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The usefulness of genomic prediction (GP) for many animal and plant breeding programs

has been highlighted for many studies in the last 20 years. In maize breeding programs,

mostly dedicated to delivering more highly adapted and productive hybrids, this

approach has been proved successful for both large- and small-scale breeding programs

worldwide. Here, we present some of the strategies developed to improve the accuracy

of GP in tropical maize, focusing on its use under low budget and small-scale conditions

achieved for most of the hybrid breeding programs in developing countries. We highlight

the most important outcomes obtained by the University of São Paulo (USP, Brazil) and

how they can improve the accuracy of prediction in tropical maize hybrids. Our roadmap

starts with the efforts for germplasm characterization, moving on to the practices for

mating design, and the selection of the genotypes that are used to compose the

training population in field phenotyping trials. Factors including population structure

and the importance of non-additive effects (dominance and epistasis) controlling the

desired trait are also outlined. Finally, we explain how the source of the molecular

markers, environmental, and the modeling of genotype–environment interaction can

affect the accuracy of GP. Results of 7 years of research in a public maize hybrid

breeding program under tropical conditions are discussed, and with the great advances

that have been made, we find that what is yet to come is exciting. The use of

open-source software for the quality control of molecular markers, implementing GP,

and envirotyping pipelines may reduce costs in an efficient computational manner. We

conclude that exploring newmodels/tools using high-throughput phenotyping data along
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with large-scale envirotyping may bring more resolution and realism when predicting

genotype performances. Despite the initial costs, mostly for genotyping, the GP platforms

in combination with these other data sources can be a cost-effective approach for

predicting the performance of maize hybrids for a large set of growing conditions.

Keywords: accuracy, quantitative genomics, R packages, genomic selection, breeding schemes

INTRODUCTION

Hybrid breeding programs are usually based on pureline
methods, including the development of inbreeding lines by self-
pollination or double-haploids, followed by progeny evaluation
across heterotic pools (Hallauer et al., 2010). The great challenge
of this approach is to adequately test the performance in all
possible combinations of lines in crosses (Bernardo, 1994). In
this context, we have conducted several studies indicating the
usefulness of genomic prediction (GP, Meuwissen et al., 2001).
Since the first studies of GP in maize (Bernard and Yu, 2007),
several applications have been made to improve different steps
of maize breeding, such as the selection under diverse breeding
populations (Lorenzana and Bernardo, 2009; Lehermeier et al.,
2014), the rapid cycle improvement of parental inbreeds (Zhang
et al., 2017; Cui et al., 2020; Das et al., 2020), the prediction of
double-haploid lines (e.g., Cooper et al., 2016; Messina et al.,
2018), and the prediction of the performance of single-crosses
for single or multi-environment conditions (Windhausen et al.,
2012; Dias et al., 2018; Alves et al., 2019; Millet et al., 2019;
Costa-Neto et al., 2020; Rogers et al., 2021).

Here we focused our review efforts on the GP of maize
hybrids, particularly in the single-crosses of F1. From the last 10
years of research in this field, several research groups pointed
to affect the main factors that drastically affect the accuracy of
GP for hybrid prediction, such as (1) the genetic design and the
genotypes used to form the training population; (2) the presence
of a population structure; (3) the importance of non-additive
effects controlling the desired characteristic; (4) the source of
molecular markers used; and (5) the genotype× environment (G
× E) interaction over contrasting environments. Therefore, this
review aims to describe the most important outcomes in this field
and report our research experience in a small-scale low budget
breeding program under tropical growing conditions.

ROADMAP FOR IMPLEMENTING GP IN
HYBRID BREEDING PROGRAMS

Here, we highlighted the most important outcomes obtained by
the Allogamous Breeding Laboratory of the University of São
Paulo (USP, Brazil) and some other groups in testing GP for
predicting maize hybrids. We present our review as a roadmap
for small-scale and low-budget breeding programs due to the fact
that most of our research is focused on optimizing GP in order
to find the best training sets (TS), to select the best genotyping
pipelines, and to choose the best multi-environment structures
to predict scenarios of genotype× environment interaction. Our
roadmap began with the efforts for germplasm characterization,

which involves both molecular and phenotypic characterization.
Before this step, it is necessary to develop the inbred lines during
successive cycles of self-crossing. For most breeding programs,
this step may involve the use of double haploid technology. After
seed replication, field trials must be well-conducted, following
certain management practices, which may evolve, for example,
the use of optimum vs. nitrogen-limited conditions. A good
statistical analysis and phenotype correction are important steps
that impact further genomic analysis (Galli et al., 2018).

Then, after the characterization of lines, we focused on maize
hybrid predictions. The second step of the roadmap considers
schemes for mating design and choosing the genotypes used
to compose the training population in field phenotyping trials.
Factors including population structure and the importance of
non-additive effects (dominance and epistasis) controlling the
desired trait are also outlined. Finally, we present how the source
of the molecular markers, environment, and the modeling of
genotype × environment interaction can affect the accuracy of
GP. We also point out that the use of dominance effects in
GP is crucial to deliver accurate predictions of maize hybrids.
Results of 7 years of research in our public maize hybrid breeding
program under tropical conditions are discussed, and with the
great advances that have been made, we find that what is yet to
come is exciting. In the end, we revised some fields of work and
the lessons we learned from both our experience and the results
from other groups.

GERMPLASM CHARACTERIZATION

Tropical Germplasm of USP, Brazil
The very first step on our scientific road was to carry out
germplasm characterization on the newly acquired inbred lines
(Sant’Ana et al., 2020). Genomic diversity and population
structure of germplasm (e.g., heterotic groups) are widely known
to accelerate genetic gains in breeding programs. This structure
and diversity are allocated to twomajor groups, such as temperate
and tropical germplasm in tropical maize. While tropical maize
germplasm has a greater genetic diversity, the temperate one
has more pronounced heterotic patterns (Mir et al., 2013).
Moreover, tropical maize germplasm lacks information on its
genetic diversity regarding low-nitrogen (N) stress (De Andrade
et al., 2016; Torres et al., 2018). In this context, in order to
analyze the population structure of tropical maize accessions
and identify genomic regions related to low-N tolerance, an
initial set of 64 inbred lines was evaluated under ideal and low
N availability conditions. The lines were genotyped using 417,
112 Single Nucleotide Polymorphism (SNP) markers from the
Affymetrix platform described above. The grouping, based on the
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Nitrogen Acquisition Efficiency (NAE) values, classified the lines
into two phenotypic groups, the first of which was composed
of genotypes with high NAE (called H_NAE group) and the
second of genotypes with low NAE (called L_NAE group). The
groups H_NAE and L_NAE presented mean NAE values of 3,304
and 1,644, respectively (Sant’Ana et al., 2020). The population
structure analysis revealed a weak relationship between genetic
and phenotypic diversities. Simultaneously, line pairs having a
high NAE and a considerable genetic distance were identified.

In greater detail, we noticed that a set of 29 single nucleotide
polymorphism (SNP) markers displayed a significant difference
in the allelic frequencies (Fst > 0.2) between groups H_NAE and
L_NAE. Pearson’s correlation between NAE and the favorable
alleles in this set of SNPs was 0.69. These SNPs can be useful
for the marker-assisted selection (MAS) for low-N tolerance in
maize breeding programs. The results of this study can assist
maize breeders when identifying genotypes to be used in the
development of low-N tolerance cultivars.

Using this information, we have chosen 49 lines to compose
the genitor bank of our breeding programs. We carried out
the first complete diallel, which outlined the heterotic groups
and the first GP training population, both used in the studies
described below.

Finding Population Structure in Hybrid
Breeding Populations
Due to the considerable diversity, we then tried to identify
whether the population structure within the dataset should
be considered (Lyra et al., 2018). Population structure arises
mainly due to geographical isolation and natural/artificial
selections. Individuals are distributed into a few to several distinct
subgroups that display different allele frequencies (Figure 1A).
In a genome-wide association study (GWAS), individuals within
the diversity panel present a specific phenotype of one or more
lines that may generate misleading estimates on the linkage
imbalance. As a result, whenever a phenotype is correlated with
a subpopulation, this phenotype will probably show spurious
associations. Although these associations are a major concern
for GWAS, the use of highly structured subgroups in hybrid
prediction could influence the achievement of reliable estimates
of genomic estimated breeding values (GEBVs) for quantitative
traits (Larièpe et al., 2017; Werner et al., 2020).

There are many ways to account for population structure in
GP. Traditionally, the use of only a genomic relationship matrix
is enough to predict phenotypes within breeding populations.
However, when there is a strong structure (e.g., diverse panels),
one strategy is to incorporate autovectors and admixture
coefficients as covariates (fixed effects) in genomic models
(Figure 1A). The use of principal components (PCs) in the
genomic best linear unbiased prediction (GBLUP) method might
result in a poorly positioned model because PCs enter both
as fixed effects and implicitly, via the random effect (de Los
Campos and Sorensen, 2014). Another option is to consider
population structure in the cross-validation scheme, ensuring
that each subpopulation is equally represented in the training
and validation sets, consequently maximizing relatedness

(Atanda et al., 2021). A third approach essentially divides
the population into homogeneous (putative unstructured)
subgroups (Figure 1B). When predictions are limited to specific
subpopulations, the predictive ability is generally greater than
predicting between subgroups or correcting for PS covariables
(Guo et al., 2014). On the other hand, despite efforts to control
the heterogeneity of marker effects among subpopulations
(e.g., MG-GBLUP model, Lehermeier et al., 2015), dividing the
population into subgroups may lead to a reduction in population
size and a loss of diversity, thus reducing the predictive ability.

Tropical and subtropical maize genotypes are not as organized
as temperate ones, which mean that more than two heterotic
pools can be used in crosses. Equivalently, a diverse population
of inbred lines can be crossed with testers representing different
genetic origins. Thus, although only the effect of alleles and
their interactions make up the genetic structures of hybrids,
it is essential to find the structure patterns and understand
how this information affects the predictions. In this sense, we
investigated the effect of population structure in the GPs of
simple crossbreeding considering two scenarios: (1) applying the
traditional GBLUP and four methods of adjusting population
structure in the whole group and (2) using homogeneous
(A-GBLUP), within-group analysis (W-GBLUP), multi-group
analysis (MG-GBLUP), and inter-group analysis (AC-GBLUP) in
stratified groups (Lyra et al., 2018).

No advantages were found in the addition of population
structure covariables to the prediction model based on the
predictive ability. Thus, one explanation could be that the
genomic relationship matrix has implicitly captured the genetic
variation of population structure and hybrid mixing; another
reason could be the similarity in the average performance of
the characteristics in the subpopulation. Our second strategy
was to divide the population into stratified groups. From our
results, the predictive ability was significantly higher in A-GB
and MG-GBLUP than W-GB for both characteristics, suggesting
that considering the heterogeneity of the marker effects among
subpopulations may be a promising strategy.

Our results suggest that the population structure problem
for the GP can be efficient for highly structured (defined)
populations but not for single hybrids. These results provided
further knowledge about our germplasm and reassuring ways to
perform GP.

DESIGN OF TRAINING POPULATIONS FOR
GENOMIC PREDICTION

Finding the Best Mating Design for Training
Populations
Post-hoc but relevant information about creating a training
population is included in our realm of projects. We realized that
the literature concerning GP in maize was quite vast, yet there
was a significant shortage of studies on the best genetic design to
build the training population.

Therefore, we handled a study to verify genomic selection
accuracy to predict the performance of maize hybrids under
different genetic designs (Fristche-Neto et al., 2018). Several
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FIGURE 1 | Approaches to control the maize population structure. (A) A mixed linear model accounts for the covariates of population structure (fixed effect) and the

genomic relationship matrix (kinship). An example of an allele-specific the population is shown in the graph. (B) 3D graph for the first three major components (PCs)

using 452 simple tropical maize hybrids. Two stratification methods for the prediction of hybrids are shown in the panel. The first is a homogeneous group approach

(A-GBLUP), which assumes constant marker effects between groups. The second is a multivariate approach (MG-GBLUP) that uses data from several groups and

considers heterogeneity, with population-specific marker effects that can be correlated between subpopulations.

mating designs, such as Griffing’s methods, partial diallel, North
CarolinaDesign II (NCII), and test crossing (Hallauer et al., 2010)
have been proposed. Thesemethods have the following fourmain
goals: (i) to provide information on the genetic control of the
trait under investigation; (ii) to generate populations to be used
as a basis for the selection and development of cultivars; (iii) to
provide estimates of genetic gain; (iv) to obtain information to
evaluate the genitors used in the breeding program, based on the
general and combination-specific capabilities (GCA and SCA),
respectively. Although many articles have been published on GP
in maize (Lorenzana and Bernardo, 2009; Windhausen et al.,
2012; Lehermeier et al., 2014; Cooper et al., 2016; Zhang et al.,
2017; Dias et al., 2018; Messina et al., 2018; Alves et al., 2019;
Millet et al., 2019; Costa-Neto et al., 2020; Cui et al., 2020; Das
et al., 2020; Wang et al., 2020; Rogers et al., 2021), no studies on
the best genetic design to build the training population have yet
been conducted. This population should maximize the accuracy
and contemplate practical restrictions, such as the costs and
logistics of crosses to be made. Thus, in this study, we aimed (i) to
empirically evaluate the effect of genetic designs when used as a
GP training population of single maize hybrids obtained through
full diallel (FD) or via NCII, and (ii) to identify the possibility of
reducing the number of crosses and genitors to compose these
TSs (Fristche-Neto et al., 2018).

In addition to the standard genetic designs, we also evaluated
the possibility of using optimized training populations (OTS)
aiming to reduce the number of individuals for training genomic
prediction without reducing accuracy. For this purpose, we used
the algorithm proposed by Akdemir et al. (2015) with predefined
population size. Therefore, to predict the FD, we used the NCII,
the testcross (TC), and OTS as the TS with sizes of 32 (with the
same size of the TC data set), 152, 272, and 393 hybrids (with

the same size as the NCII data set). Following the same idea of
aiming to predict NCII, we used the TC and OTS with 32, 152,
and 272 hybrids.

Our results suggest that TC is the worst genetic design to
be used as a TS to predict simple maize crosses that must be
obtained through FD or NCII. On the other hand, NCII is the
best TS for the prediction of hybrids taken from FD. In addition,
combinations from FD or NCII can be well predicted using OTS,
thus reducing the total number of crosses to be made. However,
the number of parents and crosses per parent in the ST should
be maximized.

Training Populations Using Public
Databases—An Alternative
Due to the scarcity of resources in the initial phases, we
addressed the possibility of incorporating public databases in
the composition of our training populations (Morais et al.,
2020). Small-scale public and private programs with limited
budgets often lack the financial ability to genotyping a
considerable number of individuals to apply GP efficiently. In
this regard, Morais et al. (2020) have evaluated the usefulness
of incorporating public database panels to compose tropical
GP training populations. In this context, the following public
databases were used: (a) ASSO—Nested Association Mapping
Population (NAM) combined with the Maize Association Panel
282 (166 + 282 endogamic lines, respectively); (b) NCRPIS—
United States Department of Agriculture—Agricultural Research
Service (USDA-ARS), North Center Regional Plant Introduction
Station (2.046 endogamic lines); (c) USP—tropical endogamic
lines of the University of São Paulo (64 endogamic lines).

These databases contained phenotypic information regarding
plant height (PH, in cm), ear height (EH, in cm), and the SNP
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markers data. A total of 29 training populations (TPs) were
defined and divided into four scenarios to determine the best
strategy to apply public databases to predict lines.

The best predictions were achieved with the strategy of the TP
composed by candidates selected with an optimization algorithm
from all the public database and private lines, even at the smallest
TP sizes evaluated (81 and 281 TP sizes). On the other hand, the
lowest predictive abilities were achieved using only the Tropical
USP database as training and validation populations (VP), due
to its lack of genetic variability and reduced population size,
hindering prediction. The results of all four scenarios of TP
formation showed that the predictive ability increased with the
increase of TP size, the relationship rate between TP and VP, and
genetic variability. (Rife et al., 2018) revealed a similar potential
of GP to predict wheat traits using historical data across several
public breeding programs, reinforcing the possibility of using
external data for model training.

The optimization of the training population proposed by
Akdemir et al. (2015) showed promising results, even when the
training population size was reduced. For example, small groups
of individuals (250) selected in public panels are enough to
achieve predictive abilities of over r = 0.44 and r =0.53, for
PH and EH, respectively. Optimizing the TP can increase the
representation of the subpopulation, allowing for an efficient and
controlled updating of the training population over the years
(Akdemir et al., 2015).

Nevertheless, what is the real reason to use public databases,
and how does it fit into a breeding framework? The use of
public data aims to an early-start GP with reduced costs and
over the years, to setup a more complex GP training population.
The number of individuals from the program genotyped
and phenotyped will increase as time goes on, reducing the
participation of public databases in the training population
and thus paying off the costs of genotyping the population
in training over the years. For example, the total cost of the
training population could be divided over 5 years, with the public
database replacing 20% per year of the training population with
individuals from the program.

Considering a training population that is 10 times bigger
than the VP, this strategy should be conducted as follows: in
the first year, (a) genotyping and phenotyping of the germplasm
program, composing 10% of TP, along with external individuals
selected by optimization procedures (90% of TP), (b) out of 10%,
established as the VP (new progeny with no phenotyping data),
(c) validation and prediction of GEBV. In the second year, (a)
genotyping and phenotyping of individuals from the germplasm
program (10% of the TP), (b) once again, new individuals
are to make up the VP (10% of TP), while the remaining
individuals from the germplasm program are to be a part of TP,
with the TP composed by 70% of external individuals selected
from optimization procedures and 30% of internal individuals
genotyped previously, (c) validation and prediction of GEBV.
As genotyping will be performed annually, after 6 years, the
TP would be composed exclusively of individuals from the
program. In the sixth year, the best performer could optimize
the training population with internal individuals, maintaining
a good prediction ability index. This procedure optimizes the

TABLE 1 | Reports on the comparison between GBS and array regarding

genomic studies.

Compared

platforms

Species Method Overall result References

GBS and

array

Wheat GP GBS comparable

to or better than

an array

Elbasyoni et al.,

2018

GBS and

array

Barley GWAS Broadly similar

conclusions

Darrier et al., 2019

SSR, GBS,

and array

Wheat GP and

diversity

Array

underestimates

diversity

measures; similar

predictive abilities

Chu et al., 2020

GBS and

array

Maize GWAS Platforms were

complementary for

detecting QTL

Negro et al., 2019

GBS and

array

Maize GP Similar results

depending on the

prediction model

Sabadin and

Fritsche-Neto,

2020

QTL, quantitative trait loci.

technical, operational, and financial balance, considering the
resources available over time and each harvest.

SEARCHING FOR NEW SOURCES OF
MARKERS AND REFERENCE GENOMES

Impact of the Genotyping Platform in GP
Nowadays, SNPs are the most widely used molecular markers
in genomic studies, as they are abundant and evenly distributed
in the genome. In addition, genotyping platforms that provide
many markers have quickly, accurately, and cost-effectively
allowed for the use of molecular tools, including GP. High-
performance genotyping platforms, such as SNP-array and next-
generation sequencing (NGS) provide thousands of markers for
hundreds of samples, making them very suitable (Rasheed et al.,
2017) for this purpose. Since there are different technologies
to be detected, SNP-type markers can be different and located
in distinct points of the genome so that later genomic
studies can be affected by them. Recent studies have suggested
comparable GWAS results, genetic diversity, and GP using
different genotyping platforms in several species, includingmaize
(Elbasyoni et al., 2018; Darrier et al., 2019; Negro et al., 2019; Chu
et al., 2020) (Table 1).

In this context, we studied how SNP markers obtained from
two genotyping platforms (616K SNP-array and GBS) affect
the GP in our germplasm (Sabadin, 2020). We also attempted
to verify the effect of the use of different reference genomes
in SNP calls via GBS (i) using the most common reference
genome, line B73 (GBS-B73), (ii) using a simulated reference
genome built with GBS data, considering all inbred lines (GBS-
Mock-All), and (iii) using a simulated reference genome built
with GBS data from a single line, our heterotic pool tester L56
(GBS-Mock-L56). For this purpose, we used the USP data set
mentioned above (see section above “Training populations using
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public databases”). To build the simulated genome, we used a
pipeline developed by Melo et al. (2016), which captures the
polymorphism regardless of an external genome. Finally, for
each set of SNP marker data obtained from different platforms
and approaches, we performed the GPs considering both the
additive (GBLUP additive) and the additive-dominance (GBLUP
additive-dominance) models.

Density and Distribution of SNPs
The density and distribution of SNP markers varied according to
the genotyping platform chosen. In our study, the SNP markers
discovered by SNP-array and GBS-B73 had the same reference
genome, which allowed us to compare them regarding marker
distribution on chromosomes and detect coincident SNP as well.
Despite the difference in the number of SNP markers (62,409
for SNP-array and 5,594 for GBS-B73), both platforms had
similar distributions along the genome. However, only 300 SNP
markers coincided, suggesting that they detected polymorphisms
in different regions. Although this is an important result, these
differences were only consistent for some GP models.

The GBLUP model is based on the genomic relationship
between genotypes to estimate the genetic values of non-
phenotyped individuals. Therefore, assessing the genomic
relationship is more important than the polymorphism
resolution, which was confirmed when we evaluated the additive
genomic relationship matrix (Ga) and the genomic dominance
matrix (Gd). For the Ga matrices, high correlations were
observed between the SNP-array, GBS-B73, and GBS-Mock-All
SNP data sets (r = 0.88), revealing that these approaches
estimate the additive genomic relationship between hybrids in
a similar way. However, for the Gd matrices, lower correlations
were observed among all SNP data sets, which show that the
polymorphism captured by these platforms estimated the
dominance effects differently. GBS-Mock-L56 displayed low
correlations with other SNP data sets and had a low performance
for all downstream analyses, proving that it is an erroneous
alternative to sample polymorphism within the population, since
only polymorphisms between L56 and other individuals were
identified. This information is crucial when the aim is to predict
the genetic values of hybrids, although the architecture of the
feature can influence the performance of GP models.

Similarly, when considering the variance captured by
the additive effects and the dominance deviations, these
proportions also vary depending on the genotyping platform
and the genetic architecture of the characteristic (Figure 2),
which can be explained by the reduction in the number
of markers, which consequently inflates the effective size of
these markers. On the other hand, the SNP-array captured
higher proportions of total variance and dominance, yet it
was close to zero in the GBS-Mock-L56, considering all
characteristics. In addition, the differences for grain yield (GY)
were more significant than for simple characteristics (plant and
ear heights).

As far as predictive abilities are concerned (Figure 3),
genotyping platforms and reference genomes do not affect the
additive model, except for GBS-Mock-L56. Furthermore, the use
of a reference genome historically unrelated to the evaluated

germplasm, such as the B73 genome (temperate maize), seems to
be enough to capture the additive relationship of the genotypes
within the population.

This situation can change greatly when we consider the effects
of dominance to estimate genetic values. In our study, except for
GBS-Mock-L56, small differences in predictive capabilities were
observed among SNP data sets, when we performed the GBLUP
additive-dominance model. Furthermore, the differences were
more remarkable for GY, supporting the fact that the inclusion of
the dominance effects of GPmodels is more relevant for complex
traits. The coefficients of determination between GEBV estimates
remained high (the lowest was for GY, R2 = 0.88) but below that
when obtained with the additive model.

Finally, for GP purposes, the most common genotyping
platforms (SNP-array and GBS) offer very similar predictive
abilities when using only additive effects in GP models. However,
when we add dominance effects, their performance may change,
especially when estimating hybrid performance. Dominance
effects are critical to hybrid GP, and therefore, the choice of a
genotyping platform may affect the estimates of genetic values.
However, the differences appear to be small and acceptable
in some cases. Furthermore, the use of a reference genome
historically unrelated to the evaluated germplasm does not seem
to be a decisive factor for GP since it can sample the haplotype
variability among genotypes within the population. Another
highlight uses a simulated reference genome to discover SNP
since it does not depend on an external genome to detect
polymorphisms. This strategy may be a valid alternative when
conducting GP studies with reliable estimates, especially for
orphan crops, where a reference genome is not yet available.
Somehow, sampling polymorphisms consistently, using all
genotypes within the population, is recommended to build the
simulated genome.

GENETIC ARCHITECTURE AND FURTHER
GENOMIC PREDICTION MODELING

Connecting Phenotypic and Genomic
Variation
Once optimal germplasm characterization, population structure,
training population mating design and composition, and
genotyping methodology were defined, there was interest in
further improving predictive abilities through modeling (Alves
et al., 2019, Galli et al., 2020). The ability of the GP to connect
phenotype and genotype has been proven to have a strong
relationship with the genetic architecture of the trait. In this
sense, tools such as GWAS have been applied, and the results have
suggested the existence of a wide range of genetic control patterns
in agronomic traits. Thus, many GPmethods have been proposed
to address the domain of genetic architectures. However, for
open pollination species, such as maize, while the identification
of variants and architectures by GWAS is usually performed in
inbred lines, the GP is mainly directed at selecting hybrids. In
this sense, the usefulness of a priori GWAS in lines to predict
its hybrid offspring has been explored by Galli et al. (2020).
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FIGURE 2 | Proportion of the phenotypic variance explained by the estimated components of variance in the different traits (EH, ear height; PH, plant height; GY, grain

yield), models and scenarios studied.

FIGURE 3 | Summary of the predictive abilities for each combination of model and genotyping scheme studied for three agronomic traits in maize (EH, ear height; PH,

plant height; GY, grain yield).

The trait used in the case study was the low-nitrogen tolerance
index (LNTI).

In previous GWAS (Morosini et al., 2017), four significant
trait marker associations were identified in the parental
population. The influence of these associations was verified
for MAS, GP, and the MAS + GP of hybrids (Figure 4). The
GP was performed with all molecular markers, except when
associated with the MAS. For MAS+ GP, the significant markers
were removed before calculating the genomic relationship
matrices. Three GPmethods, namely BayesB, GBLUP, and RKHS
(Figure 4A). Finally, GWAS was performed considering the

additive, dominance, and additive and dominance in hybrids
to verify the coincidence of associations with the parental lines
(Figure 4B). The predictive ability of LNTI was observed to
be low, ranging from −0.019 to 0.107 (Figure 4A). It was also
shown that (i) the MAS of hybrids with markers identified in
inbred lines had the lowest predictive abilities; (ii) adding a
priori information from inbred lines of GWAS decreased the
predictive ability of GP (MAS + GP); (iii) GP alone produced
the best results.

To date, many studies have found that GP accuracy can be
enhanced using a priori information, especially from GWAS

Frontiers in Plant Science | www.frontiersin.org 7 July 2021 | Volume 12 | Article 658267

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Fritsche-Neto et al. Genomic Prediction of Maize Hybrids

(Zhang et al., 2014; Spindel et al., 2016). However, the results are
conditioned by factors, such as trait heritability and the variation
explained by the main genes (Bernardo, 2014). Furthermore,
the results obtained by Galli et al. (2020) corroborate the
long-standing hypothesis of the lack of connection between
inbred lines and the performance of their hybrid offspring. In
addition, the GWAS of hybrids produced different marker-trait
associations to those found for the parental lines published in
2017. The differences observed were both the nature of intralocus
interaction and the location of markers, suggesting that the most
important genes driving phenotypes in inbred lines and hybrids
might be different.

Understanding the Impact of Heterosis
in GP
According to Sprague and Tatum (1942), hybrid performance
can be divided into two components, namely general combining
ability (GCA) and specific combining ability (SCA). The GCA
component can be explained by the differences between the
average performance of parental lines in crosses and the
average of the overall population. In this sense, the GCA
of a line depends on the substitution effects of the allele
and involves additive and non-additive genetic effects (Reif
et al., 2007). The SCA, on the other hand, represents the
deviation of hybrid performance from parental averages. This
component is often attributable to deviations from additivity
due to dominance and epistasis (Reif et al., 2007), and it is
one of the most critical components of hybrid performance.
Thus, the additive and non-additive effects of markers must
be estimated to consider all the genetic variance present in
a population.

The modeling of non-additive effects in genomic studies
can provide several advantages (Technow et al., 2012; Varona
et al., 2018), such as (1) increasing the accuracy of prediction
of genomic selection methods, (2) allowing for the allocation
of crossover and consequently, and (3) a better exploration
of heterosis (Kadam et al., 2016). However, one of the
barriers is that additive and non-additive effects are often
not mutually orthogonal. For this reason, the parameters
of variance that enter genomic models (for example, the
additive and the dominance variances) cannot be used directly
to break down total genetic variance into GCA and SCA
components. As presented by Alves et al. (2019), due to their
flexibility, Bayesian models can be used to estimate these
important parameters, especially when the genetic design does
not allow an orthogonal decomposition of genetic variance in
these components.

In this context, Alves et al. (2019) presented a method to
decompose genetic variance into GCA and SCA using Bayesian
genomic models that account for additive and non-additive
effects (dominance and epistasis).

The proposed method can be applied not only to single
hybrids but also to double and triple hybrids. As proof of
concept, the proposed approach was applied to the data set
described above (USP, see section Germplasm Characterization).
The results showed that non-additive effects play a crucial role
in expressing quantitative characters under stress conditions

(especially GY, Figure 5). This study also showed that the
accuracy of the prediction models that account for the additive
and non-additive effects depends on interest characteristics.
It was also found that selecting 30% of the best single-
crosses during the pre-selection phase in the field, based on
GP with additive and non-additive effects, leads to a subset
of hybrids that contained 85–95, 70–80, and 75–85 of the
5% higher hybrids for ear height, plant height, and GY
(Figure 5), respectively.

MODELING GENOTYPE × ENVIRONMENT
INTERACTION (G × E) IN GP

Finding Novel Kernel Methods and
Modeling Structures for G × E
The G × E is a multiplicative non-additive effect due to the
non-parallel trait-specific phenotypic responses, a function of
genotype diversity and environmental variation. Since 2012,
when the marker by environment interaction approach was
developed (Burgueño et al., 2012), the analysis and modeling
of G × E have evolved from the genotype to the gene
or genomic level (Crossa, 2012). However, multi-environment
modeling to predict maize hybrids started with Dias et al.
(2018) (Table 2). Since then, several efforts have been made to
extend those modeling approaches when considering different
kernel methods and structures. For example, different G × E
approaches to include genomics and large-scale environmental
data (enviromics) (Bandeira e Sousa et al., 2017; Costa-Neto et al.,
2020; Rogers et al., 2021) using explicit covariates for modeling
reaction-norms (Millet et al., 2019) or implicit covariates derived
from multivariate structures (e.g., Dias et al., 2018; Krause et al.,
2020).

Our research group aimed to understand how environmental
characterization (envirotyping) and non-linear kernels could
improve prediction models, including G × E (Bandeira e Sousa
et al., 2017; Costa-Neto et al., 2020). Below, we detail a case study
using our tropical maize germplasm from USP, in which we were
able to test novel G × E structures and kernel methods to model
genomic× environment effects.

We conducted an extensive study on G × E over three
agronomic traits in tropical maize (GY, PH, and EH) for two
different sets in Brazil. Bandeira e Sousa et al. (2017) tested two
kernel methods, a linear (GBLUP, hereafter abbreviated as GB)
and non-linear (Gaussian Kernel, GK) kernel and four modeling
structures for G × E using (i) single-environment (SE) model,
using the average values of the genotypes for all environments;
(ii) multi-environment, main genotypic effects model (MM);
(iii) multi-environment, single variance G × E deviation
model (MDs), and (iv) multi-environment, environment-specific
variance G × E deviation model (MDe). Models without G
× E structures (SM and MM) were less accurate than those
including G × E effects (MDs and MDe). For the MM, MDs,
and MDe models, the increase in the prediction accuracy
of GK over GB ranged from 9 to 49%. As expected, GY
was the less predictable trait due to its polygenic nature,
and because of that, this trait became the main target for
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FIGURE 4 | Performance of different statistical models and GWAS-based strategies for genomic prediction of maize hybrids. (A) Summary of the predictive

capabilities of the Low Nitrogen Tolerance Index (LNTI) in maize hybrids using BayesB, RKHS, MAS + RKHS, GBLUP, MAS + GBLUP, and MAS additive. (B) Summary

of GWAS, QQ, and Manhattan graphs for LNTI. The graphs represent additive GWAS (upper) and dominance (lower). The MAS was based on statistically significant

associations identified for LNTI by Morosini et al. (2017).

further studies. For all traits, few differences were observed
between the MDs and MDe models. Gaussian Kernel was
observed to outperform all GB-based models in accuracy for

all models, with an average accuracy gain from 34 to 70%.
However, for EH and PH, the gains using GK were smaller than
using GB.
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FIGURE 5 | According to phenotypic classification, the proportion of 5% higher hybrids was identified by pre-screening based on cross-validation via GP using the

additive + dominance model at a certain selection intensity (x-axis). Each panel corresponds to one evaluated character. The lines within a graph represent different

environments (AN: Anhembi; PI: Piracicaba; LN: Low nitrogen; IN: Ideal nitrogen).

Understanding the Contribution of
Non-additive Effects for G × E
Since 2017, some studies have pointed that the use of additive (A)
plus non-additive effects (e.g., dominance, D; epistasis, A × A)
might drastically improve the accuracy of GP for maize hybrids
(Acosta-Pech et al., 2017; Dias et al., 2018; Alves et al., 2019,
2021; Costa-Neto et al., 2020; Ferrão et al., 2020; Ramstein et al.,
2020; Rogers et al., 2021), especially with G × E under multi-
environment conditions. It seems that the main dominance effect
(D) plus dominance by the environment interaction (D × E)
corresponds to about 50% of the observed phenotypic variation
for complex traits, such as GY in hybrid maize. This is an
important issue because the usage or non-usage of non-additive
effects only depends on the computational effort expected, that
is, from raw molecular marker data, it is feasible and easy,
nowadays, to compute both additive or non-additive effects
and their relatedness-based matrices to implement GBLUP and
kernel models (Alves et al., 2019). The use of algebra resources
to remove the complexity of the variance–covariance matrices,
such as the singular decomposition value (Costa-Neto et al.,
2020; Cuevas et al., 2020) and factor analytic structuration (Dias
et al., 2018; Rogers et al., 2021) is a computationally smart
way to translate model complexity into accuracy gains. Here,
we detail the results we found as an extension of the study of
Bandeira e Sousa et al. (2017), related to the first option resource
previously mentioned.

We investigated different models involving additive (A) and
additive-dominance (AD) main effects (MM model, but using
A + D), along with the interactions (MDs models) including
reaction-norm for A and D effects to predict GY (Costa-Neto
et al., 2020). After the use of GB and GK, a third kernel
method was also tested, the so-called deep kernel (DK), which
takes advantage of the arcsine kernel that thought the available
phenotypic data could mimic different hidden layers an in-
depth learning approach. Thus, DK is also a non-linear kernel,
but unlike GK, it approaches the genomic relatedness into
an empirical relatedness of the individuals across a diverse
set of environments. Our results suggest that DK outperforms
GB and GK when exploring dominance effects in hybrid
prediction. In terms of explaining the phenotypic variation across
multi-environment, the DK and GK models better captured
the genomic and enviromic sources and reduced the residual
variance of the models. Then, we tested three scenarios, namely
CV1, novel genotypes in known environments; CV2, sparseMET
conditions, some genotypes at some environments, and CV0,
novel environments.

In addition, our results indicated that GK and DK explore the
G× E variation better (in this case, G× E=A× E+D× E) in a
less computationally expensive way than GB. The GB kernel was
the worst kernel method for exploring D effects to predict GY
in maize hybrids. For all prediction scenarios (CV1, CV2, and
CV0), we observed that accuracy gains could only be achieved
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TABLE 2 | Strategies and main results for multi-environment genomic prediction

of grain yield, the main agronomic trait in hybrid maize breeding since 2017.

Germplasm Core ideas and importance References

Tropical hybrids The first use of GP for modeling G × E

and predicting maize hybrids

Acosta-Pech

et al., 2017

Differences of several variance–covariance

structures and Gaussian kernel in the

prediction of G × E

Bandeira e Sousa

et al., 2017

Contribution of dominance effects and

factor analytic structures for G × E

Alves et al., 2019

Temperate DH

lines

The use of crop models with genomic

prediction (CGM-WGP) is better than

GBLUP

Cooper et al.,

2016

Update of CGM-WGP and application in

predicting phenotypic landscapes

Messina et al.,

2018

Temperate hybrids Use of factorial regression to find

covariates that explain genomic-enabled

reaction norms

Millet et al., 2019

Tropical hybrids Deep kernels accounting for genomic and

near-infrared relatedness kernels

Cuevas et al.,

2019

The importance of additive (A), dominance

(D), and AA, DD, and AD covariances

under Bayesian prediction approaches

Alves et al., 2019

The use of deep kernel and Gaussian

kernel for modeling additive and

dominance G × E effects with reaction

norm

Costa-Neto et al.,

2020

Multivariate GBLUP using factor analytic

structures

Krause et al., 2020

Temperate hybrids The use of dominance and functional

enrichments to increase GP

Ramstein et al.,

2020

The use of difference variance–covariance

structures to model dominance and

reaction-norm

Rogers et al., 2021

Tropical hybrids Contribution of non-additive effects and

mega-environment grouping in prediction

accuracy

Alves et al., 2021

for GB-based models when including some envirotyping data as
the main effect (W) or as reaction-norm (G × W = A × W
+ D × W). The non-linear kernels were also more efficient at
using the phenotypic records in training models for CV1, CV2,
and mostly for CV0. For CV0, the combination of DK and more
straightforward reaction-norm models (including only A + D +

W effects) achieved almost the same accuracy as more complex
structures (A + D +W + A ×W + D ×W). This suggests that
to predict future scenarios using actual TSs, the use of enviromic
sources combined with additive and dominance genomic data,
both modeled with non-linear kernels, is the best way to achieve
higher mathematical accuracy biologically that better represents
novel G× E conditions.

Finding Novel Enviromic Approaches to
Deal With G × E
Combined with phenotypic and genotypic data, the use of
envirotypic data sources can leverage the molecular breeding
strategies addressing the prediction of tested and untested

environments, such as climate change scenarios (Millet et al.,
2016, 2019; Messina et al., 2018; Bustos-Korts et al., 2019; de
los Campos et al., 2020; Guo et al., 2020). These data have been
incorporated into GP in the last ten years to better model the
G × E interaction according to the reaction norm (Heslot et al.,
2014; Jarquín et al., 2014; Gillberg et al., 2019; Costa-Neto et al.,
2020; Rogers et al., 2021). However, it is difficult formost breeders
to deal with this interaction between environmental models,
ecophysiology, and genetics (Costa-Neto et al., 2021), in which
we need to (i) implement a cost-effective and intuitive pipeline to
integrate envirotyping data in GP and (ii) find novel enviromic
approaches, more capable of describing phenotype-envirotype
covariances and translate it into accuracy gains. Below, we briefly
present the results by Costa-Neto et al. (2021), who implemented
an envirotyping pipeline and then review some of the main
applications of enviromic data achieved for other groups.

Costa-Neto et al. (2021) presented two novel approaches to
modeling the environmental similarity from enviromic data.
Using a proof-of-concept data set, we tested the importance
of (i) EC-specific kernels for main environmental factors and
(ii) the envirotyping level at each key development stage of
crop development. For the latter, we proved accuracy gains
of the reaction-norm models using a specific environmental
relatedness, built using ECs for each development stage,
concerning the benchmark environmental relatedness (single-
environmental kernel using all ECs at all development stages).
This approach enabled a better understanding of which
development stage impacts the relatedness of individuals across
MET. We tested a CV1 scheme to predict GY using a drastically
reduced phenotyping level (only 20% of the phenotypes were
used as TS). We showed that a model without enviromic data
has a minimal prediction accuracy (r = 0.101), and the inclusion
of envirotyping data boosted the prediction up to r = 0.504
(enviromic by development stage) and r = 0.485 (enviromic for
all crop development stages).

An alternative approach for the use of environmental
relatedness kernels is the adoption of single-covariate regressions
(Ly et al., 2018) or the first step of screening in which the ECs
that best explain the trait variation are used to fit a simpler
but more accurate linear reaction-norm structure (Millet et al.,
2019). These ECs can be collected from in-field sensors or
public databases (for more details, see the next section) and
also consider stress-covariates derived from crop growth models
(CGM) (Heslot et al., 2014; Rincent et al., 2017). For the latter,
a more robust single-step approach relies on the integrated
use of GP with CGM, which was successful in predicting the
performance of DH maize lines on water-stressed environments
(Cooper et al., 2016) and across a large target region of the
breeding program in the United States (Messina et al., 2018).
For low-budget breeding programs that are unable to invest
in large phenotyping for ecophysiology traits (e.g., biomass
accumulation during crop life) need to improve accuracy in
training CGM. An alternative can be in the exploring of the
environmental relatedness or EC-specific regressions, which
increases the accuracy of GP in hybrid prediction more simply
(Costa-Neto et al., 2020; Rogers et al., 2021) with a satisfactory
ability to predict cultivar responses (de los Campos et al., 2020)
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and explain the reaction-norm for both complex quantitative
traits (Ly et al., 2018; Millet et al., 2019) and less complex traits
(Guo et al., 2020; Jarquin et al., 2020).

OPEN-SOURCE R PACKAGES TO
FACILITATE THE ADOPTION OF GENOMIC
PREDICTION

Since the first work on GP, published approximately 20 years
ago (Meuwissen et al., 2001), a wide number of computational
solutions have been developed to process data and run prediction
models, such as BGLR (Pérez and de los Campos, 2014), rrBLUP
(Endelman, 2011), and sommer (Covarrubias-Pazaran, 2016). For
plant breeding, most of these solutions were implemented in R,
an open statistical-computational environment. Nowadays, these
software solutions can offer the processing of genotyping data
(Granato et al., 2018b), fit marker regressions or genomic wide
association analysis (Endelman, 2011), run GP accounting for
several multi-trait multi-environment approaches (Pérez and de
los Campos, 2014; Covarrubias-Pazaran, 2016; de los Campos
and Gr?neberg, 2016; Granato et al., 2018a; Montesinos-López
et al., 2019), and integrate envirotyping sources in the reaction-
norm modeling of G × E (Costa-Neto et al., 2021). Here, we
briefly discuss three software developed by the Allogamous Plant
Breeding Laboratory of the University of São Paulo as part of
our experience in the field of genomic-enabled prediction of
maize hybrids.

To deal with genotyping data, we developed the package
snpReady (Granato et al., 2018b), which helps the user with
quality control and the recoding of markers. In addition, it helps
obtain some parameters of population genomics. This package
implements a pipeline of conversion, imputation of missing
data, and preparation of genotyping data for genomic analysis,
outputting matrices in appropriate formats for different software.
These applications are simple and enough to be integrated into
the breeding pipelines or coupled with other environments, such
as shiny (Matias et al., 2019).

After that, we realized the need to implement a
computationally efficient approach that facilitates the use
of multi-environment prediction structures accounting for G ×

E. To fill this gap, we developed the package, Bayesian Genotype
plus Genotype Environment (BGGE, Granato et al., 2018a),
which considers a wide number of genomic environmental
structures and two kernel methods (linear GBLUP and non-
linear Gaussian kernel) in a processing time of five times
faster than Bayesian Generalized Linear Regressions (BGLR).
Furthermore, it uses algebra resources resulting in a significant
gain in processing speed, especially for large data sets (Granato
et al., 2018a), such as near-infrared data (Cuevas et al., 2019),
historical yield trial data (Cuevas et al., 2020), and enviromics
(Costa-Neto et al., 2020).

For the latter, since the first work involving the use of
environmental information in GP (Heslot et al., 2014; Jarquín
et al., 2014), there is a need to fine-tune the methodologies of
collection, processing, and the use of this data in GP. Generally,
the collection, organization, and processing of environmental

data are steps that require the installation of equipment in the
field. In turn, such equipment may be expensive or difficult
to access for some research groups in specific regions or
countries. Therefore, we have decided to enter a routine of
climate data collection through NASA’s Prediction of Worldwide
Energy Resources (NASA-POWER, Sparks, 2018), which can
access information daily, anywhere in the world. Thus, the
computational development of these routines evolved to the
development of the first open-source envirotyping pipeline,
named EnvRtype (Costa-Neto et al., 2021). Three modules of
envirotyping are offered in this package, namely (i) the collection
of raw environmental information from public platforms,
requiring only the geographic and temporal coordinates of
the experiments and processing data set, (ii) environmental
characterization based on the use of the processed environmental
covariables to describe the typology of the environments, and (iii)
the implementation of GPmodels enriched with ecophysiological
parameters, considering three different structures of reaction-
norm, and subsequently incorporate them into the prediction
models under a Bayesian framework in the same way as in BGGE.

FINAL REMARKS

This work aimed to present a review of our results, which shows
that it is possible to increase the accuracy in the prediction of
hybrids. This requires the use of optimized training populations,
the inclusion of non-additive genetic effects in the prediction
models, and environmental information to compose the matrices
of G × E covariance and non-linear kernels of genomic
relationship. On the other hand, there are no significant gains
in the accuracy using GWAS information in parental lines,
population structure, or using markers from new generation
sequencing. Below, we conclude our work by describing some
lessons we learned, both from our studies and other groups.

GWAS Might Be Useful to Discover the
Architecture of G × E for Further GP
Modeling
Going back to our experience with GWAS described in this
review, we found in our road map that the use of GWAS for
further prediction modeling might be more successful, especially
to understand genomic-environment sources of G × E in our
tropical germplasm. For example, Vidotti et al. (2019) used
GWAS to establish a relation between the genetic control of
the maize responsiveness and Azospirillum brasilense, a plant
growth-promoting bacteria (PGPB) common in tropical soils and
related to maize nitrogen fixation. The GWAS outcomes helped
understand how heterosis is important for improving the quality
of crop systems by increasing the nitrogen use efficiency (NUE) of
maize. Another promising approach is presented by Millet et al.
(2016), which involves the use of GWAS to find genomic regions
associated with the reaction norm for key environmental factors
expected in future scenarios.

A similar approach uses only the phenotypic data to model
parameters of adaptability and stability, as in the work by Gage
et al. (2017). Combining GWAS and such parameters that reflect
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the effect of G× E for specific genotypes, these authors were able
to explore the genomic-related sources that explain the drivers of
phenotypic plasticity and how the artificial selection shaped these
patterns on the temperate maize germplasm in the United States.
Finally, another good example is given by Ramstein et al. (2020).
These authors used GWAS to find quantitative trait loci (QTLs)
related to the phenotypic variation of some important traits in
maize. Then, using gene annotation, it was possible to explore the
functional contribution of those QLTs to express the phenotypes
and the increasing accuracy of GP. This functional enrichment
in further GP models contributed to the increase in the accuracy
of a hybrid panel of temperate maize cost-effectively. It can also
be useful for the tropical germplasm, which still demands the
development of a higher panel of inbred lines to address the test
of those hypotheses.

How to Deal With the Complexity and
Diversity of Big Data?
In the last 20 years of genomic selection research, the plant
breeding community is still learning how to connect a wide
number of data sources related to the “Central Dogma of
Molecular Biology” with the observed phenotypic variation of
traits in field trials, which began as a regression of phenotypes
over molecular markers evolved by the integration of different
data sources and modeling structures. Computational research
in GP must develop to capture other data sources in a
computationally smart way and find which structure is better
to integrate each type of data. For example, Costa-Neto et al.
(2020) suggest that the use of Deep Kernels (DK) is a faster
and more accurate way to model both genomic and enviromic
relatedness than benchmark GBLUP approaches, which is similar
to results by Cuevas et al. (2019) who used near-infrared data.
However, it seems that the paradigm of “less means more”
when dealing with some sources of data, such as enviromics, in
which we still have a long pathway in optimizing approaches
capable of capturing gene × envirotype interactions across crop
fields. In addition, in our studies, we observed that a good
enviromic kernel (W) added in the GP models as the main effect
is sometimes better than modeling a full-rank reaction-norm
model accounting for the genomic environment and genomic
enviromics. On the other hand, works by authors, such as Cuevas
et al. (2020) and de los Campos et al. (2020) show that big
historical data can be implemented by different computational
approaches and have a satisfactory accuracy to support the
selection decisions. Thus, methodological approaches must be
developed to capture exploitable patterns in big data and
computational tools to implement them, the latter preferably as
open-source software.

Deep learning approaches accounting for this data source
can be a more parsimonious approach to taking advantage of
big data without over-fitting prediction models. Finally, we find
that using multi-trait multi-environment data might help design
better field phenotyping trials for training GP models. As the
modern computational tools attempt better to explore G × E
and G × G within a multi-environment multi-trait context, the

opposite path might be taken by using historical data to design
future trials (Rincent et al., 2017) and scenarios (Millet et al.,
2016; Bustos-Korts et al., 2019), but also to predict cultivars at
novel growing conditions (Gillberg et al., 2019; Millet et al., 2019;
de los Campos et al., 2020).

Are Prediction-Based Tools Cost-Effective
Approaches?
Prediction-based tools are cost-effective approaches. Plant
breeding is based on selecting the best-evaluated genotypes in
target environments, demanding many field-testing resources
(physical and financial). Therefore, GP has proven to be useful
to enlarge the spectrum of individuals evaluated in silico but with
a limited accuracy in multiple environmental conditions due to
the non-additive effects related to G× E and G× G interactions.
Recently the emerging new ways to include environmental
data and CGM in the GP are considered good strategies to
correct this deficiency in predicting G× E interaction deviations
(Messina et al., 2018). In addition, these new applications allow
genotype screening at reduced phenotyping costs considering
virtual scenarios.

Despite the great advances that have been made, what is
to come is exciting for hybrid maize breeding. New tools
and models, such as the integrated use of high throughput
phenotyping, CGM, and optimized tools for simulation of
improvement methods can bring more resolution, realism, and
depth to the predictions. With HTP, we will be able to evaluate
the same plant several times over the crop cycle and increase the
effective size of training populations. Additionally, even before
running HTP studies in the field, it is possible to validate some
protocols in silico for phenotyping traits, such as PH (Galli et al.,
2021). On the other hand, both pathways of enviromics and CGM
will allow us to build virtual improvement scenarios and predict
the deviations of G× E interaction more accurately. Finally, with
the simulations, we will be able to test a series of scenarios cheaply
and easily, helping outline the best improvement strategies and
resource allocations.

Finding Research Partnerships to Expand
the Field-Testing Network
Most of the applications described in the last section consider
datasets with at least four environments and almost one thousand
entries (lines, DH, and hybrids), which represent the reality
for at least a small-scale breeding program. As discussed in
the previous sections, with the increase in the availability of
data, the computational demand and the power of cutting-
edge testing hypotheses in maize breeding also increase (Rogers
et al., 2021). We envisage that maize hybrid breeding programs
can take advantage of historical multi-environment testing data
(Dawson et al., 2013) to explore the environmental impacts
on the plasticity of germplasm, collecting during this process
data from enviromics, and other sources of data useful to train
accurate models. During this step, it is possible to integrate some
simulation platform capable of generating reliable environmental
scenarios (Millet et al., 2016) or phenotypic landscapes (Bustos-
Korts et al., 2019), such as CGM. The use of public databases to
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test hypotheses, train models, or import datasets for your own
purposes that might reduce costs and provide a guideline to
follow. However, as we have pointed out in section Germplasm
Characterization, the implementation of a well-conducted field
trial for phenotypic, genotypic, and envirotypic characterization
of the so-called “Modern Plant Breeding Triangle” (Crossa et al.,
2021), is crucial for providing good quality data to test a
wide number of hypotheses. Another interesting option is to
establish partnerships with other small-scale breeding programs
and public institutions in order to create a large network of field
data, such as the successful partnership of public institutions in
the United States—The Genome to Field Project (McFarland et al.,
2020). In Brazil, the first steps of this approach were led by the
Allogamous Plant Breeding Laboratory from USP. We tried to
share every genomics database, enviromics, and high-throughput
phenotyping (available in https://data.mendeley.com/datasets/
5gvznd2b3n).
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