
IJDC | General Article

Capturing Data Provenance from Statistical
Software

George Alter
University of Michigan

Jack Gager
Metadata Technology North America Inc.

Pascal Heus
Metadata Technology North America Inc.

Carson Hunter
Metadata Technology North America Inc.

Sanda Ionescu
University of Michigan

Jeremy Iverson
Colectica

H V Jagadish
University of Michigan

Jared Lyle
University of Michigan

Alexander Mueller
University of Michigan

Sigve Nordgaard
Norwegian Centre for Research Data

Ørnulf Risnes
Norwegian Centre for Research Data

Dan Smith
Colectica

Jie Song
University of Michigan

Abstract

We have created tools that automate one of the most burdensome aspects of documenting the provenance of
research data: describing data transformations performed by statistical software. Researchers in many fields
use statistical software (SPSS, Stata, SAS, R, Python) for data transformation and data management as well
as analysis. The C2Metadata ("Continuous Capture of Metadata for Statistical Data") Project creates a
metadata workflow paralleling the data management process by deriving provenance information from
scripts used to manage and transform data. C2Metadata differs from most previous data provenance
initiatives by documenting transformations at the variable level rather than describing a sequence of opaque
programs. Command scripts for statistical software are translated into an independent Structured Data
Transformation Language (SDTL), which serves as an intermediate language for describing data
transformations. SDTL can be used to add variable-level provenance to data catalogues and codebooks and
to create "variable lineages" for auditing software operations. Better data documentation makes research
more transparent and expands the discovery and re-use of research data.

Submitted 5 April 2021 ~ Revision received 21 April 2022 ~ Accepted 25 April 2022

Correspondence should be addressed to George Alter, ICPSR, University of Michigan, Institute for Social Research,
P.O. Box 1248, Ann Arbor, MI 48106-1248. Email: altergc@umich.edu

An earlier version of this paper was presented at IDCC21, Edinburgh, 19 April 2021

The International Journal of Digital Curation is an international journal committed to scholarly excellence and dedicated to
the advancement of digital curation across a wide range of sectors. The IJDC is published by the University of
Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution
License, version 4.0. For details please see https://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation
2022, Vol. 16, Iss. 1, 14 pp.

1 http://dx.doi.org/10.2218/ijdc.v16i1.763
DOI: 10.2218/ijdc.v16i1.763

http://dx.doi.org/10.2218/ijdc.v16i1.763
http://www.ijdc.net/

2 | Capturing Data Provenance

Introduction

Realizing the promise of research transparency and the FAIR principles (Wilkinson et al., 2016)
requires provenance metadata, i.e., documentation of the origins, contents, and meaning of
data. Even though most data are "born digital," metadata are usually an afterthought, and the
cost of creating detailed metadata is often prohibitive. This paper describes tools that automate
the creation of detailed provenance metadata from statistical software, which are widely used for
data management and data transformations as well as analysis. Researchers in many fields use
statistical software (SPSS, Stata, SAS, R, Python) for data transformation and data management
as well as analysis (IBM Corp., 2019; Python Software Foundation, 2019; R Core Team, 2013;
SAS Institute, 2015; StataCorp., 2020). Our tools extract variable-level data provenance from
scripts used in major statistical software packages and integrate this information into standard
metadata formats used by data repositories for data discovery tools, codebooks, question banks,
and other services.

Much of the data shared by the social and ecological sciences is maintained in repositories
that rely on structured metadata in the Data Documentation Initiative (DDI) (Caporali,
Morisset, Legleye, & Richou, 2015; Vardigan, Heus, & Thomas, 2008) and Ecological Metadata
Language (EML) (Fegraus, Andelman, Jones, & Schildhauer, 2005) standards. In the social
sciences, DDI is used by the Inter-university Consortium for Political and Social Research
(ICPSR), the Dataverse Network, the Integrated Public Use Microdata Series (IPUMS), and
other U.S. repositories in the Data Preservation Alliance for the Social Sciences (Data-PASS).
DDI has also been adopted by the 21 members of the Consortium of European Social Science
Data Archives (CESSDA), the Australian Data Archive, and the International Household
Survey Network (IHSN), which has conducted thousands of surveys in low and middle-income
countries. EML is one of the metadata standards used by the DataONE network of data
repositories, the Global Biodiversity Information Facility, the Knowledge Network for
Biocomplexity, and the Long-Term Ecological Research Network. Thus, many scientists have
used data catalogues and codebooks based on DDI or EML without ever seeing the metadata
behind them.

The "Continuous Capture of Metadata for Statistical Data" (C2Metadata) Project (NSF
ACI-1640575) automates the process of describing data transformations. C2Metadata tools
create a workflow for metadata that parallels the workflow that transforms the data. The
statistical analysis packages frequently used to manage scientific data have limited metadata
capabilities, and they do not support the detailed metadata standards used by data repositories.
Consequently, valuable information about the data is lost. We minimize additional work for the
data producer by extracting provenance information from the script that transformed the data,
and we use that information to update an existing metadata file. Data producers can obtain an
updated metadata file and new codebook in minutes by uploading two files to a webpage or
running the same tools on their local computer.

C2Metadata tools translate scripts used by statistical software into an independent
Structured Data Transformation Language (SDTL), which serves as an intermediate language
for describing data transformations. SDTL describes commands/steps in a program, and it
complements metadata standards like DDI and EML that describe the current state of the data.
SDTL can be used to:

 Update existing metadata files (e.g., DDI, EML), so that both the original data
description and changes to the data are preserved

 Describe variable transformations in natural language for data users who are unfamiliar
with the specific software used in variable transformations

 Create "variable lineages" that describe the transformations performed on each variable
for use in auditing scripts

IJDC | General Article

Alter, et al. | 3

 Add variable- and command-level information to PROV-based provenance metadata

The C2Metadata Project has developed an automated workflow that:

1. Extracts data transformation information from scripts for the leading statistical software
packages

2. Expresses data transformations in a new Structured Data Transformation Language
(SDTL) that is independent of the source languages

3. Incorporates SDTL and human-readable derivatives of SDTL into existing metadata
standards (i.e., DDI, EML)

4. Creates an interactive codebook based on the updated metadata

C2Metadata software tools were developed to work with DDI Codebook, which is the light
version of DDI used by many data custodians around the globe, such as ICPSR in the United
States, CESSDA across Europe, and the IHSN in low- and middle-income countries and
international organizations. However, these tools could be adapted to work with DDI Lifecycle,
which was developed to record metadata at all stages of data production and dissemination
(Vardigan, Granda, & Hoelter, 2016; DDI Alliance, 2020b). SDTL is fully compatible with the
way that DDI Lifecycle records variable derivations.

C2Metadata Workflow

An example of an automated metadata workflow based on C2Metadata tools is illustrated in
Figure 1. We assume that the user provides two files: a command script in a supported language
(SPSS, Stata, SAS, R, Python) and a structured metadata file in a supported metadata standard
or format (DDI, EML) describing the data taken as input to the script. The first step is
performed by a Parser, which translates the command script into an SDTL script. The SDTL
script is sent to an Updater, which also reads the user's metadata file. The Updater
communicates with the Pseudocode Translator, an application that creates a natural language
version of the SDTL script. The output of the Updater is a revised metadata file that now
includes the SDTL and natural language descriptions of all variables modified by the command
script. The updated metadata file may be used in a number of different ways. When a data
repository receives the updated data file, the updated metadata will be added to its online data
catalogue. The data repository may also use a Codebook Formatter to create a static (e.g., pdf)
or interactive codebook (e.g., html) for users to download. Each variable in the catalogue or
codebook will include a derivation section that describes the origin of the variable and all of the
transformations applied to it.

IJDC | General Article

4 | Capturing Data Provenance

 Figure 1 C2Metadata Workflow

Figure 1 includes one Parser and one Updater, but there are actually several versions of
each. Each statistical package has its own language that must be parsed and translated into
SDTL by a specially designed Parser. Similarly, every metadata standard requires a separate
Updater. Since the Parsers and Updaters are separate modules, we can handle any
combination of the supported statistical languages and metadata standards.

Figure 1 also includes two files, the Function Library and the Pseudocode Library, which
are parts of the SDTL standard. The Function Library is a crosswalk between the syntax for
functions (e.g., sine, mean, maximum) in SDTL and in the statistical packages supported by
C2Metadata. Although there are thousands of functions, they can all be described by a common
template, which simplifies the code in Parsers and Updaters. Similarly, the Pseudocode Library
describes how to translate an SDTL command into natural language. The Pseudocode Library
provides human-readable text to be inserted before and after variable names, numbers, and
other expressions in SDTL commands. The result is a "pseudocode" version of the command
that is comprehensible to a person unfamiliar with either the original statistical language or
SDTL. Since both the Function Library and the Pseudocode Library are structured data files,
they can be modified and expanded as SDTL is updated without changing any application
code. The latest versions of the Function Library and Pseudocode Library are in JSON files
accessed directly from Gitlab repositories by C2Metadata software modules.

To simplify the C2Metadata workflow for users, we created a Data Transformation
Recorder, an online service that orchestrates all of the processes described in Figure 1. The user
uploads a command script and one or more XML (DDI or EML) files describing the data before
the script was executed. The user must also identify the language of the script and associate the
names of data files with the names corresponding to them in the XML file. The Recorder
invokes APIs for each of the necessary applications and transmits intermediate results to the next
API in the sequence. At the end, the user downloads an SDTL version of the command script,
an updated XML file, and an HTML codebook.

The C2Metadata Project uses elements from DDI Codebook version 2.5 to attach data
transformation descriptions to individual variables (DDI Alliance, 2014). A variable can be
described by the "derivation" element in the DDI Codebook schema, which has two content
elements "drvcmd" (derivation command) and "drvdesc" (derivation description). A derived
variable can be described with multiple "drvcmd" elements, which allows us to include both the

IJDC | General Article

Alter, et al. | 5

SDTL and the source language versions of every command that modified the variable. The
"drvdesc" element is used for the natural language (pseudocode) version of each command.
Commands that operate on the entire dataset, like AppendDatasets and MergeDatasets, are
described with a "fileDerivation", which we expect to be included in the next version of DDI
Codebook.

Provenance in Interactive Codebooks

Data are often archived and shared in formats, such as CSV, that must be supplemented by
documentation to explain them. In the social sciences, documentation was traditionally in the
form of a codebook explaining the origins and meaning of every element in the data (Vardigan
& Whiteman, 2007). The advent of structured metadata made it possible to record the same
information in a machine-actionable format (XML) that can be used for other purposes, such as
populating online catalogues. Data discovery tools, which used to cover only study-level
metadata (e.g., title, authors, abstract), can now search variable names, labels, and even values
within variables.

We created an interactive version of a codebook to illustrate the new possibilities created by
including provenance encoded in SDTL in structured metadata files. Figure 2 is an excerpt
describing a derived variable in an interactive codebook. The entry for this variable includes the
steps in its creation, which are presented in both a natural language translation of the SDTL
and the original source language (SPSS in this example). Pre-existing variables that were used to
construct this variable are also presented with hyperlinks pointing to their locations in the
codebook. The interactive codebook allows users to choose which information they want to
view by opening or closing fields containing natural language, the original source language, and
SDTL.

Figure 2. Excerpt from an Interactive Codebook

The interactive codebook allows us to describe variables that passed through intermediate
states during the execution of the command script. A data transformation script may modify a
variable several times, and some important variables may be dropped before the file is saved.
The DDI Updater generates new DDI variable descriptions whenever a variable is transformed
in a significant way, and each of these descriptions is assigned an ID that is independent of the
variable name. Derived variables can be linked to the relevant states of antecedent variables

IJDC | General Article

6 | Capturing Data Provenance

through variable IDs even if the antecedent variable was changed in later program steps. The
DDI standard is also designed to allow a single metadata file to describe multiple data files.
The updated XML file includes both the pre- and post-transformation versions of the DDI as
well any variable states that were never saved to a file, which the interactive codebook collects
into a "Temporary Variables" section. Similar procedures are used in updating EML metadata
files.

Since these capabilities are new, the C2Metadata codebook is intended as a prototype to
stimulate new ways of using variable-level provenance in data documentation.

Why a Structured Data Transformation Language?

SDTL was created to solve two problems. First, each of the five widely used statistical software
packages has its own language, and our planned metadata workflow required a common
intermediate language that would work for all of them. In preparation for our NSF proposal,
we examined download records at the Inter-university Consortium for Political and Social
Research (ICPSR), the largest social science data repository in the U.S. ICPSR offers data for
download in the formats of the four statistical packages most common in the social sciences, and
researchers are divided among them. SPSS and Stata each account for about 25% of data
downloads, and another quarter was divided between SAS and R. Researchers who did not
select one of the leading four statistical packages downloaded data in ASCII files and sometimes
in Excel. (See Vilhuber (2019) for software used in economics.) Thus, a solution that only
worked for one statistical package would reach at most a quarter of the research community.
There was a clear need for a common language that could express the commands found in all
the statistical packages.

Second, this common language should be in a form that is easy for computers to process.
Extracting meaning from a language is a complicated process, and a program customized to
each language is required to process scripts into a form that a computer can use. We reduce the
costs of sharing and re-using scripts in a common language by making SDTL computer friendly.
We developed SDTL in JSON (JavaScript Object Notation), but JSON can be easily translated
into other formats used for transmitting complex information among software applications, such
as Extensible Markup Language (XML) and Resource Description Framework (RDF).

SDTL is "structured," because it follows a schema with defined tags and delimiters. For
example, consider this SPSS command:

COMPUTE age_years=age_months/12.

This command will create a new variable named "age_years" by dividing the value of variable
"age_months" by 12. The SDTL version of this commands is in Figure 3.

SDTL is obviously much more verbose than the SPSS language, but it is also more precise.
How do we know that "age_years" and "age_months" refer to variables? Like a spoken
language, the SPSS language has syntax rules that allow a person to assign meanings to text like
"age_years" based on their order and position in a command. Computers can make these
inferences too, but extracting meaning from text is a complicated problem. In SDTL the
"$type" tells a computer program that "age_years" and "age_months" are variable names
("VariableSymbolExpression") that refer to columns in the dataset. SDTL relies much more on
explicit tagging and less on syntax rules than the languages that it describes.

IJDC | General Article

Alter, et al. | 7

Figure 3. Sample SDTL JSON

The SPSS COMPUTE command also uses a number of symbols that play a critical role in
the meaning of the command: space, "=", "/", and ".", but these symbols have other meanings
in different contexts. In the COMPUTE command "/" means division, but in the following
SPSS RECODE command "/" is a separator between two variables that appear in one
RECODE command.

RECODE age_years (0 THRU 14.999=1) (15 THRU 64.999=2) (65 THRU HI=3)
 / income (0 THRU 19999=1) (20000 THRU 99999=2) (100000 THRU HI=3)

The structured nature of SDTL removes ambiguities that would otherwise be resolved by a
long list of syntax rules. For example, consider this SPSS command

COMPUTE y = 1 + x/5

Which operation should be performed first, addition or division? Will the result be [(1 + x)/5]
or [1 + (x/5)]? SPSS follows a common convention that division is performed before addition
unless a different order of operations is specified by brackets in the formula. In SDTL the order
of operations is never ambiguous. As the reader may have noticed in the previous example,
arithmetic operations are implemented in SDTL as functions. The expression "x/5" is treated
as "division(x, 5)" in SDTL. The basic arithmetic functions in SDTL have two parameters, but
each parameter can be a function. This means that SDTL represents "1 + x/5" as "addition(1,
division(x,5))". Since the division is nested within the addition, it must be performed first.

SDTL is an international standard maintained by the DDI Alliance (DDI Alliance, 2020c).
For a more extended description of SDTL see Alter et al. (2020) and C2Metadata Project (2020).

IJDC | General Article

8 | Capturing Data Provenance

Translating SDTL into Natural Language

In addition to translating five statistical languages into SDTL, the C2Metadata Project has a
simple way of translating SDTL into a more human-friendly form. We have created a set of
templates for each SDTL command with text surrounding each of its properties. For example,
the template for the SDTL Compute command is

Set {variable} to {expression}.

in which {variable} and {expression} are properties of the command. Each of these properties
can be resolved into text, such as a variable name or a number. Using the example in Figure 3,
{variable} resolves to "age_years" and {expression} resolves to "age_months/12". The result is

Set age_years to (age_months/12).

Note that {variable} resolves to "age_years" in one step, but the {expression} property is more
complicated, as often happens in SDTL. In this case, the expression is a function with two
parameters. The Function Library gives this template for division

(EXP1/EXP2),

and we find that EXP1 resolves to a variable named "age_months" and EXP2 resolves to the
numeric constant "12". Since SDTL types are often nested several levels deep, resolving SDTL
into natural language is a recursive process. The Pseudocode Translator application uses
templates like these to convert SDTL into something approximating English.

Templates for SDTL commands are collected in a Pseudocode Library, which is a file in
JSON format. (Pseudocode is a term used for the translation of a computer program into
language that is easier for humans to decipher.) The Pseudocode Library can be revised and
extended without changing any program code in the Pseudocode Translator. Different versions
of the Pseudocode Library can be created for other natural languages or special purposes.

Other Uses of SDTL and C2Metadata Tools

SDTL and the PROV Model

Our colleagues in the Whole Tale Project are exploring ways to connect SDTL to the PROV
model of provenance. PROV is a family of standards for describing data provenance
recommended by the World Wide Web Consortium (Groth & Moreau, 2013). PROV describes
the persons and activities that produced and transformed a digital object in a way that can be
exchanged and searched on the Web. The original PROV model did not describe variables
within datasets or commands within programs, but several extensions of PROV offer more
granular approaches to data and data processing, such as ProvONE which was developed by the
ecological research community (Cuevas-Vicenttín et al., 2016; see also End to End Provenance
Project, 2019; Garijo & Gil, 2013).

SDTL can be serialized into Resource Description Framework (RDF), a format used to share
metadata on the semantic web. SDTL RDF can be linked to other provenance models, such as
PROV and ProvONE, and analysed by tools like the SPARQL query language. Thomas
Thelen and Timothy McPhillips have shown that the following questions can be answered by
querying SDTL RDF:

 Which commands affected the values of varX?

IJDC | General Article

Alter, et al. | 9

 Which variables affected varX?

 Which variables were affected by command Z?

 Which variables were affected by varY?

However, the extensive detail in SDTL RDF makes SPARQL queries long and complex. We
are examining ways to map SDTL to ProvONE, which will make queries much simpler.

Translation

SDTL offers a path for translating from one statistical language to another. Organizations often
rely on large bodies of code in languages that have become difficult to maintain. Data
management scripts in statistical analysis software may use features that are removed in later
releases, and younger analysts are often unfamiliar with packages and languages that were
prevalent a decade earlier. Under these circumstances, an application that can translate one
statistical language into another could be very useful, even if the translation is less than
complete. SDTL can be used as an intermediate step in translating between statistical
languages. Our project has shown that all five of our target languages can be translated into
SDTL, and translating SDTL into these source languages should be a manageable task. If all
five languages can be translated to and from SDTL, each language can be translated into the
other four.

Reshaping Data Structures

The DDI Alliance is in the process of creating a new standard, DDI Cross Domain Integration
(DDI-CDI) (DDI Alliance, 2020a) describing how the same data can be expressed in different
formats. Figure 4 shows data in what DDI-CDI calls "Wide" format, in which each row refers
to the same unit of observation and each column is a different variable. The same data is shown
in Figure 5 in an entity-attribute-value (EAV) format, which is a version of DDI-CDI "Long"
format. A row in Long format describes only one attribute of a unit of observation, and the
Attribute column identifies the property that is measured by the Value column. DDI-CDI
provides standard terms for describing Wide, Long, and two other common data structures and
for mapping how values and attribute descriptions are managed in each data structure.

ID Name Age Place of birth Occupation
9990 Vera 62 Newcastle Detective
9991 Xavier 49 Madrid Architect
9992 Yolanda 33 Copenhagen Baker

Figure 4. Data in Wide Format

IJDC | General Article

10 | Capturing Data Provenance

ID Attribute Value

9990 Name Vera
9990 Age 62
9990 Place of birth Newcastle
9990 Occupation Detective
9991 Name Xavier
9991 Age 49
9991 Place of birth Madrid
9991 Occupation Architect
9992 Name Yolanda
9992 Age 33
9992 Place of birth Copenhagen
9992 Occupation Baker

Figure 5. Data in Long Format

SDTL complements DDI-CDI by providing a way to describe how data are transformed
from one data structure to another. The SDTL ReshapeLong command converts data in Wide
format (Figure 4) to Long format (Figure 5), and ReshapeWide converts Long format (Figure 5)
to Wide format (Figure 4). These commands have different names in various statistical software:
reshape (Stata), transpose (SAS), casestovars/varstocases (SPSS), melt (R, Python).

Limitations

The scope of the C2Metadata Project was limited in several ways to keep the project
manageable with limited funding and time. We were aware from the start that we could not
capture every data transformation feature available in large and complex languages like SAS
and R. Our goal has always been to capture 80% to 90% of the commands that researchers use
for data management.
A basic limitation of tools developed on the C2Metadata Project is that they operate only on
metadata files and do not access any data directly. We rely on a description of the data prior to
transformation in a metadata file with a standard format. This decision simplified the creation
of Parsers, because they do not need to read and analyze data files, but it did prevent us from
implementing some features.

 Metadata files often include descriptive statistics of variables, such as averages and
frequency distributions, which are greatly appreciated by researchers. Since the current
tools do not access the data, we cannot compute descriptive statistics for variables that
have changed.

 Data transformation commands that depend upon the content of the data are not
currently implemented. We have specified a ReshapeWide command in SDTL, but it
cannot be supported in a metadata-only system. Reshaping data from a "long" to a
"wide" format involves changing the unit of observation to a higher level, such as from
individuals to households or counties to states. The new data has one row for every case
at the group level (household, state) and separate columns for the attributes of every
individual within a group. Suppose that data from a census are arranged with one row
per person, and we want to reorganize the data to one row per household. The
variables for each person in the household will become columns in the new data file, i.e.
the age of the first person in the household will be in column Age1, the age of the

IJDC | General Article

Alter, et al. | 11

second person in Age2, and so on. The number of columns for each variable (age, sex,
occupation,…) depends upon the number of people in the largest household. Since we
cannot know the size of the largest household without accessing the data, reshaping
from long to wide is not possible using only metadata.

R and Python are much more open than earlier statistical packages, and the communities
supporting each of these languages have contributed thousands of libraries that add new
operations and analyses. To limit the scope of our project, we have focused on the "base" and
most popular data transformation libraries in each language. The SDTL parser for R is
implementing the tidyverse library (Wickham et al., 2019), and the Python parser works with the
Pandas library (The pandas development team, 2020).

The limitations described above are due to restrictions of the C2Metadata Project, and they
are not due to limitations of SDTL. The main limitation in SDTL is related to data created by
analysis commands. For example, regression models typically generate predicted values and
residuals, which can be saved as new variables or separate datasets. We expect that support for
data created by statistical procedures will be added to SDTL in the future.

Discussion

The C2Metadata Project has demonstrated that it is possible to automate the capture of
variable-level provenance metadata. Automation reduces the cost and increases the quality of
documentation showing how users of statistical software transformed and manage their data.
We have produced a set of applications that convert scripts from five statistical languages into a
common intermediate language (SDTL), which is then embedded into two widely used
metadata standards. By creating human-readable histories of variables, we provide metadata
that is much more detailed and informative than a long list of commands in an unfamiliar
language.

We believe that several innovations in our approach are worth noting. First among these is
the creation of a Structured Data Transformation Language (SDTL) to serve as a standard way
of representing data transformation commands. Since researchers are currently split among at
least five statistical software packages, we created a new language that would work with all of
them. SDTL is not intended to replace existing statistical languages, rather it is a lingua franca
for applications like data catalogues, codebooks, and other data discovery and documentation
tools. SDTL is expressed in a structured format (JSON) that is easily read by computer
programs, and it is compatible with existing metadata standards.

Second, although SDTL has a small vocabulary, the SDTL Function Library makes it
flexible and expandable. Functions are a familiar device in programming languages, and
statistical packages rely heavily on functions for many operations, like generating random
numbers and computing quantiles of probability distributions. SDTL extends this approach by
using functions to describe arithmetic operations, logical conditions, and variables formed by
aggregating over rows. The SDTL Function Library maps functions in other languages into
their SDTL equivalents. Since all functions follow the same basic syntax, applications that parse
other languages can translate functions into SDTL with a minimum of programming code. The
Function Library can be expanded without any changes in applications that rely on it.

Third, we have shown that translating SDTL into a human readable form is a simple and
extendable process. The Pseudocode Library is set of fill-in-the-blank templates for SDTL
commands. Even complicated SDTL commands can be unfolded into properties that consist of
pre-defined text, variable names, and numbers.

Finally, additional applications of SDTL are emerging. SDTL can be translated into RDF
for use with PROV and other Semantic Web tools. SDTL complements the development of
DDI Cross Domain Integration by describing how data can be transformed into different
structures and formats. We also see a future for SDTL as an intermediary in translations
between statistical languages. Since the source languages have many idiosyncratic features,

IJDC | General Article

12 | Capturing Data Provenance

comprehensive translations are probably not attainable. However, translations covering 80 to
90 percent of a script will be extremely useful for many purposes. For example, many
organizations have legacy scripts in statistical languages that their staff no longer understand.
Incomplete translations accompanied by human-readable versions of the original scripts can be
very helpful in redesigning out of date workflows.

Data availability

No data is associated with this article.

Code availability

C2Metadata applications are available under an open source license from the project Gitlab
repository (C2Metadata Project, 2021). Most applications are available as both code (Java,
Python, Clojure, C#) and Docker containers.

Acknowledgements

The Continuous Capture of Metadata for Statistical Data Project is funded by National Science
Foundation grant ACI-1640575. We are grateful for contributions to this project by Darrell
Donakowski, Carl Lagoze, Matthew A. Richardson, Karunakara Seelam, Tom Smith, Yashas
Jaydeep Vaidya, and Ole Voldsater. The C2Metadata Project is grateful to the Whole Tale
Project (https://wholetale.org/) for their work on integrating SDTL into the ProvONE model,
especially Thomas Thelen, Matt Jones, Bertram Ludaescher, Tim McPhillips, and Craig Willis.
The Whole Tale is funded by National Science Foundation grant OAC 1541450.

References

Alter, G., Donakowski, D., Gager, J., Heus, P., Hunter, C., Ionescu, S., . . . Voldsater, O.
(2020). Provenance metadata for statistical data: An introduction to Structured Data
Transformation Language (SDTL). IASSIST Quarterly, 44(4). doi:10.29173/iq983

C2Metadata Project. (2020). Structured Data Transformation Language. Retrieved from
http://c2metadata.gitlab.io/sdtl-docs/

C2Metadata Project. (2021). Gitlab Repository: c2metadata. Retrieved from
https://gitlab.com/c2metadata

Caporali, A., Morisset, A., Legleye, S., & Richou, C. (2015). La mise à disposition des enquêtes
quantitatives en sciences sociales : l'exemple de l'Ined. Population (French Edition), 70(3),
567-597. Retrieved from http://www.jstor.org.proxy.lib.umich.edu/stable/24639342

IJDC | General Article

http://www.jstor.org.proxy.lib.umich.edu/stable/24639342
https://gitlab.com/c2metadata
http://c2metadata.gitlab.io/sdtl-docs/
https://wholetale.org/

Alter, et al. | 13

Cuevas-Vicenttín, V., Ludäscher, B., Missier, P., Belhajjame, K., Chirigati, F., Wei, Y., &
Leinfelder, B. (2016). ProvONE: A PROV Extension Data Model for Scientific Workflow
Provenance. Retrieved from http://jenkins-1.dataone.org/jenkins/view/Documentation
%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/
provone.html

DDI Alliance. (2014). DDI-Codebook 2.5. Retrieved from
https://ddialliance.org/Specification/DDI-Codebook/2.5/

DDI Alliance. (2020a, April 4, 2020). DDI Cross Domain Integration (DDI-CDI) Review.
Retrieved from https://ddi-alliance.atlassian.net/wiki/spaces/DDI4/pages/860815393/
DDI%2BCross%2BDomain%2BIntegration%2BDDI-CDI%2BReview

DDI Alliance. (2020b, April 12, 2022). DDI Lifecycle 3.3. Retrieved from
https://ddialliance.org/Specification/DDI-Lifecycle/3.3/

DDI Alliance. (2020c, December 1, 2020). Structured Data Transformation Language.
Retrieved from https://ddialliance.org/products/sdtl/1.0

End to End Provenance Project. (2019). Extended Prov JSON. Retrieved from
https://github.com/End-to-end-provenance/ExtendedProvJson

Fegraus, E. H., Andelman, S., Jones, M. B., & Schildhauer, M. (2005). Maximizing the value of
ecological data with structured metadata: an introduction to ecological metadata language
(EML) and principles for metadata creation. Bulletin of the Ecological Society of America,
86, 158–168.

Garijo, D., & Gil, Y. (2013, 17 September 2013). The P-PLAN Ontology. Retrieved from
https://www.opmw.org/model/p-plan/

Groth, P., & Moreau, L. (2013). PROV-OVERVIEW: An Overview of the PROV Family of
Documents. Retrieved from http://www.w3.org/TR/2013/NOTE-prov-overview-
20130430/

IBM Corp. (2019). IBM SPSS Statistics for windows, version 26.0. Armonk, NY: IBM Corp.

Python Software Foundation. (2019). Python Language Reference, version 3.8. Beaverton, OR.
Retrieved from https://www.python.org/

R Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-
project.org/

SAS Institute. (2015). SAS®9.4 Product Documentation. Cary, NC: SAS Institute Inc.
Retrieved from http://support.sas.com/documentation/94/index.html

StataCorp. (2020). Stata Statistical Software: Release 16.1. College Station, TX: StataCorp LP.

The pandas development team. (2020). pandas-dev/pandas: Pandas: Zenodo. Retrieved from
https://doi.org/10.5281/zenodo.3509134

IJDC | General Article

https://doi.org/10.5281/zenodo.3509134
http://support.sas.com/documentation/94/index.html
http://www.r-project.org/
http://www.r-project.org/
https://www.python.org/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
https://www.opmw.org/model/p-plan/
https://github.com/End-to-end-provenance/ExtendedProvJson
https://ddialliance.org/products/sdtl/1.0
https://ddialliance.org/Specification/DDI-Lifecycle/3.3/
https://ddi-alliance.atlassian.net/wiki/spaces/DDI4/pages/860815393/DDI%2BCross%2BDomain%2BIntegration%2BDDI-CDI%2BReview
https://ddi-alliance.atlassian.net/wiki/spaces/DDI4/pages/860815393/DDI%2BCross%2BDomain%2BIntegration%2BDDI-CDI%2BReview
https://ddialliance.org/Specification/DDI-Codebook/2.5/
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html

14 | Capturing Data Provenance

Vardigan, M., Granda, P., & Hoelter, L. (2016). Documenting survey data across the life cycle.
The SAGE Handbook of Survey Methodology. Los Angeles, CA: SAGE, 443-459.

Vardigan, M., Heus, P., & Thomas, W. (2008). Data documentation initiative: Toward a
standard for the social sciences. International Journal of Digital Curation, 3(1).

Vardigan, M., & Whiteman, C. (2007). ICPSR meets OAIS: Applying the OAIS reference
model to the social science archive context. Archival Science, 7(1), 73-87.
doi:10.1007/s10502-006-9037-z

Vilhuber, L. (2019). Report by the AEA Data Editor. AEA Papers and Proceedings, 109, 718-
729. doi:10.1257/pandp.109.718

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A., François, R., . . . Hester,
J. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., ... &
Mons, B. (2016). The FAIR Guiding Principles for scientific data management and
stewardship. Scientific data, 3(1), 1-9.

IJDC | General Article

	 Introduction
	 C2Metadata Workflow
	 Provenance in Interactive Codebooks
	 Why a Structured Data Transformation Language?
	 Translating SDTL into Natural Language
	 Other Uses of SDTL and C2Metadata Tools
	 SDTL and the PROV Model
	 Translation
	 Reshaping Data Structures

	 Limitations
	 Discussion
	 Data availability
	 Code availability
	 Acknowledgements
	 References

