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ABSTRACT 

The Dynamic Positioning (DP) System is a complex system with significant levels of 

integration between many sub-systems to perform diverse control functions. The extent of 

information managed by each sub-system is enormous.  The sophisticated level of integration 

between sub-systems creates an array of possible failure scenarios. A systematic analysis of all 

failure scenarios would be time-consuming and for an operator to handle any such catastrophic 

situation is hugely demanding. There are many accidents where a failure in a DP system has 

resulted in fatalities and environmental pollution. Therefore, the reliability assessment of a DP 

system is critical for safe and efficient operation. The existing methods are time-consuming, 

involving a lot of human effort which imposes built-in uncertainty and risk in the system during 

complex operation. 

 

This thesis has proposed a framework for a state-of-the-art decision-making tool to assist an 

operator and prevent incidents by introducing a new concept of Dynamic Positioning – 

Reliability Index (DP-RI). The DP-RI concept covers three phases, leading to technical 

suggestions for the operator during complex operations, which are defined as Data, 

Knowledge, Intelligence, and Action. The proposed framework covers analytics including 

descriptive, diagnostic, predictive and prescriptive analytics. The first phase of the research 

involves descriptive and diagnostic analytics by performing big data analytics on the available 

databases to identify the sub-systems which play critical roles in DP system functionality. The 

second phase of the research involves a novel approach where predictive analytics are used for 

the weight assignment of the sub-systems, dynamic reliability modelling and offline and real-

time forecasting of DP-RI. The third phase introduces innovative prescriptive analytics to 

provide possible technical solutions to the operator in a short time during failures in the system 

to enable them to respond quickly and prevent DP incidents. Thus, the DP-RI acts as an 

innovative state-of-the-art decision-making tool which can suggest possible solutions to the 

DPO by using analytics on the knowledge database. The results proved that it is a useful tool 

if implemented on an actual vessel with diligent integration with the DP control system. 
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Dynamic Positioning System: The equipment, and hence the ship, knows where it is at all 

times. It knows this because it knows where it isn't. By subtracting where it is from where it 

isn't (or where it isn't from where it is, depending on which is the greater), it obtains a 

difference or deviation. The DP system uses deviation to generate corrective commands to 

steer the ship from a position where it is to a position where it isn't. The ship arrives at the 

position where it wasn't; consequently, the position where it was is now the position where it 

wasn't. In the event that the position where it is now is not the same as the position where it 

originally wasn't, the ship will acquire a variation. The variation is the difference between 

where the ship is and where the ship wasn't. If the variation is considered to be a significant 

factor, it too may be corrected by the DP. The ship must not know where it was. The "the 

thought process" of the DP is as follows:- because the variation has modified some of the 

navigation information, it is not sure where it is. However, it is sure where it isn't and knows 

where it was. It now subtracts where it should  be from where it wasn't (or vice versa), and by 

differentiating this from the algebraic difference from where it shouldn't be and where it was, 

it is now able to obtain the difference between its variation, the difference is called the 

error......... 

         (Courtesy : Kongsberg) 
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1. Introduction 

In today’s world of challenging environments where offshore and marine vessels operate with 

high precision within metres of each other and with no options for mooring, the need for safe 

and reliable positioning is particularly important to prevent injury to people and damage to 

property. In this high pressure and intense environment, the potential for risk and the 

probability of accidents has increased. The consequences of loss of position can be severe, so 

the need for reliable and safer systems is more significant than ever [1, 2]. The Dynamic 

Positioning (DP) system is the only viable option for safe and reliable vessel position control 

[2, 3]. The Dynamic Positioning system has been under development since 1961 and as the oil 

and gas industry operates in deeper and deeper waters using vessels without Dynamic 

Positioning is not feasible. An ultra-deepwater development would be impossible without 

dynamic positioning. Today virtually all the offshore operations are one way or another 

dependent on Dynamic Positioning systems.  For vessels with DP systems, the most critical 

safety incidents are loss of position and/or heading [4, 5, 3, 6]. Therefore, it is necessary to 

design DP systems to be fault tolerant and fault resistant i.e. to be more reliable [1]. This is to 

ensure that the complex vessel, operating in a harsh environment, could be safer, with greater 

reliability and efficiency. 

With technological evolution, the Dynamic Positioning system diversified its application to 

various types of vessel including semi-submersible drilling rigs, drill-ships, self-propelling 

jack-up drilling rigs, Floating Production Supply and Offloading (FPSO), Offshore Support 

Vessels (OSV), pipe and cable-laying vessels, rock dumping vessels, shuttle tankers, crane and 

heavy lifting vessels, minesweeping vessels, dredging vessels, cruise ships, floating 

accommodation vessels/rigs and yachts [4]. DP is no longer just about positioning, but about 

following a predefined track or staying within a defined area. Loss of position / heading 

indicates that the vessel is not able to stay in the pre-defined stationary position or path. The 

loss of position may be due to drive off,  drift off or a large excursion  [7].  The reliability of 

DP systems plays a very important role in deciding on the complex offshore marine operation 

of vessels. The reliability directly depends on various aspects such as equipment selection, 

design, architecture, functionality, integration, verification, commissioning, operation, 

maintenance, codes, standards, rules and regulations [5].   
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 Background 

The DP System of a vessel involves complex interactions between a large number of sub-

systems. Each sub-system plays a unique role in the continuous overall DP function for safe 

and reliable operation of the vessel [4]. The level of complexity and sophistication of DP 

systems has developed significantly over the last few decades. Recent technological 

advancement has enabled maritime vessels to operate safely and, at the same time, increased 

the level of autonomy and complexity. During regular operation, the main activities for the 

Dynamic Positioning Operator (DPO) are to monitor the DP system status and perform 

adjustment for the required positioning and heading. However, during complex operations or 

failures in one of the sub-systems, the DPO is forced into a critical situation and has to react 

within a limited time to fix the problem to prevent an accident. The primary causes for DP 

incidents are presented in Table 1-1, as reported by International Maritime Contractor 

Association (IMCA) from 1994-2019, which indicates that Human / Operator Error is one of 

the most significant contributors to DP related incidents in the Offshore, Marine, Oil and Gas 

industry [5].  

Table 1-1 DP Sub-Systems failure rate acting as main / primary cause for DP incidents 

 
This trend, showing a continuous increase in Human / Operator Error is a big concern for the 

marine and offshore industries as the DPO plays a crucial role in the loop to handle any such 

situation to prevent an accident. In addition, the IMCA accident database shows that Human / 

Operator Error is the most significant contributor to secondary causes for DP incidents. It 

proves that there is a need for a support system to aid the DPO in preventing DP incidents 

when there is a failure in the sub-systems.   

Sub-Systems 1994-2003 2005-2013 2014-2019 
DP Control System 53 91 104 
Power System 37 83 81 
Electrical 18 49 14 
Propulsion/Thrusters 65 104 194 
Reference System 90 126 84 
Environment 33 34 23 
Human / Operator Error 75 125 99 
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 Description of Dynamic Positioning System 

Dynamic Positioning Vessel (DP vessel) means a unit or  vessel which automatically maintains 

its position and/or heading (fixed location, relative location or predetermined track) by means 

of thruster force [8]. DP vessels can be divided into different classes based on the design of the 

vessel to meet the industrial mission and its application. DP systems installed on a vessel are 

designed in compliance with classification society rules and they must be of robust design 

ensuring capability in  

• Preventing loss of position 

• Preventing loss of redundancy 

The term DP system means the complete installation necessary for dynamically positioning a 

vessel comprising, but not limited to, the following sub-systems [8]: 

• Power system 

• Thruster system 

• DP control system 

In addition to the above system, there are other sub-systems which are integrated to perform 

the desired function. The complete overview of an advanced DP system is shown in Figure 1-1. 

 

Figure 1-1 Complete overview of Dynamic Positioning System  
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The design of a DP system is made robust by considering the application of seven attributes 

below, in one form or another, to all sub-systems to enhance station keeping integrity. 

• Independence 

• Segregation 

• Autonomy 

• Fault tolerance 

• Fault resistance 

• Fault ride-through capability 

• Differentiation 

A DP vessel should have a sufficient level of station-keeping reliability. Reliability is a product 

of the quality of the equipment in the sub-systems and the vendor providing the sub-systems. 

The design and operation of it depends on the competence of the engineers who design and 

build, the engineers involved in testing and commissioning, the crew and the management who 

maintain and operate the vessel. 

 The Problem Statements 

Traditionally, the reliability of a DP system is assessed during the design stage by 

methodologies such as Failure Mode Effects and Analysis (FMEA), Proving Trials, Hardware 

In-the Loop (HIL) testing, Site-Specific Risk Analysis, DP capability Analysis and during 

operation in annual trials to verify functionality. All these methods are time-consuming, 

involving a lot of human effort and notably, no analysis of previous accidents is indicated in 

the reliability assessment. It imposes in-built uncertainty and risk in DP systems during 

operation. It is evident that these risk assessments are insufficient, and factors considered for 

the safety of station-keeping reliability are too narrow. 

The significant phases of the DP life-cycle include design, construction, commissioning, sea-

trials and operation. In all of these phases, the system evolves, and changes are implemented 

for safe, reliable and efficient operation. Historically all the above traditional reliability 

assessment methods have been implemented in different phases for improving the design of 

the system. However, they have not made a significant contribution in preventing or reducing 

the number of accidents based on the DP incidents reports by IMCA over three decades.  
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Besides, these traditional reliability assessment methods have not demonstrated their ability to 

provide clear information on faults and provide appropriate solutions during operation. The 

analysis of existing reliability assessment methods revealed key drawbacks which are listed 

below [1, 9]:  

• Lack of user knowledge and experience from previous incidents / accidents database.  

• Lack of visibility of interdependencies between subsystems during failure scenarios.  

• Lack of consideration of the relatively short reaction time available for an operator to 

take corrective actions. This led to unsafe or delayed decision making. 

• Lack of inadequate co-ordination between decision-makers. 

• Lack of suggestions and preventive measures to avoid any catastrophic failure in case 

of trivial shortcomings.  

• Lack of simulation facility to evaluate a particular failure and its impact during complex 

offshore marine operation. 

Figure 1-2 show the critical pitfalls of the conventional reliability techniques. 

 

Figure 1-2 Traditional Reliability Assessment – Gap Analysis  
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The most critical problem in DP related accidents is the time required for the operator to 

identify the cause of the failure and take remedial action to prevent the failure leading to an 

accident. The critical point to consider is that preventing a failure from turning into an incident 

or accident can be achieved in one of two ways. One way is to increase the time by stretching 

the available time to prevent the incident and the second way is by shortening the time needed 

to solve the problem. There are five phases involved between fault initiation and final solution 

implementation: fault detection, fault identification, generation of solution strategy, solution 

implementation and system reaction [10]. The DP operator influences the time that is required 

to cover three of the phases, that is fault identification, generation of a solution strategy and 

solution implementation. The research will focus on developing an advisory support tool using 

an  advanced deep learning neural network algorithm for processing the data from the sensors 

to forecast the reliability of the DP system to aid the operator in preventing DP incidents. 

Figure 1-3 shows the time period from the fault initiation to the accident. 

  

Figure 1-3 Timeline defintion from fault initiation to DP incident  
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Therefore, it was required to select an intelligent deep-learning algorithm which can perform 

real-time date time series prediction accurately and with fast response time. DP is a complex 

system operating in a highly dynamic environment. Reliability of a DP system requires the 

components of the system to be selected optimally and it factors in the reliability of the 

components which introduces new challenges to the existing approaches. To support self-

optimisation, the reliability prediction should be conducted in near real-time which was not 

possible in the past because of processing limitations but now, with technological growth, it 

can be implemented quickly to develop a state of the art advisory tool to prevent offshore 

accidents and incidents.  

  Dynamic Positioning – Reliability Index (DP-RI) 

The DP-RI concept is proposed to aid an operator with quantitative and qualitative 

representations of reliability of DP systems during complex marine operations. This concept 

is not a replacement method or an alternative solution for the current reliability assessment; it 

will enhance the existing reliability assessment results by combining them with a newly 

developed database, actual field datasets, Artificial Intelligence and industry experts’ 

knowledge. In addition, the tool provides prescriptive suggestions to the operator in the case 

of failure so that the operator can react quickly and implement the most suitable available 

solution to prevent accidents. To simplify the function of DP-RI the list of functions is provided 

below: 

• Offline-Forecasting of DP-RI for complex Marine Operation 

• Real-Time Dynamic Reliability Analysis of DP-RI 

• Prescriptive Analytics for Resilience of DP system during failure incidents 

• The suggested solutions are prioritised based on a ranking system and presented to the 

DPO to choose the most suitable solution based on the actual condition. 
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 Research Aims and Objectives 

This research aims to develop an intelligent advisory decision-making tool, DP-RI for offline 

and real-time prediction of the reliability of DP systems (Quantitative and Qualitative). This is 

to provide the DP operator with complete control and a clear overview of a situation in the case 

of failure during complex marine operations along with suggestive solutions to prevent DP 

incidents. 

The aim will be achieved by attaining the following objectives:  

1. Creating a database for the existing traditional reliability assessment including DP 

System Level FMEA, DP Vendor FMEA, HIL, Offshore and Onshore Reliability 

Data (OREDA), IMCA Station Keeping Accident Analysis Reports, DP capability 

plot and Site-Specific Operational Risk Analysis.  

2. Systematically evaluating the database using Big Data Analytics for classification of 

sub-systems and identifying the inter-dependencies between the DP sub-systems.  

3. Developing Systematic Weight Assignment for DP sub-systems using Multi-Criteria 

Evaluation Technique, Analytic Hierarchy Process (AHP) and validating with expert 

judgement. 

4. Developing a framework of DP-RI for calculating the DP system reliability through 

mathematical modelling.  

5. Offline Forecasting and Real-Time Prediction of DP-RI using Recurring Neural 

Network (RNN)  Long Short Term Memory (LSTM) for complex marine operation. 

6. Implementing Natural Language Processing (NLP) techniques for the prescriptive 

analytics using the most advanced models through fine-tuning and pre-training. 

7. Evaluating optimised suggestive solutions to the DPO during failure through 

Prescriptive Analytics using Bidirectional Encoder Representations from 

Transformers (BERT) model  as Question and Answering (Q&A) system to prevent 

DP incidents. 

8. Implementation of Softmax activation function to determine the relative probabilities 

between the possible suggestions based on the criticality of the DP sub-systems. 

9. Validating the results of DP-RI tool with actual vessel data and existing traditional 

reliability assessments.  
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 Research Motivation 

Over the years the regulatory authorities, classification societies and the industry have 

recognised the urgency in improving the safety and reliability of DP complex operations due 

to increasing numbers of DP incidents. Incident-free DP operation requires a complete 

understanding of the risk associated with the complex operation and the result of the loss of 

station keeping capability and the impacts of Design, Operation and process, by the DPO. As 

the complexity and automation of DP systems increases, and more and more of the sub-systems 

are interconnected and controlled by computers, DPO minds have become hard-pressed to cope 

with, and understand, this enormous and dynamic complexity. It seems likely that human 

oversight of many of these systems will not be possible in the timescale required to ensure safe 

operation. 

Artificial Intelligence (AI) and data-driven decisions based on Machine Learning (ML) 

algorithms are making an impact on an increasing number of industries. AI has been used for 

various application within the Maritime sector, such as condition monitoring and ship 

navigation route optimisation. To ensure safe operation of DP vessels that might enter high 

consequence scenarios with low probability, it is necessary to have a large amount of data for 

proper decision making. However, as DP systems have matured and have been used in the 

industry for more than 50 years, there are enormous volumes of data available. The research is 

focused on developing a state-of-the-art advisory tool due to the following motivational aspects.  

• Availability of enormous amount of offline data related to DP system 

• Availability of real-time data from sensors of DP sub-systems 

• Possibility to integrate securely to DP systems for extraction of data to provide holistic 

information during complex marine operations. 

• Acceptance of Artificial Intelligence and data-driven decisions for safe operation in the 

maritime industry 

• Need for a state-of-art advisory tool to provide possible solutions to the DPO in the 

case of faults using a combination of knowledge-based and experience-based AI 

models. 
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 Research Contribution  

The research study makes the following contribution: 

• An intelligent state-of-the-art decision-making advisory (DP-RI) tool has been 

developed using Artificial Intelligence and Big Data Analytics for DP system. 

• The Information Management System (IMS) was created as a database to act as a 

central repository. The IMS consists of FMEA reports DB, IMCA accident analysis 

DB, HIL testing DB, DP-CAP DB, OREDA DB, DP vendor FMEA DB and DP 

simulator DB along with the sensor data of DP sub-systems. 

• Identification and classification of critical DP sub-systems using descriptive and 

diagnostics analytics. 

• An intuitive and conservative approach to determine the weighting between DP sub-

systems was proposed using AHP. 

• A hybrid approach using a mathematical model and predictive analytics with LSTM to 

determine system-level reliability for computing DP-RI was proposed. 

• A novel approach in generating possible solutions using prescriptive analytics with 

NLP BERT model as QA system was proposed to prevent DP incidents. 

• The testing and case studies proved that the DP-RI tool could result in 80% faster 

decision making and 90% reduction in DPO error. 

• The ability to simulate the unknown scenarios reduced the volume of missing data from 

90% to 2%. 

• The decision making time reduced by 50% when evaluated against the traditional risk 

assessment and operation procedures. 

• Empirical results and validated test cases on complex DP operations have been 

generated, providing the following: 

o Safe and reliable  

o Increased operational efficiency 

o Preventing DP incidents 

o Training for DPOs 

o Support the decision-making process 
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 Thesis Outline 

The thesis is organised as follows, and the overview is represented in Figure 1-4: 

Part 1: (The Context) 

• Chapter 1 : Provides the Introduction, Background, Problem Statement, Objectives, 

Motivation and Contribution of this thesis. 

• Chapter 2 : Reviews related work in a systematic manner, checking the relevant 

reliability assessment methods, applicable Neural Network model, existing methods 

for Qualitative and Quantitative estimation of Reliability of DP systems. 

• Chapter 3 : Presents the various databases for DP systems and how these data sources 

can be used as knowledge base for application of Big Data concept. 

Part 2: (Research Framework and System Model Analytics for DP-RI Tool) 

• Chapter 4 : Presents the DP System – Classification of Sub-Systems through 

Descriptive and Diagnostic Analytics 

• Chapter 5 : Presents a Systematic weight assignment of DP Sub-Systems through 

Analytics Hierarchy Process (AHP) 

• Chapter 6 : Presents the Novel Research Framework for Dynamic Positioning – 

Reliability Index (DP-RI) through predictive analytics using LSTM.  

• Chapter 7 : Presents the Prescriptive Analytics for Resilience of DP System using 

NLP BERT model as QA system to suggest possible solutions to the DPOs during 

failure. 

Part 3: (Validation and Verification of Effectiveness of DP-RI Tool) 

• Chapter 8 : Details the Verification and Validation of Predictive and Prescriptive 

analytics results performance of DP-RI tool through case studies involving real-life 

incidents and hypothetical cases. 

• Chapter 9 : Discusses the Conclusion, Achievements, Innovative works and 

Recommendations for future work 
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Figure 1- 4 Research Thesis Overview – Chapter Organisation 
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2. Literature Review 

2.1 Introduction  

This chapter begins by presenting the definition of Dynamic Positioning, details of DP 

incidents, and their related impact. The next section offers a review of currently available 

requirement and assurance frameworks, international standards, and reliability assessment 

methods governing the design and operation of DP systems. The gap in the existing 

methodologies is discussed briefly, and analysis presented assessing the role of human factors 

in DP incidents. Subsequently, the chapter focuses on reliability prediction methods and RNN 

model concepts. The various available RNN models and their architecture are discussed before 

implementation in the research study. The links to the main objectives of the research and the 

methodologies are outlined here and the details are covered in the respective chapters in the 

later part of the thesis. Finally, the last section draws together a summary justifying the need 

for a new state of the art decision-making tool to aid the DPO. 

2.2 DP Vessel Complexity and Traditional Reliability calculation 

Ships are the most complex machines constructed. The demand for increasingly sophisticated 

ships with integrated systems has added layers to this complexity.  A vessel’s six Degrees of 

Freedom (DOF), which includes translatory motions: surge, sway, heave, and angular motions 

roll, pitch, and yaw are shown in Figure 2-1 [11].  

 

Figure 2-1 Dynamics of the vessel with six DOF 
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A DP vessel experiences more substantial and more rapidly changing dynamics due to 

motions when operating in a deep water environment rather than shallow waters. The six DOF 

equations of motion representing the kinetics and kinematics of a DP vessel are represented 

as Equation (2-1)  [6]. 

𝑀𝑀�̇�𝑣 + 𝐶𝐶(𝑣𝑣)𝑣𝑣 + 𝐷𝐷(𝑣𝑣)𝑣𝑣 + 𝑔𝑔(ƞ) = 𝜏𝜏 + 𝑔𝑔𝑜𝑜 + 𝑤𝑤                                           (2-1) 

Where 

 𝑀𝑀  - system inertia matrix (including added mass) 

𝐶𝐶(𝑣𝑣) - Coriolis-centripetal matrix (including added mass) 

𝐷𝐷(𝑣𝑣) - Damping matrix 

𝑔𝑔(ƞ) - vector of gravitational/buoyancy forces and moments 

𝜏𝜏  - vector of control inputs 

𝑔𝑔𝑜𝑜  - the vector used for pre-trimming (ballast control) 

w  - vector of environmental disturbances (wind, waves, and currents) 

The dynamics of the vessel presented in Equation (2-1) also represent the physical properties 

of the system, which are further used for control system design. These motions are measured 

in terms of heading, pitch, roll and yaw. The signals are sent to the DP control system via 

passing it through a Kalman Filter in order to get the filtered motion values for processing. 

Besides, the environmental forces (wind, wave and current) play a critical role in the design 

and operation of the DP vessel as they affect the overall performance of the ships. The 

calculation of wind and current forces are relatively straight forward when compared to forces 

produced by waves [12].  

To maintain stationary position the thrusters on the DP vessel have to counterbalance the 

environmental forces. For safe and efficient operation, the number of thrusters required to be 

operational at a given time is calculated through the thruster allocation algorithm which 

distributes the required total forces and moments among the available thrusters with minimal 

use of power [13]. The Power Management System (PMS) communicates between the DP 

control system and thrusters for required power distribution. The advanced DP system, by 

design, is itself a complex system with significant levels of integration between many sub-

systems to perform diverse control functions, as shown in Figure 2-2.  
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Figure 2-2 DP system architecture block diagram 

DP has come a long way since its inception; for more than 50 years developing alongside the 

marine, oil and gas industry [12]. Modern information technology, software and electronics 

have gradually penetrated and integrated into a large proportion of the systems on-board 

marine vessels and offshore rigs. The stakeholders of ships and rigs have made considerable 

investments in complex and sophisticated designs of DP systems which would have never been 

possible without digitalisation. All parties in the industry understand the operational 

advantages of DP in terms of station-keeping. However, in terms of optimum design and 

efficiency, it remains challenging to understand due to sophisticated design and continuously 

emerging technologies applied by the vendors.   

DP can be considered as a safety-related system as it incorporates one or more electrical and/or 

electronic and/or programmable electronic devices for its control functions to keep the 

Equipment Under Control (EUC) in the safe state during any undesirable event [14]. The 

industry-wide accepted risk assessments for DP focuses on mainly component failures, 

ignoring human/operator errors which were discussed in detail in Section 1.3 of Chapter 1. 

Human error, such as delayed decision-making, inadequate coordination between decision-

makers and unsafe actions, which have contributed to DP accidents are not taken in account in 

traditional risk assessments [2, 3, 9, 15, 16, 5].  
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For many years, the traditional assessments have used reliability calculations on a complex 

vessel, with integrated systems, based on the general reliability methods [4, 17, 15, 18]. 

Reliability is represented by the following Equations (2-2) (2-3) (2-4) [4, 19]:  

                                     𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃 = 1
𝜆𝜆
               (2-2) 

                                      𝑀𝑀(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝑡𝑡                                                          (2-3) 

                                 𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃 = − 𝜆𝜆
𝑙𝑙𝑛𝑛(𝑅𝑅(𝑡𝑡))

                                                        (2-4) 

Where 

MTTF      - Mean Time To Failure  

𝜆𝜆      - Failure rate of a component/subsystem 

R(t)      - System reliability represented by exponential law 

The values are used interchangeably between MTTF and R(t) based on the application. 

2.3 DP Incidents and Related Impacts 

The loss of position (LOP) and/or heading of the vessel, either temporarily or for an extended 

period, is considered to be the DP incident that is the most severe safety breach for station-

keeping functionality. The incidents are categorised into three groups as in Table 2-1 [3]: 

Table 2-1 IMCA DP incidents defintion 

 
The DP incidents occur due to primary causes and secondary causes. The human factor has 

accounted for 23% of the primary reasons, and 64% of the secondary reasons for DP incidents 

reported to date [3, 20]. Figure 2-3 shows the DP incidents reported between 1993-2019, with 

distribution over each year, different sub-systems, and type of DP incident [3].
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Figure 2-3 DP incidents reported from 1993-2019 and distribution across sub-systems 
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Similarly, a review of data from the World Offshore Accident Databank (WOAD) from DNV 

GL  also revealed that most of the DP incidents in the offshore industry are related to Human 

Error [20]. The repository of information on accidents maintained from 1970 shows how the 

events have escalated from an initial event or fault to an incident where necessary corrective 

action was not taken at the right time. It is the responsibility of industry experts to make use of 

the lessons from the databases and facilitate hazard identification for risk reduction and to 

support the DPO during an emergency. The significant component which differentiates 

WOAD from other database is the operating hours' feature, which provides information on 

exposure time to derive accurate failure rates in a given period [20]. However, the currently 

applied methods for DP reliability assessment do not make use of such data. In addition, 

research has revealed that sub-system failures and human errors are critical factors for DP 

incidents [21, 22]. 

DP incidents may cause a variety of impacts, including risks for incident responders and 

onboard crew safety, asset damage, environmental damage (oil spills), downtime, and repair 

costs. The consequence category may vary from very little to catastrophic, and the severity is 

always unpredictable. Efficient design ensures that the system is fault resistant and, for the 

given operational mode, the vessel can maintain its DP capability during the worst-case failure 

(WCF) [23].  

The standard loss of position is referred to as one of three possible conditions, as below [7]: 

Drive-Off: This is a situation where active thruster forces drive the vessel away from its target 

position. It is defined as a move under power away from the set position. 

Drift-Off: This is a situation where the vessel is incapable of maintaining its target position 

due to insufficient thrust forces in relation to the environmental forces. The characteristic of 

drift-off is that there is inadequate thruster force in relation to the environmental loads. 

Large Excursion: This is a situation where the vessel is still under DP control and experiences 

brief excursion of position and/or heading more considerable than the usual excursion due to 

environmental loads (massive wind gust/wave), thruster fault or degraded position 

information. 
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The severity of the incident varies based on the vessel type, operation mode, and application. 

Table 2-2 summarises the possible consequence effects for different types of vessels based on 

the assumed application of work for various incident scenarios [24]. 

Table 2-2 Different ships with possible worst-case scenario effects 

 
 

2.4  Dynamic Positioning System Operator Roles 

The DPO plays a critical role in the efficient operation of the vessel as it is their primary 

responsibility to prepare the ship for complex operations, in consultation with the Master and 

with assistance from the electrician. DP vessels operating offshore have different applications, 

systems, equipment classes, operation modes, configurations and requirements, and function 

in various environmental, and weather conditions. Therefore, the failures are different, and the 

impact of each failure in the sub-systems differs between vessels and cannot be assumed to be 
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the same when a DPO works in different ships. It is up to the vessel owner to ensure that the 

DPO familiarises themself with operational constraints/ requirements of these modes and 

features. Regardless of the vessel type, a DPO performs the following activities [25, 26, 27]: 

• Operate the DP systems of the vessel independently, working in a possibly hostile 

environment and in changing weather conditions 

• Judge whether DP operations can commence, continue or should be suspended and take 

immediate action if required 

• Demonstrate that he/she is fully competent, using the systems/modes that apply to the 

applicable notation(s) 

• Demonstrate a holistic view of the vessel’s management systems and operations and 

consider the impact of operating under DP on, e.g., security vulnerability as well as from 

a legislative and regulatory point of view. 

Recent research has revealed that although training and documentation are in place, the DPO 

reaction during an emergency and tendency to react based on experience does not contribute 

to preventing accidents [3, 9]. The DPO's ability to perform the required functionality depends 

on the following factors along with their technical capabilities, which are often missed out, 

resulting in human error. 

1. Situational Awareness 

2. Decision Making Ability 

2.5 DP Requirement and Assurance Framework 

The requirements for DP vessels are governed by various international bodies, including 

International Maritime Organisation (IMO), IMCA, Classification Societies, Flag States and 

National Regulators. The National Regulators, including the Norwegian Maritime Authority 

(NMA), National Offshore Petroleum Safety and Environmental Management Authority 

(NOPSEMA), Health and Safety Executive (HSE), Petroleum Safety Authority (PSA), etc [28, 

29, 30, 31], guide the operator and asset owners for specific requirements in addition to meeting 

the IMO and Classification Societies’ safety requirements . The IMO requirements act as 

guidelines to facilitate safe and reliable international operations, taking into account that 

vessels are moved and operated internationally. Therefore, special consideration is given for 

the design and operation criteria requirements to avoid any additional documentation for the 
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new area of operation. In addition, compliance with the guidelines is documented in the Flag 

State Verification and Acceptance Document (FSVAD) for the dynamic positioning system to 

ensure that the vessel is operated, surveyed, and tested according to vessel-specific procedures 

and that the results are adequately recorded [3]. These guidelines provide the basis and 

common platform to recommend design criteria, necessary equipment, operating requirements, 

and a test and documentation system for dynamic positioning systems to reduce the risk to 

personnel, the vessel, other vessels or structures, sub-sea installations, and the environment 

while performing operations under dynamic positioning control. DP class determines the 

ability of the vessel to achieve position keeping capability under worst-case failure modes. The 

various classes of DP systems are defined through equipment classes from the IMO for 

different ships required for a particular operation, as shown in Table 2-3 [3]. 

Table 2-3 DP Equipment Class definition by IMO 
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At present, there are no standards or industry guidance to specifically address the DP assurance 

of vessels performing complex operations in the offshore and marine industry. Currently, DP 

assurance criteria vary widely across the industry and set out different requirements based on 

the operator, owner, and shipyard practices [32].  In addition, vessel owners/operators 

implement a process to ensure the technical suitability of the vessel, determine the 

configuration for the Critical Activity Mode (CAMO) and Task Appropriate Mode (TAM), 

which will define the minimum DP equipment class for the particular application. Table 2-4 

shows the recommended minimum equipment class for different DP applications [33]. 

Table 2-4 Recommended minimum DP class for different applications 
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The Assurance framework has also started focusing on the stringent requirements of training 

for the DPO that would meet the minimum safety standards. A DPO should have sufficient 

knowledge and experience to be able to take command of the vessel and identify types of 

failure and predict required reactions to respond to the failure. Despite the increase of 

technology, guidance on the requirements and assurance framework, the number of DP 

incidents has not reduced significantly overtime, which indicates that the risk reduction factor 

is not sufficient. The main reason is that DPO knowledge is limited due to the complex 

interconnection of systems and the large volume of documentation, which has been revealed 

in one of the studies, as below [34]: 

 “The relentless drive within the shipping community to introduce electronic navigation aids 

to merchant ships had the principal stated objective of improving safety by enhancing 

situational awareness. However, some of the doubts expressed at the inception of these 

initiatives regarding their likely success have been realised, in that there is now a commonly 

held view that the general standard of bridge watch-keeping has been eroded, leading to 

several collisions and groundings.” 

2.6 Classification Society Standards Governing the DP System 

Classification Societies, as members of International Association of Classification Societies  

(IACS) promoting the safety of life, property, and the environment, publish rules containing 

standards governing the design and operation philosophy of DP systems through notation. 

These notations correspond to the equipment class defined by the IMO with additional 

requirements which are accepted by authorities around the world. Classification Societies such 

as Det Norske Veritas Germanischer Lloyd (DNV GL), American Bureau of Shipping (ABS), 

Bureau Veritas (BV), Lloyd Register (LR), Registro Italiano Navale (RINA), Indian Registry 

of Shipping (IRS), China Classification Society (CCS), Korean Register (KR), Nippon Kaiji 

Kyokai (NK), Russian Maritime Register of Shipping (RS), etc. have developed standards to 

govern the design of DP systems [1, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Table 2-5 shows the 

relationship between the equipment classes of the IMO with DP notation from different 

Classification Societies. In addition, the recommended practice is published by these societies 

to provide design philosophy guidelines, operation guidance, competence requirements for a 

DPO, and competence requirements of critical technical personnel [25, 44].  
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Table 2-5 Classification Societies DP notation for IMO DP equipment Class 
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The IMO equipment class focus has proved that concentrating only on the equipment design 

will not ensure safety and careful consideration is required for the competence of the technical 

personnel involved. Competence requirements need to be ensured at different levels of 

cognition, such as knowledge, understanding, application, and integration to maintain the DP 

integrity of vessels during complex operations [25, 44]. Several instances of loss of position 

have ended up as DP incidents mainly because of intervention by a DPO lacking knowledge, 

skills, and understanding of the system functionality and the effects of various forces acting on 

the vessels. 

Many Classification Society rules, standards, international codes, regulations, and assurance 

frameworks have been developed and implemented to ensure that the design and operation of 

DP systems can meet the minimum standards for safe and reliable operation [32, 33]. However, 

the current advancement in automation and technology development outpaces the rate at which 

the standards and frameworks are being developed to ensure the safety level. In addition, the 

energy demand, economic growth, and growing competition will urge operators/vessel owners 

to adopt technologies as fast as they develop. This forces industry experts to use more advanced 

technology to assure safe operation through digital advisory tools rather than just codes and 

standards [2, 17, 15].  

2.7 Reliability Assessments 

The reliability assessment is a mandatory requirement while designing, constructing, and 

operating any safety-critical system, and DP systems are no exception [17, 15, 45]. In the 

marine and offshore industry, the reliability assessment is performed by several stakeholders 

in different phases and with varying levels of rigour [46, 47]. The vessel owner/operator 

performs high-level evaluation during the initial phase, along with the development of the 

specification of a new-build. The shipyard, vendor, and independent consultants perform the 

assessments during design, construction, commissioning, and sea-trial stages. 

Reliability is the capability of the system to perform its intended function during the defined 

period under pre-established conditions [19, 17]. Often the industry measures DP reliability 

through the comprehensive equipment class system of DP class notation [15]. The reliability 



26 
 

of DP systems depends on the redundancy so that a sudden failure of one item of equipment 

or a negligent act will not cause an unexpected loss of vessel position and/or heading.   

The reliability assessment of the DP system can be categorised into two parts as below [19, 

48]:  

• Reliability Estimation 

• Reliability Prediction 

Only a few of the traditional reliability assessments would cover both the hardware and 

software related to the system. The hardware part is well established, and often the software 

reliability assessment is subjected to question due to its difficulty and the outcome is often 

controversial [49, 47]. The software reliability cannot be trusted as it does not provide accurate 

results due to errors in the probabilistic models. The reason for such a lack of accuracy in 

software reliability for DP systems is due to factors such as software complexity, difficulty in 

identifying suitable metrics, difficulty in conducting exhaustive testing, difficulty in 

quantifying the effectiveness of test cases, etc. [49]: 

"Most of the existing quantitative software reliability methods were not developed 

specifically for supporting the quantification of software failure rates and demand 

failure probabilities to be used in reliability models of digital systems." 

Software plays a critical role in the safe and reliable functionality of DP vessels, and therefore 

it cannot be ignored (or assumed never to fail).  The fundamental differences between hardware 

and software failures are [19, 49, 47, 50]: 

• Causes of hardware failures include both wear-out and improper design, with the former 

being most dominant. The predominant cause of software failures is a design failure. 

• The software can have dependencies, such as common cause failure mechanisms, very 

different from those of hardware. 

• Hardware failures generally lead to complete loss of function, but the software may also 

continue running, producing erroneous results. 

• When hardware fails, it must be replaced. For fault-tolerant systems, redundant hardware 

can maintain functionality while the failed hardware unit is replaced, and redundancy is 

restored. 
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• When software fails, it can often be restarted and continue to operate after a failure if the 

combinations of inputs that lead to the failure (e.g., a faulty sensor input) are not present 

anymore. If the software fault is to be removed, the software cannot be replaced but has 

to be updated. 

Software reliability is not the main focus of this thesis research. Therefore, it is considered that 

software reliability is ensured through other reliability assessments and it is not evaluated in 

detail as part of this research. 

2.8 Reliability Estimation 

Reliability estimation is a process determining the quality of equipment in sub-systems, quality 

of design, and competence of the crew to achieve the required station keeping integrity. 

Traditionally several reliability estimation techniques are used for the assessing the reliability 

of DP systems. These techniques are generally grouped into two categories [15, 46, 51, 52]: 

• Qualitative techniques 

o FMEA 

o Failure Mode Effects and Criticality Analysis (FMECA) 

o HIL 

o DP capability plot, Footprint, and Consequence Analysis 

o Site-Specific Risk Analysis  

• Quantitative techniques 

o Reliability Block Diagram (RBD) 

o Fault Tree Analysis (FTA) 

o Markov Chain 

o Monte Carlo Simulation (Network Simulation) 

The suitable reliability estimation techniques are chosen for a particular vessel based on 

various factors. These factors are typically defined by end-user, operator, design companies, 

engineering, procurement and construction (EPC) and shipyard. However, these methods have 

been proved to have drawback as detailed in Section 1.3. Qualitative and quantitative risk 

assessment for the DP system has been used as essential risk reduction methods in proactively 

identifying the shortcomings that might have been unidentified during the design stage. These 

assessments, if appropriately implemented, prove useful in the optimisation of the design and 
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have a direct impact on the lifecycle costs. Qualitative techniques support the early 

identification of potential single-points of failure, which could result in worst-case system 

failure through a system trip or loss of redundancy [15]. Qualitative techniques ensure that the 

system design is thoroughly reviewed through a systematic approach. However, these 

techniques are time-consuming as they need to focus on every detail at the sub-system level, 

and cost/benefit cannot be directly derived.  Quantitative techniques use the output from the 

qualitative techniques such as FMEA / FMECA. Quantitative techniques overcome the 

disadvantages of qualitative techniques by supporting cost/benefit through an accurate 

understanding of the cost of a design change and the benefit of a change. These techniques are 

more time consuming and require failure frequency databases that are proprietary to either 

manufacturers or oil companies, which presents limitations [49, 52]. In addition, these 

techniques often do not focus on the correlation of the failure modes. 

2.8.1 Failure Mode Effects Analysis (FMEA)  
The objective of FMEA is to verify that the consequence of any single failure does not exceed 

a pre-defined worst-case single failure design intent [1, 23]. It focuses on equipment 

redundancy and redundancy group independence for aspects such as the power supply, 

physical interfaces, computer units, lubrication oil, ventilation, cooling water, etc. to show 

post-failure station-keeping capability.  For DP vessels, the design intent is that the ship should 

be able to keep its position after a single failure, as required by IMO 645 [8]. All of the 

Classification Societies and regulations have rules and standards covering FMEA requirements 

to study the reliability of the DP system [46, 53, 45, 54].  

FMEAs are usually conducted by specialised companies and require a cross-competent team 

covering all engineering aspects of the DP vessel, except software [55, 47]. In addition to the 

FMEA analysis, a proving trial procedure (test program) will be written and executed as part 

of the sea trial of a new build vessel. The objective is to verify, on running systems onboard 

the real ship, conclusions made in the analysis, and possibly investigate aspects that it was not 

feasible to conclude in a desktop analysis. 

The FMEA analysis presumes that the software in the control systems is working as intended 

concerning functionality and fault handling. Such an assumption relies heavily upon the 

vendor's internal verification of the software. This practice is questionable when dealing with 
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safety-critical systems, because a lack of independence undermines objectivity in the 

verification effort. It reveals that testing and verification of the control system software must 

be added to achieve a proper independent assessment of the complete DP vessel. However, it 

is noted that there is no indication that FMEA uses information from IMCA about systematic 

analysis of DP failure incidents. Even the FMEA guide from IMCA does not provide any 

guidance on how the experience from DP failure incidents could be used for improving the 

efficiency of FMEA reports. It is clearly evident that there is a gap in FMEA studies and a need 

to use the DP failure incident data to bridge the interval [5, 56, 47]. 

2.8.2 Failure Mode Effects and Criticality Analysis (FMECA)  
 
FMECA is a bottom-up (hardware) or top-down (functional) approach for the risk assessment. 

It is an extension of FMEA analysis where the failure modes are prioritised, indicating the 

criticality (or severity) of the various failure modes. It acts as the first step and provides the 

input to the Quantitative Risk assessment. The vessel operator will develop an asset-specific 

risk matrix to identify the probability (frequency/likelihood) and consequence severity 

(criticality) of particular failure modes on the vessel operation [46, 45]. In this way, the 

assessment will support the operator to perform benchmarking across the vessel and identify 

the failures having an impact on the operation based on experience.  

However, FMECA does not provide a focus on  human error, so is suited for a system with 

little or no redundancy. It is challenging to apply to a system with complex redundancies as it 

leads to additional documentation, which is time-consuming [15]. This method is often 

performed without considering the knowledge and experience gained from previous DP 

incidents.  

2.8.3 Hardware in the Loop  (HIL) Testing 
HIL acts as a simulation tool to test the functions such as verification of correct operation as 

per specification, performance including capabilities and behaviours operating under different 

environmental conditions and failure modes of integrated DP systems or various sub-systems 

[55, 56]. HIL testing is performed at early stages, typically at the manufacturer location during 

the Factory Acceptance Test (FAT) as a stand-alone system and onboard the vessel during sea-

trial Customer Acceptance Test (CAT) as an integrated system.  
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Studies have revealed that FMEA techniques mainly focus on the physical layout of a system 

and ensure only the reliability of the hardware [9, 56, 47]. Therefore, ensuring the reliability 

of software in the control system is complicated and the outcome is controversial. Control 

system software reliability and its quality depends on the proper, well-defined software 

development and testing processes [56]. It is mostly the vendor's responsibility and is 

sometimes overlooked by individuals developing software due to various reasons. An FMEA 

desktop study will detect and reveal the possible weak points in the physical design and 

highlight the need for increased attention in critical software functions. FMEA provides 

essential input to the HIL testing, which in turn will provide crucial information on the 

functionality and failure handling capabilities of the control system software [47]. 

Figure 2-4 shows the set-up for HIL testing, where the actual vessel conditions are replaced 

with the HIL simulator acting as a digital twin [56]. Usually, this is accomplished by isolating 

the control system and its operator stations from its surroundings. The actual field Input/Output 

(I/O) is replaced with simulated I/O from a HIL simulator in real-time. The HIL simulator 

imitates the actual conditions (i.e., dynamic systems, actuators, and sensors) of the control 

system. It provides realistic, continuous, and consistent measurements and responds to the 

control signals. 

 

 

 

Figure 2-4 HIL simulation setup for testing the Vessel’s DP system [56]  
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The main advantages of using HIL testing are as follows [56, 47]:  

• Facilitates closed-loop realistic testing of the DP system during FAT and CAT. 

• Enables performance testing over a wide range of environmental and weather conditions.  

• Supports testing of each signal failure, which would be painful and undesirable to replicate 

physically for a complex system such as reference, power, and propulsion/thruster systems.  

Through experience, it has become evident that it is not possible to perform 100% test coverage 

of the complex system as each signal may fail in several ways, including broken wires, short 

circuits, frozen values, slow/fast drift, or noise with typically interfaced signal counts ranging 

from a few hundred to several thousand [47]. So, the focus area is defined as failures involving 

high risk considering both probability and the consequences. Furthermore, any hidden, 

common causes and multiple failures with some level of human error may result in severe 

consequences leading to DP incidents, which points to the need for research to close the gap. 

2.8.4 DP-Capability, Foot-Print and Consequence Analysis 
A DP capability plot is a graphical illustration of the vessel’s station-keeping  (position and 

heading) capacity in a specified vessel condition and specified environmental condition [57]. 

It is used to determine the environmental limits of an operation showing the maximum static 

or quasi-static wind, current, and wave loads in which the vessel can maintain its position for 

different configurations (e.g., worst-case single failure (WCSF), nominal case). The DP 

capability plots are governed by specification from Classification Societies and regulators and 

a typical plot is shown in Figure 2-5 [58, 59].  

The traditional DP capability analysis is non-conservative compared with time-domain 

analysis. In this analysis, the 6 DOF vessel motion, related thrust losses, as well as all other 

dynamic effects in the propulsion system like rate limits, are usually neglected [57]. Another 

significant shortcoming of DP capability analysis is that the transient conditions during a 

failure and recovery after a failure are generally neglected.  DP plots are theoretical plots 

calculated from detailed information of the vessel’s hull and superstructure form and available 

thruster power. The confidence level of the plots is very much reduced when compared to DP 

Footprint plots. Therefore it is advised by IMCA and Classification Societies that, wherever 
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possible, the DPO should validate the DP capability plots by taking DP Footprint Plots and 

through time-domain analysis [59, 60]. 

 

Figure 2-5 Typical DP capability plot for DP vessel 

DP time-domain simulations prove its ability to keep station accurately and estimate the proper 

headings for a selected number of sea conditions. Dynamic Capability is the next level of DP 

capability analysis which is based on systematic time-domain simulations with a sophisticated 

6 DOF vessel model, including dynamic wind and current loads, first and second-order wave 

loads with slowly-varying wave drift, a complete propulsion system including thrust losses, 

power system, sensors, and a DP control system model [61]. It overcomes most of the 

shortcomings of DP capability analysis, and the results are much closer to reality. The features 

enable the user to define the acceptance criteria in the analysis for the site requirements for 

each vessel and operation, such as station-keeping footprint, sea-keeping criteria, dynamic 

power load, and transient motion after failure [59]. However, the efficiency in preventing DP 

incidents during failure scenarios seems to be unsatisfactory due to its lack of ability to analyse 

the failure scenarios for each signal in the DP system. 

DP CAPABILITY – LX (A,B,C,D) 

 

X = 1, 2 or 3 describes the DP  

        capability Level 

A = Intact condition, heading 0 - ±30° 

B = Intact condition, heading 0 - 360° 

C = Worst-case single failure condition,      

Heading 0 - ±30° 

D = Worst-case single failure condition,                 

Heading 0 - 360° 

 

Example: DP Capability L1(9, 8, 8, 6) 
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DP Footprint plots represent the actual measurements of the vessel’s station-keeping 

performance in the actual operating environmental conditions and with the thruster 

configuration at the time of the complex operation, with site-specific information. It provides 

a scatter plot of vessel positions at regular intervals around the required set position. It also 

enables comparison of points on the limiting wind speed envelope given in the theoretical DP 

capability plots. The usual practice is to set the configuration of the thrusters as per the DP 

capability plot and obtain the plot for the loss of the most effective thruster(s) and after a worst-

case failure. To better understand the vessel DP station keeping ability and enhance the 

knowledge, it is advised to combine the theoretical DP capability plots and DP footprint plots 

[60]. 

Consequence analysis is prescribed by the IMO requirement to ensure an alarm is raised when 

the station keeping ability is lost [8]. For DP vessels with equipment classes 2 and 3, it is 

mandatory to have online consequence analysis. It is a monitoring function in the DP control 

system to check any abnormalities in vessel heading and position in its current operating mode, 

in the current weather conditions, in the case of any of the predefined worst-case failures, and 

raise the alarm to the operator [62]. The main issue is that the result of re-configuration is 

unpredictable as the integrated system is complex and there are various interdependencies.  

2.8.5 Site-Specific Risk Analysis (CAMO, TAM, ASOG, and WSOG) 
Site-specific risk analysis was adopted by the industry as there was a clear indication of a 

decline in experience of DPOs and rapid technology advancement leading to intricate designs 

[33]. DP redundancy and fault-tolerant system are often over-ruled by a DPO’s incorrect 

understanding of operational design criteria, resulting in DP incidents. Site-specific risk 

analysis such as CAMO, TAM, Activity Specific Operating Guidelines (ASOG), and Well 

Specific Operating Guidelines (WSOG) support efficient DP operation by establishing 

structured operational limit criteria [63]. An advisory status is included to indicate the 

deviation from the safest mode of operation. The statuses are Green DP Status for Normal 

Operation, Blue DP Status for Advisory Status representing no immediate risk, Yellow DP 

Status for high risk should be another failure occur, and Red DP Status for Severely degraded 

status or Emergency. 



34 
 

The operational planning associated with different risk assessments are detailed as follows [60, 

63]: 

• CAMO is applied to all the critical activities. It defines the most fault-tolerant 

configuration for the DP system and associated plant and equipment such that single point 

failure does not exceed the vessel’s identified worst-case failure.   

• TAM is applied to less critical activities and uses risk-based operating modes such that the 

set-up of the DP system is operated so that single point failure could result in exceeding 

the vessel’s identified worst-case failure.   

• ASOG defines the operational, environmental, and equipment performance limits for the 

location and the specific activity the vessel is undertaking.  

• WSOG was developed for specific well or drilling activity and is the same as ASOG [63]. 

These risk analyses guide the DPO in a user-friendly tabular format with actions to be taken 

by the DPO in response to faults and deteriorating conditions.  Often these site-specific 

guidelines do not provide the actual status of the DP system when any alarm or failure occurs, 

which leaves the operator in a predicament and referring to the operation manual/FMEA 

document to understand the system reliability. 

2.8.6 Reliability Block Diagram (RBD) 
A RBD presents a logical relationship between the system, sub-systems, and components. A 

system can be modelled for reliability computation and analysis using block diagrams [19]. A 

DP system consists of sub-systems and components connected to perform given functions and 

maintain vessel position and heading. Due to the integration between sub-systems, it can 

become complicated, making reliability analysis difficult. A mathematical model reduces the 

system to a graphical representation of the interconnection of its sub-systems.  

RBD analysis is a deductive (top-down) method, and it is easy to apply for a complex system 

where it could be broken-up into sub-systems [15]. The RBD application is very practical when 

DP performs more than one function, and a separate RBD can represent each function. The 

significant advantage of using RBD for the reliability analysis is that it provides the 

methodology to explore the residual risk due to the common cause of failure mechanism, as it 

could lead to a hazardous event if the demand on the Electrical / Electronic / Programmable 
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Electronic (E/E/PE) safety-related system fails. The Safety Integrity Level (SIL) concept is 

applied to the RBD to support evaluation of the safety loop from sensors, logic solvers, and 

final elements [64, 14]. 

A typical reliability model can be represented, as shown in Figure 2-6 [15, 65]. These RBD 

can be used for mathematical calculations and prediction of the reliability of sub-systems. The 

blocks A, B, C, D, E and F refer to the equipment arranged either in series or parallel for 

calculating the reliability of sub-system using RBD model. 

 
 
 
 
 
 
 

 

Figure 2-6 Typical Reliability Block Diagram Architecture 

The static RBDs are limited in their ability to express varying system states, dependent events, 

and non-series-parallel topologies. Studies have revealed that the accuracy of RBD is prone to 

human errors; simulations are inaccurate due to the involvement of pseudo-random number 

generators and the sample-based nature of computer arithmetic computations [65, 19, 15, 48]. 

Dynamic RBD, used in combination with the ML concept, will result in more efficient analysis 

methods. 

2.8.7 Fault Tree Analysis (FTA) 
FTA is a logic diagram which can be used to represent the inter-relationship between potential 

critical events and causes of the event in the DP system [19]. It analyses integrated system 

failures in terms of combinations of sub-systems and lower level faults, and eventually 

component faults. It is a top-down approach, it is possible to start the analysis at a very early 

stage, and to complete it as the detailed design is carried out [19, 15]. This method may be 

qualitative, quantitative, or both depending on the objective of the study. However, it is widely 

used for quantitative analysis for a DP system. 

A 

B 

C 

D 

E 

F 
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FTA does not show the causes of all of the failures or accidents in the system, but it does focus 

on the specified failure/accident. It is also wholly dependent on the individual’s capability and 

knowledge on the system, which could vary and result in in-consistency in the outcome. These 

methods could also be time-consuming for a complicated system. In addition, there may be 

inherent uncertainty and consequence from a safety perspective as human error is excluded 

from the analysis.  

2.8.8 Markov Chain 
Markov analysis is a bottom-up analysis method suitable for the evaluation of functionally 

complex structures and complicated repair and maintenance strategies. It is a stochastic model 

and can be applied to DP, which is a randomly changing dynamic system to predict future 

events based on the current events neglecting the historical events [52]. It enables the 

calculation of the probabilities of system elements (components, equipment, sub-systems) 

being in a particular state at specific points (or intervals) in time. It is efficient and faster in 

mathematical computation compared to Monte-Carlo simulations (see Section 2.7.9). In 

addition, the method supports the DPO by providing deep insights into the changes in the 

system over time. 

The main pitfall is that only technical failures of the sub-systems are included in the Markov 

modelling. However, the human-machine interface plays a critical role in DP operations. The 

DPO monitors the information from different sub-system sensors and analyses the integrated 

system status before issuing control commands during complex operations and takes action 

during an emergency [15]. Therefore, human factors and operational procedures, along with 

technical aspects, should be taken into consideration for reliability analysis. In addition, for an 

integrated system with a large number of components, the massive amounts of data will be 

unmanageable and much useful information will be lost when merging the functional state and 

failed state [19].  

2.8.9 Monte Carlo Simulation (Network Simulation) 
The Monte Carlo simulation technique is the most widely used approach for reliability analysis 

of sophisticated, real-world systems with stochastic elements, which are difficult to evaluate 

analytically [15]. The simulations are treated as a series of experiments as the features of the 
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system in a simulated environment resembles the close to reality and supports the measurement 

of reliability performance metrics. So, it, in turn, helps to estimate the system performance 

under any set of operating environments and weather conditions and to accommodate any 

number of failure distributions. For the DP system, the effectiveness of using Monte Carlo 

analysis in overcoming the complexity of the problem is directly related to the number of 

events in the fault tree [18, 66].  

There is a pitfall in the method, which makes it unsuitable for a specific application, and that 

is that for a complex system, it is expensive and time-consuming to develop the simulation 

model. Also, it is suitable only for the comparison of different systems rather than for 

optimisation. In addition, the simulation results are not useful if the validity of the model is 

affected due to design changes as it is not adaptive. 

2.9 Reliability Prediction  

Reliability prediction is one of the more widely used techniques for reliability analysis [48]. 

The method is a process of forecasting the probability of a system performing its function 

successfully when it is demanded to operate [67]. It can be done at any phase of the system 

lifecycle. However, it is most commonly used during the initial system design stage to evaluate 

the proposed design for reliability concerns [19, 15, 48]. It involves an estimation of the 

performance of the system over some time and its reliability based on the failure rates of the 

sub-system components. It helps in identifying the weak point in the design at the early stages 

of the project to improve it. In recent years, due to technological advancements, reliability 

prediction has become widely used during the operational phase of DP to support maintenance 

and inspection [48]. 

In this research, reliability prediction using RNN is evaluated using different algorithms to 

understand its suitability and performance. The prediction of the reliability of the DP system 

uses the following concepts to form a robust research framework: 

• Big Data – Data sources (Chapter 3) 

• Diagnostic and Descriptive Analytics (Chapter 4) 

• Predictive Analytics (Chapter 6) 

• Prescriptive Analytics (Chapter 7) 
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The experimental set-up for reliability prediction should consider the following parameters and 

boundaries to define uncertainties upfront for reliability prediction during operation [48]: 

• Reliability Prediction uses (Why - Station Keeping Capability ) 

o Reliability goal assessment  

o Mission Reliability Estimation 

o Prediction of Reliability performance 

• Reliability Prediction in the system life cycle (When - Operation ) 

o Operational Phase 

• Factors to select Reliability Prediction method (What – Consequence of Failure) 

o Product Technology 

o Consequence of failure 

o Failure criticality 

o External influences 

o Available resources (data, knowledge, and technology, etc.) 

Reliability prediction is usually performed using test data or field data. Test data refers to actual 

equipment operational experience in a test environment, and the time required to observe 

failures is usually accelerated through proper planning to increase the amount of data. Tests 

are conducted in test environments, which should resemble actual environmental conditions 

such that reliability of the system, sub-systems, assembly and components obtained can be 

considered as specific confidence levels. The test environment should necessarily include 

failures from different possible sources such as electromagnetic disturbances, humidity, 

thermal environment, human intervention, and at the same time, avoid failures which are not 

relevant to the operating environment [48, 67]. Reliability prediction based on test data can be 

widely used as it covers vast possibilities, and it can also be used for validation of other systems. 

Field data refers to the actual data from the components, assemblies, subsystems, and systems 

obtained from an actual operational environment. Therefore, for reliability prediction of the 

system during the operational phase, field data should be used for greater accuracy and 

increased efficiency in forecasting.  The type and quality of data used for prediction for the 

integrated DP system on any specific vessel should ideally use the field data from a similar 
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vessel with the same operating conditions. In the case of missing information, similar items or 

similar environments may be found, and the impact on the accuracy should be evaluated [48].   

2.9.1 Offline Reliability Prediction 

Offline reliability forecasting is one of the critical activities of the DPO as part of the 

operational planning for a DP system for complex operations when allocating the configuration 

(power and thruster systems, etc.) and making decisions in case of emergencies [60]. The 

current method of planning and decision making heavily relies on the massive number of 

documents produced during the initial stages. It is based on knowledge without any proper 

understanding of the final location of operation (site-specific information), which demands 

significant efforts in terms of time and cost. With the development of technology, adapting to 

automation and the use of sensors for components in the sub-systems, there is a massive 

amount of data generated onboard the vessel related to the DP system.  Recently databases 

have been stored for condition monitoring and maintenance of the systems in a dedicated 

machine. This massive amount of historical data can be used for predictive planning to prepare 

the vessel and the DPO for any site-specific activity, which could become critical in terms of 

the operation [2]. There is need for a digital tool that can be used as a simulation tool to be 

used offline for the training of the operator. Besides, it also helps planning upfront to 

understand the method to handle catastrophic events due to single failure causing worst-case 

failures of design intent. 

Big Data and predictive analytics have enormous potential to prevent DP accidents in the 

offshore marine industry. However, the stakeholders of DP systems tend to be conservative 

with regard to implementing digital technology to unlock the potential. Recent trends show 

that the shipping industry is adopting predictive analytics for various applications including 

route optimisation before a voyage and ship behaviour and wave height prediction for efficient 

offshore operations [68, 69].  

2.9.2 Real-Time Reliability Prediction 

Real-Time reliability prediction or Time Series Prediction (TSP) involves the prediction of 

future system reliability based on the information of the current and past status of the sub-

systems. TSP has been implemented to address several real-world problems in the marine and 
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offshore industry for optimising operational efficiency [68, 69, 70]. Typically, four methods 

are used for detecting the state of the system and predicting failures: function approximation, 

classifiers, system models, and time-series analyses [71, 72]. All of these methods have at least 

one of the following drawbacks [73] : 

• Does not consider the effect of a dynamic change in the input  

• Supports only discrete input variables  

• A large amount of historical data is required to achieve a reasonable accuracy  

• Unable to tackle random errors in irregular fluctuations.  

Many Artificial Neural Network (ANN) methods have been adopted for reliability prediction 

and have shown high prediction accuracy and adaptability for stable offline data [50, 74, 75, 

76]. However, such methods were not capable of TSP of real-time data. Deep Learning RNNs 

are more suitable for addressing TSP than traditional Neural Networks as they provide multiple 

nonlinear mapping levels, which can abstract and extract the features of an input signal and 

discover the potential underlying relationship at a deeper level [73, 77]. However, the methods 

are not sufficiently proven in terms of their adaptiveness where TSP is dynamic. At the same 

time, the sampling speed of models should match the controller capability [59]. Therefore, in 

this research, four of the widely used RNN models were used to evaluate their suitability for 

the time series prediction/forecasting of DP reliability.  

2.10 Recurrent Neural Network Models 

An RNN introduces the concept of timing into the design of a network structure, which makes 

it more adaptable in time series prediction. The RNN architecture provides hidden layers to 

share the parameters across the time series. This functionality in the RNN supports built-in 

“memory” blocks, allowing the system to recognise and predict long sequences [77].  

The various algorithms for RNN are used in the research for determining their suitability for 

reliability prediction of DP systems. The predictive analytics framework is used for the 

evaluation and for estimating the accuracy. The algorithms are tuned across different 

hyperparameters for optimising the efficiency. The details of the performance analysis and the 

hyperparameters are discussed in Chapter 6. 
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Figure 2-7 Time Sequence in RNN 

The most important aspect of the RNN is its ability to analyse sequential data for representing 

the dynamic performance of the system through network delay recursion [79]. Figure 2-7 

demonstrates how the sequential data is processed in the RNN model. For example, consider 

that Wil is the input layer, Whl is the hidden layer, and Wol is the output layer. The output at 

time “T” not only depends on the input at a time “T”, but also on the recursive signal from 

time “T-1”. This illustrates the capability of the RNN delay recursion to support the processing 

of short term sequential data. However, in a broad context, memorisation, or learning from 

deep sequences in time series forecasting, the RNN suffers from the vanishing gradient 

problem [80, 81]. Specifically, in the case of long sequence inputs or time series an RNN is 

hard to train as the model can only remember the latest information and not the earlier data. 
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2.10.1 Multi-Layer Perceptron 

The Multi-Layer Perceptron (MLP) is a class of feedforward deep leaning Neural Network. 

An MLP consists of three layers of nodes: an input layer, a hidden layer, and an output layer. 

The neurons are organised by type into the layers, and the flow of information is in one 

direction [82]. Therefore, the neurons in the one layer are not related and do not share any 

information. MLPs are suitable for prediction tasks and are considered universal 

approximations of functions since their outputs depend only on the current inputs [79, 80, 83].  

The output “𝑦𝑦" for the MLP is given by Equation (2-5): 

𝑦𝑦 =  𝑔𝑔�� 𝑤𝑤𝑖𝑖𝑜𝑜 𝑓𝑓�𝑥𝑥(𝑡𝑡)𝑤𝑤𝑖𝑖𝐼𝐼 + 𝑏𝑏𝑖𝑖ℎ�
𝑞𝑞
𝑖𝑖=1 +  𝑏𝑏𝑜𝑜�                                                                             (2-5)  

where 𝑊𝑊𝐼𝐼 = �𝑤𝑤1𝐼𝐼 ,𝑤𝑤2𝐼𝐼 ,𝑤𝑤3𝐼𝐼 … . .𝑤𝑤𝑞𝑞𝐼𝐼� is the input weights matrix,  𝑊𝑊𝑜𝑜 = {𝑤𝑤1𝑂𝑂,𝑤𝑤2𝑂𝑂,𝑤𝑤3𝑂𝑂 … . .𝑤𝑤𝑞𝑞𝑂𝑂} is 

the output weights matrix, 𝐵𝐵ℎ = {𝑏𝑏1ℎ, 𝑏𝑏2ℎ, 𝑏𝑏3ℎ … . . 𝑏𝑏𝑞𝑞ℎ} is the bias vector of the hidden layer and 

𝑏𝑏𝑜𝑜 refers to the bias of the output layer. The f and g terms are the activation functions of the 

hidden and output layers. 

An MLP structure is illustrated in Figure 2-8 [82].  

 
Figure 2-8 MLP Network Structure 
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Though MLP proves to be very efficient in prediction and pattern recognition, there is an 

inherent drawback in that the variable selection accuracy depends highly on the choice of the 

shrinkage parameters. The performance of prediction deteriorates when the shrinkage 

parameters are chosen inappropriately [82].  In addition, when there is a set of candidate 

variables among which there is a very high pairwise correlation, the model tends to select only 

one variable from the pool and ignore the other. 

2.10.2 Simple Recurrent Neural Network (SRNN) 

In comparison to the MLP, SRNNs support feedback between one or more neurons, which 

enables historical information of previous inputs to influence each output [68]. The SRNN uses 

bi-directional loops to address problems in the context of input nodes. The transition between 

each layer node is no longer the input of a hidden layer. The SRNN is a sequence-to-sequence 

model that can process sequence data of any length, which makes it relevant for the DP 

reliability prediction application [74, 80]. The underlying network structure of an SRNN is 

depicted in Figure 2-9. In the figure, subscript t represents the time, x is input data, O is output 

data, S is the network state, W is the update weight, V is the weight between the cell and the 

output, and U is the weight between the input and cell. 

 

Figure 2-9 SRNN Network Structure 
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The output “𝑦𝑦" for the SRNN is given by Equation (2-6): 

𝑦𝑦 = 𝑔𝑔�� 𝑤𝑤𝑖𝑖𝑜𝑜 𝑓𝑓�𝑥𝑥(𝑡𝑡)𝑤𝑤𝑖𝑖𝐼𝐼 + 𝑥𝑥(𝑡𝑡−1)𝑤𝑤𝑖𝑖𝐼𝐼 + 𝑏𝑏𝑖𝑖ℎ �𝑞𝑞
𝑖𝑖=1 +  𝑏𝑏𝑜𝑜�                                                        (2-6) 

where 𝑊𝑊𝐼𝐼 = {𝑤𝑤1𝐼𝐼 ,𝑤𝑤2𝐼𝐼 ,𝑤𝑤3𝐼𝐼 … . .𝑤𝑤𝑞𝑞𝐼𝐼} is the input weights matrix,  𝑊𝑊𝑜𝑜 = {𝑤𝑤1𝑂𝑂,𝑤𝑤2𝑂𝑂,𝑤𝑤3𝑂𝑂 … . .𝑤𝑤𝑞𝑞𝑂𝑂} is 

the output weights matrix, 𝐵𝐵ℎ = {𝑏𝑏1ℎ, 𝑏𝑏2ℎ, 𝑏𝑏3ℎ … . . 𝑏𝑏𝑞𝑞ℎ} is the bias vector of the hidden layer and 

𝑏𝑏𝑜𝑜 refers to the bias of the output layer. The f and g terms are the activation functions of the 

hidden and output layers. The SRNN is suitable for prediction where there is a limited amount 

of data, and it experiences all the similar drawbacks of the standard RNN as the network 

structure is equivalent. 

2.10.3 Long Short Term Memory (LSTM) 

LSTM is an RNN variant, which uses a purpose-built memory cell to represent the long-term 

dependencies in time series data [70, 84].  The LSTM RNN is suitable for relatively long 

interval delays in time series prediction. It addresses the vanishing gradient problem of the 

SRNN through incorporating self-connected “gates” acting as memory cells in the hidden units 

[68, 83]. The complete architecture of LSTM is represented in Figure 2-10, which shows the 

flow of information from input to output [81]. 

 

Figure 2-10 LSTM Network Structure 
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LSTM consists of the following parameter groups. 

(i) Input weights  : 𝑈𝑈𝑓𝑓, 𝑈𝑈𝑖𝑖, 𝑈𝑈𝑜𝑜and 𝑈𝑈𝑐𝑐 

(ii) Recurrent weights    : 𝑊𝑊𝑓𝑓, 𝑊𝑊𝑖𝑖, 𝑊𝑊𝑜𝑜and 𝑊𝑊𝑐𝑐 

(iii) Bias   : 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜 and 𝑏𝑏𝑐𝑐 

The first step in LSTM is to decide what information is new and what information is going to 

be thrown away from the cell state called the forget gate 𝑓𝑓𝑡𝑡 , sigmoid activation function 𝜎𝜎, as 

shown in Equation (2-7) and (2-8): 

𝑓𝑓𝑡𝑡 =  𝜎𝜎�𝑋𝑋𝑡𝑡𝑈𝑈𝑓𝑓 +  𝑆𝑆𝑡𝑡−1𝑊𝑊𝑓𝑓 + 𝑏𝑏𝑓𝑓�                                                                                            (2-7) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝜃𝜃𝑥𝑥𝑓𝑓𝑥𝑥𝑡𝑡 +  𝜃𝜃ℎ𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓�                                                                                            (2-8) 

The next step is that the input gate (it) layer decides which values are to be updated and a tanh 

layer creates a vector of new candidate values �̃�𝐶𝑡𝑡, as represented in Equation (2-9) and (10):  

𝑖𝑖𝑡𝑡 =  𝜎𝜎�𝑋𝑋𝑡𝑡𝑈𝑈𝑖𝑖 +  𝑆𝑆𝑡𝑡−1𝑊𝑊𝑖𝑖 + 𝑏𝑏𝑖𝑖�                                                                                              (2-9) 

�̃�𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑋𝑋𝑡𝑡𝑈𝑈𝑐𝑐 + 𝑆𝑆𝑡𝑡−1𝑊𝑊𝑐𝑐 +  𝑏𝑏𝑐𝑐)                                                                                      (2-10) 

Then, to update the old candidate state, ∁𝑡𝑡−1 , it is combined into the new candidate state �̃�𝐶𝑡𝑡, 

pointwise multiplication ⊗, and pointwise addition ⊕, which can be given as Equation (2-11): 

∁𝑡𝑡 =  ∁𝑡𝑡−1 ⊗𝑓𝑓𝑡𝑡  ⊕  𝑖𝑖𝑡𝑡 ⊗ �̃�𝐶𝑡𝑡                                                                                                  (2-11) 

The next step is that the output gate (ot) decides what parts of the cell state are going to be 

produced as outputs. Then, the cell state goes through a tanh layer (to limit the values to be 

between -1 and 1), and it is multiplied by the output gate as shown in Equation (2-12) and (2-

13): 

𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑋𝑋𝑡𝑡𝑈𝑈𝑜𝑜 +  𝑆𝑆𝑡𝑡−1𝑊𝑊𝑜𝑜 + 𝑏𝑏𝑜𝑜)                                                                                            (2-12) 

𝑆𝑆𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡)                                                                                                                 (2-13) 

In order to address the vanishing gradient problem of the RNN, the LSTM RNN with input 

gate, output gate, and cell state was introduced.  This model can be trained for sequence 

generation by processing real data sequences one step at a time and predicting what comes 

next, which makes it suitable for the DP reliability prediction application. However, the main 

drawback is that each memory block needs an input gate and an output gate, which makes the 

training more difficult and increases the training time of the network [79, 80, 81]. 
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2.10.4 Gated Recurrent Unit (GRU) 

GRU is a classical variant of LSTM, which uses a new type of hidden unit similar to the 

memory unit in LSTM. The hidden unit combines the forget gate and input gate into a single 

update gate. The GRU model is a simpler version as the cellular state and hidden state are 

combined [81]. Figure 2-11 shows the complete architecture of a GRU network. 

 

Figure 2-11 GRU Network Structure 

 In order to determine the activation of the hidden unit at the time step “t” 𝑀𝑀𝑡𝑡 first needs to be 

computed by Equation (2-14): 

𝑀𝑀𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑅𝑅𝐻𝐻𝑡𝑡−1 +  𝑈𝑈𝑅𝑅𝑋𝑋𝑡𝑡)                                                                                                      (2-14) 

Where 𝜎𝜎 is the logistic sigmoid function and 𝑊𝑊𝑅𝑅 and 𝑈𝑈𝑅𝑅 are the weight matrices. 

The new remember gate 𝐻𝐻�𝑡𝑡, is generated by  𝑀𝑀𝑡𝑡 with a tanh layer in Equation (2-15). 

𝐻𝐻�𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊(𝑀𝑀𝑡𝑡 ∗ 𝐻𝐻𝑡𝑡−1 +  𝑈𝑈𝑋𝑋𝑡𝑡)                                                                                         (2-15) 

After this the remember and forgot gates are deleted by creating a new gate 𝑍𝑍𝑡𝑡 of Equation (2-

16) 

𝑍𝑍𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑧𝑧𝐻𝐻𝑡𝑡−1 +  𝑈𝑈𝑧𝑧𝑋𝑋𝑡𝑡)                                                                                                      (2-16) 

The hidden state value is updated as represented by Equation (2-17) 

𝐻𝐻𝑡𝑡 = (1 − 𝑍𝑍𝑡𝑡 )𝐻𝐻𝑡𝑡−1 + 𝑍𝑍𝑡𝑡 ∗  𝐻𝐻�𝑡𝑡                                                                                           (2-17) 

 



47 
 

GRU proves its capability in reducing the training time and improving network performance 

due to its simplified structure when compared to other RNN models [80, 81]. LSTM and GRU 

both tend to remember features for a long time, allowing backpropagation to happen through 

multiple bounded nonlinearities, which reduces the likelihood of the vanishing gradient. The 

suitability of GRU over LSTM is compared through experimental study in this research. 

2.11 Prescriptive Analytics – NLP and BERT 

Prescriptive analytics analyses the field data from sensors and uses computational models to 

provide instant recommendations to the DPO to suit the multiple predicted outcomes. 

Prescriptive analytics is related to and a natural progression from, descriptive and predictive 

analytics. It searches for and determines the best solution among various possibilities, given 

known parameters under a defined operational envelope.  In this research, the application uses 

NLP and BERT for prescriptive analytics to suggest possible solutions during failure scenarios. 

NLP is field of AI which provides the capability to machines to read, understand and decide 

based on human languages [85]. BERT is an NLP model that is pre-trained by Google and 

used as a Question and Answer system for the DP-RI application. This made it possible to 

analyse the enormous amounts of documentation available related to DP systems and provide 

possible suggestions to the DPO to respond quickly. The research framework, concept, fine-

tuning and training of the BERT model are discussed in Chapter 7. 

2.12 Human Factors in DP operation 

DP vessels are increasingly becoming automated, with interconnected systems, due to 

demanding operation at sea, safety, and economic benefits and facilitated through recent 

technological advancement [16, 2]. This advancement and adaptation to technology have 

grown at a rapid pace; however, the training of DPOs and standards governing DP have not 

matched the pace of improvement. In a complex, sophisticated, automated DP system, the role of 

the DPO shifts from active involvement to more an interpretation of the system. In such a situation, 

during complex offshore operations, the DPO role mainly needs to anticipate the system needs. It 

is trapped in a situation without any tools to support the function, thus becoming error-prone [86]. 

The main reason for this is that advanced DP is designed with humans out-of-the-loop, making the 

DPO distribute their attention to system needs rather than the operational requirements. 
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The IMCA defined DP incidents as “any loss of position to the surprise of the DPO,” which 

clearly shows the critical aspect of the human factor in DP related accidents [3].  The incidents 

are often unplanned and non-routine events that could have been avoided with proper 

intervention from the DPO. The accidents that occur due to DPO error are related to the 

undesired consequence of human-automation interaction [26]. Understanding the need for 

training, there were significant revisions to the International Convention on Standards of 

Training, Certification, and Watchkeeping (STCW) for Seafarers, and its associated Code was 

adopted at a Diplomatic Conference in Manila (The Manila Amendments), in June 2010 (IMO, 

2011). The Manila amendments define the necessary training and focus on courses addressing 

situational awareness and decision making. The training program enables the personnel to meet 

the essential requirements with the ability to handle critical situations in maritime operations 

independently or as a team [87]. Similarly, a large number of guidelines have been prepared 

by MTS to train the DPO [33, 25, 44, 60]. 

As mentioned previously, data has shown that 23% of primary causes and 64% of the 

secondary causes of DP related accidents are due to human error [3, 20, 21, 22].  Although the 

human operator is heavily involved in errors, a full understanding of the errors' origins is found 

within the DP complexity, including sub-systems, assemblies, equipment sensors, and 

interactions between them. Recent studies proved that human reliability needs to be considered 

in the design and operation of the DP system, which should be addressed in terms of training 

and operational documentation guidance for a DPO through automated possible solutions [88, 

89, 78, 90]. As socio-technical systems become less centralised and more globalised, there is 

a necessity to incorporate the ecological concerns in designs that can genuinely support the 

operators to deal with functional allocation and visualisation of operational risk. 

Most DP related accidents reported in the last few decades could have been prevented if the 

DPO had intervened at the right time and had taken corrective actions. To be precise, about 

64% of the accidents where human error was the secondary cause could have been prevented 

with proper planning in advance [3]. In order to understand the typical root causes of the loss 

of position and narrow down on how the DPO could have intervened, incidents were analysed, 

as presented below [7, 26]. 
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A scenario of Drive-Off: This is a situation where active thruster forces drive the vessel away 

from its target position. Defined as a move under power away from the set position or wanted 

position. It occurs during full power situations when the vessel is trying to regain its set position, 

which is mainly due to false information or wrong commands. A DPO would be the secondary 

cause and observing the situation soon enough to react correctly with the necessary steps could 

prevent drive-off. 

A scenario of Drift-Off: This is a situation where the vessel is incapable of maintaining its 

target position due to insufficient thrust forces in relation to the environmental forces. It could 

be due to failure occurring in operation outside of the “worst-case failure” environmental limits 

or exceeding the theoretical worst-case related to hardware or human error. A DPO would be 

the primary cause in most of the cases, and in order to prevent such a situation, thrust capability 

and wind, wave, and current conditions should be analysed before the decision making. 

Large Excursion: This is a situation where the vessel is still under DP control and experiences 

temporary excursion of position and/or heading more significant than the usual excursion due 

to environmental loads (massive wind gust/wave), thruster fault or degraded position 

information. It is usually referred to as being in the range of 10m or 10 degrees from the desired 

position and/or heading. These situations are quite common, and if the DPO reacts promptly, 

then a large excursion could be easily avoided. 

From the above analysis, it is quite evident that the intervention of the DPO could prevent all 

of the possible loss of position situations at the right time with the correct solution. As the 

industry is focussing on moving towards the Marine Autonomous Surface Ship (MASS), it is 

necessary to address relevant human errors through the following steps to ensure that 

functional requirements concerning risk and evaluation criteria are adequately addressed [88]. 

1. Minimal Human intervention 

2. Intervention from Shore 

3. Completely automated 

2.13 Summary 

In this chapter, the complexity of the DP system due to the external environmental forces, 

hydrodynamic effects acting on the vessels, and sophisticated integration between different 
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sub-systems have been discussed. Other categories of DP accidents were presented, and related 

impacts of the disasters were analysed in detail to identify the primary and secondary causes. 

DPO roles and responsibilities were discussed along with the technology influence of the 

complex operation and how the DPO role has changed gradually. Subsequently, various 

requirements and assurance frameworks, which are guiding the safe and reliable design of the 

systems, were presented in detail to identify the gaps and limitations. Classification Societies 

have been continuously updating the rules and standards related to methods to ensure that the 

technology advancement does not cause any uncertainty in the design, construction, and 

operation of the vessels. The analysis revealed that the rules mostly cover the essential safety 

requirement as a mandatory factor, and the operational aspect was left to stakeholders to 

manage the risk. Various reliability assessment methods traditionally used for the DP system 

evaluation were discussed in detail. The advantages and limitations of different techniques 

were analysed to focus on the critical areas in these research studies. 

Although the maritime, oil, and gas industry has started using big data and analytics for a few 

applications, it has not been used adequately to address the problems associated with the DP 

system. The biggest drawback is the lack of a consolidated or collective database, DP being a 

system with a lot of sensors and effectively having been an “internet of things” for many 

decades. It was essential to collect all of the relevant data and form a data lake for the research. 

The information part of Information Technology (IT) has not been explored much, which needs 

to be addressed whilst, at the same time, ensuring the quality of data. With the massive amount 

of data available in the DP system, it can be considered as a Big Data source and analysed 

systematically. The ANN models have been used for DP control system design; however, they 

have not been used for reliability assessment or become an industry-wide accepted practice. In 

the next chapters, all of the limitations of the existing evaluations are addressed through a novel 

research framework. The research framework was built on years of available trusted data, 

knowledge of industry experts, and intelligence of data analytics. 
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3. DP System Data Sources – Data Collection, Storage and Processing 

3.1 Introduction 

Big data has the potential to transform the marine, offshore, oil, and gas industries by creating 

opportunities to drive innovation through insights and application. The advancements in 

automation technology and sensor development along with the analytics revolution, have 

resulted in an exponential rise in data availability for analytics and efficient prediction in 

decision making [91]. The chapter begins by presenting the association of DP data to the 

characteristics of big data. The data related to DP systems are a reinterpretable representation 

of information in a formalised manner suitable for communication, interpretation, or 

processing [92]. The data collected in a DP vessel at different phases of the lifecycle are of 

structured, semi-structured, or unstructured formats.  In the next section, the type of data 

collected from various sources such as risk assessment reports, DP vessel manuals, historical 

data from event loggers/data loggers, and real-time data collected from sub-systems and stored 

through the vessel to cloud solutions, are presented. As big data involves substantial data sets 

and complicated problems, it is essential to have access to innovative and powerful processing 

and computing technologies. In the subsequent section, various databases and how big data 

technology is used for storage of the data sets are presented. These robust technologies ensure 

that data accessibility is very fast through processing units and file distribution systems [92, 

91]. The final section outlines the critical characteristics in identifying the complexity of the 

problem for which the data gathering is conducted. It details the necessary tools used for real-

time processing of data and essential formatting, for performing analytics to reveal the 

underlying correlation between the systems. 

The ability to manage all of the data and information from different sub-systems of the DP 

system, safely and efficiently, enables a new level of analysis and monitoring of situations, 

critical operations, and installation conditions for the following applications [93]. 

• Safety performance and integrated operation 

• Managing risk and effective decision making 

• Management and monitoring of accident and environmental risks  

• Energy efficiency (cost and environment)  

• Automation of ship operations (long-term) 
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3.2 Big Data Concept for DP System  

Big data refers to data whose sizes go well beyond the ability to capture, manage, and process 

with traditional computing technology or commonly used software tools [94]. In advanced DP 

vessels, the most sophisticated operations are dependent on information systems for control 

and analysis. In the last 30 years, two factors have changed radically for the DP system, the 

availability and usability of data. Now the current situation is that there is a massive explosion 

of available data, and the ability to store, combine and analyse these data is now available. DP 

Data is increasingly being considered a valuable asset of equal worth to physical assets, and 

considerable infrastructure is required for collecting, storing, and acting upon the data [95].  

DP big data collected from a vessel includes unstructured (text, images, audio, video, etc.), 

semi-structured (Alarm logger, comma-separated variables, etc.) and multi-structured data 

(different data formats such as excel, tabular results, historical database). Big Data is 

characterised by attributes of volume, variety, velocity, veracity, and value [94, 96]. Table 3-1 

defines these characteristics of big data and their relation to DP system data [96]. 

Table 3-1 Big Data Characteristics for DP system data 
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3.3 Stages in Big Data Analytics for the DP system 

The full potential of big data analytics may be unlocked in different stages. For the DP 

application, stages were used to ensure that a standard systematic approach was followed to 

mitigate pitfalls and biases that could arise during the experiments. There are five different 

stages in big data analytics, which are represented in Figure 3-1. The corresponding steps for 

DP system analysis for each stage are presented in detail in Figure 3-1 to show the level of 

increased information researched to fill the gaps of the existing assessment methodology [93, 

96]. 

 

Figure 3-1 Stages of Big data Analytics for the DP system 

As explained in the previous section, there is a considerable volume of data. Just having a 

massive amount of DP data is not enough; it is vital to store and process the data. Due to 

digitalisation of the data, there are three technological trends: Big Data analytics tools and 

technology, the concept of digital twins, and the emerging Internet of Things (IoT) platforms, 

which were used to create value by producing actionable knowledge from data [95]. 

The first stage of big data analytics was defining the problem, to identify the intended use and 

context for the DP system. The critical issues related to the DP system were described in 

Chapter 1 and Chapter 2, focus on the specific problem that will be addressed by the research. 
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The next stage was designing the data requirements, which involves identifying the type and 

kind of data required for solving the problem. In this stage, data from operators, vessel owners, 

flag state, DNV GL, shipyard, vendors, etc. were acquired in various formats and through 

different media. The data was stored in big data platform tools in the local Hadoop cluster and 

the cloud, depending on the agreed solutions with operators and vendors. The information is 

considered to be a data lake where the different databases such as the FMEA database, HIL 

database, DPCap database, OREDA database, IMCA database, and real-time sensor data are 

stored in an organised manner [3, 20, 21, 47, 57, 97]. The next stage is the pre-processing of 

data involving cleaning, profiling, integrating, and aligning the data for analytics. It is the most 

critical stage as all the inherent biases are addressed to ensure that the output from the analytics 

is close to reality, and performance accuracy is not compromised. Stage 3 of the Big data 

analytics is described in detail in Chapter 3. The next stage is the analytics stage, which 

explores the data through different algorithms to understand the patterns, reveal correlations, 

perform forecasting, and suggest solutions to respond to failure scenarios. For this research, 

four analytics concepts are used at different phases of the study to address the problems related 

to DP systems. The details of this stage are presented in Chapter 4, Chapter 6, and Chapter 7 

respectively. The final stage is the visualisation of the models, along with verification and 

validation, to evaluate the model performance which is described in Chapter 8. 

3.4 DP System Data Sources 

The types of data that are used for reliability analysis have evolved over time. The traditional 

methods, for decades, have used lifetime and degradation data to provide reliability 

information. With the advancement of technology in the era of big data, there are new data 

types that are available and used for reliability analysis [93]. Massive data sets available in the 

past were not used for analysis due to limitations in computing capability. Now, with 

technology breakthroughs and the low cost of collection of complete data sets, there is a 

motivation for research to explore the data for reliability analysis [95, 98]. 

A massive amount of data is available from DP systems from sources such as documents, 

reports, Systems Applications and Products (SAP), automation servers, historical databases, 

images, videos, JavaScript Object Notation (JSON), Extensible Mark-up Language (XML), 

mail servers, etc. The part of the overall data generated from these sources is structured, whilst 
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the rest of the data are either in a semi-structured or unstructured form. Storage and analysis 

of structured data have been happening for a long time; however, the volume of unstructured 

data has multiplied in recent times [98, 99]. Offline and real-time data are starting to be used 

in reliability prediction in other industries due to improved accuracy, and it is having a direct 

impact on operational efficiency. Following the big data concept used for the DP system, the 

data are grouped into three categories as follows [95, 98, 99, 100]: 

• Structured Data 

• Semi-Structured data 

• Unstructured Data 

 
Figure 3-2 DP System – Data Types 

Structured, semi-structured and un-structured data must be combined to form the big data 

before the application of analytic tools. The format of each of the data sets available is different, 

and so appropriate transcript steps were taken before the combining process. Usually, little 

effort is needed for the cleaning and profiling of structured data, when compared to semi-

structured / unstructured data, due to the variety of formats for the latter which are not suitable 

to import into a pre-defined relational database management system [99, 101]. Thus, more 

sophisticated big data tools are required for processing semi-structured / unstructured data. 

Figure 3-2  shows the complete architecture of the data types and processing steps [99]. 
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3.4.1 Structured Data 
Structured data of DP systems is data that is characterised by a pre-defined data model and 

standard relational database management system [102]. As the data are in a standard format, it 

is therefore straightforward to analyse. Most of the structured data can be represented in tabular 

format with the relationship between the rows and columns. Therefore, a systematic method 

for cleaning and profiling the data may be applied as it can be sorted through columns and 

rows. The structured data in the tabular format were converted into excel or SQL format for 

the research studies. 

The DP systems’ structured data were collected from the following sources, which are 

categorised into two types: 

• Offline data 

o FMEA database 

o HIL database 

o DP capability plot database 

• Real-Time data 

o DP Control System (Sensor Data) 

o Power Management  (Sensor data) 

o Thruster Control System (Sensor Data) 

o Reference System (Sensor Data) 

o Environmental Monitoring System (Sensor Data) 

o Condition Monitoring System (Sensor and Forecasting) 

o Alarm Logger 

o Event / Data Logger 

o DP Footprint &  DP simulation 

o DP capability (online analysis) 

The data, generated by humans or machines, is in a pre-defined format to fit into the Relational 

Database Management System (RDBMS), which can be accessed through queries and 

algorithms. The data are then pre-processed through standard data cleaning and profiling 

techniques. This step ensured that biases and unwanted data are removed from the raw 

information. This type of data is easy to enter, save, find and analyse, and is searchable through 
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the structured query language. However, due to its inflexibility, sometimes its usage is 

restricted for specific applications. Once the data was cleaned, they were stored in the 

HADOOP cluster, which was specially prepared for the research project in dedicated locations 

in different offices within the DNV GL organisation network. The structured data was 

combined with semi-structured and unstructured data once the other streams of data became 

ready for analytics. 

3.4.2 Semi-Structured Data 
DP system semi-structured data is a form of structured information that does not fit into the 

pre-defined data model or any standard RDBMS to comply with the defined tabular format 

[100, 103]. The data is in different tabular formats, which contain tags and other identifiers to 

separate the semantic elements. Hierarchies of fields within the data also characterise it, and 

records are systematically arranged. The semi-structured data are defined by self-describing 

structure differentiating it from unstructured data. The typical format of semi-structured data 

is JSON, XML, email, and RDF, etc. with metadata. 

The DP systems’ semi-structured data are collected from the following sources, which are 

categorised into two types: 

• Offline data 

o IMCA database 

o OREDA database 

o DP Operational manual database 

o Proving trial / Annual Trial 

o DP system FAT Procedure 

o DP system CAT Procedure 

• Real-Time data 

o Operational Technology (OT) data (not in pre-defined format) 

o IT data (Interface with OT) 

o Time-series trends 

o Graph and Forecast data 

o GPS and DGPS System (Sensor Data) 

o Asset Management System (AMS) 
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The semi-structured data are more accessible to analyse than unstructured data due to the 

availability of big data tools with the ability to read and process either from JSON or XML. 

Therefore, it resembles the features of structured data. The metadata feature of semi-structured 

data provides additional information which is frequently used by big data solutions for initial 

analysis. 

3.4.3 Unstructured Data 
DP system unstructured data is information that either does not have a predefined data model 

or is not organised in a pre-defined manner. The data usually consists of textual or non-textual 

records that are human or machine-generated and stored in the non-relational database 

management system (Text, Pdf, Word, email communication, Images, and Reports, etc.) [99, 

102, 103]. Due to the inbuilt attributes of unstructured data, it leads to irregularities and 

ambiguities that make it difficult to understand using traditional computing tools. 

The DP systems’ unstructured data are collected from the following sources, which are 

categorised into two types: 

• Offline data 

o Maintenance Records 

o Inspection records 

o Photograph (Images) and Screenshots 

o Videos in Voyage Data Recorder (VDR) 

o Accidents failure investigation reports 

o Manufacturer failure database 

• Real-Time data 

o DP Screen recording  

o Closed-circuit television (CCTV) recordings 

o Interviews 

In recent years, due to technological developments, new tools are available to store, clean, and 

analyse specialised types of unstructured data. Therefore, in this research, the big data tools 

available within DNV GL were used in the context of big data to ensure that its potential is 

fully utilised to address the problem in hand. Table 3-2 shows the various data types used for 

the research and its grouping along with features, storage location, size etc.
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Table 3-2 DP System – Big Data Sources description 
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3.4.4 Conversion of Semi / Unstructured Data into Structured Data using NLP 
NN models cannot use the semi-structured and unstructured data of the DP system for 

classification, prediction, and prescriptive analytics applications. The critical step in the 

research involves the conversion of semi-structured and unstructured data into pre-defined 

RDMS structured data [104, 105]. The pre-processing of semi-structured and unstructured data 

is required before performing the conversion. The semi-structured data was converted to 

structured data using data-mining tools and techniques for information extraction and NLP. 

However, it was not straightforward to convert the unstructured data into semi-structured or 

fully structured information. During the pre-processing stage, the steps of transcription and 

data crawling are performed on the semi-structured and unstructured data. The critical 

information is filtered and collected before performing data cleaning. After this, the combined 

data are placed in the data lake ready for conversion. 

In this research, a common standardised approach was used to convert both the semi-structured 

and unstructured data of the DP system to pre-defined structured data and store them in the 

HADOOP data cluster before classification data analytics to identify the critical sub-systems. 

An ontology-based NLP concept was used by coupling the reasoning concept of ontology with 

the lexicon component in NLP [106, 107]. The mix of semi-structured and unstructured data 

is passed into the system, where the two features of ontology are used for NLP. Firstly, 

ontology is used as a building block when defining the terms for content words through the 

lexicon. The second key feature of ontology, acting as a knowledge-base, is where it serves as 

the primary system/brain for the complex language processing used along with NLP to 

optimise the efficiency in conversion [108, 109]. 

The ontology-based NLP uses Morphological analysis, Syntactic Analysis, Semantic Analysis, 

Pragmatic Analysis, and Discourse Analysis in either a step by step approach or combined 

efforts. The Term Frequency-Inverse Document Frequency (TF-IDF) defined the descriptive 

definition and documents and grouped accordingly. In this way, it was ensured that the 

database with semi-structured and unstructured data is analysed based on how the text is built 

up, put together, what it means, how it is used in different situations, goals and intentions and 

the inter-relation between additional text. The steps are modified into critical activities to 
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perform the conversion of semi-structured and unstructured data into structured data through 

knowledge discovery in the database (KDD) [105, 107, 108].  

The critical activities applied to the database for conversion using NLP are listed below [101]:  

• Tokenization:  Strings into tokens 

• Stemming: Normalise words into its base form or root form 

• Lemmatization: Morphological analysis of the words 

• POS tags: Extraction of semantic information 

• Named entity recognition: Process of detecting the names of the entity 

• Chunking: Picking the information and grouping into the sentence 

The hybrid data lake is created with semi-structured and unstructured data stored in the Hadoop 

cluster and cloud infrastructure. The complete architecture of the conversion of semi-structured 

and unstructured data of the DP system to pre-defined structured data, in the standardised 

approach through ontology-based NLP, is shown in Figure 3-3. Various tools and libraries 

such as Google Cloud Platform (GCP), Ghost-script, Google NLP AutoML, Jupyter Notebook, 

and NLPTK were used for this application. The converted, pre-defined structured data were 

stored in a data warehouse for machine learning models to perform analytics. 

 
Figure 3-3 Ontology-based NLP – Conversion of semi/unstructured data
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3.5 DP System Offline Data Lake – Information Management System (IMS) 

The significant phases of the DP life-cycle include design, construction, commissioning, sea-

trials, and operation [1, 2]. In all of these phases, the design evolves, and changes are 

implemented for safe, reliable, and efficient operation. As discussed in Chapter 2, historically 

several traditional reliability assessment methods have been implemented in different phases 

for improving the design of the system. However, they have not been able to prevent all the 

accidents from occurring based on the analysis of the accident database report from IMCA 

[3]. Besides, the traditional reliability assessment methods have not demonstrated their ability 

to provide clear information on faults and provide appropriate solutions during operation.  

The traditional methods have been proved to enhance the design and increase the safety and 

reliability of the DP vessels over the years to a certain extent. There is a massive amount of 

data produced by these methods by various stakeholders at different stages of the DP life cycle.  

Figure 3-4 shows the relation of data collected from the sources and stages of the DP life cycle. 

In this research, the databases are organised and stored to form a data lake. Further, it is used 

to understand the correlation between the sub-systems and inter-dependencies through the risk 

assessment methodologies. 

 

Figure 3-4 Database collected during DP lifecycle 
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The Information Management System is a combination of offline and real-time data. In this 

section, the offline data lake of IMS is discussed in detail. The offline data lake is formed by 

grouping the below set of databases which consists of structured, semi-structured, and 

unstructured data [2, 16]: 

• FMEA database 

• HIL database 

• IMCA database 

• WOAD database 

• DPCAP database 

• OREDA database 

• Manufacturer Failure database (MAN FD) 

The databases of the offline data lake were collected from different sources either from the 

DNV GL domain, vendor databases or from publicly available sources during the initial two 

years of the doctoral study. The data are confidential and necessary consent was agreed with 

the respective data owners to use the data for research purposes. Figure 3-5 shows the database 

architecture used for the research studies along with its interface with the Hadoop platform and 

the layer of security. 

 

Figure 3-5 IMS – DP system Database Architecture 
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3.5.1 FMEA Database 
The FMEA database was created for this research by collecting the reports of more than 500 

vessels for which the risk assessment was performed by DNV GL (DNV and Noble Denton). 

The data were generated over 30 years and were cleaned before being used in the research 

study, with the consent of the data owner. FMEA is an industry-wide accepted tool for studying 

the behaviour of the DP system in cases of single-point failure [15, 45]. It involves a Design 

Review of the DP system by evaluating the Functional Design Specification, Drawings, IO list, 

etc., preparing the FMEA worksheet, and finally, the FMEA report categorising the impact of 

the failure into three categories (Highly Critical, Medium and Low). The FMEA database 

contributes 120 GB to the total data size and keeps accumulating along with the current 

increase in the number of DP vessels.  

The following key features are extracted from the database and used in the research study [17, 

46, 53]: 

• Identify all possible failure modes and their effects. 

• Generate a list of potential failures with an assessment of the magnitude of their effects. 

• Develop corrective action priorities in decision making for prescriptive analytics. 

• Evaluate design requirements related to redundancy, failure detection systems, fail-safe 

characteristics, and automatic and manual override. 

• Provides historical documentation for future reference to aid in the analysis of field 

failures and consideration of design changes. 

• Provide an input basis for quantitative reliability and availability analysis. 

3.5.2 HIL and Digital Twin Database 
The HIL database was created from the test results performed on more than 100 vessels by 

DNV GL (Marine Cybernetics and DNV GL).   The data was generated over 12 years from the 

ships where testing of the DP system, PMS system, and Thruster system was carried out as 

integrated and standalone systems.  Today most of the complex and sophisticated DP vessels 

undergo HIL testing to make sure that glitches in the software are identified at the early stages 

of the projects [47, 56]. Classification Societies like DNV GL, ABS and LR realised the 

importance of the HIL testing and came up with rules to cover Control System Software testing 
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by HIL [55]. The safety and Reliability of the DP system have increased to some extent after 

the different subsystems of the DP system underwent HIL testing. 

Recently the Digital twin concept has been used, as a stand-alone testing solution or in 

combination with HIL testing, to evaluate the performance of the software for the DP system. 

The digital twin and HIL concepts were applied by major DP system vendors such as 

Kongsberg, Rolls Royce, GE, and MT etc. This method has enabled stakeholders to gain 

insights into how different DP systems will respond to any particular failure during real 

scenarios. The HIL and Digital twin have contributed a total of 60 GB of data to the data lake. 

Figure 3-6 shows the critical findings in HIL testing, and the following key features are 

extracted for the research study [47]: 

• DP system failure contributors 

• Different functions of the DP system and consequence of failure on DP sub-system 

• The possible solutions for the failure and addressing consequences 

• The sub-system in which major software failures could occur 

• Identify the DP vendor occupying the significant market share 

 

Figure 3-6 HIL database – Key Findings  
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3.5.3 DP-CAP Database 
DP capability plots are mandatory for all DP vessels, and these data were collected from about 

300 ships for the research work. This contributes to the off-line as well as real-time data. Those 

DP capability plots which are generated during the design stages are stored in the offline 

database in the on-premises Hadoop ecosystem. However, those that are generated on-board 

during operation along with DP simulations are collected as part of the real-time data and 

stored in the cloud infrastructure. The static and time series DP capability plots are collected 

and stored, contributing to a total size of 20 GB in the RDBMS format. 

3.5.4 IMCA Database 
The IMCA has documented DP incidents internally by technical advisors based on data 

received from its members and non-members [3]. The data are accepted either in structured or 

in semi-structured formats and submitted to the database as long as the station keeping incident 

analysis can be performed on the information received. The systematic approach of research 

in the report is collected and stored in the database. The data collected was from a report dated 

from 1990 to 2020, covering 30 years of DP history and a total of 1900 accidents were analysed.  

The total amount of semi-structured data collected is about 4 GB, which are stored in the on-

premises Hadoop ecosystem. 

The review and analysis of incident reports are performed by IMCA to encourage and improve 

reporting throughout the industry. The study provided valuable lessons learned and meaningful 

analysis insights that were used to enhance this research. Definitive conclusions about the 

safety of DP operations were not drawn from the statistical analysis of the reports; however, 

trends or patterns may be determined over time.  In this review, initiating events, causes, and 

comments reported by users have been incorporated into a table for easy comparison [3]. This 

method enables individual DP vessels to readily complete an onboard comparison of actual 

events occurring in the industry with the situation on-board their ship. 

3.5.5 WOAD Database 
WOAD is the world’s most comprehensive data source of its kind available for offshore risk 

assessment and emergency planning. The accident data has been collected since 1970 and 

includes more than 50 years of world-wide accident history. The database is continuously 

being updated with the latest information available from authorities, official publications and 
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reports, newspapers, databases, rig owners, and operators globally [20]. The database collected 

included data on more than 6000 accidents with a wide range of parameters such as name, type, 

and operation mode of the unit involved in the accident, date, geographical location, chain of 

events, causes, consequences, and evacuation details. The total amount of semi-structured data 

collected is about 76 GB, which are stored in the on-premises HADOOP ecosystem. 

The WOAD provides various key and critical information that is used for this research study. 

Knowledge of past DP accidents serves as an essential input to risk assessment concerning 

hazard identification, consequence evaluations, decision support, and identification of high-

risk areas. Learning lessons from accidents is vital to avoid accidents in the future. 

 
3.5.6 OREDA Database 
OREDA is a project organisation sponsored by nine oil companies with worldwide operations. 

OREDAs' primary purpose is to collect and exchange reliability data among the participating 

companies and act as the forum for co-ordination and management of reliability data collection 

within the oil and gas industry. OREDA has established a comprehensive databank with 

reliability and maintenance data for exploration and production equipment from a wide variety 

of geographic areas, installations, equipment types, and operating conditions [97]. The data are 

stored in a database, and specialised software has been developed to collect, retrieve, and 

analyse the information. The total amount of semi-structured data collected is about 60 GB, 

which are stored in the on-premises Hadoop ecosystem. 

3.5.7 DP Vendor Equipment MTBF Database 
Manufacturers of equipment in the marine, oil, and gas industry maintain failure databases for 

all of the equipment supplied by them. OREDA provides more generic failure data from 

different manufacturers and collectively addresses the failure data for the equipment. However, 

for more accuracy, it is necessary to use the actual failure rate of the equipment from the 

manufacturer. Some of the typical suppliers of DP systems from whom the data was collected 

are Kongsberg, Rolls Royce, GE Converteam, L3 communication, and Marine Technologies 

(MT). The data was collected and stored as a database from more than 2000 projects within 

DNV GL. The total amount of semi-structured data collected is about 120 GB, which are stored 

in the on-premises Hadoop ecosystem. 
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3.6 DP System Real-Time Data Lake – Information Management System (IMS) 

Real-Time data are critical data which represents the actual state of the equipment during 

operation. With the development of sensor technology, the IoT, System on Chip (SoC) and 

cloud computing, it is easy to extract the data during operation and transfer it to shore for 

processing [110, 111]. Figure 3-7 defines the architecture set-up used for harvesting the real-

time data from DP vessels operating offshore. The set-up was established on ten ships to collect 

and transfer data using vessel-to-cloud infrastructure for further processing and modelling. The 

amount of real-time data collected and simulated by digital twin is about 40TB and the data 

are transferred either real-time, near real-time or in batches. 

The transfer of data from vessel to onshore are either done independently by each sub-system 

or from an integrated IMS system which communicates with the DP System. The system which 

is performing the control function on the vessel is classified as OT and systems which take 

care of the transfer of data to shore are classified as IT. The information transferred to shore is 

secured through firewall protection and used for real-time monitoring, processing and 

forecasting functionality [112, 113]. 

   

Figure 3-7 Real-Time data transfer from the vessel to shore for Analytics  
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3.7 Tools and Experimental Set-Up for the DP System Big Data Analytics 

The experimental set-up for the research used a local big data Hadoop ecosystem and cloud-

based infrastructure for DP system-related data storage, processing, profiling, organising, 

analysing, and analytics. The Hadoop ecosystem used semi-structured, unstructured, and 

structured data, which are readily available offline data so that a data lake could be created 

using an efficient and organised approach [114]. Similarly, for real-time data extracted from 

operational vessel technology, which are structured, the vessel-to-cloud approach was used for 

storing the data in the cloud. The hybrid approach was used to process the data before analysis. 

The key advantages of using the Hadoop ecosystem for this research are listed below [92, 114]: 

• Infra-structure is fault-tolerant and highly reliable 

• In-built capability to integrate seamlessly with cloud-based services 

• Ability to handle different data formats and address big data problems efficiently 

The Hadoop ecosystem was created with a group of tools and applications to support the DP 

system-related big data management and processing. The Hadoop architecture and ecosystem 

tools are shown in Figure 3-8 and Table 3-3. Based on the specific requirement, the tools used 

and functional details of the tools in the Hadoop ecosystem are described below [114]: 

HDFS: Hadoop Distributed file system to store data. 

YARN: Resource manager to leverage and process big data. 

PIG: Data processing for grouping, filtering, joining, and storing to HDFS. 

HIVE: Processing of RDBMS data through HQL. 

MAHOUT: Implementation of Machine Learning for Clustering and Classification. 

SPARK: Real-Time data analytics. 

HBASE: Supports grouping and automatic distribution of data across a cluster. 

DRILL: Combines the database and executes through a single query. 

OOZIE: Sequential and event-based job scheduler. 

FLUME: Ingest semi-structured and un-structured to HDFS from multiple sources. 

SQOOP: Ingest structured data either real-time or batch ingestion via filtering and enrichment. 

ZOOKEEPER: Ensures coordination between various tools in the Hadoop ecosystem. 

APACHE AMBARI: A cluster management tool for managing and monitoring.  
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Figure 3-8 HADOOP Ecosystem architecture with tools and applications 
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Table 3-3 Experimental set-ups on local premises to handle DP system Big Data 
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3.8  Need for the Implementation of Big Data Analytics 

In recent times, there has been a strong trend in the maritime, oil, and gas industries to move 

towards data-driven decision making and the use of data analytics for managing performance 

and risk. For this research study, which focuses on effective decision making for the DP system, 

Knowledge Management (KM) and ANN models are required. Big data and data analytics 

techniques play a significant role in KM by active knowledge generation through correlation 

and result in significant, timely decision making. The technological advancement changes the 

modes in which the data are collected, stored through high-speed data ingestion, and computed 

in complicated data structures. The following reasons are identified as the need for 

implementation of Big Data Analytics for addressing the research problems: 

• Increased connectivity, new capabilities for capturing, storing, processing, presenting, 

and visualising data, and, in particular, the transmission of large volumes of varied DP 

data at high velocity, have forced the use of Big Data Capability tools.  

• Existing lack of consistent knowledge has led to poor performance in the past; therefore, 

proper strategies need to be devised to create new experience from the existing historical 

data, which are either semi-structured or unstructured. The information from these data-

sets can be used for knowledge generation and used for operational efficiency. 

• Selection and accessing of the characteristics that have great significance to the 

operational reliability assessment were not possible previously. With IoT, Digital Twin, 

and Big Data tools, the critical features are extracted with useful state features at the 

same time, reducing the computational burden, even with a massive number of datasets. 

• Decisions are made in real-time according to the data generated, and timely and accurate 

decision-making is what makes all the difference for complex marine operation 

offshore, and it supports in the prevention of any DP related accidents. 

3.9 Summary 

Chapter 3 gave a detailed overview illustrating why the data sources of the DP System are 

considered a big data concept. The correlation between the attributes of big data is evaluated 

against the DP system data sources to justify the adoption of a big data methodology for this 

research. Subsequently, various stages in big data analytics are presented and how the chapters 

in the thesis are connected with each stage. The different types of data: structured, semi-
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structured, and unstructured, in the data sources are defined along with the properties, format, 

and usability for the research. Also, each data source was defined and grouped into offline data 

and real-time data. The data types which are not automatically usable for the analysis were 

converted into a usable format using an ontology-based NLP methodology. 

In addition, all the databases collected were described with details of size, type of data, number 

of vessels, projects, and source of the database. Next, the Hadoop ecosystem with complete 

tools and applications used for the research was described. The experimental set-up with the 

hardware configuration and software application were defined.  Finally, the need for the 

implementation of big data analytics for this research was presented.  

In the next chapters, the data collected, stored, and processed will be used for analytics through 

knowledge of experts and intelligence of computing capabilities. The data analytics will focus 

on the following aspects to address the research problem step by step: 

• Descriptive Analytics   What has happened in the DP System? 

• Diagnostic Analytics   Why did it happen in the DP System? 

• Predictive Analytics   What will happen if there is any failure in the DP sub-system? 

• Prescriptive Analytics  What should be done in the case of failure (possible 

suggestions)?  

Chapter 4 describes the descriptive and diagnostics analytics used for classification of the DP 

System and identifies the critical DP sub-systems. The correlation and inter-dependencies 

between sub-systems are identified. Then each of the sub-systems is presented with system 

architecture and signal description at the component level.   
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4. Classification of DP Sub-Systems: Descriptive and Diagnostic 
Analytics  

4.1 Introduction 

The next stage of the work is stage 4 of big data analytics, which involves data processing and 

analytics. This chapter presents the descriptive and diagnostic analytics to ensure that data 

exploration and preparation are sufficiently thorough in addressing any problems associated 

with the data.  It is proven that more and better data beats a good algorithm every time [115].  

Thus, this stage is critical, involving data exploration and decisions as to what data is going to 

be used for predictive and prescriptive analytics. In addition, effective data preparation steps 

increase the accuracy of the prediction models by utilising the power of the available data most 

efficiently. The common issues related to data are addressed by ensuring that the data are 

collected from a range of available sources, defining the features, identifying and treating 

missing values, deleting the duplicate observations, and making assumptions. As part of the 

research study, significant time was spent on meticulously preparing the data. This stage helped 

in the later phases during predictive and prescriptive analytics to get better and more credible 

results. The descriptive and diagnostic analytics are the first part of advanced analytics, which 

identifies the input variables (sub-systems) and its relations with the target variable (DP System 

Reliability) are presented. The next sections of this chapter describe the sub-systems covering 

the system description, architecture within the Graphical User Interface (GUI) model, and 

input variables (signals) at the sub-system level. 

Stage 4 of big data analytics involving data processing and analytics (descriptive and 

diagnostic) comprises the following activities: 

• Data exploration and preparation 

• Performing quality checks 

• Creating a data dictionary 

• Understanding and identifying the variables at system and sub-system level 

• Creating other derived variables 

• Identifying the correlation and interdependencies between variables 

• Classification of DP sub-system 

• Description of DP sub-system and architecture 
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4.2  Descriptive and Diagnostic Analytics 

Descriptive analytics was used as the first step of the advanced analytics, and helped to analyse 

and reveal, “What has happened in the DP system?” [96, 116]. It is the critical step in 

understanding the datasets and the basic content in the data lake. It provides various insights 

and different metrics captured for the datasets. Typical techniques used for descriptive 

analytics are statistics and distributions to identify different sub-systems that have effects on 

DP system functionality [117, 118]. Similarly, diagnostic analytics is the second step which 

helps to answer “Why did this happen in the DP System?” [116]. It plays a key role in 

determining the factors that contribute to the outcome along with dependencies between output 

and input variables. Therefore, it also identifies the sub-system roles and their inter-

dependencies in the DP system performance. The two analytics steps are part of data mining 

and support in-built data processing steps for the next stages to make predictions and provide 

prescriptive solutions. Thus, data exploration and data processing are covered in the next 

section along with the different techniques used for descriptive and diagnostic analytics. 

 
4.2.1 Data Exploration and Preparation 
The output of stage 3 of data analytics (as shown in Figure 3-1) is the pre-processed data, which 

are ready for analytics. Data exploration is vital before the analytics step as it helps to 

understand the dataset [96]. For the DP system, there is a massive number of datasets that have 

been collected and made available and different tools are used to understand it. A top-down 

approach was used for this research study where the DP system was split into various sub-

systems, and each sub-system divided into various associated components. The components 

may be designed with one or more sensors that have contributed to the data points. Therefore 

during the data exploration stage, the dataset is evaluated carefully to identify the variables for 

the research [116].  

Variables are often referred to as the feature engineering properties of a dataset. They denote 

a specific piece of information about an observation or records in a dataset, which are known 

as the input, output, and unused variables [119, 120]. In this research context, the sub-systems 

are considered as variables for the DP system reliability, and the signals at each sub-system 

level are considered as the variables for sub-system reliability. The variables can be dependent 

or independent, and this is determined through correlation analysis.  
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Figure 4-1 Data Exploration to identify the DP sub-systems 

The variable selection is a critical step as part of descriptive analytics. Statistics and 

distribution analysis, which is considered to be a tool of descriptive analytics, are used to 

determine the system-level variables/feature selection [96, 117]. Statistics put the available 
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data set in context to identify the variables. Distributions show how the data is distributed over 

its entire range. If the data is very irregularly distributed, the resulting model will probably be 

of poor quality [116, 121]. For the DP system, the statistics and distributions are used to 

identify the sub-systems at a high level as the first step of data exploration. Figure 4-1 shows 

the typical sub-systems which contribute to the overall functionality of the DP system. As 

indicated, seven input variables have a direct impact on the DP system reliability. 

A systematic approach must be used to identify the variables as the predictive and prescriptive 

analytics may not operate well if there are numerous inconclusive features [119, 122]. It has 

been proven that algorithm run-time grows dramatically when the features increase and, at the 

same time, the accuracy of the algorithm is negatively affected leading to overfitting problems 

[121].  The primary advantage of feature selection is that it results in the following [120, 123]: 

• Improved accuracy of prediction 

• Simplification of the visualisation and increase of readability of data 

• Accelerated learning and prediction process 

• Increased clarity of the generated rules for experts 

In this research, the second level of feature selection was applied using the decision tree 

technique to validate the system level selection. This method also proves that seven sub-

systems have an impact on the DP system reliability. Other sub-systems such as the Valve 

Control System (VCS), Crane Control System (CCS), Fire and Gas System (FGS), Portable 

Water System (PWS), Bilge System, Drilling Control System (DCS), Blow-out-Preventer 

(BOP) control system, etc. do not contribute to DP system reliability. The decision tree 

technique is also applied at the sub-system level to identify the features that contribute to its 

functionality and reliability. The two primary approaches of decision trees, Sequential 

Backward Elimination (SBE) and Sequential Forward Selection (SFS) are used for this 

purpose. At the system level the decision tree approach is used for validation; however, at the 

sub-system level, it is used for identification / shortlisting of variables [124]. A decision tree 

is a widely used method for feature selection, and at each node in the tree, it minimises the 

number of features [123, 122]. This method results in a better understanding of the datasets, 

possibly better visualisation of data, reduced transfer of data from vessel to shore, reduced 

training time with improved stability, and model accuracy. Instances / Observations, which 
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describe the actual data of the variables, are considered as records. The definition of records is 

described briefly in Chapter 6 and Chapter 7, along with predictive and prescriptive analytics 

models. 

A data dictionary is a collection of descriptions of data objects or items in a data model, 

containing the attributes of variables for the benefit of others who may need to refer to them 

[125, 126]. A more detailed data dictionary will include the type, length, and format of the 

variable. They are created such that they are self-explanatory, and the fields should be easy to 

understand such that data sets can be used for the algorithms of similar applications. Table 4-1 

shows the data dictionary at the DP system level. For each sub-system, there is a separate data 

dictionary table in the relevant section of the chapter, where it describes the variables along 

with type, format, and other necessary attributes. All variables used in the prediction are made 

visible to give an intuitive understanding through the data dictionary that does not happen with 

more complex representations of data sets [126]. 

Table 4-1 Data Dictionary for the DP system  

 

The output variable, which is the target variable for the research, is the Dynamic Positioning -

Reliability Index (DP-RI). In general, DP system reliability is represented in a qualitative 

format for most vessels. However, a more sophisticated and complex DP vessel, for which 

quantitative risk assessment was performed, will have a quantifiable reliability value. For this 

research, both scenarios are handled considering the ship with actual DP reliability in 
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numerical form and a vessel with DP reliability in a qualitative format. In the qualitative case, 

a derived variable is used to represent the DP system reliability. The output variable at the sub-

system level is a direct measure of reliability in the quantitative format as the values are 

calculated based on the critical component/equipment arrangement within the sub-system. 

The key advantages of data-exploration and processing as part of the descriptive analytics are 

as follows [96, 116, 122]: 

• Determination of additional dimensions for deeper insights 

• Definition of derived variables 

• Structure information of variables in the data dictionary for another user to understand 

the data sets easily 

• Prevent incorrect analysis 

• Address Missing variable and  Perform Quality checks 

4.2.2 Correlation and Interdependencies 
The feature selection step identified the input and output variables, the latter being a target 

variable derived through mathematical modelling/calculation.  The next step is determining 

the correlation between the input variables and between input variables and the target variable. 

This step is part of the diagnostic analytics, which performs such activities using defined tools 

and techniques. For the correlation determination, the Scatter Plot and Correlation matrix are 

used to identify the interdependencies and correlation between variables [96, 116, 117]. 

Scatter plots help in discovering the dependencies between the target variables and the input 

variables. Such charts plot output values versus input values [116, 118]. Figure 4-2 shows the 

plots of DP system reliability against the DP sub-systems to identify whether they have a 

positive or negative relationship. The correlation is a numerical value between -1 and 1 that 

expresses the strength of the relationship between two variables. When it is close to 1 it 

indicates a positive relationship (one variable increases when the other increases); a value close 

to 0 indicates that there is no relationship; and a value close to -1 indicates a negative 

relationship (one variable increases when the other decreases) [127, 128]. Thus, this method 

can be used to identify and remove redundant data to avoid over complication in the model 

algorithm. 
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(a) DP Reliability vs. Reference System 

 

(b) DP Reliability vs. DP Control System 

 

 

(c) DP Reliability vs. Thruster System 

 

(d) DP Reliability vs. Power System 

 

 

(e) DP Reliability vs. Electrical System 

 

(f) DP Reliability vs. Environmental System 

 

Figure 4-2 Scatter Diagrams – Correlation between variables 
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Correlation is a process of establishing a relationship or identifying the interdependencies 

between variables [128, 129]. Figure 4-3 depicts the correlation matrix indicating the inter-

dependencies between the DP system and its sub-systems. The correlation technique is a part 

of diagnostic analytics that uses correlation coefficients. If the correlation is 0, they are 

independent of each other, that is, increasing or decreasing one does not increase or decrease 

another. On the other hand, if the correlation coefficient is 1 or -1, they are directly or inversely 

dependent, respectively. 

 

Figure 4-3 Correlation Matrix – DP sub-systems and DP-RI 

Besides, the latent relationship was captured using the Partial Least Squares (PLS) regression 

method [130]. For real-time data, dynamic PLS are implemented in combination with the State-

Dependent Parameters (SDP) approach to explicitly identify the relationship and 

interdependencies of time series [128, 130]. This way, the collinearity between the input 

variables is removed. At the same time, the accuracy of the model prediction is improved, 

which is described in later chapters of the thesis. 
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Figure 4-4 shows the complete architectural overview of the classification of the DP system to 

identify the critical sub-systems contributing to safe and reliable operation. Through 

descriptive and diagnostic analytics, it was identified that there is a total of seven sub-systems 

which have direct dependencies on the DP system reliability. In the next sections, sub-systems 

are evaluated to determine the critical variables contributing to the functionality and reliability. 

 

Figure 4-4 DP System classification – descriptive and diagnostic analytics 

4.3 Data Dictionary and Critical Attributes at the Sub-System Level 

At the sub-system level, a comprehensive data dictionary is created as the number of variables 

is large. In the evaluation of DP system design, it is often found that the standard connection 

between the sub-systems that is intended to provide redundancy increases the probability of a 

fault [4]. A fault in one redundant system can affect another independent system. In the design, 

the class rules are applied to ensure that the redundant concept is used to achieve no loss of 

position. However, redundancy does not guarantee a high level of reliability; therefore, it is 

evident that the fault-tolerant concept needs to follow the above class requirements. Large sets 

of variables lead to potential configuration errors which are addressed through Redundancy 

and Criticality Analysers (RCA) and the data dictionary [23]. 



83 
 

DP sub-systems are further divided into equipment, sensors, and signals. The following 

classifications  are defined for typical signals for DP sub-systems at a sensor level to achieve 

higher reliability and availability, and these need to be added to the data dictionary [1, 33, 131]: 

• Critical Redundant: The equipment and component within the sub-system are required 

to ensure the vessel is single fault-tolerant. To remove such equipment would either 

remove the DP system’s fault tolerance entirely or reduce its post-failure DP capability. It 

is sufficient for WCDFI. Sampling rate (SR) is 1 millisecond. 

• Critical Non-redundant: This is not applicable within the DP system 

• Non-Critical Redundant: The equipment and components within the sub-system that are 

required to provide greater availability and higher reliability. SR is 10 milliseconds. 

• Non-Critical Non-redundant: The equipment and components within the sub-system 

which do not have a direct impact on the DP functionality. SR is 1 second. 

Also, attributes such as whether the signal is Input (monitoring) or Output (control) along with 

type (Analog or digital) are defined to perform the feature selection and correlation analysis at 

the sub-system level. The signals are represented as Analog Input (AI), Digital Input (DI), 

Analog Output (AO), and Digital Output (DO). The equipment configuration is either 1oo1 

(one-out-of-one), 1oo2 (one-out-of-two), 1oo3 (one-out-of-three), or 2oo3 (two-out-of-three). 

For this research study, there are total of 1513 signals identified with 1054 redundant and 459 

non-redundant signals.  

4.4 Reference System (A1) 

4.4.1 System Description  
A reference system (A1) is used to measure the position and heading data of the vessel at any 

point in time [132, 133, 134]. The position and heading data are critical information for the DP 

control system as it compares the measured values with the set value to determine the error. 

The DP control system functionality depends on this value to determine the command signal 

to the propulsion system. Depending on the type of operation, most DP vessels have more than 

one reference system working actively at the same time, providing either absolute or relative 

measurement [1, 135]. The position reference systems could be Differential Global Navigation 

Satellite System (DGNSS), Differential Global Positioning System (DGPS), Laser radar, 

Hydroacoustic Position Reference (HPR) system and Taut wire or Gyrocompass [1].   
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Figure 4-5 Reference System A1 – Input Variables / Signals
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The reference system is part of the guidance and control system, which usually consists of a 

latitude control system and a path control system. The systems consist of hardware, software, 

and sensors to supply information and corrections necessary to give accurate position and 

heading references. Figure 4-5 represents the GUI model of sub-system “Reference System 

(A1)” with the information at equipment and sensor level. The DP 3 vessel considered for the 

research consists of Gyros (3 units), Motion Reference Unit (MRU) (4 units), Global 

Positioning System (GPS) (3 units) and DGPS (2 units). 

4.4.2 Data Dictionary for Reference System  
Table 4-2 shows the data dictionary for the Reference System (A1) along with the details of 

the equipment configuration. There is a total of 12 equipment items and 67 signals. Out of the 

67 signals, 31 are redundant signals, and the remaining 36 are non-redundant signals. 

Table 4-2 Reference System (A1)- Data Dictionary 

 



86 
 

 

4.5 DP Control System (A2) 

4.5.1 System Description  
The DP control system is considered to be the most critical sub-system as it performs the 

control algorithm based on the set-point and measurement. It consists of a set of hardware 

(Operator Station (OS), Remote Controller Unit (RCU), Sensors, Field Station (FS), Network 

Distribution Unit (NDU), etc.) and software (logic implemented in the controller) which 

automatically controls surge, sway and yaw motion. It maintains the desired position and 

heading of the vessel based on inputs from the reference systems and sensors, and controls the 

propulsion system [136]. The DP control system is also defined as a set of computers that 

combines automatic computation with instruction from operators, enabled through interfaces. 

The software logic implemented in the controller consists of various functionalities which are 

integrated to maintain the desired position and heading, as shown in Figure 2-2 [62, 133]: 

Environmental System Input: This logic reads information on environmental data and 

converts it into ships load for the position controller logic module through feedforward control. 

Kalman Filter: This logic reads the measurement of vessel motions from sensors and filters 

out any noise before sending it to the DP position controller logic. 

Power System: This logic module provides the information of total power available in the 

power plant for a thruster to be brought online and provide the necessary thrust. 

DP Position control: This logic calculates the resultant force that thrusters should generate 

based on the input received from the environmental system and vessel sensors. 

Thruster Allocation Algorithm: This logic finds the available thrusters and allocates the 

required thrust based on the power available from the power system. 
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Figure 4-6 DP Control System A2 – Input Variables / Signals
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Figure 4-6 represents the GUI model of the sub-system “DP Control System (A2)” with the 

information at the equipment and sensor level. The DP 3 vessel considered consists of OS (6 

units), FS (3 units), RCU (3 units), NDU (6 units) and the model programmed as a software 

module in the RCU. The hydrodynamic model should predict the position and orientation of 

the ship in each time step. The hydrodynamic model should include low-frequency and wave-

frequency effects and should contain all six degrees of freedom. 

4.5.2 Data Dictionary for DP Control System  
Table 4-3 shows the data dictionary for the DP Control System (A2) along with the details of 

the equipment configuration. There is a total of 24 equipment items and 127 individual signals, 

which are grouped under 33 signal groupings for this research. Out of 33 signal groups, 16 are 

redundant, and the remaining 17 are non-redundant. 

Table 4-3 DP Control System (A2)- Data Dictionary 
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4.6 Thruster / Propulsion System (A3) 

4.6.1 System Description 
Thruster / Propulsion system refers to propellers, thrusters (Azimuth, Tunnel or Bow), Variable 

Frequency Drives (VFD), Electrical motors, and rudders that receive the command from the 

DP system and produce the necessary forces to maintain the vessel at a given position set-point 

and heading. Generally, the propulsion system is defined as a system which makes thrust/force 

from power delivered by the power system and a control signal from the DP system [62, 13]. 

The control signals from the DP system generally consist of rotational speed, azimuth angle, 

etc, to produce enough thrust to maintain the desired position and heading. Figure 4-7 

illustrates the GUI model of sub-system “Thruster / Propulsion System (A3)” with the 

information at equipment and sensor level. The DP 3 vessel considered consists of 8 azimuth 

thrusters, VFD, electrical motors, and associated machinery. 



 

 
 

90 

Figure 4-7 Thruster / Propulsion System A3 – Input Variables / Signals
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4.6.2 Data Dictionary for Thruster / Propulsion System 
Table 4-4 shows the data dictionary for the Thruster / Propulsion System (A3) along with the 

details of the equipment configuration. There are a total of 8 equipment items, 352 sensors, 

and 616 signals. Out of 616 signals, 528 are redundant, and the remaining 88 are non-redundant. 

Table 4-4 Thruster / Propulsion System (A3)- Data Dictionary 
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4.7 Power System (A4) 

4.7.1 System Description  
The Power System comprises engines, prime movers, generators, and all auxiliary machinery 

systems providing electrical power to the vessel. The power generated is supplied to consumers 

on-board the ship and the propulsion system, which consumes the majority of the power in 

almost all DP vessels. The Power Management System is an automatic system that helps to 

minimise the manual power demand calculation, start/stop of the generators, and connecting 

of the standby generator in the case of the demand [62, 132, 133]. Figure 4-8 represents the 

GUI model of sub-system “Power System (A4)” with the information at equipment and sensor 

level. The DP 3 vessel considered consists of 8 engines, 8 alternators, and associated Fuel oil 

and lube oil systems. 
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Figure 4-8 Power System A4 – Input Variables / Signals
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4.7.2 Data Dictionary for Power System  
Table 4-5 shows the data dictionary for Power System (A4) along with the details of the 

equipment configuration. There are a total of 8 engines, eight generators, 424 sensors, and 616 

signals. Out of 616 signals, 368 are redundant, and the remaining 248 are non-redundant. 

Table 4-5 Power System (A4)- Data Dictionary 
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4.8 Electrical System (A5) 

4.8.1 System Description  
The electrical system consists of Power distribution units, switchboards, Uninterruptible Power 

Supply (UPS) and batteries, and provides interconnection between the power system and the 

consumers of the DP system [62]. Figure 4-9 represents the GUI model of the sub-system 

“Electrical System (A5)” with the information at equipment and sensor level. The DP 3 vessel 

considered consists of 4 switchboards, 4 master circuit breakers, 4 slave circuit breaker, 8 

incoming feeders from generators and 8 outgoing feeders to thruster. 
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Figure 4-9 Electrical System A5 – Input Variables / Signals
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4.8.2 Data Dictionary for Electrical System  
Table 4-6 shows the data dictionary for Electrical System (A5) along with the details of the 

equipment configuration. There are a total of 4 switchboards, 4 slave circuit breakers and 4 

master circuit breakers, 59 sensors, and 106 signals. Out of 106 signals, 94 are redundant, and 

the remaining 12 are non-redundant. 

Table 4-6 Electrical  System (A5)- Data Dictionary 
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4.9 Environmental System (A6) 

4.9.1 System Description  
The environment system refers to the wind, current, and wave parameters affecting the position 

and heading of the DP vessels. The calculation of all horizontal forces on a ship is summative, 

i.e., wave, wind, and current all could be considered collinear, and their forces can be added 

together to get the total environmental forces. The environment loads are wind speed, wave 

height, current speed, the direction of the wind, wave, and current [13, 133, 137].
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Figure 4-10 Environment System A6 – Input Variables / Signal
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Figure 4-10 represents the GUI model of sub-system “Environment System (A5)” with the 

information at equipment and sensor level. The DP 3 vessel considered consists of 3 wind 

sensors, 3 wave radars, but as there is no sensor for the current, it is considered to be a 

contributor to the non-modelled errors in the system. 

4.9.2 Data Dictionary for Environment System  
Table 4-7 shows the data dictionary for Environment System (A6) along with the details of the 

equipment configuration. There are a total of 3 wind sensors, 3 wave radars, 6 sensors, and 45 

signals. Out of 45 signals, 18 are redundant, and the remaining 27 are non-redundant. 

Table 4-7 Environment  System (A6)- Data Dictionary 

 

4.10 Human / Operator Error (A7) 

4.10.1 System Description  
Human / Operator Error is considered as one of the variables (sub-system) contributing to the 

reliability of the DP system. Though there is no direct mathematical representation of the 

human reliability that is widely accepted, for some DP vessels, quantitative risk assessment is 
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used to factor in the DPO contribution to DP reliability. The error could be from the DP 

operator, Engine Room technicians, Deck officers, instrument technicians etc. which directly 

or indirectly results in failures of the system leading to DP accidents. The DP operator can 

influence the complete DP system, and wise decision/interference could prevent DP accidents 

from occurring [33].  

Human error is one of the most significant contributors to DP accidents, which means reducing 

the number of operators related DP accidents could significantly increase the safety and 

reliability of DP operation [3, 20]. The DPO is tasked with monitoring a highly automated and 

complicated system which leaves the DPO “out-of-the-loop”. However, the operator is asked 

to intervene when the DP system is failing in ways unforeseen by designers often with little 

time available for decision response. For this research, four factors have been considered as 

affecting the performance of the DPO, namely Situation Awareness, Decision Making ability, 

Dexterity, and Distraction. They are assigned to a particular level based on the capability of a 

DPO to respond and take corrective action through a generalised format as below [26, 87]: 

• Level 1: Perception refers to the perception of attributes and dynamics of elements in an 

environment. 

• Level 2: Comprehension refers to the integration and interpretation of that information 

to understand what is happening in a situation, 

• Level 3: Projection involves the operator's estimation of the system's future states. The 

outcome of this continuous assessment of the current situation can be utilised to 

determine future courses of action. 

In addition to the 4 direct factors, 18 potential factors were identified, which are grouped into 

Tangible (internal and external) and Intangible (internal and external) as shown in Figure 4-11. 

The system will be provided with the input every time there is a shift change or during complex 

offshore operations, which will be mentioned in the DP operation manual, including 

Simultaneous Operations (SIMOPS). Figure 4-11 represents the GUI model of sub-system 

“Human / Operator Error (A7)” with the information at a different level, having an impact on 

the DPO ability to respond during emergency scenarios. The DP 3 vessel considered has DP 

crew consisting of 2 DPO, 1 Captain, 1 Chief Engineer, 1 Chief Mate, 2 Electrician, and 

necessary supporting engineers. 
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Figure 4-11 Human / Operator Error A7 – Input Variables / Signals
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4.10.2 Data Dictionary for Human / Operator Error  
Table 4-8 shows the data dictionary for Human / Operator Error (A7) along with the details of 

the factors affecting the DP reliability. There is a total of 4 factors, each with 3 levels, and 4 

sub-components with 18 variables identified. All the signals are considered to be assigned by 

the Captain for Human Reliability Analysis (HRA) modelling, and a total of 30 signals was 

identified. Out of the 30 signals, none are redundant, so all 30 are considered as non-redundant. 

Table 4-8 Human / Operator Error (A7)- Data Dictionary 
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4.11 Summary 

In this chapter, the first stages of analytics involving descriptive and diagnostic analytics are 

explained, along with data exploration and processing. The feature selection was performed 

through descriptive analytics tools such as statistics and distribution plots. The input and output 

variables (sub-systems) contributing to the DP system reliability were identified. This step 

performed quality checks on the data, avoided any collinearity and provided clear visualisation 

of the variables. The data dictionary at the system level was developed to provide a clear 

understanding of the data sets. The correlation and interdependencies between the variables 

(sub-systems) were then identified. Finally, each of the sub-systems identified was described 

along with the system architecture, GUI model, and data dictionary. The number of equipment 

items, sensors, and arrangement configuration was explained so that during the development 

of the mathematical model, it can quickly be evaluated against the DL algorithm performance.  

Chapter 5 describes a systematic approach for weight assignment to the DP sub-systems 

through Analytic Hierarchy Process (AHP). 
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5. Weight Assignment of DP Sub-Systems: Analytic Hierarchy Process  

5.1 Introduction 

In this chapter, the different sub-systems identified as input variables are evaluated and 

assigned a relative weighting based on the contribution to the overall functionality and 

reliability of the DP system. AHP is a structured technique used for dealing with complex 

decisions, and weighting assignment between alternatives and was used for weighting of the 

DP sub-systems [141]. The chapter begins with a description of the AHP process, along with 

the methodology used. In the next section, features of AHP and the step-by-step process 

involved in the weighting assignment are explained in detail with the overall flowchart. 

Subsequently, the application of the AHP process to the DP system was performed. The first 

step of AHP involving the data collection and definition of the system and sub-systems is 

described. The next step was the decision hierarchy model establishment, which involved 

defining the main goals and criteria for the DP problem context. After that, the hierarchy of the 

system to the sub-systems and from sub-system to the components is established. Then 

technical ranking for the sub-systems was collected from different industry experts, and a 

pairwise comparison matrix was generated. The relative weighting between the sub-systems 

was established, and verification was performed using the consistency ratio. Finally, the 

weighting assignment was validated against results obtained through the LSTM algorithm [16]. 

Once proven, the weighting assignment for the DP sub-system is fixed for the research study 

to be used in predictive and prescriptive analytics. 

5.2 Analytic Hierarchy Process as MCDM 

DP being a complex system, it is necessary to use more advanced tools to increase the accuracy 

of decision making, eliminate inconsistencies generated from vast numbers of comparisons, 

reduce inherent limitations, minimise errors, and handle multi-attributes [138].  Each DP sub-

system plays a unique role in the continuous overall DP function for safe and reliable operation 

of the vessel. Rating the significance or assigning weightings to the DP sub-systems in different 

operating conditions is a complex task that requires input from many stakeholders. The 

weighting assignment is a critical step in determining the reliability of the DP system during 

complex marine and offshore operations. Thus, an accurate weighting assignment is crucial as 
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it, in turn, influences the decision-making of the operator concerning the DP system 

functionality execution. Often DP operators prefer to rely on intuition in assigning the 

weightings. However, this introduces an inherent uncertainty and a level of inconsistency in 

decision-making [139, 140, 141]. The systematic assignment of weightings requires a clear 

definition of criteria and objectives and data collection with the DP system operating 

continuously in different environmental conditions. The sub-systems of the overall DP system 

are characterised by multi-attributes resulting in a high number of comparisons, thereby 

making weighting distribution complicated. If the weighting distribution was performed by 

simplifying the attributes, making the decision by excluding part of them or compromising the 

cognitive efforts, then this could lead to inaccurate decision-making [142]. 

Multi-Criteria Decision Making (MCDM) methods have evolved over several decades and 

have been used in various applications within the maritime, oil and gas industries [143, 144]. 

DP, being a complex system, naturally lends itself to the implementation of MCDM techniques 

to assign weight distribution among its sub-systems [138]. An AHP model is useful in obtaining 

the domain knowledge from numerous experts and representing knowledge-guided indexing. 

The approach involved the examination of several criteria in terms of both quantitative and 

qualitative variables. AHP provides a comprehensive and rational framework for structuring a 

decision problem, for representing and quantifying its elements, for relating those elements to 

the overall goals and for evaluating the alternative solutions. AHP is one of the most well-

known and widely used MCDM techniques. It decomposes the multiple-attributes into 

hierarchies or groups as per their characteristics and entities and then compares them for 

weighting distribution. In real applications, such as DP sub-systems, the comparisons are 

subject to judgmental errors. Therefore, a careful evaluation is required after receiving input 

from subject matter experts, and analysis must be performed without bias or influence from 

the vendor [60].   

5.3 Methodology 

AHP is a method of “measurement through pairwise comparisons and relies on the judgments 

of experts to derive priority scales” [145]. Decision-makers and researchers use it because it is 

a simple and powerful tool. At the same time, this method seeks a systematic practice to define 
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priorities and support complex decision making. In AHP, the decision problem is decomposed 

into different levels as criteria and sub-systems within which the substantial number of 

pairwise comparisons are completed, and finally, the weighting distribution is determined. In 

this technique, complete aggregation among the criteria is assumed, and linear additive models 

are developed. The weights, priorities, and scores will be achieved by pairwise comparison 

between all the options. AHP is a useful tool for dealing with complex decision making and 

may aid the decision-maker to set priorities and make the optimum decision. By reducing 

complex decisions to a series of pairwise comparisons, and then synthesising the results, AHP 

helps to capture both subjective and objective aspects of a decision. AHP also provides a means 

of verification and proving the subject matter expert’s opinion mathematically by using the 

consistency ratio. The critical aspect of AHP is that it incorporates the method of verification 

of reliability by checking the consistency of the decision maker’s evaluations, thus reducing 

the bias in the decision-making process.[145, 146] 

For the weighting distribution of the DP sub-system, the following critical information is 

established to make the right choice or decision for a real-world application. The following 

high-level information is established before the application of AHP [145]: 

• Definition of the problem 

• The need, reason, and purpose of the decision/weightings 

• The available alternatives/sub-systems 

• The alternative actions to take 

• The criteria and sub-criteria to evaluate the alternatives/sub-systems 

• The hierarchy of arrangement of sub-systems 

• Identification of the different stakeholders and groups involved in the problem and how 

alternatives will affect them. 

The criteria and sub-criteria identified can be either tangible or intangible items. However, 

when they are intangible, there is no way to measure them as a guide to the ranking of the 

alternatives [147, 148]. The situation involving intangible items is addressed by creating 

priorities for the criteria to weigh the alternatives and add up all the requirements to obtain the 

desired overall ranks of the other options. It is a challenging task, and it is usually a complicated 
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procedure. The execution should follow the steps below when the criteria and sub-criteria are 

intangible [144, 149]: 

• Structuring a decision problem and selection of criteria 

• Priority setting of the criteria by pairwise comparison (weighting) 

• Pairwise comparison of options on each criterion (scoring) 

• Obtaining an overall relative score for each option 

• Evaluating results and verifying the reliability of the output 

5.4 Application and Advantages of AHP 

AHP is a compensatory method and has been applied in various real-life applications for 

MCDM. AHP has been widely used in the following applications, which makes it suitable for 

the determination of DP sub-system weighting assignment [145, 150]: 

• Finding the optimal decision when multi-decisions are available in any situation. 

• Selecting one alternative (system/variables) from a set of other options. 

• Determining the quality of a product in a quality management application.  

• Weighting distribution / Priority / Evaluation, determining the relative merits from a set 

of alternatives.  

• Allocating resources, determining the right combination of alternatives due to numerous 

constraints.  

• Benchmarking the system/process under evaluation with the known system/process.  

The weighting distribution obtained through AHP can be used universally for addressing 

reliability issue as the AHP has an axiomatic foundation with the following advantages [145, 

150, 151]: 

• Comparison is reciprocal, meaning that the pairwise comparison matrix that is formed 

should be invertible. For example, if A is k times more important than B then B is 1/k 

times more critical than A.  

• Homogeneity, meaning that there must be similarity in the comparisons.  

• Dependence, meaning that each level is concerned (complete hierarchy) although it is 

possible that the relationship is not perfect (incomplete hierarchy).  



110 
 

• Expectation, meaning that it includes assessment expectations and perceptions of 

decision-makers as a priority. 

5.5 AHP Framework for Weighting Distribution 

The framework of AHP is defined in the form of a step-by-step execution procedure for 

weighting assignment to the DP sub-systems. It has provided clear guidance during the process 

of exploring the different scoring techniques and finally agreeing on the values with proper 

justification [145, 150]. The elaborate process involved in the AHP methodology was made 

simple by splitting it into many steps and executing the steps sequentially with an iterative 

process for optimisation. The first step involves data collection from different stakeholders, 

and significant efforts are required for analysing the data and grouping it appropriately for the 

next step. The next step is defining the system and sub-system identification. After this step, 

comes the preparation of the hierarchy, which is a critical step involving defining the goals, 

criteria, and the sub-system arrangements. Then the weighting distribution of the sub-systems 

is determined by the assessment of criteria and alternatives [147]. The next step involves the 

evaluation of the sub-systems by experts with different competence, skills, and knowledge of 

the DP system. The data were thoroughly filtered and organised using relevant software to 

avoid bias and influence on the input. The weighting distribution values obtained through this 

step are used in determining the weights for the DP sub-systems. 

The values obtained through AHP are verified through the consistency ratio check method. 

Further, the weighting assignment has been validated using the LSTM algorithm through 

reliability prediction. Figure 5-1 represents the framework of AHP, indicating the step-by-step 

execution used in the DP sub-system weighting distribution. During the verification step, if the 

results are not within the acceptable range, then the process is again repeated by rating the sub-

system using the Saaty rating scale. Therefore, the check related to the consistency ratio plays 

a critical role in deciding on the final assignment. In case of any deviation, the process should 

be re-iterated until satisfactory results are obtained. 
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Figure 5-1 Framework of AHP for weight assignment to DP sub-systems 
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5.6  DP Sub-System Weighting Distribution using AHP  

DP sub-systems need to be assigned with appropriate weights, so it is necessary to evaluate the 

contribution of each to the overall reliability of the DP system [138, 152]. For the AHP 

methodology, the basic principle of decision making is that the problem needs to be expressed 

in the form of hierarchical decomposition. Once the decomposition is completed, then the 

assessment of relative importance between the elements in each hierarchy, a comparative 

judgment, will be performed [149, 144]. This step is followed by priority synthesis and 

consistency of assessment evaluation.  

In this section, the steps involved in weighting distribution among the sub-systems follows the 

framework of AHP. The DP sub-system is structured in a hierarchy model, and the criteria for 

the defined problem are identified. In particular, the framework developed for the application 

provided clarity, and at the same time, the weighting distribution among the sub-systems are 

axiomatic and assertive.  

This framework of AHP is flexible and easy to adapt for different applications with slight 

variations. For DP sub-system weight assignment, the framework key concepts are used along 

with the following variations [143, 150]: 

1. To introduce the general underlying principles in obtaining weights, with particular 

attention to subjective weights 

2. To identify and analyse the approaches for obtaining weights:  

a. Statistical approaches (for obtaining “objective” weights), generally applied in the 

scope of composite indicator construction,  

b. Multi-Attribute approaches,  

c. Scaling approaches, allowing subjective data to be managed; among these, the models 

should be able  

i. to handle subjective evaluations and judgments, expressed in explicit or implicit 

ways,  

ii. to obtain subjective weights at the group level and the individual level. These will 

be identified and described from the perspective of obtaining subjective weights.  
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5.6.1 Data Collection / Survey Method 

The processes of sub-system selection, criteria identification, and sub-criteria identification are 

conducted through three steps of data collection. The data is collected from databases, 

correlation analysis, and industry experts such as vendor control system specialists, design 

engineers, FMEA experts, and vessel operators.  Figure 5-2 shows how the big data collected 

from for the research are used to identify the critical DP sub-systems and criteria for weight 

assignments through different processes. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5-2 Data Collection and Survey on DP sub-systems 
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The data was collected through different methodologies, and it was ensured that the input was 

independent, and that one person’s decision did not affect other inputs. The data was also 

collected across various disciplines, regions, shipyards, classification societies, FMEA 

consultants, design companies, vessel operators, DP vendors, and experts directly or indirectly 

involved in DP operations. The data collected in the initial stages were grouped and analysed 

in detail by Subject Matter Expert (SME) for further shortlisting before sending out for another 

round of Questionnaire with Template as shown in Appendix I data decision gathering [153, 

154]. Finally, seven sub-systems were identified as critical, having a direct impact on DP 

system functionality. Similarly, six criteria were identified as essential, which determine the 

safe and reliable operation of the DP system. 

5.6.2 Define System and Sub-Systems 

Once the data has been collected, the next step is to define the system and sub-systems for 

which the AHP concept needs to be applied. Chapters 3 and 4 already detailed the process of 

identifying the system and sub-systems. The system is the overall DP system, and the sub-

systems were identified as Reference System (A1), DP Control System (A2), Thruster / 

Propulsion System (A3), Power System (A4), Electrical System (A5), Environment System 

(A6) and Human Error (A7). 

 
5.6.3 Decision Hierarchy Structure Model 

Once the data had been collected, the critical step in the AHP technique is developing the 

structure of the decision hierarchy. It is generated based on human judgment ability to construct 

a hierarchical perception of a multi-criteria problem. The hierarchy is a systematic 

representation of a complex system in a multi-level structure and is created using attributes 

and entities [144, 150]. By defining the hierarchy, the complex problem will become more 

transparent for decision-making problems where the entities are interconnected with each 

other. For this specific application of weighting distribution among the sub-systems, the 

hierarchy is divided into two levels containing the seven sub-systems and six criteria entities. 

Figure 5-3 shows the classification of the DP sub-system based on big data analytics and 

experts’ judgments. Figure 5-4 shows the decision hierarchy model with the main criteria and 

sub-criteria aligned in the hierarchy and its interdependencies with the DP sub-systems. The 

hierarchy is flexible, and the system is very agile, which enables new criteria to be added once 
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identified  [147]. The hierarchy is prepared based on the inputs collected from SME with many 

years of field experience. 

 
Figure 5-3 Hierarchy of DP sub-systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4 Decision Hierarchy Structure Model 
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5.6.4 Determination of Priorities and Assign Saaty Ratings 

AHP gives flexibility to the user for assigning whether a variable is more, less or equally 

important to another variable. In this step, the user may assign a quantitative value based on 

qualitative factors. However, experts with similar domain knowledge may give different 

ratings for the same sub-system. The weighting of the DP sub-systems was collected from 

SME through various methodologies to have independency on their input, as shown in Figure 

5-5. The methods are widely accepted for collecting information from a group for a problem 

that requires feedback based on field experiences [154].  

Table 5-1 represents the “scale of relative importance” in qualitative and quantitative factors, 

which will be used for pairwise comparisons. The rating for each sub-system for specific 

qualitative inputs may vary from individual to individual. To minimise the error and avoid 

inconsistency, the Likert scale methodology is adopted [145, 146]. Once the rating is assigned 

for a sub-system, the relative rating with the immediately previous sub-system is assigned. 

From the data of the Likert scale, as shown in Table 5-2, a quantitative suggestion matrix could 

be developed for a straightforward and convenient pairwise comparison. AHP allows the user 

to determine the rating for the sub-system intuitively by making a pairwise comparison then to 

change the pairwise comparison into a set of numbers that represents the relative priority of 

each criterion consistently.  

 

 

 

 

 

 

 

 

 

Figure 5-5 Ranking of DP sub-system from industry experts 
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Table 5-1 Pairwise comparison assessment table for “Scale of relative importance.”  
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Table 5-2 Sub-System Priority assignment - Likert Scale Rating 

 

Figure 5-6 shows the composition of the participants who are industry experts and contributed 

to the weighting of the DP sub-systems. The Participants with different backgrounds and 

knowledge of DP systems contributed to provide the input.  

 

Figure 5-6 Industry experts composition (Organisation group) 
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Figure 5-7 shows the composition of the participants who are experts in different disciplines 

and contributed to the weighting of the DP sub-systems. 

 

Figure 5-7 Industry experts composition (Discipline) 

They are SME from various companies, academic institutions and countries, with different 

skill sets, working with the DP system to varying phases of the DP life cycle. The questionnaire 

was prepared based on the criteria and sub-criteria for ranking through several rounds of 

shortlisting and refinement as shown in Appendix I. The questionnaire was validated against 

the IMO regulations, IMCA guidelines, and International Association of Classification 

Societies (IACS) standards for safe assignment of weighting to each of the DP sub-systems. 
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5.6.5 Pairwise Comparison Matrix for Sub-System 

Table 5-3 shows the rating for each sub-system based on the input data collected through the 

survey method. Once the rating for each sub-system is assigned, then the “scale of relative 

importance” is determined. Any given set affects only one of the other sets and is affected only 

by a different one of the other sets for relative rating. However, when ranking the sub-systems, 

the rating is based on various criteria and sub-criteria affecting the overall complex problem 

or goal [147, 150]. Thus, the method proved to be useful as ranking was based on all possible 

criteria relative to each sub-system. 

Table 5-3 Pair-Wise Comparison Matrix Template for 7x7 matrix with seven sub-systems 

 

The next step of AHP is to form the pairwise comparison matrix between the set of sub-

systems. The comparisons between the sub-systems are made for each criterion. For the DP 

application, there are seven sub-systems classified for weighting distribution. Therefore, the 

DP sub-system pairwise comparison matrix is formed as a 7x7 matrix table, as shown in Table 

5-4. The pairwise comparison matrix reveals the relation between the sub-systems. It analyses 

whether they are significantly different from one another. Each sub-system is matched head-

to-head (one-on-one) with each of the other sub-systems [145, 155]. 
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Table 5-4 Pair-Wise Comparison Matrix for DP sub-systems 

 

5.6.6 Calculate Weighting Distribution among DP sub-systems 

The critical step for the weighting distribution of sub-systems is determined by multiplying the 

values in each row together and calculating the Nth root of said product, normalising the nth 

root of roots products to get the appropriate weights and finally calculating and checking the 

Consistency Ratio (CR) [146]. It can be explained in the following steps: 

Once the pairwise comparison table has been formed, then the Nth root of the product in the 

matrix needs to be calculated. Consider there are “m” number of sub-systems, and “n” 

represents the unique number for each sub-system. 

The Nth-root-of-product is expressed as shown in Equation (5-1) 

                     𝐴𝐴𝑛𝑛 = (𝐴𝐴𝑛𝑛1 ∗ 𝐴𝐴𝑛𝑛2 ∗ 𝐴𝐴𝑛𝑛3 ∗ 𝐴𝐴𝑛𝑛4 … . .∗ 𝐴𝐴𝑛𝑛𝑆𝑆)1/𝑆𝑆                                         (5-1) 

In this case, the matrix for the DP system is 7x7. Therefore the 7th-root-of-product in each row 

is calculated as follows for “m” sub-systems. 

For example, the 7th root of Product for each sub-system is calculated using Equation (5-1) as 

below: 

                                                  𝐴𝐴1 = (𝐴𝐴11 ∗ 𝐴𝐴12 ∗ 𝐴𝐴13 ∗ 𝐴𝐴14 ∗ 𝐴𝐴15 ∗ 𝐴𝐴16 ∗ 𝐴𝐴17)1/7 

                                                  𝐴𝐴1 = (1.00 ∗ 2.00 ∗ 3.00 ∗ 2.00 ∗ 3.33 ∗ 1.66 ∗ 0.50)1/7 

                                                  𝐴𝐴1 = 1.64 
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Table 5-5 DP Sub-System Weighting Distribution and Measurement of consistency 

 

Similarly, the values of the Nth Root of the product for the other sub-systems are calculated 

using Equation (5-1). The results are listed in Table 5-5 for easy reference and will be used for 

the determination of Weight / Priority of the sub-system. The 7th-root-of-product values are 

then added together to give a total of 8.10. Once this is done, the weight determination or 

priority vectors are calculated. The 7th-root-of-product values and total are normalised to get 

the appropriate weights for each of the sub-systems.  

The weights or priority vectors for each sub-system are calculated below using the AHP 

methodology formula. The weights or priority vectors for the alternatives are expressed using 

Equation (5-2): 

                    𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓 𝐴𝐴𝑛𝑛 =  𝑁𝑁𝑡𝑡ℎ 𝑅𝑅𝑜𝑜𝑜𝑜𝑡𝑡 𝑂𝑂𝑓𝑓 𝑃𝑃𝑃𝑃𝑜𝑜𝑃𝑃𝑠𝑠𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝐴𝐴𝑛𝑛
𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑙𝑙 𝑜𝑜𝑓𝑓 𝑁𝑁𝑡𝑡ℎ 𝑅𝑅𝑜𝑜𝑜𝑜𝑡𝑡 𝑜𝑜𝑓𝑓 𝑃𝑃𝑃𝑃𝑜𝑜𝑃𝑃𝑠𝑠𝑐𝑐𝑡𝑡

                   (5-2) 
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𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓 𝑊𝑊1 =  
1.64

8.103
= 0.20 ≈  20% 

𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓 𝑊𝑊2 = 0.14 ≈  14% 

𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓 𝑊𝑊3 = 0.10 ≈  10% 

𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓 𝑊𝑊4 = 0.10 ≈  10% 

𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓 𝑊𝑊5 = 0.06 ≈  05% 

𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓 𝑊𝑊6 = 0.08 ≈  10% 

𝑊𝑊𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡𝑦𝑦 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓 𝑊𝑊7 = 0.32 ≈  30% 

Once the weight distribution or priority is assigned for the different sub-systems, it is necessary 

to verify the consistency of the decisions.  

 
5.6.7 Verification of Reliability of Weighting Distribution 

The most crucial characteristic of AHP is consistency. During assessment in the AHP 

technique, the assessment criteria between sub-systems are not entirely consistent [143, 145]. 

As in other MCDM methods, AHP allows for inconsistency; however, it limits the 

inconsistency range not to exceed 10%, which is set as the threshold limit for acceptance. It is 

defined as the CR. 

The CR determines how consistent the decision-maker has been when making the pair-wise 

comparisons [151]. The consistency ratio is used for verification of the reliability of the 

weighting distribution among sub-systems of the DP system to ensure the consistency of 

experts’ judgments arranged in pairwise comparisons from the results of the survey. In this 

way, the weight assignment chosen for the DP sub-system is justified and proven to have a 

systematic approach for the research application. 

CR calculation is performed in five steps as follows: 

i. The pairwise comparison values in the 7x7 matrix are added together for each column as 

the “Sum” values. The sum values are expressed as per Equation (5-3)  

𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑓𝑓 𝐴𝐴𝑛𝑛 = ∑ 𝐴𝐴𝑆𝑆𝑛𝑛
𝑆𝑆
1                             (5-3) 

                      = (𝐴𝐴11 + 𝐴𝐴21 + 𝐴𝐴31 + 𝐴𝐴41 + 𝐴𝐴51 + 𝐴𝐴61 + 𝐴𝐴71)  

                      = (1.00 + 0.50 + 0.33 + 0.50 + 0.30 + 0.63 + 2.00)  

 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑓𝑓 𝐴𝐴1 = 5.26  
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ii. The Sum values are then multiplied by the respective weight factor for that sub-system from 

the “Priority Vector” column for that sub-system as shown in Equation (5-4) 

𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑜𝑜𝑜𝑜𝑃𝑃𝑆𝑆𝑉𝑉𝑡𝑡 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑓𝑓𝑜𝑜𝑜𝑜 𝐴𝐴1  = 𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑜𝑜𝑜𝑜 𝐴𝐴1 ∗ 𝑃𝑃𝑉𝑉 𝑜𝑜𝑓𝑓 𝐴𝐴1         (5-4) 

                      = 5.26 ∗ 10.2 

                     = 1.06 

𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑜𝑜𝑜𝑜𝑃𝑃𝑆𝑆𝑉𝑉𝑡𝑡 𝑉𝑉𝑒𝑒𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜 𝑓𝑓𝑜𝑜𝑜𝑜 𝐴𝐴1   = 1.06 

iii. The λmax of the 7x7 matrix is calculated by adding the (Sum * PV) of each subsystem from 

the previous step. The measurement consistency of a matrix is based on the eigenvector 

maximum (λmax). The closer the λmax obtained with the 7 x7 matrices to the 7th-root-of-

product, the more consistent the results. 

Eigenvector maximum is calculated using the Equation (5-5) 

                                                𝜆𝜆𝑆𝑆𝑇𝑇𝑥𝑥 = ∑ 𝐴𝐴𝑆𝑆 (𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑉𝑉)     𝑆𝑆
1                                          (5-5) 

𝜆𝜆𝑆𝑆𝑇𝑇𝑥𝑥 = {𝐴𝐴1(𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑉𝑉) +  𝐴𝐴2(𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑉𝑉) + 𝐴𝐴3(𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑉𝑉) + 𝐴𝐴4(𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑉𝑉)

+ 𝐴𝐴5(𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑉𝑉) + 𝐴𝐴6(𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑉𝑉) +  𝐴𝐴7(𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑃𝑃𝑉𝑉)} 

 𝜆𝜆𝑆𝑆𝑇𝑇𝑥𝑥 = {1.06 + 1.03 + 1.03 + 1.00 + 1.00 + 0.98 + 0.98 } 

𝜆𝜆𝑆𝑆𝑇𝑇𝑥𝑥 = 7.09 

iv. Calculate the Consistency Index (CI) for the 7x7 matrix is expressed as per the Equation (5-

6): 

                                                   𝐶𝐶𝑅𝑅 = (𝜆𝜆𝑆𝑆𝑇𝑇𝑥𝑥 − 𝑆𝑆) / (𝑆𝑆− 1)                                                 (5-6) 

= (7.09 − 7) / (1 − 1) 

                                                                = 0.02 

v. Calculate and check the Consistency Ratio (CR) to ensure that the decision-maker is 

consistent while making pair-wise comparisons. However, before this step, the Random 

Index for the 7x7 matrix should be defined. The RI has been chosen based on  

vi. Table 5-6. The value for the CR is determined using the Equation (5-7) 

                                                                𝐶𝐶𝑀𝑀 = 𝐶𝐶𝑅𝑅 / 𝑀𝑀𝑅𝑅                                                                 (5-7) 

                                                                        = 0.02 / 1.32 

             = 0.01 
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Table 5-6 Random Index (RI) for AHP 

 
The numerical values of CR define the consistency of the decision-maker. A higher number 

means the decision-maker has been less consistent, whereas a lower number means the 

decision-maker is consistent. The general rule of thumb for the verification of CR is as follows 

[145, 146]: 

• If the CR > 0.10, then the decision-maker should seriously consider re-evaluating the 

pairwise comparison, which indicates that the sources of inconsistency must be 

identified and resolved. The analysis needs to be re-performed. 

• If the CR ≤ 0.10, then the decision-maker pair-wise comparisons are relatively 

consistent. 

The DP application problem analysed in the above section has  CR = 0.01, which reveals that 

the pairwise comparisons between the sub-systems are relatively consistent. Therefore, no 

corrective actions are required. The weighting distribution factors among the sub-systems of 

the DP system have been successfully assigned by using AHP, and it has been proved to be 

consistent and axiomatic. Therefore, the weighting distribution of sub-systems, as indicated in 

Table 5-7, will be used for further research studies. 

Table 5-7 DP sub-system weighting distribution using AHP 
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5.7  Validation of Weighting through LSTM Algorithm 

For validation of the weighting distribution among the DP sub-systems, the LSTM algorithm 

is used on part of the data set. The details of the prediction are discussed in the next chapter. 

However, a high-level prediction of the reliability of the DP system using the LSTM algorithm 

was used to determine the weights of the DP sub-system for validation of the AHP results. The 

structure of LSTM with three layers is shown in Figure 5-8 [79, 80]. 

 

 

 

 

 

 

 

Figure 5-8 Structure of neuron with time-step 

For this validation, a simple LSTM architecture is used to retrieve the weights and biases from 

the dataset. The LSTM has four layers, each of four neurons. The four layers form together 

with a gate, which is a combination of forget gate, input gate, and output gate (in the order of 

the sequence) [156]. The architecture of LSTM was defined in Chapter 2 Section 2.10.3, and 

the detailed implementation is defined in Chapter 6 along with a comparison with other 

architectures. The validation part used the input shape of (50000 x 7), which refers to 50,000 

unique timesteps of data points and seven sub-systems (variables) [157, 156]. For deep 

networks, a heuristic method may be used to initialise the weights depending on the activation 

function. The weight value for the sub-system is initialised through Xavier's initialisation 

[158].  

 

 

A A 
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The reliability of the DP system and its relationship with the weight functions of sub-systems 

are expressed using Equation (5-8) below: 

                           𝐷𝐷𝑃𝑃 𝑀𝑀𝑒𝑒𝑅𝑅𝑖𝑖𝑡𝑡𝑏𝑏𝑖𝑖𝑅𝑅𝑖𝑖𝑡𝑡𝑦𝑦 = (𝐴𝐴1 + 𝐴𝐴2 + 𝐴𝐴3 + 𝐴𝐴4 + 𝐴𝐴5 + 𝐴𝐴6 + 𝐴𝐴7)                      (5-8) 

Where 

𝐴𝐴1 = 𝑊𝑊1𝑋𝑋1 + 𝐵𝐵1 

𝐴𝐴2 = 𝑊𝑊2𝑋𝑋2 + 𝐵𝐵2 

𝐴𝐴3 = 𝑊𝑊3𝑋𝑋3 + 𝐵𝐵3 

𝐴𝐴4 = 𝑊𝑊4𝑋𝑋4 + 𝐵𝐵4 

𝐴𝐴5 = 𝑊𝑊5𝑋𝑋5 + 𝐵𝐵5 

𝐴𝐴6 = 𝑊𝑊6𝑋𝑋6 + 𝐵𝐵6 

𝐴𝐴7 = 𝑊𝑊7𝑋𝑋7 + 𝐵𝐵7 

𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5,𝑋𝑋6 & 𝑋𝑋7 are the reliability of DP sub-systems 

𝑊𝑊1,𝑊𝑊2,𝑊𝑊3,𝑊𝑊4,𝑊𝑊5,𝑊𝑊6 & 𝑊𝑊7 are the weights for DP sub-systems 

𝐵𝐵1,𝐵𝐵2,𝐵𝐵3,𝐵𝐵4,𝐵𝐵5,𝐵𝐵6 & 𝐵𝐵7  are the bias for DP sub-systems 

A1, A2, A3, A4, A5, A6 & A7 are the overall realiability of DP sub-systems 

The weights of the sub-systems are determined through backpropagation in LSTM [159]. The 

overview of the model architecture for sub-system weight distribution through 

backpropagation of LSTM is shown in Figure 5-9. It shows the data, features, hidden layer, 

and output arrangements. The main goal with backpropagation is to update each weight in the 

network so that it tends to converge to the optimal point to ensure that the output is closer to 

the target output. In this way, it minimises the error for each output neuron and the network as 

a whole. To understand the mathematical calculation behind the back-propagation, it is 

essential to implement the forward computation. The forward computation is represented 

through Equations (5-9) to (5-13) [159, 160]. 

                                               ℎ𝑓𝑓𝑡𝑡 =  σ (𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,  𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑓𝑓)                                             (5-9) 

                                               ℎ𝑖𝑖𝑡𝑡 =  σ (𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,  𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑖𝑖)                                              (5-10) 

                                               ℎ𝑜𝑜𝑡𝑡 =  σ (𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1,  𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑜𝑜)                                            (5-11) 

                                               ℎ𝑉𝑉𝑡𝑡 =  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,  𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑐𝑐)                                      (5-12) 

                                               𝑉𝑉𝑡𝑡 =  ℎ𝑓𝑓𝑡𝑡 ∗ 𝑉𝑉𝑡𝑡−1 +  ℎ𝑖𝑖𝑡𝑡 ∗  ℎ𝑐𝑐𝑡𝑡                                               (5-13) 
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Figure 5-9 LSTM network arrangement with Hidden Layer for backpropagation 
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In the LSTM cell structure, the old hidden state “H(t-1)” is concatenated with the current input 

“X(t)”, therefore the input “Z” for the LSTM net would be the addition of the number of 

neurons in the hidden state “H” and the dimension of the input. As the LSTM output layer has 

“H” neurons, each of the weight matrices would be “Z x H,” and each bias vectors’ size would 

be 1xH. The weights in the fully connected layer are fed to the SoftMax layer, and the resulting 

output would be a probability distribution over all possible items with the size of “H x D.” 

The next process is to determine the network gradient analytically through backpropagation. 

This process involves the partial derivative of a function and the use of the chain rule [161]. 

The backpropagation is based on the forward step results with a reversal in the direction of 

step implementation. The backpropagation is implemented in the following four steps to 

determine the optimised weights for the sub-system. 

Step 1: 

The relationships between the sub-systems and their weights are defined along with the 

activation function. Using the input “X” to the activation function as the input layer represented 

by Equation (5-14) to (5-23). The result of this layer is fed to the next layer (and so on).  

                                                 𝑍𝑍 =  𝑊𝑊𝑥𝑥 + 𝑏𝑏                               (5-14) 

                                            𝐴𝐴1 = 𝑊𝑊1𝑋𝑋1 + 𝐵𝐵1                               (5-15) 

                                            𝐴𝐴2 = 𝑊𝑊2𝑋𝑋2 + 𝐵𝐵2                               (5-16)

                                             𝐴𝐴3 = 𝑊𝑊3𝑋𝑋3 + 𝐵𝐵3                        (5-17) 

                                              𝐴𝐴4 = 𝑊𝑊4𝑋𝑋4 + 𝐵𝐵4           (5-18) 

                                              𝐴𝐴5 = 𝑊𝑊5𝑋𝑋5 + 𝐵𝐵5           (5-19) 

                                              𝐴𝐴6 = 𝑊𝑊6𝑋𝑋6 + 𝐵𝐵6           (5-20) 

                                              𝐴𝐴7 = 𝑊𝑊7𝑋𝑋7 + 𝐵𝐵7           (5-21) 

                                                     𝑡𝑡 =  σ (Z)                                                                  (5-22) 

                                                     𝑡𝑡 =  σ (A1)                                                     (5-23) 

Step 2: 

In this step, the relationship of the input with the weights is computed for each layer. For 

simplicity the Equation (5-24) and (5-25) are shown only for the Reference sub-system. 

                                                        𝐴𝐴1𝐿𝐿 = 𝑊𝑊1
𝐿𝐿𝑡𝑡𝐿𝐿−1 + 𝐵𝐵1𝐿𝐿                                            (5-24) 

                                                                    𝑡𝑡𝐿𝐿 = σ (z𝐿𝐿)                         (5-25) 
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Step 3: 

The next step is to compute the error vector in the “L” layer, as shown in Equation (5-26). 

                                           𝛿𝛿𝐿𝐿 = ∇𝑇𝑇 C ⊚σ𝐿𝐿(z𝐿𝐿)                                           (5-26) 

Then the rate of change of C is expressed concerning the output activations as shown in 

Equation (5-27).  

                                                    ∇𝑇𝑇 C = (a𝐿𝐿 − y)                                                      (5-27) 

Before proceeding to the next step, the generalised error vector formula is determined. Once 

the error vector at the last layer is computed, then backpropagation is used to determine the 

error in the previous layer as in Equation (5-28). 

                                                   𝛿𝛿𝐿𝐿 = (a𝐿𝐿 − y)  ⊚σ𝐿𝐿(z𝐿𝐿)                                                (5-28) 

Step4:  

In the final step, the process moves backwards from the output layer to the input layer through 

hidden layers to find the optimum weights and, at the same time, reduce the error through the 

gradient cross-function [162, 163]. The model consists of 3 hidden layers to determine the 

optimal sub-system weights. They are defined as below: 

L   output layer 

L-1   Hidden layer before the output layer 

L-2   2nd hidden layer 

L-3   3rd hidden layer 

L-4   Input Layer 

The error vector for the last layer (output layer) is given by Equation (5-29): 

                                                 𝛿𝛿𝐿𝐿 = (w𝐿𝐿+1)𝑇𝑇𝛿𝛿𝐿𝐿+1  ⊚σ𝐿𝐿(z𝐿𝐿)                                              (5-29) 

Where 

(w𝐿𝐿+1)𝑇𝑇 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑜𝑜𝑖𝑖𝑒𝑒 𝑜𝑜𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 𝑆𝑆𝑡𝑡𝑡𝑡𝑜𝑜𝑖𝑖𝑥𝑥 𝑜𝑜𝑓𝑓 𝐿𝐿 + 1 𝑅𝑅𝑡𝑡𝑦𝑦𝑒𝑒𝑜𝑜 

The transpose is applied to the weight matrix (w𝐿𝐿+1)𝑇𝑇  so that weights can be expressed 

intuitively as moving the error back through the network, giving a measure of the error at the 

output of that Lth layer. Similarly, the values of each weight in the hidden layers are calculated 

by expressing weights in terms of 𝑊𝑊𝑗𝑗𝑗𝑗
𝐿𝐿  with “J” representing the feature and “K” the actual 

neuron in the hidden layer.  
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Finally, the Hadamard product ⊚σ𝐿𝐿(z𝐿𝐿)  is computed. This step moves the error backwards 

through the activation function in layer L, giving the error 𝛿𝛿𝐿𝐿 in the weighted input to layer, L, 

to determine whether it meets the acceptable level and outperforms other algorithms. 

The gradient cost function is then calculated through the Equation (5-30) and (5-31). 
 
                                                                  𝜕𝜕𝐶𝐶

𝜕𝜕𝑊𝑊𝑗𝑗𝑗𝑗
𝐿𝐿 = 𝑡𝑡𝑗𝑗𝐿𝐿−1𝛿𝛿𝑗𝑗𝐿𝐿                   (5-30) 

 
                                                                               𝜕𝜕𝐶𝐶

𝜕𝜕𝑠𝑠𝑗𝑗
𝐿𝐿 = 𝛿𝛿𝑗𝑗𝐿𝐿                        (5-31) 

Then this allows adjustment of the weights and biases to minimise the cost functions. The 

LSTM model is trained using initial values to find the optimum value for the weights, and at 

the same time to converge rapidly. During the training of the model using the actual data from 

the DP vessel, it was found that the weight distribution for the sub-systems converged to 

optimum results. Table 5-8 shows the weighting distribution of the DP sub-system obtained 

through LSTM. 

Table 5-8 DP sub-system weighting distribution using LSTM 

 

These values obtained through LSTM either matched with or were very similar to AHP results. 

Therefore, the AHP results were rounded to the nearest value as per the LSTM results for the 

further research study. 
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5.8 Summary  

In this chapter, the AHP framework was used to assign the weighting for the DP sub-systems. 

The systematic approach and its application to the research study were described through a 

step-by-step process. The process involves the work of experts in determining the sub-systems, 

goals, criteria, sub-criteria, and relative weighting of the sub-systems. The AHP methodology 

is proven and straightforward, as it addresses all questions on the reliability of the results and 

consistency such that the approximation can be applied. At the same time, it provided a strong 

basis for comparison of the model results and evaluating its performance if it is deemed 

necessary. Finally, the results obtained are verified through CR and validated using LSTM so 

that they can be used in the other part of the research. 

In the next chapter, Stage 4 of big data analytics involving predictive analytics modelling and 

a new research framework for the reliability of the DP system will be described. 
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6. Dynamic Positioning – Reliability Index (DP-RI): Predictive 
Analytics 

6.1 Introduction 

In this chapter, stage 4 of the big data analytics, shown in Figure 3-1, involving predictive 

analytics is discussed. The predictive analytics is used for the prediction of the reliability of 

the DP system for offline simulation and real-time applications during complex offshore 

marine operations. A new research framework called the Dynamic Positioning – Reliability 

Index (DP-RI) has been introduced with high-level architecture that is presented in section 6.2. 

In the next section, the mathematical modelling for DP-RI computation through the RBD is 

discussed. The RBD for each sub-system has been calculated depending on the vessel and 

system configuration. Then the overall DP reliability was computed. The next section discusses 

the basic predictive analytics in terms of the step by step procedure for the prediction of the 

reliability of the DP system (DP-RI). The section describes the different RNN models, machine 

specifications, such as Graphical Processing Unit (GPU), and hardware used for this research 

along with Tensorflow 2.0, which has a vast ecosystem of related components, including 

libraries like Tensorboard, deployment and production API. In the next section, the datasets 

used for comparing the performance of the different algorithms and the split between the 

training, validation, and test data are presented. Other biases affecting the RNN models and 

the AIF360 framework to address biases are detailed. Finally, the performance results of each 

algorithm are compared using the evaluation metrics to select the suitable RNN models for the 

DP-RI advisory tool. 

6.2 DP-RI Concept 

The DP-RI concept is proposed to aid an operator with quantitative and qualitative 

representations of the reliability of DP systems during complex marine operations. This 

concept is not a replacement or an alternative solution for the current reliability assessment; it 

will enhance the existing reliability assessment results by combining them with a newly 

developed database and industry experts’ knowledge [2]. The DP system is classified into 

various sub-systems using big data analytics and a correlation method, as described in Chapter 

4. The Reliability Index (RI) of each of the sub-systems has been calculated based on the 

weighting factor, DP class type, configuration, and mode of operation, as in Chapter 5. 
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         Figure 6-1 Overall Architecture of DP-RI concept 
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Figure 6-1 shows the overall architecture of the DP-RI concept indicating the complete steps 

from data sources to prediction and prescriptive solutions. In this chapter, the DP-RI concept 

is explained through a detailed research framework covering the methodology, dynamic 

reliability modelling, DP-RI computation through RBD for mathematical modelling and 

finally, prediction of DP-RI using LSTM. DP-RI concepts support both offline prediction and 

real-time forecasting based on the current input and historical information. 

6.2.1  DP-RI Research Framework 

The DP-RI is an advisory tool aiding a DP operator with quantitative and qualitative 

representations of the reliability of DP systems during complex marine operations [2]. Due to 

the enormous amount of work and cost involved in traditional quantitative assessment, the DP 

community can use this research framework as an efficient alternative solution tool. In this 

chapter, the reliability of the DP system is determined through a mathematical calculation 

using RBD for the sub-systems and at the same time prediction using LSTM based on field 

data. Through the process, a simple mathematical formulation for the reliability of the DP 

system is introduced in the form of the Reliability Index (RI). The reliability representation in 

DP-RI is closer to reality than the current methodology, providing a complete overview to the 

operator and aiding them to take the necessary action in the case of any failures within the DP 

system.  

Different models of deep learning algorithms have been used for TSP forecasting in the DP-

RI tool to determine their suitability based on the accuracy and speed of prediction. The 

architecture and framework for the DP-RI are shown in Figure 6-2. It depicts the flow of 

information from different databases to individual systems to reliability modelling and, finally, 

the real-time prediction of reliability [2]. The DP-RI research framework can be used for 

offline forecasting to allow the DPO and vessel to prepare for the specific operation. Similarly, 

the tool supports real-time prediction during complex offshore marine operations to assist the 

DPO in understanding the reliability of the DP system and, at the same time, the status of each 

sub-system to focus on critical areas in the case of failures. The final DP-RI value predicted 

could be scaled to different DP classes and configurations of a ship as it matches to 

mathematical calculations. 
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         Figure 6-2 DP-RI research framework for the Prescriptive Analytics 
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6.2.2 Generalised DP-RI Formulation with the Weighting of Sub-Systems 

The Reliability Index (RI) is calculated based on the reliability of each sub-system and their 

weighted contribution to the overall vessel DP performance based on the Analytical Hierarchy 

Process [2]. The DP class type, system configuration and mode of operation are taken into 

consideration for an accurate representation of the DP-RI as a result of LSTM prediction 

defined in Section 6.7 and Section 6.8. With careful analysis of the databases, review of the 

availability of redundant systems, experience, knowledge from previous accidents, and input 

from industry experts (consultants, designers, engineers, operators, etc.) RI is represented for 

normal and fault conditions through Equation (6-1): 

 
𝑪𝑪𝑹𝑹 (𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄, 𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕) = {(𝟎𝟎.𝟐𝟐𝟎𝟎 ∗ 𝑨𝑨𝟏𝟏 + 𝟎𝟎.𝟏𝟏𝟏𝟏 ∗ 𝑨𝑨𝟐𝟐 + 𝟎𝟎.𝟏𝟏𝟎𝟎 ∗ 𝑨𝑨𝑨𝑨 + 𝟎𝟎.𝟏𝟏𝟎𝟎 ∗ 𝑨𝑨𝑨𝑨 +

                                                    𝟎𝟎.𝟎𝟎𝟏𝟏 ∗ 𝑨𝑨𝟏𝟏 + 𝟎𝟎.𝟏𝟏𝟎𝟎 ∗ 𝑨𝑨𝑨𝑨 + 𝟎𝟎.𝑨𝑨𝟎𝟎 ∗ 𝑨𝑨𝑨𝑨) ∗ 𝑲𝑲}                           (6-1)                                               

where 

𝑲𝑲 =  �

    𝟏𝟏                 𝒄𝒄𝒊𝒊 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒄𝒄𝒄𝒄𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 , 𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕 = 𝒏𝒏𝒏𝒏𝒏𝒏 𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟎𝟎.𝟗𝟗            𝒄𝒄𝒊𝒊 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒊𝒊𝒏𝒏𝒇𝒇𝒏𝒏𝒄𝒄𝒕𝒕 , 𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑫𝑫𝑫𝑫𝑨𝑨        
𝟎𝟎.𝟖𝟖            𝒄𝒄𝒊𝒊 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒊𝒊𝒏𝒏𝒇𝒇𝒏𝒏𝒄𝒄𝒕𝒕 , 𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑫𝑫𝑫𝑫𝟐𝟐        
𝟎𝟎.𝑨𝑨            𝒄𝒄𝒊𝒊 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝒊𝒊𝒏𝒏𝒇𝒇𝒏𝒏𝒄𝒄𝒕𝒕 , 𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑫𝑫𝑫𝑫𝟏𝟏        

 

Based on the class of DP vessel, the reliability will vary as the redundancy of the components 

in individual systems is designed for fault tolerance in each type of DP class [4]. 

 
6.3 Methodology for Mathematical DP-RI computation 

For the mathematical computation of the DP-RI, the RBD method is used due to its efficiency 

in representing quantitively, the actual status of complex systems. A typical reliability model 

is represented with series and parallel combinations of sub-systems/components, as shown in 

Figure 6-3.  

 

Figure 6-3 Typical RBD arrangement in series & parallel configuration 
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An RBD presents a logical relationship between the system, sub-systems, and components. A 

DP system is modelled for reliability computation and analysis using block diagrams [12]. 

During the formulation of DP-RI, certain factors are taken into consideration, which affect the 

mathematical computation. These are listed below [19]: 

• Sub-Systems / Components architecture  

• DP vessel and component Modes of Operation 

• Voting Configuration 

• Overall System and Sub-System functional requirement 

6.3.1 Sub-System / Component Architecture 

The sub-systems/components are represented through RBD models based on the system design 

architecture. The system architecture is one of the below models [19, 64, 14]: 

• Static System Models  

• Series Model  

• Stand-by System 

• (K,n) System  

• Parallel Model  

Based on the system configuration, the sub-system reliability is calculated using the principle 

of probability theory. If the system had more than one function, each function was considered 

individually, and a separate reliability block diagram was established for each system function. 

The system reliability is then modelled using the reliability of the various sub-systems [65, 

67]. The mathematical model is used to assist in making changes to the system for reliability 

improvement. The model is used to identify weak links in the design and to indicate where 

reliability improvement activities should be introduced.  

6.3.2 DP Vessel and Components Modes of Operation  

A DP system operates in different modes during complex marine operations depending on the 

functionalities required by the vessel [1, 59, 164]: 

• Station Keeping  

• Joystick 
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• Auto-Pilot mode  

• Auto Heading 

• Auto track / Follow Target  

The DPO and Captain would ensure that the sub-systems are arranged as per the DP operating 

manuals and site-specific risk assessment instructions. From a functional safety perspective, 

the components within the sub-system will be operating in specific modes to fulfil the 

requirements of the safety-related systems. The components within the sub-system determine 

the reliability of the sub-system based on the mode of operation which will fall into one of 

the following groupings based on the vessel type and DP configuration [64, 14]: 

• Low demand mode 

• High demand mode 

• Continuous Mode 

6.3.3 Sub-System / Component Voting Configuration 

The sub-system architecture and modes of operation determine the component’s configuration 

and voting group to prevent failure of a safety function in the case of accidental events. The 

voting configuration provides redundancy depending on the criticality of the signal, as 

discussed in Section 4.3 in Chapter 4. The sub-system and the components within the sub-

system are grouped under one of the following voting configurations [19, 64]: 

• 1oo1 (one-out-of-one)  

• 1oo2 (one-out-of-two)  

• 1oo3 (one-out-of-three)  

• 2oo2 (two-out-of-two) 

• 2oo3 (two-out-of-three) 

The voting configuration not only provides the reliability but also the availability and safety 

of the system when hidden failures are difficult to detect. 

6.3.4 Overall System and Sub-System Requirement Definition 

The mathematical computation model and prediction model for the reliability of a sub-system 

are computed only when the system design assumptions and uncertainties have been 
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adequately defined [165]. In this section, the vessel type, class, system set-up, sub-system 

configuration, critical, non-critical, redundant, non-redundant grouping, and design boundary 

are defined for the experiment in the next section. The sub-system signals were identified and 

grouped across different categorisations, considering the design phase for evaluation  [1, 9, 59, 

164, 166, 167]. The grouping of the signals for the different sub-systems is presented in 

Sections 4.4 to Section 4.10 in Chapter 4. The sub-systems component arrangement, 

architecture, voting group, and criticality grouping are shown in Table 4-2 to Table 4-8. 

The DP system is a composite entity with complex integration between sub-systems 

comprising equipment, software, materials, procedures, and personnel. In this research study, 

the analysis for the sub-systems was performed based on two aspects [48]: 

• Structural focus refers to the physical architecture defining the hierarchy of system, sub-

systems, and components. 

• Functional focus refers to the logical architecture, which depicts the functional 

relationship between the sub-systems. 

The system may be transformed into a functional block diagram or RBD or fault tree to 

represent the functional architecture. The RBD is built as success-oriented networks 

illustrating how the sub-systems operate as functional blocks to fulfil the overall DP system 

functional requirement [8, 167]. The structure of the RBD is described mathematically by 

structure functions. This structure-function will be used to calculate the sub-system reliability. 

The experimental set-up for the reliability calculation of the sub-systems was performed with 

the following parameters defined as a standard for the two approaches and validation [48]: 

• System 

• System Boundary 

• Sub-Systems 

• Assemblies / Components  

• Outputs 

• Inputs 

• Boundary conditions 

• Support 

• External Threats 
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The DP-RI mathematical computation was based on the failure data from the data lake defined 

in Chapter 3. The failure data were collected for the equipment at a sensor level and generalised 

for use for different vessel applications. The uncertainties are treated as known uncertainties, 

which will introduce minor error in the system, therefore at a broader scale, the efficiency is 

still at a high level [1, 56]. In the next section, the mathematical computation of the DP-RI is 

described. The output will act as the target variable for the reliability prediction and is further 

used as the actual output value for comparison and performance evaluation. If the results prove 

to be within an acceptable range, then the mathematical calculation of reliability of the DP 

system based on the weights can be used. 

6.4 Mathematical Computation of DP-RI – Failure data  

The mathematical computation of DP-RI is highly dependent on the structural focus, which is 

expressed through the RBDs. The structural architecture defines the basic system hierarchy of 

each of the sub-systems and the association of lower levels and components with higher-level 

assemblies and systems. Once the structural aspects of the physical sub-system are defined, the 

functional focus is taken into consideration for the mathematical computation [4, 48, 165]. As 

shown in Figure 6-2, for mathematical analysis, each sub-system is further divided into groups 

of different equipment. The three main activities involved in the calculation of reliability of 

sub-systems are [168]: 

• Reliability Block Diagram based on system configuration 

• System Diagnostic based on voting group 

• Pattern recognition for functional fault identification 

The reliability of the system and sub-systems can be calculated through the Probability of 

Failure on Demand (PFD) represented by mathematical Equations (6-2) and (6-3) [19, 169]: 

                 𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆 = (𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑠𝑠𝑠𝑠−𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆1 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑠𝑠𝑠𝑠−𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆2 + ⋯𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑠𝑠𝑠𝑠−𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑛𝑛)         (6-2) 

         𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑠𝑠𝑠𝑠−𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆 = (𝑃𝑃𝑃𝑃𝐷𝐷𝑐𝑐𝑜𝑜𝑆𝑆𝑐𝑐1 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑐𝑐𝑜𝑜𝑆𝑆𝑐𝑐2 + ⋯𝑃𝑃𝑃𝑃𝐷𝐷𝑐𝑐𝑜𝑜𝑆𝑆𝑐𝑐𝑆𝑆)                                    (6-3) 

Where 

𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆       = Average probability of failure on demand for DP system 

𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑠𝑠𝑠𝑠−𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆  = Average probability of failure on demand for DP sub-system 

𝑃𝑃𝑃𝑃𝐷𝐷𝑐𝑐𝑜𝑜𝑆𝑆𝑐𝑐1     = Average probability of failure on demand for components 
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n     = Number of sub-systems in the DP system 

m     = Number of components in the sub-system 

6.4.1 Sub-System Components Voting Configuration 

The components and sensors are designed to increase the reliability depending on operation 

complexity and criticality of the specific mode of operation. Section 6.3.3 described the various 

possibilities of the arrangement of the components within the sub-systems and sensors within 

the components. The reliability formulation or average PFD is highly dependent on the voting 

configuration. The arrangement and voting of components are in one of the following 

architectures, as detailed in Section 6.3.3. The architecture and generalised formula for the 

different voting configurations used for the reliability calculation of the sub-system and in-turn 

for the DP system are described below [19, 64, 14]. 

1oo1: 

The voting configuration for 1oo1 (one-out-of-one) is shown in Figure 6-4, and the 

corresponding average probability of failure on demand is represented by Equation (6-4). 

 

Figure 6-4 1oo1 voting configuration 

                                                       𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴𝐴𝐴𝐺𝐺 = (𝜆𝜆𝐷𝐷𝐷𝐷 + 𝜆𝜆𝐷𝐷𝐷𝐷)𝑡𝑡𝐶𝐶𝐶𝐶                                             (6-4) 

1oo2: 

The voting configuration for 1oo2 (one-out-of-two) is shown in Figure 6-5, and the 

corresponding average probability of failure on demand is represented by Equation (6-5). 

 

Figure 6-5 1oo2 voting configuration 
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𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴𝐴𝐴𝐺𝐺 = 2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀) (6-5) 

1oo3: 

The voting configuration for 1oo3 (one-out-of-three) is shown in Figure 6-6, and the 

corresponding average probability of failure on demand is represented by Equation (6-6). 

 

Figure 6-6 1oo3 voting configuration 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴𝐴𝐴𝐺𝐺 = 6((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �
𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀�6-6)  

2oo2: 

The voting configuration for 2oo2 (two-out-of-two) is shown in Figure 6-7, and the 

corresponding average probability of failure on demand is represented by Equation (6-7). 

 

Figure 6-7 2oo2 voting configuration 

                                                                 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴𝐴𝐴𝐺𝐺 = 2𝜆𝜆𝐷𝐷𝑡𝑡𝐶𝐶𝐶𝐶                                                     (6-7) 

2oo3: 

The voting configuration for 2oo3 (two-out-of-two) is shown in Figure 6-8, and the 

corresponding average probability of failure on demand is represented by Equation (6-8). 
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Figure 6-8 2oo3 voting configuration 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴𝐴𝐴𝐺𝐺 = 6((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀) (6-8) 

Where 

𝜆𝜆𝐷𝐷𝐷𝐷  Dangerous Undetected failure rate of a channel in a Subsystem 

𝜆𝜆𝐷𝐷𝐷𝐷  Detected dangerous failure rate of a channel in a subsystem 

𝑡𝑡𝐶𝐶𝐶𝐶   Calculate the channel equivalent mean downtime 

𝑡𝑡𝐺𝐺𝐶𝐶   System equivalent downtime 

𝛽𝛽   The fraction of undetected failures that have a  common cause 

𝛽𝛽𝐷𝐷   the fraction that has a common cause of those failures that are detected by the   

                 diagnostic tests 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   Mean Time To Restoration 

𝑀𝑀𝑀𝑀𝑀𝑀    Mean Repair Time 

𝑀𝑀1   Proof test interval 

𝑀𝑀2   Interval between demands 

6.4.2 Sub-System Reliability Computation 

The system architecture/voting was used to calculate sub-system reliability from the PFD. In 

this section, the component voting for each sub-system was used to determine the reliability of 

the sub-systems [48, 19]. The seven DP sub-systems’ reliability is calculated individually using 

the RBD architecture, and then the overall system-level reliability is calculated. The model 

architecture of the DP3 vessel, defined in Sections 4.4 to Section 4.10 in Chapter 4, is used for 

the calculation of the reliability of the DP sub-systems. 
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Reference System (A1): 

The average PFD of the Reference System (𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴1) is represented by Equation (6-9) and (6-

10) based on the different component voting configurations defined in Section 6.4.1. 

                               𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴1 =  𝑃𝑃𝑃𝑃𝐷𝐷𝐺𝐺𝐺𝐺𝑅𝑅𝑂𝑂 +  𝑃𝑃𝑃𝑃𝐷𝐷𝑀𝑀𝑅𝑅𝐷𝐷 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐺𝐺𝑃𝑃𝑆𝑆 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺𝑃𝑃𝑆𝑆                                   (6-9) 

 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴1 = �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+

𝑀𝑀𝑀𝑀𝑀𝑀�� + {2𝜆𝜆𝐷𝐷𝑡𝑡𝐶𝐶𝐶𝐶} + �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 +

𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �
𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀�� + {2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 +

                          𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)}                                                            (6-10)                           

 

DP control System  (A2): 

The average PFD of the DP Control System (𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴2) is represented by Equation (6-11) and 

(6-12) based on the different component voting configurations defined in Section 6.4.1. 

                               𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴2 =  𝑃𝑃𝑃𝑃𝐷𝐷𝑂𝑂𝑆𝑆 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑁𝑁𝐷𝐷𝐷𝐷 +  𝑃𝑃𝑃𝑃𝐷𝐷𝐹𝐹𝑆𝑆 +  𝑃𝑃𝑃𝑃𝐷𝐷𝑅𝑅𝐶𝐶𝐷𝐷                               (6-11) 

 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴2 = �2�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀�� +

�2�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀�� +

�2�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀�� +

      {6((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)} (6-12) 

Thruster / Propulsion System (A3): 

The average PFD of the Thruster / Propulsion System (𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴3) is represented by Equation (6-

13) and (6-14) based on the different component voting configurations defined in Section 6.4.1. 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴3 =  𝑃𝑃𝑃𝑃𝐷𝐷𝑇𝑇1 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑇𝑇2 +  𝑃𝑃𝑃𝑃𝐷𝐷𝑇𝑇3 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑇𝑇4 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑇𝑇5 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑇𝑇6 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑇𝑇7 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑇𝑇8(6-13) 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴3 = �2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)� +

�2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)� +
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�2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)� +

           {2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)}    (6-14) 

Power System (A4): 

The average PFD of the Power System (𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴4) is represented by Equation (6-15) and (6-16) 

based on the different component voting configurations defined in Section 6.4.1. 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴4 =  (𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺1 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺2) +  (𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺3 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺4) + (𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺5 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺6) +

                           (𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺7 +  𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐺𝐺8)                                                                                           (6-15) 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴4 = �2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)� +

�2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)� +

�2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)� +

           {2((1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷)2𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷(𝑇𝑇1
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀)}   (6-16) 

Electrical System (A5): 

The average PFD of the Electrical System (𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴5) is represented by Equation (6-17) and (6-

18) based on the different component voting configurations defined in Section 6.4.1. 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴5 =  𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑊𝑊𝑆𝑆𝐷𝐷1 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑊𝑊𝑆𝑆𝐷𝐷2 +  𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑊𝑊𝑆𝑆𝐷𝐷3 + 𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝑊𝑊𝑆𝑆𝐷𝐷4 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐶𝐶𝑆𝑆1 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐶𝐶𝑆𝑆2 +

                       𝑃𝑃𝑃𝑃𝐷𝐷𝐶𝐶𝑆𝑆3 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐶𝐶𝑆𝑆4                                                                                         (6-17) 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴5 = {(𝜆𝜆𝐷𝐷𝐷𝐷 + 𝜆𝜆𝐷𝐷𝐷𝐷)𝑡𝑡𝐶𝐶𝐶𝐶} + {(𝜆𝜆𝐷𝐷𝐷𝐷 + 𝜆𝜆𝐷𝐷𝐷𝐷)𝑡𝑡𝐶𝐶𝐶𝐶} + {(𝜆𝜆𝐷𝐷𝐷𝐷 + 𝜆𝜆𝐷𝐷𝐷𝐷)𝑡𝑡𝐶𝐶𝐶𝐶)} + {(𝜆𝜆𝐷𝐷𝐷𝐷 +

                          𝜆𝜆𝐷𝐷𝐷𝐷)𝑡𝑡𝐶𝐶𝐶𝐶} +  {(𝜆𝜆𝐷𝐷𝐷𝐷 + 𝜆𝜆𝐷𝐷𝐷𝐷)𝑡𝑡𝐶𝐶𝐶𝐶} + {(𝜆𝜆𝐷𝐷𝐷𝐷 + 𝜆𝜆𝐷𝐷𝐷𝐷)𝑡𝑡𝐶𝐶𝐶𝐶} + {(𝜆𝜆𝐷𝐷𝐷𝐷 + 𝜆𝜆𝐷𝐷𝐷𝐷)𝑡𝑡𝐶𝐶𝐶𝐶)} +

                          {(𝜆𝜆𝐷𝐷𝐷𝐷 + 𝜆𝜆𝐷𝐷𝐷𝐷)𝑡𝑡𝐶𝐶𝐶𝐶}                                                                                       (6-18) 

Environmental System (A6): 

The average PFD of the Environmental System (𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴6) is represented by Equation (6-19) and 

(6-20) based on the different component voting configurations defined in Section 6.4.1. 

                                      𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴6 =  𝑃𝑃𝑃𝑃𝐷𝐷𝑊𝑊𝐼𝐼𝑁𝑁𝐷𝐷 +  𝑃𝑃𝑃𝑃𝐷𝐷𝑊𝑊𝐴𝐴𝐴𝐴𝐶𝐶 +  𝑃𝑃𝑃𝑃𝐷𝐷𝐶𝐶𝐷𝐷𝑅𝑅𝑅𝑅𝐶𝐶𝑁𝑁𝑇𝑇                         (6-19) 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴6 = �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+

𝑀𝑀𝑀𝑀𝑀𝑀�� + �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+
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𝑀𝑀𝑀𝑀𝑀𝑀�� + �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+

𝑀𝑀𝑀𝑀𝑀𝑀�� + �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+

      𝑀𝑀𝑀𝑀𝑀𝑀��                                                                                                                          (6-20) 

Human / Operator Error (A7): 

The average PFD of the Human / Operator Error (𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴7) is represented by Equation (6-21) 

and (6-22) based on the different component voting configurations defined in Section 6.4.1. 

                                      𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴7 =  𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐶𝐶𝐷𝐷 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶 +  𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐼𝐼𝑆𝑆 +  𝑃𝑃𝑃𝑃𝐷𝐷𝑆𝑆𝐴𝐴                   (6-21) 

𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴7 = �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+

𝑀𝑀𝑀𝑀𝑀𝑀�� + �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+

𝑀𝑀𝑀𝑀𝑀𝑀�� + �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+

𝑀𝑀𝑀𝑀𝑀𝑀�� + �6�(1 − 𝛽𝛽𝐷𝐷)𝜆𝜆𝐷𝐷𝐷𝐷 + (1 − 𝛽𝛽)𝜆𝜆𝐷𝐷𝐷𝐷�
3𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐶𝐶𝑡𝑡𝐺𝐺2𝐶𝐶 + 𝛽𝛽𝐷𝐷𝜆𝜆𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽𝜆𝜆𝐷𝐷𝐷𝐷 �

𝑇𝑇1
2

+

      𝑀𝑀𝑀𝑀𝑀𝑀�� + 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑖𝑖𝑏𝑏𝑅𝑅𝑒𝑒 𝑃𝑃𝑡𝑡𝑉𝑉𝑡𝑡𝑜𝑜𝑜𝑜𝑖𝑖 (𝑅𝑅𝑃𝑃)                                                                        (6-22) 

6.4.3 DP-RI Computation 

The overall DP-RI computation is based on the reliability of the sub-systems. As discussed in 

the previous sections, the PFD for the sub-systems is calculated based on the component voting 

configuration within the sub-systems, mode of operation, class of vessel, and DP vessel system 

configuration during a specific offshore complex operation. For the system level reliability 

computation, the PFD at the system level is computed using Equation (6-23) [170]. 

𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃−𝑅𝑅𝐼𝐼 = 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴1 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴2 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴3 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴4 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴5 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴6 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴7 + 𝑃𝑃𝑃𝑃𝐷𝐷𝐴𝐴8    (6-23) 

The above equation for calculating the overall PFD has proved useful in various safety system 

reliability applications [15, 62, 171, 172]. For a sophisticated safety system, the PFD represents 

the reliability measure, which is an unavailability number. The reliability of the DP system is 

calculated using Equation (6-24) [170]. 

                                                       𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃−𝑅𝑅𝐼𝐼 =  1 −  1
ŧ ∫ 𝑀𝑀𝑅𝑅(𝑡𝑡)𝑃𝑃𝑡𝑡ŧ

0                                                   (6-24) 
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Where 

𝑀𝑀𝑅𝑅(𝑡𝑡) Survivor Function or Reliability of DP system (DP-RI) 

ŧ  Test interval 

The mathematical computation is used for performance evaluation of the RNN, which is used 

for the prediction of DP system reliability in the next section. The model predicted value is 

compared with the numerical value to determine the error. The mathematical computation 

obtained through RBD gives a quantitative representation of the reliability, which consumes a 

considerable amount of time, effort, and enormous cost due to the experts and consultants 

involved from different stakeholders. Therefore, this is not a preferred method for all vessels. 

However, if the prediction results could be proven to have the same effects as the mathematical 

computation, then reliability prediction can be widely used. 

6.5 Predictive Analytics – Prediction of DP-RI through RNN – Field Data 

Reliability prediction is becoming the most commonly used method in the oil and gas industry 

for assessing complex systems [4, 166, 173]. The DP sub-system data from the field (historical 

and real-time) and test simulations are used for training the RNN models for predicting the 

near-future values.  

The test data was simulated to address bias for the missing system configuration. The reliability 

prediction through RNN models was performed with the information such as reliability 

requirements, system architecture, operating environment, operating profile and failure 

mechanism. The causes are fed into the model to ensure that there would be the desired degree 

of precision in the prediction, as per Institute of Electrical and Electronics Engineers (IEEE) 

IEEE 1413 standard [48]. The data used for the prediction of reliability are categorised into 

two groups as below: 

• Field Data: As described in Section 6.5.3 

• Test data 

o Accelerated data 

o Non-accelerated data 
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6.5.1 Recurrent Neural Network Models for Prediction 

RNN models have proved to be more efficient in addressing problems related to complex real-

time applications. Research has shown that RNN models provide more accurate, faster 

responses and self-learning capability when implemented in diverse applications with minimal 

effort from humans [80, 82, 83, 81, 84]. RNN models are more suitable for relatively long 

interval delays in time series prediction and long-term dependencies in time series data. The 

following RNN models defined in Section 2.10 are evaluated for suitability in the DP-RI 

application. 

• MLP 
• SRNN 
• GRU  
• LSTM 

6.5.2 Machine Specification and Programming Language 

In this section, the details of the experimental set-up are given related to the machine 

specification for cloud computing using RNN models, programming language, an application-

programming interface (API), platforms, libraries and debugging plugins for the 

implementation of research. The details of hardware specification and programming are in 

Section 8.3. The following tools, platforms, and libraries are used for the experiment related 

to predictive analytics [174, 175, 176]: 

• Compute Engine  

• GCP and GPU 

• Colaboratory or "Colab"  

• Pycharm IDE 

• AIF360 Source Toolkit 

• Tensorflow 2.0 

• Tensorboard and Tensor-graph 

• Keras (Model, API & Tuner) 

• Numpy and Pandas 

• Matplotlib 

• Seaborn 
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6.5.3 Datasets - Data Description and Processing 

For the specific task of Predictive Analytics, data from a DP vessel was used. The vessel 

configuration, DP class, and further sub-systems arrangement were discussed in Chapter 4. 

The data collected from the DP-3 ship were raw data values from the historic event database. 

Therefore, the data was characterised by noise and redundant information. Machine learning 

model output depends on the context of the data, and it is essential to be clear on what the data 

represents so that domain experts can apply theories and domain knowledge to the data for 

better validation. The final data used for prediction consisted of 450,000 unique datapoints.  

For the evaluation of the RNN models, the DP 3 vessel data samples were stored as time series 

with a sample interval of 1 millisecond. The sensor data was grouped at the equipment level 

before grouping into the sub-system level. The sub-system level corresponds to the seven 

different sub-systems of a complex DP system [2] [16]. As in any data sets, the real-time data 

collected from the field included redundant information and noise data that could have an 

impact on the model training resulting in a bias. To ensure fair comparison and avoid biasing, 

the data sets were pre-processed for relevant feature engineering. The steps and methods are 

described in detail in Chapter 3 and Chapter 4. A brief introduction is provided below before 

the research experiments are described. 

Data Collection: This is the first essential step for addressing problems through machine 

learning models. The data sets were recorded by the DP-3 system vendor and stored in a 

separate machine known as the History Station. The data collection was formulated in such a 

way that the system automatically determined the relevant attributes of each sub-system and 

stored the data in a comma-separated variable (.csv) file format. 

Data Exploration and Profiling: After the data collection, the next step was to assess the 

condition of the data to find trends, outliers, exceptions, incorrect, inconsistent or missing data, 

errors, repeated and skewed information. The time-series data sets were filtered with a 

weighted average of past data points, within a time-span of 10-points, to generate a smoother 

estimation of the time series [177]. The profiling also meant that data was not removed from 

the limited sample, which could have introduced unseen biases. 
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Formatting data for consistency: The data sets were obtained initially without considering 

the mode of operation of the vessel or the number of equipment items connected to each sub-

system at a given point in time. The time-stamps were compared between the datasets, which 

were classified with the sub-system data and the overall state of the DP system. In this way, 

the time-series data, which were non-stationary, exhibiting specific trends were removed from 

the relational data [177]. The aggregation of data from different data sources was formatted to 

remove errors and in-consistency and to best fit the proposed machine learning models. 

Improving data quality: In the datasets, erroneous data, missing values, extreme values, and 

outliers were carefully dealt with, with a strategic interest in improving the accuracy of 

prediction. The outliers in the input data, above the range, below the range, and spurious values 

were evaluated using data preparation tools such as Excel, Python, Alteryx etc. A standard way 

of removing trends is by defining the observation from the previous time step (t-1) and 

comparing it with the current time step(t); this was adopted to remove the repeated values from 

the dataset [178].  

Feature Engineering: This is the most critical step in data processing as it involves the 

transformation of raw data into the attributes/features that represent meaningful patterns / 

cognitive targets for the machine learning models. The time-series data was divided into input 

(A1, A2, A3, A4, A5, A6, and A7) and output (DP-RI). The target models, through 

mathematical formulae, define the correlation between the input and output variables to capture 

the specific relationships [177]. 

6.5.4 Training and Testing Dataset Split 

The initial step involved splitting the dataset into two sets: one for training the models and the 

second one for the evaluation of performance. GCP was used to ensure that the datasets used 

were non-overlapping sub-sets between the training and testing data. For the first case, the 

datasets of 450,000 samples were used to evaluate the performance of different machine 

learning models. Figure 6-9 shows one split-ratio indicating that 67% of the samples were used 

for Training (Training + Validation), and 33% of the samples were used for Testing 

(Evaluating the performance). 
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Figure 6-9 Datasets Split ratio 

For the optimisation algorithm for each model, the hyperparameters, batch size, and epochs 

were varied during the sample distribution to prevent over-fitting while at the same time, 

verifying the results [179]. Therefore, the training samples were further divided into 50% 

training and 17% validation to address the problem related to model bias, which results in 

overfitting/underfitting. Additionally, for evaluating the gradient descent, the sample 

distribution was varied as per Table 6-1, and the performances tested. 

Table 6-1   Split-ratio between Training / Validation and Testing datasets 

 

The performance of the models was tested for all different combinations of ratios in the above 

table to find the ratio with the highest accuracy measured through evaluation metrics defined 

in Section 6.8, which was chosen for the DP-RI tool development. 

6.5.5 Learning Curve (Loss and Accuracy) Evaluation 

The Learning Curve (LC), which provides information on the loss and accuracy of the model 

prediction, is an excellent method to evaluate the performance. There are two-learning curves 

used to assess the dynamics which are defined as follows [180]: 

Train Learning Curve: Learning curve calculated from the training dataset that gives an idea 

of how well the model is learning. 
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Validation Learning Curve: Learning curve calculated from a hold-out validation dataset that 

gives an idea of how well the model is generalising. 

The shape and dynamics of the learning curves were used to diagnose the behavior of different 

algorithms. There are three common shapes and dynamics that will define the performance of 

the RNN algorithm, which are usually represented as below [180, 181, 182]: 

• Underfit 

• Overfit 

• Good Fit 

In the next section, the learning curve results are discussed in detail to find the models with a 

good fit for the data collected from the DP-3 vessel. The good-fit learning curves will represent 

that the loss decreased to the point of stability with a minimal gap between two final loss values 

of training and validation learning curves. 

Underfitting: Underfitting in LC refers to a RNN model that cannot learn the training dataset 

or is unable to capture the underlying trend in the data. The LC will be a flat line or have high 

loss values indicating that the model is unable to learn from the training dataset. The data 

collected from DP vessels is evaluated to ensure that it does not fall into the underfit category 

[180]. Underfit LC may be represented, as shown in Figure 6-10, where it is either a flat line 

or training loss is decreasing and continues to decline at the end of the plot implying that it 

requires further learning. The LC indicates that other improvements are needed as the training 

process was halted prematurely. 

  
Figure 6-10 Underfitting Loss Curve 
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Overfitting: Overfitting in LC refers to a model that has learned the training dataset too well, 

including the statistical noise or random fluctuations. In overfitting scenarios, the models 

follow the error or noise too closely, resulting in an inability to generalise to new data leading 

to significant generalisation error. The generalisation error is reflected in validation loss [180]. 

An overfitting plot can be represented, as shown in Figure 6-11and it could reveal the dynamics 

of overfitting through the following points: 

• The training loss continues to decrease with experience. 

• The validation loss decreases to a point and begins increasing again. 

• The inflexion/deviation point in validation loss at which training was halted. 

 

Figure 6-11 Overfitting Loss Curve 

Good Fit: A good fit in the LC refers to a model that exists between the overfit and underfit 

cases. A good fit is represented by an LC in which the training and validation loss decrease to 

the point of stability with a minimal gap between the two final loss values [182]. The minimal 

gap is referred to as the “generalisation gap.”  
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Figure 6-12 Good fit Loss Curve 

Unrepresentative Data Set: An unrepresentative dataset means a dataset that does not capture 

the statistical characteristics relative to another dataset drawn from the same domain. It is used 

to diagnose the properties of the dataset. There are usually two types, as shown below [52]: 

• Unrepresentative Training dataset: Refers to a training dataset that does not contain 

sufficient information to learn the problem relative to the validation dataset used to 

evaluate it.  

• Unrepresentative Validation dataset: Refers to a validation dataset that does not provide 

sufficient information to evaluate the ability of the model to generalise.  

 

Figure 6-13 Unrepresentative Training dataset Loss Curve 
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Figure 6-14 Unrepresentative Validation dataset Loss Curve 

The RNN models used for the research were evaluated so that the problems related to 

underfitting, overfit, and also unrepresentative datasets are addressed through a research 

framework. The models are analysed using “Loss” and “Accuracy” metrics for training and 

validation dataset. 

6.6 Bias (Fairness) in RNN and Bias Types 

Bias (Fairness) is a measure of whether the decision making developed with the RNN 

algorithm is free from discrimination. Bias is “unconscious” and could result in in-accurate 

results from algorithms [175, 183]. Bias in recent years has become an increasingly critical 

factor in predictive and prescriptive analytics as RNN are used in high-risk decision-making 
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applications [175, 184]. Bias is often treated as a complex and multi-faceted concept that 

depends on the context of the application. For the DP-RI research study, there are possibilities 

of various biases caused either by humans, data, or technology. To effectively address the 

biases, a two-step approach is used in this research. In the first step, the types of biases for the 

DP-RI application are identified, and in the second step, the biases are addressed by using the 

concept of the fit/transform/predict paradigm through the AIF360 source toolkit [175].   

For the DP-RI application, the types of biases are categorised into two groups [176, 185]: 

• Human Related: Stereotyping, prejudice, or favouritism towards certain sensors, 

components, or sub-systems over others. These biases can affect the collection and 

interpretation of data, the design of a system, and how users interact with a system.  

o automation bias 

o confirmation bias 

o experimenter’s bias 

o group attribution bias 

o Implicit / in-group bias 

o out-group homogeneity bias 

• Data Related: Systematic errors introduced by a data sampling or reporting procedure. 

o coverage bias 

o non-response bias 

o participation bias 

o reporting bias 

o sampling bias 

o selection bias 

6.7 Bias Mitigation Framework 

In this section, methods are presented to show how the different types of bias were addressed 

systematically to ensure that the prediction results from the models are accurate and can be 

validated against real-life scenarios. The accuracy of predictions/performance of the models 

could be affected by bias and uncertainties if not appropriately addressed. All the different 

types of biases identified in Section 6.6 are grouped and addressed by the following fairness 

terms [186, 185]: 

https://developers.google.com/machine-learning/glossary#automation_bias
https://developers.google.com/machine-learning/glossary#confirmation_bias
https://developers.google.com/machine-learning/glossary#confirmation_bias
https://developers.google.com/machine-learning/glossary#group_attribution_bias
https://developers.google.com/machine-learning/glossary#in-group_bias
https://developers.google.com/machine-learning/glossary#out-group_homogeneity_bias
https://developers.google.com/machine-learning/glossary#selection_bias
https://developers.google.com/machine-learning/glossary#selection_bias
https://developers.google.com/machine-learning/glossary#participation_bias
https://developers.google.com/machine-learning/glossary#reporting_bias
https://developers.google.com/machine-learning/glossary#selection_bias
https://developers.google.com/machine-learning/glossary#selection_bias
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• Sample Fairness 

• Label Fairness  

• Model Fairness 

• Observer Fairness 

• Measurement Fairness 

A systematic framework with bias mitigation algorithms, bias metrics, and bias explanatory 

was implemented at different stages to address problems associated with biases, as shown in 

Figure 6-15. Bias mitigation algorithms attempt to improve the fairness metrics by modifying 

the training data, the RNN algorithm, or the predictions. The bias mitigation algorithm inspects 

discrimination in the overall logic, ensures that the biasing is addressed, and assures model 

fairness and fosters trust. The framework steps for bias mitigation are as follows [175, 184]: 

• Import Data  

• Check bias at Pre-Processing, In-Processing and Post-Processing stages 

o  Identify Protected attributes 

o Determine the Privileged and Unprivileged groups 

o Evaluate the bias against unprivileged groups detected in the metrics from 

thresholds 

• Mitigate Bias 

• Compare original and mitigated results 

All of the algorithms are implemented by inheriting from the Transformer class. Transformers 

are an abstraction for any process that acts on an instance of Dataset class and returns a new, 

modified Dataset object [175, 187]. The different bias mitigation in AIF360 is as below [175]. 

• Pre-Processing 

o Disparate Impact Remover  

o Learning Fair Representations  

o Optimized Pre-processing  

o Reweighing  

• In-Processing 

o Adversarial Debiasing  

o Meta-Algorithm for Fair Classification  
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o Prejudice Remover Regularizer  

o Rich Subgroup Fairness 

• Post-Processing 

o Equalized Odds Postprocessing  

o Reject Option Classification  

o Calibrated Equalized Odds Postprocessing  

 

Figure 6-15 Addressing Bias for DP-RI RNN algorithm 

The adoption of a particular bias mitigation algorithm is based on the requirements if the RNN 

models are found to have biased results. Few biases were identified at the beginning of the 

research study. However, some biases were identified during model development and a few 

after the implementation. Therefore, the mitigation algorithm has acted as an effective method 

to address the bias issues relevant to the DP-RI context. 

6.7.1 Sample Fairness 

The real-time dataset collected from the DP-3 vessel did not cover all of the possible scenarios 

of failure across DP sub-systems. Therefore, during data pre-processing, a distribution of 

failures across the sub-systems was ensured for different failure scenarios to cover the full 

spectrum. In this way, it was assured that the research would be based on unbiased data, which 
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is neutral, accurate, well balanced, and evenly distributed [176, 188].  The sample fairness 

ensured that the relevant biases in Section 6.6 were appropriately addressed. The pre-

processing algorithms used to manage the sample biases for the DP-RI application are [189, 

190, 191]: 

• Disparate Impact Remover (DIR) 

• Optimized Pre-processing (OPP) 

• Reweighing (RW) 

6.7.2 Label Fairness 

The biases related to the mathematical model developed for the DP-RI were evaluated for 

performance against the DP-Capability plot and DP vendor control system output [58, 177, 

192]. The semi-qualitative results of the models were matched with the field status during 

commissioning and sea trials. The targets for the algorithm were fixed with proper boundaries 

considering uncertainty and defining the operational envelope [175]. The label fairness ensured 

that relevant biases in Section 6.6 were appropriately addressed. The in-processing algorithms 

used to manage the label biases for the DP-RI application are [193, 194, 195]: 

• Adversarial Debiasing (AD) 

• Prejudice Remover Regularizer (PRR) 

• Rich Subgroup Fairness (RSF) 

6.7.3 Model Fairness 

Model bias was eliminated by splitting the 67% training dataset into two sets (Training + 

Validation) and obtaining the learning curve to evaluate the performance. From the learning 

curves, it was ensured that over-fitting and under-fitting were eliminated [196, 197, 187]. The 

results proved to be of good-fit as the loss decreased to the point of stability with a minimal 

gap between the two final loss values of the training and validation. The model fairness ensured 

that the biases highlighted in Section 6.6 were appropriately addressed. The post-processing 

algorithms used to manage the model biases for the DP-RI application are [198, 199]: 

• Equalized Odds Postprocessing (EOP) 

• Calibrated Equalized Odds Postprocessing (CEOP) 
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6.7.4 Observer Fairness 

During the programming and result evaluation, there is a tendency to see what one expects to 

see or wants to see. Therefore, it was ensured that the experiments were conducted by well-

trained persons and without any potential biases. This resulted in the avoidance of Observer 

bias [200, 188]. The observer fairness ensured that the relevant biases in Section 6.6 were 

addressed. The pre-processing algorithms used to manage the sample biases for the DP-RI 

application are [193, 194, 195]: 

• Adversarial Debiasing  

• Prejudice Remover Regularizer  

• Rich Subgroup Fairness 

6.7.5 Measurement Fairness 

Measurement bias will occur when there is an issue with a device resulting in systematic value 

distortion. It will tend to skew the data in a particular direction. When one sensor failed, and 

the other senor was working, the software was programmed to freeze the value of the failed 

sensor through constant comparison with the redundant sensors [201]. Therefore, measurement 

bias was addressed with due diligence during data collection to prevent any bias during the 

run-time of the algorithm. The measurement fairness ensured that relevant biases highlighted 

in Section 6.6 were addressed. The pre-processing algorithms are used to manage the sample 

biases for the DP-RI application [189, 190, 191]: 

• Disparate Impact Remover  

• Optimized Pre-processing  

• Reweighing  

6.8 Performance Results 

In this section, the application of the RNN models to the DP-RI prediction from offline and 

real-time data are discussed and compared. The data represents the maximum extreme 

scenarios that the DP system could go through in its lifetime generated through field data and 

test data (un-accelerated and accelerated tests). All of the different test cases were performed 

with the various possible combinations to test the performance of the tool. In general, the four 

RNN models took similar amounts of time (approximately 16-18 hours) for two sets of sample 
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predictions (150,000 and 300,0000 samples), and the third (450,000 samples) took close to 

twice as long, at approximately 30-32 hours for each time prediction. The standard evaluation 

metrics, along with the learning curve method, were used to assess the prediction accuracy, 

speed of prediction, and ability to scale to different types of vessel data. The methods used for 

evaluating the performance of the RNN are divided into: 

• Learning Curve Metrics 

• Mathematical Evaluation Metrics 

6.8.1 Model Comparison Using Learning Curves 

Especially with the development of RNN, learning curves have become widely adopted for 

models that learn incrementally over time to optimise their internal parameters [202]. Learning 

curves help in evaluating model performance using multiple metrics and aid the user in 

selecting the model that is suitable for a particular application. 

For the DP-RI application, where predicting the reliability is critical, two metrics have been 

used to classify the learning curve for selecting the models.  One of the metrics is “Accuracy,” 

which is used to measure the model performance, and the other is “Cross-entropy Loss,” which 

is used for model optimisation [202]. The learning curve can be classified into one of two types 

[179, 182]. 

• Performance Learning Curves: Learning curves calculated on the metric by which 

the model will be evaluated and selected, e.g., accuracy. 

• Optimization Learning Curves: Learning curves calculated on the metric by which 

the parameters of the model are being optimised, e.g., loss. 

It is common to create dual learning curves during training. The training dataset is typically 

split into training and validation datasets as per Table 6-1. The models are evaluated on the 

training datasets to give an idea of how well the model is “Learning” [202]. The validation 

dataset provides a method to assess how well the model is “Generalising” [202]. 
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Table 6-2, Figure 6-16, and Figure 6-17 shows the performance of the MLP RNN model. 

Table 6-2   Learning Curve Table – MLP 

 

 
Figure 6-16 Training and Validation Learning Curves (Loss) – MLP Model 

 
Figure 6-17 Training and Validation Learning Curves (Accuracy) – MLP Model 
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Table 6-3, Figure 6-18, and Figure 6-19 shows the performance of the SRNN RNN model. 

Table 6-3   Learning Curve Table - SRNN  

 

 
Figure 6-18 Training and Validation Learning Curves (Loss) – SRNN Model 

 
Figure 6-19 Training and Validation Learning Curves (Accuracy) – SRNN Model 
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Table 6-4, Figure 6-20, and Figure 6-21 shows the performance of the GRU RNN model. 

Table 6-4   Learning Curve Table – GRU 

 

 
Figure 6-20 Training and Validation Learning Curves (Loss) – GRU Model 

 
Figure 6-21 Training and Validation Learning Curves (Accuracy) – GRU Model 
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Table 6-5, Figure 6-22, and Figure 6-23 shows the performance of the LSTM RNN model. 

Table 6-5   Learning Curve Table – LSTM 

 

 
Figure 6-22 Training and Validation Learning Curves (Loss) –  LSTM Model 

 
Figure 6-23 Training and Validation Learning Curves (Accuracy) –LSTM Model 
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In most of the cases, there was substantial evidence that LSTM outperformed the other models 

and was more suitable for the DP-RI application. The learning ability of LSTM adapts quickly 

and optimises the results for the validation datasets. Similarly, the forecast accuracy of LSTM 

proved superior to the other models. As the number of epochs was increased, the datasets were 

found to be learnable, and the accuracy improved for the models. In contrast to the other 

models, LSTM proved to be a good fit, and the accuracy was 3% better than GRU, 13% better 

than SRNN, and 32% better than MLP due to the LSTM attribute of constructing highly non-

linear mapping between the input variable and the target variable. Therefore, during the 

comparison of RNN models using the learning curve, the results showed that LSTM is more 

accurate, fair, trusted, and easily understood, which makes it suitable for the DP-RI application. 

6.8.2 Evaluation Metrics 

Once the learning curves had been evaluated, the RNN models were compared based on the 

evaluation metrics, with the hyperparameters tuned to optimal values for performance analysis. 

The hyperparameter optimisation techniques are described in Section 6.9. The Root Mean 

Square Error (RMSE) evaluates how closely the predictions match the observations, as in 

Equation (6-25) [69, 79].  

                                                 RMSE =  �1
N
� �Yj − Y�j�

2N

j=1
                                               (6-25) 

The Mean Average Error (MAE) measures the difference between observed and modelled 

results, as in Equation (6-26)  [69, 79]. 

                                                  MAE =  1
N
� |Yj − Y�j|

N

j=1
                                                  (6-26) 

where Yj  and Y�j  are the actual and predicted values, respectively, and N is the number of 

samples. The values usually range from 0 (perfect fit) to ∞ (no fit) based on the relative range 

of the data. The test data sets, which were independent of the training datasets (Training + 

Validation), were used to evaluate the performance of the models against the evaluation 

metrics. RMSE is more sensitive to large deviations between forecasts and actuals. MAE, on 

the other hand, is a suitable measure when forecast errors are proportional to energy costs.   
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Table 6-6   Optimised Hyperparameter for RNN models 

 

Table 6-7   RMSE for different RNN Models 

 

Table 6-8   MAE for different RNN Models 
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Figure 6-24 RMSE curve of different RNN models with optimised hyperparameters 
 

 
Figure 6-25 MAE curve of different RNN models with optimised hyperparameters 

 

Table 6-7, Table 6-8, Figure 6-24 and Figure 6-25 clearly show that the LSTM outperformed 

the other models. In the majority of cases, the best performance for MAE and RMSE was 

shown by the LSTM model. The performance results justify the statement that LSTM is the 

best-suited model for the DP-RI tool application. 
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6.9 Hyperparameters for RNN Model Comparison. 

Hyperparameters are the variables of RNN models that govern the training process and the 

topology of a model. The hyperparameters were kept constant during the training process of 

the RNN models and tuned in successive runs of the training of a model. These variables are 

different from the RNN model parameters. The variables in the model that are determined 

using the training dataset are termed the model parameters. The model parameters in the 

research are the weights and biases. Hyperparameters are adjusted to obtain the optimised 

weights to maximise model prediction accuracy. The hyperparameters are categorised into two 

groups as below [176, 203, 204, 185]: 

• Model hyperparameters  

o Number of Hidden Layer 

o Number of Neurons 

o Activation Function 

• Algorithm hyperparameters 

o Batch Size 

o Epochs 

o Split between the training and testing datasets 

o Optimizer 

o Learning Rate 

o Regularisation 

o Regularisation rate 
 

In the next section, the key hyperparameters are identified and tuned for optimised results and 

increased performance for each of the RNN models. The models are then evaluated as 

discussed in Section 6.8 to identify their suitability for the DP-RI application.  It is vital to 

choose appropriate hyperparameters in the model to obtain optimised results and performance. 

The optimal hyperparameters are determined by analysing their influence on the accuracy of 

prediction and the convergence time. It is an empirical process to select the optimal 

hyperparameter, so the grid search method and Keras-tuner were used. 
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6.9.1 Model Hyperparameters 

Model hyperparameters influence model selection. For the RNN models used in this research 

study, the model hyperparameters were tuned to get the optimal prediction. 

Hidden Layer L: 

The hidden layer is one or more layers between input and output layers where the neurons are 

arranged with a set of weighted inputs and produce an output through an activation function 

depending on the problem and the dataset [176, 205].  

Hidden Layer Neurons N: 

The neurons in the hidden layers do not have any direct connection with the problem, and their 

primary function is to perform the computation and transfer information from the input nodes 

to the output nodes [176, 205]. These parameters determine the data transfer between different 

neurons, which is kept constant across each layer for other RNN models. The ideal number of 

hidden layers and neurons depends on the problem and the dataset. The optimisation 

techniques determine the perfect number of hidden layer and neurons per layer through a 

systematic approach. 

Activation Function: 

The activation function introduces non-linearity into the output of a neuron to ensure that 

neurons learn non-linear representation [176, 179]. The activation function determines the 

output shape of each node in the layer. The following activation functions were used for 

determining the optimal function for the DP-RI application: 

• Tanh 

• Sigmoid 

• SoftMax 

• ReLU 

• Linear 

After conducting a series of in-house experiments, it was found that the ReLU activation 

function yields the best performance in terms of loss and accuracy. Thus, the ReLU activation 

function was used for all the models.  

https://developers.google.com/machine-learning/crash-course/glossary#activation_function
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6.9.2 Algorithm Hyperparameters 

Algorithm hyperparameters influence the speed and quality of the learning algorithm. For the 

RNN models used in this research study, the model hyperparameters below were tuned to get 

the optimal prediction. 

Batch Size: 

Batch size is the number of patterns shown to the network before the weights are updated. It 

defines how many patterns to read at a time and keep in memory [206].  Mini-batch gradient 

descent is described as the batch size is between “1” and “size of the training set.” 

Epochs: 

Epochs are the number times that the learning algorithm will work through the entire training 

dataset. The ideal combination of batch size and epochs depends on the problem and the dataset 

[207, 202]. The two hyperparameters are tuned together.  

Split between the training and testing datasets: 

The split between the training (training + validation) and the testing dataset was performed to 

evaluate the gradient descent and the learning curve performance [180, 202]. The split was 

evaluated for different combinations as defined in Section 6.5.4 and Table 6-1.  

Optimizer: 

An optimizer is a hyperparameter used to minimise the loss function by applying the computed 

gradients to the model's variables, by iteratively calculating the loss and gradient for each batch 

and adjusting the model during training. Gradually, the model will find the best combination 

of weights and bias to minimise loss [208], where the lower the loss, the better the model's 

predictions. The following optimizers were investigated [176, 207]: 

• SGD (Stochastic Gradient Descent) 

• RMSprop (Divide the gradient by the running average of its recent magnitude) 

• Adam (Adaptive Moment Estimation) 

• Adadelta (An Adaptive Learning Rate Method) 

• FTRL (Follow the Regularized Leader) 

 

https://developers.google.com/machine-learning/crash-course/glossary#optimizer
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Learning rate ƞ: 

The Learning rate is referred to as the step size, which defines the amount that the weights are 

updated during the training of the models [180, 206]. The learning rate has a significant 

influence on the speed of model convergence and the training effect for RNN based models.  

Regularization: 

Regularization is a hyperparameter technique which penalises the co-efficient to perform slight 

modifications in the learning algorithm. Regularization in the RNN models penalises the 

weight matrices to address the overfitting problem so that the model generalizes. The following 

regularization methods were applied to determine the most suitable method [209]. 

• L1 

• L2 

• Dropout 

• Early Stopping 

• Regularization rate 

The regularization updates the general cost function by adding a regularization term. 

Cost function = Loss (e.g. mean square error, binary cross entropy) + Regularization term 

Due to the addition of this regularization term, the values of weight matrices decrease because 

it assumes that a neural network with smaller weight matrices leads to simpler models. 

Therefore, it will also reduce overfitting to an extent. 

6.9.3 Hyperparameter Optimisation 

The technique of selecting the correct set of models and algorithm hyperparameters for the 

RNN model is generally referred to as “hyperparameter tuning or Optimisation” [210, 208]. It 

is considered as the most critical step, and it determines the success of the DP-RI tool. For the 

hyperparameter optimisation, two sophisticated and well-established methods were used as 

below [211, 212, 210] : 

• Grid Search 

• Keras Tuner – Hyperband 

 



174 
 

Grid Search: 

Grid search is widely used for hyperparameter optimisation. It involves constructing and 

evaluating one model for each combination of the hyperparameters. Cross-validation is used 

to evaluate each model, and the default of 3-fold cross-validation has been implemented. The 

steps applied in a grid search are as follows [213, 208]: 

• Define a grid on n dimensions 

• For each dimension, define the range of possible values 

• Search for all the possible configurations and wait for the best results 

For a given set of hyperparameters and their potential assignments, the naive practice is to 

search through the entire grid of parameter assignments and pick the one that performed the 

best. There are numerous hyperparameters for the DP-RI application which makes grid search 

infeasible as the number of possible assignments increases exponentially. Grid search and 

cross-validation took an enormous amount of time for the optimisation as it involves 

searching through a manually specified subset of the hyperparameter space [213, 214].  

Keras-Tuner: 

Later in the research work, it was found that there was a development in Tensorflow 2.0, which 

supported Keras-tuner. This was utilised, and the results obtained from both methods were the 

same. The Keras-tuner is a library that helps to pick the optimal set of hyperparameters. It is 

an easy-to-use, distributable hyperparameter optimisation framework that solves the problems 

associated with the traditional method of hyperparameter search [212]. Keras-tuner makes it 

easy to define a search space, and leverage included algorithms to find the best hyperparameter 

values. There are four methods in Keras-tuner for optimisation [176, 212]: 

• Bayesian Optimisation 

• Hyperband  

• Random Search algorithms  

• SKlearn 

For this research study, the “Hyperband” method was implemented for hyperparameter 

optimisation. For fair comparisons between the different RNN models, the hyperparameters 

were tuned independently to achieve the best possible prediction. The Hyperband tuning 

algorithm uses adaptive resource allocation and early-stopping to quickly converge on a high-
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performing model [211, 215]. The Tensorflow2.0 HParams dashboard provides historical 

information to determine the combination of the hyperparameters for better prediction and 

accuracy with faster convergence time. It consists of three different views to track and choose 

the best combination of hyperparameters, as shown in Figure 6-26 : 

• Table view lists the runs, the hyperparameters, and the metrics. 

• Parallel co-ordinates show each run going through an axis for each hyperparameter. 

• Scatter plot view shows plots comparison of each hyperparameter with each metric.  

 

Figure 6-26 Table view of HParams in Tensorboard 

The results showed that all hyperparameters have a significant impact on the prediction 

accuracy of the models. The combination of the hyperparameters showed that there might be 

possible trade-offs between the prediction accuracy and convergence time, which needed an 

additional algorithm to find the right mix. The values shown in Table 6-9 were found to provide 

the highest prediction accuracy and, at the same time, have faster convergence time. Similarly, 

the optimised weights for the DP sub-systems with the best combination of hyperparameters 

are shown in Table 6-10. 
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Table 6-9   Keras-Tuner Hyperparameter tuned  for RNN models 

 

Table 6-10 DP sub-system weighting for optimised hyperparameters 

 

6.10 Offline DP-RI prediction 

The DP-RI application enables the DPO to prepare themselves in advance for complex offshore 

marine operations through offline simulation. The tool acts as an intelligent advisory-decision 

support element that will enhance the current process of check-list and preparation strategies. 

The time consuming and paper-based activities can be performed instead through the DP-RI 

tool with actual conditions from the DP system integrated into the tool. If any of the sub-

systems is under repair, then the overall DP system and vessel performance can also be 
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calculated, and results are transparent to decisions on execution. The following are some of the 

critical applications for the offline DP-RI application: 

• Preparation of the vessel for complex offshore operations 

• Evaluation of the impact of failed sensors 

• Evaluation of the performance of the DP system with reduced sub-system availability 

• Foundation for the test cases and act as a foundation for prescriptive analytics 

• Training of a new DPO 

The offline prediction may be used as the first step for developing additional features such as 

real-time forecasting, prescriptive analytics, and evaluating suitability for different vessels. It 

also enables various stakeholders to assess the vessel performance with a different 

configuration to improve the system at the design stage and perform benchmarking between 

vessels.  

6.11 Real-Time DP-RI Forecasting 

Real-Time predictive analytics for the DP-RI application involves extracting useful 

information from the datasets received in real-time from the vessel through the vessel cloud 

infrastructure. The main feature of the real-time DP application is forecasting what might 

happen based on particular "if" scenarios rather than precisely predicting what will happen in 

the future. It enables and supports the decision-making process in real-time during complex 

offshore marine operations. The model is built through streaming offshore operation data at 

the sensor level involving rigorous experimentation, historical data, and iterative processes. As 

discussed in Chapter 3, the data collection for real-time is performed through an architectural 

set-up and ingested into the model after the data profiling to ensure it is structured data. 

The real-time forecasting of the DP-RI tool would mainly be used for the following 

applications: 

• Real-time visualisation of the reliability of the DP system 

• Real-time visualisation of reliability of DP sub-systems 

• Enhanced DPO experience  

• Accurate profiling and status of the DP system 

• Proactive action and prevention of the failure 
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• Demand sensing and data acquisition 

The real-time feature, coupled with the suggestion from prescriptive analytics, makes DP-RI a 

complete holistic decision support tool for DP vessels. The semi-quantitative value of the DP-

RI is used as the initial gauge to determine the reliability and plan for subsequent actions. For 

the research framework three categories are defined for the DP-RI as follows: 

• DP-RI > 80, then the system is highly reliable and the DPO can take some time to 

evaluate the situation for any further actions 

• 80 < DP-RI > 60, then the system is medium reliable and the DPO should react to 

implement the solution before the system reliability further reduces 

• DP-RI < 60, then the system is low reliable and the DPO is required to immediately 

react and implement a solution to address the failure for safe operation. 

6.12 Summary  

The chapter provided a detailed description of the implementation of predictive analytics for 

semi-quantitative and quantitative reliability assessment of the DP system. A new research 

framework on the DP-RI concept was presented, which will be used for the decision making 

advisory support tool. Following this, a more straightforward method for the semi-quantitative 

representation of DP-RI was discussed, which used the optimised weights from the LSTM 

RNN models. Then the DP-RI framework internal architecture involved in the mathematical 

computation of reliability and prediction of reliability through RNN models was presented. For 

the mathematical calculation, the RBD method, system architecture, and component voting 

configuration acted as the basis for reliability computation. For the reliability prediction, the 

actual field data and test data are used for comparison on different RNN models to find the 

most suitable one. The datasets, machine specification, experimental set-up, including the data 

split, and learning curves were discussed in detail. The bias mitigation framework, which was 

used to make the system fair and trusted, was then presented. Finally, the performance results 

of the RNN models (MLP, SRNN, GRU, and LSTM) were evaluated using two methods. The 

results for both of the methods proved LSTM to be the most suitable model for the DP-RI 

application with the hyperparameters tuned for optimum results. In the last sections of the 

chapter, a brief description of the offline and real-time application of the DP-RI tool was 

presented.  
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7. Prescriptive Analytics for Resilience during DP Failure Incidents 

7.1  Introduction 

This Chapter describes stage 4 of the big data analytics, shown in Figure 3-1, involving 

prescriptive analytics for DP-RI application. The prescriptive analytics support in providing 

possible solutions to the DPO in the case of failure in the DP system to prevent failures leading 

to significant accidents. Section 7.2 of the chapter provides a high-level research framework 

for prescriptive analytics integrated into the DP-RI tool. The next section then presents the 

experimental set-up for the prescriptive analytics model implementation, which is used for the 

case studies.  Following this section, the datasets prepared from the DP sub-system IMCA 

database with site-specific risk assessment documentation are presented and tailored for the 

model application. In the next section, the prescriptive analytics model execution is described. 

This starts with NLP suitability for the research framework and implementation of 

transformers in the DP-RI application context. The BERT model was then applied as a training 

strategy for prescriptive analytics through the Question and Answer system. Finally, the pre-

trained model is fine-tuned with the datasets specific to the DP-RI concept, and the results are 

evaluated for accuracy and performance measurement. 

7.2 Research Framework 

The research framework for prescriptive analytics is an extension of the DP-RI application tool 

concept. The output of the DP-RI tool, which provides the qualitative and quantitative 

representation of the reliability of the DP system, is coupled with the DP control system alarm 

[2]. In this way, prescriptive analytics could analyse the exact situation and prescribe 

suggestions to the DPO, combining expert knowledge with existing risk assessment studies. 

The systematic approach of prescriptive analytics as a research framework is shown in Figure 

7-1. The site-specific risk assessment, such as CAMO, TAM, ASOG, and WSOG, along with 

DP operation manuals, provides information for taking preventive and corrective action during 

emergencies [60, 63, 216, 217]. Therefore, in this research, prescriptive analytics uses the most 

advanced algorithm from Google, BERT, for handling the NLP task and prescribing possible 

solutions during failures in the DP system. The BERT model was applied as a Question and 

Answering system to provide the appropriate solutions to the DPO. 



 

 
 

180 

 
 

        Figure 7-1 Research Framework of Prescriptive Analytics integrated with DP-RI 
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7.3 Experiment Set-up 

In this section, the details of the experimental set-up related to the machine specification for 

cloud computing using BERT transformer models, programming language, API, platforms, 

libraries and debugging plugins for the implementation of the research are described  [174, 

175, 176]. K-Train library is an additional library that was used for prescriptive analytics, but 

not for predictive analytics.  

Tensor Processing Units (TPUs) were used for suggestive solutions as part of the transformer 

models for the prescriptive aspect of the DP-RI application. They consist of Google’s custom-

developed application-specific integrated circuits (ASICs) used to accelerate machine learning 

workloads.  The BERT model was trained with a large dataset, so it acts as a pre-trained model, 

and it demonstrated the ability to transfer learning. Thus only two additional steps of pre-

training and fine-tuning needed to be done when addressing a specific NLP task [218]. The 

tools, platforms, and libraries used for the experiment related to prescriptive analytics are 

described in Section 8.2 of Chapter 8. 

7.4 Data-Sets 

In this research, the dataset for the prescriptive analytics is prepared based on the Stanford 

Question Answering Dataset (SQuAD) benchmarking format. The datasets meet the 

requirement of Question Answering (QA) capabilities [219, 220]. The data sources defined in 

section 3.4 of Chapter 3 consist of a massive amount of unstructured and semi-structured data. 

The BERT model, which has proven accuracy on SQuAD bench-marking, was tailor-made for 

pre-training and fine-tuning with DP-RI datasets. The DP-RI datasets are extracted from 

different data sources with distinct features, as shown in Table 7-1.  

The individual datasets are carefully evaluated and combined to form the overall dataset. This 

dataset is used in fine-tuning and training of the BERT model as a QA system. The answers 

are predicted through the BERT model and evaluated by industry experts through a well-

established method of data collection, as explained in Section 5.6.1 with criteria specific to 

failure scenarios taken from the data lake [221, 219]. As part of the research study, there were 

250,000 datasets created from 2000 vessel data inputs (Design Document, FAT procedure, 

FMEA report, Proving Trial Report and DP operation manual, etc.). 
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Table 7-1 DP-RI datasets and distinct features for prescriptive analytics 

 

During the training and fine-tuning of the BERT model, the datasets were split as below: 

1. Training dataset 

2. Development  (Dev) dataset 

3. Test dataset 

The DP-RI dataset consists of six critical parameters [221, 219, 222]: 

Paragraph / Passage (Input): 

A paragraph of text, consisting of a set of 5-10 passages, is used as input data which may 

contain an answer to the question. The passages are extracted from DP system related 

documents and annotated by experts. The passage without answers was indicated with 

selection “Zero.” The fairness in the dataset for the answers is addressed by equal distribution 

among different sub-systems and its criticality according to vessel-specific DP operation 

manual [217]. 
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Questions (Input): 

The expert develops questions based on domain knowledge from the alarms generated in the 

system. A few questions were selected and filtered by another layer of experts to ensure 

whether they were answerable using the paragraph passed as input. Mapping of the problem 

(question) with the actual alarms from the existing DP control system is critical, therefore the 

site-specific risk assessment, which considers the operation scenarios was used as the basis for 

question formation. 

Answers (Output- comparison): 

Experts prepared answers for each question, and the dataset may contain zero or more solutions 

(answers). The experts synthesise the natural language answer with correct information in the 

passage for the prescriptive analytics to provide appropriate suggestions to the DPO. The 

output from the BERT model after the model-specific layer is compared against the answers 

annotated by experts. 

Documents: 

The paragraphs used are extracted from the documents. The “Title”, “ System”, and the “Body 

text” of documents are included in the dataset. A total of 140 papers were indexed. The cross-

reference is used for analysing the potential to extend research for different DP vessels. 

 
Question Type: 

The question in the dataset is automatically annotated using an internal algorithm to classify 

the question based on a segment label into either “Description”, “System”, “Sub-System”, or 

“Person”. The segment labels used for classification are “What”, “Why”, “Who”, “How” etc. 

Ranking: 

Experts do the ranking of the sub-systems based on the weightings determined in Chapter 5. 

Based on the order, the possible solution priorities are determined and listed for the DPO 

operator to take action. 

Table 7-2 shows the datasets indicating the Questions and Paragraph used for the training the 

BERT models. In this research, the alarms from the DP control system are transformed to 

questions manually and fed into BERT model to predict the answer from the relevant paragraph.  
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Table 7-2 Sample DP-RI datasets  
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7.5 Prescriptive Analytics – Possible Suggestive Solutions 

7.5.1 Natural Language Processing  

NLP is a collection of computational methodologies used for automatic analysis and 

representation of human languages [223]. The DP system has a lot of unstructured and semi-

structured data contributing about 70% of the data, with only 30% being structured data. 

Recent advancements in technology have enabled NLP applications to be developed with 

higher accuracy, on a par with human capabilities, by allowing a deeper understanding of the 

text through neural network models [224, 225]. The other applications of NLP are syntactic 

information (e.g., part-of-speech tagging, chunking, and parsing) or semantic information (e.g., 

semantic role labelling, and named entity extraction) were defined in Chapter 3 [224]. NLP in 

this research has been implemented for text classification, sentiment analysis, and question and 

answering systems.  

A simple neural network cannot easily handle the NLP problems as they are bag-of-words 

models leading to missing values. To address the issue, an  RNN was used, which is a deep 

learning algorithm with multiple layers due to its recursive nature [84, 226]. However, the 

RNN has the problems of vanishing and exploding gradients and learning long term 

dependencies. LSTM addressed the issue of vanishing and exploding gradients [227]. However, 

LSTM models for NLP tasks are challenging to train, and transfer learning will not work 

efficiently. Besides, LSTM needs a specifically labelled dataset for every job. LSTM and RNN 

limitations for NLP applications can be summarised as follows [226]: 

• Sequential computation inhibits parallelization 

• No explicit modelling of long and short-range dependencies 

• “Distance” between positions is linear 

• Difficult to train and Transfer learning is not possible 

The drawbacks are addressed through feed-forward network architectures, called Transformers 

using only attention mechanisms, dispensing with convolutions and recurrence entirely [226]. 

This has achieved state-of-the-art performance on several tasks and has been found to 

generalise very well to other NLP tasks, even with limited data.   
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7.5.2 Transformers 

Transformers are a type of deep learning neural network architecture built with an attention 

mechanism to draw out global dependencies between the input and output. The model was 

developed to solve problems associated with sequence transduction or neural machine 

translation, which involve transforming an input sequence to an output sequence. The overall 

architecture of the transformer was built using an encoder-decoder stack with self-attention 

and a point-wise feed-forward network consisting of two fully connected layers, as shown in 

Figure 7-2 [226]. The attention mechanism allows the architecture to model dependencies 

without regard to their distance in the input or output sequences. The feed-forward nature and 

multi-head self-attention are critical aspects of transformers [226, 218]. The Transformer 

allows for significantly more parallelization and can reach a new state of the art in translation 

quality as the model is pre-trained with standard datasets. 

 
Figure 7-2 The Transformer - model architecture [226] 

https://arxiv.org/abs/1211.3711
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The transformer model architecture performs various tasks using the encoder and decoder that 

are stacked on top of each other multiple times, which is described by Nx in Figure 7-2.  It uses 

the modules mainly consisting of Multi-Head Attention and Feed Forward layers. The inputs 

and outputs (target sentences) are first embedded into an n-dimensional space and changed to 

vector representation, as a string cannot be used directly in the model.  The critical part of the 

model is the positional encoding of different words. These positions are added to the embedded 

representation (n-dimensional vector) of each word, which supports the model to interpret the 

context of the paragraph. The sequence of operations performed within transformer models are 

below [226]: 

• Transformer Encoder 

o Scaled Dot-Product Attention 

o Multi-Head Attention 

o Skip connection & Layer normalization 

o Position-wise Feed-Forward Networks 

o Positional Encoding 

• Transformer Decoder  

o Embedding and Softmax in Training 

o Inference 

o Encoder-decoder attention 

o Training  

o Soft Label 

The main advantages of the Transformer model are that it accepts nonsequential inputs, which 

supports the research in that the model does not require that the input sequence be processed 

in the order. Transformers are parallelized and scaled much more quickly than previous NLP 

models with much higher accuracy and speed. Thus the transformer model is used for 

prescriptive analytics of this research with BERT using only the encoder part [226, 218]. 

7.5.3 Bidirectional Encoder Representations from Transformers (BERT ) 

BERT is a training strategy that uses the transformer model architecture; it is not a new 

architecture design [218]. However, in the transformer model, word embedding cannot explore 

the context of neighbouring words virtually. For this research, the steps included creating a 
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dense representation for NLP inputs, including those in the QA system, along with developing 

a representation model that is multi-purposed [218, 219]. BERT model architecture (Attention, 

Scaled Dot Product, Multi-head Attention, etc.) and IO representation were evaluated further 

to be implemented for DP-RI application. 

BERT Model Architecture: 

BERT uses the Transformer encoder to create vector representation. The critical aspect is that 

instead of focusing on the problem directionally, it discovers the context concurrently, making 

it different from other approaches. BERT’s model architecture is a multi-layer bidirectional 

Transformer encoder, as shown in Figure 7-3, along with the internal structure of the encoder 

used for this research [226].  

       

 

 

 

 

 

 

 

 

 

Figure 7-3 BERT Model architecture – Encoder Segmentation 

There are two model sizes of BERT, which were used for this research study to determine their 

suitability for the DP-RI application along with LSTM. The two models used are BERTBASE 

and BERTLARGE, which are different from the actual structure of the transformer model, as 

shown in Figure 7-4 [220, 228, 229]. The two model sizes are: BERTBASE (L=12, H=768, 
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A=12, Total Parameters=110M) and BERTLARGE (L=24, H=1024, A=16, Total 

Parameters=340M).  The parameters are “L” encoder layers (Transformer blocks), “H” as the 

hidden size (embedding dimension), and “A” as the number of self-attention heads [218, 219, 

220]. 

 
Figure 7-4 BERTBASE and BERTLARGE  (Encoder stacking) 

In the research, only the encoder part of the Transformer is used by the BERT model for DP-

RI prescriptive analytics. Therefore, the section below will focus on the attention part of the 

encoder before applying it to the QA system. 

Attention: An attention function supports mapping a query and a set of key-value pairs to an 

output, where the query, keys, values, and output are all vectors. The output of the model was 

computed as a weighted sum of the values, where a compatibility function of the query 

computes the weight assigned to each value with the corresponding key [226].  The attention 

in the transformer is of two types: self-attention and encoder-decoder attention. For the BERT 

model, only self-attention in the encoder is used. 

Self-attention is an attention mechanism on the encoder side relating different positions of a 

single sequence to compute a representation of the sequence. It supports recomposing the 

sequence and understands how each of the elements is related to one another, grabbing global 

information/context about a sequence or sentence [226, 223]. Self-attention has been 

successfully applied for various NLP tasks, including Reading Comprehension, Question and 

Answer, abstractive summarisation, and learning task-independent sentence representations. 
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Scaled dot product: 

The first part of each encoder performs the attention. Each word in the sentence serves as a 

single query. In this research, the context is considered as a query. The information is passed 

from the datasets prepared in Section 7.4.  Q, K & V are matrices representing the sentences / 

sequences (after embedding) [226, 219]. All the attention can be computed concurrently 

with Q, K, and V packing all of the queries, keys, and values into matrices. The attention is 

computed through Equation (7-1) as below:  

                                               Attention (Q, K, V) = softmax (𝑄𝑄𝑄𝑄
𝑇𝑇

√dk 
) V                                     (7-1) 

𝑄𝑄𝑄𝑄𝑇𝑇  shows how 𝑄𝑄  is related to 𝑄𝑄 , word by word. It also states V(=K) according to the 

attention mechanism. The attention has the same shape as Q. However, it is made up of 

elements from V concerning their correlation with Q, as shown in Figure 7-5. 

 
Figure 7-5 Scaled dot product – Encoder in BERT 

Multi-head attention: 

Multi-head attention allows the model to jointly read and analyse the information from 

different representation vector subspaces at a different position in the paragraph. Multi-head 

attention generates “h” attention per query. Conceptually, it packs h scaled dot-product 

attention together. For encoders, there are 12 attention heads for  BERTBASE and 16 for 
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BERTLARGE. Therefore, each transformation provides a different projection for Q, K, and V. 

The multi-head attention allow the model to view relevancy from 12 or 16 other “perspectives” 

based on BERTBASE and BERTLARGE models as in Equation (7-2). Thus, the overall accuracy 

increases. In each attention, the model will transform Q, K, V linearly with a different trainable 

matrix, respectively. As shown in Figure 7-6, the output vectors are concatenated, followed by 

a linear transformation and then processed by a model-specific layer [226, 223, 219]. 

                            MultiHead(Q, K, V) = Concat(head1, head2 … headℎ)𝑊𝑊𝑜𝑜                     (7-2) 

 

Figure 7-6 Multi-head attention 

Input/Output representation: 

To pre-train the model, the input assembly and expectation on the output had to be defined 

before pre-training BERT for the DP-RI QA system. The input for the encoder is converted to 

a token through the BERT tokenizer. Then tokens are converted to vectors through the word 

embedding process. The input consists of embedded words, an indication of 1st and 2nd words, 

and positional embedding [218, 219]. The input is composed of two sequences, a [SEP] token 

in between Sequence A and Sequence B, as in Figure 7-7  indicating the input and the context. 

The output is represented by two types: special output token to represent the NLP task [CLS] 

and the contextual representation token (Tk) as in Figure 7-7. As the NLP task involves QA, 

at the output, the token representations are fed into an output layer, which is a model-specific 

QA layer similar to SQuAD layer used in SQuAD benchmarking problems [228, 229]. 
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Figure 7-7 Input/Output representation for BERT model 

 
Figure 7-8 BERT model Input / Output with word and context matrix 

For the QA NLP task, the outputs corresponding to the paragraph sequence will be used to 

derive the start and the end span of the answer. Instead of using every single word as a token, 

BERT breaks a word into word pieces to reduce the vocabulary size. The complete architecture 

for I/O representation for BERT is shown in Figure 7-8. 
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7.5.4 BERT Model as Question and Answer System for DP-RI 

The BERT model has been widely used as a contextual representation of input question – 

passage pairs by using experience from SQuAD benchmarking problems [220, 228, 229]. For 

this research study involving the DP system, when the failure occurs, the reliability of the DP 

system reduces, leading to potential accidents. Therefore, the BERT model is applied as a QA 

system to prescribe solutions from the widely available database. The datasets prepared in 

Section 7.4 use the question and context, separated by the [SEP] token as input. In the end, a 

single dense layer is applied to each vector/token with two neurons at the end, as shown in 

Figure 7-9. The first neuron is used as the score for “being the start of the answer”. Similarly, 

the second neuron is used as the score for “being the end of the answer” [220]. 

In the BERT training strategy, the transformer model is first pre-trained with data that requires 

no human labelling. The output from the pre-trained model is a dense representation of the 

input. To suit the DP-RI prescriptive analytics, a QA system was implemented for which the 

BERT model is modified by simply adding a shallow, dense layer connecting to the output of 

the original BERT model. After this, the model is re-trained with a dataset defined in Section 

7.4 with labels specific for the DP-RI application. The prescriptive analytics part of DP-RI was 

divided into three activities as below [218]: 

• Pre-Training: Creating a dense representation of the input  

• Fine-Tuning: Fine-tuning the model to the QA system with DP-RI specific datasets for  

• Rating of suggestive solutions (Answers):  Rating the answers based on the weightings 

of the sub-systems using softmax activation through the logits score. 

Pretraining: 

The pre-training involves the training of the models with generalised prediction applications. 

The pre-training was performed on a text without any human labelling. BERT pre-trains the 

model for two specific NLP jobs. The two jobs are as follows [218, 220]: 

• Masked Language Model: It enables the understanding of the sentence through 

approximation and supports vectors for each token. The Transformer encoder generates 

a vector representation of the input. Then BERT applies a shallow, deep decoder to 

reconstruct the word sequence(s). 
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• Next Sentence Prediction: It enables higher-level understanding from words to 

sentences and a single vector for the classification. The vector determines whether the 

model is used for the classification or other NLP tasks such as QA systems. The 

fundamental purpose is to create a representation in the output C that will encode the 

relations between Sequences A and B.  

 

 
Figure 7-9 BERT pre-training phases 

These two training tasks help BERT to train the vector representation of one or two word-

sequences. Other than the context, pre-training discovers additional linguistics information, 

including semantics and coreference. Figure 7-9 shows the architecture for pre-training phases. 
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Fine-Tuning: 

The next step after pre-training is fine-tuning involving fitting the task-related data and 

corresponding labels to refine the model parameters end-to-end. A shallow classifier layer is 

added for the QA system task to fine-tune the model output [218]. As BERT is more of a 

training strategy rather than a model architecture, the fine-tuning is straightforward. The self-

attention VC mechanism allows swapping out the appropriate input and output and unifies two 

stages.  

In the fine-tuning phase, as shown in Figure 7-10 for the question answering task, the input 

question and paragraph are represented as a single packed sequence. The question uses one 

embedding (A), and the paragraph uses another embedding (B). During fine-tuning, the start 

vector (S) and the end vector (E) are defined to identify the answer for the specific question. 

The probability of the word “i” being the start and the end of the answer span is computed as 

a dot product between Ti and S, Ti, and E. This is followed by a softmax over all of the words 

in the paragraph. It is presented by the Equations (7-3) and (7-4) [218, 219, 220]. 

                                                                Pi (S) = 𝑆𝑆𝑆𝑆.Ti 

�𝑆𝑆𝑆𝑆.Tj 
j

                                                           (7-3) 

                                                                Pi (E) = 𝑆𝑆𝐸𝐸.Ti 

� 𝑆𝑆𝐸𝐸.Tj 
j

                                                          (7-4) 

The score of a candidate span from position i to position j is defined as 𝑆𝑆. Ti  + 𝑆𝑆. Tj  , and the 

maximum scoring span where j ≥ i is used as a prediction. The training objective is the sum of 

the log-likelihoods of the correct start and end positions. The maximum scoring for the start 

word and end word of the answer are used to determine the answer to the specific question. 

Finally, the model is fine-tuned with hyperparameters such as epochs, learning rate, and batch 

size to increase the performance and accuracy of the model. The details of the fine-tuning with 

the hyperparameters are presented in the experiment section 7.5.5. 
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Figure 7-10 Fine-Tuning BERT for QA system 

The fine-tuning instability of BERT was one of the critical issues in the research study during 

its application to DP-RI as a QA system [230]. The analysis showed that the instabilities were 

reported due to the smaller datasets of the DP-RI and catastrophic forgetting.  The training was 

done on the TPU (POD and CHIPS). Table 7-3 presents the training time and fine-tuning time 

for the TPU and estimates of the GPU. 

Table 7-3 BERT training time and DP-RI datasets fine-tuning time 

 

The fine-tuning instability was addressed by using small learning rates combined with bias 

correction for avoiding vanishing gradients early in training. Another added feature was added 

by increasing the number of iterations and train to zero training loss by making use of early 

stopping [230]. The fine-tuning of the DP-RI dataset was performed on 100,000 labelled 

samples with DP-RI datasets. The research results revealed that the datasets above 20,000 

showed robust performance for different hyperparameters. The optimised values of the 

hyperparameters are chosen for the testing on the testing/validation datasets which are shown 

in Table 7-4. 
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Rating of suggested solutions (Answers): 
 
An additional layer is added for the model-specific application in which the answers are 

concatenated if multiple failures are leading to numerous questions as the input. For the DP-

RI application, when there are numerous failures in the system, it leads to numerous alarms. 

Under such a situation, the mapping of alarms to the question leads to numerous questions and 

paragraphs fed into the BERT model [229]. The prediction of answers for the different 

questions provides the suggestion to the DPO to respond and take necessary steps. As shown 

in Figure 7-11, the softmax layer determines the rating for each answer based on the weighting 

of the sub-system and availability of redundancy during a particular mode of operation. The 

probability determination is represented by Equation (7-5) [176, 223].  

                                                              S (yi ) = 𝑆𝑆yi 

�𝑆𝑆yj 
j

                                                                (7-5) 

 

Figure 7-11 Rating of possible suggestive solutions 

The dense fully connected softmax layer is used only in the case of multiple failures that need 

different actions from the DPO. If there is only one failure, the answers from the BERT model 

will be directly fed to the output with the softmax layer. The details of the rating on the actual 

application are explained in Chapter 8 with case-studies, and details of validation are presented 

in Appendix II as screenshots. 

 
7.5.5 Experiment  

The experiment was carried out in Colab using TensorFlow with TPU architecture. The details 

of the hardware, libraries, and software are presented in section 7.3 and Chapter 8. The datasets 

defined in Section 7.3 were used in the experiment for training, development (validation), and 

testing (evaluation). The investigation was carried out in the following steps: 
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• Creating dependencies and Bias Mitigation 

• Data Pre-Processing 

• Loading Dataset 

• Creating the training and test datasets 

• Building the model 

• Training the model 

• Evaluating Results 

Creating Dependencies and Bias Mitigation: 

The dependencies between the datasets were identified to create a single overall data set for 

the DP-RI application. The DP-RI dataset consists of dependencies between the sub-systems 

for various configurations and different modes of operation. Similarly, the dependencies 

between the software necessary for running the experiment in Colab were identified, and 

necessary libraries imported as packages. The next step is mitigating the biases in the dataset 

through a manual process that involves data pre-processing, splitting training, and test datasets 

and addressing the fairness through well-defined methodologies. 

Data Pre-processing: 

This involves creating the “.json” files for execution of the programming. The training data 

file and the vocabulary files are imported into the system. Then the metadata is created for the 

input training dataset. Finally, the training dataset is created similar to the SQuAD dataset 

using the Batch Size =4, and metadata sequence length = 450, and it is ensured that the training 

information is passed on to the program [228, 229]. 

Loading Data set: 

The dataset is loaded to the Colab through the Keras library, which is part of Tensorflow 2.0. 

The dataset is stored in the “.json” format on Google drive. The three files training dataset, 

evaluation dataset, and vocabulary are loaded into the program. Then the root directory is 

created with the association for computational linguistics to ensure that the dataset is accessible 

for the BERT model and the output is created in the same location. 

Creating the training and test datasets: 

The data are loaded to the model and further split as below: 
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• Training  dataset 

• Testing dataset (development/validation and testing / evaluation)  

Different classes of data within the datasets are identified with unique data labels, and the 

distribution is maintained between the datasets. The Keras K-train algorithm is used for the 

split, thus ensuring the fairness in the process. 

Building the Model: 

The model building process involves two steps. The first step is building the task-specific QA 

system layer (similar to the SQuAD layer) to train the BERT model. A dense layer is created 

representing the BERT QA layer using custom layers in Tensor from Keras using Tensorflow 

2.0. The number of units is defined as “2,” indicating the position of the score for the start of 

the answer and position of the score for the end of the answer. “Truncated Normal,” which is 

a standard initializer used by Google, is adopted with “Standard deviation = 0.02”. The logits 

are defined to get the input from the QA system layer and unstack the logits to get “logit [0] 

and “logit [1],” which represents the score to identify the “Answer.”[220, 228, 229] 

The second step is building the whole model structure, in which the additional dense layer is 

added to the model. In this step, it is ensured that the model is trainable, ahead of the next step. 

It takes in the sequence of inputs and produces the sequence of outputs [231]. The BERT layer 

call is in three-dimensions for the input, which are “Input_Word_Id,” “Input_mask,” and 

“Input_Segement_Id.” Finally, the model returns the “Start_logits” and “End_logits.” Thus, 

the BERT model is ready for the QA system, and the training can be performed on the model. 

Training the Model: 

Once the dataset is ready, and the model has been created, then the AI needs to be compiled 

for training the model. The hyperparameters are defined at the initial stages to determine the 

model performance, and the optimised values are obtained by iteration. The value of the 

hyperparameters is shown in Table 7-4. The critical item is the optimizer, which is a modified 

version of “Adam” preferred by Google [176, 218, 225, 229]. The optimizer uses the initial 

learning rate, number of training steps, and several warm-up steps. The scores are calculated 

through the loss function using classification to determine the start position and end position. 
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The sparse categorical cross-entropy is applied to both the outputs. The losses are computed 

separately, and then the total is obtained using both losses. 

Table 7-4 Hyperparameter optimisation (Hyperparameters used for fine-tuning) 
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The next step is creating the custom training loop to keep track of losses and measure metrics 

to evaluate the performance of the QA system BERT models [231]. The custom training loop 

is used in the research to provide more flexibility and train the model with more control. It is 

performed with the support of Epochs. Training loss of each epoch is calculated for the 

complete training datasets. The “gradienttape” is used to record the operation, which is 

executed within the context manager [231]. It supports evaluating the weights to compute the 

loss function and gradients. The optimizer is applied to the model to decrease the gradient loss.  

The model is trained for each epoch for pre-defined batch sizes, and the results are stored in 

the checkpoint manager [231]. Then time taken for each epoch run is saved; it took more than 

4-6 hours for execution due to connectivity with the Colab server and the TPU accessibility. 

In this research experiment, the number of epochs is set to “3”. The results are stored for every 

batch size of “50” through the training datasets. In the next section, the evaluation of the model 

performance is discussed. 

7.5.6 Performance Evaluation – Testing and Results discussion 

The BERT model implemented as a QA system for the DP-RI tool was evaluated using the 

testing dataset, and results are discussed with the metric evaluation parameters. The evaluation 

of the model performance is presented below in three steps. 

Evaluation Preparation: 

The evaluation preparation process is concept intensive, and thus diligent care was used to split 

the datasets into validation and test datasets. The dev dataset is imported, and the features are 

identified.  After this, the tokenizer is used to token the dataset in the vocabulary and change 

it to lowercase.  

Evaluation Creation: 

A dictionary is created for evaluation, which defines types of unique field collection. 

“Namedtuple” is used to determine the output with field names to extract the output in a defined 

format. The fields are “unique_id,” “start_logits,” and “end_logits.”  
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Evaluation Result: 

The model performance and accuracy are evaluated through two metrics “F1” score and “Exact 

Match (EM)” score [219, 229, 232]. Metrics ignore the articles and punctuation for 

performance measurement. F1 score conveys the balance between the precision and the recall, 

and it is represented by equation (7-6). It measures the average overlap between the prediction 

and ground truth answers. 

                                                              𝑃𝑃1 = 2 ∗  (Precision−Recall)
(Precision+Recall)

                                              (7-6) 

Exact match measures the percentage of predictions that match any one of the ground truths 

answers precisely. Table 7-5 shows the F1 and EM score values for LSTM, BERTBASE, and 

BERTLARGE. The evaluation results clearly show that the BERTLARGE model outperforms the 

other models and algorithms. When comparing the training period, BERTLARGE took more time 

and capacity, leading to a high cost due to TPU usage. However, in terms of validation and 

testing, the accuracy was higher, and the response time was faster. Therefore, for the DP-RI 

application, BERTLARGE would be recommended for the prescriptive analytics part of the state-

of-the-art advisory tool. 

Table 7-5 Model Performance Evaluation 

 

The model performance on the prediction of the answers was measured through the “F1” score, 

and the results analysis is shown in Table 7-6. The output answers from the DP-RI tool are 

compared with the available documentation and experts’ judgements. Similarly, the rating of 

the solutions suggested are evaluated using “EM” score, and the analysis of the results are 

shown in Table 7-7. The rating/ranking order of the solutions suggestion are compared with 

the actual implementation steps onboard by the DPO during real scenarios based on the system 

availability. The scenarios from Table 7-2 are used for the detailed analysis of “F1” and “EM” 

scores. 
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Table 7-6 Answer evaluation for DP alarms and Question (F1 score analysis) 
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Table 7-7 Rating of solutions suggested (EM results analysis) 
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7.6 Summary  

The prescriptive analytics to address the failure related to the DP system was presented with a 

state-of-the-art BERT model from Google. The research framework proposed in this chapter 

for prescribing possible solutions in the case of failure using the BERT model in the QA system 

acts as a basis for other applications. It will reduce the time required for solution generation by 

the DPO as it avoids referencing a massive number of documents or seeking expert advice 

during critical situations. During the training phases, once the alarm is simulated the question 

is created and fed to the model to prescribe solutions.  This step acted as a “human-in-the-loop” 

prescriptive analytics methodology. Once the model is trained the human part is removed, and 

the process is automated to have fully functional AI system for the prescriptive analytics part 

in DP-RI tool. The possible solutions suggested, along with the actual reliability condition 

indicated in the DP-RI tool, will support the DPO to take quick action and prevent the failures 

leading to accidents. In this chapter, the experimental set-up and TPU details used for running 

the model are described. The datasets collection and pre-processing was presented followed 

by which methods of aligning data to suit the need for the QA system was defined. The bias 

mitigation methods were briefly described. Various NLP models and their suitability for DP-

RI application was evaluated and the reason for choosing the BERT model was presented along 

with the evaluation results. Finally, the hyperparameter optimisation and application of the 

prescriptive analytics solution for other DP3 vessels are highlighted. In the next chapter, the 

case studies of predictive and prescriptive analytics are verified and validated using traditional 

risk assessment methodologies. 
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8. Verification and Validation of Predictive and Prescriptive Analytics 
Results 

8.1 Introduction 

This chapter describes the experimental set-up and case studies for verification and validation 

of results from the DP-RI tool with proven risk assessment methods. Section 8.2 describes the 

architecture of the DP-RI tool and network topology of the interfaces. The offshore set-up for 

the DPO and the onshore set-up for the SME used to validate DP-RI are described in detail. 

The data management, user access, and the security for information sharing with the on-board 

DP control system and DP-RI were identified and appropriate steps to mitigate the spurious 

control trips were addressed. In the next section, the programming language and libraries for 

the DP-RI tool are listed. The machine specification of the GPU used for the predictive 

analytics and the machine specification of the TPU used for the prescriptive analytics are 

presented.  The experimental set-up for the case studies, along with the research boundaries 

and limitations, are presented to define the operation envelope for the DP-RI tool. The DP 3 

vessel configuration is shown, which is used for the case studies. The set-up for the case studies 

was extracted from the IMCA accident database, and some of the case studies were based on 

the FAT / CAT procedure to test the effectiveness and robustness of the DP-RI tool. The 

verification and validation of the case study results were evaluated to confirm, through 

objective evidence, that the specified requirements of the DP-RI tool are fulfilled [233]. The 

final section of the chapter describes the summary of the results and improvement in the test 

cases. 

 
8.2 DP-RI Tool Architecture and Network Topology 

The DP-RI tool architecture and network topology are shown in Figure 8-1, depicting its 

interface with the DP control system on-board the vessel, whilst offshore, and transmission of 

data onshore for real-time monitoring. The interface was independent of the process network 

and secured through a router and firewall settings. The prediction and prescription algorithm 

runs on the DP-RI computer, and it reads the field data through the DP control system via read-

only access. Based on the field information, the algorithm predicts the near future reliability of 

the DP system. In the case of failure in a sub-system, the DP-RI provides possible suggestions 

to the DPO for faster response action. 
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Figure 8-1 DP-RI System Topology 
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8.2.1 Data Management 

One significant feature of the DP-RI tool is to interface and share data and information from 

the DP control system (including sub-systems) for safe and efficient operation. The data is 

collected from multiple sources, and the ability to manage all of the information seamlessly 

enables a new level of possibility to analyse and monitor situations, critical operations, and 

installation conditions. The DP-RI tool is provided with dynamic visualisation to handle the 

massive amount of data and assist the DPO to be efficient in critical operations. 

Data Server 

Data will be collected from the DP control system through a historical database protected via 

the router. The time-series defined sensor data are transferred through the OPC server 

configured as a master-slave configuration. The algorithm uses only the alarms and the events 

of the sensor tags, and there will be a delay of fewer than 3 seconds. 

Data Collection and Storage 

The time-series data will be recorded and stored as it changes. The capacity of the system is 

provided such that the time-series data can be stored for 30 days. The data features are 0.2% 

of range as dead-band compression and 0.1% of range as vector-based compression. The data 

are stored locally in the DP-RI computer, and there is a provision to store to the cloud for 

simulation of different configurations. 

Data transfer time 

Data transfer time for the information from the sensor to the controller to the data-logger and 

finally to the DP-RI application was less than 60 seconds. The time-series data are aggregated 

and stored in the datalogger. The time delay from the sensor to the DP-RI tool was due to 

transfer of data from the controller to the datalogger. 

8.2.2 Security and Integrity 

The DP-RI tool requires a username with a log-on password to perform simulations. Access 

rights were provided to different users with specific roles and sets of rights to set-up the 

applications. The DP-RI tool application does not affect the DP control system performance 

and integrity. 



 

213 
 

8.3 Programming Language 

The Google Colaboratory (Colab), which is an open-source web application, was used to create 

and share documents that contain live code, equations, visualisations, and narrative text. The 

experiments were run using the codes which were developed using Colab, which is an 

executable document written and run within Google Drive using Python programming [174]. 

Python was used due to its efficiency in providing high-level data structures, and because it is 

a practical approach for object-oriented programming, which was required for handling the 

massive amounts of data for this application. Besides, Python was used for data cleaning and 

transformation, statistical modelling, data visualisation, and machine learning [234].  

Tensorflow 2.0 is an end-to-end open-source platform for machine learning, including RNN. 

The features are used to build and deploy RNN-powered applications quickly by using a 

comprehensive, flexible ecosystem of tools, libraries, and community resources. Tensorboard 

provides the visualisation and tooling needed for machine learning experimentation to track 

and visualise metrics such as loss and accuracy. It also aids in visualising the model graph 

(operation and layers) and viewing histograms of weights, biases, or other tensors as they 

change over time. The Keras Functional API enabled the implementation of a wide range of 

different deep learning models so that suitable models for the DP-RI application could be 

identified [176]. Other libraries, such as Tensor graph, seaborn, pandas, NumPy, random, and 

Matplotlib, were used for various functions during the comparison of the models and 

evaluating the metrics [234]. The main advantages of using the Python programming language, 

Keras API, and libraries were that it helped in providing the following features [174, 176, 186]: 

(i) Interface with GPUs in the Google Cloud Platform for increased performance 

(ii) Data cleaning and comparison of the models during the validation stage, making it 

possible to check the loss and accuracy metrics  

(iii) Debugging was faster due to the availability of Tensorboard, where the 

scalar/hyperparameters can be varied to find the optimal performance of the models 

(iv) Running different complex deep learning algorithms for prediction and validating with 

the test data set for time series data was made possible due to the capability of the GPUs 

available in GCP through Recurrent Neural Networks. 

(v) Tuning Hyperparameters and comparing the performance over-time. 
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8.4 Machine Specification 

The sections below describe the machine specification of GPU and TPU used for predictive 

and prescriptive analytics. 

8.4.1 Predictive Analytics 

The GCP uses the Google Cloud Engine (GCE), which provides GPUs that can be used as 

virtual machines for running deep learning models. The GCP’s Computing Engine with GPUs 

is used in efficient ML models to provide faster execution for real-time data interface. The 

GCP Infrastructure as a Service (IaaS) was used for the experimental evaluation of the research 

[235]. For the DP-RI application, as shown in Table 8-1, a high number of GPU and vCPU 

devices were selected from the various models available on the GCP as the DP-RI tool has a 

high computation requirement [234]. A GPU accelerates the specific workloads such as 

machine learning and data processing for optimised execution of the programming [234]. This 

particular model provided the capability to run a vast number of data-sets, and it can be readily 

applied to data from different vessels for further research evaluation. 

Table 8-1 GCP GPU specification for predictive analytics 

 

8.4.2 Prescriptive Analytics 

TPUs were designed from the ground up with the benefit of Google’s deep experience and 

leadership in machine learning [176]. Figure 8-2 shows the TPU architecture, and Table 8-2 

specified the machine specification on the GCE. 

Table 8-2 DP sub-system weighting for optimised hyperparameters 
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     Figure 8-2 TPU architecture for BERT model fine-tuning [176] 

TPUs are used for the NLP to speed up the prescriptive analytics as the time to prescribe 

suggestive solutions is limited, and action needs to be instantaneous. 

8.5 Research Assumptions and Boundaries 

8.5.1 Assumptions 

The following are the assumptions for this research study: 
• The two DP vessel models (DP3 Semi-submersible Drilling Rig and DP3 Drillship) 

used for the research had the same configuration as below: 

o 8 Diesel Engine (Rolls Royce) 

o 4 Switchboards (Siemens) Open and Close Bus-Tie Configurations 

o 8 Azimuth thrusters (Wartsila)  

o VFD drives (Siemens) 

o DP3 Control System (Kongsberg) 

o Reference System Sensors (Kongsberg) 

o Environmental Sensors (Kongsberg) 

o DPO (Seadrill, Transocean, Heerema, Floatel Etc) 

• The DPOs working on the vessels are assumed to meet the competency requirements 

of the nautical institute, regulators, classification societies, and the Company. 

• The weighting of the DP sub-systems is based on the AHP methodology presented in 

Chapter 4 and the opinions of industry experts. 
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• The probability of two or more failures occurring in a sub-system simultaneously is 

low. 

• The DP-RI tool is used to make safety-critical decisions in real-time. Therefore, the 

artificial intelligence systems with deep learning algorithms needed to be designed with 

a high quality algorithm. 

• The DP-RI tool was used to test vessels with different applications (Drilling rig, 

floating accommodation, PSV, etc.), class (DP3 / DP2), configuration (8/ 6 thruster and 

4/3 switchboards), and sub-system vendors for specific cases to ensure the scalability. 

• The inherent biases of the RNN model are appropriately addressed through necessary 

precautions and uncertainty in the forecasting was kept to a minimum. 

• The data extracted from the two vessels are used to train the model with different 

scenarios as much as possible, and the model is assumed to deal with new situations 

and failures for which it was not explicitly trained.  

• The data used for the thesis are knowledge-based data collected from industry 

databases and real-time data collected directly from sensors through the DP control 

system. 

• The research is assumed to have a focus on the following criteria to ensure that the 

application to real vessels is possible shortly. 

o High-risk scenarios with low probability were evaluated to ensure that the 

decision should not have catastrophic consequences due to inaccurate 

prediction. 

o Critical consequences are often related to tail events – for which data are 

naturally scarce. As the data is insufficient, the uncertainty associated with 

prediction is high. This scenario is assumed to be addressed through training 

scenarios by testing with available case studies with high-risk ranking. 

• The research was executed in the GCP and assumed to have the same efficiency when 

migrated to other IaaS platforms such as Azure or Amazon Web Services (AWS). 
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8.5.2 Boundaries 

The following are the limitations of this research: 
• The below databases were used for the big data analytics which are part of DNV GL 

Datawarehouse and publicly available data source. 

o IMCA Accident Database (Publicly available) 

o FMEA database (DNV GL) 

o HIL Database (DNV GL) 

o DP-Capability (DNV GL) 

o OREDA (Publicly available) 

• Possible suggestive solutions to the operator during failure are generated based on the 

limited available databases and SME judgment. Therefore, the tool needs to be tested 

with as many scenarios as possible with available confidential databases before 

application into a real DP vessel. 

• The DP-RI tool was integrated with onboard DP control systems through secured 

connection for monitoring pre-defined set of signals. The isolated sub-systems was not 

directly interfaced with DP-RI tool.  

• Numerical simulations were performed, but physical model tests were not performed.  

• Case studies from IMCA and hypothetical cases were used for evaluating the 

effectiveness of the DP-RI tool, and specific operation envelopes were considered to 

define the uncertainties. 

8.6 Experimental Set-Up: Semi-Submersible Drilling Rig – DP 3 (DP AUTRO) 

The semi-submersible drilling rig of DP-3 class was used for numerical simulations in the 

experimental set-up for the verification and validation of the DP-RI tool. Similarly, the results 

are validated on one Drillship DP-3 class during proving trials for some of the actual and 

hypothetical case studies. Figure 8-3 shows the configuration of the semi-submersible drilling 

rig used for the numerical simulations. In Section 8.7 and Section 8.8, different case studies 

are presented, and the effectiveness of the DP-RI tool is discussed along with verification and 

validation with existing methodologies. The simulation and run-time screenshots of the overall 

DP system, seven sub-systems and the limit set-up are shown in the Appendix II section of the 

thesis.
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Figure 8-3 Semi-Submersible Drilling Rig Configuration for DP-RI experiment 
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8.7 Verification and  Validation - Actual Case Studies from IMCA database 

Case studies (1-4) are extracted from the IMCA database, and comparison is made between 

the actual events and simulation in the DP-RI. The flow of the case studies explained in the 

next section is defined in the flowchart as shown in Figure 8-4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-4 Flowchart – Experiments on case studies from IMCA database  
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Case Study 1: 
IMCA Dynamic Positioning Station Keeping Review DPSI 29 -2019 (Event 3).  

Description of the Case study and detailed analysis of simulation: 
Case study 1 was extracted from the DP review event reported in 2019. The reported Event 3 

resulted in a DP incident (LOP 1) on the actual vessel.  Table 8-3  shows the comparison of 

the vessel set-up, failure in the sub-system, and successive events between the real scenario 

and the numerical simulations on the DP-RI tool. The experimental simulation of the existing 

scenarios was replicated in a controlled environment with a defined operational envelope. The 

DP-RI tool was not trained with this particular scenario so it could be used to evaluate the 

performance and accuracy.  The vessel is a DP 3 drilling rig with System A, System B, System 

C, and System D connected in an open bus with one generator in each system running and 

connected online. There was a failure of the Automatic Voltage Regulator (AVR) in system A 

which led to drilling operation interruption. The DPO investigated the loss and used reference 

documents to rectify the failure. As there was no guidance on the precautionary steps, it led to 

network failures (Net A and B). This resulted in complete loss of DP control, and the vessel 

drifted 100 meters resulting in the DP incident. 

The experimental simulation of the same scenario on the DP-RI tool showed different results 

as the tool provides information instantaneously to the DPO. When AVR failure was simulated 

in the electrical system, reliability was predicted as 75%, and the overall reliability of the DP 

system was predicted as 88%, indicating that the vessel can maintain position. The DP-RI tool 

also prescribed possible solutions and precautionary steps which could help the DPO to isolate 

the system during the rectification of failure. Therefore, it does not result in a network failure, 

and the system was restored for the drilling operation. From the results in Table 8-3, it is 

evident that the DP-RI tool could prevent the DP incident through its predictive and 

prescriptive functionalities. During the incident analysis of the actual case by IMCA experts, 

it was revealed that the vessel drifted after the network loss of DP control. The LOP 1 could 

have been prevented if the DPO has taken preventive steps to act on this. The response time 

was limited by the DPO’s time to react and take corrective action to prevent a DP incident. 

Also, the same scenario was tested on a drillship during sea-trials with integration between the 

control system and DP-RI. The failure was simulated, and the DP-RI tool was able to predict 

the reliability value instantaneously and prescribe solutions to the DPO for further actions. 
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Table 8-3 Case Study 1 - Actual and Experimental results summary 
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The suggestion was based on the inputs provided to the tool during the prescriptive analytics 

training. Although the training was performed for each scenario separately, the DP-RI proved 

its performance when a sequence of events happened. It demonstrates the capability to scale 

for other failures. 

Failure in sub-systems:  
Electrical System (A5)  Primary cause 

Human / Operator Error (A7)  Secondary cause 

Actual Vessel Final Event:  
DP Incident (LOP 1) 

Experimental Set-Up (DP-RI) Final Event: 
The vessel in a safe state 

Risk Studies and documents used for verification and validation: 
• FMEA results 

• DP simulators  

• DP Capability Plots 

• Site-Specific Risk Analysis  

• DP operation Manual 

 

Conclusion - Verification, and Validation: 
The DP-RI tool was able to bring together information from the different studies and present 

it instantaneously to the DPO with the possible suggestions to select and implement. This 

feature significantly reduces the reaction time, addressing the root cause of the problem 

without a single failure leading to catastrophic losses. As discussed in the table, the reliability 

of the overall system was 88%, and prescribing possible suggestions is the most novel feature 

integrated with the DP system to ensure safe operation. Thus, for this specific case, the DPO 

was alerted to potential consequences and able to take preventive action. In a case where it led 

to successive events, the DP-RI would have suggested corrective actions to the DPO. 
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Case Study 2: 
IMCA Dynamic Positioning Station Keeping Review DPSI 23 -2012 (ID 1242).  

Description of the Case study and detailed analysis of simulation: 
Case study 2 was extracted from the DP review event reported in 2012. The reported accident, 

ID 1242, resulted in a DP undesired event (LOP 2) on the actual vessel.  Table 8-4  shows the 

comparison of the vessel set-up, failure in the sub-system, and successive events between the 

real scenario and the numerical simulations on the DP-RI tool. The case study involves loss in 

the sub-system DP control system (A2) as the primary cause and human/operator error (A7) as 

the secondary cause.  The DP-RI tool was never trained with this particular scenario so it can 

be used to evaluate the performance and accuracy.  The vessel is DP 3 class with System A, 

System B, and System C connected in an open bus with four generators online and two 

generators on standby. All the thrusters in the Thruster System (A3) are online and connected.  

The failure of the DP control system led the thrusters to react erratically, and the vessel started 

drifting away from the set position.  The DPO did not have sufficient time to prevent the 

subsequent event as there was no readily available solution from the current system set-up. The 

final event was a minor loss of position resulting in a DP undesired event (LOP 2). 

The experimental simulation of the same scenario in the DP-RI tool showed different results, 

and the vessel was in a safe state throughout the fault condition. When a failure in the DP 

control system was simulated, the DP-RI tool predicted the reliability of the DP control System 

(A2) as 50% and the overall reliability of the DP vessel as 83%. The DP-RI tool prescribed 

possible suggestions to take control of the DP back-up control station to avoid excursion from 

the set-position. The DPO was able to react in time and take control and keep the vessel in a 

safe state. If the DPO did not react due to human error, then the DP-RI  predicted the reliability 

of Human / Operator error (A7) as 50% and the overall DP vessel reliability as 54%. At this 

stage, the DP-RI tool would have provided possible suggestions to take control through 

Joystick or Manual operation. Then the DPO would have reacted to prevent the DP incident 

and keep the vessel in a safe state. Then the failures could be fixed, bringing the overall 

reliability of the DP vessel back to 100%.  

Failure in sub-systems:  
DP control System (A2)  Primary cause  
Human / Operator Error (A7)  Secondary cause
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Table 8-4 Case Study 2 - Actual and Experimental results summary 
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Actual vessel’s final event:  
DP undesired event (LOP 2) 

Experimental Set-up (DP-RI) final event: 
The vessel in a safe state 

Risk Studies and documents used for verification and validation: 
• Site-Specific Risk Analysis  

• DP operation Manual 

• Investigation reports 

• DP Capability Plots 

Conclusion - Verification, and Validation: 
The DP-RI tool showed the timely intervention of the DPO could prevent the failure in a sub-

system leading excursion from the set-position . As the analysis showed the initial loss in the 

DP control system (A2) had only reduced the reliability of the overall DP system to 83%, and 

the secondary cause was the main reason resulting in the minor loss of position.  Thus, for this 

specific case, the DPO was alerted to the possible consequences and could take preventive 

action without Human/operator error (A7) acting as a secondary cause. In the case where it led 

to successive events, the DP-RI would have suggested additional corrective actions to the DPO 

based on the circumstances. 

 
Case Study 3: 
IMCA Dynamic Positioning Station Keeping Review DPSI 29 -2018 (ID 18121).  

Description of the Case study and detailed analysis of simulation: 
Case study 3 was extracted from the DP review document reported in 2018. The reported 

accident, ID 18121, resulted in a DP incident (LOP 1) on the actual vessel.  Table 8-5 shows 

the comparison of the vessel set-up, failure in the sub-system, and successive events between 

the real scenario and the numerical simulations on the DP-RI tool. The case study involves a 

failure in the Thruster System (A3) as the primary cause and the power system (A4) as the 

secondary cause. The DP-RI tool was not trained for this particular scenario and so can be used 

to evaluate the model's ability to predict new techniques. The vessel is DP 3 class drilling 

vessel with System A, System B, System C, and System D connected in a closed bus with four 

generators online and four generators on standby. Four of the eight thrusters in the Thruster   
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Table 8-5 Case Study 3 - Actual and Experimental results summary 

 



 

227 
 

System (A3) are  online and connected. The failure in one generator DG8 tripped four thrusters 

(T1, T2, T3, and T4), and the vessel was drifted from the set-position leading to a significant 

loss of position resulting in the DP incident (LOP 1). The DPO was not expecting multiple 

failures, and the time to prevent it was minimal, which led to stopping drilling operation. 

The experimentation simulation of the scenario in the DP-RI tool was similar for the initial 

events as the multiple failures were instantaneous. When a failure was simulated in DG8 which 

tripped thrusters T1, T2, T3, T4, the DP-RI tool predicted reliability of the Power System (A4) 

as 75% and the Thruster System (A3) as 0%. This resulted in the overall reliability of the DP 

vessel prediction as 68%. The vessel started drifting, and the drilling operation stopped. The 

DP-RI tool prescribed possible suggestions as to create the remaining thrusters and isolate DG8 

by arranging the system configuration to the “OPEN” bus. However, in the meantime, the 

vessel drifted from set-position / heading, which led to a minor loss of position leading to the 

DP undesired event (LOP 2). The DPO was able to take the necessary action in time, however, 

could not prevent LOP 2 as this failure was the result of multiple failures (two losses in two 

different sub-systems instantaneously). By proper action from the DPO based on the DP-RI 

tool suggestion, LOP 1 was prevented, and the DPO was able to bring the vessel back to operate 

with the reliability of the overall DP vessel at 100% with minimum downtime. 

Failure in sub-systems:  
Power System (A4)  Primary cause 
Thruster System (A3)  Secondary cause  

Actual Vessel Final Event:  
DP Incident (LOP 1) 

Experimental Set-Up (DP-RI) Final Event: 
DP undesired event (LOP2) and Vessel to a safe state. 

Risk Studies and documents used for verification and validation: 
• DP Capability Plots 

• DP simulator and FMEA report 

• Site-Specific Risk Analysis  

• DP operation Manual 

• Investigation reports 



 

228 
 

Conclusion – Verification and Validation: 
The DP-RI tool was able to perform well even when multiple failures happened in the system 

instantaneously. During the analysis, it revealed that initial losses in the Power System (A4) 

and the Thruster System (A3) had reduced the reliability of the overall DP system to 68% 

resulting in the minor loss of position (LOP 2). However, in the actual vessel, the result was a 

significant loss of position (LOP 1). Thus, for this specific case, the DPO was provided with 

possible suggestions promptly to take preventive action without Human/operator error (A7) 

acting as another layer of failure. Therefore, the DP-RI prevented the DP incident and reduced 

downtime by a considerable amount. 

Case Study 4: 
IMCA Dynamic Positioning Station Keeping Review DPSI 27 -2016 (ID 1665).  

Description of the Case study and detailed analysis of simulation: 
Case study 4 was extracted from the DP review document reported in 2016. The reported 

accident, ID 1665, resulted in a DP incident (LOP 1) on the actual vessel.  Table 8-6 shows the 

comparison of the vessel set-up, failure in the sub-system, and successive events between an 

actual scenario and the numerical simulations on the DP-RI tool. In this case study, failure 

happens in the DGNSS due to loss/interruption of signal from the satellite. It leads to the loss 

of the DGNSS signal to the DP control system. The failure in Reference System (A1) was 

considered as the primary cause and the Human / Operator error (A7) as a secondary cause. 

The DPO was tired due to working long hours, which is considered as a reduced capability to 

perform the duty resulting in an error in the sub-system. The vessel is DP 2 class with System 

A, System B, and System C connected in an open bus with three generators online and three 

generators on standby. Three thrusters in the Thruster System (A3) are online, and three 

thrusters on standby.  The failure of the DP control system led the thrusters to react erratically, 

and the vessel started drifting away from the set position.  The DPO did not have sufficient 

time to prevent the subsequent event as there was no readily available solution from the current 

system set-up. The final event was a significant loss of position resulting in a DP incident (LOP 

1) with the vessel drifting 400 m from the set position. 

The experimental simulation of the ID 1665 scenario in the DP-RI tool showed different results 

for the final event, although the vessel experienced a minor loss of position.  
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Table 8-6 Case Study 4 - Actual and Experimental results summary 

VESSEL 
SET-UP 

VESSEL  
CONFIG 

FAILURE SUCCESSIVE 
EVENTS 

REFERENCE 
DOCUMENTS 

DP-RI 
PREDICT 

DP-RI 
PRESCRIBE 

DPO  
ACTION 

ACTUAL 
VESSEL 

3 Generators Online 
3 Generators Standby 
3 Thrusters Online 
3 Thrusters Standby 
3 Gyros, 2 MRU and 2 
Wind Sensors Online 
2 DGNSS, 1 laser 
system and 1 radar 
system Online 
Wind Speed = 10 Knots 
(250o) 
Current Speed = 0.8 
Knots (285o) 
Wave Height = 1 metre 

DGNSS signal 
lost. 
 
Interruptions in 
the service 
 

EVENT1: 
DGNSS signal loss. 
Vessel stopped 
operation. 

Site Specific 
documents. 
FMEA and 
Operation Manual. 

  Refer to system 
and procedure to 
stop operation 

EVENT 2: 
DP control system 
lost signal and started 
drifting 
 

Alarm in DP control 
System. Site 
specific documents.  

  Refer to alarms 
and check for 
appropriate steps 
in DP operation 
manuals. 

EVENT 3: 
Vessel drifted 400m 
on DP leading to 
LOP 1. 

Knowledge of the 
DPO. 

  Visual 
Identification and 
DPO intervention 
after actual 
incident. 

SET-UP 
FOR  
DP-RI 

3 Generators Online 
3 Generators Standby 
3 Thrusters Online 
3 Thrusters Standby 
3 Gyros, 2 MRU and 2 
Wind Sensors Online 
2 DGNSS, 1 laser  and 1 
radar system Online 
Wind Speed = 10 Knots 
(250o) 
Current Speed = 0.8 
Knots (285o) 
Wave Height = 1 metre 

DGNSS signal 
lost. 
 
Interruptions in 
the service 
 

EVENT1: 
DGNSS signal loss. 
Vessel stopped 
operation. 

 The reliability of 
the Reference 
System predicted ad 
75%. 
 
The overall DP 
reliability is 72%. 

Prescribes the 
possible suggestion 
1. Change to other 
satellite signal 
2. Set manual 
value to DP control 

DPO follows the 
suggestion and 
changes the 
satellite signal and 
manual value in 
DP control for 
model to operate. 

EVENT 2: 
Manual Operation to 
bring vessel to set 
position 
 

 Due to shift change 
the operator error 
predicted as 25% 
 
The overall DP 
reliability is 54%. 

Prescribes possible 
suggestions  
1. DPO SA to be 
increased by 
changing shift 
earlier 
2. Rectify failures 

DPO shift change 
and fix DGNSS 
issue 

EVENT 3: 
Vessel – Safe State 
Operation resumed 

 The reliability of 
the overall DP 
system is 100%. 

No suggestion 
when no failures in 
the system. 

DPO performs 
normal monitoring 
duty during the 
operation. 
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When the failure in the Reference System (A1) was simulated, the DP-RI tool predicted the 

reliability of A1 as 75% and the overall reliability of the DP vessel as 72%.   The DP-RI tool 

prescribes the possible solution as to change the satellite signal due to interruption in the 

DGNSS or set the manual value in the DP control system to ensure that the model performs 

the allocation algorithm to keep the vessel in set-position. As it was a long shift for the DPO, 

the fatigue was taken into account. The DP-RI tool predicted the reliability of human/operator 

error (A7) as 25% and the overall reliability as 54%. The tool has provided a suggestion to 

change the shift of the DPO in duty. The new DPO rectified the failure with the DGNSS to 

ensure that the vessel is safe, and the overall reliability of the DP vessel is returned to 100%.  

Failure in sub-systems:  
Reference System (A1)  Primary cause 

Human / Operator Error (A7)  Secondary cause  

Actual Vessel Final Event:  
DP Incident (LOP 1) 

Experimental Set-Up (DP-RI) Final Event: 
DP undesired event (LOP2) and Vessel to safe state. 

Risk Studies and documents used for verification and validation: 
• DP operation Manual 

• DP Capability Plots 

• Site-Specific Risk Analysis  

Conclusion - Verification, and Validation: 
The DP-RI tool was able to predict the reliability of failures in the sub-system and the human 

error effectively and advise on the allocation of the right resource to execute the operation 

efficiently. During the analysis, it revealed that initial failures in the Reference System (A1) 

and the Human / Operator error (A7) had reduced the reliability of the overall DP system to 

54% with the vessel still in position compared to the actual vessel, which resulted in a 

significant loss of position (LOP 1). Thus, for this specific case, the DPO was provided with 

possible suggestions promptly to take preventive action without Human/operator error (A7) 

acting as another layer of failure. Based on the swift action from the DPO, the DP incident was 

prevented, and the vessel was able to perform its operation without any interruption.  
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8.8 Verification and Validation - Hypothetical Case Studies from FMEA and Test 
Procedures 

Case studies (5-8) are extracted from FMEA reports with a common cause failure (CCF) 

identified as low probability and high consequences. The proving trial procedures were used 

as a reference to build the case study descriptions for simulation in the DP-RI tool. The 

flowchart in Figure 8-5 provides a better understanding of the case studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-5 Semi-Submersible Drilling Rig Configuration for DP-RI experiment 
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Case Study 5:  
Multiple failures due to CCF– From FMEA and SAT Procedure  

Description of the Case study and detailed analysis of simulation: 
The experimental simulation of the hypothetical scenarios was executed on the DP-RI to 

evaluate its performance when such failures occur during operational scenarios. As shown in 

Table 8-7, when there are multiple failures due to CCF, it affects two systems out of three. The 

first CCF affects the information related to Power Generation and the Power Management 

System (PMS), and complete control is lost on System A. At this point, the DP-RI tool predicts 

the reliability of the power system (A4) as 66.66% and the reliability of the overall DP-system 

as 82% indicating that the vessel can maintain its position with systems B and C online. DP-

RI prescribes possible solutions to the DPO to take appropriate action to fix the system A 

failure. The prescribed suggestions are as follows: 

1. Fix one network (A or B) to the field station/cabinets. 

2. CCF leading to power supply failure, so isolate power at the power source or field stations. 

3. Power supply modules interface, which could lead to CCF. 

4. Restore system A through by-pass. 

The DPO could select one of the possible suggestions and implement it to see whether the 

failure is fixed, and system A is restored. If one suggestion does not solve it, then the next 

could be tried to resolve the issue. As all the possible failures are shown, the DPO could react 

quickly and bring the vessel to regular operation by addressing the CCF in the power system. 

In the meantime, another failure happens in the thruster system (A3) in system B.  The DP-RI 

tool predicts the reliability of the thruster system (A3) as 66% and the overall reliability of the 

DP system as 64%. Now the DP vessel's overall reliability to maintain its position is “Medium,” 

and the vessel may start losing its position. DP-RI prescribes the following possible solutions 

to the DPO to take appropriate action to fix the system B failure.  

1. Check for fire/flood in the pump room where thruster cabinets are located. 

2. Fix one network (A or B) to the field station/cabinets. 

3. CCF leading to power supply failure, so isolate power at the power source or field stations. 

4. Power supply modules interface, which could lead to CCF. 

5. Restore system A through by-pass. 
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Table 8-7 Case Study 5 - Hypothetical Experiment results summary 
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As the error in the power system (A3) of system A was fixed during this time, the overall 

reliability of the DP system predicted as 82%. The DPO could select one of the possible 

suggestions and implement it to see whether the failure is fixed, and system B is restored. The 

error in the thruster system (A3) of system B could be fixed as the DPO could react quickly 

and bring the vessel back to regular operation by addressing the CCF in the thruster system in 

system B. The DP-RI tool predicts the reliability of the thruster system (A3) as 100% and the 

overall reliability DP system as 100%. 

Such hypothetical scenarios have a low probability of occurrence and high consequences. 

Based on experience sharing sessions with Operators, Oil companies, independent consultants, 

and the DPO informed during similar situations in offshore it resulted in DP incident (LOP1) 

and operation was stopped. This was because there was a limited time for the DPO to react and 

fix the issue. However, with the advancement in technology, implementation of the DP-RI tool 

interfacing with the DP control system would be a much more efficient way of operating DP 

vessels offshore for complex operations. 

Failure in sub-systems:  
Power System (A4)  Primary cause 

Propulsion System (A3)  Secondary cause  

Risk Studies and documents used for verification and validation: 
• FMEA results 

• DP Capability Plots 

• Site-Specific Risk Analysis 

Conclusion – Verification, and Validation: 
The DP-RI tool was able to bring together the best of different studies and present it 

instantaneously to the DPO with a possible suggestion to select and implement. The DPO 

would have found the solutions to address the problem without the DP-RI tool. However, it 

would have taken a long time. With multiple failure scenarios, it would most probably have 

led to a DP incident and resulted in the loss of position/property damage / environmental 

spill/downtime. The DP-RI tool predicted an accurate reliability value and prescribed 

suggestions for the DPO to react quickly, preventing a DP incident. 
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Case Study 6:  
Multiple failures with Reference System and DP Control System– From DP capability Plot 
and DP proving trial test  

Description of the Case study and detailed analysis of simulation: 
The experimental simulation of the hypothetical scenario was simulated, as shown in Table 

8-8. The failure was simulated in the DGNSS signal through power failure, and the signal to 

the DP control system was lost. At this point, the DP-RI tool predicts the reliability of the 

Reference System (A1) as 75% and the reliability of the overall DP-system as 83%, indicating 

that the vessel can maintain its position. DP-RI prescribes possible solutions to the DPO to 

take appropriate action to fix the system A failure. The prescribed suggestions are as follows: 

1. Satellite signal needs to be corrected 

2. Another reference signal can be used as a precision signal 

3. Manual value can be set in the system  

The DPO could select one of the possible suggestions and implement it to see whether the 

failure is fixed. If one suggestion does not solve it, then the next could be tried to fix the issue. 

As all the possible losses are shown, the DPO could react quickly and bring the vessel to regular 

operation by addressing the right failure. 

In the meantime, another failure is simulated in the DP control system through loss of model 

reference.  The DP-RI tool predicts the reliability of the DP control system(A3) as 25% and 

the overall reliability of the DP system as 40%. Now the DP vessel's overall reliability to 

maintain its position is “Low,” and the vessel may start losing its position. DP-RI prescribes  

the following possible solutions to the DPO to take appropriate action: 

1.  Use Back-Up DP control system  

2. Set manual value if possible or change to other modes of operation 

The DPO could select one of the possible suggestions and implement it to see whether the 

failure is fixed. The errors in the Reference system (A1) and the DP control system (A2) are 

fixed as the DPO could react quickly and bring the vessel to regular operation. The DP-RI tool 

predicts the reliability of the overall DP system as 100%. 
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Table 8-8 Case Study 6 - Hypothetical experiment results summary 
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Failure in sub-systems:  
Reference System (A1)  Primary cause 

DP control system (A2)  Secondary cause  

Risk Studies and documents used for verification and validation: 
• DP Capability Plots 

• Proving trial results 

• Site-Specific Risk Analysis 

Conclusion – Verification and Validation: 
The DP-RI tool provided the appropriate solutions instantaneously to the DPO to take action 

and resolve the issue in the system. The failure, which would have resulted in the vessel 

experiencing a significant loss of position, was prevented with the help of DP-RI. The results 

are compared with the industry-proven risk studies such as CAMO and ASOG.  

Case Study 7:  
Multiple failures in different sub-systems – From FMEA and DP proving trial test  

Description of the case study and detailed analysis of simulation: 
The experimental simulation of the hypothetical scenarios was simulated, as shown in Table 

8-9. The failure was simulated in the wind sensor signal through a power failure, which caused 

a communication failure from IAS to the DP control system. At this point, the DP-RI tool 

predicts the reliability of the Environmental System (A6) as 66.66% and the reliability of the 

overall DP-system as 86.66%, indicating that the vessel can maintain its position. DP-RI 

prescribes possible solutions to the DPO to take appropriate action to fix the system A failure. 

The prescribed suggestions are as follows: 

1. Change to wind sensor signals from back-up DP control system 

2. Isolate wind sensor 1 as it caused CCF of IO module 

3. Fix CCF and restore the Main DP control system. 

The DPO could select one of the possible suggestions for the initial failure and implement it 

to see whether the failure could be resolved. As all the possible suggestions are provided, the 

DPO could react quickly and bring the vessel to regular operation by addressing the leading 

cause for the event 1. 
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Table 8-9 Case Study 7-  Hypothetical experiment results summary 
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In the meantime, the failure causes loss of the IO module in the main DP control system leading 

to the unavailability of critical signals. The DPO capability for decision making and situation 

awareness reduces due to the end of the shift. The DP-RI tool predicts the reliability of the DP 

control system (A3) as 50% and Human / Operator error as 50%. Now the overall reliability 

of the DP system is 45.66%, the DP vessel's overall reliability to maintain its position is “Low”, 

and the vessel may start to lose its position. DP-RI prescribes  the following possible solutions 

to the DPO to take appropriate action: 

1. Set to back-up DP control system 

2. Perform shift change for the DPO 

3. Take the DP to manual control if possible as per DP alert status 

The DPO could select one of the possible suggestions and implement it to see whether the 

failure is resolved. The errors in the Environmental system (A6), the DP control system (A2), 

and the Human / Operator error (A7) are fixed as the DPO could react quickly and bring the 

vessel to a safe state. The DP-RI tool predicts the reliability of the overall DP system as 100%. 

Failure in sub-systems:  
Environment system (A6)  Primary cause 

DP control system (A2)  Secondary cause 

Human / Operator error (A7)  Indirect Secondary cause  

Risk Studies and documents used for verification and validation: 
• FMEA results 

• Proving trial test procedure results 

• DP simulator 

• Site-Specific Risk Analysis 

Conclusion – Verification and Validation: 
The DP-RI tool was able to process the data continuously and instantaneously predict 

/prescribe the solution to the DPO. This enables the operators to focus on the issues correctly 

and promptly rather than checking the documents which would be time-consuming. More 

importantly, the differentiating factor the DP-RI tool is that for multiple failures, it provides 

solutions for the particular losses right way and prevents the failure leading to a DP incident.  
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Case Study 8:  
Multiple failures due to CCF– From SAT, FMEA, and DP proving trial test procedure 

Description of the case study and detailed analysis of simulation: 
The experimental simulation of the hypothetical scenarios was executed, as shown in Table 

8-10, with a sequence of failures simulated in different sub-systems. The first failure was 

simulated in SWBD B of the electrical system (A5) with loss of system B. At this point, the 

DP-RI tool predicts the reliability of the electrical system (A5) as 66.66%, and the reliability 

of the overall DP-system as 88% indicating that the vessel can maintain its position with 

systems A and C. DP-RI prescribes possible solutions to the DPO to take appropriate action to 

fix the system B failure. The prescribed suggestions are as follows: 

1. Check System A and System C can maintain the position. If able to maintain within its 

capability start the necessary sub-system with System A and C. 

2. Rectify the SWBD failure in System B 

3. Ensure there is no CCF affecting other systems. 

The DPO could select one of the possible suggestions and implement it to see whether the 

vessel able to main its position. If option 1 is not able to address the failure, then System B is 

restored. If one suggestion does not solve it, then the next could be tried to fix the issue. As all 

the possible failures are shown, the DPO could react quickly and bring the vessel to regular 

operation by addressing the loss in system B. 

In the meantime, another failure was simulated in one of the direct factor parameters as shown 

in Figure 4-11, for the human/operator error (A7) sub-system affecting the performance of the 

overall DP vessel.  This failure was simulated without clearing the loss in system B. The DP-

RI tool predicts the reliability of the human / operator error (A7) as 25% and the overall 

reliability of the DP system as 68%. Now the DP vessel's overall reliability to maintain its 

position is “Medium,” and the vessel may start to lose its position. DP-RI prescribes the 

following possible solutions to the DPO to take appropriate action to fix the system B failure.  

1. Change the shift of the DPO 

2. Operate the vessel with maximum redundancy to ensure failure consequences are 

addressed through mitigation action 

3. Ensure that system B is restored 
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Table 8-10 Case Study 8 - Hypothetical experiment results summary 
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As the error in the electrical system (A5) of system B was fixed during this time, the overall 

reliability of the DP system is 82%. The DPO could select one of the possible suggestions and 

implement it to see whether the failure is fixed, and system B is restored. The loss in 

human/operator error (A7) could be fixed as the DPO could react quickly and bring it to regular 

operation. The DP-RI tool predicts the overall reliability DP system as 100%. 

Failure in sub-systems:  
Electrical System (A5)  Primary cause 

Human / Operator Error (A7)  Secondary cause  

Risk Studies and documents used for verification and validation: 
• SAT procedure  

• FMEA results 

• Proving trial test procedure results 

• Site-Specific Risk Analysis 

Conclusion – Verification and Validation: 
The specific case scenario was tested with an intention to see how the human factor plays a 

critical role during a failure in a sub-system. In conclusion, the procedure without the DP-RI 

could have resulted in a DP incident (LOP 1). The reason would be that the failure on the 

SWBD B was dormant (unnoticed), and the DPO was alerted only when the consequence 

resulted. There are multiple failures for the DPO to react and fix it within a limited time. In 

this scenario, the reliability of the sub-system Human / Operator error is 25%, and failure 

cannot be fixed in the time leading to a DP incident. The DP-RI tool results were verified and 

validated against the SAT procedure and proving trial results. Additionally, there was more 

information readily available qualitatively and quantitatively for the DPO to decide on the next 

steps with ease. 

8.9 Summary of Verification and Validation – Test Results 

In addition to the case studies presented above, numerous tests were performed with the DP-

RI tool. The actual case studies were extracted from the IMCA and WOAD databases. The 

results were verified and validated against the detailed report prepared for each incident by 

experts. Similarly, the hypothetical case studies are extracted from the FAT, CAT, DP 
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operation manuals, and Proving trial procedures. The results are verified and validated against 

the expected results of the methods. The DP-RI tool was tested with different cases to ensure 

that it could perform its function as intended. Different DP-classes, configurations, vessel 

types, system providers, and DPO experiences were considered, and analysis was performed 

to identify the gaps. Necessary functionalities were added to implement it on the operational 

vessel. A summary of the test results is presented in Table 8-11 shows the number of actual 

cases and hypothetical cases, along with the accuracy of prediction. 

Table 8-11 Summary of results – DP-RI tool 

 

From the experimental results, it was evident that the DP-RI tool was able to predict and 

prescribe possible suggestions even for new scenarios on which it had not been trained. If it 

was tested for a particular case similar to training, then the accuracy was 100% and matches 

the exact results of the reference documentation and industry experts. For all the case studies, 

the prescribed possible suggestion was evaluated with the existing risk studies, and it was 

verified to match the real solutions to be implemented in the case of failures. The time taken 

by the DPO for implementing the solution and prevent the accident has reduced by half (50%) 

with the DP-RI without any reduction in accuracy. In fact, the accuracy has increased as the 

numerous expert’s input were taken into consideration from the database for suggesting 

possible solutions to the DPO. Thus, the DP-RI tool is a novel advisory tool for the DP vessel 

to predict the reliability of the DP system and assist DPO during complex operations.  
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9. Conclusions and Recommendations 

9.1 Summary of Research 

The overall aim of this research was to develop an intelligent, state-of-the-art decision-making 

tool using artificial intelligence and data analytics. The decision-making tool, DP-RI, will be 

used for the prediction of offline and real-time reliability of DP systems (Quantitative and 

Qualitative) through predictive analytics. The functionality of the DP-RI tool also suggests 

possible solutions to the DPO during any failure in the DP system through prescriptive 

analytics. This ensures that the DPO is in complete control and has a clear over-view during 

complex marine operations to prevent DP related accidents in the case of failures. Detailed 

analysis of the limitations and entanglements of existing risk assessments, safety studies, 

numerical methods, and simulations for the reliability assessment of DP systems are presented.  

This research work meets the main aim and objectives through a systematic approach, which 

is presented in different chapters of the thesis. The research resulted in a universal database for 

the DP systems created using DP System Level FMEA, DP Vendor FMEA, HIL and OREDA. 

It also consists of IMCA Station Keeping Accident Analysis Reports, DP capability plots, and 

Site-Specific Operational Risk Analysis. The critical information is transformed into structured 

data from semi-structured and unstructured data. This is the first significant break-through 

achieved in the research, which facilitated in carrying out various analytics on the DP context. 

Descriptive and Diagnostic Analytics are implemented on the database to identify the 

correlation between different sub-systems with the DP system. A new classification of sub-

systems is determined, which played a vital role in DP system functionality, and this 

classification was completed based on big data concepts. The sub-system inter-dependencies 

were presented, which were used in developing suggestive solutions, and to provide a clear 

overview for the DPO; the lack if this was one of the limitations of existing studies. AHP was 

used to determine the weighting of each sub-system and this was validated through LSTM. A 

holistic research framework using predictive analytics was proposed for offline and real-time 

prediction of the reliability of the DP system through the LSTM model. In addition, 

prescriptive analytics were applied through Natural Language Processing using BERT as 

Question and Answering model to provide the suggestive solutions to the DPO.  
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9.2 Achievements of the Research and Innovative Work 

To summarise the key achievement and innovation of research are as follows: 

• A new method of classification of the DP system was introduced, which identified all 

the critical sub-systems, and which is different from the traditional way. It was based 

on the IMS consisting of other databases through descriptive and diagnostic analytics 

of big data concepts. 

• An intuitive and systematic approach was proposed for the weighting of the sub-

systems using AHP through input from various industry experts involved in different 

phases of the DP system life-cycle. This was in-line with the IMCA guidance of 

involving other discipline leads and, at the same time, expanding the study from FMEA 

to much more diverse applications. 

• For the first time, a novel research framework was developed based on predictive 

analytics using LSTM. This was implemented in predicting the offline and real-time 

reliability of DP systems (Quantitative and Qualitative). The results were compared 

with proven risk assessment methodologies. 

• State-of-the-art prescriptive analytics using the BERT model was instigated by using 

the model as a Question and Answering system in generating possible solutions to the 

DPO during failures to prevent DP incidents. The prescriptive analytics is combined 

with the predictive analytics part to function as a unified approach in providing possible 

solutions along with the ranking for the DPO to choose the best one for any particular 

situation. 

• Numerical experiments with an actual DP system architecture were created for the 

verification and validation of the DP-RI tool. The interface between different DP 

systems through other protocols are established to ensure system integration of the DP-

RI tool with the actual system onboard the vessel. The case studies were developed 

from the existing records on the IMCA accident database and complicated situations to 

evaluate the robustness of the DP-RI tool. 
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9.3  Future Research Work 

This thesis provides a novel research framework for the prediction of the reliability of the DP 

system through state-of-the-art RNN models using universal databases. However, the 

prediction is based on the dataset collected for the research through DNV GL and research 

partners. So, there is a need for fine-tuning of the models based on the actual real-time data 

from numerous vessels.  

The recent digital transformation in the marine, oil, and gas industries has enabled companies 

to create a digital ecosystem for technology and infrastructure to share data and integrate with 

more partners (Vendors, Operators, Classification Societies, etc.). Thus, in a few years from 

now, the real-time data from vessels will be accessible for research to fine-tune the model and 

increase the robustness of the DP-RI tool.  

The DP-RI tool results were verified and validated against the existing risk assessment methods 

and safety studies. The mathematical model for the reliability of sub-systems is developed 

using the RBD for a different configuration. Further, the overall reliability of the DP system is 

calculated through traditional assurance methods. However, in the future, the digital twin 

representation of the actual physical model will become the norm for sub-systems assurance. 

Currently, due to a lack of standardisation and unavailability of guidance for the digital twin, 

the research on DP-RI cannot include this part. In the future, researchers will be able to focus 

on integrating the digital twin with DP-RI from the design stage to ensure that the sub-system 

physical models are kept updated throughout the DP lifecycle. The integration will support in 

estimating the accuracy of the prediction and, at the same time, help the model to learn new 

scenarios more quickly. 

With all the future research improvements, it would be possible to develop a more advanced 

state-of-the-art real-time DP-RI tool application. The predicted information from the DP-RI 

could be integrated into the DP control system to rapidly indicate the reliability value and 

provide possible solutions to the DPO when the failure occurs. Thus, the integration would 

support in improving the robustness and closed-loop performance of the DP system to provide 

practical solutions over time, in turn leading to autonomy.  
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APPENDIX I: QUESTIONNAIRE TEMPLATE 
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APPENDIX II: VERIFICATION AND VALIDATION FOR DP-RI TOOL
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Case Study No. 1 
Login Page: Credential to login to DP-RI Tool 
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