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Even though type 2 diabetes mellitus (T2DM) represents a worldwide chronic health issue that affects about 462 million people,
specific underlying determinants of insulin resistance (IR) and impaired insulin secretion are still unknown. There is growing
evidence that chronic subclinical inflammation is a triggering factor in the origin of T2DM. Increased C-reactive protein (CRP)
levels have been linked to excess body weight since adipocytes produce tumor necrosis factor & (TNF-«) and interleukin 6 (IL-
6), which are pivotal factors for CRP stimulation. Furthermore, it is known that hepatocytes produce relatively low rates of
CRP in physiological conditions compared to T2DM patients, in which elevated levels of inflammatory markers are reported,
including CRP. CRP also participates in endothelial dysfunction, the production of vasodilators, and vascular remodeling, and
increased CRP level is closely associated with vascular system pathology and metabolic syndrome. In addition, insulin-based
therapies may alter CRP levels in T2DM. Therefore, determining and clarifying the underlying CRP mechanism of T2DM is
imperative for novel preventive and diagnostic procedures. Overall, CRP is one of the possible targets for T2DM progression
and understanding the connection between insulin and inflammation may be helpful in clinical treatment and prevention
approaches.

1. Introduction

Type 2 diabetes mellitus (T2DM) is becoming a prime global
health problem. The prevalence of T2DM quadrupled
during the past 35 years and still has a constant growth pro-
jection [1, 2]. Moreover, we anticipate that T2DM incidence
would dramatically increase with increased adolescent
obesity [3, 4].

Diabetes is a long-term metabolic disease in which the
impaired ability of the body produce and/or respond to the
hormone insulin. T2DM is characterized by abnormally ele-
vated blood glucose levels, which affect the kidneys, heart,
and blood vessels. Most diagnosed diabetes cases are type 1

diabetes mellitus (T1DM) or T2DM. T1DM, also known as
juvenile diabetes, is characterized by an absolute insulin defi-
ciency. On the other hand, T2DM is a progressive disease
sustained by insulin resistance (IR) and beta cell dysfunction
[5]. The most common way to diagnose diabetes in patients
is by measuring fasting plasma glucose (FPG). FPG levels
less than 100 mg/dL (5.6 mmol/L) are normal glucose levels
in the blood, while levels ranging from 100 to 125mg/dL
(5.6 to 6.9 mmol/L) are considered a prediabetes indicator.
Patients are only diagnosed with diabetes after at least two
separate tests show FPG levels higher than 126 mg/dL
(7 mmol/L). Hemoglobin A1C (HbA1C) is also an indicator
of T2DM, which indicates the quality of diabetes treatment
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since it provides healthcare professionals with information
about the average blood glucose levels in the past two or
three months.

Accumulating evidence corroborates the crucial role of
inflammation in T2DM pathologies [1, 6]. Low-grade
inflammation characterized by elevated inflammatory pro-
tein levels, including C-reactive protein (CRP), is linked with
T2DM pathogenesis [1, 7-9]. CRP, the typical inflammatory
biomarker produced in the liver, is regulated by adipocyte-
derived proinflammatory cytokines, including interleukin 6
(IL-6) and tumor necrosis factor a (TNF-«) [10, 11]. The
level of CRP is usually low in healthy individuals but can ele-
vate 100- to 200-fold or higher in acute systemic inflamma-
tion [12] and is chronically elevated in patients with T2DM.
In individuals with T2DM, CRP levels range between 4.49
and 16.48 mg/L [13, 14] and among individuals with acute
systemic inflammatory response syndromes from 31.08
[15] to 226.1 mg/L [16].

The production of CRP may be triggered by many met-
abolic and inflammatory factors associated with the develop-
ment of T2DM, such as increased blood glucose, adipokines,
and free fatty acid levels. In addition, an increased level of
CRP represents a reliable predictor of vascular complications
and progression of cardiovascular disease in diabetic
patients [17, 18]. Furthermore, numerous human [1, 19,
20] and animal studies [21-23] demonstrated the associa-
tions of elevated serum CRP levels with obesity and the pro-
gression of IR leading to T2DM. These findings add to the
notion that the inflammatory state demonstrated by higher
CRP levels is an essential factor in the pathogenesis of
T2DM. Numerous studies report a significant positive asso-
ciation between elevated CRP levels and the risk of T2DM
development [1, 7-9, 24]. On the other hand, some studies
lack this association after adjusting for many factors contrib-
uting to T2DM, including adiposity and hyperinsulinemia
[20, 25]. Since increased body fat and obesity are among
the main factors in the development of T2DM, which are
also associated with increased risk for progression of
obesity-related IR and inflammation, we review the pub-
lished literature to collate and provide a comprehensive
summary of the relationship between T2DM and CRP.

2. CRP

CRP was first described as a serum protein capable of pre-
cipitating C-polysaccharide pneumococcal cell walls during
the acute phase of infective conditions in the presence of cal-
cium [26-28]. We know CRP belongs to a conserved protein
family called pentraxins and has been identified in several
organisms ranging from arthropods to humans [29, 30].
Structurally, it is a 206 amino acid cyclic pentameric protein
with five identical subunits noncovalently connected, with a
molecular weight of ~23 kDa (Figure 1) [31]. Each of the five
subunits is similar to a discoid orientation toward a central
pore folded into two antiparallel two-layered S-sheets [32].
Native CRP (nCRP) dissociates to monomeric/modified iso-
form of CRP (mCRP) across lysophosphatidylcholine in
platelets, apoptotic monocytic THP-1, and Jurkat T cells
[33, 34]. Moreover, a study by Ji et al. demonstrates that
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nCRP, when bound to the cell membrane, dissociates into
subunits while retaining some native conformation before
entirely dissociating into mCRP subunits, which detaches
from the membrane [35]. This intermediate isoform, termed
mCRP_, seems to have similar biological functions as
mCRP, including enhancing the classical complement path-
way activation and promoting proinflammatory activity
[36]. Unlike these two isoforms, nCRP displays more anti-
inflammatory activities, probably because it limits the pro-
duction of the membrane attack complex (MAC) and C5a,
thus inhibiting the alternative complement activation [37].
mCRP has strong angiogenic effects, both in vitro and
in vivo, and likely leads to the neovascularization of tissues
in which it is deposited or synthesized [38]. Thus, treating
CRP-mediated pathological conditions could include a novel
therapeutic strategy that inhibits mCRP activity [39] or pre-
vents the dissociation of nCRP into mCRP.

CRP can recognize and bind to endogenous damage-
associated molecular patterns (DAMPs) and exogenous
pathogen-associated molecular patterns (PAMPs). Thus,
CRP initiates an immune response and contributes to elim-
inating various pathogens and damaged necrotic or apopto-
tic cells [40, 41]. After binding to a specific ligand, CRP
manifests anti-inflammatory features by activating the Clq
molecule in the classic complement pathway engaging C3,
the main adhesion molecule of the complement system,
and the terminal membrane attack complex, C5-C9. In this
way, CRP leads to the opsonization of the pathogen [42, 43].
However, CRP also acts as a proinflammatory mediator that
binds to the Fcy receptors of IgG, leading to the release of
proinflammatory cytokines [11, 44, 45].

2.1. CRP Levels and Detection. The Pentraxin 1 (PTX1) gene
encodes CRP, and in humans, it is located on chromosome
1q21-q23 on the long arm and consists of a long 3" untrans-
lated region and 2 exons [46]. The first exon encodes two
amino acids and a signal peptide, and the second exon
encodes 204 amino acids [47]. Human CRP binds to phos-
phocholine (PCh) across five PCh-binding locations, and
every individual subunit links two calcium ions [29]. Bacte-
rial, eukaryotic, fungal, and endothelial cells induce PCh,
and its binding to CRP is mediated mainly through Phe®
and Glu®! [32, 48, 49]. The Clq molecule binds and stimu-
lates classical complement pathways on the CRP contrary
site, particularly C1, C4, and C2 [43, 47]. Baseline CRP levels
are affected substantially by polymorphisms in the noncod-
ing regions in the promoter and the untranslated region.
Polymorphisms of IL-6 and IL-1 genes, which stimulate
CRP production, also affect the baseline CRP levels [50].
Groups of CRP single-nucleotide polymorphisms (SNPs)
inherited together are known as five common main haplo-
types, of which two are associated with higher baseline
CRP levels, and two are associated with lower baseline
CRP levels [51]. Moreover, these haplotypes influence the
acute phase level of CRP and the development of several dis-
eases [50, 52].

CRP participates in acute phase response to inflamma-
tion, infection, or organ trauma in humans, increasing up
to 1000-fold within 24 to 72 hours [53, 54]. CRP is found
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FIGURE 1: (a) C-reactive protein (CRP) crystal pentametric structure with calcium and phosphocholine binding sites. (b) Functions of CRP.
CRP: C-reactive protein. Biorender.com and Protein Data Bank in Europe were used to generate the ribbon diagram of the CRP complex.

in several cell types, including neurons, epithelial cells,
monocytes, lymphocytes, and smooth muscle cells. How-
ever, the CRP gene is primarily induced in the hepatocytes
due to elevated inflammatory cytokines, dominantly IL-6
[46]. Still, these extrahepatic sites do not impact CRP levels
in plasma [47]. The CRP half-life is approximately 19 hours,
and its average levels are generally presented as mg/L or mg/
dL [55, 56]. Nonetheless, CRP levels differ among laborato-
ries since there is no optimized standard. Levels below
0.3mg/dL are considered physiological, while levels above
10 mg/dL indicate bacterial and virus infections and severe
tissue damage [57].

Several methods are in use for CRP detection and mea-
surement. Immunoturbidimetry is the most commonly used
method for clinical CRP determination [58, 59]. Conven-
tional enzyme-linked immunosorbent assay (ELISA) and
fluorescence-linked immunosorbent assay (FLISA) have also
been widely used for the quantification of CRP [33, 60]. The
main limitations of these methods are the use of complex
features and the lack of cost-effectiveness. Recently, CdSe/
ZnS quantum dot-based FLISA and Histag-HRP functional-
ized nanoconjugate-based immunoassays were developed
[61, 62]. The main advantages of these two assays are high
sensitivity, reduced time for analysis, and expanded detec-
tion range for serum samples. In addition, the assays provide
a lower detection limit (LOD) and, consequently, facilitate
early detection of the CRP biomarker, which is imperative
for prompt diagnosis. Novel electrochemical biosensor plat-
forms and microfluxgate sensor systems contribute to these
requirements [63-65].

Levels of CRP are directly correlated with the presence
and elimination of inflammatory agents [57]. CRP’s role as
a diagnostic and prognostic biomarker has been established
for acute infections [66-69], as well as for various chronic
conditions, such as T2DM [1], atherosclerosis [70, 71], hep-

atitis C [72], and different types of cancer [73, 74]. Accumu-
lating evidence suggests a connection between the activation
of the complement system and the pathogenesis of T2DM
[75-77].

3. T2DM and Inflammation

T2DM is a systemic, noncommunicable disease with multi-
ple metabolic disorders, characterized by defects in insulin
secretion and/or insulin action leading to hyperglycemia
[78]. Chronic hyperglycemia induces oxidative stress,
inflammation, and local and whole-body failures [79]. Of
all the types of diabetes, two forms are most common:
TIDM and T2DM. T1DM occurs due to autoimmune
destruction of a critical mass of pancreatic 8 cells, which
causes a lack of insulin synthesis and secretion [80]. There-
fore, T1IDM is an autoimmune disease with the rate of 3 cell
destruction varying from rapid to slow descent [80, 81].
T1DM patients are rarely obese and often develop other
autoimmune disorders such as Hashimoto’s thyroiditis,
Graves’ disease, and vitiligo [79]. This suggests that multiple
genetic and environmental factors may induce the autoim-
mune destruction of 3 cells. Contrarily, T2DM is the most
prevalent form, with a frequency of 90-95% of all cases in
the population. T2DM characterizes a whole spectrum of
events, from insulin secretion defects to the impaired action
of different enzymes regulated by insulin [79, 82]. There are
numerous causes of T2DM, but unlike T1DM, autoimmune
destruction of 3 cells never occurs [79]. The disease at earlier
stages frequently goes undiagnosed because classic symp-
toms develop gradually as hyperglycemia develops, and
insulin levels in such patients are often normal or elevated
[83]. Age, obesity, and lack of physical activity are probably
the most crucial factors affecting the development of T2DM
[79, 84]. Long before the clinical manifestation of T2DM, IR
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FIGURE 2: T2DM development as a result of chronic low-grade inflammation. CRP: C-reactive protein; IL-6: interleukin 6; IL-10: interleukin
10; i.p.: intraperitoneal; TNF-a: tumor necrosis factor a; T2DM: type 2 diabetes mellitus.

occurs, characterized by hyperinsulinemia often combined
with obesity, hypertension, and dyslipidemia [85]. During
IR, compensatory hyperinsulinemia helps maintain normal
glucose levels [83], but 3 cells lose their ability to overcome
IR through hypersecretion, which leads to hyperglycemia
[83, 85]. Subclinical inflammation is an essential part of IR,
and various inflammatory markers correlate with IR, includ-
ing CRP [82, 86, 87]. The long-term activation of the innate
immune system results in the development and progression
of T2DM instead of reestablishing the normal physiological
state (Figure 2). Besides CRP, the innate immune system
produces acute phase response proteins, fibrinogen, and
serum amyloid A, whose levels noticeably change in
response to infection, tissue injury, or inflammation [88].
High levels of CRP, fibrinogen, sialic acid, serum amyloid
A, and low albumin and transferrin levels have been linked
with T2DM occurrence [89].

Adipose tissue, especially visceral white adipose tissue
(WAT), plays a significant role in T2DM’s inflammatory
process and development. In addition, studies demonstrated
that human adipocytes could produce CRP under the stim-
ulation of several proinflammatory cytokines, suggesting a
link between obesity and its comorbidities, including IR
[90-92]. CRP mRNA levels in human adipose tissue also
positively correlated with IL-6 mRNA levels. CRP expression
in vitro was also increased by IL-6 and lipopolysaccharide
stimulation, contributing to the elevated plasma CRP levels
found in obese individuals [93]. Moreover, human CRP
overexpression in transgenic mice fed a high-fat diet con-
tributed to the development of IR, hepatosteatosis, adipo-
nectin downregulation, and expression of proinflammatory
cytokines in epididymal adipose tissue [94]. These data indi-
cate the role of CRP in the pathogenesis of obesity-induced
metabolic disorders [94]. A recent study reported a signifi-

cant decrease in weight gain and food intake, and improved
insulin sensitivity was observed in CRP knockout rats placed
on a high-fat diet. These results suggest that CRP is not only
a biomarker of inflammation but also has a crucial role in
energy balance, body weight, insulin sensitivity, and glucose
homeostasis [95]. In addition, numerous molecules such as
cytokines and other bioactive substances involved in the
inflammatory pathways are produced and secreted by
WAT [96]. The abdominally distributed WAT plays an
essential role in the inflammatory process [79].
Furthermore, macrophages and immune cells infiltrate as
the adipose tissue expands, contributing to local and whole-
body low-grade inflammation. Adipose tissue expansion does
not follow simultaneous capillaries’ development, which
causes adipocytes to become too distant from the vasculature
[97]. Thus, hypoxia, adipocyte cell death, and increased secre-
tion of chemokines and adipokines may be part of the mech-
anisms that initiate adipose tissue inflammation [98].
Infiltration of adipose tissue is accompanied by a decrease in
anti-inflammatory M2-type macrophages, while the number
of proinflammatory M1-type macrophages increases [96].
Although T2DM does not imply autoimmune destruction of
B cells, the inflammatory process in the pancreas islets does
occur. It is still unclear what induces that process, but it
appears to be highly dependent on IL-1 action [96].
Adipocyte-derived bioactive metabolites like leptin and
adiponectin are also involved in T2DM pathogenesis [96].
The leptin levels in serum are directly proportional to the total
fat mass; its production increases during inflammation. Also,
leptin activates and modulates innate and adaptive immune
responses and promotes proinflammatory pathways [96, 99].
Contrarily to leptin, adiponectin is involved in anti-
inflammatory pathways. Thus, low adiponectin levels are asso-
ciated with T2DM incidence, which shows an inverse
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relationship between plasma adiponectin levels and CRP levels
[95, 100]. Additionally, TNF-a, IL-6, and IL-10 are essential
cytokines produced by adipocytes and immune cells. TNF-«
and IL-6 are known proinflammatory factors, whereas IL-10
exhibits anti-inflammatory properties [96], and IL-6 predom-
inantly controls CRP production by hepatocytes [86]. Besides
IL-6 and TNF-q, the liver produces IL-1, which stimulates the
synthesis of acute-phase proteins [89]. Also, the correlation
between fasting insulin and CRP levels implicates the link
between IR and inflammatory processes [78, 101, 102].

Inflammation of adipose tissue and high production of
TNEF-q, IL-6, and IL-1f in obesity is vital for T2DM incidence
and progression [103]. Some authors indicated that TNF-«
contributes to the development of IR in skeletal muscle of
human individuals by suppressing Akt substrate [104] and
stimulating IL-18 expression [105]. Furthermore, TNF-« con-
strains insulin-stimulated glucose uptake and endothelium
vasodilation [106]. In addition, TNF-a receptors mediate the
upregulation of the NF-xB pathway and influence proteins
that disturb insulin signaling and proinflammatory response
[107]. Nevertheless, IL-6 affects insulin-degrading enzyme
expression and activity in the liver and skeletal muscle tissues,
and modulation of this enzyme may contribute to T2DM and
obesity [108]. According to a new meta-analysis, IL-6 indeed
mediates chronic inflammation in T2DM. However, IL-6
influence on the general population seems insufficient, and
acting on the IL-6 pathway may not reduce the risk for
T2DM occurrence [109]. Even though IL-6 is essential for liver
homeostasis, only a few cell types express IL-6 receptors,
including hepatocytes, and its persistent activation is associ-
ated with liver pathologies [110]. Studies demonstrate that
IL-6-inducible protein SOSC-3 promotes IR by direct binding
to insulin receptors and inhibiting its kinase activity [111].
However, the results of one study indicate anti-inflammatory
properties and the homeostatic role of IL-6 in obesity-
associated inflammation and IR [112]. Also, it was demon-
strated that IL-6 increases the responsiveness of macrophages
to IL-4 and thus balances its shifting toward proinflammatory
M1 macrophages [112]. In addition, the results from many
studies also confirmed the pleiotropic nature of IL-6 and indi-
cate that the effects of IL-6 on inflammation differs depending
on the duration of exposure, tissue type, and factors such as
concentration and source of IL-6 [113-117].

Growing evidence indicates the role of gut microbiota in
the immune system regulation and pathogenesis of T2DM
[118-120]. The product of certain bacteria triggers an
inflammatory cascade, including recruitment of interleukins
and CRP [121, 122], which leads to impaired insulin action
and T2DM development [123, 124]. The level of imidazole
propionate (ImP), a microbial-produced histidine metabo-
lite, is higher in subjects with T2DM [125]. Furthermore,
the proposed mechanism by which microbial-derived ImP
diminished glucose metabolism includes activating the
p38y-mTORI-S6K1 signaling cascade that caused insulin
receptor substrate degradation and inflammation [125,
126]. In addition, increased circulating levels of LPS have
been recognized as an important marker that implies a link
between variations in microbiota composition and inflam-
mation in T2DM [122]. LPS promotes IR via stimulation

of Toll-like receptors on adipocytes, upregulation of NFkB,
and activation of cytokines TNF-a and IL-6 [127-129]. In
addition, lower diversity in the gut microbiota is associated
with increased white blood cell counts and high sensitivity
CRP (hs-CRP) levels [121, 130].

Some evidence indicates the role of CRP in diabetes-
induced microvascular complications, such as neuropathy, ret-
inopathy, and nephropathy. Elevated glucose levels could trig-
ger microvascular alterations and increased production of
inflammatory factors, including CRP, IL-6, and TNF-« [131].
Serum hs-CRP is linked with diabetic neuropathy occurrence,
one of the most prevalent diabetes complications [132-134].
Nevertheless, in male and female patients, symptomatic
peripheral diabetic neuropathy and inflammation are related
to endothelial dysfunction and elevated CRP serum levels
[135]. It is assumed that in patients with T2DM peripheral
neuropathy, increased CRP levels are positively correlated with
inflammation grade [133]. Furthermore, according to data
from a large cohort study where participants were monitored
for one year, hs-CRP levels above 2.5 mg/L could predict neu-
ropathy complications in T2DM [136]. Considering hs-CRP
low-cost and accessibility features, it might be a useful predict-
able biomarker for neurovascular disorder in T2DM [131].

Diabetic retinopathy (DR) is the leading cause of visual
loss worldwide. Several studies have investigated the rela-
tionship between CRP levels and DR with inconsistent
results. Qiu et al. observed a positive correlation between ele-
vated hs-CRP levels in the blood and DR onset and progres-
sion [137]. In contrast, Song et al. reported that CRP levels
could be associated only with the severity of DR [138].
Recently, it was shown that CRP levels could be associated
with the stage of DR in T2DM patients [139]. However, pre-
vious studies demonstrated that patients with higher CRP
and BMI levels were less likely to develop DR [140]. Incon-
sistent results from various studies may be caused by ethni-
cal differences in CRP and BMI levels and excluding some
clinical parameters such as duration of DM and complex
genetic and environmental variations.

Diabetic nephropathy (DN) is a leading cause of end-stage
renal disease. Numerous studies confirmed higher CRP levels
in T2DM patients with DN [141-145]. A study by Tang et al.
demonstrated the pathogenic role of CRP in renal inflamma-
tion and fibrosis using diabetic animal models [141]. The
meta-analysis also confirmed higher hs-CRP levels in T2DM
patients with DN than in healthy subjects and T2DM patients
without DN [142]. Hayashino et al. reported that serum hs-
CRP levels could be a helpful factor for predicting the risk of
DN developing in T2DM patients [143]. Additionally, it was
shown that higher hs-CRP levels were associated with DN
complications in T2DM patients [145].

Although these findings open new doors in understand-
ing diabetes pathology, further research is needed to answer
current ambiguities.

4. T2DM and CRP

4.1. Evidence from Animal Studies. Numerous animal studies
have shown the essential role of CRP in infections and
inflammatory processes (Table 1). CRP is synthesized in
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TaBLE 1: CRP values in animal model studies.
Animal T2DM induction CRP Diabetes-associated disorders Ref.
model values
Sprague- . . . . .
High-glucose/high-fat diets (15 weeks), and Irregular cardiac muscle fibers and degenerative
Dawley Lo , Increased . [148]
streptozotocin (single dose 30 mg/kgi.p.) necrosis
male rats
Sprague- . . s - .
High-fat diet (10 weeks), and streptozotocin (single Altered oxidative stress parameters in the
Dawley . Increased [196]
dose 25 mg/kg, i.p.) pancreas and serum
male rats
Sprague- . . . . . .
High-fat and high-sugar (5 weeks), and streptozotocin Injury of the intestinal mucosa reduced
Dawley (7 days, dose 30 mg/kg, i.p.) Increased antioxidant capacit [197]
male rats S §Ke 1P pactty
Wistar High-fat diet (10 weeks), and streptozotocin (single Elevated systohlc blOOd. pressure,.congested blood
. Increased  vessels, necrosis, and inflammation of the heart, [198]
male rats dose 40 mg/kgi.p.) . .
pancreas, liver, and kidney.
. . . . Similar to . .
Wistar High-fat diet (10 weeks) and alloxan (single dose h | Physiological pancreas cytoarchitecture, altered
male rats 50 mg/kg, i.p.) the contro lipid profile [151]
S values
Wistar . . Aorta smooth muscle cell proliferation, altered
male rats Streptozotocin (60 mg/kgi.p.) Increased lipid profile [21]
Wistar Streptozotocin (single dose 55 mg/kgi.p.) Increased Increased cytokine levels [22]
male rats
Sprague- . L
Dawley Streptozotocin (two—dli) Sf w)lthm two days 40 mg/ Increased Endothelial dysfunction, modified protein profile [149]
male rats s1p:
‘n/iiitearrats Alloxan monohydrate (single dose 120 mg/kgi.p.) Increased Hypercholesterolemia [150]
High-fat, high-fructose, high-casein diet (3 months)
Wistar and streptozotocin (60 mg/kg in 2 equally doses with a . -
male rats  12h interval i.p. and 20-30 mg/kg after 2 weeks for Increased Systolic blood pressure deviations [155]
some animals)
Wistar Altered lipid profile increased glycosylated
male rats Streptozotocin (single dose 55 mg/kgi.p.) Increased hemoglobin and liver enzymes, decreased levels of [156]
antioxidant enzymes
X;fet:arrats Alloxan monohydrate (single dose 120 mg/kgi.p.) Increased Altered oxidative stress parameters in serum  [153]
Albino . . Altered oxidative stress parameters in serum,
rats Alloxan monohydrate (single dose 120 mg/kgi.p.) Increased pathological pancreas cytoarchitecture [154]
Wistar Streptozotocin three doses (.f or 3 continuous days Increased  Altered oxidative stress parameters in the kidneys [199]
male rats 45 mg/kgi.p.)

CRP: C-reactive protein; T2DM: type 2 diabetes mellitus.

response to monocytic mediators such as IL-1 and IL-6 in
the acute phase of infections [11]. CRP recognizes and binds
to specific polysaccharides in the bacterial wall and induces
further complement pathway activation, leading to the opso-
nization of pathogens [146]. Moreover, there is evidence of
CRP involvement in proliferation and apoptotic processes
through activation of Fc receptors and the consequent pro-
duction of proinflammatory mediators and proapoptotic
cytokines [147]. In addition, growing evidence show CRP
is not only an inflammatory marker as its level is proven
to be elevated in T2DM cases (Table 1).

Zou et al. showed elevated serum CRP levels in male
streptozotocin-induced Sprague-Dawley rats compared to
untreated rats [148]. The same authors noticed degenera-
tive changes in the heart of streptozotocin-induced rats,

such as irregular cardiac muscle fibers and degenerative
necrosis [148]. Furthermore, Shirpoor et al. investigated
the effect of vitamin E on oxidized low-density lipopro-
tein, lipid profile, CRP, and VSMC proliferation of rat
aorta in streptozotocin-induced Wistar rats. They found
elevated CRP levels in the diabetic rats compared to the
untreated rats [21]. Additionally, the same authors
reported that the antioxidative effects of vitamin E atten-
uated the level of CRP and arterial complications in dia-
betic rats [21]. Using the same model, Talebi-Garakani
and Safarzade showed that four weeks of resistance train-
ing decreases serum inflammatory markers in diabetic
rats, including CRP levels [22]. These authors also
reported increased CRP levels in the diabetic rats com-
pared to the untreated ones.
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TaBLE 2: CRP values in human studies.
Subjects CRP values Association of CRP and T2DM incidence Ref
Men Increased Positive [10]
Women Increased Positive [19]
Man and women Increased Positive [9]
Man and women Non-significant Positive [158]
Man and women Increased Positive [163]
Man and women Increased Positive [164]
Man and women Not measured Positive [165]
Men and women Increased Not measured [170]
Men and women Increased Non-significant [1]
Men and women Increased Positive [173]
Men and women Increased Positive [176]

CRP: C-reactive protein; T2DM: type 2 diabetes mellitus.

We have previously shown that rats with high-fat diet-
induced obesity and IR develop cardiac hypertrophy and ele-
vated CRP levels in serum [23]. We also showed that estradiol
treatment leads to CRP level reduction and significantly
reduces heart mass in treated rats compared to untreated
obese rats [23]. In another study, Cho and colleagues reported
the differentially expressed proteins in the kidney, eye, aorta,
and serum of diabetic rats compared to the controls [149].
They reported elevated serum CRP levels in diabetic rats com-
pared to untreated rats. Beyond the high CRP level, they stud-
ied protein alterations in the vasculature and found three
potential biomarkers in aorta lysate samples that could present
early signs of diabetic vascular complications development
[149]. The Asgary et al. study also indicated CRP increases
in alloxan-induced diabetic rats compared to untreated. The
same authors concluded that four weeks of pumpkin powder
administration decreased glucose, cholesterol, triglyceride,
LDL, and CRP levels in diabetic rats compared to untreated
diabetic rats [150]. Interestingly, Ige et al. reported similar
CRP values, and also, histological pancreas findings were
entirely physiological, with small amounts of secretions in dia-
betic and control group rats [151].

The variance in study design may explain the differences
in CRP levels in diabetic animals. Although alloxan induces
diabetes through a different mechanism (oxidative stress
through Fenton reaction) than streptozotocin (alkylation of
DNA) [152], higher doses of alloxan applied to male and
female rats induce the same effects on diabetes development
and alterations of CRP levels in circulation, as streptozotocin
[150, 153, 154]. Some authors suggest that infections in
T2DM should be treated with antibiotics and indicate that
medication with fluoroquinolone antibiotics may decrease
elevated CRP values in diabetic rats [155]. Nevertheless,
Almatroodi et al. showed that Thymoquinone, the key active
component of the medicinal plant Nigella sativa, improved
CRP, antioxidant enzymes, liver enzymes, and inflammatory
markers levels in diabetic rats [156].

4.2. Evidence from Human Studies. Accumulating evidence
from human-based studies suggests that inflammation con-
tributes to the pathogenesis of T2DM (Table 2). Several

human studies show elevated CRP levels correlate with the
development of T2DM, even without adjustment of other
parameters, such as adiposity, hyperinsulinemia, hypertri-
glyceridemia, and low HDL cholesterol [1, 7-9, 24].

The West of Scotland Coronary Prevention Study
showed that elevated CRP indicates T2DM development in
men (middle-aged), independent of established risk factors,
such as fasting plasma triglyceride, body mass index
(BMI), and glucose [10]. Pradhan et al. [19] also observed
elevated CRP levels in diabetic middle-aged women com-
pared to the healthy control, supporting a possible role of
inflammation in the pathogenesis of T2DM. Furthermore,
Han et al. reported sex differences in the association of ele-
vated CRP levels with the incidence of T2DM [9]. This
strong association in women may be explained by the hor-
mone differences and the higher adiposity percentage
[157]. A study by Nakanishi et al. [158] showed the influence
of CRP on T2DM development in Japanese Americans and
not in the original Japanese population, which probably
indicates the impact of different lifestyles on T2DM manifes-
tation. The possible explanation considering the link
between CRP and T2DM development may be the role of
oxidative stress in inducing hyperglycemia [159], which fur-
ther promotes inflammatory response and elevation of CRP
[160]. Furthermore, it was found that oxidative stress might
impair insulin endocytosis in endothelial cells [161] and thus
could lead to endothelial dysfunction and IR [158, 162]. Doi
et al. [163] reported a clear link between elevated CRP levels
and obesity-induced hyperglycemia and T2DM in relatively
lean Asian populations (Japanese population) in both sexes
even after adjustment for comprehensive risk factors related
to IR. Also, in the study by Marques-Vidal et al. [164],
higher hs-CRP levels were associated with all T2DM and
IR markers, and these associations persevered after multivar-
iate adjustment. Similarly, the study showed that partici-
pants with impaired glucose tolerance had higher hs-CRP
levels than euglycemic subjects, although this difference
became nonsignificant after BMI adjustment. Likewise,
Akbarzadeh et al. [165] reported a significant positive asso-
ciation between the hs-CRP level and IR markers (HOMA-
IR and FIRI) and a negative association between hs-CRP



level and insulin sensitivity markers (QUICKI, McAuley.
and Bennett indexes). Some studies showed an association
between elevated levels of CRP and leptin in diabetic, obese,
and CVD subjects [166-169], suggesting the possible role of
CRP in modulating leptin action [170]. In addition, varia-
tions in leptin levels were independently associated with
CRP [171], indicating that a regulatory loop interrelates
CRP and leptin levels. Furthermore, exploring the mecha-
nisms of leptin resistance adds to the notion that CRP, par-
ticularly the smaller mCRP, may change the action of leptin
by binding to the extracellular domain of the leptin receptor
[170]. In this way, CRP contributes to the pathogenesis of
obesity-related diseases, including T2DM and CVD
[166-169, 172]. A study by Kanmani et al. [1] showed a pos-
itive association between CRP levels and the incidence of
T2DM in a large Korean population. In addition, the associ-
ation was more noticeable among the older group (=50
years), and the combination of CRP levels with obesity and
hypertension led to increased incidence of T2DM. Lainam-
petch et al. [173] reported that patients with increased base-
line levels of CRP were at increased risk of developing
T2DM. These findings support the premise that CRP may
indirectly impair insulin sensitivity and production due to
increased systemic inflammation through innate immune
response alteration [174]. Also, elevated CRP levels influence
the production of adhesion molecules, including E-selectin,
intercellular adhesion molecule-1 (ICAM-1), and vascular
cell adhesion molecule-1 (VCAM-1) that are directly
involved in the regulation of insulin action and local IR
[175]. A recent retrospective case-control study [176]
imparted that elevated hs-CRP and FPG, insulin, HbAlc,
HOMA-IR, and IL-6 were found in T2DM patients. The
same authors concluded that obesity-induced dyslipidemia
(also demonstrated in the study) causes IR and the subse-
quent increase in levels of inflammatory markers [176].
Chronic inflammation in obesity disrupts glucose homeosta-
sis causing a persistent increase in blood glucose levels [87,
177]. Also, IL-6 produced by the adipose tissues may stimu-
late CRP secretion [178], which further increases IR and ini-
tiates low-grade inflammation leading to the development of
T2DM [176]. On the other hand, some studies suggest that
higher CRP levels and T2DM development are attenuated
or missing after adjustment to a wide range of confounding
factors, including adiposity and insulin sensitivity [20, 25].
The degree of adiposity and baseline glycemia adjustment
could explain the heterogeneity between studies and suggests
that CRP might not be an independent risk factor for T2DM
development [6].

Regarding testing CRP levels, there is a standard CRP
assay measuring lower (baseline) levels of this biomarker,
contributing to the diagnosis of acute inflammation. Also,
a frequently used and a more sensitive hs-CRP assay
reflects low-grade chronic inflammatory processes having
a predictive value of future CVD risk [179]. In addition,
emerging evidence supports the use of hs-CRP levels for
CVD risk assessment in IR-diabetic and nondiabetic sub-
jects [180, 181]. The limitation of the abovementioned
human studies, which used CRP and not hs-CRP, might
be apparent. However, treatment with pioglitazone, which
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has insulin-sensitizing and anti-inflammatory properties
(combined with antilipidemic statin therapy) decreases
hs-CRP levels independently of the glucose-lowering in
T2DM and nondiabetic patients with increased hs-CRP
levels [182, 183]. This suggests that hs-CRP levels in
T2DM might not necessarily establish a cause-effect path-
ophysiological association.

Although the clinical relationship between diabetes and
increased level of CRP is well established, the molecular
mechanisms by which CRP potentially induces diabetes are
yet to be clarified. Particular progress has been made in
investigating multiple therapeutic approaches targeting dif-
ferent inflammatory factors [177]. Treatment of T2DM
patients with IL-1 receptor blocker [184, 185] or IL-1f anti-
bodies [186-189] reduced levels of IL-6 and CRP as markers
of systemic inflammation, with simultaneous improvement
of glycemia and insulin secretion. Treatment of obese and
diabetic subjects with IxB kinase complex 8 (IKKp)/nuclear
factor kB (NF-«B) inhibitor, as a central proinflammatory
player, decreased the level of CRP and improved insulin sen-
sitivity and glycemia [190, 191]. Also, some studies showed
beneficial effects of TNF antagonism therapy on CRP level
reduction, with a tendency to improve f cell function, but
without impact on insulin sensitivity [192, 193].

5. Conclusions

Numerous prospective studies reported the association
between serum CRP level and risk of incident T2DM. How-
ever, there is heterogeneity between studies, with some
showing an independent positive association of CRP with
T2DM incidence [1, 19, 20], while others demonstrate no
association after adjustment for adiposity and IR [20, 25].
Since it is unequivocally associated with the development
of prediabetes and diabetes-induced vascular complications,
the elevated CRP might be an indirect risk factor for T2DM
progression. Additionally, elevated CRP levels should be
considered one more parameter in the overall assessment
of T2DM risk, besides elevated FPG and HbA1C levels,
abnormal OGTT, hyperinsulinemia, etc. Thus, elevated
CRP levels in patients with higher T2DM risk must warn
the clinician to perform available diagnostic procedures to
confirm diabetes [194, 195]. Since the incidence of T2DM
is expected to increase in the following years dramatically
[2], further analysis of the CRP and diabetes association is
needed to provide an adjunctive method for early detection
of risk for this disease.
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