
IJDC | Conference Paper

Automatic Module Detection in Data Cleaning Workflows:
Enabling Transparency and Recipe Reuse

Lan Li
School of Information Sciences

University of Illinois, Urbana-Champaign

Nikolaus Parulian
School of Information Sciences

University of Illinois, Urbana-Champaign

Bertram Ludäscher
School of Information Sciences

National Center for Supercomputing
Applications (NCSA)

University of Illinois, Urbana-Champaign

Abstract
Before data from multiple sources can be analyzed, data cleaning workflows (“recipes”)
usually need to be employed to improve data quality. We identify a number of technical
problems that make application of FAIR principles to data cleaning recipes challenging. We
then demonstrate how transparency and reusability of recipes can be improved by analyzing
dataflow dependencies within recipes. In particular column-level dependencies can be used
to automatically detect independent subworkflows, which then can be reused individually
as data cleaning modules. We have prototypically implemented this approach as part of an
ongoing project to develop open-source companion tools for OpenRefine.
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Introduction and Overview

The FAIR guiding principles for scientific data aim to ensure that data is findable, accessible,
interoperable, and reusable (Wilkinson et al., 2016). Metadata in general and provenance
information in particular can be used to improve reusability of data and the reproducibility
of results by increasing transparency (Nosek et al., 2015; McPhillips et al., 2019). A major
reason to provide provenance information is to increase the trustworthiness of data by
laying open its lineage, i.e., its origins and processing history. It is also often pointed out
that data analysis consists of at least 80% “wrangling and cleaning” of data, leaving only
20% for the data analysis proper. Not surprisingly, data cleaning “recipes” (or workflows)
are of central importance in data analysis and should thus follow principles similar to FAIR
data; in particular they should be transparent and reusable.

Consider a userU (a researcher or data curator) who wants to prepare a dataset D0

for analysis as part of a scientific study. Upon inspection she quickly realizes that D0 is
not “fit for purpose” (Chapman et al., 2020), i.e., its organization and data quality needs
to be improved for the intended use cases. She then employs a data cleaning tool such as
OpenRefine (OR, 2021) to obtain a “cleaner” version that can be used for the subsequent
analyses. An important byproduct ofU ’s interactive data cleaning process is an operation
history H that can be used to describe her data cleaning workflow as a sequence of steps
S1 , . . . , Sn that transform the given D0 via intermediate snapshots into a final version Dn:

D0
S1⇝ D1

S2⇝ D2
S3⇝ · · · Sn⇝ Dn . (H )

This operation history H can be understood as a form of provenance information that
increases the transparency of the data cleaning process. It contains prospective elements at
the workflow level, e.g., the names of operations used, and retrospective provenance at the
trace level, e.g., the concrete value changes and parameter settings used in each step.

Technical Challenges and Approach

The first practical challenge is how to present the historyH in a form that helps users (the
original workflow creatorU , possible auditors, and other potential users) understand the
data cleaning workflow, both at a higher, conceptual level, and at a more detailed level.
We call this the transparency problem forH .

A second challenge forU is how to identify and extract from H one or more reusable
recipes R ⊆ H , i.e., those elements and subworkflows of the data cleaning history that can
be reused for other datasets. We call this the recipe reusability problem.

There are a several other technical challenges worth mentioning: WhileU is exploring
and cleaning a dataset, she occasionally has to backtrack and undo earlier steps to modify
her workflow. To this end, OpenRefine provides an undo/redo operation stack to support
the back-and-forth of this interactive process. She can backtrack from the current step Sk
to an earlier step Si , inspect the dataset at that point, and then redo the steps Si+1 , . . . , Sk.
Once she decides to modify Si , however, the subsequent steps Si+1 , . . . , Sk are typically
discarded.1 If a user wants to retain some or all of these steps, they can try to work around
the limitations of the tool, e.g., by saving the steps to be re-executed and then trying to

1 The rationale is that a change in Si may invalidate the subsequent steps Si+1 , . . . , Sk.
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reapply them after the modified step Si . The history update problem is to determine
which of the steps Si+1 , . . . , Sk need to be discarded because they no longer apply, or how
to modify them so they remain applicable.

Recipe migration problem. When presented with a new but similar dataset D′
0, a

curatorU may want to reuse the parts of the history H that seem applicable not just to
D0, but more generally to other datasets similar to it (such as D′

0). ThusU wants to select
a recipe R ⊆ H for reuse, possibly revising it as needed. Indeed R is often not applicable
to D′

0 directly, but may have to be modified further to account for the schema differences
between D0 and D′

0.
Recipe evolution problem. Finally, a user may want to share a recipe with a wider

audience, in the spirit of the FAIR principles. To this end, she plans to subject each
candidate recipe R0 to a number of tests before publishing it. Lessons learned from the
tests result in a sequence R0 ⇝ R1 ⇝ · · · ⇝ Rℓ of modifications to and variants of the
original recipe. The problem is how to support this evolution from R0 to a publishable
recipe Rℓ , i.e., how to effectively modify, organize, and test recipes.

Contributions. In this paper, we focus on solving the transparency problem and one
aspect of the reusability problem. We employ an underlying provenance model for data
cleaning that can be used to describe data dependencies at different levels of granularity:
e.g., in a table view, we view a history H as a sequence of snapshots D0 , D1 , . . . , Dn in
which each new snapshot Di+1 is derived from its predecessor Di via a transformation
step Si+1. In this way, using a coarse-grained table view, a user can get a first, high-level
overview about a data cleaning workflow. On the other hand, a finer-grained dependency
analysis will take into account the columns that an operation reads and writes, using the
input-output signatures of the data transformation functions that implement a step Si in
the workflow. The resulting schema view paints a more detailed and transparent picture
of how the workflow operations act on the schema, as the dataset is being transformed,
step by step. Finally, the modular view provides another column-oriented view on the
workflow: Similar to the schema view, column-level dependencies are obtained from the
recipe’s dataflow graph, but now independent subworkflows are automatically identified, which
can then form the basic building blocks (or modules) of reusable recipes.

Both the schema view and the modular view rely on a classification of operations in order
to highlight the different kinds of effects that workflow steps have on a dataset and its
schema: many transformations operate on a single column, while others read or write
multiple columns or rename columns; some operations are generic (i.e., can be applied, in
principle, on any dataset column, e.g., toLower or toUpper), while others are domain-specific
and user-defined (e.g., a custom mapping that fixes common misspellings over a controlled
vocabulary of city names); yet other operations convert data types (e.g., from string to
number), etc. We have prototypically implemented our approach as part of an ongoing
project to develop open-source companion tools for OpenRefine (Li, 2021).

Data Cleaning Workflows and OpenRefine

OpenRefine is a popular open-source data cleaning tool that allows users to execute data
transformations in a browser-based, spreadsheet-like user interface (OR, 2021).

As shown in Figure 1, the tool allows users to export an operation historyH as a recipe
R by selecting a set of operations R ⊆ H . The resulting recipe can be copied and reused
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Figure 1. OpenRefine History and Recipe. The undo/redo historyH (left) shows all steps previ-
ously executed. After clicking “Extract”, the user can select the operations to be exported
via a checklist (middle). The selected recipe operations R ⊆ H then appear in the JSON
panel (right). Steps 1 (column-split) and 3 (column-rename) are highlighted in the history,
the checklist, and the JSON recipe. Example taken from a recipe for the menus dataset,
crowd-sourced by volunteers for the NYPL (New York Public Library, 2020).

later for other datasets.
On the left of Figure 2, a typical data cleaning use case is depicted: The user employs

OpenRefine to clean a dataset D0. The process D0
H
⇝ Dn generates an operation history

H with n steps S1 , . . . , Sn from which the user can select a recipe R ⊆ H (see Fig. 1).
This recipe can then be exported in an OpenRefine-specific JSON format for reuse on
another dataset. Since R is not meant for “human consumption”, it is rather opaque and
hard to digest for users.

A first step towards improving transparency is to create a workflow model from a recipe
R. We previously developed or2yw2, which automatically generates YW (YesWorkflow)
annotations from recipes. The YW tool uses these to create a workflow model that can
be queried and visualized (McPhillips et al., 2015). YW was originally developed to allow
researchers a simple way to manually annotate their program scripts in order to reveal
workflow steps and dataflow dependencies implicit in those scripts, thereby turning an
opaque script into a transparent workflow. With the help of or2yw the user can automatically
generate YW models from OpenRefine recipes (rather than manually creating them), thus
providing a more transparent workflow view on a previously executed sequence of data
cleaning operations. For a given workflow model, the YW tool can generate several different
views, e.g., a combined view which depicts a workflow as a directed graph, linking steps via
the data that flows between them; a process view that emphasizes steps; and a data view that
highlights data derivations.

We have since implemented ORMA (OpenRefine Model Analysis), a new OpenRefine
companion tool that uses additional details aboutH from project files created by OpenRefine

2 or2yw: an OpenRefine-to-YesWorkflow mapping tool (Li et al., 2021).
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Figure 2. A user cleans datasetD0 with OpenRefine, obtaining an improved versionDn , along with
internal project files and recipes. During workflow analysis, the user provides ORMA with
a project-ID, which is then used to generate an enriched recipe (i.e., a workflow model).
The tool then analyzes data dependencies to generate multiple views: a high-level, lin-
ear table view closely corresponding to the sequential recipe, a schema view showing how
columns are used and updated by each step; and a modular view, automatically restruc-
turing the recipe into its independent subworkflows (modules).

when a data cleaning project is saved. The ORMA prototype can then create “enriched”
recipes from this information which in turn are used to create new knowledge products
(table view, schema view, and modular view) as illustrated in Figure 2.

Modeling Data Cleaning Workflows

Before taking a closer look at some of the new views and visualizations that ORMA supports,
let us first consider the underlying workflow, provenance, and data models.

Modeling Workflows and Provenance

On the left of Figure 3, two modeling levels for data cleaning recipes are depicted:

• At the upper workflow level an operation such as “Y = F (X)” stands for any data
transformation that reads some data X (e.g., from a table, a column, or a cell) and
that produces some output dataY .3

• At the lower trace level, a concrete value xi ∈ X is used by an invocation “yi = Fi (xi)”
to generate a result value yi ∈ Y .

The data cleaning recipes of OpenRefine can thus be understood as workflow-level,
prospective provenance, since they prescribe what operations should be executed (and in
which order) when the recipe is to be reused. But since recipes R are obtained from
operation histories H , they also constitute retrospective provenance information, since at
least a partial record of the processing history is recorded by them.

In addition, OpenRefine captures more detailed retrospective provenance in its internal
project files (cf. Figure 2), e.g., parameter values used at runtime by certain operations, and
deltas that can be used to recreate any intermediate snapshot Di when the user employs
the undo/redo feature of OpenRefine.

3 Note that this includes the special case thatY represents the updated version of X .
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Figure 3. Workflows, Traces, and Data Granularity. A data cleaning recipe (workflow) consists
of data transformations (operations) of the form “Y = F (X)”, i.e., where a function is
applied to an input X to obtain outputY (upper left). Workflows are a form of prospective
provenance. At runtime, an invocation “yi = Fi (xi)” yields retrospective provenance, e.g.,
describing that yi was generated by Fi , which in turn used xi (lower left). The data being
processed can be modeled at different levels of granularity (right): a cell can be identified
by the row and column it is part of; tables consist of rows and columns, and can have a
history (implying that rows, columns, and cells also have a history).

On the right of Figure 3, a simplified version of the underlying data model is depicted.
It shows that individual cells are part of rows and columns, which in turn are part of a data
table Di . Each table is part of a table history, i.e., a sequence of snapshots D0 , . . . , Dn.
The power of ORMA and similar tools derives from the use of a flexible underlying
model that combines prospective and retrospective information to describe data cleaning
workflows, while simultaneously supporting different data granularities (e.g., table, column,
cell) when describing relationships between elements. This combination allows one to
create many types of relationships between the modeling elements, beyond the simple
binary relationships (in, out, used, generated-by, and was-derived-from) depicted in Fig. 3.

Modeling Data Transformations

The final ingredient needed by ORMA to analyze data cleaning recipes as workflows is
information about data transformations (operations): for each data cleaning operation
or function F , we need to know at least its signature F : X̄ → Ȳ , i.e., the column(s)
X̄ = X1 , . . . , Xk that F reads (or uses) and the column(s) Ȳ =Y1 , . . . ,Ym that it writes (or
generates). In this way, by analyzing direct and indirect dependencies between operations
of a workflow, we can create different workflow views, including a modular view which
automatically detects independent subworkflows.

Consider two consecutive steps Si and Si+1 in a workflow. A fundamental question is
to determine whether Si+1 depends on Si (so execution must be serial) or whether Si+1 is
in fact independent of Si (which can be modeled using a parallel branch in the workflow).

If the two steps are implemented by operations Fi : X̄i → Ȳi and Fi+1: X̄i+1 → Ȳi+1,
we can test whether Ȳi ∩ X̄i+1 = ∅. If this is the case, then the input X̄i+1 of Si+1 does
not make use of any output Ȳi of Si , and we can say that Si+1 is independent of Si . In this
way, a data cleaning recipe can be modeled as a workflow graph consisting of data nodes
that represent schemas or columns, and transformation nodes that represent the steps (data
cleaning operations) of the workflow.
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Figure 4. Classifying Operations: OpenRefine implements a range of data transformations, from
simple, generic operations (toLower(), toUpper(), . . . ) to powerful domain-specific opera-
tions requiring user interaction (e.g., for clustering, normalizing, and reconciling values), all
the way to user-defined operations (e.g., using regular expressions).

Classifying Data Transformations

To make graphical workflow views more informative and intuitive for the user, different
shapes and colors can be used in ORMA. For example a table view (as in Fig. 5 on the left) is
depicted as a bipartite graph in which rounded yellow boxes represent table snapshots Di ,
and green boxes represent workflow steps Si that transform one snapshot to another. For
more detailed views such as the schema view and the modular view, it is helpful to classify
operations according to their shared properties, and then use colors (and/or shapes) to
highlight the different effects that related operations have on the data tables.

Figure 4 depicts a (very incomplete) view of a possible classification of the built-in
operations in OpenRefine: many operations change data values (Value_Op), some change
the data schema (Schema_Op), and yet others the data type (Type_Conv). Often it is also
useful to distinguish generic operations (Generic_Op) from domain-specific operations
(Custom_Op). While the former can be applied, in principle, on any data column, the latter
may be applicable only for certain domains of data (e.g., a mapping from common variants
and mispellings of city names to their canonical representation). There are many other
ways to organize and classify operations, depending on the desired perspective or use of
the classification. In the current version of the ORMA tool, custom operations (such as
single cell edits and certain mass edits) are prominently highlighted in red, while generic
operations are highlighted in orange (cf. Figure 5 and Figure 6).

Transparency and Recipe Reuse through Workflow Views

We are now ready to describe how ORMA, our OpenRefine Model Analysis tool, can be
used to increase the transparency of data cleaning recipes and facilitate their reuse.

ORMA Table View

When using OpenRefine to clean a dataset, an operation historyH is created, allowing the
user to extract some of the operations as a recipeR ⊆ H (Figure 1). Additional provenance
details can be obtained from internal project files (Figure 2) which ORMA can then use
to create different workflow views. The table view on the far left in Figure 5 depicts a
linear workflow that corresponds one-to-one to an operation history (similar to the one in
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Figure 5. Table View vs Schema View. In the table view (left) individual columns are not shown,
and every snapshot tablei+1 depends on its immediate predecessor tablei . In the schema
view (center, right) a summary of changes to the schema and column-level operations
is depicted: The user first worked on several date columns, then the event column (and
other columns) before returning again to some specific edits on the repaired_date column.
Columns are colored according to the type of operation that affected the column.

Fig. 1), thus making it easy for a user to see the correspondence between the two. Through
parameter switches, ORMA can create different levels of detail for table views, e.g., for a
high-level overview, operation parameters can be suppressed (as in Fig. 5) or alternatively,
detailed parameter views can be added to table views.

ORMA Schema View

The schema view in Figure 5 is arguably more transparent than the table view: it stills
shows the sequential (linear) nature of the table view, but it also reveals which columns
are read and rewritten (updated or created anew) by each transformation step. Arrows
are used to indicate column-level dependencies between steps; arrow labels indicate the
names of operations; and colors are used to highlight the different nature of operations:
columns updated through custom operations are shown in red (possibly requiring the
most attention), generic operations in orange, and type conversions in (light) blue. Dashed
arrows indicate user interactions in the OpenRefine UI, e.g., when a user “stars” (flags)
rows, or when she is reordering columns (e.g., physical_description: move to column #5).

The schema view in Figure 5 also provides additional insights, e.g., it reveals that
the data curator was “jumping around” between different columns when cleaning the
original dataset: While the first operations (near the top and middle of the evolving
schema) operate on the date column and its derivative columns, two subsequent changes
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Figure 6. Table View vs Modular View. The table view on the left suggests (correctly) that each
table snapshot depends on its predecessor via a workflow step. On the other hand, the
modular view on the right highlights that the linear workflow can be decomposed into
four independent subworkflows (modules), based on a finer-grained column-level dependency
analysis: The largest module starts from the date column, expands it by creating (and
renaming) separate columns for year, month, and day, eventually yielding a repaired_date
column. The other three modules are single-column subworkflows, each working on
their own column (event, dish_count, and physical_description).

are then executed on the event column (with an additional “interruption” by an operation
on dish_count). Only near the end of the workflow does attention return to the repaired_date
column that had been created in earlier steps.

ORMA Modular View

Figure 6 again shows a table view on the far left (for orientation and comparison) and an
automatically created modular view in the center, right. Upon close inspection of the
schema view in Figure 5, one can already guess at least some elements of the subworkflow
structure exposed by the modular view. As in the schema view, the modular view depicted
in Figure 6 uses different colors to indicate the nature or type of the operations involved
(e.g., generic, custom, type conversion). ORMA automatically detects all independent
subworkflows (modules) based on the column-level dependencies obtained from recipes
and the function signatures of operations. The modular view shown in Figure 6 still
contains the original sequence numbers of workflow steps, which helps in matching
steps across alternative views of the same workflow. In particular, the coarser-grained
linear table view could be constructed from the modular view (but not vice versa).
Modular subworkflows as the ones shown here can be used as reusable building blocks for
composing larger data cleaning recipes from a library of independent modules. Different
levels of transparency and “verbosity” can be chosen for the different views supported
by ORMA: e.g., detailed parameter values can be included in the views, along with other
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derived information (e.g., how many canonical names are part of a mass-edit and how many
variant spellings are recognized for each canonical name). We have omitted the display of
these additional details in our figure here.

Conclusions

We have presented an approach to improve the transparency and reusability of data
cleaning recipes. The key idea is to model recipes as workflows over a suitable data
model for describing data cleaning processes. We have prototypically implemented an
OpenRefine model analyzer tool, ORMA (Li, 2021) which can be used to create different
types of workflow views, from simple linear table views, via informative schema views, to
modular views that automatically identify independent subworkflows that facilitate reuse.
In future work, we plan to tackle several other technical challenges mentioned earlier,
e.g., the history update problem or the recipe migration problem. Another direction for
future work includes the use of retrospective provenance information to obtain even more
powerful analysis methods based on hybrid models of provenance.
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