plausible to 

conclude that the environmental performance of the Irish pig sector is largely in line with wider 

European systems, including UK systems previously studied by Williams et al. (2006). Within the 

present dataset, the relative performances of the three representative farms were largely unaffected 

by this change in functional unit, as only small percentages of the overall environmental footprint 

originate from the slaughtering process (Tables A2.1-A2.6). Finally, it is worthwhile noting that a 

recent worldwide analysis of pig supply chains (MacLeod et al., 2013) predicted that GWP values for 

Western European systems were in a region above 6 kg CO2-eq/kg CW, higher than many of the studies 

presented in Table 7. However, this discrepancy is largely attributable to the fact that MacLeod et al. 

(2013) fully (and, consequently, perhaps excessively) account for LUC from soybean cultivation, rather 

than different functional units or system boundaries. 

2.3.7 The global context 

It is estimated that as much as 36% of energy produced by the world’s crops are being used for animal 

feed, of which only 12% subsequently enter the human diet (Cassidy et al., 2013). Discussing necessary 

steps to realise global food security, Eisler et al. (2014) asserted the need to replace human-edible 

crops currently consumed by ruminants with human-inedible feeds such as grasses and pasture 

legumes. This challenge has an immediate and direct consequence on monogastric livestock systems 

around the world, which cannot necessarily adopt the same strategy to improve their production 

efficiency. 

Previous research has shown that environmentally focused inclusion of SAA to feed formula 

can further reduce CP requirements in pigs through a targeted delivery of essential amino acids to 

counteract basal diet deficiencies (Osada et al., 2011). This reduction in CP is associated with lower 

GWP, AP and EP at both the feed production stage and during manure management, and likely creates 

further opportunities for improved environmental efficiencies (Garcia-Launay et al., 2014, Mosnier et 

al., 2011, Ogino et al., 2012). Regarding waste management, seemingly the most promising technology 

for reducing environmental impacts is anaerobic digestion of manures (McAuliffe et al., 2016). 

However, in order to make the system feasible at the global scale, issues such as the shortage of 

digestion plants and unappealing tariffs for selling energy back to the public grid must first be 

addressed (Nolan et al., 2012). 

2.4 Conclusion 
In this chapter, a common LCA method was applied to commercial pig production in RoI. For the 

average representative farm, GWP, AP and EP were estimated to be 3.51 kg CO2-eq/kg CW, 43.8 g SO2-
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eq/kg CW and 32.1 g PO4-eq/kg CW, respectively. Economically efficient herds demonstrated 

environmental improvements of up to 6% for GWP, 12% for AP and 15% for EP. Feed produced by a 

small-scale on-farm mill resulted in a lower GWP primarily due to more extensive usage of wheat and 

barley (rather than maize bran which required further processing), while AP and EP were elevated as 

a result of higher CP contents. 

The results presented here suggest that improvements in on-farm production efficiency will 

generally also improve environmental sustainability of livestock production systems. However, further 

research is required to elucidate the exact nature of this correlation, and particularly how 

uncertainties governing physical, chemical and biological processes on the farm can potentially affect 

conclusions. As Chapter 3 shifts the focus from the intensive pork sector to the semi-extensive beef 

sector, a novel approach to LCA will be developed to consider these uncertainties in a more accurate 

manner. 
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Table 2.1. Feed composition for pig diets. These diets were sourced from a large-scale commercial mill in Cork, Ireland (baseline) and a smaller-scale on-farm mill (scenario) which cannot 
be geographically identified for commercial reasons. 

Ingredient 
(kg/1000 kg) 

Origina Baseline analysis  Scenario analysis (on-farm feed mill) 

 Dry sow Lact. sow Weaner Finisher  Dry sow Lact. sow Weaner Finisher 

Barley IE 210 240 180 240      

 UK     
 350 320 350 362 

Beet pulp FR     
 80 20 20 25 

Maize FR 220 220 230 255  60 80 120 150 

Premix UK 25 25 25 20  28 40 35 28 

Rapeseed meal DE 70 30 40 85      

Soybean hulls AR 50   15  50    

Soybean meal AR 90 200 220 120  143 195 242 165 

Soybean oil AR 25 35 35 25  5 25 26  
Wheat IE 44 80 108 58      

 FR 200 50  95      

  UK 66 120 162 87      

 DK      284 320 207 270 
a IE: Ireland, UK: United Kingdom, FR: France, DE: Germany, DK: Denmark, AR: Argentina. 
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Table 2.2. Nutritional composition of individual feed ingredients (FAO, 2015), crop yields in primary production, and transportation distances. This information was subsequently used to 
calculate nutrient balances to determine how much N, P and K was produced by livestock and used as slurry fertiliser. 

Ingredient Origina DMb (%) CP (%) P (g/kg DM) K (g/kg DM) Yield (kg DM/ha) Sea distance (km) Road distance (km)c 

Barley IE 87.1 11.8 3.9 5.7 7050  93 

 UK 87.1 11.8 3.9 5.7 5710 1413 88 

Beet pulp FRd 89.2 9.3 1 4.5 8920 832 229 

Maize FR 86.3 9.4 3 3.9 9030 832 145 

Rapeseed meal DE 91 34.1 11.5 12.5 3750 1428 319 

Soybean hulls AR 89.1 13.2 1.6 13.7 2440 11647 379 

Soybean meal AR 87.9 51.8 6.9 23.7 2440 11647 379 

Wheat IE 87 12.6 3.6 4.6 8570  22 

 FR 87 12.6 3.6 4.6 6980 832 408 

 UK 87 12.6 3.6 4.6 7480 454 374 

 DK4 87 12.6 3.6 4.6 7160 2134 336 
a IE: Ireland, UK: United Kingdom, FR: France, DE: Germany, DK: Denmark, AR: Argentina. 
b DM: dry matter; CP: crude protein; P: phosphorus; K: potassium. 
c Based on the distances between the largest arable region for the crop in each country (e.g. Cordoba for Argentinian soybean). 
d These crop-origin combinations are used by the on-farm feed mill only. 
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Table 2.3. Performance data for three levels of productivity. These scenarios were sourced from Teagasc (2014) and 
represented different levels of economic performance determined largely by feed-conversion ratios.  

Parameter Unit AVGa T25b T10c 

Breeding herd     

Sows  n 752 752 752 

Replacement rate % 50 52 48 

Gilts n 411 415 385 

Sow mortality % 5.1 3.7 3.7 

Total litters per sow n 4.3 4.4 4.7 

Piglets per litter n 13 13 13 

Empty days d 14 9.0 7.0 

Sow liveweight kg 250 250 250 

Sow carcase yield % 69 69 69 

Feed consumed as dry sow kg 1930 1980 2075 

Feed consumed as lactating sow kg 422 451 480 

Feed consumed as gilt kg 345 357 375 

Growing pigs     

Weaning weight  kg 7.0 7.0 7.0 

Weaner mortality % 2.6 1.8 1.2 

Feed consumed per weaner kg 55 55 49 

Finisher culling weight kg 106 108 108 

Finisher mortality % 2.4 2.0 1.5 

Finisher carcase yield % 76 77 76 

Feed consumed per finisher kg 195 175 180 

Total growing period d 176 172 175 
a Average herd efficiency  
b Top 25% of Irish pig herds 
c Top 10% of Irish pig herds. 
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Table 2.4. Life cycle inventory for slaughterhouse process. Data for the slaughterhouse was sourced from Reckmann et 
al. (2013) but energy usage was adjusted to reflect different sources of electricity between Germany and Ireland (e.g. no 
nuclear energy is used in Ireland). 

  Unit AVGa T25b T10c 

Inputs         

Liveweight kg 1000 1000 1000 

Electricity kWh 251.6 248.4 248.9 

Diesel kg 7.5 7.4 7.4 

Transport km 50 50 50 

Outputs   0.0     

Carcase weight kg 762.4 763.4 761.7 

Losses         

CO g 2.8 2.8 2.8 

CO2 kg 42.6 42.1 42.1 

NOx g 28.2 27.8 27.9 

N2O g 0.8 0.7 0.7 

CH4 g 0.8 0.8 0.8 

BOD5 g 888.9 877.8 879.5 

COD kg 23.1 22.8 22.9 

N kg 3.0 3.0 3.0 

P g 266.6 263.3 263.7 

Biodegradable waste kg 3.8 3.7 3.7 
a Average herd efficiency 
b Top 25% of Irish pig herds 
c Top 10% of Irish pig herds 
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Table 2.5. Emission factors adopted in the current study. Where possible, Irish-specific information was used. In the 
absence of Irish data, the next best available source was adopted from published literature.  

Pollutant Emission factor Reference 

CH4   

Enteric fermentation (kg CH4/head/year)  Duffy et al. (2017) 

Gilts (in pig) 2.9  
Gilts (not served) 2.2  
Sows (in pig) 3.7  
Other sows 3.8  
Growing pigs > 20 kg 1.1  
Growing pigs < 20 kg 0.2  

Manure management (kg CH4/head/year)   
Gilts (in pig) 8.0  
Gilts (not served) 5.0  
Sows (in pig) 8.0  
Other sows 18.8  
Growing pigs > 20 kg 5.1  
Growing pigs < 20 kg 3.4  

Direct N2O-N   
Manure management   

In-house storage 0.002 x kg manure N ex-animal IPCC (2006) 

Outside storage with natural crust 0.005 x kg manure N ex-housing  
Field application 0.01 x kg manure N ex-storage  

Fertiliser application 0.01 x kg fertiliser N  

NOx-N   
Manure management   

In-house storage 0.002 x kg manure N ex-animal Dämmgen and 
Hutchings (2008) 

Outside storage 0.005 x kg manure N ex-housing  
Field application 0.001 x kg manure N ex-storage Nemecek and Kägi 

(2007) 

Fertiliser application 0.007 x kg fertiliser N (EEA, 2007) 

NH3-N   
Manure management   

In-house storage 0.13 x kg manure N ex-animal Nguyen et al. (2010) 

Outside storage 0.02 x kg manure N ex-housing  
Field application 0.07 x kg manure N ex-storage Andersen et al. 

(2001) 

After field application 0.117 x kg manure N ex-storage Hansen et al. (2008) 

Fertiliser application 0.065 x kg fertiliser N Nguyen et al. (2010b) 

NO3-N leaching potential kg N ex-animal - kg N total N 
loss - kg fertiliser N substitution 

Nutrient balance 

PO4-P leaching potential kg P ex-animal - kg fertiliser 
substitution 

 

Indirect N2O-N 0.01 x kg (NH3-N + NOx-N) loss + 
0.0075 x kg NO3-N 

IPCC (2006) 
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Table 2.6. LCI inputs and outputs for 1000 kg LW at the farm gate. Information presented here reflects input and output 
values derived from aforementioned data sources. Emissions were calculated based on factors described in Table 2.5. 

  

Baseline analysis Scenario analysis 
(on-farm feed mill) 

Item Unit AVGa T25b T10c AVGa T25b T10c 

Feed use kg       

Dry sow  339 326 308 339 326 308 

Lactating sow  74 70 71 74 70 71 

Gilt  61 59 56 61 59 56 

Weaner  517 514 453 517 514 453 

Finisher  1790 1590 1640 1790 1590 1640 

Total  2781 2559 2528 2781 2559 2528 

Transport of feed (from mill)        

By truck Tkm 313 288 285 0 0 0 

Energy use        

Electricity kWh 137 135 136 137 135 136 

Heat (oil) kWh 121 120 120 121 120 120 

On-farm emissions        

Methane kg       

Enteric fermentation  5.0 5.0 5.0 5.0 5.0 5.0 

Manure management  63 61 62 63 61 62 

Nitrous oxide  g 301 258 249 446 390 376 

Ammonia kg 5.4 4.6 4.5 8.0 7.0 6.8 

Nitrogen oxides g 631 539 520 933 817 785 

Manure utilisation         

Transport Tkm 72 62 60 107 94 90 

Spreading MJ 152 130 125 224 196 189 

Nitrous oxide  g 669 572 552 989 866 832 

Ammonia kg 5.8 4.9 4.8 8.6 7.5 7.2 

Nitrogen oxides g 84 72 69 124 108 104 

Nitrate kg 45 39 37 70 59 56 

Phosphate g 222 164 156 385 314 304 

Avoided fertiliser production  kg       

from manure nitrogen  39 33 32 57 50 48 

from manure phosphorus  11 8.0 8.0 19 15 17 

from manure potassium  26 24 23 35 32 32 

Avoided fertiliser application        

Spreading MJ 15 13 13 23 20 19 

Nitrous oxide  g 161 137 132 237 208 200 

Ammonia kg 0.8 0.7 0.7 1.2 1.0 1.0 

Nitrogen oxides g 235 201 194 347 304 292 
a Average herd efficiency; b Top 25% of Irish pig herds; c Top 10% of Irish pig herds 

 

 



59 
 

Table 2.7. Uncertainty parameters adopted in Monte Carlo analysis. Distributions follow recommendations provided by each of the sources listed below. 

Emission Uncertainty Distribution Reference 

CH4 (enteric fermentation) ± 17% Triangular Duffy et al. (2017) 
CH4 (manure management) ± 19% Triangular  
N2O (all emissions) 2 (SD2) Lognormal IPCC (2006) 
NH3 (all emissions) ± 21% Triangular Amon et al. (2016) 
NOX (all emissions) 2 (SD2) Lognormal  
NO3 1.58 (SD2) Lognormal Pedigree matrix 
PO4 1.58 (SD2) Lognormal Muller et al. (2016) 
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Table 2.8. LCIA results for the baseline analysis expressed per 1 kg carcase weight (CW) for three different levels of productivity. These results suggest that as production efficiency 
increases, environmental footprints tend to decrease. 

 AVGa T25b T10c 

 Feed Farm Slaughter Total Feed Farm Slaughter Total Feed Farm Slaughter Total 

GWP (kg CO2-eq/kg CW) 2.03 
(58%) 

1.17 
(33%) 

0.31 
(9%) 

3.51 1.86 
(56%) 

1.14 
(35%) 

0.30 
(9%) 

3.30 1.85 
(56%) 

1.14 
(35%) 

0.31 
(9%) 

3.30 

AP (g SO2-eq/kg CW) 19.5 
(45%) 

23.2 
(53%) 

1.1 
(2%) 

43.8 17.8 
(46%) 

20.0 
(51%) 

1.1 
(3%) 

38.9 17.7 
(46%) 

19.3 
(51%) 

1.1 
(3%) 

38.1 

EP (g PO4-eq/kg CW) 16.2 
(50%) 

11.8 
(37%) 

4.1 
(13%) 

32.1 14.8 
(51%) 

10.2 
(35%) 

4.0 
(14%) 

29.0 14.7 
(51%) 

9.8 
(34%) 

4.1 
(14%) 

28.6 

a Average herd efficiency 
b Top 25% of Irish pig herds 
c Top 10% of Irish pig herds 
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Table 2.9. Percentage differences in LCA outputs of scenario and sensitivity analyses relative to the baseline results. These results highlight how sensitive models are to certain 
assumptions, but also demonstrate the complexities of communicating LCA outputs; for example, production with the on-farm mill had lower GWP, but higher AP and EP making it 
difficult to identify a clear overall benefit of one ration over the other.  

 AVGa T25b T10c 

GWP AP EP GWP AP EP GWP AP EP 

On-farm feed mill -11.1 13.5 6.5 -10.9 13.9 6.6 -10.9 13.1 5.9 

Domestic wheat and barley -1.1 0.2 -0.6 -0.9 0.0 -0.7 -0.9 0.3 -0.7 

Mass allocation 6.3 5.3 6.5 6.1 5.1 6.6 6.1 5.5 6.6 

Inclusion of land use change 80.9 - - 79.7 - - 77.9 - - 

High on-farm energy usage 3.1 0.9 0.6 3.3 1.0 0.7 3.3 1.0 0.7 

Low on-farm energy usage -2.0 -0.5 -0.3 -1.8 -0.5 -0.7 -2.1 -0.5 -0.7 

Exclusion of fertiliser offsetting 13.1 4.3 1.6 11.8 4.1 1.4 11.5 4.2 1.4 
a Average herd efficiency 
b Top 25% of Irish pig herds 
c Top 10% of Irish pig herds 
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Table 2.10. Comparisons of the present results with previous pig LCA studies. The inclusion of two functional units (LW 
and CW) in the current study maximises comparative potential with previously published research. 

Study Scope Functional unit GWP AP EP 

Basset-Mens and 
van der Werf 
(2005) 

Crop production 
to pig farm gate 

1 kg liveweight  2.3 kg CO2-eq 43.5 g SO2-eq 20.8 g PO4-eq 

Williams et al. 
(2006) 

Crop production 
to pig farm gate 

1000 kg carcase 
weight 

6400 kg CO2-
eq 

394 kg SO2-eq 100 kg PO4-eq 

Dalgaard et al. 
(2007) 

Crop production 
to delivery of pork 
to Port Harwich in 
Britain 

1 kg pork 3.6 kg CO2-eq 45 g SO2-eq 232 g NO3-eq 

Perez (2009) Crop production 
to pig farm gate 

1000 kg 
liveweight 

3284.3 kg 
CO2-eq 

43.8 kg SO2-eq 192.6 NO3-eq 

Wiedemann et al. 
(2010) 

Crop production 
to slaughterhouse 

1 kg carcase 
weight at the 
meat processor 
gate 

5.5 kg CO2-eq N/A N/A 

Halberg et al. 
(2010) 

Crop production 
to pig farm gate 

1 kg liveweight  3320 g CO2-
eq 

61.4 g SO2-eq 381 g NO3-eq 

Nguyen et al. 
(2010) 

Crop production 
to pig farm gate 

1 kg slaughter 
weight 

4812 g CO2-
eq 

N/A N/A 

Pelletier et al. 
(2010a) 

Crop production 
to pig farm gate 

1 kg liveweight  2.5 kg CO2-eq N/A 15.9 g PO4-eq 

Nguyen et al. 
(2011) 

Crop production 
to slaughterhouse 
gate 

1 kg pork 
delivered from 
the 
slaughterhouse 

3.1 kg CO2-eq 56 g SO2-eq 243 g NO3-eq 

Devers et al. (2012) Crop production 
to delivery of pork 
to Antwerp in 
Belgium 

1 kg carcase 
weight 

2.6 kg CO2-eq 39 g SO2-eq 22 g PO4-eq 

Dolman et al. 
(2012) 

Crop production 
to pig farm gate 

100 kg 
liveweight  

546 kg CO2-
eq 

5.3 kg SO2-eq 61.4 kg NO3-eq 

Jacobsen et al. 
(2014) 

Crop production 
to meat processor 
gate 

1 kg deboned 
pigmeat 

4.8 kg CO2-eq N/A N/A 

Reckmann et al. 
(2013) 

Crop production 
to slaughterhouse 
gate 

1 kg pork 
slaughter 
weight 

3.2 kg CO2-eq 57.1 g SO2-eq 23.3 PO4-eq 

Dourmad et al. 
(2014) 

Crop production 
to pig farm gate 

1 kg liveweight  2.3 kg CO2-eq 44 g SO2-eq 18.5 PO4-eq 

Current study Crop production 
to pig farm gate 

1 kg liveweight 2.4 kg CO2-
eq 

32.6 g SO2-eq 21.4 g PO4-eq 

Current study Crop production 
to slaughterhouse 
gate 

1 kg carcase 
weight 

3.5 kg CO2-
eq 

43.8 g SO2-eq 32.1 g PO4-eq 
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Figure 2.1. Stylised schematic of the baseline study boundary. The boundary is defined as “cradle to slaughterhouse gate”. Grey processes are excluded from analysis.  
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Figure 2.2. Effect of different analyses on baseline results, presented as percentage change. As described in Table 2.9, this highlights the complex nature of interpreting multi-impact LCA 
models. AVG: average herd performance; GWP: global warming potential; AP: acidification potential; EP: eutrophication potential. 
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Appendix to Chapter 2. 
 

Table A2.1. Detailed environmental impacts for the average (AVG) farm based on the baseline analysis. 

Item GWP (g CO2-eq) AP (g SO2-eq) EP (g PO4-eq) 

Feed production and transportation    

Dry sow 237 2.3 2 

Lactating sow 54.6 0.5 0.4 

Gilt 42.4 0.4 0.4 

Weaner 388 3.4 2.9 

Finisher 1310 12.7 10.5 

Transport of feed from mill to farm    

By truck 29.5 0.1 < 0.1 

Energy use    

Electricity 130 0.5 0.4 

Heat (oil) 51 0.1 < 0.1 

Farm emissions    

Methane    

Enteric fermentation 178.5 - - 

Manure management 813.1 - - 

Nitrous oxide  118 - < 0.1 

Ammonia - 11.3 2.5 

Nitrogen oxides - 0.4 < 0.1 

Manure utilisation    

Transport 36 0.3 < 0.1 

Spreading 15.9 < 0.1 < 0.1 

Nitrous oxide  262 -  
Ammonia - 12.2 2.7 

Nitrogen oxides - < 0.1 < 0.1 

Nitrate - - 5.9 

Phosphate - - 0.3 

Avoided fertiliser production    

from manure nitrogen -334 - - 

from manure phosphorus -39.4 - - 

from manure potassium -27.4 - - 

Avoided fertiliser application    

Spreading -1.6 - < 0.1 - < 0.1 

Nitrous oxide  -62.8 - - < 0.1 

Ammonia - -1.7 -0.4 

Nitrogen oxides - -0.2 - < 0.1 

Slaughterhouse    

Electricity 239 1 0.6 

Diesel 5.7 < 0.1 < 0.1 

Transport 3.9 < 0.1 < 0.1 

Landfill 2.5 < 0.1 < 0.1 

Emissions (aggregated) 50 0.1 3.4 
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Table A2.2. Detailed environmental impacts for the T25 farm based on the baseline analysis. 

Item GWP (g CO2-eq) AP (g SO2-eq) EP (g PO4-eq) 

Feed production and transportation    

Dry sow 227 2.2 1.9 

Lactating sow 51.1 0.5 0.4 

Gilt 41 0.4 0.3 

Weaner 385 3.5 2.9 

Finisher 1160 11.2 9.3 

Transport of feed from mill to farm    

By truck 27 0.1 < 0.1 

Energy use    

Electricity 128 0.5 0.3 

Heat (oil) 50.3 0.1 < 0.1 

Farm emissions    

Methane    

Enteric fermentation 171.6 - - 

Manure management 780.6 - - 

Nitrous oxide  100.7 - < 0.1 

Ammonia - 9.7 2.2 

Nitrogen oxides - 0.3 < 0.1 

Manure utilisation    

Transport 30.7 0.2 < 0.1 

Spreading 13.6 < 0.1 < 0.1 

Nitrous oxide  223.8 - 0.1 

Ammonia - 10.4 2.2 

Nitrogen oxides - < 0.1 < 0.1 

Nitrate - - 5.1 

Phosphate - - 0.2 

Avoided fertiliser production    

from manure nitrogen -285 - - 

from manure phosphorus -29 - - 

from manure potassium -24.9 - - 

Avoided fertiliser application    

Spreading -1.4 - < 0.1 - < 0.1 

Nitrous oxide  -53.6 - - < 0.1 

Ammonia - -1.5 -0.3 

Nitrogen oxides - - - < 0.1 

Slaughterhouse    

Electricity 236 1 0.6 

Diesel 5.6 < 0.1 < 0.1 

Transport 3.8 <0.1 < 0.1 

Landfill 2.5 < 0.1 < 0.1 

Emissions (aggregated) 60 0.1 3.4 

 

 



67 
 

Table A2.3. Detailed environmental impacts for the T10 farm based on the baseline analysis. 

Item GWP (g CO2-eq) AP (g SO2-eq) EP (g PO4-eq) 

Feed production and transportation    

Dry sow 216 2.1 1.8 

Lactating sow 52.5 0.5 0.4 

Gilt 39 0.4 0.3 

Weaner 340 3.1 2.6 

Finisher 1200 11.6 9.6 

Transport of feed from mill to farm    

By truck 26.8 0.1 < 0.1 

Energy use    

Electricity 129 0.5 0.3 

Heat (oil) 50.6 0.1 < 0.1 

Farm emissions    

Methane    

Enteric fermentation 171.3 - - 

Manure management 789.6 - - 

Nitrous oxide  97.4 - < 0.1 

Ammonia - 9.4 2 

Nitrogen oxides - 0.3 < 0.1 

Manure utilisation    

Transport 29.7 0.2 < 0.1 

Spreading 13.2 < 0.1 < 0.1 

Nitrous oxide  215.8 - 0.1 

Ammonia - 10.1 2.2 

Nitrogen oxides - < 0.1 < 0.1 

Nitrate - - 4.9 

Phosphate - - 0.2 

Avoided fertiliser production    

from manure nitrogen -276 - - 

from manure phosphorus -27.7 - - 

from manure potassium -24.5 - - 

Avoided fertiliser application    

Spreading -1.3 - < 0.1 - < 0.1 

Nitrous oxide  -51.8 - - < 0.1 

Ammonia - -1.4 -0.3 

Nitrogen oxides - -0.1 - < 0.1 

Slaughterhouse    

Electricity 237 1 0.6 

Diesel 5.6 < 0.1 < 0.1 

Transport 3.9 < 0.1 < 0.1 

Landfill 2.5 < 0.1 < 0.1 

Emissions (aggregated) 60 < 0.1 3.4 
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Table A2.4. Detailed environmental impacts for the AVG farm when feeds are sourced from the on-farm mill. 

Item GWP (g CO2-eq) AP (g SO2-eq) EP (g PO4-eq) 

Feed production and transportation    

Dry sow 180 1.6 1.4 

Lactating sow 44.8 0.4 0.3 

Gilt 32.2 0.3 0.3 

Weaner 341 2.8 2.4 

Finisher 1090 9.7 8.3 

Transport of feed from mill to farm    

By truck - - - 

Energy use    

Electricity 130 0.5 0.4 

Heat (oil) 51 0.1 < 0.1 

Farm emissions    

Methane    

Enteric fermentation 178.5 - - 

Manure management 813.1 - - 

Nitrous oxide  174.1 - 0.1 

Ammonia - 16.9 3.7 

Nitrogen oxides - 0.6 0.1 

Manure utilisation    

Transport 53.1 0.4 < 0.1 

Spreading 23.5 0.1 < 0.1 

Nitrous oxide  386 - 0.3 

Ammonia - 17.9 4 

Nitrogen oxides - < 0.1 < 0.1 

Nitrate - - 8.8 

Phosphate - - 0.5 

Avoided fertiliser production    

from manure nitrogen -493 - - 

from manure phosphorus -68.2 - - 

from manure potassium -37.4 - - 

Avoided fertiliser application    

Farm traction -2.4 - < 0.1 - < 0.1 

Nitrous oxide  -92.8 - - < 0.1 

Ammonia - -2.5 -0.5 

Nitrogen oxides - -0.2 - < 0.1 

Slaughterhouse    

Electricity 239 1 0.6 

Diesel 5.7 < 0.1 - < 0.1 

Transport 3.9 < 0.1 - < 0.1 

Landfill 2.5 < 0.1 - < 0.1 

Emissions (aggregated) 60 < 0.1 3.4 
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Table A2.5. Detailed environmental impacts for the T25 farm when feeds are sourced from the on-farm mill. 

Item GWP (g CO2-eq) AP (g SO2-eq) EP (g PO4-eq) 

Feed production and transportation    

Dry sow 173 1.6 1.4 

Lactating sow 41.9 0.4 0.3 

Gilt 31.1 0.3 0.2 

Weaner 339 2.8 2.4 

Finisher 967 8.6 7.4 

Transport of feed from mill to farm    

By truck - - - 

Energy use    

Electricity 128 0.5 0.3 

Heat (oil) 50.3 0.1 < 0.1 

Farm emissions    

Methane    

Enteric fermentation 171.6 - - 

Manure management 780.6 - - 

Nitrous oxide  152.2 - < 0.1 

Ammonia - 14.7 3.2 

Nitrogen oxides - 0.6 < 0.1 

Manure utilisation    

Transport 46.5 0.3 < 0.1 

Spreading 20.6 0.1 < 0.1 

Nitrous oxide  338 - 0.3 

Ammonia - 15.7 3.5 

Nitrogen oxides - < 0.1 < 0.1 

Nitrate - - 7.7 

Phosphate - - 0.4 

Avoided fertiliser production    

from manure nitrogen -431 - - 

from manure phosphorus -55.6 - - 

from manure potassium -34.1 - - 

Avoided fertiliser application    

Farm traction -2.1 - < 0.1 - < 0.1 

Nitrous oxide  -81.1 - - < 0.1 

Ammonia - -2.2 -0.5 

Nitrogen oxides - -0.2 - < 0.1 

Slaughterhouse    

Electricity 236 1 0.6 

Diesel 5.6 < 0.1 < 0.1 

Transport 3.8 < 0.1 < 0.1 

Landfill 2.5 < 0.1 < 0.1 

Emissions (aggregated) 50 < 0.1 3.3 
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Table A2.6. Detailed environmental impacts for the T10 farm when feeds are sourced from the on-farm mill. 

Item GWP (g CO2-eq) AP (g SO2-eq) EP (g PO4-eq) 

Feed production and transportation    

Dry sow 164 1.5 1.3 

Lactating sow 43.1 0.4 0.3 

Gilt 29.6 0.3 0.2 

Weaner 299 2.4 2.1 

Finisher 1000 8.9 7.7 

Transport of feed from mill to farm    

By truck - - - 

Energy use    

Electricity 129 0.5 0.3 

Heat (oil) 50.6 0.1 < 0.1 

Farm emissions    

Methane    

Enteric fermentation 171.3 - - 

Manure management 789.6 - - 

Nitrous oxide  146.4 - < 0.1 

Ammonia - 14.2 3.1 

Nitrogen oxides - 0.5 < 0.1 

Manure utilisation    

Transport 44.8 0.3 < 0.1 

Spreading 19.8 < 0.1 < 0.1 

Nitrous oxide  326 - 0.3 

Ammonia - 15.2 3.3 

Nitrogen oxides - < 0.1 < 0.1 

Nitrate - - 7.4 

Phosphate - - 0.4 

Avoided fertiliser production    

from manure nitrogen -416 - - 

from manure phosphorus -53.9 - - 

from manure potassium -33.6 - - 

Avoided fertiliser application    

Farm traction -2 - < 0.1 - < 0.1 

Nitrous oxide  -78.1 - - < 0.1 

Ammonia - -2.1 -0.5 

Nitrogen oxides - -0.2 - < 0.1 

Slaughterhouse    

Electricity 237 1 0.6 

Diesel 5.6 < 0.1 < 0.1 

Transport 3.9 < 0.1 < 0.1 

Landfill 2.5 < 0.1 < 0.1 

Emissions (aggregated) 50 < 0.1 3.4 
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Chapter 3 - Distributions of emissions intensity for individual beef 

cattle reared on pasture-based production systems 
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3.1 Introduction 
When the LCA method is applied at the farm scale, life cycle inventories of representative farms are 

often constructed from a steady-state herd structure using national statistics or, less frequently, farm 

surveys (Wiedemann et al., 2015); the analysis carried out in Chapter 2 was an example of the former 

approach. As information on individual animals is often unavailable from these datasets, livestock data 

may already be aggregated at the time of inventory analysis, both across individual animals and across 

seasons. Although uncertainty analyses, such as those outlined in Section 2.2.3, can be seen as a tool 

to partially account for genetic and seasonal variabilities in livestock-originated carbon footprints, the 

degree to which these methods can address the bias suffered by these representative animal 

approaches is not well-understood. 

Using primary data collected on the North Wyke Farm Platform (NWFP) in Devon, UK, of which 

details were described in Section 1.4, this chapter proposes a novel approach of life cycle impact 

assessment that can explicitly account for heterogeneity in animal performance, both individually and 

seasonally. Field data were measured at high spatial and temporal resolutions, enabling a unique 

research platform to conduct a detailed analysis of environmental hotspots. The use of individual 

animal data allowed computation of emissions intensity for each growing calf and, by extension, their 

intra-farm distributions, offering an alternative method to the Monte Carlo analysis whereby livestock 

performance parameters are assumed to follow distributions pre-identified based on best-available 

external data. More specifically, the objective of this particular study was to explore the potential 

benefit of this new approach with regards to livestock-originated uncertainty; methods to reduce 

pasture-originated uncertainty will be discussed in Chapters 4 and 5. Here, emissions intensity for 

pasture-based beef finishing systems at the NWFP was quantified under two methods, namely with 

and without information on individual animal performance. To the best of author’s knowledge, this is 

the first environmental assessment of the English cattle industry based on high-resolution primary 

data; the industry employs 440,000 people and is estimated to be worth £2.8 billion, with high 

dependence on grazed systems (Marsh et al., 2012). 

3.2 Materials and methods 
Similar to Chapter 2, this study follows the standard LCA protocol to evaluate emissions intensity, 

focusing here on pasture-based cattle production systems. However, as the study only entails the 

post-weaning (finishing) stage of the cattle lifecycle (for reasons discussed below), it is not a full carbon 

footprint analysis in the strictest sense as defined by PAS 2050 guidelines (BSI, 2011). 

3.2.1 System boundary and functional unit 

A schematic diagram of the system boundary is provided in Figure 3.1. The present study adopts a 

“gate to gate” approach (Berton et al., 2016, Ogino et al., 2004), whereby all non-capital inputs and 
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outputs related to the post-weaning phase of cattle production are included in the model. Production 

processes for farm building infrastructure were excluded from the model following the approach 

adopted by recent studies (Buratti et al., 2017, Mogensen et al., 2015). Temporally, the present study 

follows emissions intensity of 90 cattle (30 per farmlet system) that were born in the spring of 2014. 

Thus, the on-farm component of Figure 3.1 corresponds to the period from October 2014, when they 

were weaned from their mothers, to their departure to the slaughterhouse, around December 2015 

for the majority of the animals, on meeting weight and carcase specification targets (Section 1.2). 

As will be seen in Chapter 5, cow-calf operations generate a high proportion of the total 

carbon footprint associated with beef production, sometimes as much as two-thirds on pasture-based 

systems (Pelletier et al., 2010b). Notwithstanding, the suckler system was excluded from the present 

analysis for the following three reasons, primarily so that methodological comparison between old 

and new approaches (to be outlined below) could be carried out with the smallest possible set of 

confounding factors. First, by randomising the allocation of calves to each farmlet at weaning, factors 

related to mothers’ body conditions that affect calves’ performance early in life (e.g. quantity and 

quality of milk provided) are also randomised, and thus the difference in system-wide economic and 

environmental performance amongst the three finishing systems becomes fully attributable to their 

pasture management strategies. Second, as all animals are maintained on the same (external) 

permanent pasture system prior to their entrance to the NWFP, excluding this stage from the 

computation of lifecycle emissions intensity does not affect the relative ranking of the three systems. 

Third, and most importantly, as the cow-calf operation in North Wyke is not part of the NWFP, it does 

not record field data at a resolution comparable to what is collected on the NWFP. While it is possible 

to estimate emissions intensity of the suckler operation based on a combination of low-resolution 

data and published equations (as will be done in Chapter 5), doing so would likely compromise the 

accuracy of the methodological comparison and therefore was judged to be undesirable in this 

instance. This decision was made at the cost of reduced comparability of results with previous beef 

LCA research, many of which operate under a wider system boundary. For this reason, inter-study 

comparisons of carbon footprints will be conducted in Chapter 5. 

Given that the entire lifecycle of cattle was not examined, the more common functional units 

for beef LCA studies, such as liveweight (Ridoutt et al., 2011) or carcase weight (Mogensen et al., 2015, 

Peters et al., 2010) were inappropriate. Instead, the functional unit was set as “1 kg of liveweight gain 

(LWG)”, a key indicator of the animal performance post-weaning that has previously been adopted by 

Casey and Holden (2006), Dick et al. (2015) and Ruviaro et al. (2015), amongst others. The use of this 

functional unit implies that the partitioning of an additional mass acquired by livestock (between 
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muscle, fat and other parts of the body) is assumed not to differ considerably amongst individual 

animals. 

3.2.2 Inventory analysis and impact assessment 

As discussed, the majority of on-farm information utilised in the present study was collected in the 

form of primary data. Individual animals were weighed every two to four weeks using a cattle crush 

and weigh head, providing a high temporal resolution for average daily gains (ADG). During the grazing 

season, sward snip samples were collected in the same weeks when animals were weighed from all 

fields occupied by cattle at that time. These samples were cut at grazing height (5 cm above ground 

level) along a W-transect, ignoring dead material, seed heads and weeds which animals tend to avoid. 

During winter, grab samples of silage were collected at a similar frequency, from five points along the 

width of each barn feed passage during feeding time, so that they represented roughage consumed 

by livestock at that time. Samples were stored at -20°C until chemical analysis was carried out. 

Modified Acid Detergent Fibre (MADF) composition for both pasture and silage samples was 

quantified using a FOSS Fibertec 8000 Auto Fiber Analysis System following the method of Clancy and 

Wilson (1966). Samples were freeze dried and then ground using a Cyclone Sample Mill so that 

material could pass through a 1 mm sieve. Following this preparation, 1000 ± 2 mg of sample was 

added to oven dried crucibles. Crucibles were first inserted to the Fibertec cold extraction unit to 

remove excessive fat content using 25 ml of acetone and then placed into the Fibertec hot extraction 

unit. Acid detergent solution (ADS) was made by mixing 0.5 M (1N) of H2SO4 with 20 g/l of CTAB 

(HexadecylTrimethylAmmonium Bromide 98%). Using this solution, modified acid detergent solution 

(MADS) was subsequently produced by mixing equal volumes of ADS and H2SO4. The hot extraction 

unit automatically distributed MADS and antifoaming agent (n-Octanol) to the samples. Following hot 

extraction, 25 ml of acetone was added to samples and drained. Once analysis was complete, the 

derived MADF fractions were converted to corresponding metabolisable energy (ME) values using 

equations independently calibrated for UK pastures and silages (Alderman and Cottrill, 1993). These 

values were further converted to digestible organic matter content (DOMD; reported hereafter as 

digestible energy) using a separate equation (Alderman and Cottrill, 1993). 

Total N contents of feed were measured using an elemental analyser and isotope ratio mass 

spectrometer. Samples were weighed to 2 ± 0.1 mg using a Mettler Toledo MX5 electronic 

microbalance and inserted to 5 x 3.5 mm tin capsules. They were then analysed in a Carlo Erba NA2000 

elemental analyser connected to a Sercon 20-22 isotope ratio mass spectrometer. The derived total N 

values were converted to crude protein content using the standard coefficient of 6.25 (FAO, 2003). 

Detailed records of all farm inputs were maintained throughout the season. These include, for 
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example, the type and amount of fertilisers and pesticides used, the areas these products were applied 

to, and supplementary feeds used during housing. Table 3.1 provides a detailed breakdown of inputs 

applied to the NWFP during the temporal boundary of the study. Data for background processes such 

as production of fertiliser, supplementary feeds, bedding and seeds, were sourced from the ecoinvent 

database V3 (Wernet et al., 2016). Sea-based transportation distances were calculated using data from 

Portworld (Portworld, 2016), while road distances were calculated using a geographical information 

system (GIS) platform. 

Emissions arising from livestock and pastures were calculated using a modified IPCC Tier 2 

approach (IPCC, 2006). In order to examine both temporal differences of emissions and the effects of 

animal heterogeneity, livestock emissions were calculated for each animal for each time period, or 

between two weighing events, using the weighing records, digestible energy and crude protein values 

obtained in the methods described above. Calculations were programmatically automated and linked 

to the NWFP database so as to apply different parameters depending on the animal’s age, location 

and feed being consumed (Figures 3.2 and 3.3). This model design was motivated by an earlier finding 

that the difference in direct emissions between times when animals are on pasture and in housing is 

primarily driven by digestibility (affecting rumen methane production) and, to a lesser degree, crude 

protein content (affecting nitrogen-based emissions) of feed (Boadi and Wittenberg, 2002). For 

computation of CH4 emissions through manure management, cattle manure collected during the 

winter housing period (Section 1.4) was assumed to be kept in middens for an average of six months. 

As discussed in Chapter 1, sheep also occupy grassland of the NWFP as part of rotational 

grazing systems, although they do not share the same pasture with cattle at any given time. 

Considering that their manure also contributes to pasture growth (and thus indirectly facilitates cattle 

LWG) and vice versa (cattle manure facilitates sheep LWG), the entire environmental burdens 

originating from pastures were first split between the two enterprises based on economic values of 

products leaving the system boundary (i.e. economic allocation). The emissions allocated to the cattle 

operation were further split among individual animals under the rules that: (a) emissions originating 

from material inputs to pastures (e.g. inorganic fertilisers and use of machinery) and sheep manure 

were evenly distributed across 30 cattle on each system; and (b) emissions arising from cattle manure 

(minus those allocated to the sheep enterprise) were calculated individually for each cattle, taking 

animals’ growth performance into consideration. All results reported below are net of GHG emissions 

attributable to sheep production. 

Grasslands in the southwest of England are typically located on hilly land with soils that have 

the propensity to become supersaturated. As these lands are unsuitable for arable crop production, 
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emissions owing to land use and land use change were not included in the present model. Similarly, 

given the small quantities of soybean (Glycine max) supplemented to the animals during the final 

weeks in housing (Table 3.1), land use change (LUC) associated with the production of soybean was 

not considered. Finally, grasslands are sometimes credited as being net sinks of CO2, although a large 

degree of uncertainties exists for these estimates (Beauchemin et al., 2011). Following PAS 2050 

guidelines (BSI, 2011), the potential effect of changes in soil carbon stock on emissions intensity was 

not considered in this study, as reseeding of white clover (WC) and high-sugar grass (HS) treatments 

did not involve LUC. For the purpose of calculating environmental burdens associated with on-farm 

activities for reseeding (Table 1.1), WC and HS systems were assumed to be renewed every five years. 

As will become clear, the results were not sensitive to this sowing interval. 

On completion of the life cycle inventory, emissions intensity for each individual animal was 

estimated according to the IPCC 2013 100-year average method (IPCC, 2013) using SimaPro V8.2.3 

(www.simapro.com). Under this method, CH4 and N2O are respectively assumed to have 30.5 and 265 

times greater impacts than CO2 on climate change. Processes were designed so the sum of emissions 

from all individual animals theoretically equates to the total emissions from the cattle-finishing 

enterprise of each farmlet. 

3.2.3 Interpretation 

Statistical interpretation was carried out using GenStat V17.1 (www.vsni.co.uk/software/genstat). 

Based on performance data and emissions intensity estimates for individual animals, multi-sample F-

tests (one-way analysis of variance) and two-sample t-tests were conducted to examine differences in 

livestock performance and emissions intensity between the farmlets. Correlations between emissions 

intensity and its potential determinants were assessed using Pearson’s correlation coefficient. 

As discussed, estimation of emissions intensity for individual animals in this study was 

motivated by uncertainty inherent within life cycle data, which is regarded as one of the most limiting 

factors of the LCA framework (Groen and Heijungs, 2017). However, information on the performance 

of individual animals is not always available to LCA practitioners, especially outside the research farm 

environment. In order to examine the potential discrepancy in model outputs between these two 

situations, an alternative method of estimation was also set up as part of the analysis. Here, variables 

related to animal performance (e.g. ADG and days on farm) were averaged across the entire herd 

based on low temporal resolution (yearly) data, generating a single value of emissions intensity for a 

representative animal reared on each farmlet. Following this procedure, the effect of uncertainty was 

evaluated by means of a Monte Carlo analysis, and the resultant outputs were compared pairwise 

between the three farmlets. Furthermore, to evaluate the degree of interactions between the two 
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methods of uncertainty analysis, a similar assessment was also carried out for the best and worst 

performing animals on each farmlet (as judged by emissions intensity) that were identified under the 

animal-by-animal approach. All Monte Carlo simulations were conducted using SimaPro V8.2.3, where 

parameters were randomly drawn over 1000 iterations from the distributions summarised in Table 

3.2. 

Finally, in line with ISO 14040 (ISO, 2006), a sensitivity analysis was conducted to test the 

effect of choosing the economic allocation method (for emissions from pastures) on the model 

outputs. The mass allocation approach was selected as an alternative, whereby the allocation ratio 

was determined by estimated dry matter intake (DMI) of cattle and sheep. In addition, a sensitivity 

test was also carried out to test the impact of having applied the IPCC 2013 conversion factors to 

derive CO2-equivalent values for other GHG (30.5 for CH4 and 265 for N2O) vis-à-vis the superseded 

IPCC (2006) factors, which had considerably different specifications (25 for CH4 and 298 for N2O). 

3.3 Results and discussion 

3.3.1 Inter-system differences 

Across the three systems, a short-term decrease in ADG was observed immediately post-weaning. As 

animals grew larger, their ADG increased to around 1.4-1.6 kg/d, until they reached a mature age and 

then slowed down to “finish” or meet conformation and fat scores (Figure 3.4). The relatively low 

overall ADG compared to the common target rate in the study region (0.8-1.0 kg/d) was due to 

extended housing and difficulty in satisfying carcase specification criteria. A statistically significant 

difference in ADG was observed amongst the three systems, with the animals on PP growing faster 

than WC and HS (Table 3.3). This result is largely attributable to their relative performance during the 

aforementioned conditioning period, while the degree of inter-system difference was considerably 

lower earlier in the season. As a result of randomised allocation and weight targeting, there were no 

significant inter-group differences for entry weight or finishing weight. 

Table 3.4 displays the major contributors to total emissions intensity in each farmlet. In 

consonance with other LCA studies on beef production systems (as reviewed by de Vries et al., 2015), 

methanogenic emissions from the rumen were the single greatest source of GHG emissions 

irrespective of pasture management strategies. The WC system had the lowest average emissions 

intensity across all animals (16.0 kg CO2-eq/kg LWG), a result primarily driven by lower requirements 

of inorganic N fertiliser, followed by PP (18.5 kg CO2-eq/kg LWG) and HS (20.2 kg CO2-eq/kg LWG). 

Multi-sample F-tests based on emissions intensity of individual animals showed there were significant 

differences across the three treatments (p < 0.001). Pairwise (via t-tests), emissions intensity for WC 

was significantly lower than PP (p < 0.001) and HS (p < 0.001), while PP was significantly lower than 
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HS (p < 0.001). With regard to direct livestock emissions, the PP farmlet performed most favourably 

due to higher ADG (Table 3.3). However, care should be taken at the interpretation of ADG; relatively 

low nutrient values for WC (crude protein) and HS (digestible energy) could be a reflection of the fact 

that WC and HS swards were close to establishment (Table 3.1). Higher animal performance on PP 

notwithstanding, reduced N fertiliser usage on WC was by far the greatest saving to total GHG 

emissions across all systems although, over the long term, the negative impact of legumes on the soil 

carbon stock (Herridge and Brock, 2016) may also need to be considered. 

Figure 3.5 displays the relationship between ADG and emissions intensity under each 

treatment. Strong and statistically significant negative correlations were found between the two 

variables for all three systems (r = -0.86, -0.84 and -0.77 respectively for PP, WC and HS; all p < 0.001), 

suggesting that the inter-system differences in mean emissions intensity values are, to a large degree, 

explained by differences in ADG. As for the reasons for differences in ADG, the slower growth rates by 

WC cattle can largely be attributed to the lower crude protein content in silage (Table 3.1). For HS 

animals, the greater heterogeneity of monoculture swards at the height of the pasture growing 

season, which was consistently observed and, in this instance, resulted in a lower yield recorded from 

summer silage cuts (Table 3.1), would likely have been a leading contributing factor, although the 

digestible energy of HS grass was also lower than expected (but statistically not different to PP). This 

hypothesis, in turn, seems consistent with smaller variances for both ADG and emissions intensity 

amongst PP animals, as seen in both Table 3.4 and Figure 3.5. The above evidence indicates that, while 

the PP system has a higher emissions intensity than the WC system on average, it may possess a 

comparative advantage from the viewpoint of system stability and thus a less stringent requirement 

for animal selection, at least during early years of WC sward establishment following pasture renewals. 

To maximise the genetic potential of latest germplasm used by the WC and HS farmlets, strategies to 

reduce spatial variability of swards, such as spatial separation (Sharp et al., 2014), overseeding 

(Rouquette, 2016) and precision agriculture (Hedley, 2015), may need to be explored. Pasture designs 

that optimise the balance of nitrogen and energy release in the rumen, both at grazing and from silage, 

will increase ruminal microbial protein synthesis and subsequently animal performance (Lee et al., 

2001, Merry et al., 2006). 

3.3.2 Intra-system distributions 

As the emissions associated with pasture were evenly distributed across 30 cattle on each farmlet, the 

observed intra-system variation in emissions intensity is solely attributable to individual livestock 

performance. A closer investigation of these distributions suggests that, although emissions from 

livestock were not the primary drivers of relative emissions intensity amongst different farmlets, 

individual animal heterogeneity played a key role in distributions of emissions intensity within each 
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particular farming system (Figure 3.6). In addition to 33% (PP), 52% (WC) and 54% (HS) differences in 

emissions intensity between the best and worst performing animals on the farms (Table 3.4), there 

were notable differences in animal performance between sexes under two of the three treatments 

(Figure 3.7). Steers from the WC farmlet were found to have a significantly lower emissions intensity 

than WC heifers (difference in means = 1.4 kg CO2-eq/kg LWG; p = 0.020 based on the paired t-test). 

Similarly, HS steers had a significantly lower emissions intensity than HS heifers (1.7 kg CO2-eq/kg 

LWG; p = 0.027). While there were no significant differences in ADG between the sexes within either 

of these treatments, steers had higher total LWG than heifers for both WC and HS systems (p = 0.033 

and p = 0.037, respectively). Interestingly, HS heifers spent significantly less time on the NWFP than 

steers (difference in means = 34 days; p = 0.010) because of their lower target weight and propensity 

for heifers to meet carcase specification requirements more easily. However, the associated savings 

in livestock-based emissions were not large enough to offset the benefits of larger total growth by 

steers. This finding reiterates the importance of considering interlinkages with external supply chains 

(Brock et al., 2013) and may support an argument for dairy beef production (in which more males are 

reared for meat than females) to create more sustainable livestock systems (de Vries et al., 2015), 

although the slower growth rate by dairy breeds, as well as the greater finishing potential of bulls, 

must also be taken into consideration in this debate. Further research is required before drawing any 

conclusion regarding the optimal interlinkages between beef systems and dairy systems, which is 

beyond the remit of the present study. 

3.3.3 Methodological comparisons 

As described earlier, emissions intensity was also computed for a pre-averaged representative animal 

on each farmlet. The resultant point estimates for emissions intensity under PP, WC and HS systems 

were 17.6, 14.3 and 18.8 kg CO2-eq/kg LWG, respectively. Compared to the arithmetic means of 

emissions intensity values across individual animals (Table 3.4), the alternative approach was found 

to underestimate the emissions intensity by 0.9–1.7 kg CO2-eq/kg LWG, or up to 10% of system-wide 

emissions. 

According to Monte Carlo pairwise comparisons carried out for these pre-averaged animals, 

the PP and HS systems both had significantly higher emissions intensity than the WC system (p = 0.017 

and p = 0.001, respectively); however, there were no significant differences between the PP and HS 

systems (p = 0.293). This finding contrasts with the aforementioned t-test results based on emissions 

intensity derived for individual animals, whereby the mean values from all three systems were found 

to be significantly different. The reason behind this discrepancy is thought to be the muting effect held 

by averaging herd statistics on the extreme animals. In other words, representative animal approaches 

fail to sufficiently consider burdens arising from poorly performing animals, whose emissions intensity 
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becomes exponentially (as opposed to linearly) higher as their ADG nears zero; this results in “empty” 

methanogenic emissions to merely sustain, rather than increase, their bodyweights. Indeed, the upper 

limit values of the 95% confidence intervals estimated by the Monte Carlo method were found to be 

smaller than the emissions intensities derived for the worst-performing “real” animals, and 

considerably so for the WC and HS systems under which ADG tended to be more variable (Table 3.5). 

Figure 3.8 depicts the above Monte Carlo results diagrammatically, alongside the uncertain 

ranges derived for the best and worst performing animals on each farmlet. Here, the hypothesis about 

the importance of considering the “weakest” animals seems to gain further credibility, as the worst 

performing animals demonstrate far wider 95% ranges than the average (and best performing) 

animals—especially for the WC system, whose overall burdens are more strongly affected by livestock 

emissions due to its lower ammonium nitrate (NH4NO3) application rates. While the ranges given for 

the best and worst performing animals may be slightly overestimated compared to those given for the 

average animals (as the animal heterogeneity has been considered twice, first in the form of animal 

performance and then through parameter distributions), this condition applies equally to both the 

best and worst animals; it would be reasonable to conclude, therefore, that the use of pre-averaged 

data may result in underestimation of emissions intensities, both in terms of point estimates as well 

as the width of confidence intervals. It should be noted, however, that this finding has only been 

drawn in the context of farm-scale LCA, and its relevance at the regional and national scales is not 

necessarily straightforward. 

3.3.4 Sensitivity analysis 

The results of the sensitivity analysis for allocation methods showed that the ratios derived for mass 

allocation of pasture-originating burdens did not deviate from the values originally prepared for 

economic allocation in any considerable manner. On average across the three systems, emissions 

assigned to cattle were 78% under economic allocation (i.e. 22% assigned to sheep) and 72% under 

mass allocation. This finding offers an interesting insight about the livestock market in the UK that the 

economic values of livestock products are strongly correlated with the amount of feed required to 

produce them. As a result, emissions intensity for WC, PP and HS, respectively, decreased by 2%, 3% 

and 4% under mass allocation of pasture, suggesting that modelling results were robust to the 

allocation method adopted. 

Using the old IPCC conversion factors (IPCC, 2007) was found to affect model outputs, with 

both the mean emissions intensity for WC (14.3 kg CO2-eq/kg LWG) and HS (18.9 kg CO2-eq/kg LWG) 

resulting in significantly lower emissions intensity (p < 0.001 and p = 0.027). There was, however, no 

significant difference for the PP system, a result caused by lower CH4 emissions from the system as a 
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consequence of higher ADG. Since applying different conversion factors can significantly alter the 

results of a study, this adds another dimension to the already challenging cross-comparability issue in 

LCA research (McAuliffe et al., 2016). Future studies should be mindful that their estimate of emissions 

intensity may be higher than older work that employs the 2007 coefficients not because of the 

inefficiencies of farming strategies but because of the different assumptions adopted, particularly if 

the systems in question operate under low animal productivity. 

3.4. Conclusion 
This study used two approaches to calculate the partial carbon footprint of three pasture-based beef-

cattle finishing systems trialled on the NWFP. In the first approach, emissions intensities were 

calculated for individual animals, whereas pre-averaged livestock data were utilised in the second 

approach. The results suggested that the outputs derived from pre-averaged data may be 

underestimated due to insufficient consideration given to uncertainty surrounding the herd structure 

and in particular poorly performing animals. The systematic bias identified by this study calls for 

careful interpretation of potentially optimistic LCA results based on pre-averaged herd data. At the 

same time, it opens up a large opportunity to reduce carbon footprints associated with livestock 

production systems, as the environmental benefit of evidence-based animal selection is likely to be 

considerably larger than currently thought and aligned with performance metrics i.e. ADG, which will 

encourage greater farm adoption. 

Although animal heterogeneity was found to be a significant driving force behind livestock 

emissions intensities, the Monte Carlo analysis applied to individual animals simultaneously 

demonstrated that a large degree of uncertainty also exists around emission factors that have been 

assumed constant across treatments. This was particularly evident in PP and HS where considerably 

higher levels of N fertiliser were applied relative to WC (Figure 3.8 and Table 3.1). Given that these 

uncertainties are attributable to the current common practice of using recommended “book values” 

and national inventories regardless of the weather, soil, sward type, animal breed and management 

under which the farm operates, it can be hypothesised that replacing these values with site-specific 

emission factors will likely improve accuracy of farm-level assessments. As a prerequisite to test this 

hypothesis, Chapter 4 will derive original emission factors for pasture-originated N2O emissions at 

each of the three farmlets at the NWFP. 
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Table 3.1. Inventory of material inputs for each system. Most data were sourced directly from NWFP records or 
experimental data. Transport distances, on the other hand, were calculated using GIS software. 

Variable Unit PPd WCe HSf 

Area ha 21.61 20.85 21.45 

Fertiliser area ha 21.24 20.52 21.03 

FYMa area ha 18.90 17.97 18.34 

Yield kg DM/ha 11474 10780 10417 

Fertiliser applied     

N kg 4951 681 4346 

P kg 206 1125 208 

K kg 554 454 312 

Lime kg 0 3002 4361 

FYMa t 118 118 98 

Pesticides     

Glyphosate kg 0 7.51 15.25 

Fluroxypyr kg 0 0 0.98 

Seeds     

Grass kg 0 734 650 

Clover kg 0 42 0 

Diesel for machinery l 342 1181 1295 

Soybean kg 651 651 672 

Straw kg 38920 39894 39685 

Transport     

Soybean (sea) tkm 6267 6267 6469 

Soybean (road) tkm 155 155 160 

Straw (road) tkm 2436 2497 2484 

Fertiliser (road) tkm 2444 2252 3949 

Pasture quality     

DEb % 77.55 77.7 76.78 

CPc % 20.72 20.12 17.41 

Silage quality     

DEb % 65.76 64.05 64.66 

CPc % 11.44 9.24 11.92 
a FYM: farmyard manure 
b DE: digestible energy 
c CP: crude protein 
d PP: permanent pasture 
e WC: white clover/high sugar grass mix 
f HS: high sugar grass monoculture 
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Table 3.2. Distributions of uncertainty parameters assumed in Monte Carlo simulations. Similar to Table 2.7, 
distributions were determined from the literature described below. 

Emission source Uncertainty Distribution Reference 

Animal/housing    IPCC (2006) 

Methane (EFa and MMb) ± 20 % Triangular  

Nitrous oxide (direct MMb) SD2 = 2 Lognormal  
Nitrous oxide (indirect MMb leaching) -1500%/333% Triangular  

Nitrous oxide (indirect MMb volatilisation) SD2 = 5 Lognormal  
Pasture    IPCC (2006) 

Nitrous oxide (direct) SD2 = 3 Lognormal  
Nitrous oxide (indirect leaching) -1500%/333% Triangular  

Nitrous oxide (indirect volatilisation) SD2 = 5 Lognormal  
Carbon dioxide (lime) -50%/0% Triangular   

a Enteric fermentation; b Manure management 
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Table 3.3. Livestock performance under each system. In this chapter, entry weight to the NWFP is defined as the weight 
of finishing cattle on the day they are weaned from their dams. Therefore, total growth, average weight gain and time 
refer to the period between weaning and slaughter. 

Parameter Unit PPa (SDb) WCc (SD) HSd (SD) p-valuee 

Entry weight kg 279 (32.08) 279 (28.76) 284 (35.76) 0.80 

Finishing weight kg 607 (50.75) 582 (47.15) 590 (39.23) 0.12 

Total growth kg 328 (41.68) 304 (45.73) 307 (38.67) 0.05 

Time on Farm Platform d 448 (40.33) 461 (43.68) 453 (31.97) 0.46 

Average daily weight 
gain 

kg/d 0.76 (0.10) 0.68 (0.10) 0.70 (0.08) < 0.01 

a PP: permanent pasture 
b SD: standard deviation 
c WC: white clover/high sugar grass mix 
d HS: high sugar grass monoculture 
e Based on multi-sample F-tests 
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Table 3.4. Factors contributing to emissions intensity of individual cattle. Results are presented as the average value across 30 cattle assigned to each system in the unit of kg CO2-eq/kg 
LWG. 

Sourcea PPb (Range) WCc (Range) HSd (Range) 

Enteric fermentation (CH4) 7.09 (6.16 - 8.02) 7.7 (6.43 - 9.70) 7.52 (5.24 - 9.61) 

Manure management (CH4)e 1.36 (0.73 - 1.78) 1.83 (1.11 - 2.56) 1.68 (1.27 - 2.59) 

Manure management (direct N2O) 1.15 (0.99 - 1.34) 1.06 (0.66 - 1.38) 1.06 (0.70 - 1.32) 

Manure management (indirect volatilisation N2O) 0.2 (0.17 - 0.22) 0.18 (0.11 - 0.23) 0.18 (0.12 - 0.23) 

Barley production 0.56 (0.44 - 0.69) 0.62 (0.46 - 0.90) 0.61 (0.50 - 0.87) 

Ammonium nitrate production 3.56 (2.78 - 4.39) 0.53 (0.39 - 0.76) 3.32 (2.73 - 4.72) 

Fertililser application (N2O) 2.03 (1.59 - 2.50) 0.3 (0.23 - 0.44) 1.89 (1.56 - 2.69) 

Urine and dung from ewes on pasture (N2O) 0.6 (0.47 - 0.74) 0.67 (0.50 - 0.97) 0.66 (0.54 - 0.94) 

Farmyard manure application (N2O) 0.43 (0.25 - 0.55) 0.45 (0.30 - 0.62) 0.52 (0.40 - 0.78) 

Crop residues (N2O) - - 0.33 (0.25 - 0.48) 0.33 (0.27 - 0.46) 

Indirect emissions from leaching (N2O) 0.2 (0.17 - 0.24) 0.11 (0.08 - 0.14) 0.2 (0.15 - 0.29) 

Urine and dung from cattle on pasture (N2O) 0.25 (0.19 - 0.31) 0.21 (0.13 - 0.29) 0.19 (0.11 - 0.27) 

Single superphosphate production 0.03 (0.02 - 0.04) 0.18 (0.14 - 0.27) 0.03 (0.03 - 0.05) 

Othersf 1.03 (0.80 - 1.26) 1.8 (1.34 - 2.58) 1.97 (1.61 - 2.80) 

Total 18.47 (16.32 - 21.71) 15.96 (13.73 - 20.90) 20.17 (16.63 - 25.61) 
a Results are presented as the average value across 30 cattle assigned to each system in the unit of kg CO2-eq/kg LWG.  
b PP: permanent pasture 
c WC: white clover/high sugar grass mix 
d HS: high sugar grass monoculture 
e Methane arising from manure management was calculated under a deep bedding system assuming a methane conversion factor of 20% and an average 
annual temperature of 12°C.  
f Includes processes which account for < 1% of the total emissions intensity: lime production and decomposition, soybean production, pesticide production, 
transportation and diesel combustion for machinery. 
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Table 3.5. Comparison of emissions intensity (kg CO2-eq/kg LWG) derived under two methods. The representative 
animal approach, which is often-used in livestock LCA, generates modestly lower GWP values than the arithmetic mean 
of the individual animal approach devised in this chapter. This discrepancy is primarily driven by a muting of poorly 
performing animals in the representative approach, whose GWP becomes exponentially higher as ADG approaches zero. 

System Representative animal approach  Individual animal approach 

 Mean LLa ULa Range  Mean Min Max Range 

PP 17.8 15.0 21.5 6.5  18.4 16.3 21.7 5.4 

WC 14.4 12.7 16.2 3.5  16.0 13.7 20.9 7.2 

HS 19.0 16.3 22.5 6.2  20.2 16.6 25.6 9.0 

a Lower and upper limit values of the 95% confidence interval estimated by Monte Carlo simulations. 
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Figure 3.1. System boundary of the present study. The dashed line represents the North Wyke Farm Platform which 
exclusively consists of the finishing stage of the cattle life-cycle.  
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Figure 3.2. Temporal variations in methane emissions from enteric fermentation. The values are aggregated across 30 cattle under each system and decline rapidly from FN_31 onwards 
as cattle that have reached the target weight are slaughtered. FN = fortnight. 
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Figure 3.3. Temporal variations in methane emissions from manure management. The values are aggregated across 30 cattle under each system. FN = fortnight. The decline in methane 
observed approximately from FN_16 to FN_26 is caused by the deposition of dung on pasture under aerobic, as opposed to anaerobic, conditions, which limits gaseous production. 
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Figure 3.4. Temporal variations in average daily gains (ADG). The permanent pasture system generally has favourably growth rates throughout the growing season, but as will be 
discussed in Chapter 5, this is possibly due to a reseeding effect on the white clover and high sugar grass systems. FN = fortnight.  
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Figure 3.5. Relationship between emissions intensity and average daily gains (ADG) under each system. The lower 
emissions intensity observed on WC are largely driven by reduced ammonium nitrate production and application. PP: 
permanent pasture; WC: white clover/high sugar grass mix; HS: high sugar grass monoculture. 
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Figure 3.6. Distribution of emissions intensity per animal under each system. As in Figure 3.5, lower emissions associated 
with WC are due to lower fertiliser usage. Outliers located further than 1.5 times the interquartile range beyond the 
quartiles are each denoted with a cross (×). HS: high sugar grass; PP: permanent pasture; WC: white clover. 
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Figure 3.7. Distribution of emissions intensity per animal by sex. The tendency for males to have lower emissions 
intensity was driven by higher growth rates. Outliers located further than 1.5 times the interquartile range beyond the 
quartiles are each denoted with a cross (×). HS: high sugar grass; PP: permanent pasture; WC: white clover. 
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Figure 3.8. Results of Monte Carlo simulations applied to pre-averaged representative animals and the best and worst performing animals. The lack of overlap observed between the error 
bars of average and best, particularly on WC, demonstrates the muting effect of poorly performing hypothesised under the representative animal approach. Error bars represent 95% 
confidence intervals. 
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Chapter 4 – Deriving site-specific emission factors to reduce 

uncertainties inherent in life cycle assessment 
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4.1 Introduction 
The majority of carbon footprint (CF) studies in the agricultural sector—including those carried out in 

Chapters 2 and 3 of this thesis—employ pre-defined emissions factors (EFs), or fixed parameters 

linking nutrient input with greenhouse gas (GHG) output from the system, as part of the estimation 

process. As the actual ratio between the two values varies depending on the production environment 

of the farm, such as: climate, soil, plant and animal genetics as well as management practice, a 

considerable level of uncertainty surrounds these universal EFs. For example, the two parameters for 

nitrous oxide (N2O) emissions supplied by IPCC (2006), commonly known as EF1 (% fertiliser N lost as 

N2O) and EF3(PRP) (% urine and dung N deposited on pasture lost as N2O, henceforth referred to as EF3), 

respectively, are deemed to have a 95% confidence interval between 67% and +300% of the point 

estimates. This, in turn, generally leads to less accurate estimates of N2O losses compared to locally 

conducted field-scale experiments (Misselbrook et al., 2014). Given that EF1 and EF3 are only a subset 

of EFs required to calculate the agricultural carbon footprint (CF), this demonstrates the importance 

of reducing uncertainty inherent in EFs at both local and national scales. 

Motivated by this observation, the current chapter reports results of an original field trial 

measuring N2O fluxes at the three farmlets of the NWFP (Section 1.4), with a view to derive site-

specific EFs that can be fed into an LCA study to reduce its uncertainty (Chapter 5). Agriculture is one 

of the greatest net contributors of N2O (Galloway et al., 2004, Reay et al., 2012), a GHG ~265 times 

more potent than carbon dioxide (CO2) (IPCC, 2013) with an atmospheric residence time of ~116 years 

(Prather et al., 2015). Globally, the majority of N2O emissions arising from agricultural production 

occur due to manure and faeces left on pasture (36%) and the application of synthetic fertilisers (28%) 

(FAO, 2016). While the UK achieved a reduction of 52% in total N2O emissions over the period between 

1990 and 2013, the agricultural sector only managed a 16% reduction and, as a result, associated soils 

account for as much as 70% of the country’s total N2O emissions (DECC, 2015). The importance of 

reducing soil-originated N2O emissions was also evident in Chapter 3, where they were shown to 

account for 26% of life cycle GHG emissions attributable to the NWFP’s cattle finishing (from weaning) 

enterprise. 

In addition to the primary objective of supplying localised EFs to the next chapter, the current 

chapter also offers a novel contribution to the global warming literature. As mentioned above, N2O 

measurements reported here were taken under three distinct pasture management strategies within 

the NWFP, which represent the three most common pastures within the UK (permanent pasture (PP); 

Lolium spp.); white clover (WC; Trifolium repens) leys; and high sugar grass (HS) monocultures. 

Although studies have considered the effect of land use change (LUC) on N2O emissions from soil, for 

example when pasture was converted to cropland (Reinsch et al., 2018), no identified studies have 
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investigated differences between multiple sward types under similar soil conditions. Doing so will 

enable the separation of the weather and soil effects from management effects; with the NWFP 

including both permanent and short-term ley pastures, climate change implications of reseeding can 

also be quantified. 

4.2 Materials and methods 

4.2.1 Study site 

The field trial was conducted across the three farmlets of the NWFP (Section 1.2). One grazing field 

per farmlet was selected based on similarities with regards to the field size and animal rotation 

patterns. These fields were utilised extensively by beef finishing-cattle over the grazing season (April 

2017 to October 2017) in which this work was carried out. Basic information on soil characteristics for 

each of the fields are provided in Table 4.1. 

Figure 4.1 displays 30-year means for rainfall and temperature at North Wyke. Rainfall is 

generally highest in December (130 mm) while temperature tends to peak in July (max. = 19.9°C; min. 

= 12.0°C) and August (max. = 19.8°C; min. = 12.1°C). Lowest values are observed during June for rainfall 

(55.9 mm), and January (max. = 7.7°C; min. = 2.5°C) and February (max. = 7.7°C; min. = 2.1°C) for 

temperature. 

4.2.2 Experimental design 

The experiment proper, defined as the duration of gas sampling including what took place prior to the 

application of treatments, commenced on 11/04/2017 and concluded on 27/09/2017. On each of the 

three fields, three experimental blocks (15 m x 1.5 m) were established at locations approximately 

equidistant from the centre of the field. These blocks were fenced off using electric wiring while 

animals were grazing on the same field, but otherwise managed similarly to the rest of the pasture 

with grazing simulated through grass-mowing. Each block was further divided into six plots (2.5 m x 

1.5 m) laid along a contour, and randomly assigned to either a treatment or a control. As only four of 

these plots were required to derive emission factors, purposes of and measurements from the other 

two will not be reported here and fulfilled other scientific investigations. Within each plot, a 1 m2 area 

was set aside for gas measurements, and two static chambers (0.16 m2
 each) were tightly installed 

~5cm into the soil within this space. Treatments were defined as dung (D) and urine (U). Two types of 

control plots were also established: the first group received inorganic N at the same rate as the 

treatment plots and the rest of the field (CON+N), while another received no N of any form (CON-N). 

The latter control was required to derive the EF for synthetic fertilisers, or EF1 as defined by IPCC 

(2006). 
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Urine and dung were applied at a rate of 5 l/m2 (de Klein et al., 2014) and 20 kg/m2 (Cardenas 

et al., 2016), respectively. These values represent approximate rates typically returned during a single 

deposition event. Urine was collected from cattle grazing each farmlet after segregating steers and 

heifers. Samples from steers were obtained via an improvised bucket with an extended handle during 

natural urination events. Heifers, on the other hand, were put through a cattle crush and encouraged 

to urinate using vulva stimulation. Following on-field collection, urine was frozen at – 20°C for each 

animal until the day before application, when it was defrosted and mixed together into bulked barrels 

for PP, WC and HS separately. Dung was collected from respective fields with a barrel and ladle 

through subjective identification of the freshest dung pats. Following collection, samples were 

homogenised and refrigerated at 4°C until the day of application. On 13/06/2017 urine was applied to 

U plots. Application to the areas inside and outside chambers was carried out separately using 

watering cans with perforated spray heads. Dung was applied evenly, again separately to inside and 

outside chambers, to D plots at the aforementioned rate. Urine samples were analysed using a 

Shimadzu TOC / TN analyser, with total N content (as nitrogen oxides) determined by 

chemiluminescence after catalytic thermal decomposition at 720°C. Total N content of dung applied 

was quantified following the same method as that for herbage samples described in Section 3.2.2.  

Following the NWFP’s standard farm management practices, inorganic N fertiliser 

(ammonium nitrate, NH4NO3) was applied to PP and HS (except for CON-N plots), three times during 

the grazing season on 10/04/2017, 08/05/2017 and 05/06/2017, at a rate of 40 kg N/ha per application 

event. To ensure areas inside chambers received the correct amount of fertiliser, all chambers were 

closed during the field-wide application by spreader and subsequently received the same fertiliser at 

the same rate by hand. CON-N plots were completely covered throughout this process and received 

no form of N. Unlike PP and HS systems, white clover mixed sward (WC) plots did not receive any 

inorganic N. Consequently, two CON-N plots (and no CON+N plot) were created on each WC block. 

Throughout the course of the experiment proper, no other forms of fertiliser (e.g. phosphorus or 

potassium) were applied to any of the fields. 

4.2.3 Sampling 

Gas sampling and analysis was carried out according to the experimental protocol developed by 

Chadwick et al. (2014). To accurately estimate EFs representative of the entire grazing season, 

sampling commenced on 11/04/2017 (63 days before treatment application) immediately following 

the first inorganic N application. It concluded on 27/09/2017 (106 days after treatment application) 

when emissions from all plots had come back to pre-season levels. 
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Prior to treatment application, N2O sampling was conducted three times a week for a fortnight 

following each application of inorganic fertiliser, and twice weekly thereafter. After urine and dung 

were applied, gases were again collected three times a week for the first two weeks and then twice 

weekly for the next 11 weeks. From 13/09/2017 (92 days after treatment application) onwards, the 

frequency was reduced to once fortnightly. Overall, this resulted in 43 individual sampling days over 

a 169-day period. On each sampling day, chambers were closed at 11am (T0) after ambient gas 

samples were collected. Gases from inside chambers were then sampled 40 minutes later (T40). In 

addition, one chamber per block was designated as a linearity chamber (Chadwick et al., 2014), where 

samples were also collected at 20 minutes (T20) and 60 minutes (T60) to test the assumption of 

temporally linear gas accumulation within chambers. Once samples were collected in sealed glass 

vials, N2O flux was estimated using a Perkin Elmer Clarus 500 gas chromatograph, which was fitted 

with a Turbomatrix 110 automated headspace sampler and an electron capture detector set at 300°C. 

Separation was achieved by a Perkin Elmer Elite-PLOT megabore capillary column (30 m long and 0.53 

mm i.d.) maintained at 35°C, with nitrogen (N2) used as the carrier gas (Cardenas et al., 2016). The 

obtained values were adjusted for the soil temperature recorded at each sampling event. Finally, using 

the flux values derived for all sampling days, cumulative emissions to represent the entire grazing 

season were calculated using trapezoidal integration (Cardenas et al., 2010).  

4.2.3.2 Soil moisture 

On each gas sampling day post-treatment application, soil moisture at each block was measured using 

the gravimetric method. Soil samples were only taken from CON-N and D plots for this purpose, as the 

results of multiple spot sampling confirmed that no statistically significant difference was observed 

amongst plots other than D within a single block. Soil moisture values were subsequently converted 

to water filled pore space (WFPS), using bulk density values identified separately for each plot, to 

account for the degree of soil compaction. Soil temperature at 5 cm was also measured at every gas 

sampling event on all plots using a portable thermometer (Fisher Scientific, UK). 

4.2.4  Data analysis 

Statistical analysis was conducted using GenStat V18 (www.vsni.co.uk/software/genstat). Cumulative 

emissions were log-transformed to account for skewed residual distributions and subsequently 

analysed using restricted maximum likelihood models (REML) with a block structure of field 

block/plot/chamber. REML was chosen over analysis of variance (ANOVA) due to the uneven design 

of the experiment, resulting from the fact that there are two CON-N plots on WC and one on PP and 

HS. Effects of treatments and farmlets as well as their interactions were examined. Differences in 

WFPS across farmlets and between CON-N and D plots were tested using two-way ANOVA. To 
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investigate the relationship between WFPS and N2O emissions, a simple linear regression was also 

carried out. 

EF1 was calculated by subtracting the cumulative emissions on CON-N plots from those on 

CON+N plots within the same block and dividing by the amount of N applied to CON+N plots (Table 

3). EFs for urine (EFU) and dung (EFD), on the other hand, were estimated by subtracting emissions on 

CON+N plots from those on U plots and D plots, respectively, and dividing by the amount of N applied 

in the form of excreta. Finally, to obtain a single EF3 value representative of manure, the weighted 

average between EFU and EFD was calculated using the commonly adopted ratio of 60:40 (Cardenas et 

al., 2010). As discussed, these values will be used in the LCA study carried out in Chapter 5. 

4.3 Results and discussion 

4.3.1 Weather 

Rainfall and temperatures recorded during the experiment proper are depicted in Figure 4.2. In 

comparison to the 30-year average (Figure 4.1), rainfall was considerably higher throughout the 

experiment, with the highest monthly total occurring in July (105 mm). Total rainfall in the 30 days 

following treatment application was 55 mm, with the distribution skewed towards the end of June 

after a comparatively dry period. From treatment application to the conclusion of the trial, 296 mm 

of precipitation was recorded. In contrast to rainfall, air temperature followed a similar pattern to the 

30-year average, although minimum monthly averages were slightly higher in the year of the 

experiment. The highest maximum daily temperature recorded was 29°C on 22/06/2017, whereas the 

lowest minimum was -2°C on 26/04/2017. On the day of treatment application, the temperature was 

14.4°C at maximum and 8.9°C at minimum. The average maximum and minimum temperatures for 

the 60 days following the treatment application were 19.8°C and 12.1°C, respectively.   

4.3.2 Nitrogen application rates 

Between two treatments (U and D, from their respective cattle), N input per area (representing three 

inorganic N applications and a single event of deposition) was higher for D plots on all farmlets, with 

HS recording the highest values (911 kg/ha) followed by PP (784 kg/ha) and then WC (559 kg/ha) 

(Table 4.2). U plots received relatively low levels of N, with the most applied to PP (286 kg/ha), 

followed by HS (207 kg/ha) and then WC (98 kg/ha). CON+N plots, by design, received 120 kg N/ha 

over the experiment proper, while CON-N plots, also by design, did not receive any N. Across all plots 

(other than CON-N), WC had notably lower N inputs than the other two systems, due largely to the 

absence of mineral fertiliser N and the complete reliance on biological N fixation from the legume, 

which would be more variable. 
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4.3.3 Nitrous oxide emissions 

In total, 125, 129 and 122 sets of three samples (T20, T40 and T60) were tested for linearity on PP, WC 

and HS, respectively, with the discrepancies resulting from sampling errors or damaged chambers 

which resulted in samples being irretrievably lost on a given day. Amongst them, 88% of WC samples 

and 85% of both PP and HS samples were represented by a linear equation with R2 > 0.5. These 

percentages are largely comparable to those reported by Cardenas et al. (2016). 

Following treatment application on 13/06/2017, there were modest spikes on the treated 

plots (Figure 4.3); however, the largest fluxes did not occur until the end of July, when the temperature 

and rainfall both became relatively higher. Both types of controls exhibited comparatively lower 

fluxes, with CON+N generating relatively larger peaks than CON-N (on PP and HS that received 

inorganic fertiliser). Fluxes were small at all control plots on WC, none of which received N fertiliser. 

Across all farmlets, D plots produced the largest fluxes, with HS generating a notably high daily peak 

(612 g N2O/ha/d), followed by PP (236 g N2O/ha/d) and WC (159 g N2O/ha/d) (Figure 4.3). U plots 

produced considerably lower N2O emissions in comparison to D plots; the maximum daily fluxes for U 

were 115, 61 and 65 g N2O/ha/d for PP, WC and HS, respectively.  

Total emissions across the experiment are summarised in Table 4.3. The results of REML 

estimation revealed that these values were significantly different amongst treatments (p < 0.001) but 

not farmlet (p = 0.102). A significant interaction between treatment × farmlet was also observed (p < 

0.001). CON+N tended to have considerably higher emissions than CON-N. PP was found to produce 

more N2O than HS on CON+N plots, while HS generated the highest N2O emissions on CON-N, U and 

D plots. WC was the lowest contributor of N2O on U, D and CON-N plots. 

Contrasts can be drawn from two earlier GHG measurements carried out at the NWFP. 

Cardenas et al. (2016) recorded cumulative N2O values of 3,192 and 3,244 g N/ha for U and D, 

respectively, under a summer application of treatments on a permanent pasture. With urine and dung 

brought in from separate herds, N input on the U treatment was 429 kg N/ha, a level considerably 

higher than what was applied under the current study. Emissions from U plots were lower and D plots 

were higher in the present work, although care should be taken with such comparisons as the duration 

of sampling campaigns do not accurately coincide. In a grassland monitoring study without treatment 

application, Horrocks et al. (2014) recorded a daily maximum flux of under 47.3 g N2O/ha/d on 

intensively managed plots, which is considerably lower than 155 g N2O/ha/d recorded on PP CON+N, 

the most comparative group in the current study. It should be noted, however, that amount of 

fertiliser applied in the 2014 study (80 kg N/ha) was also lower than the present campaign. 



102 
 

4.3.4 Soil moisture 

The maximum level of soil moisture was recorded on the HS farmlet in the middle of August (Figure 

4.4). Throughout the season, however, PP generally maintained the highest moisture levels. Across 

three farmlets and the two groups on which moisture was measured (CON-N and D), there were 

significant effects of farmlets (p < 0.001) and the farmlet × treatment interaction (p = 0.01), whereas 

the treatment effect was relatively weaker (p = 0.09). Within each farmlet, moisture on D plots was 

higher than CON-N plots on PP (p = 0.004), while CON-N was higher than D on WC (p = 0.05). No 

statistically significant differences between CON-N and D were observed on HS (p = 0.07). Although a 

positive association was identified between soil moisture and N2O emissions, this was not found to be 

significant either (p = 0.25). 

Following treatment application, soil moisture (as expressed in WFPS) was in the range of 44% 

to 88%, with average values of ~60% between both treatments (Figure 4.4). As already mentioned, 

there was a comparatively dry period with low rainfall directly after treatment application (Figure 4.2); 

after 15.8 mm of rainfall on the night before treatment application, the following 21 days had minimal 

precipitation, coupled with generally high maximum daily temperatures. This led to relatively low soil 

moisture, a likely cause of the low N2O responses during the first four weeks following treatment 

application. When major N2O responses occurred in August, soil moisture was relatively high, 

generating conditions which favoured denitrification (AHDB, 2016). 

4.3.5  Emission factors 

Due to differences in levels of N input, the relative rankings for cumulative emissions did not entirely 

translate across to emission factors (Table 4.4); for example, based on levels of N applied to levels of 

N2O-N lost, PP (0.16 %) performed more favourably than WC (0.64%) for EF3. HS remained the highest 

ranked (most polluting) for EFU, EFD and ultimately EF3 (0.89%), while PP (1.38%) recorded a higher EF1 

than WC (0.73%). On average across farmlets, EF3 calculated in the present study was 0.56%, 

considerably lower than the default IPCC (2006) EF3 value (2%). Possible causes for these differences 

will be discussed in Chapter 5 along with the results of carbon footprint conducted under these EFs. 

Previous research has argued that disaggregating EFs for manure into those for urine and dung 

is warranted (van der Weerden et al., 2011). The results of the present study suggest, however, that 

EFU and EFD do not vary very much, particularly on PP and WC (Table 4.4). Furthermore, EFs estimated 

here were generally lower than those previously observed on the NWFP, for example of EFU of 2.96% 

under spring application (Cardenas et al., 2016). These discrepancies may partly be explained by the 

low N values identified in cattle urine within the present study (Table 4.2), which are known to reduce 

N2O emissions per an amount of N input (Hoogendoorn et al., 2016). 
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4.4 Conclusion 
To obtain site-specific EFs representative of weather, soil, plant and animal genetics as well as from 

farm management strategies at the NWFP, N2O emissions were measured under two treatments (U 

and D) and two controls (CON+N and CON-N) on each of its three farmlets. Overall, HS plots tended 

to have higher cumulative emissions than PP and WC. EFs developed in the current study were found 

to be lower than those reported in previous research, possibly explained by the generally low N 

content of urine sampled from the NWFP cattle, demonstrating the importance of considering site-

specific parameters in livestock LCA. The derived EFs will be incorporated into the carbon footprint 

framework in the next chapter, to reduce uncertainty associated with “generic” emission factors 

intended for the widest possible audience. 
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Table 4.1. Soil characteristics of each field used in the experiment. These data were obtained from a high spatial 
resolution soil sampling campaign undertaken on the NWFP in 2016 and represent typical soil conditions for each of the 
fields utilised in the current experiment. 

Farmlet Permanent pasture 
(PP) 

White clover mix 
(WC) 

High sugar grass 
(HS) 

Field name Orchard Dean Higher Wyke 
Moor 

Poor Field 

Field size (ha) 3.92 4.32 3.92 

Soil type Clay Clay Clay 

pH 5.64 5.47 5.74 

Olsen P extractable (mg/l) 18.8 13.6 14.8 

K extractable (mg/l) 213 145 207 

Mg extractable (mg/l) 112 70 71 

Organic C (%) 1.66 3.49 4.43 

Total N (%) 0.62 0.40 0.41 

Bulk density (g/cm3) 0.88 0.98 1.08 
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Table 4.2. N inputs to each treatment (kg N/ha). Fertiliser N was applied in the experiment at the same rate as the NWFP (120 kg/ha/yr). Urine and dung were applied at rates 
recommended in previously published literature. Animal excreta was collected from cattle occupying each of the farmlets at the beginning of the experiment. 

Farmlet 
Da Ub CON+Nc 

Fertiliser Dung Total Fertiliser Urine Total Fertiliser Total 

PPd 120 664 784 120 166 286 120 120 

WCe - 559 559 - 98 98 - - 

HSf 120 791 911 120 87 207 120 120 
a Dung; b Urine; c Control with synthetic N. 
d Permanent pasture; e white clover mix; f high sugar grass monoculture. 
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Table 4.3. Cumulative N2O-N emissions (as g N2O-N/ha). These values represent total emissions from each of the 
treatments averaged across blocks and chambers.  

Treatment CON+Na CON-Nb Uc Dd 

PPe 2320 670 2249 5380 

WCf NA 588 1176 4049 

HSg 1893 1022 2597 9935 
a Control with N; b Control without N; c Urine; d Dung 
e Permanent pasture; f white clover mix; g high sugar grass monoculture. 
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Table 4.4. Derived emission factors. All values are reported as % N lost as N2O-N and represent the net treatment effect 
vis-à-vis baseline emissions (either CON-N or CON+N). 

  PPa WCb HSc  

EFU
e -0.04 0.69 0.81  

EFD
f 0.46 0.64 1.02  

EF3
g 0.16 0.64 0.89  

EF1
h 1.38 NA 0.73  

a Permanent pasture; b white clover mix; c high sugar grass monoculture. 
e Emission factor for urine; f Emission factor for dung; g Emission factor 3 for excreta deposited on 
pasture; h Emission factor for nitrogen fertiliser lost as nitrous oxide. 
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Figure 4.1. Mean monthly meteorological data for North Wyke between 1981 and 2010. Data were obtained from a 
meteorological station situated on the NWFP. 
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Figure 4.2. Mean daily temperature and rainfall during the sampling campaign observed at the meteorological station 
located on the NWFP. Treatment application occurred on 13/06/2017. 
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Figure 4.3. Daily N2O fluxes for each farmlet (as g N2O/ha/day). A: permanent pasture (PP); B: white clover/high sugar 
grass mix (WC); C: High sugar grass monoculture (HS). Note different y-axis scales. CON+N: control with N; CON-N: 
control without N; D: dung; U: urine.  
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Figure 4.4. Water filled pore space (WFPS) from control without N (CON-N) and dung (D) plots post-treatment. Error bars 
represent the average standard deviation (SD) across replicates including both CON-N and D plots. 
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Chapter 5 – Impacts of adopting site-specific emission factors on 

uncertainties associated with life cycle assessment 
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5.1 Introduction 
As discussed in Chapter 1, the method of life cycle assessment (LCA) has evolved and subsequently 

become a primary means to quantify environmental footprints of commodity value chains over the 

last few decades, and there is now a consensus that LCA studies must acknowledge uncertainties 

inherent within production systems to ensure their scientific robustness (Igos et al., 2018). 

Nonetheless, as discussed in Section 1.1, LCA studies often omit rigorous evaluation of system-level 

uncertainties (Imbeault-Tétreault et al., 2013), resorting instead to discrete scenario and sensitivity 

analyses or, more problematically, solely to point estimates (Curran, 2012). This is particularly 

problematic for analysis of livestock production systems, which are known to bear a high degree of 

uncertainties associated with their physical, chemical and biological processes that underpin meat, 

milk, egg and fibre production. 

One of the most limiting aspects of compiling a life cycle inventory analysis (LCI) is uncertainty 

associated with emission factors (EF), or parameters linking nutrient inputs to GHG outputs from the 

system (Pouliot et al., 2012). On real-world livestock farms, many factors can affect these ratios, 

including weather, soil, plant/animal genetics, management practice (e.g. diet and housing) and 

interactions between them. The majority of carbon footprint studies, however, adopt EFs derived 

outside the actual system boundary, most commonly in the form of parameters defined as part of 

IPCC (2006) guidelines. As these “generic” EFs are designed to be applicable to a wide spectrum of 

production environments within an agroecological zone, a considerable level of uncertainty surrounds 

each of these values, as described in detail in Section 4.1. 

The objective of the present chapter is to evaluate the impacts of adopting site-specific EFs 

on uncertainties associated with carbon footprints of livestock production systems. To achieve this, 

the two parameters for nitrous oxide (N2O) emissions derived in Chapter 4, EF1 (% fertiliser N lost as 

N2O) and EF3 (% urine and dung N deposited on pasture lost as N2O), and an additional EF commonly 

known as Ym, which characterises methane (CH4) emissions generated from enteric fermentation by 

ruminants (% gross energy intake emitted as CH4), were integrated into an LCA model of the three 

NWFP enterprises for inter-system comparison. The resultant CFs and their confidence intervals were 

then compared against those obtained under the IPCC recommended EFs with a larger degree of 

uncertainty. Chapter 3 found that soil-originated N2O and CH4 arising from enteric fermentation, the 

major GHG emissions represented by these three parameters, collectively accounted for 48 – 51% of 

the system-wide CF when evaluated at the point estimates. 

The NWFP (Section 1.4) was selected as the study site since its three-farmlet research design 

provides an ideal setting to investigate the research question discussed above. Compared to common 
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grasses, white clover has been found to reduce enteric fermentation by grazing ruminants (Enriquez-

Hidalgo et al., 2014, Hammond et al., 2011), although the level of this effect is highly heterogenous 

across production environments (van Dorland et al., 2007). On the other hand, high sugar grasses, or 

grass cultivars with elevated levels of water soluble carbohydrate (WSC), have been found to improve 

nitrogen use efficiency at the animal level (i.e. milk N per unit of dietary N) and are therefore believed 

to also improve system-wide nitrogen use efficiency (Miller et al., 2002), and reduce both N2O 

emissions and nitrate (NO3
-) losses per unit of final product (Soteriades et al., 2018). To make the 

matter more complex, these cultivars have contradicting results in relation to CH4 emissions, with their 

relative performance vis-à-vis common grasses depending on sward composition, dry matter intake 

(DMI) and units chosen to express CH4 (e.g. % gross energy or g CH4/kg milk) (Ellis et al., 2012). 

However, as the majority of these results were obtained from zero-grazed studies to facilitate 

individual intake measurements, interactions between production environment, pasture/animal 

genetics and management are not well understood. EFs derived from farm-scale trials can overcome 

this limitation; to the best of my knowledge, this is the first LCA study of livestock production systems 

to utilise such values. 

5.2 Materials and methods 

5.2.1 Goal and scope definition 

As discussed, the primary goal of the present study was to examine system-wide impacts of adopting 

site-specific emission factors on carbon footprints of pasture-based cattle production systems. In 

addition, an empirically motivated secondary goal was also defined to evaluate relative climate change 

impacts of three sward management strategies commonly observed in temperate grasslands; namely 

permanent pasture (PP), grass and white clover swards (WC) and monoculture grass leys using 

recommended grass varieties e.g. high-sugar grasses (HS) as discussed in detail in Section 1.4 and 

Chapter 3. 

The study was carried out on the three cattle finishing enterprises (farmlets) at the NWFP and 

the adjacent breeding (cow/calf) farm that supplies weaned calves to them each year. Expanding the 

model that solely focused on the finishing farmlets developed in Chapter 3, the current system 

boundary covered both operations and was set as “cradle-to-gate” — from the production of raw 

materials to the departure of animals for slaughter (Figure 5.1). The functional unit was set as 1 kg 

liveweight (LW, as opposed to 1 kg liveweight gain adopted in Chapter 3) and the downstream 

slaughtering process was excluded from the model. This decision was motivated by two factors: (1) to 

maximise cross-study comparability (McAuliffe et al., 2016); and (2) to minimise off-farm uncertainties 

in the model that may affect evaluation of on-farm uncertainties. All analyses were repeated for two 
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generations of finishing cattle, those from grazing seasons 2015 (born 2014, n = 90) and 2016 (born 

2015, n = 90). 

5.2.2 Inventory analysis and impact assessment 

5.2.2.1 Overall design 

LCI and life cycle impact assessment (LCIA) were carried out according to ISO (2006) and BSI (2011) 

guidelines. CFs for each individual animal were calculated using the “animal-by-animal” framework 

devised in Chapter 3; however, the partial carbon footprint approach has now been extended to 

cradle-to-gate as described in Section 5.2.1. Inventory analysis for finishing enterprises (farmlets) 

utilised the NWFP’s high-resolution records between 2014 (when the first calf was weaned) and 2017 

(when the last calf was finished), as per the procedure outlined in Chapter 3. Amongst key variables, 

animal LW (Table 5.1) and pasture/silage quality (Table 5.2), the latter determined by digestible 

energy (DE) and CP, were both measured every two to four weeks to estimate on-farm emissions 

during the corresponding period. For the breeding enterprise, a steady-state herd structure to supply 

30 weaned calves was mathematically derived from the average parity number and the mortality rate 

measured on the farm (Table A5.1), to account for the whole-herd emissions inclusive of pre-service 

heifers, those that replace the breeding stock, and those that fail to produce healthy calves. Since 

grazing fields on the breeding farm are permanent pasture and managed in a similar manner to the 

NWFP’s permanent pasture (PP) farmlet, inputs to, and burdens arising from, a hectare of grassland 

(excluding animal-originated emissions) were duplicated from the latter’s inventory. The finishing and 

breeding operations were subsequently linked to form a single LCA model (Figure 5.1), with the final 

output (kg CO2-eq/kg LW) representing emissions from both. As part of this process, ~28% of burdens 

arising from the breeding farm were allocated to sales of culled cows; given the considerably lower 

value of meat produced from these animals, the economic allocation method was adopted to split 

burdens between the two products. All results reported below are for production of prime suckler 

beef only. 

Similar to Chapter 3, on-farm GHG emissions from cattle and pastures were calculated using 

a modified IPCC (2006) Tier 2 approach. To address the primary goal of the study, as outlined in Section 

5.2.1, site-specific parameter values were obtained for EF1, EF3 (Table 4.4) and Ym, the latter of which 

will be described in the next section. The values of EF1 and EF3 were shared between the PP farmlet 

and the breeding farm, which had comparable sward structures as discussed above. For all other EFs, 

including those for N2O and CH4 emissions from manure management and indirect N2O emissions 

arising from leaching and atmospheric deposition, UK-specific values (Brown et al., 2018) were 

adopted universally across all farmlets and the breeding farm. On-farm impacts of sheep grazing, both 

positive through lamb production (and less pronouncedly through manure deposition) as well as 
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negative through GHG emissions, were separated from the model using the decomposition method 

outlined in Chapter 3. 

Emissions associated with background processes, such as the production and transport of 

straw for bedding and small quantities of supplementary feeds —soybean (Glycine max) meal in 2015 

and rapeseed (Brassica napus) expeller meal in 2016 — were sourced from Agri-footprint V3 (Durlinger 

et al., 2017) and ecoinvent V3 (Wernet et al., 2016) databases. Inputs which accounted for <1% of 

system-wide emissions according to the analysis undertaken in Chapter 3 were assumed to be the 

same across both grazing seasons. CFs were calculated according to the IPCC (2013) 100-year average 

impact assessment method on SimaPro V8.2.3 (www.simapro.com). 

5.2.2.2 Methane emission factors 

In addition to EF1 and EF3 representing soil-originated N2O emissions (derived in Chapter 4), Ym 

representing animal-originated CH4 emissions were also quantified on site. As CH4 data were routinely 

recorded at the NWFP, their collection did not constitute part of the present PhD research; however, 

the author collated the raw data, then analysed and subsequently converted them to EFs that are 

suitable for LCA. Throughout the 2016/17 winter housing period (26/11/2016 – 12/04/2017, 137 

days), all cattle on the NWFP’s three farmlets were given access to the GreenFeed Emission Monitoring 

system (C-Lock Inc., Rapid City, SD), which dispenses a small quantity of concentrates to attract 

animals while measuring local CH4 fluxes, at a maximum of three visits per day. Standard feed (silage 

produced from forages on the respective farmlet) and drinking water were given ad libitum. The 

measured level of gas concentration was first converted to daily CH4 emissions for each animal on 

each day separately using the volumetric airflow rate and fractional air capture rate (Huhtanen et al., 

2015). These values were then pooled across animals and the study period and, together with the 

gross energy intake estimated as part of the modified IPCC Tier 2 approach (Section 5.2.2.1), used to 

compute Ym for each farmlet. The final values were 7.85%, 8.28% and 7.88% for PP, HS and WC, 

respectively. 

5.2.3 Interpretation 

5.2.3.1 Statistical analysis 

As discussed in Chapter 3, one of the advantages of adopting an animal-by-animal framework for 

carbon footprints is that the treatment effect on CFs can be statistically tested using standard 

parametric procedures. Here again, statistical analyses were carried out in GenStat V18.1 

(www.vsni.co.uk/software/genstat). Two-sample t-tests were used to test differences in CF between 

farmlets and between seasons. Correlations between CFs and their potential determinants were 
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investigated through Pearson’s correlation coefficient. The system-wide CF for each farmlet was 

quantified as the arithmetic mean across all animals. 

5.2.3.2 Sensitivity analysis for model assumptions 

As the NWFP is a farm-scale trial, its three farmlets are operated as commercial enterprises, with their 

management closely resembling private farms in neighbouring regions (Takahashi et al., 2018). The 

adjacent breeding farm, however, was established primarily to supply healthy calves to the NWFP and, 

therefore, subscribes to a more conservative strategy in terms of productivity than typically observed 

on more commercially driven operations. In particular, its stocking rate of ~1.3 livestock units (LU) per 

ha (Table A5.1) is at the lower end of the recommended range in England (AHDB, 2016), and the 

average parity number of ~4 births is also below common practice in temperate grasslands 

(Beauchemin et al., 2010). To examine the potential impacts of these “non-managerial” parameters 

on total CFs, two sets of scenario analyses were conducted. First, the pasture area was modified to 

move the stocking rate to the upper limit (2.5 LU/ha) and the lower limit (1 LU/ha) of AHDB guidelines. 

Second, the average parity number was altered to higher (6 calves/cow) and lower (2 calves/cow) 

levels from the baseline operation. For the latter analysis, the steady-state herd structure was 

recalculated under respective scenarios so that an equal number (30) of calves would be weaned and 

transferred to each NWFP farmlet regardless of the parameter choice. Finally, in line with ISO 14040 

guidelines (ISO, 2006) that recommend a sensitivity analysis for the choice of allocation method, the 

baseline model was rerun under mass allocation to split burdens between culled cows and weaned 

calves. 

5.2.3.3 Sensitivity and uncertainty analysis for site-specific emission factors 

To meet the study’s primary goal of examining the impacts of using farm-level EFs within the CF 

framework, a range of sensitivity and uncertainty analyses were carried out. First, site-specific EFs 

were replaced with default IPCC values for EF1 (0.01), EF3 (0.02) and Ym (0.065). Second, to test the 

effect of local-level uncertainty surrounding measured EFs, high and low boundaries were placed 

independently around each of them. Following IPCC (2006) guidelines, these boundaries were set at 

−67% / +300% (EF1 and EF3), and ± 1 percentage point (Ym); it is recognised, however, that an 

unidentified proportion of IPCC’s confidence intervals is attributable to uncertainty regarding the 

location (e.g. weather and soil), and therefore the CF range produced from this analysis represents 

the widest possible values. 

Furthermore, three sets of Monte Carlo (MC) analyses were also conducted to compare 95% 

confidence intervals of CFs derived with and without the existence of site-specific EFs. In the first 

analysis (MC1), the measured values of EF1, EF3 and Ym were assumed to be uncertain, and given the 

standard probability distributions (IPCC, 2006) around the measured values. In the second analysis 
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(MC2), the same parameters were assumed to be completely certain, and excluded from random 

drawings at each iteration. As discussed, MC1 is likely to overestimate the degree of local-level 

uncertainty (when the location of the farm is known), with the true range expected to lie between the 

distributions derived by these two methods. Finally, confidence intervals that would be derived in the 

absence of site specific EFs were also estimated (MC3), using default IPCC values (listed above) and 

probability distributions. All sensitivity and uncertainty analyses were carried out using 2016 data and, 

following the method developed in Chapter 3, performed on the 1st (best), 15th (median) and 30th 

(worst) animals from each farmlet based on their GWP rankings — to detect potential interactions 

between model parameters and animal genetics. All MC simulations were conducted using SimaPro 

V8.2.3, with 1000 iterations performed per animal for each scenario. 

5.3 Results and discussion 

5.3.1 Baseline results 

Across the three treatments, the white clover mixed sward (WC) had significantly lower CF than PP 

and the high sugar grass monoculture (HS) in both 2015 and 2016 (p < 0.001 in all four pairwise cases, 

Table 5.4). This finding is consistent with what was reported in Chapter 3 and primarily driven by little 

(2015) or no (2016) use of synthetic N fertiliser, of which production is estimated to generate 8.8 kg 

CO2-eq/kg N. In the current study, however, this saving was more muted due to the inclusion of a 

permanent pasture-based breeding farm. While it is reasonable to conjecture that switching the latter 

to a white clover mixed sward will further reduce the overall CFs, the risk of failing to establish a 

vigorous and spatially homogenous sward must be carefully considered before universal 

recommendations are made. System-wide, GWP attributable to the suckler enterprise accounted for 

61-67% of the total value, of which enteric CH4 from breeding cows and burdens arising from 

ammonium nitrate (NH4NO3) production were the largest contributors (Tables A5.2 and A5.3). The 

high burden associated with the breeding stage led the 2016 herd to record generally higher levels of 

CFs than the 2015 herd (p = 0.037), as the former spent more time with their mothers and were 

weaned heavier (Table 5.1); as a result, the allocation rate vis-à-vis culled cows became higher as well. 

Intra-system differences in environmental performance were largely explained by livestock 

performance, again supporting an earlier assertion made in Chapter 3. The overall CFs were weakly 

but negatively correlated with lifetime average daily gains (Figure A5.1), with correlation coefficients 

of −0.21 (p = 0.11), −0.33 (p = 0.010) and −0.14 (p = 0.28) for PP, WC and HS, respectively. More 

importantly, average daily gains post-weaning showed strong and negative correlations with GWP 

attributable to the finishing process (Figure A5.2), with correlation coefficients of −0.81 (p < 0.001), 

−0.74 (p < 0.001) and −0.59 (p < 0.001) respectively. It was also reiterated that sex is a strong 
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determinant of GWP, with steers recording significantly (p < 0.001) lower CFs than heifers for all 

farmlets and years (Figure A5.3). 

5.3.2 Sensitivity analysis for model assumptions 

Results of the sensitivity analyses suggest that changing the attitude towards the risk facing the 

breeding enterprise has some environmental implications. When its stocking rate was raised to the 

upper limit of current industrial guidelines in England (AHDB, 2016), CF decreased by approximately 

13% across the three farmlets (Figures 5.2, A5.4 and A5.5). Reducing the stocking rate to the lower 

limit of 1 LU/ha, on the other hand, increased emissions by 7%. Increasing the average parity number 

by two births (to six calves) reduced CF by up to 21%, while decreasing by two births increased 

emissions by > 100% in most cases. Although the latter scenario is unlikely to be observed in the real 

world even amongst the most conservative producers, the highly asymmetric (nonlinear) nature of 

these impacts is important to note; unlike at the NWFP, low parity numbers on commercial farms are 

often a result of health issues (e.g. mastitis) rather than the producer’s risk aversion, and above results 

indicate that their environmental burdens become exponentially high as replacement rates rise. When 

the high stocking rate was combined with the increased parity, GWP decreased by 29%, resulting in 

17.9, 16.0 and 18.2 kg CO2-eq/kg LW for median animals on PP, WC and HS farmlets, respectively. For 

the reasons outlined in Section 5.2.3.2, these values would likely represent commercial pasture-based 

beef farms in Southwest England that subscribe to best management practices. It should be noted, 

however, that GWP estimates derived under the animal-by-animal framework are higher than those 

derived under a representative animal approach, due to the latter’s tendency to systematically 

underestimate emissions associated with poorly performing animals (as demonstrated in Chapter 3). 

Finally, when environmental burdens arising from the breeding farm were allocated between culled 

cows and weaned calves based on mass rather than economic value, total GWP reduced by 7%, 

suggesting that some findings may be moderately sensitive to the choice of allocation method. 

Nonetheless, given the large quality difference between the two products, interpretation of mass-

allocated results is not straightforward. 

5.3.3 Sensitivity and uncertainty analysis for site-specific emission factors 

Replacing the site-specific parameters for N2O emissions (EF1 and EF3) with default IPCC (2006) values 

did not have any notable impacts on overall GWP, with changes accounting for a 1% reduction in total 

emissions (Figure 2 and Table A5.4). Applying the IPCC uncertainty range over site-specific EF1 and 

EF3, however, resulted in reversals of rankings amongst farmlets. For instance, when the upper limit 

value (+300%) was assumed under the median animal, the HS system, which recorded the highest CF 

in the baseline analysis, performed slightly better than PP system (Table A5.4). This change was driven 

by the lower EF1 value for HS, which more than offset the higher EF3 value on HS under the extreme 
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scenario (Figure 5.2). In other words, the adoption of upper limit values magnified the quantitative 

impact of inter-system differences in EF1 on resultant GWP values; generic EFs, which do not 

discriminate between different grasses and legumes, are unable to detect these changes. 

Contrary to the case with N2O EFs, a considerable GWP effect was observed when measured 

Ym values were replaced by default values. Total emissions decreased by around 8%, demonstrating 

that the discrepancy between local and generic EFs was large enough to translate into system-wide 

environmental performance. More critically, site-specific Ym values derived in the current study (0.079 

– 0.083) indicated the possibility that the IPCC uncertainty boundary (0.055 – 0.075) may not be wide 

enough to capture a complete spectrum of common farming systems, something acknowledged for 

tropical regions but not for temperate regions by IPCC (2006). As noted, current Ym values are based 

on single-year data, further research is required before a firm conclusion can be drawn on this matter. 

Amongst the three farmlets, derived Ym values were highest under HS, corroborating the earlier report 

by Ellis et al. (2012). Consequently, the relative environmental performance of this system (as 

evaluated by the CF difference against PP and WC) “improved” when the generic EF was adopted, for 

the same reason as that described above. Under site-specific EFs, HS system performed worse, again 

relatively compared to other systems, under less efficient animals that required more gross energy 

over their lifetime. The last finding demonstrates that there are interactions between animal genetics 

and sward structure, and therefore decisions on animal selection, pasture type and management 

strategies should be made at the same time. 

The results of the three MC experiments showed that measurements of site-specific EFs have 

a large potential to reduce the overall uncertainty of carbon footprints. Across all farmlets and all 

animals (best, median and worst), MC1 produced a 95% confidence interval of −11% to 17% around 

the baseline GWP (24.4 kg CO2-eq/kg LW). This range was narrowed to −6% to 10% under MC2, 

whereby EF1, EF3 and Ym were assumed to be completely certain. The reduction of uncertainty 

associated with complete knowledge of the three parameters was 43%, or a range equivalent to 3.0 

kg CO2-eq/kg LW. When site-specific information was removed altogether under MC3, not only did 

the confidence interval become wider (5.3 CO2-eq/kg LW) but also skewed to the left. The latter result 

suggests that the effect of site-specific Ym (all larger than generic values) was stronger than that of EF1 

and EF3 (generally smaller than generic values), in part because of larger burdens associated with 

enteric fermentation, and in part because of the larger discrepancy between local and generic values. 

5.3.4 Comparisons with previous beef studies 

Although care should be taken when comparing results from multiple LCA studies with different 

system boundaries (McAuliffe et al., 2016) and model assumptions (Roy et al., 2009), it is worthwhile 



122 
 

contextualising the results of the present study within the current understanding of climate change 

impacts brought about by the beef sector. The baseline CFs from the NWFP’s three systems are 

notably higher than previous research adopting the same functional unit of 1 kg LW (Table 5.4). For 

example, an Irish study by Casey and Holden (2006) reports a GWP of 11.3 kg CO2-eq/kg LW, 

approximately half the value reported here under a “business as usual” scenario largely comparable 

to English pasture-based systems (but with slightly a higher level of concentrates-use). The same 

statement is true for a Danish and Swedish study by Mogensen et al. (2015), which uses 1 kg of carcase 

weight as the functional unit, when the present results are converted using the locally measured kill-

out percentage of 51%. Although part of these differences can be explained by the necessity to employ 

a conservative strategy at the breeding enterprise (Section 5.2.3.2), CF estimates after correcting for 

this requirement were still ~35% higher than Casey and Holden (2006). These differences, therefore, 

would be attributable to a combination of site-specific EFs, downward bias inherent in models built 

with national and regional statistics (Section 5.3.2), geographical differences with regards to pasture 

and animal productivity, optimality of management and, finally, differences in model assumption. Of 

the latter point, rigorous use of herd dynamics models (Section 5.2.2.1), as opposed to a snapshot 

herd population, seems relatively rare in the literature, and this could be causing another bias amongst 

some studies; however, evidence is insufficient to firmly reach this conclusion, as detailed 

assumptions behind the herd structure are often unreported in LCA studies. 

5.4 Conclusion 
This chapter used locally measured EFs to calculate the full CF for three pasture-based beef production 

systems currently trialled on the NWFP and compare the derived results to what would have been 

obtained without site-specific information. The results suggested that EFs specific to the location and 

management strategies have strong potential to reduce uncertainty associated with carbon 

footprints. In particular, the proposed approach successfully accounted for the environmental impacts 

caused by interactions between animal genetics and sward structure, which would have been 

undetected under a modelling framework employing generic EFs. Based on this finding, it was 

suggested that farming strategies encompassing animal selection and pasture management should be 

jointly designed, so as to maximise the synergy between both genetic resources. Future studies should 

further investigate methods to decompose uncertainty about the location of the farm from 

uncertainty that exists within that specific location, with the view to identify the cost-benefit 

relationship for collecting site-specific information. 

While discussions so far in the literature, and therefore this thesis, have primarily been 

focusing on uncertainties associated with measures of environmental burdens, or the numerators of 

LCA outputs, their denominators — the functional units — also carry a considerable level of 
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uncertainties. Shifting focus from quantity-based LCA to quality-based LCA, the next and final chapter 

considers how nutritional differences in our food should play a role when determining the overall 

environmental footprints of animal-based products. 
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Table 5.1. Livestock performance. Unlike Chapter 3, livestock data in this study cover two years (2015 and 2016) and 
include data from the suckler herd where NWFP finishing cattle are sourced from. 

     WCa PPb HSc 

 Unit   2015 2016 2015 2016 2015 2016 

Weaning weight kg   279 330 279 332 284 333 

Finishing weight kg   582 624 607 625 590 633 

Total growth kg   537 578 562 578 545 585 

Time spent in SHd d   193 224 184 217 203 220 

Time spent in FHe d   448 395 435 408 439 401 

Age at slaughter d   642 618 619 626 642 620 

Average daily gain (SHd) kg/d   1.24 1.27 1.34 1.31 1.21 1.30 

Average daily gain (FHe) kg/d   0.68 0.72 0.76 0.69 0.70 0.73 

Average daily gain (total) kg/d   0.84 0.94 0.91 0.93 0.85 0.95 
a WC: White clover and high sugar grass mix sward 
b PP: Permanent pasture 
c HS: High sugar grass monoculture 
d SH: Suckler herd 
e FH: Finishing-herd 
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Table 5.2. Life cycle inventory for finishing systems (average across 2015 and 2016). These data were sourced largely 
from NWFP records. As in Chapter 3, transport distances are calculated using GIS software. As information from the 
permanent pasture where the suckler herd occupied was unavailable, PP was assumed to reflect these conditions.  

  Unit WCa PPb HSc 

Area ha 20.85 21.61 21.45 

Fertiliser area ha 20.52 21.24 21.03 

FYM area ha 17.97 18.90 18.34 

Yield kg DM/ha 10470 11671 10761 

Fertiliser     

N kg 341 4153 3819 

P kg 762 232 289 

K kg 666 876 569 

Lime kg 2551 1916 5941 

Rapeseed expeller meald kg 3875 1927 5697 

Soybeane kg 651 651 672 

Straw kg 39589 38824 39484 

Transport     

Straw (road) tkm 2478 2430 2472 

Fertiliser (road) tkm 1849 3071 4544 

Rapeseed expeller meald (road) kg 3875 1927 5697 

Soybean (sea)e tkm 6267 6267 6469 

Soybean (road)e tkm 155 155 160 

Pasture quality     

DE % 77.16 76.205 75.73 

CP % 21.45 21.91 18.98 

Silage quality     

DE % 66.50 67.58 66.05 

CP % 11.15 13.45 12.55 
a White clover and high sugar grass mix sward 
b Permanent pasture 
c High sugar grass monoculture 
d Only supplemented in 2016 
e Only supplemented in 2015 
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Table 5.3. Summary breakdowns of system-wide GWP. When the suckler herd was included, disparity between farmlets 
became smaller due to the significant methane emissions by breeding cows which dilutes differences between the 
finishing systems. The relative rankings remain the same as in Chapter 3, however. 

   2015   2016  

  WCa PPb HSc WCa PPb HSc 

Suckler herd       

Methane (enteric fermentation) 6.22 5.95 6.22 6.86 6.87 6.84 

Methane (manure management) 0.92 0.88 0.92 1.02 1.01 1.00 

Pasture emissions 5.47 5.23 5.47 6.02 6.04 6.01 

Others 1.40 1.34 1.39 1.53 1.56 1.55 

Finishing herd       

Methane (enteric fermentation) 4.84 4.61 4.97 4.16 4.29 4.61 

Methane (manure management) 0.96 0.74 0.87 0.67 0.68 0.78 

Pasture emissions 1.24 3.85 3.11 0.79 2.84 2.42 

Others 1.84 1.62 1.86 1.94 1.75 2.17 

Total 22.88 24.23 24.82 22.99 25.05 25.39 
a White clover mixed sward 
b Permanent pasture 
c High sugar grass monoculture 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 
 

Table 5.4. Comparison of results with previously published beef production research. When parity and stocking were 
improved to reflect typical local systems, differences between the current study and other work was markedly reduced.  

Study Scope Functional 
unit 

GWP (CO2-eq) 

Casey and Holden (2006)                      
(IRE) 

Production of raw materials to 
departure from the farm gate 

1 kg LWa 11.3 kg 

Pelletier et al. (2010) (USA) Production of raw materials to 
departure from the farm gate 

1 kg LWa 14.8 kg 

Nguyen et al. (2010a) (EU) Production of raw materials to 
departure from the farm gate 

1 kg CWb 27.3 kg 

Beauchemin et al. (2010) 
(CAN) 

Production of raw materials to 
departure from the farm gate 

1 kg CWb 22.0 kg  

Peters et al. (2010) (AUS) Production of raw materials to 
departure from the 
slaughterhouse gate 

1 kg HSCWc 12.0 kg 

Roop et al. (2013) (USA) Production of raw materials to 
departure from the farm gate 

1 kg LWa 13.8 kg 

Ridoutt et al. (2011) (AUS) Production of raw materials to 
departure from the farm gate 

1 kg LWa 10.2 kg 

Wiedemann et al. (2015) 
(AUS) 

Production of raw materials to 
departure from wholesale 
warehouse gate 

1 kg beef 
product 

23.4 kg 

Mogensen et al. (2015) 
(DEN/SWE) 

Production of raw materials to 
departure from the farm gate 

1 kg CWb 23.1 kg 

Dick et al. (2015) (BRA) Production of raw materials to 
departure from the farm gate 

1 kg LWGa 22.5 kg 

Current study (UK) – PP, 
baseline 

Production of raw materials to 
departure from the farm gate  

1 kg LWa 24.6d kg 

Current study (UK) – WC, 
baseline 

  22.9d kg 

Current study (UK) – HS, 
baseline 

  25.1d kg 

Current study (UK) – PP, 
improved efficiency 

  17.9d kg 

Current study (UK) – WC, 
improved efficiency 

  16.0d kg 

Current study (UK) – HS, 
improved efficiency 

  18.2d kg 

a Liveweight (gain); b Carcase weight; c Hot standard carcase weight. 
d All values are averaged across 2015 and 2016. 
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Figure 5.1. System boundary of the beef system. For emissions attributable to foreground processes (inside the dotted line), primary data were collected from the farm. Unlike Chapter 3, 
this chapter includes the suckler herd which is now encompassed within the farm’s boundary. 
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Figure 5.2. Results of scenario and sensitivity analyses carried out for the best (1st), median (15th) and worst (30th) animals on the permanent pasture (PP) system based on their GWP 
rankings. All values are expressed as percentage differences from the baseline results for the same animals. Most notably, IPCC (2006) default Ym values generate GWP around 8% lower 
than Ym values derived in an on-site experiment external to this thesis.
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5(b). High N2O emission factors
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4. IPCC default N2O emission factors

3(b). High Ym values

3(a). Low Ym values

2. IPCC default Ym values

1. Difference from median

PP Best PP Median PP Worst
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Appendix to Chapter 5. 
Table A5.1. Breeding herd structure and performance indicators. These values are calculated using a combination of raw data from the suckler herd adjacent to the NWFP and steady-
state herd dynamics. This enabled identifying how many replacement animals are required to maintain both the breeding herd and the supply of finishing cattle to the NWFP. 

Parameter Unit Value 

Cows n 127.8 

Heifers n 71.5 

Calves n 90.0 

Pasture area ha 137.1 

Replacement rate % 23.6 

Cow mortality % 3.7 

Cow bodyweighta kg 675 

Heifer bodyweighta kg 488 

Calf bodyweighta kg 208 

Lifetime parity (calves per cow) n 4 

Culled cow (total liveweight departing the 
herd for slaughterhouse) 

kg 17,342 

Weaned cattle (total liveweight departing 
the herd for finishing enterprise) 

kg 29,880 

a Average bodyweight of an animal during the time defined as “cow”, “heifer” and “calf”. 
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Table A5.2. Detailed breakdown of contributors to global warming potential in the 2015 production cycle (kg CO2-eq/kg liveweight). 

Parameter PP (Range) HS (Range) WC (Range) 

Suckler herd       

Methane (enteric fermentation)       
Breeding heifers 0.67 (0.56 - 0.80) 0.70 (0.57 - 0.89) 0.70 (0.56 - 0.86) 

Calves 0.83 (0.70 - 0.99) 0.87 (0.71 - 1.10) 0.87 (0.69 - 1.07) 

Cows 4.45 (3.71 - 5.29) 4.65 (3.76 - 5.87) 4.65 (3.68 - 5.72) 

Methane (manure management)       

Breeding heifers 0.10 (0.08 - 0.12) 0.10 (0.08 - 0.13) 0.10 (0.08 - 0.13) 

Calves 0.12 (0.10 - 0.15) 0.13 (0.11 - 0.16) 0.13 (0.10 - 0.16) 

Cows 0.66 (0.55 - 0.79) 0.69 (0.56 - 0.87) 0.69 (0.55 - 0.85) 

Direct nitrous oxide (manure management)       
Breeding heifers 0.04 (0.04 - 0.05) 0.05 (0.04 - 0.06) 0.05 (0.04 - 0.06) 

Calves 0.05 (0.05 - 0.07) 0.06 (0.05 - 0.07) 0.06 (0.05 - 0.07) 

Cows 0.30 (0.25 - 0.36) 0.31 (0.25 - 0.40) 0.31 (0.25 - 0.39) 

Straw production 0.28 (0.23 - 0.33) 0.29 (0.24 - 0.37) 0.29 (0.23 - 0.36) 

Pasture emissions       
Ammonium nitrate production 2.63 (2.19 - 3.13) 2.75 (2.22 - 3.47) 2.75 (2.17 - 3.38) 

Nitrous oxide from synthetic N fertiliser application 1.72 (1.43 - 2.04) 1.79 (1.45 - 2.27) 1.79 (1.42 - 2.21) 

Nitrous oxide from manure 0.72 (0.60 - 0.86) 0.76 (0.61 - 0.96) 0.76 (0.60 - 0.93) 

Nitrous oxide from leaching 0.16 (0.14 - 0.20) 0.17 (0.14 - 0.22) 0.17 (0.14 - 0.21) 

Othersa 0.66 (0.53 - 0.83) 0.68 (0.52 - 0.86) 0.69 (0.54 - 0.86) 

Sub-total 13.41 (11.20 - 16.00) 14.00 (11.30 - 17.70) 14.01 (11.10 - 17.20) 

Finishing herd       
Methane (enteric fermentation) 4.61 (3.93 - 5.12) 4.97 (3.48 - 5.67) 4.84 (4.05 - 5.54) 

Methane (manure management) 0.74 (0.37 - 0.94) 0.87 (0.62 - 1.13) 0.96 (0.57 - 1.32) 

Direct nitrous oxide (manure management) 0.62 (0.57 - 0.68) 0.56 (0.39 - 0.62) 0.55 (0.51 - 0.60) 

Straw production 0.30 (0.25 - 0.34) 0.31 (0.28 - 0.36) 0.32 (0.27 - 0.37) 

Pasture emissions       
Ammonium nitrate production 1.90 (1.60 - 2.14) 1.72 (1.51 - 1.95) 0.27 (0.15 - 0.31) 

Nitrous oxide from synthetic N fertiliser application 1.24 (1.05 - 1.40) 0.59 (0.52 - 0.67) 0.16 (0.13 - 0.18) 

Nitrous oxide from grazing urine and dung 0.45 (0.38 - 0.49) 0.64 (0.54 - 0.72) 0.58 (0.23 - 0.31) 

Nitrous oxide from manure 0.26 (0.15 - 0.33) 0.17 (0.12 - 0.21) 0.23 (0.49 - 0.65) 

Othersa 0.70 (0.54 - 0.84) 0.99 (0.85 - 1.11) 0.97 (0.85 - 1.19) 

Sub-total 10.82 (9.70 - 12.10) 10.82 (8.80 - 12.10) 8.87 (7.50 - 9.90) 

Total 24.23 (22.20 - 26.50) 24.82 (22.60 - 28.00) 22.88 (20.50 - 26.40) 
a Total value from processes which contributed < 1% to overall global warming potential.  
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Table A5.3. Detailed breakdown of contributors to total global warming potential in the 2016 production cycle (kg CO2-eq/kg LW). 

Parameter PP (Range) HS (Range) WC (Range) 

Suckler herd       

Methane (enteric fermentation)       
Breeding heifers 0.78 (0.62 - 0.94) 0.77 (0.60 - 0.95) 0.77 (0.66 - 0.91) 

Calves 0.96 (0.77 - 1.16) 0.96 (0.74 - 1.18) 0.96 (0.82 - 1.12) 

Cows 5.14 (4.09 - 6.21) 5.11 (3.95 - 6.28) 5.12 (4.40 - 5.99) 

Methane (manure management)       

Breeding heifers 0.12 (0.09 - 0.14) 0.11 (0.09 - 0.14) 0.11 (0.10 - 0.13) 

Calves 0.14 (0.11 - 0.17) 0.14 (0.11 - 0.18) 0.14 (0.12 - 0.17) 

Cows 0.75 (0.33 - 0.92) 0.75 (0.34 - 0.93) 0.76 (0.65 - 0.89) 

Direct nitrous oxide (manure management)       
Breeding heifers 0.05 (0.04 - 0.06) 0.05 (0.04 - 0.06) 0.05 (0.04 - 0.06) 

Calves 0.06 (0.05 - 0.08) 0.06 (0.05 - 0.08) 0.06 (0.05 - 0.07) 

Cows 0.35 (0.28 - 0.42) 0.36 (0.27 - 0.93) 0.35 (0.30 - 0.41) 

Straw production 0.32 (0.26 - 0.39) 0.32 (0.25 - 0.40) 0.32 (0.28 - 0.38) 

Pasture emissions       
Ammonium nitrate production 3.03 (2.42 - 3.67) 3.02 (2.34 - 3.71) 3.03 (2.60 - 3.54) 

Nitrous oxide from synthetic N fertiliser application 1.98 (1.58 - 2.40) 1.97 (1.53 - 2.43) 1.98 (1.70 - 2.31) 

Nitrous oxide from manure 0.84 (0.67 - 1.01) 0.83 (0.64 - 1.02) 0.83 (0.72 - 0.98) 

Nitrous oxide from leaching 0.19 (0.15 - 0.23) 0.19 (0.15 - 0.23) 0.19 (0.16 - 0.22) 

Othersa 0.77 (0.57 - 1.16) 0.75 (0.38 - 1.19) 0.75 (0.62 - 0.93) 

Sub-total 15.48 (12.30 - 18.70) 15.41 (11.90 - 18.90) 15.43 (13.30 - 18.10) 

Finishing herd       
Methane (enteric fermentation) 4.29 (3.38 - 5.13) 4.61 (3.63 - 5.36) 4.16 (3.33 - 4.96) 

Methane (manure management) 0.68 (0.47 - 0.91) 0.78 (0.60 - 1.02) 0.67 (0.49 - 0.92) 

Direct nitrous oxide (manure management) 0.68 (0.55 - 0.79) 0.59 (0.47 - 0.68) 0.60 (0.49 - 0.71) 

Rapeseed meal 0.10 (0.25 - 0.35) 0.30 (0.23 - 0.33) 0.21 (0.24 - 0.34) 

Straw production 0.29 (0.09 - 0.13) 0.29 (0.24 - 0.39) 0.29 (0.17 - 0.24) 

Pasture emissions       

Ammonium nitrate production 1.25 (1.06 - 1.52) 1.22 (0.97 - 1.39) NA NA 

Nitrous oxide from synthetic N fertiliser application 0.82 (0.69 - 0.99) 0.42 (0.34 - 0.48) NA NA 

Nitrous oxide from grazing urine and dung 0.43 (0.37 - 0.50) 0.61 (0.54 - 0.70) 0.54 (0.46 - 0.60) 

Nitrous oxide from manure 0.35 (0.25 - 0.45) 0.17 (0.14 - 0.22) 0.25 (0.19 - 0.34) 

Othersa 0.68 (0.57 - 0.81) 0.98 (0.76 - 1.12) 0.83 (0.71 - 0.95) 

Sub-total 9.57 (8.00 - 10.90) 9.98 (8.40 - 11.40) 7.56 (6.30 - 8.80) 

Total 25.05 (22.70 - 27.40) 25.39 (22.30 - 28.20) 22.99 (20.90 - 24.80) 
a Total value from processes which contributed < 1% to overall global warming potential.  
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Table A5.4. Detailed results of sensitivity and scenario analyses (kg CO2-eq/kg liveweight). These values are tabulated versions of Figures 5.2 (PP), A5.4 (WC) and A5.5 (HS). 

          

 PPa WCb HSc 

Animal efficiency Median Best Worst Median Best Worst Median Best Worst 

1. Baseline 24.9 22.7 27.4 23.1 20.9 24.8 25.2 22.3 28.2 

2. IPCC default Ym
d values 23.0 20.9 25.3 21.1 19.2 22.8 23.0 20.4 26.0 

3(a). Low Ym
d values 23.5 21.4 25.9 21.6 19.6 23.3 23.7 21.1 26.7 

3(b). High Ym
d values 26.3 24.0 29.0 24.5 22.2 26.3 26.6 23.6 29.8 

4.IPCC default N2O emission factors 24.5 22.3 26.9 22.7 20.7 24.4 25.1 22.4 28.1 

5(a). Low N2O emission factors 21.9 20.1 24.1 20.5 18.7 22.0 22.4 20.0 25.0 

5(b). High N2O emission factors 33.7 30.6 37.4 30.6 27.6 33.2 33.5 29.3 38.1 

6(a). Decreased stocking rate (1 LUe/ha) 26.7 24.1 29.4 24.8 22.5 26.8 26.9 23.7 30.4 

6(b). Increased stocking rate (2.5 LUe/ha) 21.7 20.1 23.8 19.8 18.2 21.1 22.0 19.9 24.3 

7(a). Decreased parity (-2 calves) 51.8 44.2 58.1 50.2 44.0 55.6 51.7 43.1 61.3 

7(b). Increased parity (+2 calves) 20.4 19.2 22.4 18.6 17.1 19.7 20.8 18.9 22.8 

8(b). MCf 1 (2.5 percentile) 21.9 20.3 24.3 20.6 18.8 22.4 22.6 20.0 24.9 

8(a). MCf 1 (97.5 percentile) 29.7 26.2 32.4 26.9 24.3 29.5 29.2 25.5 33.8 

9(b). MCf 2 (2.5 percentile) 23.2 21.3 25.7 21.8 19.1 23.7 23.6 20.9 26.4 

9(a). MCf 2 (97.5 percentile) 27.4 24.9 30.2 24.9 22.7 27.4 27.6 24.5 31.1 

10(b). MCf 3 (2.5 percentile) 18.7 17.2 20.4 17.2 15.7 18.2 19.0 17.2 21.2 

10(a). MCf 3 (97.5 percentile) 24.3 22.1 26.8 21.9 19.9 23.8 24.7 21.8 27.6 
a Permanent pasture 
b White clover mixed sward 
c High sugar grass monoculture 
d Methane conversion factors 
e Livestock unit 
f Monte Carlo simulations 
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Figure A5.1. Relationship between individual animals’ carbon footprints (as GWP per kg LW) and average daily gains (ADG) during their lifetime. When the suckler herd is included in the 
analysis (with outputs denoted by kg LW as functional unit), the farmlet effect becomes less clear-cut. PP: permanent pasture; WC: white clover mix; HS: high sugar grass. 
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Figure A5.2. Relationship between individual animals’ carbon footprints (as GWP per kg LWG) and average daily gains (ADG) while in the finishing enterprise. In contrast to Figure A5.1, 
when the suckler herd is removed from analysis (with outputs denoted by kg LWG as functional unit), the farmlet effect is clearer. PP: permanent pasture; WC: white clover mix; HS: high 
sugar grass. 
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Figure A5.3. Distributions of carbon footprints across farmlets and sexes. As in Chapter 3, males tended to have higher growth rates than females, which contributed to modestly lower 
GWP values. Outliers located further than 1.5 times the interquartile range beyond the quartiles are marked as crosses. 
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Figure A5.4. Results of scenario and sensitivity analyses carried out for the best (1st), median (15th) and worst (30th) animals on the white clover (WC) system based on their GWP 
rankings. See Table A5.4 for a tabulated version of these data. All values are expressed as percentage differences from the baseline results for the same animals. 
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Figure A5.5. Results of scenario and sensitivity analyses carried out for the best (1st), median (15th) and worst (30th) animals on the high sugar grass (HS) system based on their GWP 
rankings. See Table A5.4 for a tabulated version of these data. All values are expressed as percentage differences from the baseline results for the same animals. 
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Chapter 6 – Framework for life cycle assessment of livestock 

production systems to account for the nutritional quality of final 

products 
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6.1 Introduction 
Studies employing life cycle assessment (LCA) of the agri-food sector, such as those produced in 

Chapters 2, 3 and 5, typically estimate pollution-production ratios as their primary outputs—for 

example kg CO2-eq per unit of food produced—whereby systems represented by lower scores are 

judged to be socially more desirable. In the context of livestock production systems, denominators 

depicting the quantity of production, or the functional unit, generally takes the form of the mass of 

output, such as 1 kg of liveweight, cold carcase weight or deboned meat (de Vries and de Boer, 2010). 

While this traditional approach provides a useful means of inter-comparisons between different 

farming strategies, the resultant indicators are not a holistic representation of the real function of the 

final product, in this case meat, as a source of human nutrition. In other words, mass-based outputs 

of LCA studies implicitly bear an extra layer of uncertainty, especially when the same mass of food can 

have dissimilar values for society. 

Recent research has begun to address this issue by means of dietary comparisons. Coelho et 

al. (2016), for example, examined the environmental impacts of hypothetical human diets with 

elevated omega-3 polyunsaturated fatty acid (PUFA) intake, made possible by adjusting livestock 

feeds to promote a higher omega-3 content in animal tissues, using the functional unit of “daily dietary 

ingestion per person”. Society-wide dietary shifts, however, require drastic changes in supply chain 

structure as well as consumers’ opinions, and therefore can only be achieved over a long period of 

time (Smil, 2000). More importantly, as any human diet is composed of a large number of food groups 

originating from multiple farms, implications of these studies on agricultural systems producing each 

commodity are not immediately clear. The latter problem is further exacerbated by the fact that a 

change in farming methods, however minor, often disrupts the flow of nutrients within the production 

environment and consequently leads to knock-on effects on chemical compositions of the end 

products, and ultimately their nutritional value to humans. This, in turn, poses a question about the 

assumption behind the majority of dietary comparison studies (and others adopting mass-based 

functional units) that all products are qualitatively homogenous. In order to draw short to medium-

term recommendations for commercial agricultural producers to improve their environmental 

performance, it is therefore necessary to establish an LCA research framework which accounts for 

nutritional compositions of individual food groups that are produced under multiple production 

systems. 

This final chapter of the thesis aims to identify the current knowledge gap concerning 

nutritional quality of agricultural products within the LCA literature and demonstrate a way forward 

to reduce uncertainty associated with the choice of functional unit for livestock LCA. To achieve this 

aim, the remainder of the chapter is structured as a combination of a two-part review and a two-part 
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quantitative case study, organised as follows. Section 6.2 provides a review of recent literature which 

examines human diets within the LCA context. Section 6.3 offers an overview of the effect of farming 

strategies on the nutritional value of final products, with fatty acid profiles as a case exemplar. Section 

6.4 then develops two quantitative frameworks, both of which are based on existing methods of 

nutritional analysis in an LCA context but modified for comparisons of meat products specifically, and 

Section 6.5 applies the new approaches to beef, lamb, chicken and pork production systems in the UK. 

Finally, Section 6.6 will conclude the entire thesis, with discussions on practical barriers to reduce 

system-wide uncertainty and pathways to overcome these challenges. 

6.2 Life cycle assessment and human diets 
With the accumulation of food-based LCA studies, a series of review papers have been published over 

the past decade. Each of these works has a specific focus, for example, comparison across plant and 

animal-originated food products (Roy et al., 2009), amongst animal-based products (de Vries and de 

Boer, 2010) and more specifically beef (de Vries et al., 2015) and pig (McAuliffe et al., 2016) production 

systems. These reviews all highlight issues surrounding cross-comparability amongst LCA studies, 

particularly related to system boundaries and functional units. At the same time, literature in recent 

years has identified an equally crucial challenge for agricultural LCA, namely incorporating the impact 

of food on human nutrition into environmental evaluations. Heller and Keoleian (2003) were pioneers 

in acknowledging that food consumption patterns should be incorporated into the LCA framework 

when they recognised sustainability-limiting factors such as rapid conversion of prime farmland 

(economic), illegal farm operatives (social) and excessive depletion of topsoil (environmental) in the 

US food system. More recently, Heller et al. (2013) reviewed work carried out over 10 years since their 

2003 publication and proposed key areas which require further investigation. The authors noted that 

considering food quality (e.g. energy, fat, protein, mineral and vitamin contents as well as their 

bioavailability and compositions) rather than solely addressing quantity (mass of food-types in 

different diets) is critical to improve understanding of the food-environment nexus. 

Following the publication of Heller et al. (2013), a new generation of work has been carried 

out to further investigate the interlinkages between human diets and their environmental footprints. 

In this section, findings from these new studies, published between 2014 and 2017, are summarised. 

In order to select the most relevant research, papers containing the search terms “life cycle 

assessment” and “nutrition” were retrieved from Scopus and, after sorting by relevance, the first 200 

returns were considered for inclusion. If a paper contained material leading to the examination of the 

role of human nutrition under the LCA framework, either at the whole-diet level or through functional 

unit manipulation, it was included in the final collection. These criteria resulted in 14 relevant studies. 
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Doran-Browne et al. (2015) applied the concept of nutrient density scores (NDS) to 

greenhouse gas (GHG) emissions arising from a range of agricultural products typically found in 

southeast Australian diets. The NDS of each product was determined according to the Nutrient Rich 

Food model (NRF9.3: Fulgoni et al. (2009)), whereby higher contents of nine encouraged nutrients 

(protein, fibre, vitamins A, C and E, calcium, iron, magnesium and potassium) are associated with a 

higher score, and three discouraged nutrients (saturated fat, sodium and added sugar) with a lower 

score. The quantity of each nutrient present in a product was first divided by its recommended daily 

intake (RDI), or daily allowances (RDA) for limited nutrients, to obtain the percentage of RDI satisfied 

by the product, and subsequently converted to a weighted score according to its relative importance 

with respect to energy value. The NDS for each product was then derived as the difference between 

the sum of these weighted scores associated with “positive” nutrients and the sum of the similar 

scores associated with “negative” nutrients. The food products assessed were beef (lean and 

untrimmed), lamb (lean and untrimmed), regular milk, reduced fat milk, wheat (Triticum aestivum) 

flour and canola (Brassica napus) oil. When using the standard mass metric (t CO2-eq/t product), the 

authors found that wheat flour generated the lowest GHG emissions while milk and canola oil had 

similar levels of impacts. Meat products had the highest impacts, with the lean cuts having a higher 

CO2-eq value than the untrimmed cuts. However, when the novel metric (t CO2-eq/NDS) was applied, 

the lean cuts had considerably lower environmental impacts than the untrimmed cuts, and the gap 

between non-meat products and lean meat was substantially narrowed. Similarly, both regular and 

low-fat milks were found to have considerably lower impacts than canola oil, whereas wheat flour still 

had the lowest impacts. Although not fully covering the whole life cycle of products and also stopping 

short of distinguishing between different compounds within each nutrient group, for example 

between PUFA and monounsaturated fatty acids (MUFA), the study proposes a useful technique for 

comparing different food groups based on their nutritional value. 

Hallström et al. (2015) carried out a meta-analysis to investigate the environmental impacts 

of dietary change based on the findings of 14 carefully selected papers. The authors considered the 

effects of dietary change on both global warming potential (GWP) and land use, though only four of 

the 14 papers addressed the latter. Of the studies assessed, the majority (nine) used energy as the 

functional unit, four considered RDI, and one used the standard mass-based unit (grams of product 

included in a meal). Hallström et al. (2015) examined change from a reference diet to eight alternative 

diets: vegan; vegetarian; ruminant meat replaced with pork and poultry; meat partially replaced by 

plant-based food; meat partially replaced by dairy; meat partially replaced by mixed food; balanced 

energy intake; and “healthy” diet. Out of the eight treatment categories, changing to vegan or 

vegetarian diets demonstrated the greatest savings to both GWP and land use. Interestingly, multiple 
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studies reviewed by Hallström et al. (2015) suggested that replacing ruminant meat with pork or 

poultry could reduce GWP by, in some instances, more than a switch to vegan diet, although this 

naturally depends on the non-meat (including meat alternative) components of the original diet. 

Mirroring Doran-Browne et al. (2015), the authors conclude that the functional unit plays a large part 

in the relative rankings of products and reiterate the stance of Heller et al. (2013) that further 

multidisciplinary studies are required to improve current evidence of links between the environment 

and human nutrition. 

Heller and Keoleian (2015) considered the environmental implications of changing typical 

American eating patterns and associated effects on food wastage. The authors examined 

consequences of changing the average diet (with an assumed energy intake of 2,534 kcal/day) and the 

diet based on the current recommended energy intake (for moderate activity levels, 2,000 kcal/day), 

to isoenergetic diets based on advised food patterns. The shift to recommended intake patterns for 

both caloric scenarios required increases in fruit, vegetables, pulses, seafood and dairy products, and 

decreases in meat, eggs, nuts, oils, solid fats and added sugars. However, the 2,000 kcal scenario 

required decreases in grain consumption, while the 2,534 kcal scenario required increases. GWP was 

then estimated from per capita food consumption derived from the Loss-Adjusted Food Availability 

data series (USDA ERS, 2012), taking into account the likelihood of food wastage for each food group. 

Most notably, GHG emissions from meat, egg and poultry sectors decreased under both scenarios, 

while there were large increases in GHG emissions attributable to increased dairy consumption. 

Overall, the authors found that switching to recommended food patterns would increase GHG 

emissions per capita by over 150% for the 2,534 kcal scenario. On the other hand, a 2,000 kcal diet 

sourced from recommended food groups would result in a decrease of ~10% in GHG emissions per 

capita. 

In an attempt to identify a functional unit suitable for capturing a wider measurement of the 

sustainability of food products, Masset et al. (2015) examined environmental footprints of foods and 

drinks representative of a typical French diet under a number of different impact categories. The 

authors defined sustainable food products as low emitting, affordable and of high nutrient quality, 

determined collectively by a single score that takes the value of 0, 1, 2 or 3. Nutritional quality of food 

products was determined in one scenario using the French SAIN, LIM method, whereby five nutrients 

(protein, fibre, calcium, vitamin C and iron) are encouraged while three (saturated fat, added sugar 

and sodium) are discouraged. If a food product obtained more than 97% of its energy from fat (as is 

the case for nuts and oils), then vitamin E, MUFA and α-linolenic acid content were also accounted for 

in the encouraged nutrient profile. A product’s overall sustainability score was then derived by 

comparing its performances in the aforementioned three areas against median values; a product 
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received a point if its GHG emissions and price were lower than the median, and if its nutritional score 

was higher than median. Masset et al. (2015) argued that mass and energy-based functional units are 

generally unhelpful in determining sustainable products. In particular, they demonstrated how 

functional unit manipulation can affect relative rankings across food products, with those of 

monogastric meat products and fruits/vegetables easily reversed between energy-based and 

nutrition-based computations of GHG emissions. 

As briefly mentioned in Section 6.1, Coelho et al. (2016) investigated the effect of increasing 

omega-3 in French diets across a range of impact categories. Using a 15-day average French diet as 

the baseline, the authors created three alternatives based on the same food groups but with smaller 

portions (healthy diet); a diet without fish; and a vegetarian diet. For each scenario, the authors then 

generated a hypothetical scenario, named BBC after the Bleu-Blanc-Coeur initiative which promotes 

enrichment of omega-3 in foods, whereby omega-3 content of livestock products was enhanced 

through alternative feeding regimes with higher rations of (omega-3-rich; predominately α-linolenic 

acid) alfalfa (Medicago sativa), sunflower (Helianthus annuus) meal and linseed (Linum 

usitatissimum). While the vegetarian diet performed most favourably across all but one impact 

category (GWP, acidification, eutrophication, land occupation and biotic natural resource-depletion 

species, with the exception of cumulative energy demand), Bleu-Blanc-Coeur generally generated 

lower burdens compared to the equivalent diet with typically lower omega-3 content. This result 

suggests that enhancement of nutritionally beneficial omega-3 fatty acids has the potential to 

simultaneously improve the environmental performance of supply chain, although economic 

feasibility of such a strategy would also have to be tested before a wider commercial roll-out. 

Hess et al. (2016) considered the impact of starchy carbohydrate dietary shifts in the UK, from 

British potatoes (Solanum tuberosum) to Indian basmati rice (Oryza sativa) or Italian pasta, on GHG 

emissions and blue water scarcity footprint. Acknowledging that water contents of potatoes, rice and 

pasta are heterogeneous, the authors adopted a standardised functional unit for comparison: an 

average portion based on net weight of the product as packed. The size of a single portion was defined 

as 175 g for potatoes and 75 g for pasta and rice. Across the three products, basmati rice had higher 

GHG emissions and blue water scarcity footprint than the others, due largely to anaerobic soil 

conditions leading to methane production, and to the fact that India is more water scarce than the UK 

and Italy. These results highlight how shifting dietary patterns (e.g. less potato consumption and more 

rice consumption) can displace environmental burdens from the consuming nation to the producing 

nation, particularly in terms of water scarcity.  

Stylianou et al. (2016) developed the Combined Nutritional and Environmental Life Cycle 
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Assessment (CONE-LCA) method to empirically apply the conceptual framework devised by Heller et 

al. (2013). CONE-LCA is a hybrid approach in the sense that it utilises traditional midpoint LCA 

modelling but adjusts output values for the endpoint based on the nutritional quality of food products. 

The ultimate output of this novel approach is the impact of diet change not only on midpoint 

environmental measures (GWP and respiratory effects via particulate matter in this particular case), 

but also the human health effects of these impact categories represented as disability-adjusted life 

years (DALY). The authors carried out a case study whereby an additional serving of milk (244 g) was 

added to three dietary scenarios: no changes to the rest of the diet; removing other food products 

with an equal caloric value (119 kcal); and removing an equal caloric quantity of sugar sweetened 

beverages. The authors used epidemiological data to assess milk’s effects on human health, both 

positive and negative, as expressed by DALY. While adding a serving of milk to the diet increased both 

GWP and respiratory inorganics at the midpoint, milk consumption was found to be beneficial for long-

term health, as reduced risk of colorectal cancer and stroke outweighed increased risk in prostate 

cancer in all scenarios. While Stylianou et al. (2016) acknowledge that uncertainty associated with 

endpoint impact assessments is considerable, their framework can be seen as a significant 

contribution to the methodological advancement of nutrition-based LCA. 

Focusing on Dutch women aged between 31 and 50, Tyszler et al. (2016) used linear 

programming to examine the role of diet on a range of impact categories. This narrow sampling 

criterion was purposefully chosen to reflect greater requirements for iron, a common source of which 

is meat. The authors designed a simplified Dutch diet for this demographic group based on 207 

individual products. A weighted scoring system was developed for overall impact assessment that 

accounts for GWP, fossil energy usage and land occupation. Using the typical diet as a reference point, 

a linear programming model was used to find a diet that was most similar to the reference diet but 

satisfied predefined nutritional or environmental constraints. The generated diets were classified as 

being nutritionally healthy and included: pescatarian; vegetarian; and vegan diets, as well as a diet 

unconstrained by food-groups, and a diet constrained by environmental performance (but 

unconstrained by nutritional composition). Tyszler et al. (2016) found that, for the patterns covered 

by this study, improved nutrition does not denote improved environmental performance. They also 

concluded that, while a general switch to vegetarian or vegan diets may have benefits in terms of 

certain impact categories, further research is required to assess the health implications of deficiencies 

of long chain PUFA such as omega-3 fatty acids. 

Employing a similar framework to that adopted by Tyszler et al. (2016), Bälter et al. (2017) 

posed the question of whether a low GHG diet could provide the same nutritional values as a high 

GHG diet. Data on Swedish dietary patterns were collected through LifeGene, a planned long-term 
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survey which aims to record lifestyle information at a 20-year interval. Participants were asked to 

record intake of all food products consumed at least once a month. The nutritional value of each diet 

was determined according to Nordic nutritional tables, while associated GHG emissions were sourced 

from published LCA literature. Where LCA studies omitted emissions attributed to post-primary 

production stages, the authors expanded the system boundary to include food processing, distribution 

and retail stages of the supply chain using Swedish data. Storage, cooking and waste management 

were excluded from the analysis. The study revealed that low GHG diets generally provide similar 

nutritional values to high GHG diets, with small differences largely driven by meat consumption. 

Similar to Treu et al. (2017), a study summarised later in the review, women were found to have lower 

dietary GHG emissions than men on average, also largely due to lower meat consumption. Bälter et 

al. (2017) concluded that a shift to diets higher in vegetables and lower in meat could reduce impacts 

to climate change. 

Castañé and Antón (2017) compared the environmental impacts and nutritional quality of a 

Mediterranean diet representative of Catalonia and a recommended vegan diet designed specifically 

to address all nutrient requirements. The authors assessed nutritional quality based on the intake of 

nine encouraged and three discouraged nutrients (Fulgoni et al., 2009), and considered GWP and 

regionalised biodiversity impacts as impact categories. Fourteen daily menus were developed ranging 

from 1927 kcal to 2089 kcal of energy value. Protein, calcium and vitamin C were all higher in the 

Mediterranean diet than the vegan diet, but discouraged nutrients, particularly saturated fats, were 

also higher. Furthermore, the authors suggested that added sugar was higher in the Mediterranean 

diet as a result of meat and fish consumption, but mechanisms behind this causality were not 

elaborated on. Due in part to the selection of a nutritionally optimised vegan diet rather than actual 

consumption patterns amongst a vegan population, the nutritional quality of said diet was found to 

be higher than that of the Mediterranean diet, resulting in favourable environmental impacts per 

person per week for the vegan diet. However, the authors pointed out that deficiencies in 

micronutrients such as vitamin B12 and calcium under the vegan diet were not penalised under the 

proposed framework, reiterating the challenge of environmentally evaluating multiple diets when 

they may have different health implications. 

In an examination of eating patterns amongst EU-27 countries, Notarnicola et al. (2017) 

employed LCA to quantify the environmental impacts of the diet consumed by a single average person 

over one year. Using 2010 as a reference year, consumption data were first aggregated into food 

groups such as meat, dairy products and vegetables. From each group, individual food items which 

represented the highest mass and economic values were selected for inclusion in the typical food 

basket. Unlike many LCA studies covering the agri-food sector, the authors set a cradle-to-grave 
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system boundary, accounting for logistics, packaging, use and the end of life burdens in addition to 

production and processing. Data on downstream processes were largely sourced from international 

and European databases, including losses through food waste. A wide range of impact categories were 

considered, including GWP, eutrophication, acidification and land use, amongst others. Noternicola et 

al. (2017) suggested that meat and dairy products generated the highest burdens across most impact 

categories. Furthermore, under hypothetical scenarios with reduced beef and pork consumption, 

considerable reductions in environmental impacts were observed through replacement of meat with 

cereals. This approach, however, does not capture differences in product quality in terms of micro and 

macronutrients and, by extension, implications for human health. 

Building upon the aforementioned NRF9.3 framework designed by Fulgoni et al. (2009), 

Saarinen et al. (2017) developed a novel nutrient index to specifically compare the overall quality of 

protein-rich foods. In addition to generic indices similar to Doran-Browne et al. (2015), novel formulae 

were devised to include MUFA, PUFA and vitamins B2 and B9, and at the time exclude nutrients that 

are not typically provided in abundance by protein-rich foods (e.g. magnesium and potassium). GWP 

was then estimated under both mass-based and nutritional score-based denominators. Nutrient 

contents of individual products as well as recommended intake values were sourced from public 

databases in Finland, while background LCA data were gathered through published literature. Twenty-

nine food products ranging from cereals and pulses to dairy, meat and seafood were considered. 

Saarinen et al. (2017) demonstrated that the choice of functional unit can affect interpretation of 

results considerably. For example, beef had the largest GWP on a mass-based functional unit (100 g 

of product) but was overtaken by cheese and lamb as the most burdensome food group when the 

functional unit was changed to the nutrient content included in 100 g of product. In general, animal-

based products had higher environmental impacts than cereals and pulses regardless of the functional 

unit, although the authors did not consider contents of important micronutrients such as vitamin B12 

in each food group. 

Sonesson et al. (2017) developed a new approach to account for differences in protein quality 

between food products under the LCA framework. They established a new functional unit, protein 

quality index-adjusted mass, for each food product studied (bread, chicken breast, minced pork, 

minced beef, milk and pea soup) based on contents of the nine essential amino acids (EAA) in that 

particular product as well as in the overall diet. Protein quality index was formulated in such a manner 

that, if a particular EAA was deemed deficient in a given diet, food products with higher contents of 

the said EAA scored higher (and vice versa). The performance of each food product was then evaluated 

within the context of three diets: an average Swedish diet; a lacto-ovo vegetarian diet; and a low meat 

diet. Under the average Swedish diet, meat products, particularly beef, scored poorly and, as a result, 
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were judged to have high environmental impacts. Conversely, under the low meat diet in which EAA 

such as leucine and lysine tend to be deficient, meat products scored favourably, and the results 

subsequently reversed. Through this example, the authors showcased the importance of considering 

the nutritional value of each food group in a wider picture of human dietary requirements. 

Studying Chinese agri-food systems, Song et al. (2017) examined how dietary changes might 

abate climate change impacts and simultaneously improve public health. Due to a lack of available 

carbon footprint data in China, the authors used international databases to source GWP impacts for 

individual food products. Chinese consumption patterns were downloaded from a national health and 

nutritional survey and resulted in information from 11,160 respondents representing 5,253 

households. A range of constraints were applied to an optimisation model, including maximum 

saturated fat intake and minimum protein and potassium intake, amongst others. The optimisation 

was then carried out to identify hypothetical diets which had the lowest carbon footprint while 

fulfilling nutrient requirements. The authors found that, in comparison to current typical diets, the 

optimisation process could decrease the carbon footprint of an average Chinese resident by 5–28%, 

primarily through reducing rice and meat consumption and increasing poultry consumption. The 

authors pointed out, however, that these conclusions were solely drawn from a single environmental 

indicator (GWP), and further work is required to provide a more holistic evaluation, such as the protein 

requirement for chicken production. 

Treu et al. (2017) compared the carbon footprints and land use of conventional and organic 

diets in Germany. Diets representative of German consumption patterns were based on national 

statistics, and cross-database matching was carried out to pair diets with available environmental 

impact data. Food losses through supply chain wastage were also accounted for, resulting in impacts 

per required product rather than consumed quantities. The system boundary was set from the 

extraction of raw materials to the transport of products to a retail operator. Transportation from the 

retailer and cooking at home were excluded due to the lack of differences across both diets. The 

authors found that the carbon footprints of both diets were largely comparable. Animal based 

products accounted for 70% of GWP in both diets, as a higher quantity was included in the 

conventional diet but higher burdens per kg were associated with some products (e.g. poultry and 

pork) that constituted the organic diet. Interestingly, Treu et al. (2017) found that males, across both 

diets, tended to have higher GWP than females, due largely to higher meat consumption, as discussed 

above. For land use, the authors found that the organic diet requires about 40% more land than the 

conventional diet, further demonstrating the value of considering multiple metrics. 

Considering the diets of 10,000 residents of Ontario, Canada, Veeramani et al. (2017) 
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examined the carbon footprints of typical consumption patterns based on single-day food purchases. 

Seven diets were assessed: vegan, vegetarian, pescatarian, omnivorous, and diets defined by the 

authors as “no red meat”, “no beef” and “no pork”. The functional unit to compare each diet was set 

as the annual energy intake by a typical person with a low activity level, or 837,436 kcal after adjusting 

for the female-male ratio. The two most common diets identified were omnivorous and no pork, under 

which the majority of impacts arose from beef production. Interestingly and in contrast to all other 

studies discussed above, the authors also considered a second functional unit formulated on protein 

requirements rather than energy requirements. Under this design, each diet had to provide 18.6 kg of 

protein annually to satisfy Canadian recommended values. The no pork diet remained as the highest 

contributor to GWP; however, the no red meat diet became the least polluting, while the vegan diet 

became the third most polluting (as opposed to least polluting when the functional unit was based on 

energy intake) due to the vast increases in food requirements to achieve the recommended protein 

intake. 

6.3 Effects of farming systems on meat quality 
Collectively, the studies reviewed in the previous section demonstrate the complex nature of 

interlinkages between human diets and the environment that need to be considered within nutrition-

based LCA. Notwithstanding, it is increasingly recognised that mass-based assessments of agri-food 

systems are often inadequate at capturing the complexities of both food production (Martínez-Blanco 

et al., 2011) and wider supply chains (Schau and Fet, 2008) and, as a result, nutrition is rapidly 

becoming a key aspect of food LCA studies (Nemecek et al., 2016). In particular, findings by Sonesson 

et al. (2017) offer an important insight that the shift to quality-based functional units can dramatically 

alter the resultant environmental footprints of individual livestock products. As discussed, however, 

these efforts have mostly been confined to diet-level analyses, with few studies investigating the 

impact of altered functional units in a single-commodity setting. 

Using fatty acid profiles of meat products as an example, this section summarises the current 

state of knowledge concerning how farm management affects the nutritional value of the final 

product. Fatty acid profiles were selected as a case exemplar because of their complicated role in 

human nutrition. As discussed in Section 6.2, it is generally accepted that omnivorous diets have larger 

environmental footprints than vegetarian or vegan diets of equal energy value. Nevertheless, given 

the forecasted growth in demand for meat into the future (FAO, 2015b), it would be prudent to 

identify methods of livestock production that offer the best balance between food security, natural 

environment and human health (Eisler et al., 2014). 

Meat consumption, particularly that of red and processed meat, the latter of which often 
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contains high levels of salt and sulphites, is commonly associated with an increased risk of 

cardiovascular disease (CVD) (Daviglus et al., 2017). With red meat being low in total fat (typically 

<5%), the causality appears to be driven by high proportions of short chain saturated fatty acids (SFAs), 

particularly C12:0 (lauric acid), C14:0 (myristic acid) and C16:0 (palmitic acid) (Micha and Mozaffarian, 

2010), together with omega-6:omega-3 (ω-6:ω-3) ratios as high as 15:1 (Warren et al., 2008a). This, 

in turn, is perceived as a contributor to “unhealthy” Western diets with typical ω-6:ω-3 ratios in excess 

of 12:1, while the medically recommended ratio is around 3:1 (Simopoulos, 2006). When ruminant 

animals are finished on grass and clovers, however, their meat tends to have lower quantities of C16:0, 

higher quantities of C18:0 (stearic acid) as well as ω-6:ω-3 ratios of 2:1 or lower (Warren et al., 2008) 

and, contrary to prevalent perception, result in reduced risks of CVD and other inflammatory-driven 

diseases when consumed in moderation (Simopoulos, 2006). As a result, a growing body of studies 

indicate that advice on dietary restrictions (especially complete removal) of lean red meat may, in fact, 

be counterproductive to prevention of non-communicable disease (Binnie et al., 2014). Such 

considerable differences in health implications between meat products produced from forage-based 

and cereal-based feeds make the fatty acid profile of meat an ideal case to investigate the effect of 

accounting for human nutritional aspects of agricultural production systems in the environmental 

assessment framework. 

Amongst various classes of fatty acids, omega-3 PUFA have particularly various health 

benefits, such as prevention of CVD and rheumatoid arthritis, as well as improvements to brain 

function and mental stability (Ruxton et al., 2004). While omega-3 has traditionally been considered 

beneficial only when maintained in a suitable ratio with omega-6 (Simopoulos, 2006), some research 

has subsequently challenged this theory, suggesting that the benefit of omega-3 should be considered 

solely in terms of total intake (Stanley et al., 2007). Importantly, the omega-3 content of meat 

products is known to be manipulated through livestock feeding strategies (Dewhurst et al., 2006, 

McAfee et al., 2010); in other words, a change in on-farm practice will likely have direct impacts on 

LCA results when the functional unit is nutrition-based. 

To date, several reviews of the literature have been conducted on the relationship between 

farming systems and meat quality across different livestock species. Prior to quantitative case studies 

in Section 6.4, these articles will be summarised here. For the purpose of initial screening, papers 

containing the keywords “meat quality”, “diet” and “review” were requested on Scopus without any 

restriction on their publication years. Similar to Section 6.2, resulting documents were then sorted 

according to relevance and the first 200 papers were considered for inclusion. From this pool, all 

abstracts were examined and studies reporting the effect of either diets or production systems on 

meat fatty acid profiles were shortlisted. Papers focused solely on novel and unconventional feeding 
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strategies such as inclusion of tannins (Morales and Ungerfeld, 2015) or microalgae (Madeira et al., 

2017) were excluded. Furthermore, selection was limited to beef, lamb, chicken, and pork—the four 

most commonly produced meats globally (OECD/FAO, 2017)—and therefore work on other meat (e.g., 

rabbit: Dalle Zotte and Szendrő (2011)) was also excluded. Based on these criteria, nine papers were 

selected to collectively provide an overview of farm management factors that influence fatty acid 

profiles. The first five papers below primarily review works on white meat (defined here as poultry 

and pork), while the last four cover red meat. 

D'Arrigo et al. (2011) reviewed a range of fresh and processed meat products with an aim to 

identify functional foods, or foods which not only provide basic nutrition but also risk prevention from 

certain types of non-communicable diseases. The authors acknowledge that improving omega-3 

compositions in the human diet is one of the main premises behind the functional food paradigm, 

with the adjustment of livestock feed being a key area of potential. For example, Enser et al. (1996) 

compared fatty acid profiles of beef, lamb and pork purchased from English retailers. Although pork 

had the highest PUFA:SFA ratio amongst the three products due to high levels of C18:2 omega-6 

(linoleic acid), this also resulted in an undesirably high ω-6:ω-3 ratio of 7; whereas, the corresponding 

ratios for beef and lamb were 2 and 1, respectively. While chicken meat was not analysed as part of 

this study, its value has subsequently been shown to be comparable (7.6) to that of pork (Lee et al., 

2012). 

In a review on meat quality, Wood et al. (2004) summarised possible methods to increase 

omega-3 across pork, beef and lamb systems, e.g. through dietary supplementation using linseed. 

Supplementation for pigs has shown varying responses, with some studies reporting no adverse 

effects on meat composition (Enser et al., 2000) while others suggesting that feeding strategies which 

elevate C18:3 (α-linolenic acid) reduce palatability, particularly when interventional treatments such 

as salt injection are carried out (Myer et al., 1992). 

Employing a systematic review approach, Corino et al. (2014) examined the effect of dietary 

linseed on the nutritional quality of pork and pork products. The authors considered the fatty acid 

profiles of 1006 pigs reported in 24 published papers and found positive effects of linseed 

supplementation to intramuscular fat and adipose tissue. In addition, a positive correlation between 

dietary treatment and both α-linolenic acid and C20:5 (eicosapentaenoic acid; EPA) was noted. While 

the evidence suggests such supplementation to be largely beneficial, not least due to economic 

feasibility, the authors highlight an increased risk of rancidity due to the greater oxidation potential of 

elevated PUFA levels in the meat. As a way to address this issue, they showed that feeding the entire 

linseed, rather than oil extracts, could decrease oxidation rates and consequently improve the shelf-
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life, due to the high levels of antioxidants present in seeds. 

Bogosavljević-Bošković et al. (2012) carried out a review of broiler rearing systems to 

investigate if production practices affected meat characteristics, such as chemical composition of the 

end-product. Although chicken meat has been shown to be a good source of omega-3 for humans 

(Sioen et al., 2006), Bogosavljević-Bošković et al. (2012) point out that there are conflicting viewpoints 

on the determining factors of chicken meat quality. For instance, Holcman et al. (2003) found that 

chicken meat produced from both indoor and outdoor EU-regulated fattening operations did not 

result in significantly different chemical compositions. In contrast, Husak (2007) found that organically 

reared chickens had higher levels of omega-3 than meat from free-range or conventional birds. 

Unfortunately, these products were obtained from either retailers or wholesalers, and, consequently, 

their feed ingredients were unknown. Ponte et al. (2004) used controlled trials to examine the effects 

of alfalfa supplementation on chicken meat. The authors found that, while the legumes improved 

meat quality, poultry demonstrated lower feed conversion ratios and reduced weight gain, suggesting 

that forages may not be an efficient feed source for broilers. A later study demonstrated, however, 

that this negative effect can be partially offset by providing exogenous enzymes to utilise fibre and 

non-structural polysaccharides (Lee et al., 2016). 

Motivated by declining fish consumption trends in the UK, Rymer and Givens (2005) explored 

existing literature to determine how omega-3 fatty acids could be enriched in the human diet via 

poultry meat. The authors acknowledge that, while typical poultry diets produce meat low in omega-

3 fatty acids, alternative diets enhanced with α-linolenic acid (typically sourced from linseed) or EPA 

and C22:6 (docosahexaenoic acid; DHA) (typically sourced from marine products) generally result in 

meat richer in long chain PUFA. Regarding different cuts of meat, dark chicken meat tends to be higher 

in α-linolenic acid than white meat, whereas the reverse is true for EPA and DHA due to higher levels 

of phospholipid fractions in white meat. Nevertheless, the authors point out that the typically low 

levels of total lipids in white meat result in comparable levels of EPA and DHA across both cuts of 

meats, and therefore chicken meat, white or brown, could be used as a vehicle to improve uptake of 

omega-3 in human diets. As Bogosavljević-Bošković et al. (2012) noted, however, increased levels of 

PUFA in meat reduces oxidative stability and consequently shortens shelf-life unless animals are 

adequately supplemented with dietary antioxidants such as vitamin E, as previously discussed with 

pork. 

Although the conversion efficiency of dietary PUFA into meat is lower for ruminants than for 

monogastric animals due to biohydrogenation in the rumen (a rumen bacterial response to detoxify 

unsaturated fatty acid through saturation), basal diets for beef and lamb systems generally contain 
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higher levels of omega-3; forage, the major component of a ruminant’s diet, typically comprises 50–

75% omega-3 (α-linolenic acid) and 6–20% omega-6 (linoleic acid; Dewhurst et al., 2003). In a review 

of fatty acid profiles of meat products, Wood et al. (2008) summarised results by Warren et al. (2008a), 

an examination of the effects of breed (Aberdeen Angus x Holstein-Friesian vs. Holstein-Friesian) and 

diet (grass silage vs. concentrates) on meat quality. The authors found that Holstein-Friesian steers 

had higher levels of PUFA and PUFA:SFA ratios than Aberdeen Angus steers because of higher 

proportions of phospholipids in the total lipids. Grass silage universally increased omega-3 in the meat, 

with concentrates (cereals) conversely increasing omega-6. However, silage-fed animals had a lower 

PUFA:SFA ratio than concentrate-fed animals, due largely to higher fat deposition. Warren et al. 

(2008a) also found that as finishing age increased from 14 months to 24 months, intramuscular fat 

levels increased, especially in grass-silage diets. As with pigs and poultry, increased PUFA had a 

negative effect on oxidative stability and shelf-life; as Warren et al. (2008b) reported, however, forage 

contains high levels of natural antioxidants (carotene and vitamin-E) which can inhibit this negative 

effect. 

Reviews by both Scollan et al. (2006) and Howes et al. (2015) further explored nutritional 

strategies to enhance long chain PUFA in beef. Specifically, Scollan et al. (2006) considered the role of 

genetics in fatty acid composition of meat, such as the thyroglobulin gene that regulates fat marbling 

and mutations of myostatin that decrease intramuscular fat content and increase muscle mass at the 

same time. Motivated by health-conscious consumers, Howes et al. (2015) reviewed current literature 

to identify opportunities to enhance long chain fatty acids (PUFA) in lamb fattening systems. Notably, 

the authors considered how specific cultivars of herbs and legumes might affect fatty acid profiles; 

Ådnøy et al. (2005), for example, demonstrated that botanically diverse mountainous swards 

(classified as native mixed pastures) produced lamb meat with higher levels of PUFA than lowland 

lamb. Howes et al. (2015) hypothesised that such increases in PUFA could result from a decrease in 

biohydrogenation caused by endogenous plant factors of a diverse sward. Factors contributing to 

reduced biohydrogenation were separately reviewed by Lee (2014) and Buccioni et al. (2012); as an 

example, red clover (Trifolium pratense) facilitates the flow of PUFA to the duodenum and then 

deposition into meat and milk, through the action of the enzyme system polyphenol oxidase in the 

rumen. 

Venkata Reddy et al. (2015) carried out a review of papers studying differences in meat quality 

between animal sexes (e.g. heifers and steers). The authors highlight that the hormonal status of cattle 

plays a significant role in fat and protein distribution within muscles. For example, and perhaps 

unsurprisingly, they assert that meat quality from heifers is much higher than bulls, largely due to 

increased fat deposition in heifers which results in improved water-holding capacity. Consistent with 
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the finding by Ardiyanti et al. (2009) that allele C in heifers produced higher levels of MUFA and PUFA 

(as well as lower levels of SFA), consumer panels have also demonstrated a preference for heifer beef 

over steer beef. More generally, feeding strategies that influence fatty acid profiles have implications 

on flavour and, consequently, preference; this point was exemplified by Sañudo et al. (2000), when 

British (grass-fed) and Spanish (concentrate-fed) lamb were offered to sensory panels in both 

countries. The panel in Britain preferred grass-fed lamb, whereas the Spanish panel preferred 

concentrate-fed lamb, reporting distaste for the “grassy” flavour. A similar tendency was observed by 

Larick and Turner (1990) for US sensory panels, who also preferred concentrate-fed beef over pasture-

fed beef. Collectively, these results demonstrate that familiarity is a driving force behind consumers’ 

decision making. 

6.4 Materials and methods 

6.4.1 Omega-3 case study 

In order to accurately connect the nutritional quality of meat products outlined above to the 

environmental footprints of farm management strategies under which they are produced, the 

following four steps need to be considered along the supply chain: (1) the environmental footprint per 

unit of farm-gate output (liveweight) under the studied farming strategy; (2) kill-out percentage of 

that particular animal; (3) meat yield from the carcase of that particular animal, and; (4) the nutrient 

content of meat from that particular animal. For the present case study, two functional units were 

selected based on the method of a preceding study (Marshall, 2001), namely the total mass of omega-

3 PUFA and the combined mass of EPA and DHA, which together constitute a subgroup of omega-3 

that are significantly more biologically active than shorter chain omega-3 and, therefore, do not need 

to compete with omega-6 for desaturase and elongase enzymes. The environmental footprints of 

different farming systems were estimated by combining studies that collectively cover the above four 

steps. Seven “treatments” or combinations of species and production systems commonly observed in 

the UK were identified: intensive cattle, extensive cattle, upland lamb, lowland lamb, conventional 

chicken, free-range chicken, and conventional pork. Feeding strategies reflected typical production 

practices for each system and therefore did not include supplementation of omega-3 rich feeds such 

as linseed. For each treatment, an LCA study and a meat science study reporting the fatty acid profiles 

were matched as closely as possible with respect to the underlying farming systems (Table 6.1), and 

the global warming potential (GWP) was derived under each functional unit. GWP based on a standard 

mass-based functional unit (kg deboned meat) is also reported for methodological comparison. 

Data pertaining to beef-related emissions were sourced from Audsley and Wilkinson (2014), 

of which dairy beef systems (slaughtered at 13 months) and suckler beef systems (18-19 months) were 

judged to be the most comparable, respectively, to the concentrate-fed beef and the silage-fed beef 
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examined in Warren et al. (2008a). For fatty acid profiles, data from Holstein-Friesian cattle (on two 

feeding regimes) slaughtered at 19 months were adopted. As Audsley and Wilkinson (2014) utilise 

carcase weight as a functional unit, meat yield was estimated using the guidelines by van Leeuwen 

(2014a), which suggest the combined wastage rate (bone/fat/drip loss) of 13.0%. 

Lamb production in the UK is typically carried out on both lowland and upland regions. To 

examine differences arising from these contrasting production environments, carbon footprints 

associated with both systems were sourced from Jones et al. (2014). As the functional unit adopted 

by the authors was 1 kg liveweight, GWP was first converted to represent 1 kg carcase weight (using 

the kill-out coefficient of 47.4%) and then to 1 kg edible meat (using the combined wastage rate of 

12.2%), both based on van Leeuwen (2014b). Fatty acid profiles were sourced from Whittington et al. 

(2006), who conducted meat analysis of Suffolk lambs produced under lowland and upland systems. 

GWP arising from broiler production was obtained from Leinonen et al. (2012), which 

employed a functional unit of expected weight of edible meat. As a result, no manipulations were 

made to derive the meat yield. Fatty acid composition was taken from Givens et al. (2011), who used 

whole cooked chickens for their meat analysis. Although cooked meat could potentially lose a portion 

of PUFA content as a consequence of oxidation, recent research has demonstrated that these losses 

are likely to be minimal (Douny et al., 2015). 

LCA data for pork production was sourced from Audsley and Wilkinson (2014), whose study 

of typical pig production systems in the UK was carried out with the functional unit based on carcase 

weight. Meat yield was obtained from Marcoux et al. (2007), whereby 53.9% of a carcase is reported 

to be lean meat. Meat data were taken from Enser et al. (1996), who examined the fatty acid 

composition of typical pork cuts available at UK retailers. As the feeding regime of the animals used in 

the meat analysis was unknown, it was assumed that the cuts represent conventional (intensive) 

farming systems. 

6.4.2 Nutrient index case study 

While the approach described in Section 6.4.1 offers a useful framework for LCA when the research 

question primarily concerns a single nutrient, these functional units do not necessarily represent the 

overall value of the product associated with human nutrition. One way to address this issue is through 

the use of a nutrient index, a scalar value to combine information on multiple nutrients, both 

beneficial and detrimental to human health. For this case study, the following four variants of the 

formulae originally developed in a Finnish study by Saarinen et al. (2017) were adopted and applied 

to the seven livestock systems studied in Section 6.4.1: UKNIprot7 and UKNIprot10 based on FNIprot7, and 

UKNIprot7-2 and UKNIprot10-2 based on FNIprot7-2. The first group simply rewards foods with higher 



156 
 

contents of desirable nutrients (protein, MUFA, EPA + DHA, calcium, iron, riboflavin, folate and, 

additionally for UKNIprot10, vitamin B12, selenium, zinc), while the second group also penalises those 

with higher contents of undesirable nutrients (SFA and sodium). Only EPA and DHA were considered 

amongst PUFA so as to ensure their bioavailability (Section 6.4.1). Vitamin B12, selenium and zinc, 

which did not form part of the original indices, were added to the alternative specifications as meat is 

particularly rich in these micronutrients (Castañé and Antón, 2017). All four indices are expressed as 

% RDI per 100g, indicating the proportion of RDI satisfied across all nutrients, minus penalty where 

applicable, by the said amount of product. 

RDI and RDA values were sourced from the British Nutrition Foundation (BNF, 2016), as 

averages between female and male. Where UK-specific recommendations were unknown or 

unspecified, as was the case with MUFA, values from Saarinen et al. (2017) were adopted. Nutritional 

compositions of (uncooked) meats were sourced from McCance and Widdowson (2015), except for 

fatty acid profiles carried over from the first case study (Table 6.1). GWP estimates were also taken 

from the first case study and, contrary to Saarinen et al. (2017), excluded the cooking process to match 

nutritional data. Based on best available evidence, it was assumed that protein and micronutrient 

contents were unaffected by production systems for the same species (Scollan et al., 2006). 

6.5 Results and discussion 

6.5.1 Omega-3 case study 

Table 6.2 provides a breakdown of fatty acid profiles adopted for the seven treatments. Mirroring the 

results from other studies, considerable differences were found between animals fed concentrates 

and forages, with more extensive systems generally producing more favourable profiles. Interestingly, 

the omega-3 content of free-range chickens was found to be lower than that of conventionally reared 

chickens. For many consumers who believe that free-range or organic meat products are healthier 

(Van Loo et al., 2010), this result may be unexpected. However, since the study by Givens et al. (2011) 

was based on meat purchased from supermarkets, the diets of chickens are unknown and, as a 

consequence, the reasons behind the PUFA differences cannot be completely ascertained, as in these 

systems diets will be based on least cost-rations and so may contain high level of omega-3. 

GWP implications derived under the new functional units were profoundly different 

compared to the standard LCA results, particularly for beef and sheep systems (Table 6.3). For 

example, concentrate-fed cattle produced approximately half the emissions of pasture fed cattle 

under the standard mass-based approach. When the omega-3 content of meat is considered, 

however, these results reversed and the concentrate-based system produced more than double the 

emissions of the pasture-based beef system. This difference was further exacerbated when only the 
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most bioactive omega-3 fatty acids (EPA and DHA) were included. Between the two lamb systems, 

while the upland system had a marginally higher GWP, it also produced meat with a marginally higher 

omega-3 content, resulting in a minimal difference when the novel functional units were applied. 

Differences between free-range and broiler chickens were less pronounced because neither GWP nor 

omega-3 contents differ as substantially as cattle and lamb systems. Nonetheless, the higher levels of 

total omega-3 and EPA + DHA contained in intensively reared chickens increased the GWP gap 

between the two systems. 

Across species, pig production was shown to be most affected when the functional unit was 

changed from mass-based to quality-based. While the new method did not alter the relative rankings 

between species, the discrepancy between red meat systems and white meat systems was 

considerably narrowed, challenging the view to stringently regulate ruminant production on the basis 

that it is far more harmful to society than monogastric production (Springmann et al., 2016). It could 

be argued that omega-3 should be sourced from alternative food groups such as oily fish and seafood, 

which are generally known to have higher contents of EPA and DHA than either white meat or red 

meat. Nonetheless, low consumption of these items in many societies suggests that, at least in short 

to medium terms, it is important to evaluate environmental impacts associated with production of all 

food types based on their nutritional values. More importantly, the current approach could be applied 

to any number of nutrients, so as to draw information not reflected when the mass of product is used 

as a sole reference to the value of food. 

Finally, it is worthwhile reiterating that, in addition to containing higher levels of omega-3, 

forage-based production systems are also associated with lower ω-6:ω-3 ratios (Table 6.2). Although 

quantifying this effect within the LCA framework is not straightforward and was therefore judged to 

be beyond the scope of the present case study, these systems are likely to result in further health 

benefits for humans than what is shown under the proposed functional units. 

6.5.2 Nutrient index case study 

When the seven systems were compared by the absolute level of nutrient scores, beef produced from 

forage-fed cattle was shown to be the most favourable product under all four index specifications 

(Table 6.4). All other systems, apart from intensive pork, performed comparably under UKNIprot7, with 

pork scoring low due to lower contents of protein, MUFA and folate. Under UKNIprot7-2 that also 

considers the two nutrients to be limited, beef and lamb produced the highest scores, while pork 

overtook free-range chicken due to its low SFA and Na. When the three additional nutrients (vitamin 

B12, Se and Zn) were further included (under UKNIprot10 and UKNIprot10-2), both beef production 

systems became notably more favourable than their counterparts from other species, owing to high 
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concentrations of vitamin B12 and Zn. This finding is notable not only in the comparison between red 

meat and white meat but also between meat-based diets and plant-based diets, as vegan diets are 

often deficient in B12 and Zn, the latter more so amongst children (Gibson, 1994, Pawlak et al., 2013). 

For computation of GWP, the mass-based functional unit (Table 6.3) was replaced with the 

four nutritional indices as denominators. As all nutrient scores are expressed as percentage, GWP 

values represent the environmental burdens associated with 1% of an average British person’s 

nutrient intake in the form of that particular meat. It was found that the low mass-based GWP of 

chicken systems directly translated to low environmental impacts under both UKNIprot7 and UKNIprot7-

2 (Figure 6.1). The largely positive nutritional profiles of beef and, to a lesser extent, lamb, did not 

greatly alter the relative rankings under these index specifications. However, when vitamin B12, Se 

and Zn were introduced as nutrients to be encouraged, notable reversals in rankings were observed 

for cattle systems (Figure 6.2). Concentrate beef generated the second lowest GWP only after 

intensive chicken under UKNIprot10, and the lowest under UKNIprot10-2. The performance of forage 

beef also improved, producing lower emissions than free-range chicken under UKNIprot10-2. On the 

other hand, lamb systems consistently generated the highest burdens regardless of the index 

specifications, due to the significantly high mass-based GWP that were robust to different functional 

units. Nonetheless, the overall findings of this analysis question the appropriateness of comparing 

environmental performances of products on a mass basis—in a similar vein to the first case study. 

6.5.3 Discussion 

While recent work by Coelho et al. (2016), Heller et al. (2013) and Sonesson et al. (2017) provided 

useful strategies for assessing environmental implications of different diets on the whole, LCA 

literature remains short of methodologies to account for quality differences between individual 

foodstuffs produced under contrasting farming practices. The results from the above case studies 

suggest that the application of nutrition-based functional units in the single commodity setting has 

the potential to fill this research gap and offer better insight into economic-environmental trade-offs 

inherent by each production system and, by extension, on-farm strategies that should be promoted. 

Importantly, relative environmental performances amongst different agricultural systems reversed as 

new functional units were adopted, in particular between pasture-based and concentrate-based 

livestock systems, highlighting that the effect of farming methods on product quality should not be 

ignored in comparative studies. Nevertheless, improving nutritional values of meat (per GHG 

emissions) is only beneficial to the environment if it is accompanied by improved consumer awareness 

of differences in food quality, as exemplified by the Bleu-Blanc-Coeur initiative (Coelho et al., 2016), 

which subsequently leads to reduction in consumption of lower quality products. To this end, there is 

a clear need for further interdisciplinary work, including a scope for consequential LCA to account for 
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wider socioeconomic impacts of dietary transitions as well as for end-point LCA to consider the 

ultimate impact of a product (and its quality) on human health. Even though a greater degree of 

uncertainty makes the latter a challenging task, work carried out by Sylianou et al. (2016) has paved 

the way to implement this concept. Finally, it should also be noted that GWP is one of many aspects 

of sustainability; in order to achieve a truly holistic comparison of livestock systems, a suite of metrics 

should be considered, including animal welfare (Edgar et al., 2013), land use (Wilkinson and Lee, 2018) 

and water quality (Leip et al., 2015), to name a few. 

Needless to say, the validity of the approaches proposed in this chapter depends upon data 

reliability and the relative importance of the nutrients incorporated into the analysis. As already 

discussed, information from four steps along the supply chain (production, slaughtering, packing and 

consumption) needs to be linked together to enable the proposed framework and, while they should 

ideally be collected from a single agricultural system within a single region, such opportunities are rare 

and far between. The alternative method of collating separate works together poses the risk of 

inappropriately linked parameters, as carcase conformation, meat yield, chemical composition of 

meat and ultimately its human nutritional value are all strongly influenced by farming strategies that 

fundamentally regulate flow of nutrients—from soil to crops and then to animals. 

As demonstrated here, it is possible to utilise existing datasets (from unrelated experiments 

carried out under similar environments) and create “hypothetical supply chains” that are sufficiently 

realistic for exploratory purposes. However, as the degree of uncertainty surrounding this approach 

cannot be specified, ideally a better way forward to overcome this issue would be to employ a whole 

supply chain approach (Orr et al., 2016), whereby actual products originating from different on-farm 

treatments are marked and tracked along the marketing process and used for quality evaluation and 

consumer trials. The finding from the present chapter, namely that nutritional quality rather than 

quantity is likely to play a key role in sustainable livestock production, warrants future studies in this 

area. 
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Table 6.1. Unit comparability between preceding works selected for the case study. This table demonstrates where functional unit conversion was required and which sources were used 
for these conversions; for example, from liveweight to carcase weight and finally to edible meat. The last two columns represent the amount of omega-3 that was linked with the carbon 
footprint study identified in the third column. 

Species System GWP Study GWP Unita Carcase Study Carcase Unit Omega-3 Study Omega-3 Unit 

Beef Concentrate Audsley and 
Wilkinson (2014) 

7.9 kg CO2-eq/kg 
CW 

van Leeuwen 
(2014a) 

0.87 kg meat/kg 
CW 

Warren et al. 
(2008a) 

20 mg/100g meat 

 
Forage  15.9 kg CO2-eq/kg 

CW 
  

 
97 mg/100g meat 

Chicken Intensive Leinonen et al. 
(2012) 

4.4 kg CO2-eq/kg 
MW 

Leinonen et al. 
(2012) 

Not required Givens et al. (2011) 362 mg/100g meat 

 Free range  5.1 kg CO2-eq/kg 
MW 

   214 mg/100g meat 

Lamb Lowland Jones et al. (2014) 10.9 kg CO2-eq/kg 
LW 

van Leeuwen 
(2014b) 

0.88 kg meat/kg 
CWb 

Whittington et al. 
(2006) 

94 mg/100g meat 

 
Upland  12.9 kg CO2-eq/kg 

LW 
  

 
103 mg/100g meat 

Pork Intensive Audsley and 
Wilkinson (2014) 

4.0 kg CO2-eq/kg 
CW 

Marcoux et al. 
(2007) 

0.54 kg meat/kg 
CW 

Enser et al. (1996) 51 mg/100g meat 

aCW: carcase weight; LW: liveweight; MW: meat weight 
bConverted from LW based on the kill-out rate estimated by van Leeuwen (2014b) 
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Table 6.2. Summary of omega-3 and 6 fatty acid profiles reported in preceding works selected for the case study.  

Species System Study 
Omega-3 
(mg/100 g meat) 

DHA + EPAa 
(mg/100 g meat) 

ω-6:ω-3b 

Beef Concentrate Warren et al. (2008a) 20.3 3.4 14.4 
 

Forage 
 

97.2 27.4 1.2 

Chicken Intensive Givens et al. (2011) 362 17.6 5.5 

 Free range  214 14.7 7.6 

Lamb Lowland Whittington et al. 
(2006) 

94.0 26.4 1.2 

 
Upland 

 
103 31.7 1.5 

Pork Intensive Enser et al. (1996) 51.3 14.8 7.4 

aDHA: docosahexaenoic acid; EPA: eicosapentaenoic acid. They are a subgroup of omega-3 fatty acids that 
are the most biologically active and do not need to compete with omega-6 for enzymes. 
bω-6:ω-3: the mass ratio between omega-6 and omega-3 fatty acids 
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Table 6.3. Global warming potential (GWP) under different functional units. Here, a basic functional unit conversion from mass of meat to mass of omega-3 (both as total omega-3 and 
isolated DHA+EPA) is provided. Most notably, relative rankings between concentrate and forage beef are reversed as the different functional units are adopted. Furthermore, under the 
omega-3 functional unit, the gap between ruminant meat and pork becomes markedly narrower.  

Species System 
Mass-based GWP 
(kg CO2-eq/kg meat) 

Quality-based GWP 
(kg CO2-eq/g omega-3) 

Quality-based GWP 
(kg CO2-eq/g EPA + DHAa) 

Beef Concentrate 9.8b 48.0 288.1  
Forage 18.3b 18.5 67.7 

Chicken Intensive 4.4 1.2 25.1 

 Free range 5.1 2.4 34.7 

Lamb Lowland 26.1b 28.7 99.2  
Upland 30.9b 30.0 98.9 

Pork Intensive 7.4b 14.4 50.3 

aDHA: docosahexaenoic acid; EPA: eicosapentaenoic acid. These are a subgroup of omega-3 fatty acids that 
are the most biologically active and do not need to compete with omega-6 for enzymes. 
bRecalculated from values reported by the authors for cross-study comparability 
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Table 6.4. Nutritional composition of each meat product (100g) considered. Nutritional indices were calculated based on either 7 or 10 nutrients to encourage and with or without 2 
nutrients to limit. The final scores indicate the percentage of RDI each product provides. 

Nutrient/index Unit RDI/RDA a Beef Chicken Lamb Pork 

   Concentrate Forage Intensive Free range Lowland Upland Intensive 

Protein g/day 50.25 23.5 23.5 26.3 26.3 20 20 18.6 

MUFA g/day 37.5 1.1 1.6 3.7 5.4 1.3 1.1 0.9 

EPA+DHA mg/day 250 3.4 27.4 17.6 14.7 26.4 31.7 14.8 

Ca mg/day 700 5 5 11 11 12 12 10 

Fe mg/day 11.75 1.6 1.6 0.7 0.7 1.4 1.4 0.4 

Riboflavin mg/day 1.2 0.26 0.26 0.15 0.15 0.2 0.2 0.18 

Folate µg/day 200 16 16 9 9 6 6 1 

Vitamin B12 µg/day 1.5 2 2 0 0 1 1 1 

Se µg/day 67.5 8 8 15 15 3 3 11 

Zn mg/day 8.25 4 4 1.5 1.5 2 2 1.3 

Na b g/day 6 0.07 0.07 0.08 0.08 0.07 0.07 0.053 

SFA b g/day 25 1.1 1.5 2.4 3.7 1.3 1.2 0.9 

UKNIprot7 % RDI  13.6 15.2 13.4 13.9 12.4 12.7 9.4 

UKNIprot7-2 % RDI  10.7 11.6 7.9 5.9 9.2 9.7 7.1 

UKNIprot10 % RDI  28.9 30.0 13.4 13.8 18.2 18.4 16.4 

UKNIprot10-2 % RDI  26.0 26.4 7.9 5.7 15.0 15.4 14.2 

a Recommended daily intake/allowance based on BNF (2015) and Saarinen et al. (2017) 
b Nutrients to be discouraged 
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A. 

 

B. 

 

Figure 6.1. Global warming potential scaled to 1% of RDI under (A) UKNIprot7 and (B) UKNIprot7-2 specifications. In 
comparison to a mass-based functional unit, the inclusion of 7 nutrients shows a slight narrowing of gaps between 
ruminants and monogastric systems.  
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A. 

 

B. 

 

Figure 6.2. Global warming potential scaled to 1% of RDI under (A) UKNIprot10 and (B) UKNIprot10-2 specifications. In 
contrast to Figure 6.1, the inclusion of 3 extra nutrients (selenium, vitamin B12 and zinc) shows marked changes to 
relative rankings, with concentrate beef producing less CO2-eq per 1% RDI than free-range chicken and intensive pork. 

 

 

 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Concentrate Forage Intensive Free range Lowland Upland Intensive

Beef Chicken Lamb Pork

kg
 C

O
2

-e
q

/1
%

 R
D

I

UKNIprot10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Concentrate Forage Intensive Free range Lowland Upland Intensive

Beef Chicken Lamb Pork

kg
 C

O
2

-e
q

/1
%

 R
D

I

UKNIprot10-2



166 
 

 

 

 

 

 

 

 

 

 

Chapter 7 – Conclusion 
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7.1 Summary of contribution to science 
The ultimate goal of this thesis was to explore methods of reducing farm-level uncertainties of LCA 

studies targeting livestock production systems. In an effort to review and benchmark the method most 

commonly used in the preceding literature, Chapter 2 investigated differences in environmental 

footprints of pig production systems under three distinct levels of economic efficiencies using the 

concept of nationally representative farms (Table 2.3). The most important finding from this study 

was that economic improvements, determined largely by feed conversion ratios (FCR), are likely to 

reduce environmental burdens (Table 2.8). Although it is intuitive that improved FCRs will lead to 

reduced nutrient losses to nature, few studies have quantitatively tested this anecdotal evidence. In 

addition, the “food miles” concept was shown to be a misleading indicator of environmental footprints 

(Figure 2.2). This possibility was suggested more than a decade ago (e.g. Dalgaard et al., 2007), but 

food producers, retailers and restauranteurs still use the idea as a method to attract consumers. As a 

consequence, it is valuable to disseminate transparent information of food systems and their 

associated environmental risks to the wider public. Regarding uncertainty, the commonly used Monte 

Carlo (MC) analysis was replicated to derive 95% confidence intervals around point estimates and to 

statistically compare footprints between different efficiency scenarios (Section 2.3.4). This approach 

is useful for capturing some uncertainties in LCA, such as potential variance of emission factors; 

however, it cannot capture many other sources of inventory uncertainties, such as biological growth 

rates of individual animals within a herd. 

Motivated by this limitation of MC analysis in LCA, Chapter 3 set about developing a new 

approach to an existing modelling method (BSI, 2011, ISO, 2006). On the North Wyke Farm Platform 

(NWFP), all cattle are weighed every 2-4 weeks, providing a detailed understanding of how their 

energy requirements change over the course of a production cycle (Figure 3.4). Moreover, it also 

creates the opportunity to investigate the role of growth performance on animal-level carbon 

footprints (CF). Using these data, in combination with a detailed inventory of material inputs and 

measured feed quality (Table 3.1), a unique CF framework was devised, whereby CFs were calculated 

for each animal for each short period between two weighing events (e.g. Figures 3.2 and 3.3). One of 

the main findings from this study was that average daily gain (ADG) was strongly negatively correlated 

with GWP (Figure 3.5). This has positive implications for selective breeding and suggests that farms 

could improve their CFs as well as profitability if poorly performing animals were removed from the 

herd. However, this also raises a question over the accuracy of some existing studies which use 

average herd statistics to calculate burdens from a typical animal without considering variance in 

performance; Table 3.5 shows that, when CFs are calculated under a “typical-animal” approach, the 

emissions intensity was notably lower than the arithmetic mean of the proposed individual animal 
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approach. Collectively, the findings from Chapter 3 identified a layer of uncertainty which is often 

difficult to address due to data availability. Going forward, and where possible, practitioners should 

attempt to source more detailed information on livestock performance, whether at the farm-level, 

regional-level or national-level, in order to improve the reliability of their estimates. 

Although Chapter 3 offered a methodological novelty in its own right, one empirical aspect 

which was lacking was the derivation of site-specific emission factors (EFs). The NWFP has a unique 

capability to integrate primary GHG measurements into animal production research (e.g. Cardenas et 

al., 2010, Cardenas et al., 2016, Horrocks et al., 2015, Misselbrook et al., 2014). Capitalising on these 

resources, Chapter 4 developed farm-level N2O EFs to be used in subsequent, and improved, CF 

studies. For this purpose, a static-chamber experiment was set up on all three farmlets of the NWFP. 

Cattle urine and dung were collected from cattle and applied onto treated plots on the animals’ 

respective fields (Table 4.2). Two types of controls were also considered: one with nitrogen (N) 

(CON+N) and one without (CON-N). Gases were measured simultaneously on each farmlet throughout 

a grazing season. Once temporal variations in N2O (Figure 4.3) were aggregated into total gaseous 

losses (Table 4.3), EF1 (% fertiliser N lost as N2O) and EF3 (% manure deposited on pasture lost as N2O) 

were derived from emission values and identified N contents of applied urine and dung. 

Building on from methods developed in Chapters 2 and 3, and data collected, processed and 

analysed in Chapter 4, Chapter 5 produced a novel CF study. Using the individual animal method 

devised in Chapter 3 for finishing systems, this study also incorporated the suckler herd to the model 

based on primary data collected from the breeding enterprise which provides weaned calves to the 

NWFP. As the most unique contribution of the study, site-specific EFs produced in Chapter 4 were 

used to estimate N2O losses from fertiliser N and urine and dung, so as to eliminate reliance on IPCC 

(2006) default EFs with large confidence intervals. Interestingly, these farm-level EFs were not found 

to alter point estimates derived under the default EFs (Figure 5.4), which is encouraging news for most 

CF studies of beef production systems in temperate grasslands. The inclusion of measured methane 

conversion values (Ym), on the other hand, was found to affect results considerably more. Using Ym 

values derived in a separate GreenFeed experiment at the NWFP resulted in approximately a 10% 

increase in CF (Figure 5.4), although care should be taken as feed used during the trial does not 

perfectly represent the annual nutritional intake by grazing animals. Another important finding in this 

study was that white clover (WC) performed considerably better environmentally than permanent 

pasture (PP) and high sugar grass monoculture (HS) across two production cycles (2015 and 2016), 

largely due to the reduction (in 2015) and omission (in 2016) of fertiliser N application. However, the 

benefits were more muted in Chapter 5 when compared to Chapter 3, explained by the inclusion of 

the suckler herd, which accounted for around 60% of system-wide emissions. This suggests that more 
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mitigation strategies should be levelled at the breeding phase of beef production. Indeed, improving 

parity and production efficiency of the breeding herd (via change in stocking rate) was found to 

generate a considerable reduction in CFs (Figure 5.4), demonstrating the potential of improved herd 

management with regards to reduced environmental impacts. 

All chapters preceding Chapter 6 were targeted at understanding and reducing farm-level 

uncertainties. However, one level of uncertainty which is rarely considered in LCA studies is that of 

product quality, an important driver of human health which remain uncertain under mass-based 

functional units. In order to fill this gap in the literature, the final chapter looked ahead towards a 

comprehensive framework for livestock LCA and proposed quantitative solutions to assess the real 

function of meat: human nutrition. When meat from four animal species were compared in terms of 

nutrients provided per unit of GHG emissions, beef was found to have a lower CF than chicken and 

pork (Figure 6.2) due to its denser nutritional values (Table 6.4). This suggests that, if humans 

consumed lean beef conforming to nutritional recommendations rather than today’s typical portion 

sizes, much less portion would be required to achieve the same nutrient intake than other meats. It 

also suggests that existing comparisons of multiple foodstuffs on a per-mass basis may not reflect the 

whole picture of climate change impacts, especially when they have different levels of nutritional 

density. Nevertheless, reduction of excessive consumption patterns in the developed world should 

undoubtedly be a key target for lowering livestock GHG emissions. 

7.2 Limitations of the present research 
As outlined in the previous subsection, the majority of novelties in this thesis lie in methodological 

development and therefore are applicable regardless of physical and managerial properties of the 

farms for which future environmental evaluations are carried out. Empirically, however, the greatest 

limitation of this thesis, particularly in Chapters 3, 4 and 5, is that results reported here were generated 

from one study site (the NWFP) and do not capture inter-farm variation. As shown throughout this 

thesis, management practices greatly affect the environmental footprints of livestock systems. As data 

are still lacking to benchmark the NWFP’s complete economic and environmental performances in 

relation to the population of commercial farms in England, the UK and beyond (Takahashi et al., 2018), 

the current research cannot draw definitive conclusions about the validity of quantitative results at a 

large geographical boundary. 

As well as a lack of national-scale representativeness, a lack of economic analysis is also 

problematic in translating the findings from the current study into useful information for local farmers. 

For instance, the WC treatment at the NWFP continuously produced more favourable CFs than PP and 

HS. From this, it would be logical to deduce that WC is a socially more desirable system than PP or HS; 
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however, this assertion would not be of interest to farmers if the cost of sward maintenance 

outweighs personal gains arising from the change in farming systems. Ideally, this thesis would have 

included an additional component to consider pathways to implement changes, in terms of both meat 

production and consumption, proposed across the six chapters. That said, cost-benefit analysis of 

various farm interventions for each of the NWFP’s systems is ongoing, meaning this gap in knowledge 

will soon be rectified. 

7.3 Future work 
The NWFP is known as one of the most instrumented farms in the world and collects a suite of 

information about grassland ruminant production systems. The current thesis utilised some of these 

data, such as detailed farm records and GHG measurements; however, there are a number of avenues 

which are yet to be explored. In LCA terms, perhaps the most beneficial function of the NWFP would 

be to use automated water quality measurements (Orr et al., 2016) to derive novel characterisation 

factors for eutrophication potential (EP). Currently, common freshwater EP factors are based on global 

phosphorus (P) fate models (Huijbregts et al., 2016), but water quality is known to vary considerably 

at the local level (DEFRA, 2014). Given the facility and expertise to measure P flows through soil and 

water at the NWFP, a future study should develop localised characterisation factors. This would be a 

considerable advancement to a very important aspect of LCA, in particular the trade-off between local 

and global pollution as discussed in Chapter 2, where current LCA literature lacks strong credibility. 

In addition to the NWFP’s resources, human nutritional work developed in Chapter 6 also 

warrants further investigation. For example, most studies assume that all diets require to supply the 

same level of nutrients. People tend to follow very different consumption patterns, however, both 

across nations and across individuals within nations. Therefore, future work could examine a range of 

actual, rather than recommended, dietary patterns based on best available data, and determine how 

individual food products would contribute in terms of diet-level nutritional requirements without 

incurring excessive environmental burdens. Similar work has already been carried out by Sonesson et 

al. (2017) in terms of protein quality via essential amino acids, but there is scope to look at wider 

nutrient groups such as various forms of fats, minerals and vitamins. Another aspect of nutritional LCA 

which holds potential to account for product quality is considering the addition of a single serving of 

a particular product to a diet and its subsequent epidemiological effects in endpoint modelling, as 

exemplified by Stylianou et al. (2016). Similar studies are currently lacking in the UK. 

In conclusion, this thesis has taken a number of steps forward in identifying novel sources of 

uncertainty, most notably at the farm level. From the consideration of individual animals, site-specific 

EFs and the inclusion of meat nutrition, pathways are relatively straightforward to reduce said 
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uncertainties; however, the vast sums of data required to do so severely restrict many LCA 

practitioners’ options. In terms of environmental assessment as a whole, the current research sends 

a clear message that the single most important factor required to improve our understanding of 

livestock production systems lies with data collection. National bodies responsible for aggregating 

summary statistics should place more emphasis on intra-farm variations, such as those arising from 

differences in yield and daily weight gains, which could be achieved by carrying out only slightly more 

detailed farm surveys. When practitioners have a better understanding of uncertainties within and 

across farms, regions and nations, LCA comparisons will become scientifically more robust than simply 

comparing systems based on point estimates or range estimates derived from “default” Monte Carlo 

analysis, which the current thesis suggests may be flawed approaches. Finally, and looking ahead, the 

need for environmental interventions must be discussed together with their potential impacts on the 

availability of affordable food, particularly in developing countries (Eisler et al., 2014). International 

collaboration is the key for successful data collection and analysis in this area, and international 

networks such as the Global Farm Platform (GFP) (Gill et al., 2018), which the NWFP forms part of, 

hold opportunities of developing global databases with processes pertinent to farming practices from 

other instrumented farms all over the world. Detailed inventories from developing countries are not 

as prevalent as those from developed countries within Europe or North America. As a consequence, 

building upon our current understanding of agriculture’s relationship with the environment is critical 

to identify global strategies to avoid the biosphere’s degradation. Accepting the ethos that not-one-

size-fits-all is critical in devising sustainable agricultural systems across the planet. 
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composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat 
Science, 54, 339-346. 

Schau, E. M. & Fet, A. M. 2008. LCA studies of food products as background for environmental 
product declarations. The International Journal of Life Cycle Assessment, 13, 255-264. 

Schulte, R., Lanigan, G., Donnellan, T., Crosson, P., Shalloo, L., O’Brien, D., Farrelly, N., Finnan, J., 
Gibson, M., Boland, A., Boyle, G., Carton, O., Caslin, B., Culleton, N., Fealy, R., Fitzgerald, J., 
Hanrahan, K., Humphreys, J., Hyde, T., Kelly, P., Lalor, S., Maher, P., Murphy, P., Fhlatharta, N. 
N., O’Donoghue, C., O’Kiely, P., O’Mara, F., Richards, K., Ryan, M. & Spink, J. 2011. Irish 
Agriculture, Greenhouse Gas Emissions and Climate Change: opportunities, obstacles and 



182 
 

proposed solutions [Online]. Carlow: Teagasc. Available: 
https://www.teagasc.ie/media/website/publications/2011/61/61_ClimateBillSubmission.pdf. 

Scollan, N., Hocquette, J.-F., Nuernberg, K., Dannenberger, D., Richardson, I. & Moloney, A. 2006. 
Innovations in beef production systems that enhance the nutritional and health value of beef 
lipids and their relationship with meat quality. Meat Science, 74, 17-33. 

Sharp, J. M., Edwards, G. R. & Jeger, M. J. 2014. A spatially explicit population model of the effect of 
spatial scale of heterogeneity in grass–clover grazing systems. The Journal of Agricultural 
Science, 152, 394-407. 

Simopoulos, A. P. 2006. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic 
variation: nutritional implications for chronic diseases. Biomedicine & Pharmacotherapy, 60, 
502-507. 

Sioen, I. A., Pynaert, I., Matthys, C., De Backer, G., Van Camp, J. & De Henauw, S. 2006. Dietary intakes 
and food sources of fatty acids for Belgian women, focused on n-6 and n-3 polyunsaturated 
fatty acids. Lipids, 41, 415-422. 

Smil, V. 2000. Feeding the World: A challenge for the twenty-first century, Cambridge, MA, The MIT 
Press. 

Sonesson, U., Davis, J., Flysjö, A., Gustavsson, J. & Witthöft, C. 2017. Protein quality as functional unit 
– A methodological framework for inclusion in life cycle assessment of food. Journal of 
Cleaner Production, 140, Part 2, 470-478. 

Song, G., Li, M., Fullana-i-Palmer, P., Williamson, D. & Wang, Y. 2017. Dietary changes to mitigate 
climate change and benefit public health in China. Science of The Total Environment, 577, 
289-298. 

Soteriades, A. D., Gonzalez-Mejia, A. M., Styles, D., Foskolos, A., Moorby, J. M. & Gibbons, J. M. 2018. 
Effects of high-sugar grasses and improved manure management on the environmental 
footprint of milk production at the farm level. Journal of Cleaner Production, 202, 1241-1252. 

Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. 2016. Analysis and valuation of the 
health and climate change cobenefits of dietary change. Proceedings of the National Academy 
of Sciences, 113, 4146. 

Stanley, J. C., Elsom, R. L., Calder, P. C., Griffin, B. A., Harris, W. S., Jebb, S. A., Lovegrove, J. A., Moore, 
C. S., Riemersma, R. A. & Sanders, T. A. B. 2007. UK Food Standards Agency Workshop Report: 
the effects of the dietary n-6:n-3 fatty acid ratio on cardiovascular health. British Journal of 
Nutrition, 98, 1305-1310. 

Steinfeld, H. 2006. Livestock's long shadow: environmental issues and options. Rome: Food and 
Agriculture Organization of the United Nations. 

Stone, J. J., Dollarhide, C. R., Benning, J. L., Gregg Carlson, C. & Clay, D. E. 2012. The life cycle impacts 
of feed for modern grow-finish Northern Great Plains US swine production. Agricultural 
Systems, 106, 1-10. 

Strid Eriksson, I., Elmquist, H., Stern, S. & Nybrant, T. 2005. Environmental Systems Analysis of Pig 
Production - The Impact of Feed Choice. The International Journal of Life Cycle Assessment, 
10, 143-154. 

Stylianou, K. S., Heller, M. C., Fulgoni, V. L., Ernstoff, A. S., Keoleian, G. A. & Jolliet, O. 2016. A life cycle 
assessment framework combining nutritional and environmental health impacts of diet: a 
case study on milk. The International Journal of Life Cycle Assessment, 21, 734-746. 

Takahashi, T., Harris, P., Blackwell, M. S. A., Cardenas, L. M., Collins, A. L., Dungait, J. A. J., Hawkins, J. 
M. B., Misselbrook, T. H., McAuliffe, G. A., McFadzean, J. N., Murray, P. J., Orr, R. J., Rivero, M. 
J., Wu, L. & Lee, M. R. F. 2018. Roles of instrumented farm-scale trials in trade-off 
assessments of pasture-based ruminant production systems. animal, 1-11. 

Teagasc. 2014. National Pig Herd Performance Report 2014 [Online]. Moorepark: Teagasc. Available: 
https://www.teagasc.ie/media/website/publications/2015/Pig_Development_Report_2014_
web.pdf. 



183 
 

Teagasc. 2016. Joint Programme [Online]. Oak Park, Carlow: Teagasc. Available: 
https://www.teagasc.ie/animals/pigs/joint-programme/. 

Thornton, P. K. 2010. Livestock production: recent trends, future prospects. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 365, 2853. 

Tichenor, N. E., Peters, C. J., Norris, G. A., Thoma, G. & Griffin, T. S. 2017. Life cycle environmental 
consequences of grass-fed and dairy beef production systems in the Northeastern United 
States. Journal of Cleaner Production, 142, Part 4, 1619-1628. 

Treu, H., Nordborg, M., Cederberg, C., Heuer, T., Claupein, E., Hoffmann, H. & Berndes, G. 2017. 
Carbon footprints and land use of conventional and organic diets in Germany. Journal of 
Cleaner Production, 161, 127-142. 

Tyszler, M., Kramer, G. & Blonk, H. 2016. Just eating healthier is not enough: studying the 
environmental impact of different diet scenarios for Dutch women (31–50 years old) by linear 
programming. The International Journal of Life Cycle Assessment, 21, 701-709. 

USDA ERS. 2012. Food availability (per capita) data system [Online]. U.S. Department of Agriculture 
Economic Research Service. Available: www.ers.usda.gov/data-products/food-availability-
(percapita)-data-system.aspx. 

van der Weerden, T. J., Luo, J., de Klein, C. A. M., Hoogendoorn, C. J., Littlejohn, R. P. & Rys, G. J. 2011. 
Disaggregating nitrous oxide emission factors for ruminant urine and dung deposited onto 
pastoral soils. Agriculture, Ecosystems & Environment, 141, 426-436. 

van Dorland, H. A., Wettstein, H. R., Leuenberger, H. & Kreuzer, M. 2007. Effect of supplementation of 
fresh and ensiled clovers to ryegrass on nitrogen loss and methane emission of dairy cows. 
Livestock Science, 111, 57-69. 

van Leeuwen, D. 2014a. Beef Yield Guide: From farm to plate. Warwickshire: Agriculture and 
Horticulture Development Board. 

van Leeuwen, D. 2014b. Lamb Yield Guide: From farm to plate. Warwickshire: Agriculture and 
Horticulture Development Board. 

Van Loo, E., Caputo, V., Nayga, J. R. M., Meullenet, J.-F., Crandall, P. G. & Ricke, S. C. 2010. Effect of 
Organic Poultry Purchase Frequency on Consumer Attitudes Toward Organic Poultry Meat. 
Journal of Food Science, 75, S384-S397. 

van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. 2016. 
Global food supply: land use efficiency of livestock systems. The International Journal of Life 
Cycle Assessment, 21, 747-758. 

Veeramani, A., Dias, G. M. & Kirkpatrick, S. I. 2017. Carbon footprint of dietary patterns in Ontario, 
Canada: A case study based on actual food consumption. Journal of Cleaner Production, 162, 
1398-1406. 

Vellinga, T. V., Blonk, H., Marinussen, M., Zeist, W. J., Van Boer, I. J. M. D. & Starmans, D. 2013. Report 
674 Methodology used in feedprint: a tool quantifying greenhouse gas emissions of feed 
production and utilization. Lelystad: Wageningen UR Livestock Research. 

Venkata Reddy, B., Sivakumar, A. S., Jeong, D. W., Woo, Y.-B., Park, S.-J., Lee, S.-Y., Byun, J.-Y., Kim, C.-
H., Cho, S.-H. & Hwang, I. 2015. Beef quality traits of heifer in comparison with steer, bull and 
cow at various feeding environments. Animal Science Journal, 86, 1-16. 

Warren, H. E., Scollan, N. D., Enser, M., Hughes, S. I., Richardson, R. I. & Wood, J. D. 2008a. Effects of 
breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. I: Animal 
performance, carcass quality and muscle fatty acid composition. Meat Science, 78, 256-269. 

Warren, H. E., Scollan, N. D., Nute, G. R., Hughes, S. I., Wood, J. D. & Richardson, R. I. 2008b. Effects of 
breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. II: Meat 
stability and flavour. Meat Science, 78, 270-278. 

Weidema, B. P. & Schmidt, J. H. 2010. Avoiding Allocation in Life Cycle Assessment Revisited. Journal 
of Industrial Ecology, 14, 192-195. 

Wenzel, H., Hauschild, M. & Alting, L. 1997. Environmental Assessments of products – Vol 1: 
Methodology, tools and case studies in product development. London: Chapman & Hall. 



184 
 

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E. & Weidema, B. 2016. The ecoinvent 
database version 3 (part I): overview and methodology. The International Journal of Life Cycle 
Assessment, 21, 1218-1230. 

Whittington, F. M., Dunn, R., Nute, G. R., Richardson, R. I. & Wood, J. D. 2006. Effect of pasture type 
on lamb product quality. In: Wood, J. D. (ed.) Proceedings of the British Society of Animal 
Science, 9th Annual Langford Food Industry Conference. Somerset. 

Wiedemann, S., Davis, R., McGahan, E., Murphy, C. & Redding, M. 2017. Resource use and 
greenhouse gas emissions from grain-finishing beef cattle in seven Australian feedlots: a life 
cycle assessment. Animal Production Science, 57, 1149-1162. 

Wiedemann, S., McGahan, E., Grist, S. & Grant, T. 2010. Environmental Assessment of Two Pork 
Supply Chains Using Life Cycle Assessment. Barton, Australia: Rural Industries Research and 
Development Corporation. 

Wiedemann, S., McGahan, E., Murphy, C., Yan, M.-J., Henry, B., Thoma, G. & Ledgard, S. 2015. 
Environmental impacts and resource use of Australian beef and lamb exported to the USA 
determined using life cycle assessment. Journal of Cleaner Production, 94, 67-75. 

Wilkinson, J. M. 2011. Re-defining efficiency of feed use by livestock. animal, 5, 1014-1022. 
Wilkinson, J. M. & Lee, M. R. F. 2018. Review: Use of human-edible animal feeds by ruminant 

livestock. animal, 12, 1735-1743. 
Willers, C. D., Maranduba, H. L., de Almeida Neto, J. A. & Rodrigues, L. B. 2017. Environmental Impact 

assessment of a semi-intensive beef cattle production in Brazil’s Northeast. The International 
Journal of Life Cycle Assessment, 22, 516-524. 

Williams, A. G., Audsley, E. & Sandars, D. L. 2006. Determining the environmental burdens and 
resource use in the production of agricultural and horticultural commodities. Main Report. 
Defra Research Project IS0205. Bedford: Cranfield University and Defra. 

Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I. & 
Whittington, F. M. 2008. Fat deposition, fatty acid composition and meat quality: A review. 
Meat Science, 78, 343-358. 

Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R. & 
Enser, M. 2004. Effects of fatty acids on meat quality: a review. Meat Science, 66, 21-32. 

 


