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Introduction 
Eye-tracking is often used to study cognitive processes 

involving attention and information search based on 

recorded gaze position (Schulte-Mecklenbeck et al., 
2017). Before these processes can be studied, the raw gaze 
data is classified into events that are distinct in their phys-
iological patterns (e.g., duration), underlying neurological 
mechanisms, or cognitive functions (Leigh & Zee, 2015). 
Basic events are fixations, saccades, smooth pursuits, and 
post-saccadic oscillations (PSOs). Classifying raw eye-
tracking data into these events reduces their complexity 
and is usually the first step towards cognitive interpretation 
(Salvucci & Goldberg, 2000). The classification is typi-
cally done by algorithms, which is considered faster, more 
objective, and reproducible compared to human coding 
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(Andersson et al., 2017). Hein and Zangemeister (2017) 
give a comprehensive overview of different classification 
algorithms (for a structured review on classifying sac-
cades, see also Stuart et al., 2019). 

The aim of the current study is to develop a generative, 
unsupervised model for characterising, describing, and un-
derstanding eye movement data. Below we discuss the re-
quirements for such a model. One such requirement is ob-
viously that it can reliably classify eye movement events. 

To motivate our decision to add another algorithm to 
this array of classification tools, it is useful to briefly dis-
cuss the properties and goals of those tools. On one hand, 
many classification algorithms use non-parametric meth-
ods to differentiate between eye movement events. We use 
the terms classification and event classification throughout 
this paper but see discussion about the appropriateness of 
those terms as compared with event detection in (Hessels 
et al., 2018). 

A classic example is the “Velocity-threshold” algo-
rithm (Stampe, 1993), which classifies samples with a ve-
locity above a fixed threshold as saccades (see also Lars-
son et al., 2013; Larsson et al., 2015; Nyström & 
Holmqvist, 2010). On the other hand, many parametric 
methods have been developed recently. Some of them re-
quire human-labeled training data as input and can there-
fore be termed as supervised (Hastie et al., 2017). For ex-
ample, Bellet et al. (2019) trained a convolutional neural 
network (CNN) on eye-tracking data from humans and 
macaques and achieved saccade classifications that were 
highly similar to those of human coders (for other super-
vised algorithms, see Startsev et al., 2019; Zemblys et al., 
2019; Zemblys et al., 2018). Due to their high agreement 
with human coders, one might call the supervised ap-
proaches “state-of-the-art”. However, the requirement of 
labeled training data is a disadvantage of supervised meth-
ods because the labeling process can easily become costly 
and time-consuming (Zemblys et al., 2019). More im-
portantly, supervised methods also (implicitly) treat hu-
man-labeled training data as a reliable gold standard, an 
assumption that may be unwarranted (see discussion in 
Hooge et al., 2018). The reliance on training data also 
makes supervised methods inflexible: When test data 
strongly deviates from the training data, the classification 
performance can decrease substantially (e.g., Startsev et 
al., 2019). Furthermore, when the required events for test 
data differ from the hand-coded events in the training data, 

the latter would need to be recoded, causing additional 
costs. 

In contrast, unsupervised classification algorithms do 
not require labeled training input. Instead, they learn pa-
rameters from the characteristics of the data themselves 
(Hastie et al., 2017). In consequence, they are also more 
flexible in classifying data from different individuals, 
tasks, or eye-trackers (e.g., Hessels et al., 2017; Houpt et 
al., 2018). 

Besides discriminating between supervised and unsu-
pervised methods, algorithms can vary in whether they are 
explicitly modeling the data generating process and are 
thus able to simulate new data. To our knowledge, these 
generative models have been rarely used to classify eye 
movement data (cf. Mihali et al., 2017; Wadehn et al., 
2020). Classifiers with generative assumptions have the 
advantage that their parameters can be easily interpreted in 
terms of the underlying theory. In the context of eye move-
ments, they can also help to explain or confirm observed 
phenomena: For instance, their parameters can indicate 
that oscillations only occur after but not before saccades. 
When the goal is to understand eye movement events and 
improve their classification based on this understanding, 
this aspect is an advantage over non-parametric or super-
vised methods. Moreover, generative models can chal-
lenge common theoretical assumptions and bring up new 
research questions (Epstein, 2008). For example, they 
might suggest that oscillations also occur before saccadic 
eye movements (as mentioned in Nyström & Holmqvist, 
2010) or that the assumption that eye movements are dis-
crete events (e.g., saccades and PSOs cannot overlap) does 
not hold (as discussed in Andersson et al., 2017). 

We argue that the recent focus on supervised ap-
proaches misses an important facet of eye movement event 
classification: Supervised methods are trained on human-
labeled data and can predict human classification well. 
This is an important milestone for applicants that are inter-
ested in automating human classification. However, since 
human classification may not be as reliable, valid, and ob-
jective as assumed (Andersson et al., 2017; Hooge et al., 
2018), supervised approaches will also reproduce these 
flaws. Instead, we suggest taking a different avenue and 
developed an unsupervised, generative algorithm to set a 
starting point for more explicit parametric modeling of 
common eye movement events (cf. Mihali et al., 2017). By 
relying on likelihood-based goodness-of-fit measures, we 
aim to achieve a classification that reaches validity through 
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model comparison instead of making the classification 
more human-like. A model-based approach can also im-
prove the reliability because it will lead to the same classi-
fication given the correct settings, whereas human annota-
tion can depend on implicit, idiosyncratic thresholds that 
may be hard to reproduce (see Hooge et al., 2018). 

One class of generative models that are used in eye 
movement classification are HMMs. They estimate a se-
quence of hidden states (i.e., a discrete variable that cannot 
be directly observed) that evolves parallel to the gaze sig-
nal. Each gaze sample depends on its corresponding state. 
Each state depends on the previous but not on earlier states 
of the sequence (Zucchini et al., 2016). Further, HMMs 
can be viewed as unsupervised models that can learn the 
hidden states and parameters of the emission process from 
the observed data alone, and as such do not in principle 
need labeled training data. They are suitable models for 
eye movement classification because the hidden states can 
be interpreted as eye movement events and gaze data are 
dependent time series (i.e., one gaze sample depends on 
the previous). HMMs can be applied to individual or ag-
gregated data (or both, see Houpt et al., 2018) and are thus 
able to adapt well to interindividual differences in eye 
movements. 

On this basis, several classification algorithms using 
HMMs have been developed: One instance is described in 
Salvucci and Goldberg (2000) and combines the HMM 
with a fixed threshold approach (named “Identification by 
HMM” [I-HMM]). Samples are first labeled as fixations 
or saccades, depending on whether their velocity exceeds 
a threshold, and then reclassified by the HMM. Pekkanen 
and Lappi (2017) developed an algorithm that filters the 
position of gaze samples through naive segmented linear 
regression (NSLR). The algorithm uses an HMM to parse 
the resulting segments into fixations, saccades, smooth 
pursuits, and PSOs based on their velocity and change in 
angle (named NSLR-HMM). Another version by Mihali et 
al. (2017) uses a Bayesian HMM to separate microsac-
cades (short saccades during fixations) from motor noise 
based on sample velocity (named “Bayesian Microsaccade 
Detection” [BMD]). Moreover, Houpt et al. (2018) applied 
a hierarchical approach developed by Fox and colleagues 
that describes sample velocity and acceleration through an 
autoregression (AR) model, computes the regression 
weights through an HMM, and estimates the number of 
events with a beta-process (BP) from the data (named BP-
AR-HMM). 

Several studies have tested the performance of HMM 
algorithms against other 

classification methods: I-HMM has been deemed as ro-
bust against noise, behaviorally accurate, and showing a 
high sample-to-sample agreement to human coders (An-
dersson et al., 2017; Komogortsev et al., 2010; Salvucci & 
Goldberg, 2000). However, the agreement was lower when 
compared to an algorithm using a Bayesian mixture model 
(Kasneci et al., 2014; Tafaj et al., 2012). NSLR-HMM 
showed even higher agreement to human coding than I-
HMM (Pekkanen & Lappi, 2017) but was outperformed 
for saccades by the CNN algorithm by Bellet et al. (2019). 

In sum, HMMs seem to be a promising method for 
classifying eye movements in unsupervised settings. Nev-
ertheless, the existing HMM algorithms each have at least 
one aspect in which they could be improved. 

First, I-HMM relies on setting an appropriate threshold 
to determine the initial classification, which can distort the 
results (Blignaut, 2009; Komogortsev et al., 2010; Shic et 
al., 2008). Second, the current implementation of NSLR-
HMM requires human-coded data, which narrows its ap-
plicability to applications where supervised methods are 
also an option. It also inheres fixed parameters that prevent 
the algorithm to adapt to individual or task-specific sig-
nals. Third, BMD limits the classification to microsac-
cades which are irrelevant in many applications and some-
times even considered as noise (Duchowski, 2017). The 
opposite problem was observed for BP-AR-HMM: It tends 
to estimate an unreasonable number of events from the 
data of which many are considered as noise events (e.g., 
blinks). Therefore, the authors suggest using it as an ex-
ploratory tool followed by further event classification 
(Houpt et al., 2018). 

Goals 
The goal of the project reported in this article is to 

move towards generative models of eye movement events. 
The purpose of generative models is to bring better under-
standing of the events they describe in a fully statistical 
framework, which enables likelihood-based comparisons 
and hypothesis tests, or to generate novel hypotheses. Such 
models can be also used for classification, even though that 
may not be their only or primary application. 

In this article, we present a novel model of eye move-
ment events, named gazeHMM, that relies on an HMM as 
a generative model. 
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The first step in developing a generative model that can 
be also used as a statistical model (e.g., to be fit to data), is 
to ensure its computational consistency, that is, whether 
the model is able to recover parameter values that were 
used to generate the data. Second, as classification is one 
of the possible applications of such model, it is important 
to evaluate the classification performance and ensure that 
the model does reasonably well identifying the eye move-
ment events it putatively describes. We believe these two 
questions are the minimal requirements of a generative 
model in the current setting, and the current article brings 
just that — evaluation of the basic characteristics of a gen-
erative model that we developed. 

Table 1 presents a selection of recently developed clas-
sification algorithms (i.e., the “state-of-the-art”) and high-
lights the contribution of gazeHMM for the purpose of eye 
movement classification: First, our algorithm uses an un-
supervised classifier and thus does not require human-
coded training data. This independence also allows 
gazeHMM to adapt well to interindividual differences in 
gaze behavior. Second, gazeHMM uses a parametric 
model (i.e., an HMM) and relies on maximum likelihood 
estimation, which enables model comparisons and testing 
parameter constraints. This property has been rarely used 
in eye movement event models. Third, it classifies the 
most relevant eye movement events, namely, fixations, 
saccades, PSOs, and smooth pursuits. Additionally, 
gazeHMM gives the user the option to only classify the 
first two or the first three of these events, a feature that 
most other algorithms do not have. As a minor goal, we 
aimed to reduce the number of thresholds which users 
must set to a minimum. 

The following section describes gazeHMM and the un-
derlying generative model in detail. Then, we present the 
parameter recovery of the HMM and show how the algo-
rithm performs compared to other eye movement event 
classification algorithms concerning the agreement to hu-
man coding. Importantly, we did not compare gazeHMM 
to supervised algorithms due to the training requirements 
of these methods. Finally, we discuss these results and pro-
pose directions in which gazeHMM and other HMM algo-
rithms could be improved. 

Developing gazeHMM 

As illustrated in Figure 1, most eye movement event 
classification algorithms consist of three steps (cf. Hessels 

et al., 2017): During preprocessing, features (such as ve-
locity and acceleration) are extracted from the raw gaze 
positions. Often, a filtering or smoothing procedure is ap-
plied to the data, before or after the transformation, to sep-
arate the gaze signal from noise and artifacts (Spakov, 
2012). Then follows the classification, depending on the 
method and settings of the algorithm, each sample is la-
beled as a candidate for one of the predefined events. 
Lastly, as part of the postprocessing, the algorithm decides 
which candidates to accept, relabel, or merge (Hessels et 
al., 2017; Komogortsev et al., 2010). Note that Hessels et 
al. (2017) called step two the search rule and step three the 
classification rule. For non-parametric methods, this dis-
tinction might be accurate. However, for parametric meth-
ods, calling step two "classification" is more appropriate 
since the probabilistic classification is done here. Step 
three usually consists of some heuristic relabeling and cor-
recting for classification errors. 

Figure 1. Example Workflow for Eye Movement Event 
Classification Algorithms. 

 
Note. Workflow description: (a) the raw gaze signal in x (up-

per line) and y (lower line) coordinates; (b) the raw gaze signal 
is filtered and transformed into a velocity signal; (c) samples are 
classified as events (indicated by colors), and (d) relabeled. Se-
quences of samples belonging to the same event are merged (in-
dicated by black segments). Data from Andersson et al. (2017). 
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Preprocessing 
Algorithms require variables that describe gaze data 

(hereafter called eye movement features) to classify them 
into events. Many eye movement features have been pro-
posed and used in previous algorithms (for examples, see 
Andersson et al., 2017; Zemblys et al., 2018), but most of 
them rely on thresholds or window ranges that have to be 
set by the user (e.g., the distance between the mean posi-
tion in a 100 ms window before and after each sample, see 
Olsson, 2007). This can be problematic because such pa-
rameters are often Table 1 set without theoretical justifi-
cation and differ substantially between features or heavily 
depend on the eye-tracker’s characteristics (e.g., sampling 
frequency, Andersson et al., 2017). In gazeHMM, we used 
velocity, acceleration, and sample-to-sample angle (syn-
onymous to relative or change in angle Larsson et al., 
2013) because they belong to the most basic features 
which do not require additional parameter settings. 

 
Table 1. Recently Developed Algorithms for Eye Movement 
Classification. 

 
Note. X means that an algorithm has the respective property or 
classifies the respective event. BP-AR-HMM = beta-process au-
toregressive HMM (Houpt et al., 2018); NSLR-HMM = naive 
segmented linear regression HMM (Pekkanen & Lappi, 2017); 
I2MC = identification by two-means clustering (Hessels et al., 
2017); U’n’Eye by Bellet et al. (2019); IRF = identification by 
random forest (Zemblys et al., 2018); gazeNet by Zemblys et al. 
(2019); CNN-BLTSM = convolutional neural network bidirec-
tonal long short-term memory (Startsev et al., 2019). 

Theoretically, these three features should separate eye 
movement events, depending on one’s definitions (Hessels 
et al., 2018). In the present work, we assume eye-tracking 
applications with fixed head position (chin-rest), gazing at 
a fixed display with a stationary eye-tracker. Fixations typ-
ically show samples with low velocity and acceleration. 

Due to tremor, we assume that the angle between samples 
should not follow any direction but a uniformly random 
walk. In contrast, saccade samples usually have a high ve-
locity and acceleration and roughly follow the same direc-
tion. PSO samples tend to have moderate velocity and high 
acceleration since they occur between saccades and low-
velocity events (Larsson et al., 2013; Larsson et al., 2015). 
They can be specifically distinguished by their change in 
direction clustered around 180 degrees (Pekkanen & 
Lappi, 2017). Importantly, the feature distribution during 
oscillations depends on the resolution of the gaze record-
ing: Eye-trackers with higher sampling frequency yield 
more changes in direction and more samples in between 
those changes. Those samples in between typically follow 
the same direction. Thus, with high sampling frequencies, 
PSO samples might also cluster around a sample-to-sam-
ple angle of zero with outliers around 180 degrees. Lastly, 
smooth pursuit samples have a moderate velocity but low 
acceleration (due to the smoothness) and like saccades, 
they follow a similar direction (Larsson et al., 2013; Leigh 
& Zee, 2015). Other algorithms focus exclusively on clas-
sifying microsaccades (e.g., Mihali et al., 2017), but as 
stated earlier, these events were not in the scope of 
gazeHMM. The velocity and acceleration signals are com-
puted from the raw gaze position by using a Savitzky-Go-
lay filter (similar to Nyström & Holmqvist, 2010; Savitzky 
& Golay, 1964). The sample-to-sample angle is calculated 
as: 

(1) 

with α(t) := α(t) + 2π for α(t) < 0, and is therefore bound 
between 0 and 2π. Most of the missing data in eye move-
ment data are due to blinks. In gazeHMM, we do not con-
sider blinks as an additional event but rather as another 
source of noise. Therefore, the user can provide an indica-
tor for samples that should be labeled as blinks (e.g., based 
on automated blink detection through the eye-tracker). Of-
ten, eye-trackers record a few samples with unreasonably 
high velocity and acceleration before losing the pupil sig-
nal when a blink occurs. Since these samples could distort 
the classification of saccades in the HMM, gazeHMM re-
moves them heuristically. Before classifying the samples, 
it sets all samples within 50 ms before and after blink sam-
ples as missing. We note that this arbitrary setting is un-
dermining our development goal of requiring as few user 
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settings as possible. However, when we included blinks in 
the generative model itself, the classification of the other 
events became worse. Thus, we justify the heuristic blink 
removal by its accuracy, simplicity, and practicality. Fur-
thermore, we experienced during the development that the 
default setting of 50 ms was appropriate for all data we 
examined. 

The Generative Model 

We denote the three eye movement features by X, Y , 
and Z. Each feature was generated by a hidden state varia-
ble S. Given S, the HMM treats X, Y , and Z as condition-
ally independent. Conditional independence might not ac-
curately resemble the relationship between velocity and 
acceleration (which are naturally correlated). This step was 
merely taken to keep the HMM simple and identifiable. In 
gazeHMM, S can take one of two, three, or four hidden 
states. By selecting appropriate default starting values for 
the states (see Table 4), the algorithm is nudged to associ-
ate them with the same eye movement events. We remark 
that gazeHMM does not guarantee a consistent corre-
spondence between states and events (see the phenomenon 
of label switching in the simulation study discussion). 
However, when applying gazeHMM to eye movement 
data, we did not encounter any problems in this regard. 
Moreover, gazeHMM comes with tools for a ‘sanity 
check’ to confirm whether expected and estimated state 
characteristics match (i.e., the HMM converged to an ap-
propriate solution). Given correct identification, the first 
state represents fixations, the second saccades, the third 
PSOs, and the fourth smooth pursuits. Thus, users can 
choose whether they would like to classify only fixations 
and saccades, or additionally PSOs and/or smooth pur-
suits. HMMs can be described by three submodels: An in-
itial state model, a transition model, and a response model. 
The initial state model contains probabilities for the first 
state of the hidden sequence ρi = P(S1 = i), with i denoting 
the hidden state. In gazeHMM, the initial states are mod-
eled by a multinomial distribution. The evolution of the 
sequence is in turn described by the transition model, 
which comprises the probabilities for transitioning be-
tween different states in the HMM. Typically, probabilities 
to transition from state i to j, aij = P(St+1 = j|St = i), are 
expressed in matrix form (Visser, 2011): 

(2) 

Again, the transition probabilities for each state are 
modeled by multinomial distributions. The response 
model encompasses distributions describing the response 
variables for every state in the model. Previous algorithms 
have used Gaussian distributions to describe velocity and 
acceleration signals (sometimes after log-transforming 
them). However, several reasons speak against choosing 
the Gaussian: First, both signals are usually positive (de-
pending on the computation). Second, the distributions of 
both signals appear to be positively skewed conditionally 
on the states, and third, to have variances increasing with 
their mean. Thus, instead of using the Gaussian, it could 
be more appropriate to describe velocity and acceleration 
with a distribution that has these three properties. In 
gazeHMM, we use gamma distributions with a shape and 
scale parametrization for this purpose: 

(3) 

with i denoting the hidden state. When we developed 
gazeHMM, the gamma distribution appeared to fit eye 
movement data well, but we also note that it might not nec-
essarily be the best fitting distribution for every type of eye 
movement data. We assume that the best fitting distribu-
tion will depend on the task, eye-tracker, and individual 
(see discussion). We emphasize that gazeHMM does not 
critically depend on the choice of distribution and other 
distributions than the gamma can be readily included in the 
model, for example the log-normal has the same required 
properties of being positive and positively skewed. To 
model the sample-to-sample angle, we pursued a novel ap-
proach in gazeHMM: A mixture of von Mises distributions 
(with a mean and concentration parameter) and a uniform 
distribution: 
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(4) 

Both the distributions and the feature operate on the 
full unit circle (i.e., between 0 and 2π), which should lead 
to symmetric distributions. The von Mises is a maximum 
entropy distribution on a circle under a specified location 
and concentration, and can be considered an analogue to 
the Gaussian distribution in circular statistics (Mardia & 
Jupp, 2009). Because we assume fixations to change their 
direction similar to a uniformly random walk (Larsson et 
al., 2013; Larsson et al., 2015), their sample-to-sample an-
gle can be modeled by a uniform distribution. Thus, the 
uniform distribution should distinguish fixations from the 
other events. Taking all three submodels together, the joint 
likelihood of the observed data and hidden states can be 
expressed as: 

(5) 

with λ denoting the vector containing the initial state 
and transition probabilities as well as the response param-
eters. By summing over all possible state sequences, the 
likelihood of the data given the HMM parameters becomes 
(Visser, 2011): 

(6) 

The parameters of the HMM are estimated through 
maximum likelihood using an expectation-maximization 
(EM) algorithm (Dempster et al., 1977; McLachlan & 
Krishnan, 1997). The EM algorithm is generally suitable 
to estimate likelihoods with missing variables. For HMMs, 
it imputes missing with expected values and iteratively 
maximizes the joint likelihood of parameters conditional 
on the observed data and the expected hidden states (i.e., 
eye movement events Visser, 2011). When evaluating the 
likelihood of missing data, gazeHMM integrates over all 
possible values, which results in a probability density of 
one. The sequence of hidden states is estimated through 

the Viterbi algorithm (Forney Jr, 1973; Viterbi, 1967) by 
maximizing the posterior state probability. Parameters of 
the response distributions (except for the uniform distribu-
tion) are optimized on the log-scale (except for the mean 
parameter of the von Mises distribution) using a spectral 
projected gradient method (Birgin et al., 2000) and Bar-
zilai-Borwein step lengths (Barzilai & Borwein, 1988). 
The implementation in depmixS4 allows to include time-
varying covariates for each parameter in the HMM. In 
gazeHMM, no such covariates were included and thus, 
only intercepts were estimated for each parameter. 

Postprocessing 
After classifying gaze samples into states, gazeHMM 

applies a postprocessing routine to the estimated state se-
quence. We implemented this routine because in a few 
cases, gazeHMM would classify samples that were not fol-
lowing saccades as PSOs. 

Constraining the probabilities for nonsaccade events to 
turn into PSOs to zero often caused PSOs not to appear in 
the state sequence at all. Moreover, gazeHMM does not 
explicitly control the duration of events in the HMM which 
occasionally led to unreasonably short events. Thus, the 
postprocessing routine heuristically compensates for such 
violations. This routine relabels one-sample fixations and 
smooth pursuits, saccades with a duration below a mini-
mum threshold (here: 10 ms), and PSOs that follow 
nonsaccade events. 

Samples are relabeled as the state of the previous event. 
Finally, samples initially indicated as missing are labeled 
as noise (including blinks) and event descriptives are com-
puted (e.g., fixation duration). The algorithm is imple-
mented in R (version: 3.6.3 R Core Team, 2020) and uses 
the packages signal (Ligges et al., 2015) to compute veloc-
ity and acceleration signals, depmixS4 (Visser & Speek-
enbrink, 2010) for the HMM, CircStats (Lund & Agosti-
nelli, 2018) for the von Mises distribution, and BB (Vara-
dhan & Gilbert, 2009) for Barzilai-Borwein spectral pro-
jected gradient optimization. The algorithm is available on 
GitHub (https://github.com/maltelueken/gazeHMM). We 
conducted a parameter recovery study that is also available 
on GitHub (https://github.com/maltelu-
eken/gazeHMM_validation) showing that the model re-
covers parameters well when the noise level is not too 
high. 
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Simulation Study 

As a first step to validate the model, we need to ensure 
that fitting the model to the data results in recovering the 
properties of the underlying data generating process. The 
standard procedure in computational modeling is conduct-
ing parameter recovery study (Heathcote et al., 2015). Alt-
hough this step is crucial when developing new models, it 
is often not done or goes unreported in eye-tracking litera-
ture. To counter this trend, we report a simulation study we 
conducted to assess the recovery of parameter values and 
state sequences. The design and analysis of the study were 
preregistered on the Open Science Framework 
(https://doi.org/10.17605/OSF.IO/VDJGP). The majority 
of this section is copied from the preregistration (with 
adapted tenses). The study was divided in four parts. Here, 
we only report the first two parts, which investigate the in-
fluence of parameter variation and adding noise to gener-
ated data on recovery. The other two parts, which address 
starting values and missing data, can be found in the sup-
plementary material https://github.com/maltelu-
eken/gazeHMM_validation). The HMM repeatedly gener-
ated data with a set of parameters (henceforth: true param-
eter values). An example of the simulated data is shown in 
Figure 2. The same model was applied to estimate the pa-
rameters from the generated data (henceforth: estimated 
parameter values). We compared the true with the esti-
mated parameter values to assess whether a parameter was 
recovered by the model. Additionally, we contrasted the 
true states of the HMM with the estimated states to judge 
how accurately the model recovered the states that gener-
ated the data. 

Starting Values 
The HMM always started with a uniform distribution 

for the initial state and state transition probabilities. Ran-
dom starting values for the estimation of shape, scale, and 
concentration parameters were generated by gamma distri-
butions with a shape parameter of αstart = 3 and βstart;i = θi/2, 
with θi being the true value of the parameter to be estimated 
in simulation i ∈ (1,...,I). This setup ensured that the start-
ing values were positive, their distributions were moder-
ately skewed, and the modes of their distributions equaled 
the true parameter values. The mean parameters of the von 
Mises distribution always started at their true values. 

 

 

Figure 2. Example of Data Simulated from gazeHMM. 

 

Design 
In the first part, we varied the parameters of the HMM. 

For models with k ∈ {2,3,4} states, q ∈ {10,15,20} param-
eters were manipulated, respectively. For each parameter, 
the HMM generated 100 data sets with N = 2500 samples, 
and the parameter varied in a specified interval in equidis-
tant steps. This resulted in 100 × (10 + 15 + 20) = 4500 
recoveries. Only one parameter alternated at once, the 
other parameters were set to their default values. All pa-
rameters of the HMM were estimated freely (i.e., there 
were no fixed parameters in the model). We did not ma-
nipulate the initial state probabilities because these are 
usually irrelevant in the context of eye movement classifi-
cation. For the transition probabilities, we only simultane-
ously changed the probabilities for staying in the same 
state (diagonals of the transition matrix) to reduce the com-
plexity of the simulation. The leftover probability mass 
was split evenly between the probabilities for switching to 
a different state (per row of the transition matrix). Moreo-
ver, we did not modify the mean parameters of the von 
Mises distributions: As location parameters, they do not 
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alter the shape of the distribution and they are necessary 
features for the HMM to distinguish between different 
states. We defined approximate ranges for each response 
variable (see supplementary material) and chose true pa-
rameter intervals and default values so that they produced 
samples that roughly corresponded to these ranges. Tables 
2 and 3 show the intervals and default values for each pa-
rameter in the simulation. Parameters were scaled down by 
factor 10 (compared to the reported ranges) to improve fit-
ting of the gamma distributions. We set the intervals for 
shape parameters of the gamma distributions for all events 
to [1,5] to examine how skewness influenced the recovery 
(shape values above five approach a symmetric distribu-
tion). The scale parameters were set so that the respective 
distribution approximately matched the assumed ranges. 
Since the concentration parameters of the von Mises dis-
tribution are the inverse of standard deviations, they were 
varied on the inverse scale. In the second part, we manip-
ulated the sample size of the generated data and the amount 
of noise added to it. 
Table 2. Intervals and Default Parameter Values for the Transi-
tion Model in the Simulation Study. 

 
Note. The initial state probability is denoted by ρi. The tran-

sition probability for staying in the same state is denoted by ai=j 
and the probability for switching to a different state by ai̸=j. The 
number of states in the model is denoted by k. 

The model parameters were set to their default values. 
For models with k ∈ {2,3,4} states and sample sizes of N 
∈ {500,2500,10000}, we generated 100 data sets (100 × 3 
× 3 = 900 recoveries). These sample sizes roughly match 
small, medium, and large eye-tracking data sets for a sin-
gle participant and trial (e.g., with a frequency of 500 Hz, 
the sample sizes would correspond to recorded data with 
lengths of 1 s, 5 s, and 20 s, respectively). To simulate 
noise, we replaced velocity and acceleration values y with 
draws from a gamma distribution with αnoise = 3 and βnoise 

= (y/2)τnoise with τnoise ∈ [1,5] varying between data sets. 
This procedure ensured that velocity and acceleration val-
ues remained positive and were taken from moderately 
skewed distributions with modes equal to the original val-
ues. To angle, we added white noise from a von Mises 

distribution with µnoise = 0 and κnoise ∈ 1/[0.1,10] varying 
between data sets. τnoise and κnoise were increased simulta-
neously in equidistant steps in their intervals. 
Table 3. Intervals and Default Parameter Values for the Response 
Model in the Simulation Study. 

 
Note. Shape parameters are denoted by α, scale parameters 

by β, mean parameters by μ, and concentration parameters by κ. 
The default values for the uniform distribution in state one were 
min = 0 and max = 2π. 

Data Analysis 
For each parameter separately, we calculated the root 

median square proportion deviation (RMdSPD; analogous 
to root median square percentage errors, see Hyndman & 
Koehler, 2006) between the true and estimated parameter 
values: 

(7)

(8) 

where θi is the true parameter value and θˆi is the esti-
mated parameter value for simulation i ∈ (1,...,I), respec-
tively. Even though it was not explicitly mentioned in the 
preregistration, this measure is only appropriate when θi ̸= 
0. This was not the case for some mean parameters of the 
von Mises distributions. In those cases, we used θi = 2π 
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instead. We treated RMdSPD < 0.1 as good, 0.1 ≤ RMd-
SPD < 0.5 as moderate, and RMdSPD ≥ 0.5 as bad recov-
ery of a parameter. By taking the median, we reduced the 
influence of potential outliers in the estimation and using 
proportions enabled us to compare RMdSPD values across 
parameters and data sets. 

Additionally, we applied a bivariate linear regression 
with the estimated parameter values as the dependent and 
the true parameter values as the independent variable to 
each parameter that has been varied on an interval in part 
one. Regression slopes closer to one indicated that the 
model better captured parameter change. Regression inter-
cepts different from zero reflected a bias in parameter es-
timation. 

To assess state recovery, we computed Cohen’s kappa 
(for all events taken together, not for each event sepa-
rately) as a measure of agreement between true and esti-
mated states for each generated data set. Cohen’s kappa 
estimates the agreement between two classifiers account-
ing for the agreement due to chance. Higher kappa values 
were interpreted as better model accuracy. We adopted the 
ranges proposed by Landis and Koch (1977) to interpret 
kappa values. Models that could not be fitted were ex-
cluded from the recovery. 

Results 
Parameter Variation 

In the first part of the simulation, we examined how 
varying the parameters in the HMM affected the deviation 
of estimated parameters and the accuracy of estimated 
state sequences. For the two-state HMM, the recovery of 
parameters and states was nearly perfect (all RMdSPDs < 
0.1, intercepts and slopes of regression lines almost zero 
and one, respectively, and Cohen’s kappa close to 1). 
Therefore, we chose to include the respective figures in the 
supplementary material. 

For the HMM with three states, the RMdSPD is shown 
in Figure 3. When response parameters (other than ai=j) 
were manipulated, the RMdSPDs for a12 and a31 were con-
sistently between 0.1 and 0.5. Varying κ in states two and 
three led to RMdSPDs between 0.1 and 0.5 in the respec-
tive states, which we interpreted as moderate recovery. 
Otherwise, RMdSPDs were consistently lower than 0.1, 
indicating good recovery. 

Inspecting the regression lines between true and esti-
mated parameters (see Figures 4 and 5) revealed strong 
and unbiased linear relationships (intercepts close to zero 
and slopes close to one). In contrast to the two-state HMM, 
larger deviations and more outliers were observed. Co-
hen’s kappa values are presented in Figure 6. For most es-
timated models, the kappa values between true and esti-
mated state sequences were above 0.95, meaning almost 
perfect agreement. However, for some models, we ob-
served kappas clustered around zero or -0.33, which is far 
from the majority of model accuracies. An exploratory ex-
amination of these clusters suggests that state labels were 
switched (see supplementary material). 

The RMdSPDs for the four-state HMM is shown in 
Figure 7. For estimated transition probabilities and αvel and 
βvel parameters in states one and four, RMdSPDs were be-
tween 0.1 and 0.5, suggesting moderate recovery. Also, es-
timated kappa parameters in state four were often moder-
ately recovered when parameters in states two, three, and 
four were varied. Otherwise, RMdSPDs were below 0.1, 
indicating good recovery. Looking at Figures 8 and 9, the 
regression lines between true and estimated parameters ex-
hibit strong and unbiased relationships. However, there 
were larger deviations and more outliers than in the previ-
ous models, especially for states one and four. Cohen’s 
kappa ranged mostly between 0.6 and 0.9, meaning mod-
erate to almost perfect agreement between true and esti-
mated state sequences (see Figure 10). Here, some outly-
ing kappa values clustered around 0.25 and zero. 
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Figure 3. RMdSPD Between True and Estimated Parameters of the Three-State HMM in Part One of the Simulation. 

 

Figure 4. Regression Lines Between True and Estimated Transition Probabilities for the Three-State HMM in Part One of the Simulation. 
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Figure 5. Regression Lines Between True and Estimated Response Parameters of the Three-State HMM in Part One of the Simula-
tion. 

Figure 6. Cohen’s Kappa Depending on Which Parameter of the Three-State HMM Has Been Manipulated in Part One of the Simulation. 
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Figure 7. RMdSPD between true and estimated parameters of the four-state HMM in part one of the simulation. 

Figure 8. Regression Lines Between True and Estimated Response Parameters of the Four-State HMM in Part One of the Simulation 
(transition parameters). 
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Figure 9. Regression Lines Between True and Estimated Response Parameters of the Four-State HMM in Part One of the Simulation.  

 

Sample Size and Noise Variation 

In the second part, we varied the sample size of the 
HMM and added noise to the generated data. For the two-
state HMM, the RMdSPDs were above 0.5 for βvel and βacc 

in both states (see Figure 11), suggesting bad recovery. 
The other estimated parameters showed RMdSPDs close 
to or below 0.1, which means they were  

 

recovered well. Increasing the sample size seemed to im-
prove RMdSPDs for most parameters slightly. For βvel and 
βacc in both states, models with 2500 samples had the low-
est RMdSPDs. Accuracy measured by Cohen’s kappa was 
almost perfect with kappa values very close to one (see 
Figure 12, left plot). 
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Figure 10. Cohen’s Kappa Depending on Which Parameter of the Four-State HMM Has Been Manipulated in Part One of the 
Simulation.  

 

Figure 11. RMdSPD Between True and Estimated Parameters of the Two-State HMM in Part Two of the Simulation. 
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Figure 12. Cohen’s Kappa Depending on the Variation of Noise 
Added to the Simulated Data. 

 

Figure 13. RMdSPD Between True and Estimated Parameters 
of the Three-State HMM in Part Two of the Simulation. 

 

Figure 14. RMdSPD Between True and Estimated Parameters 
of the Four-State HMM in Part Two of the Simulation. 

 

For three states, the RMdSPDs for the βvel and βacc were 
above 0.5 in all three states (see Figure 13), indicating bad 
recovery. Again, the other estimated parameters were be-
low or close to 0.1, only a12 and a31 with 500 samples were 
closer to 0.5. For most parameters across all three states, 
models with higher sample sizes had lower RMdSPDs. 
The state recovery of the estimated models was almost per-
fect with most kappa values above 0.95 (see Figure 12, 
middle plot). Several outliers clustered around kappa val-
ues of zero and -0.33. 

RMdSPDs regarding the four-state HMM are dis-
played in Figure 14. For states one and four, values for 
most parameters (including all transition probabilities) 
were above 0.5, suggesting bad recovery. Similarly, βvel 

and βacc in states two and three showed bad recovery. For 
states two and three, higher sample sizes showed slightly 
lower RMdSPDs. As in the previous part, most Cohen’s 
kappa values ranged between 0.6 and 0.9, meaning sub-
stantial to almost perfect agreement between true and esti-
mated states (Figure 12, right plot). Multiple outliers clus-
tered around 0.25 or zero. 

Discussion 

In the simulation study, we assessed the recovery of 
parameters and hidden states in the generative model of 
gazeHMM. Simulations in part one demonstrated that the 
HMM recovered parameters very well when they were ma-
nipulated. Deviations from true parameters were mostly 
small. In the four-state model, estimated transition proba-
bilities for state one and four deviated moderately. More-
over, the HMM estimated state sequences very accurately 
with decreasing accuracy for the four-state model. In the 
second part, noise was added to the generated data and the 
sample size was varied. Despite noise, the generative 
model was still able to recover most parameters well. 
However, in the four-state model, the parameter recovery 
for states one and four substantially decreased (even for 
low amounts of noise, see supplementary material). In the 
three- and four-state models, scale parameters of gamma 
distributions were poorly recovered (also even for low 
noise levels, see supplementary material). Increasing the 
sample size in the HMM slightly improved the recovery of 
most parameters. The state recovery of the model was 
slightly lowered when more states were included, but it 
was neither affected by the noise level nor the sample size. 
In the third part (included in the supplementary material), 
we showed that the variation in starting values used to fit 
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the HMM did not influence parameter and state recovery. 
Missing data (in part four, also in the supplementary ma-
terial) did not affect the parameter recovery but linearly 
decreased the recovery of hidden states. In all four parts, 
we observed clusters of outlying accuracy values. In part 
three, we exploratorily examined these clusters and rea-
soned that they can be attributed to label switching (i.e., 
flipping one or two state labels resolved the outlying clus-
ters). 

In general, the generative model recovers parameters 
and hidden states well and, thus, we conclude that it can be 
used in our classification algorithm. However, the recov-
ery decreases when a fourth state (i.e., smooth pursuit) is 
added to the model and, especially with four states, many 
parameters in the HMM are vulnerable to noise. In the next 
sections, we will see how noise that is present in real eye 
movement data affects the performance of gazeHMM. 

A limitation of this simulation study is that it only con-
cerns the statistical part of the model, and investigates the 
ability of the model to recover the parameter values and 
state sequences. As such, the simulation study is an imple-
mentation as well as feasibility check of the method. It 
does not, however, test accuracy of the final event labels, 
which are determined using the modeling output and post-
processing steps. Thus, the simulation might not be en-
tirely realistic: for example, the generative statistical 
model is not constrained to allow PSO events follow only 
saccade events, and so this feature of the process would 
not be accounted for in the simulation results. 

 

Validation Study 
To validate gazeHMM, we applied the algorithm on 

two benchmark data sets. As starting values, we used ρ = 
1/k for the initial state model as well as ai=j = 0.9 and ai≠j = 
0.1/k for the transition model. The values for the response 
model are displayed in Table 4. For a fifth eye movement 
event, we chose starting values that would enable the 
HMM to split any other event into two subevents (e.g., fix-
ations into drift and microsaccades). In contrast to the sim-
ulation study, generating random starting values often led 
to bad model fits and label switching between states. To 
improve the fitting of the gamma distributions, velocity 
and acceleration signals were scaled down by factor 100, 
and so were the starting values for their gamma distribu-
tions. 

Table 4. Starting Values for the Response Model in the Valida-
tion Study. 

 
Note. Starting values for velocity and acceleration signals are 

shown before scaling down by factor 100. Shape parameters are 
denoted by α, scale parameters by β, mean parameters by μ, and 
concentration parameters by κ. 

Data Sets 
We chose two data sets for validation: One was pub-

lished in a study by Andersson et al. (2017) and has been 
widely used for validation purposes (e.g., Pekkanen & 
Lappi, 2017). It contains eye-tracking data from three con-
ditions: A static condition, where subjects had to look 
freely at images, and two dynamic conditions, where they 
had to follow a constantly moving dot or objects in a video. 
The data were sampled with 500 Hz and two human coders 
(MN and RA) labeled them as belonging to six different 
eye movement events: Fixation, saccade, PSO, smooth 
pursuit, blink, or other. Andersson et al. (2017) used the 
data to compare 10 different classification algorithms. We 
adopted their results to compare these 10 algorithms and 
the two human coders with gazeHMM. We used the orig-
inal data from the study but removed two recordings from 
the moving dots condition because they majorly contained 
samples labeled as “other” or blinks. Moreover, the record-
ings could not be matched to the results obtained by An-
dersson et al. (2017). Two recordings from the moving 
dots conditions were substantially longer than the other re-
cordings in the condition and contained more samples than 
were classified by the algorithms in the study by Anders-
son et al. (2017). Since no sample indices were available 
in the data set, we could not match samples from the two 
recordings to the labels assigned by the algorithms and 
therefore decided to remove them from the analysis. We 
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do not expect the conclusions of our analyses to depend on 
these two data sets. 

The second data set was published in Ehinger et al. 
(2019) and has to our knowledge not yet been used for val-
idation. Here, we only took tasks four and five out of 10 
tasks because these are qualitatively different from the first 
data set. In task four, subjects were instructed to fixate a 
central target for 20 s. Task 5 was set up similarly, but sub-
jects had to blink when they heard one out of seven beeps 
(with a beep duration of 100 ms and 1.5 s intervals in be-
tween). Eye movements were recorded with 500 Hz for 10 
participants and 250 Hz for 5 participants due to a tech-
nical mistake (Ehinger et al., 2019). We used only data ob-
tained by the EyeLink (SR Research Ltd., Ontario, Can-
ada) eye-tracker and excluded recording using PupilLabs 
glasses, as wearable eye-tracker violates our methods’ def-
inition of frame of reference (Hessels et al., 2018). 

Data Analysis 
Successful validation of gazeHMM was determined by 

two approaches: First, we applied gazeHMM with genera-
tive models containing 1-5 states to both data sets. The fits 
of the generative models were compared using Schwarz 
weights (Wagenmakers & Farrell, 2004), a conversion of 
the BIC (Schwarz, 1978) into model weights. They can be 
interpreted as the probability of a model having generated 
the data compared to the competing models. For the static 
condition in the Andersson et al. (2017) data set, we ex-
pected the generative model with three states (fixation, 
saccade, and PSO), and for the dynamic conditions the 
model with four states (incl. smooth pursuit) to display the 
highest Schwarz weight. Regarding the Ehinger et al. 
(2019) data set, we assumed that the one-state model (only 
fixation) would show the highest weights for both tasks. 

The algorithm was applied separately to every subject, 
condition/task. For the Andersson et al. (2017) data set, all 
generative models were successfully fitted, whereas, for 
the Ehinger et al. (2019) data set, it was only 780 out of 
900 models (87%, 60 models per task). The erroneous 
model fits in the Ehinger et al. (2019) data occurred when 
applying HMMs with three states or more. We attribute 
them to low variance in the data (i.e., it is difficult to fit 
data where subjects only fixate the same location with an 
HMM that assumes three or more states/events). 

Second, we compared gazeHMM to other algorithms 
and human coders. We applied our algorithm with a three-
state generative model to the static condition in the 

Andersson et al. (2017) data set, and with a four-state 
model to the dynamic conditions. For comparison criteria, 
we followed Andersson et al. (2017): We calculated the 
RMSD of event durations and counts between all algo-
rithms and the average of the two human coders. 

Our results differ slightly from the original study be-
cause we excluded two recordings (leading to fewer 
events) and calculated the event durations as Dur(e) = 
max(te) − max(te−1), where te is the vector of sample time 
stamps for the event e. Cohen’s kappa was calculated for 
each event as the binary agreement between the algorithms 
and the average of the human coders. Lastly, the overall 
disagreement indicated which samples were classified dif-
ferently by the algorithms compared to the average of the 
human coders across all events. The human coders were 
compared directly to each other. 

Results 
Model Comparison 

Examining the Schwarz weights displayed in Figure 
15, we observed that the five-state generative model 
showed the highest weights in all three conditions. Only in 
the moving dots condition, two subjects displayed the 
highest weights for the four-, and one subject for the three-
state model. In sum, we concluded that the five-state gen-
erative model has most likely generated the Andersson et 
al. (2017) data, opposing our expectations. Because the 
Ehinger et al. (2019) data set showed a similar pattern, we 
included the results for this data in the supplementary ma-
terial. 

A recent model recovery study showed that the BIC 
tended to prefer overly complex HMMs when they were 
misspecified (e.g., the conditional independence assump-
tion was violated; Pohle et al., 2017). Instead, the inte-
grated completed likelihood (ICL) criterion 

(Biernacki et al., 2000) performed better at choosing 
the correct data-generating model. Therefore, we post hoc 
computed the weighted ICL criterion (analogous to 
Schwarz weights) for the models fitted to the Andersson et 
al. (2017) data set. Using the ICL as the model selection 
criterion yielded very similar results to the BIC (see sup-
plementary material). The preference for the five-state 
generative model was even more consistent across condi-
tions and subjects. 

Figure 15. Schwarz Weights Displayed for Each Subject and 
HMMs With Different Numbers of States. 
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Comparison to Other Algorithms 

As displayed in Table 5, gazeHMM showed a rela-
tively low RMSD for fixations in the static condition com-
pared to the other algorithms that were applied to the An-
dersson et al. (2017) data set. The lower RMSD for fixa-
tions indicated more similar classification to the human 
coders in terms of their mean and SD duration as well as 
the number of classified fixations. Oppositely, for fixa-
tions in the dynamic conditions, the RMSD of gazeHMM 
was one of the highest among the compared algorithms, 
suggesting substantial differences to the human coders. It 
can be seen that gazeHMM classified a much larger num-
ber of fixations with very short durations. For saccades, 
gazeHMM had a relatively high RMSD for the static con-
dition but the lowest RMSD for the moving dots condition, 
and a moderate value for the video condition (see Table 6). 
The deviation was mostly because gazeHMM classified a 
higher number of saccades than the human coders. Only 
two other algorithms classified PSOs (NH and LNS; Nys-
tröm & Holmqvist, 2010; Larsson et al., 2013). Here, 
gazeHMM showed a consistently higher RMSD than LNS 
and lower RMSD than NH (see Table 7). Our algorithm 
classified shorter and more PSOs than the human coders. 
No other algorithm parsed smooth pursuits, but the RMSD 
for gazeHMM was higher than among human coders (see 
Table 8). Again, it classified a much larger number of 
smooth pursuits with short durations. 

Table 9 contains the sample-to-sample agreement be-
tween the algorithms and human coders measured by 

Cohen’s kappa. For fixations, gazeHMM showed one of 
the highest agreements for static and the highest agree-
ments for dynamic data. The absolute agreement was sub-
stantial for the static and slight to fair for the dynamic con-
ditions (Landis & Koch, 1977). For saccades, gazeHMM 
had the lowest agreement for the static condition and mod-
erate agreement for the dynamic conditions. In absolute 
terms, the agreement was fair to moderate. Concerning 
PSOs, gazeHMM showed higher agreement than NH in 
the image and video conditions but consistently lower 
agreement compared to LNS. The absolute agreement was 
slight (image) to moderate (video). Lastly, the agreement 
for smooth pursuit was lower compared to the human cod-
ers and fair in absolute values. 

Concerning overall disagreement, Figure 16 shows that 
gazeHMM had less disagreement to the human coders 
across all events for the dynamic conditions. For the static 
condition, we interpreted the difference to most other al-
gorithms as slight (Med(∆) = 2.65%), but for the dynamic 
conditions, as substantial (video: Med(∆) = 17.19%) and 
large (dots: Med(∆) = 50.04%). 

To explore which events gazeHMM classified differ-
ently than the average human coder, we looked at the con-
fusion matrix between the two (see Table 10). It can be 
seen that gazeHMM classified many fixation samples as 
smooth pursuit samples and vice versa. Moreover, it con-
fused many PSOs with saccade samples. The heuristic to 
detect blinks seemed to work successfully since 
gazeHMM classified most blink samples in agreement 
with human coding and only a minor part was mistaken for 
saccades. Inspecting an example of gaze data classified by 
gazeHMM compared to human coding leads to a similar 
notion: Figure 17 illustrates that gazeHMM is rapidly 
switching between classifying fixations and smooth pur-
suits, whereas the human coder identified one large 
smooth pursuit event. In the example, gazeHMM also dis-
agrees with the human coder regarding the start of the 
PSO. 
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Table 5. Fixation Duration Descriptives and RMSD Between Algorithms and Human Coders. 

 
Note. Durations are displayed in milliseconds. gazeHMM-3 classified three and gazeHMM-4 classified four events. RMSD = root 

mean square deviation. Table design adapted from Andersson et al. (2017). 

 

Table 6. Saccade Duration Descriptives and RMSD Between Algorithms and Human Coders. 

 
Note. Durations are displayed in milliseconds. gazeHMM3 classified three and gazeHMM-4 classified four events. RMSD = root 

mean square deviation. Table design adapted from Andersson et al. (2017). 
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Table 7. PSO Duration Descriptives and RMSD Between Algorithms and Human Coders 

 
Note. Durations are displayed in milliseconds. gazeHMM-3 classified three and gazeHMM-4 classified four events. RMSD = root 
mean square deviation. Table design adapted from Andersson et al. (2017). 
 
Table 8. Smooth Pursuit Duration Descriptives and RMSD Between gazeHMM and Human Coders. 

 
Note. Durations are displayed in milliseconds. gazeHMM-3 classified three and gazeHMM-4 classified four events. RMSD = root 
mean square deviation. Table design adapted from Andersson et al. (2017). 
 
Table 9. Cohen's Kappa Between Human Coders and Algorithms for Different Conditions and Events. 

 
Note. gazeHMM-3 classified three and gazeHMM-4 classified four events. Table design adapted from Andersson et al. (2017).
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Table 10. Confusion Matrix Between gazeHMM (rows) and 
Human Coders (columns) for Different Conditions. 

 
Note. gazeHMM classified four events and blinks. Values in-

dicate proportions of samples where gazeHMM and human cod-
ers agree divided by the total number of samples classified by the 
human coders for each event (i.e., columns sum to one). 

Figure 16. Disagreement Between Algorithms and Human 
Coders for Different Conditions 

 

Note. gazeHMM-3/4 classified three events for image data and 
four events for moving dots/video data. Algorithms are displayed 
in order according to mean disagreement over conditions 
(least/left to highest/right). 

Figure 17. Classification of Example Data by Andersson et al. 
(2017). 

 
Note. Data displayed as x-, and y-coordinates (in deg, upper two 
panels), velocity (in deg/s, middle panel), acceleration (in deg/s2, 
fourth panel), and sample-to-sample (relative) angle (in radians, 
bottom panel). The top-most panel displays event classification 
by gazeHMM,coderMN, and coderRA, highlighted by color. 
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General Discussion 
In this report, we presented gazeHMM, a novel algo-

rithm for classifying gaze data into eye movement events. 
The algorithm models velocity, acceleration, and sample-
to-sample angle signals with gamma distributions and a 
mixture of von Mises and a uniform distribution. An HMM 
serves as the generative model of the algorithm and classi-
fies the gaze samples into fixations, saccades, and option-
ally PSOs, and/or smooth pursuits. We showed in a simu-
lation study that the generative model of gazeHMM recov-
ered parameters and hidden state sequences well. How-
ever, adding a fourth event (i.e., smooth pursuit) to the 
model and introducing even small amounts of noise to the 
generated data led to decreased parameter recovery. Im-
portantly, however, it did not lead to decreased hidden 
state recovery. Thus, the classification of the generative 
model should not be negatively affected by noise. Further-
more, we applied gazeHMM with different numbers of 
states to benchmark data by Andersson et al. (2017) and 
compared the model fit. The model comparison revealed 
that a five-state HMM had consistently most likely gener-
ated the data. This result opposed our expectation that a 
three-state model would be preferred for static and a four-
state model for dynamic data. When comparing gazeHMM 
against other algorithms, gazeHMM showed mostly good 
agreement to human coding. On one hand, it outperformed 
the other algorithms in the overall disagreement with hu-
man coding for dynamic data. On the other hand, 
gazeHMM confused a lot of fixations with smooth pur-
suits, which led to rapid switching between the two events. 
It also tended to mistake PSO samples as belonging to sac-
cades. 

Considering the results of the simulation study, it 
seems reasonable that adding the smooth pursuit state to 
the HMM decreased parameter and state recovery: It is the 
event that is overlapping most closely with another event 
(fixations) in terms of velocity, acceleration, and sample-
to-sample angle. The overlap can cause the HMM to con-
fuse parameters and hidden states. The decrease in param-
eter recovery (especially for scale parameters) due to noise 
shows that the overlap is enhanced by more dispersion in 
the data. The scale parameters might be particularly vul-
nerable to extreme data points. Despite these drawbacks, 
the recovery of the generative model in gazeHMM seems 
very promising. The simulation study gives also an ap-
proximate reference for the maximum recovery of hidden 
states that can be achieved by the HMM (Cohen’s kappa 

values of ~1 for two, ~0.95 for three, and ~0.8 for four 
events). 

The model comparison on the benchmark data sug-
gested that the generative model in gazeHMM is not yet 
optimally specified for eye movement data. There are sev-
eral explanations for this result: 

The model subdivided some events into multiple 
events, or found additional patterns in the data that do not 
fit the other four events the model was built for. Eye move-
ment events can be divided into subevents. For example, 
fixations consist of drift and tremor movements (Du-
chowski, 2017) and PSOs encompass dynamic, static, and 
glissadic over- and undershoots (Larsson et al., 2013). A 
study on a recently developed HMM algorithm supports 
this explanation: Houpt et al. (2018) applied the unsuper-
vised BP-AR-HMM algorithm to the Andersson et al. 
(2017) data set and classified more distinct states than the 
human coders. Some of the states classified by BP-AR-
HMM matched the same event coded by humans. Since 
the subevents are usually not interesting for users of clas-
sification algorithms, the ability of HMMs to classify 
might limit their ability to generate eye movements. 

Model selection criteria are generally not appropriate 
for comparing HMMs with different numbers of states. 
This argument has been discussed in the field of ecology 
(see Li & Bolker, 2017), where studies found that selection 
criteria preferred models with more states than expected 
(similar to the result of this study; e.g., Langrock et al., 
2015). Li and Bolker (2017) explain this bias with the sim-
plicity of the submodels in HMMs: Initial state, transition, 
and response models for each state are usually relatively 
simple. When they do not describe the processes in the re-
spective states accurately, the selection criteria compen-
sate for that by preferring a model with more states. Thus, 
there are not more latent states present in the data, but the 
submodels of the HMM are misspecified or too simple, po-
tentially leading to spurious, extra, states being identified 
in the model selection process, see discussion and potential 
solutions in Kuijpers et al. (2021). Correcting for model 
misspecifications led to a better model recovery in studies 
on animal movements (Langrock et al., 2015; Li & Bolker, 
2017). However, Pohle et al. (2017) showed in simulations 
that the ICL identified the correct model despite several 
misspecifications. It has to be noted that the study by Pohle 
et al. (2017) only used data generating models with two 
states, so it needs to be verified whether this approach will 
work in the larger models that are being studied here. 



Journal of Eye Movement Research  Lüken, M., Kucharský, Š., & Visser, I. (2022) 
15(1):4 Characterising eye movement events with an unsupervised hidden markov model 

  24 

The submodels of gazeHMM were misspecified. Pohle 
et al. (2017) identified two scenarios in which model re-
covery using the ICL did not give optimal results: Outliers 
in the data and inadequate distributions in the response 
models. Both situations could apply to gazeHMM and eye 
movement data: Outliers occur frequently in eye-tracking 
data due to measurement error. Choosing adequate re-
sponse distributions in HMMs is usually difficult and can 
depend on the individual and task from which the data are 
obtained (Langrock et al., 2015). Moreover, gazeHMM 
only estimated intercepts for all parameters and thus, no 
time-varying covariates were included (cf. Li & Bolker, 
2017). This aspect could indeed oversimplify the complex 
nature of eye movement data. 

Comparing gazeHMM to other algorithms on bench-
mark data showed that gazeHMM showed good agreement 
with human coders. However, the evaluation criteria 
(RMSD of event durations, sample-to-sample agreement, 
and overall disagreement) yielded different results. The 
fact that gazeHMM outperformed all other algorithms re-
garding the overall disagreement can be because it is the 
only algorithm classifying all five events the human coders 
classified; algorithms that do not classify certain type of 
even will, by definition, disagree with human coders on 
samples that they classified as such. As the number of sam-
ples in different events depending on the stimuli (e.g., a lot 
of smooth pursuit in moving dots condition but virtually 
none in static images), different methods might be penal-
ized differently depending on the condition and type of 
event they do not classify. Nevertheless, Cohen’s kappa 
values of 0.67 (fixations - image) or 0.62 (saccades - mov-
ing dots) indicate substantial agreement to human coders, 
especially in light of the maximum references from the 
simulation study. At this point, it is important to mention 
that human coding should not be considered a gold stand-
ard in event classification: Hooge et al. (2018) observed 
substantial differences between coders and within coders 
over time. Despite these differences, they recommend 
comparisons to human coding to demonstrate the perfor-
mance of new algorithms and to find errors in their design. 

Advantages of gazeHMM 
Given the four proposed goals that gazeHMM should 

fulfill, we can draw the following conclusions: Even 
though gazeHMM does require some parameter settings 
(in the pre- and postprocessing), it estimates many param-
eters adaptively from the data; as a result, compared to 
many other algorithms, it reduces the influence of human 

judgement and researcher decisions on the classification 
result. The parameters are merely included to compensate 
for the drawbacks of the generative model and their default 
values should be appropriate for most applications. A ma-
jor advantage of gazeHMM is that it does not require hu-
man-labeled data as input. Instead, it estimates all param-
eters and hidden states from the data. Since human coding 
is quite laborious, difficult to reproduce, and by times in-
consistent (as noted earlier, Hooge et al., 2018), this prop-
erty makes gazeHMM a good alternative to other recently 
developed algorithms that require human coded input 
(Bellet et al., 2019; Pekkanen & Lappi, 2017; Zemblys et 
al., 2018). This could also explain why the agreement to 
human coding is lower for gazeHMM than for algorithms 
that learn from human-labeled data. Another advantage of 
gazeHMM is its ability to classify four eye movement 
events, namely fixations, saccades, PSOs, and smooth pur-
suit. Whereas most algorithms only parse fixations and 
saccades (Andersson et al., 2017), few classify PSOs (e.g., 
Zemblys et al., 2018), and even less categorize smooth 
pursuits (e.g., Pekkanen & Lappi, 2017). However, includ-
ing smooth pursuits in gazeHMM led to some undesirable 
classifications on benchmark data, resulting in rapid 
switching between fixation and smooth pursuit events. 
Therefore, we recommend using gazeHMM with four 
events only for exploratory purposes. Without smooth pur-
suits, we consider gazeHMM’s classification as appropri-
ate for application. Lastly, its implementation in R using 
depmixS4 (Visser & Speekenbrink, 2010) should make 
gazeHMM a tool that is easy to use and customize for in-
dividual needs. 

To conclude, our methods shows promising results in 
terms of ability to classify various eye movement events, 
does not require previously labeled data, and reduces the 
number of arbitrary settings determined by the researcher. 
As such, in case the ultimate goal is event classification, 
the method is a good candidate for initial rough estimate 
of the event classification, which can be further inspected 
and refined, if necessary. Compared to other approaches, 
the method is also easily extensible and modifiable, allows 
for model comparison, and as such offers applications 
where broadening our understanding of eye movement is 
of primary interest instead of the event classification itself. 

Future Directions 
Despite its advantages, there are several aspects in 

which gazeHMM can be improved: First, a multivariate 
distribution could be used to account for the correlation 
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between velocity and acceleration signals (for examples, 
see Balakrishnan & Lai, 2009). Potential problems of this 
approach might be choosing the right distribution and con-
vergence issues (due to a large number of parameters). An-
other option to model the correlation could be to include 
one of the response variables as a covariate of the other. 

Second, instead of the gamma being the generic (and 
potentially inappropriate) response distribution, a non-par-
ametric approach could be used: Langrock et al. (2015) use 
a linear combination of standardized B-splines to approxi-
mate response densities, which led to HMMs with fewer 
states being preferred. This approach could potentially 
combat the problem of unexpectedly high-state HMMs be-
ing preferred for eye movement data but would also under-
mine the advantages of using a parametric model. 

Third, one solution to diverging results when compar-
ing gazeHMM with different events could be model aver-
aging: Instead of using the maximum posterior state prob-
ability of each sample from the preferred model, the prob-
abilities could be weighted according to a model selection 
criterion (e.g., Schwarz weight) and averaged. Then, the 
maximum averaged probability could be used to classify 
the samples into events. This approach could lead to a 
more robust classification because it reduces the overcon-
fidence of each competing model and easily adapts to new 
data (analogous to Bayesian model averaging; Hinne et al., 
2020). However, the model comparison for gazeHMM of-
ten showed extreme weights for a five-state model, which 
would lead to a very limited influence of the other models 
in the averaged probabilities. 

Fourth, including covariates of the transition probabil-
ities and response parameters could improve the fit of 
gazeHMM on eye movement data. As pointed out earlier, 
just estimating intercepts of parameters could be too sim-
ple to model the complexity of eye movements. A candi-
date for such a covariate might be a periodic function of 
time (Li & Bolker, 2017) which could, for instance, cap-
ture the specific characteristics of saccades, e.g., the ten-
dency of increasing velocity at the start of the saccade and 
decreasing velocity at the end of the saccade. Whether co-
variates are improving the fit of submodels to eye move-
ment data could in turn be assessed by inspecting pseudo-
residuals and autocorrelation functions (Zucchini et al., 
2016). 

Fifth, to avoid rapid switching between fixations and 
smooth pursuits as well as unreasonably short saccades, 

gazeHMM could explicitly model the duration of events. 
This can be achieved by setting the diagonal transition 
probabilities to zero and assign a distribution of state du-
rations to each state (Bishop, 2006). Consequently, the du-
ration distributions of fixations and smooth pursuits could 
differ from saccades and PSOs. This extension of the 
HMM is also called the hidden semi-Markov model and 
has been successfully used by Mihali et al. (2017) to clas-
sify microsaccades. Drawbacks of this extension are 
higher computational costs and difficulties with including 
covariates (Zucchini et al., 2016). 

Lastly, allowing constrained parameters in the HMM 
could replace some of the postprocessing steps in 
gazeHMM. This could potentially be achieved by using 
different response distributions or parameter optimization 
methods. Moreover, switching from the maximum likeli-
hood to the Markov chain Monte Carlo (Bayesian) frame-
work could help to avoid convergence problems with con-
strained parameters, but would also open new research 
questions about suitable priors for HMM parameters in the 
eye movement domain, efficient sampling plans, account-
ing for label switching, and computational efficiency, 
naming only a few. 

Conclusion 
In the previous sections, we developed and tested a 

generative, HMM-based algorithm called gazeHMM. 
Both a simulation and validation study showed that 
gazeHMM is a suitable algorithm for simulating, under-
standing and classifying eye movement events. For smooth 
pursuits, the classification is not optimal and thus not yet 
recommended. On one side, the algorithm has some ad-
vantages over concurrent event classification algorithms, 
not relying on human-labeled training data being the most 
important one. On the other side, it is not able to identify 
expected events in model comparisons. The current model 
constitutes a proof-of-principle that a generative, maxi-
mum-likelihood based approach can provide interpretable 
and reliable results that are at least as good as other ap-
proaches under some circumstances. The largest ad-
vantage of this approach is however that it provides the 
possibility to rigorously test progress in developing exten-
sions and improvements. 
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