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Abstract

Hierarchical modelling can be applied to data organised in groups, for which we are inter-

ested in describing the within and between group variability. This type of model is very

useful for a broad range of statistical problems. However, due to the complex nature of

some data and the continuously increasing volume of datasets, using current methodologies

for Bayesian hierarchical modelling can be challenging. The algorithms currently utilised,

such as the Markov Chain Monte Carlo (MCMC) family, can be computationally intensive

and difficult to parallelise, often leading to extended processing times, limiting exploration

of different models, especially in cases of “Big Data” applications. These algorithms can be

deployed using various programming paradigms, such as object-oriented, probabilistic and

functional. The latter has been gaining ground in academia and industry over recent years.

This thesis is concerned with examining an approach that will harness the benefits of func-

tional programming and aims to provide valuable insights on whether MCMC algorithms,

and in particular the Gibbs sampler, implemented in a functional style, can scale better

whilst remaining accurate. More specifically, we implement a Gibbs sampler in Scala to

fit a Bayesian hierarchical two-way Anova model that includes interactions and accounts

for various levels of asymmetry in the effects. We incorporate variable selection on the

interaction effects through exploration of two techniques, an indicator variable approach,

and the Horseshoe prior. In addition, we investigate under which model specifications

parallelism can affect speed-up. After comparing the efficiency of the methods developed

to the results deriving from some already existing libraries that automate and facilitate

the modelling and inference processes, we explore their application on a yeast genome

case study. The identification of gene complexes that genetically interact with telomere

capping defects is of great importance in cell biology, as research has shown that telomeres

can be related to ageing and various diseases. A Bayesian hierarchical model is developed

to highlight and estimate the strength of potential epistatic relationships between genes

of interest. However, the methodology developed has a wider range of applications and is

not limited to the yeast genome case study.
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Chapter 1

Introduction

Vast amounts of data are being collected and shared in research, industry and society.

The increasing volume of data and complexity of models, along with the evolution of tech-

nology and cloud resources, present new needs and opportunities to transform traditional

statistical learning, modelling and prediction techniques.

Bayesian statistics is a field of statistics based on the idea that uncertainty is expressed

through probability distributions that are updated in the light of new information. The

Bayesian framework is widely used to gain insights about high-dimensional problems by

holistically modelling the system. Among the models that are often encountered are

hierarchical models, which are used when data are grouped in some way and where un-

derstanding their dependence and variability is important. Bayesian inference is highly

dependent on integration and involves difficult integrals, the dimension of which increases

along with the dimension of the problem, rendering them analytically intractable. There-

fore, simulation techniques, such as the Markov Chain Monte Carlo (MCMC) family of

algorithms, are used to numerically approximate the quantities of interest. Bayesian meth-

ods are often computationally and time demanding despite the advances in technological

infrastructure. A lot of research has been done towards the development of strategies

that can alleviate potential memory and processing constraints associated with Bayesian

methods. Some scaling methodologies focus more on improving the algorithmic steps and

reformulating the mathematical background of these methods. Other approaches empha-

sise using modern technological resources to distribute the computational workload and

render Bayesian simulation techniques more efficient.

Scalability is a term broadly used with an interpretation that slightly varies depending

on the field and context. In the regime of combining statistical modelling with computing

science, scalability can be expressed as the ability of a system to adapt to more complex

models and increased data size and dynamically take advantage of the available technol-

ogy to efficiently capture the structure of data. Developing and implementing scalable and
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multi-processor algorithms is a challenge since it requires knowledge of both the problem

domain and the development tools. Well-designed programs can achieve scalability irre-

spective of the choice of programming language. However, some programming paradigms

and language-specific features can render scalability an easier and more efficient task than

others. One example is functional programming, which has become more popular in re-

cent years. The functional approach suggests that programs should be built by composing

smaller functions that do not use or modify shared global states and do not have side-

effects. Using pure functions of this type facilitates the design and implementation of

large-scale projects by ensuring that scalability will be less prone to errors.

The main objective of this research project is to explore whether and how Bayesian

inference used for hierarchical models can become more scalable with the use of functional

programming and more specifically the Scala programming language. In particular we

focus on the Gibbs sampler, a Markov Chain Monte Carlo algorithm commonly used for

Bayesian statistical inference. The main model explored is a variation of a classic two-

way Anova. It involves two categorical explanatory variables with various levels, and

their corresponding interactions on which we apply variable selection using two Bayesian

techniques, variable selection indicators and adaptive shrinkage priors. In addition, we

account for different levels of symmetry in the effects, according to the rationale behind

the experiment of our case study which is related to yeast genomics. Bayesian hierarchical

modelling has a wide range of applications, and efficient sampling processes can facilitate

faster exploration of alternative models and statistical learning.

The remainder of this thesis is structured as follows. Chapter 2 presents some funda-

mental terms and concepts used in Bayesian statistics. After explaining Bayes’ rule, which

is the core of the Bayesian framework, we show how integration can lead to analytically in-

tractable calculations. We then present the Markov Chain Monte Carlo class of algorithms

that overcome this problem using repetitive sampling to approximate the distributions of

interest. Additionally, we introduce a specific type of models, the hierarchical models on

which we focus in this thesis. The chapter ends with presentation of variable selection

methods and model comparison techniques used in the Bayesian paradigm that will be

applied in later chapters.

Chapter 3 aims to introduce the two-way Anova models that tend to be quite complex

when they include interactions of the multi-level categorical variables involved. Bayesian

variable selection on the interaction effects can be then incorporated in the models to

impose dimensionality reduction using a Gibbs sampler, a particular MCMC algorithm

that draws samples from the full conditional distributions of the unknown parameters to

approximate their posterior distributions. Two alternative variable selection techniques

are explored, variable selection using indicators and in particular the Kuo and Mallick

approach, and the Horseshoe prior that belongs in the category of adaptive shrinkage pri-
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ors. Both models additionally account for four variations of symmetry in the effects, main

and/or interaction effects being symmetric/asymmetric. We show how the full conditionals

are calculated for these models, and build the statistical and mathematical background

in order to develop, from the ground up, a Gibbs sampler in Scala under the specific

modelling assumptions considered.

Chapter 4 provides a literature review to show why scaling Bayesian inference methods

can be challenging. It presents the main tendencies among the scaling strategies that aim

to make MCMC techniques more efficient and can be categorised to subsampling and

divide-and-conquer techniques. A discussion of some methods that fall into each category

aims to show commonalities and limitations.

Chapter 5 is devoted to functional programming in Scala, since this is the programming

paradigm and language in which we chose to explore the deployment of Bayesian tech-

niques. After highlighting some important aspects of this programming approach, that

were taken into consideration during the development of the relevant code, we present some

principal ideas of category theory that are embedded in some functional programming fea-

tures to allow code re-usability. In the last section of this chapter, we see how probabilistic

programming used for inference problems can be linked to functional programming.

In order to be able to evaluate the results and performance of the Gibbs sampler devel-

oped in Scala we implemented a Gibbs sampler for the same models in the long-established

probabilistic programming language (PPL) JAGS (Just Another Gibbs Sampler) using R.

Initially, variable selection was implemented using the indicators method along with the

Gibbs sampler in both languages. Further exploration of the Horseshoe prior technique led

to the development of the equivalent version for the two implementations. However, the

Horseshoe prior approach is mainly intended to be used with MCMC algorithms that, due

to their nature, do not support discrete variables and therefore cannot implement variable

selection with discrete indicators, such as Hamiltonian Monte Carlo (HMC). Consequently,

two additional implementations were explored using the R library of another well-known

PPL, Stan, and Rainier, a probabilistic library in Scala, that both use HMC. Chapter

6 presents the implementational details of Bayesian hierarchical modelling for the alter-

native tools mentioned above, with emphasis placed on the Gibbs sampler developed in

Scala, also referred to as TWIiS (Two-way Interactions in Scala). The latter constitutes

a part of the project that a significant amount of time and work was devoted to, and for

which we further developed a parallel version.

Chapter 7 presents the outcome of a simulation study used to illustrate, through exam-

ples with synthetic datasets, the application and results of the methodologies considered,

as well as provide efficiency comparisons among them. The main focus is placed on JAGS

and TWIiS. However, smaller examples are also considered for Stan and Rainier. After

presenting how the simulation process was designed and the posterior analysis steps we
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followed, we firstly explore the models that use variable selection indicators and then we

examine the alternative models with the Horseshoe priors. For each approach we explore

three examples with varying complexity and data size to test their impact on the results

and efficiency. An integrated comparison between JAGS and TWIiS for both variable

selection techniques is presented in the last section of this chapter that aims to identify

the most suitable and efficient approach for the models of interest.

Since the case study explored in this project is relevant to yeast genomic research,

Chapter 8 is dedicated to setting the biological background and explaining the nature

of the experiment that the main dataset derives from. MiniQFA (Quantitative Fitness

Analysis) is an experiment conducted by the Institute for Cell and Molecular Biosciences

of Newcastle University and is relevant to telomere biology. Telomeres are DNA sequences

located at the ends of the chromosomes that protect the molecule during cell division.

Telomere shortening and defects are part both of natural degradation and mutations. In

miniQFA, scientists apply certain temperature sensitive mutations to yeast strains along

with pair-wise gene deletions. Then, they record the colonies’ growth and calculate their

fitness. The aim is to use the available data and explore genetic interactions between the

two deleted genes and particular mutations. Bayesian hierarchical modelling and variable

selection can be used to highlight genetic interactions.

Chapter 9 presents the results of using TWIiS for fitting Bayesian hierarchical mod-

els to the miniQFA dataset. Various models with certain specifications and experimental

conditions are explored and result in identification of pair-wise gene deletions that ap-

pear to interact with the telomere capping defect. The results are summarised through

genetic interaction plots that illustrate which interactions cause phenotypic enhancement,

suppression or have no impact on the biological phenomenon examined.

Finally, Chapter 10 considers the contribution of this thesis, summarises our main

conclusions and suggests topics for future work.
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Chapter 2

Bayesian inference and

computation

Statistical inference is the process of using data, usually a sample of a population, in

order to understand the underlying process and parameters that generated them, and

consequently, deduce the characteristics of the population. Bayesian statistics, named after

Thomas Bayes, is the field of statistics established on the principle that our uncertainty

about an event occurring is expressed by probability, that can be updated under the light

of new information.

In the following sections we are going to define some fundamental terms and concepts

used in Bayesian inference. We will present the role of the Markov Chain Monte Carlo

family of algorithms, and show why they are important in the Bayesian framework. Fur-

thermore, we will introduce the concept of hierarchical models, Bayesian variable selection,

and model comparison.

Sections 2.1 and 2.2, unless declared otherwise, are based on the following four com-

prehensive textbooks. Bayesian Data analysis, by Gelman et al. (2013), A First Course

in Bayesian Statistical Methods, by Hoff (2009) and A Student’s Guide to Bayesian Statis-

tics, by Lambert (2018) that present in-depth the Bayesian framework, and Markov chain

Monte Carlo: stochastic simulation for Bayesian inference by Gamerman and Lopes

(2006) that provides a detailed guide to Markov Chain Monte Carlo methods for Bayesian

statistics.

2.1 Key points of Bayesian inference

The fundamental formula of Bayesian logic is Bayes’ rule. In order to build the theoretical

background of Bayesian statistics, we will see how integration, which is involved in the

theorem, can complicate calculations. In addition, we will explore ways to tackle this
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difficulty and facilitate the process of Bayesian learning.

2.1.1 Introductory terms in Bayesian statistics

In probability theory, the aim is to describe the behaviour of random variables. In the

Bayesian framework all unknown quantities of interest are treated as random variables and

uncertainty is expressed using probability. With every value of a random variable there

is an associated numerical value, defining the probability of this event occurring. The

functions that describe how these probabilities are distributed over all possible outcomes

are called probability distributions. Discrete distributions encode probabilities by a proba-

bility mass function (pmf), which gives the probability that the variable is exactly equal

to some value. For continuous random variables the probability distribution is associated

with a probability density function (pdf) which represents the probability that a variable

lies within an interval of possible values, since the probability of a random variable being

exactly equal to some value in the continuous space is zero. There are two conditions that

have to be satisfied for a probability distribution to be proper:

� The values of the distribution must be real and positive.

� The overall probability must be 1. Hence, for discrete random variables, the sum

of all probabilities must be 1. For continuous random variables, the integral of the

probability density function must be 1.

In order to understand Bayesian inference and how its core theorem derives, it is

important to clarify some rules of probability. Given two events A and B, the probability

of both events occurring is denoted as p(A ∩B) or p(A,B) and is called joint probability.

The probability of event A (p(A)) occurring irrespective of the outcome of B is the marginal

probability of A. In addition, the probability of event A occurring given that B has already

happened is called the conditional probability of A given B and is quantified as:

p(A|B) =
p(A,B)

p(B)
. (2.1)

The joint probability is commutative so p(A,B) = p(B,A), and rearranging the terms of

2.1 results in:

p(A|B)× p(B) = p(A,B) = p(B,A) = p(B|A)× p(A). (2.2)

So,

p(A|B) =
p(B|A)× p(A)

p(B)
. (2.3)
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The last equation (2.3) is Bayes’ theorem, which is the principal formula used in Bayesian

statistics. In the following section we will reintroduce Bayes’ rule in the inference frame-

work.

2.1.2 Bayes’ rule and an example of Bayesian modelling

In Bayesian learning, similarly to general statistical induction, the aim is to learn about

the characteristics of a population from a subset of that population, the sample. Out of

all possible datasets Y , that are numerical descriptions of the subsets of that population,

we obtain a single dataset y, and out of all possible parameter values from the parameter

space Θ, we want to identify the parameter/parameters (θ/θ) that best describe the true

population characteristics.

2.1.2.1 Bayes’ rule

The core idea of Bayesian statistics is the use of probability distributions to indicate our

uncertainty about the unknown parameters and the underlying model. Therefore, our

beliefs about y and θ are expressed through probability distributions. Models are charac-

terised by their set of parameters, variations of which can change the system behaviour.

Before the data are observed our beliefs about the unknown parameter θ are expressed

through a parameter prior distribution p(θ), and after the data y are observed a parameter

posterior distribution is specified as p(θ|y).

Formula 2.3 was not only the definition of the conditional probability of A given B,

but also, a first definition of Bayes’ rule. Incorporating the unknown parameter θ in place

of A and conditioning on the data y results in the classical form of Bayes’ rule used for

inference as shown in 2.4.

Posterior
dist.︷ ︸︸ ︷
p(θ|y) =

Likelihood︷ ︸︸ ︷
p(y|θ) ×

Prior
dist.︷︸︸︷
p(θ)

p(y)︸︷︷︸
Normalising

factor

. (2.4)

In the Bayesian paradigm, as we can also see in 2.4, there are three main levels of

uncertainty, in the form of the prior distribution, the likelihood/sampling model and the

posterior distribution. So, the building blocks of Bayes’ rule, considering a simple case

with one unknown variable θ, are:

� The prior distribution p(θ) describes our belief that θ is the true value of the popula-

tion characteristics that we want to estimate. It represents our uncertainty about the

true parameter value before observing the data. Depending on our knowledge about
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the process we try to model, the prior distributions assigned can be uninformative,

weakly informative or informative. The choice of prior distributions determines to

a degree the extent of the impact of our pre-existing beliefs, and of the data sample

itself, to the posterior distribution.

� The likelihood is a function of the parameter θ with the data y being fixed. There

is a double notation for it, with the two terms, L(θ|y) = p(y|θ), being often used

interchangeably. The left side is the likelihood of θ for a particular data sample. The

right side, also known as sampling density, is the probability of this data occurring

for any value of θ, since θ varies. Hence, the likelihood describes our belief that

y would be the outcome if we knew that θ was the true value. The likelihood is

not a proper probability distribution, it does not sum (for discrete) or integrate (for

continuous) to one. To determine the likelihood for a particular problem a known

distribution that best satisfies the assumptions about the data generating process is

selected.

� The posterior distribution p(θ|y) describes our belief that θ is the true value after

observing the data. It represents the fact that our beliefs about θ are updated under

the light of new information. The posterior distribution is perceived as a weighted

average of the prior and the likelihood. Often, for interpretational reasons, posterior

distributions are described by their summary estimates or credible intervals. Fur-

thermore, when new information is available, posterior distributions can be used as

priors for a new Bayesian analysis.

� The normalising factor at the denominator is the term that ensures that the posterior

probability is actually a proper distribution. The numerator’s sum or integral over

all parameter values is not necessarily equal to one. So, the denominator is the value

of this sum or integral and normalises the numerator. If we denote the posterior

space with Θ, there are two cases for p(θ):

p(y) =


∑
Θ

p(y, θ) =
∑
Θ

p(y|θ)× p(θ), if θ is discrete

∫
Θ

p(y, θ)dθ =
∫
Θ

p(y|θ)× p(θ)dθ, if θ is continuous.

(2.5)

Another way to consider the denominator is as a marginal distribution of the joint

density of data and θ, where we have marginalised out all the dependence on the

unknown parameter. Then, p(y) represents a probability distribution for the possible

data samples, given a model choice, before we observe a specific sample.

The posterior distribution returned from Bayes’ rule (2.4), contains information about
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the whole geometry of the distribution. Sometimes, we might only be interested in the

shape of the posterior, for example if we want to know the relative posterior density of two

points. Then, Bayes’ rule can be written in terms of proportionality to the numerator,

which defines the shape, since the denominator does not depend on θ. This form of

posterior is called un-normalised and is defined as:

p(θ|y) ∝ p(y|θ)× p(θ),

Posterior ∝ Likelihood× Prior.
(2.6)

2.1.2.2 A simple example of Bayesian modelling

As a simple example of the Bayesian paradigm we consider an unfair coin toss experiment,

under the initial assumption that there is a probability density over the true probability

of heads with mean µ = 0.7 and variance σ2 = 0.1. Suppose that we are interested in

the probability of heads, denoted as θ. In order to use Bayes’ rule we apply the following

steps:

Step 1: Define the prior distributions of the unknown parameter.

First, we define the prior distribution by which we express our beliefs about the unknown

parameter based on previous experience. We use a Beta distribution which is defined

in the interval [0,1] by two shape parameters that are positive and denoted by α and

β. Parameter α is related to the number of heads and β to the number of tails, so

p(θ) ∼ B(α, β) . The probability density function of Beta is:

p(θ|α, β) =
θα−1(1− θ)β−1

B(α, β)

∝ θα−1(1− θ)β−1.
(2.7)

We can estimate the hyperparameters α and β from µ = α
α+β and σ2 = αβ

(α+β)2(α+β+1)
. So

in our example, α = 13.69 and β = 5.87 and the prior p(θ) ∼ B(13.69, 5.87).

Step 2: Define the likelihood/sampling model for the data.

The likelihood for flipping the coin several times is expressed in terms of a Binomial

distribution since this distribution is used when dealing with a sequence of n independent

experiments, Bernoulli trials, with an expected outcome of either success or failure. Hence,

the likelihood is Bin(H|n, θ), with H denoting the number of heads and n the repetitions

of the experiment.
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The Binomial likelihood is:

p(H|n, θ) =

(
n

H

)
θH(1− θ)n−H

∝ θH(1− θ)n−H .
(2.8)

Step 3: Define the posterior distributions of the unknown parameter.

We apply Bayes’ theorem (2.4) to update our beliefs about the parameter θ and derive

the posterior distribution.

p(θ|H,n) =
p(θ)p(H|n, θ)
p(n,H)

=
p(θ)Bin(H|n, θ)∫ 1
0 p(H,n|θ)p(θ)dθ

∝ θa−1(1− θ)β−1θH(1− θ)n−H

∝ θH+a−1(1− θ)n−H+b−1.

So, the posterior distribution p(θ|H,n) is a Beta distribution B(H + α, n−H + β).

Suppose that we flip a coin 200 times and we observe 120 heads. The prior is

p(θ) ∼ B(13.69, 5.87) and based on the third step, the posterior becomes p(θ|H) ∼
B(133.69, 85.87). A graphical representation of the prior and the posterior distributions

of this example is shown in Figure 2.1.

Figure 2.1: Prior and posterior distributions for the biased coin toss example

If a new experiment is run, the new posterior distribution can be formulated by using

the previous posterior as a prior distribution and by simply incorporating the new infor-

mation into the model by adding the new number of “successes/heads” and “failures/tails”
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to α and β as in the previous example.

2.1.3 Integration

In the typical case of continuous parameters the Bayesian paradigm is based on integration.

It is an important part of the estimation of posterior distributions and measurement of

uncertainty, as well as of the prediction procedure and model comparison (Angelino et al.,

2016).

When the unknown parameter is continuous the calculation of the denominator of

Bayes’ rule (2.5) involves solving an integral to marginalise the dependence on the un-

known parameters out of the joint distribution. In the simple case we only consider

one continuous parameter. However, real life problems are usually set in a multidimen-

sional space and involve both continuous and discrete variables. Then, the integral in

the denominator becomes high-dimensional. In many cases, exact integration is difficult,

computationally intensive in big data problems or even analytically intractable. Calculat-

ing summary statistics of high-dimensional distributions can also require calculations of

complex integrals.

In the Bayesian framework there are two main ways to overcome this difficulty. The

first is the use of conjugate priors that lead to posterior distributions of known forms. The

second is using approximation algorithms, such as the Markov Chain Monte Carlo family,

which are often adopted since they use an empirical distribution estimated as the target

posterior distribution and they avoid calculating complex integrals. These concepts will

be further explained in Sections 2.1.4 and 2.2 respectively.

2.1.4 Conjugate prior distributions

One way to overcome the difficulty of calculating multidimensional integrals to get poste-

rior distributions is to use pairs of likelihood and prior distributions whose combinations

have convenient properties and lead to predetermined posterior distributions of known

forms. These priors that can be combined with specific likelihoods and result in posteri-

ors that are fixed and belong in the same family of distributions as the prior are called

conjugate priors. Conjugacy is a property mentioned quite often in Bayesian statistics.

Definition. If F is a class of sampling distributions p(y|θ), and P is a class of prior

distributions for θ, then the class P is conjugate for F if

p(θ|y) ∈ P for all p(·|θ) ∈ F and p(·) ∈ P (Gelman et al., 2013).

In the example of the coin toss presented in Section 2.1.2.2, using a Binomial likelihood

with a Beta prior distribution led to a Beta posterior distribution. Beta distribution is a

known conjugate prior for the Binomial distribution.

11
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Conjugate priors can lead to simplified calculations and faster Bayesian updates. How-

ever, they restrict the prior-likelihood pairs available, hence they are not ideal for all

problems and particularly for large and complex models.

2.2 Markov Chain Monte Carlo

Bayes’ rule, which is at the epicentre of the Bayesian paradigm, requires evaluation of

multidimensional integrals that arise in the denominator, in order to acquire a proper

posterior distribution. For complex problems, these integrals are difficult to calculate.

Summarising the posterior distribution with moments, such as the expectation E[X] of a

random variable X, also requires solving often intractable integrals. The Markov Chain

Monte Carlo (MCMC) class of algorithms aims to overcome this problem by approximating

the target posterior distribution through repetitive sampling.

The idea behind MCMC is to draw samples from the target density and compute the

average of the set of samples {θ(i)}ni=0. Based on the “Strong law of large numbers” the

sample average converges to the expectation µ, as the number of samples tends to infinity,

n →∞. This set is a discrete time stochastic process where i represents the time points.

The state space S is such that θ(i) ∈ S and can be either continuous or discrete. At each

time point, the generated sample θ(i) depends only on its previous state, so the series of

samples forms a first order Markov Chain.

Definition. A first order Markov chain is a stochastic process with the property that

the future states are independent of the past states given the present state i. For A ⊆ S,

where S ⊂ R,

P (θ(i+1) ∈ A|θ(i) = xi, ..., θ
(0) = x0) = P (x(i+1) ∈ A|θ(i) = xi), ∀x ∈ S.

If this property is independent of time and holds ∀i the Markov chain is called homoge-

neous. In the case of discrete θ with finite state space, P is the transition matrix containing

the probabilities of moving from a point x(i) to the point x(i+1). So,

P (x, y) = P (θ(i+1) = y|θ(i) = x).

In the continuous case, P is a transition kernel with the conditional cumulative distribution

function defined by

P (x, y) = P (θ(i+1) ≤ y|θ(i) = x),

and the corresponding conditional density is

p(x, y) =
∂

∂y
P (x, y), ∀x, y ∈ S.

12
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When a Markov chain runs for a sufficiently long time and results in points of which

the probability distribution remains unchanged as time progresses, the chain has reached

its stationary or equilibrium distribution. Not all Markov Chains have stationary distri-

butions, but all Markov chains that are used in MCMC algorithms do.

Definition. A distribution π is called a stationary distribution of a homogeneous Markov

chain with transition matrix P if

π(y) =
∑
S

π(x)P (x, y)⇔ π = πP for discrete state space,

π(y) =

∫
S
π(x)p(x, y)dx for continuous state space.

In MCMC methods the desired stationary distribution is the posterior distribution that

we cannot calculate analytically.

Convergence of Markov chains and validation of their fundamental properties are tech-

nical topics explained in detail in plenty of literature resources, for example see Gamerman

and Lopes (2006). Here, we will refer to two important properties of the Markov chains

called reversibility and the detailed balance criterion.

Definition. A Markov chain θ(0), θ(1), ..., θ(n) is reversible if the reversed sequence of

states, θ(n), θ(n−1), ..., θ(0), which is also a Markov chain, retains the same transition ker-

nel at stationarity.

When a chain is reversible and has reached its stationary distribution, in the discrete state

space, the transition matrix of the reversed chain is the same as the transition matrix of

the forward chain. Equivalently, the density forms of the transition kernel for both chains

are the same in the continuous space.

Definition. The detailed balance criterion is held when the equations P (θk+1|θk)π(θk) =

P (θk|θk+1)π(θk+1) are satisfied for a target distribution π(θ).

Hence, the joint density of a transition from a point θk+1 to θk, is the same as the joint

density of the opposite transition θk → θk+1. If the detailed balance condition is held, it

can be shown that the target distribution is the stationary and that the chain is reversible.

These properties also apply when multiple chains are used during the MCMC simulation.

There are several variations of MCMC algorithms and the choice of the appropriate

method is based on the problem and the application area. Some of the most widely used

are the Metropolis–Hastings (MH), the Gibbs sampler and the Hamiltonian Monte Carlo.

Over the next parts of this section, we will present these three predominant algorithms

and examine the methods used in evaluating their convergence. Finally, we will discuss

the role of using a burn-in period and thinning.

13
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2.2.1 Random walk Metropolis and Metropolis–Hastings

One of the most commonly used MCMC algorithms, is the Metropolis–Hastings. We will

begin by introducing the most basic form of the routine, the “Random walk Metropolis”.

Random walk Metropolis is a way to generate N number of samples from the posterior

distribution by using the un-normalised density, the numerator of Bayes’ rule. The aim

is that the sampler, starting from a random point drawn from an initial distribution, will

explore adequately the whole posterior space. In addition, based on the shape of the

distribution defined by the product of the likelihood and the prior, the frequency of the

sampled points will be proportional to the values of the posterior distribution. Therefore,

values at the peaks of the distribution will be sampled more often than values at the other

parts.

Algorithm 1 provides the details of the basic Metropolis algorithm, supposing that θ

is the parameter of interest that we want to estimate.

Algorithm 1 The Metropolis algorithm

1. Sample θ0 from a starting distribution θ0 ∼ π(θ).

2. for iteration t = 1 to N , do

a. Sample a new position to step θ∗ from a proposal distribution at time t,

J(θ∗|θt−1)
b. Calculate the acceptance ratio r = p(θ∗|y)

p(θt−1|y)
c. Sample u ∼ Uniform(0, 1)

d. if u < r then

Accept the proposal: θt ← θ∗ with probability min(1,r)

else

Reject the proposal: θt ← θt−1

end if

end for

The first step creates an initial point, sampled from a starting distribution π(θ). The

second step involves numerous iterations, N . At each iteration, a new position is sampled

from the proposal, also known as jumping, distribution J (step 2a). The acceptance rate

is calculated using the ratio of the product of the prior and the likelihood evaluated at

the new proposed value over the previous (step 2b). If the proposed value has less relative

height than the old, r becomes less than 1. Next, we probabilistically decide whether we

will accept the new value with probability r. We sample a random value u from a Uniform

distribution (step 2c) and by comparing u to r (step 2d) the proposed value is either

accepted or rejected. If the new value has a higher or equal relative height than the old, r
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becomes greater or equal to 1, and after steps c and d, the proposed value is accepted with

probability 1. Following the same steps, the algorithm can extend to a large number of

parameters, where each parameter will have its own proposal distribution. Furthermore,

the same process applies at each chain when multiple chains are used. However, it is

important to initialise each chain at dispersed parts of the parameter space.

The above algorithm works when the proposal distribution at step 2, is symmetric, so

that the probability J(θt|θt−1) = J(θt−1|θt). This property allows the sampler to reverse

its previous step in the parameter space. In the Metropolis algorithm the jumping kernel

is usually a normal distribution centred around the current point N(θt−1, σ
2) with the

variance σ2 determining the step size of the jumping rule. This step size is also called the

tuning parameter and should be optimised, for the algorithm to explore adequately and

efficiently the parameter space. If σ2 is small a lot of steps are accepted and the process is

time consuming. On the other hand, a big step size leads to numerous low probability pro-

posals and inefficient exploration of the parameter space. Therefore, the optimal stepsize

should not only propose values that tend to be accepted within a reasonable amount of

time, but also, it should let the algorithm move to relatively long distances in the param-

eter space. It is mentioned in the literature that a step size that results to an acceptance

rate approximately 0.44 is considered to be a good jumping step for univariate (Roberts

and Rosenthal, 2009) and 0.23 for multivariate proposals (Roberts et al., 1997).

The Metropolis algorithm can be used when the proposal distribution is symmet-

ric. However, when the symmetry is violated, the sampler can lead to biased samples.

Occasions when the nature of the parameters would require an asymmetric proposal dis-

tribution, such as a log-Normal, could be to achieve skewness towards higher values, or

impose some other constraints, e.g. only positive values. Hence there is a need for an

algorithm that can handle the asymmetry.

The Metropolis–Hastings algorithm, is a generalisation of the simple Metropolis algo-

rithm that allows for the use of asymmetric proposal densities and overcomes the problems

arising with the basic Metropolis when the distributions are not symmetric. It can also

be used when a conjugate prior is unavailable. The Metropolis–Hastings has the same

logic as the Metropolis, except for adapting the acceptance ratio in order to correct the

asymmetry. An extra fraction is used in the acceptance ratio estimated in the second step

of the basic Metropolis algorithm (Algorithm 1, step 2b), to correct for the asymmetry in

the jumping rule. The acceptance ratio r becomes

r =
p(θ∗|y)

p(θt−1|y)
× J(θt−1|θ∗)
J(θ∗|θt−1)

. (2.9)

J(θt−1|θ∗) is the probability that we start at θ∗ and move to θt−1 and J(θ∗|θt−1) is the

probability that we start at θt−1 and jump to θ∗. The transition kernel, or transition
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distribution T , at time t, is then T (θt|θt−1) = J(θt|θt−1)α(θt−1, θt). It is, therefore, a

mixture of the jumping distribution with a point mass at θt−1, weighted by the acceptance

rate.

It is interesting to see how the detailed balance criterion is fulfilled in the case of

Metropolis–Hastings, and how the empirical distribution of the produced samples θ0, . . . , θN

approaches the target posterior distribution.

At every step denoted by t, with θt representing the value of θ at the beginning of the

step and θt+1 denoting the value at the end of the step, the detailed balance condition for a

parameter θ, if P (θ) is its stationary distribution, is T (θt+1|θt)P (θt) = T (θt|θt+1)P (θt+1).

For the Metropolis–Hastings we want to check whether the posterior distribution p(θ|y)

is the stationary distribution, so we want to check

T (θt+1|θt)p(θt|y) = T (θt|θt+1)p(θt+1|y). (2.10)

Given that

T (θt+1|θt) = J(θt+1|θt)α(θt, θt+1),

and that acceptance probability a(θt, θ
∗) for a proposed value θ∗ is defined as

a(θt, θ
∗) = min

(
1,
p(θ∗|y)J(θt|θ∗)
p(θt|y)J(θ∗|θt)

)
,

then at any step there are two possible outcomes; either the proposal θ∗ is accepted and

θt+1 = θ∗, hence θt+1 6= θt with transition density T (θt+1|θt), or the proposal is rejected,

and θt+1 = θt, with transition probability T (θt|θt). The density of the first outcome is:

T (θt+1|θt) = J(θt+1|θt)a(θt, θt+1)

= J(θ∗|θt)a(θt, θ
∗).

The probability of the second outcome, where the chain remains at θ is given by

T (θt|θt) = 1−
∫
θ∗
J(θ∗|θt)a(θt, θ

∗)dθ∗,

where the right side of the equation is the probability of rejection, thus one minus the

probability that the chain moves to the proposed value θ∗. In that case, since θt+1 = θt,

the detailed balance criterion is therefore fulfilled (Gamerman and Lopes, 2006).

In the first case, where we accept the proposal and θt+1 6= θt, the detailed balance
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condition is again satisfied since

T (θt+1|θt)p(θt|y) = p(θt|y)J(θt+1|θt)min
(

1,
p(θt+1|y)J(θt|θt+1)

p(θt|y)J(θt+1|θt)

)
= min (p(θt|y)J(θt+1|θt), p(θt|y)J(θt+1|θt))

= T (θt|θt+1)p(θt+1|y).

So, the detailed balance criterion 2.10 is fulfilled and P (θ) = p(θ|y) is a stationary

distribution.

The Random walk Metropolis and the Metropolis–Hastings are frequently used as

they can be applied to a broad spectrum of problems. However, they involve a number of

rejections. A special case of a Metropolis–Hastings update is called Gibbs update and is

always accepted. The Gibbs sampler that uses a Gibbs update can be applied in a wide

range of problems, and will be presented in the following part.

2.2.2 Gibbs sampler

The Gibbs sampler is another iterative algorithm of the Markov Chain Monte Carlo fam-

ily that uses sampling to approximate the target posterior distribution. As opposed to

Metropolis–Hastings, the proposed values of this algorithm always have an acceptance

probability of one. It can be used when the available prior distributions are semi-conjugate.

It is based on sampling from the full conditional distribution of every parameter, which

is the probability distribution of the parameter conditioned on the values of all the other

unknown variables. Analytical calculation is required to extract the full conditional dis-

tributions, which can be difficult for large and complex models.

Supposing that:

� θ is the vector of parameters for which we want to estimate the posterior distribution:

θ = {θ1, ..., θp},

� y is the vector of data y = {y1, ..., yn},

� the joint posterior probability of interest is: p(θ1, ..., θp|y1, ..., yn),

the Gibbs sampler algorithm is defined as follows:
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Algorithm 2 Gibbs sampler

1. Choose a starting point θ(0) = {θ1(0), ..., θp(0)}

2. for iteration i = 1 to N , do

1. sample θ1
(i) from p

(
θ1|θ2(i−1), θ2(i−1), ..., θp(i−1), y

)
2. sample θ2

(i) from p
(
θ2|θ1(i), θ3(i−1), ..., θp(i−1), y

)
...

p. sample θp
(i) from p

(
θp|θ1(i), θ2(i), ..., θp−1(i), y

)
end for

Starting at a random point for all variables, at every iteration we sample a value for

each parameter from its full conditional distribution, using the latest up-to-date variable

values when needed. The result of each iteration i is a vector with the updated values for

all the parameters θ(i) = {θ1(i), ..., θp(i)}. Consequently, the result after N iterations of

the Gibbs sampler is a Markov chain of N dependent sequences of vectors of the estimated

parameters, where each sequence θ(i) depends directly only on its previous one θ(i−1). The

sampling distribution of θ(n) approaches the target distribution and it is proved that for

the Gibbs sampler, each component satisfies the detailed balance criterion, even though

the full sampler does not.

Usually, in a Gibbs sampler unknown parameters of high-dimensional problems are

updated singly and sequentially. However, it is possible to identify relations and potential

dependencies between parameters, group them and update them simultaneously in blocks.

This tactic can lead to faster mixing and better performance.

There are statistical problems where some full conditionals do not belong to known

families of distributions. When we use a Gibbs sampler and some variables have full

conditionals that follow a distribution of a non-standard form, it is a common practice

to use Metropolis steps for updating these parameters, and standard Gibbs steps for the

ones which the full conditionals can be sampled directly. This combination of the two

algorithms is known as Metropolis-within-Gibbs.

Even though Metropolis–Hastings and the Gibbs sampler are popular choices among

MCMC algorithms, they can sometimes explore inefficiently the posterior space. Hamil-

tonian Monte Carlo is the next algorithm that we examine. It tends to explore more areas

of high probability density and therefore is considered to be more efficient than the other

approaches.
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2.2.3 Hamiltonian Monte Carlo

At the core of Bayesian statistics is computing expectations of functions of interest, usually

of joint posterior distributions, using integration. Since these integrals tend to be difficult

and complex to solve, due to the nature of the target distributions, we tend to use numerical

approximations to evaluate them. Ideally, we would like these approximations to focus on

the parts of the function that contribute more to the expectations, rather than at every

part of it. MH and the Gibbs sampler show a random walk behaviour in their updates. An

algorithm that would suppress the local random walk behaviour by taking into account

the geometry of the posterior distribution could be more efficient in some problems than

its counterparts.

Hamiltonian Monte Carlo (HMC) is an algorithm that belongs in the Monte Carlo

family and it constitutes a special case of MH. HMC is inspired by an area of physics

known as Hamiltonian dynamics. Usually, when presenting HMC analogies to physical

systems are used in order to make the notion behind the algorithm more comprehensible.

Therefore, the mathematical concept of the algorithm is also equivalent to the physical

system of a planet and its gravitational field, and the orbit of other planets and objects

moving around it. It can be conceptualised using a vector field were the vectors have the

appropriate direction, in an analogous way to the orbits of objects around a planet, they

are pulled by gravity but also at the same time they do not crash on the planet due to

their momentum. The typical set, which is the area where the probability mass lies, is

then a trajectory around the mode, in the same way as there is a physical trajectory of

the object around the planet (Betancourt, 2018a).

One of the main ideas behind HMC is that instead of the typical posterior space

considered in other MCMC algorithms, we use the negative logarithmic transformation

of it. This space is called negative log of the un-normalised posterior density. Hence, the

peaks of the initial posterior space become the lowest parts of the transformed posterior

space. Due to “gravitational” forces the sampler will spend more time in these low areas

that actually have more probability mass concentrated. Also, due to a ”momentum”

variable it will be able to explore the other parts of the posterior space.

HMC starts every iteration by adding a corresponding momentum m, with m ∼
MVN(0,M), to every parameter θ, so that θ → (m, θ), resulting to an extended pa-

rameter space. Then, the target posterior distribution is lifted to include the momenta

p(y, θ) → p(m, y, θ) = p(m|θ, y)p(y|θ)p(θ). Next, HMC defines the Hamiltonian function
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(H) from the joint density over the extended parameter space.

H(m, θ) = − log π(m, θ, y)

= − log p(m|θ, y)︸ ︷︷ ︸
T

“kinetic energy”

− log p(y|θ)p(θ)︸ ︷︷ ︸
V

“potential energy”

.

The kinetic energy is not specified by the target density, as happens with the potential

energy. It is the tuning parameter. Therefore some choices of kinetic energy are more

effective than others. The best choice of the kinetic energy factor is an issue that the

latest research in the field of HMC, is trying to explore and tackle.

From the Hamiltonian function, the joint system (θ,m) is evolved via Hamilton’s

equations (Stan, 2019c; Neal, 2012):

dθ

dt
= +

∂H

∂m
= +

∂T

∂m

dm

dt
= −∂H

∂θ
= −∂T

∂θ
− ∂V

∂θ
.

Since the momentum density is independent of the target density, the momentum time

derivative is zero ∂T
∂θ = 0, thus the pair time derivatives become:

dθ

dt
= +

∂T

∂m
and

dm

dt
= −∂V

∂θ
.

This system of differential equations can be numerically approximated using a numeri-

cal integrator, such as the Leapfrog integrator which is specifically adapted for Hamiltonian

systems and takes discrete steps with a time interval ε. Leapfrog generates the vector field

which will show the sampler where the typical set is, and will allow it to move along this

typical set and explore the parameter space. In other words it is the path that the sampler

has to follow. At each step of the Leapfrog algorithm, the momentum m, initialised from

an independent draw m ∼ MVN(0,M), gets updated twice, and the position θ is up-

dated once. The result of L repetitions is a pair (m∗, θ∗) that is then used in a Metropolis

acceptance step.

The last part is the Metropolis acceptance step and it is very important. By applying

the acceptance step, we account for numerical errors produced by the imperfect Leapfrog

integrator. The probability of keeping the proposal (m∗, θ∗) generated by transitioning

from the previous values (m, θ) is defined as:

min(1, exp(H(m, θ)−H(m∗, θ∗)).
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After exploring the parameter space using the trajectories we can project down to the

original parameter space that defines the next value of the parameter θ.

The idea behind Hamiltonian Monte Carlo, as well as the Leapfrog integrator, is pre-

sented with algorithmic steps in the following description:

Algorithm 3 Leapfrog Integrator

for iteration i = 1 to L, do

1. m ∼MVN(0,M)

2. m← m− ε
2
∂V
∂θ

3. θ ← θ + εM−1m

4. m← m− ε
2
∂V
∂θ

end for

From all the L steps create the proposal: (m∗, θ∗)

Algorithm 4 Hamiltonian Monte Carlo

If θ represents the set of parameters,

for iteration i = 1 to N , do

1. Add a momentum for every θ, so that θ → (m, θ),

m ∼MVN(0,M)

2. Use the joint density to find Hamilton’s equations:

dθ

dt
= +

∂T

∂m
and

dm

dt
= −∂V

∂θ

3. Using L steps of the leapfrog integrator, solve the two-state differential equa-

tion to get the resulting state (m∗, θ∗)

4. Accept or reject the proposal (m∗, θ∗) with probability:

π(accept) = min(1, exp(H(m, θ)−H(m∗, θ∗))

end for

It is proven that the algorithm preserves detailed balance (Gelman et al., 2013). A

version of this algorithm that requires less amount of tuning, is proposed by Wu et al.

(2015) and it is called emprical HMC, or eHMC. The number of steps is not defined by

the user; it is decided based on “the distribution of the integration time of the leapfrog
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integrator”, and more specifically on the “empirical distribution of the longest integration

times”.

HMC has the ability to explore the posterior space more efficiently for some mod-

els, compared to other MCMC algorithms. Thus, it has attracted considerable scientific

interest over the last years.

2.2.4 Convergence and metrics

We saw in the previous sections that MCMC methods are iterative algorithms. Numerous

iterations have a computational and time cost. Therefore, there are some challenges

arising, such as the number of iterations that the algorithm needs to run for, in order to

achieve convergence and secure certainty that the resulting distributions actually are close

approximations of the true posterior.

The validity of the MCMC results is based on the assumption that the Markov chain

has “converged” to its stationary distribution, so the probability distribution will re-

main unchanged after that point, after having explored sufficiently the parameter space.

Convergence times depend highly on the complexity of the problem as high-dimensional

problems tend to need longer run lengths. According to Brooks and Roberts (1998), there

are no generic techniques in literature that can be used for a priori prediction of run

lengths. Therefore, it is important to apply diagnostic tests and convergence diagnostics

that provide a better insight about the behaviour of the Markov chain, even though it is

not guaranteed that they have successfully diagnosed convergence.

Plotting various diagnostic plots and visually looking for tendencies is a classical ap-

proach followed. For example, decaying tendencies in autocorrelation plots (ACF), where

the autocorrelation function is plotted against the lag, indicate low serial correlation be-

tween successive values in the chain. In addition, posterior samples that have adequate

state changes, in particular around the mode(s) of the distribution, and avoid flat regions

in the traceplots of the estimated parameters, indicate good mixing. Using a simulation

study with synthetic datasets can also be helpful. Even though the distribution of the

simulated parameters after conditioning on the data is unknown, the known expected pa-

rameter values can be used as an indicator of whether there is a significant problem in

the MCMC output. Both methods of using diagnostic plots and synthetic datasets are

adopted in Chapter 7.

After comparing various diagnostic methodologies, Brooks and Roberts (1998) con-

clude that there is not a single best diagnostic method, but the choice of the diagnostic

test should depend on the nature of the problem. For example, it is suggested that for

unimodal densities the method proposed by Gelman and Rubin is a good approach. The

Gelman-Rubin diagnostic evaluates convergence by analysing and comparing the between

and within-chain variances for each parameter of the model. Significant differences in these
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variances are a non-convergence indicator (Gelman et al., 2013). A combination of this

method with complimentary techniques can be used for the multimodal cases. Another

diagnostic test used when we are interested in posterior quantile values is the Raftery-

Lewis. It calculates the number of iterations and the estimated burn-in period for a

required level of accuracy (Raftery and Lewis, 1992). Furthermore, some methods involve

repetitive hypothesis testing such as the Heidelberger-Welch diagnostic, that calculates

a test statistic after checking samples from the length of the run and accepts or rejects

the null hypothesis that the Markov chain formed comes from a stationary distribution

(Welch and Heidelberger, 1983).

A more recent approach to evaluate the goodness-of-fit is the kernel Stein discrepancy.

Oates et al. (2016) introduced the combination of Stein’s identity and reproducing kernel

Hilbert space (RKHS) for variance reduction. This combination was subsequently explored

by Liu et al. (2016), who were also influenced by Gorham and Mackey (2015) and their

Stein discrepancy measure, that uses Stein’s method to define under which conditions two

smooth densities, p(x) and q(x) supported on R, are identical. Combining these ideas

Liu et al. (2016) present the kernel Stein Discrepancy (KSD, referred to as “kernelised

Stein discrepancy” in their paper), a statistic for evaluating the goodness-of-fit of models

without using the likelihood. It constitutes a discrepancy measure between distributions,

and tests whether a sample {xi} ∼ p(x) is drawn from a distribution q(x), so Ho : p = q.

Therefore, it can be used to compute the discrepancy between the distribution defined by

the MCMC output and the target posterior distribution.

Convergence diagnostics have various trade-offs, some might be less computationally

expensive and others might be more generally applicable or more easily interpretable.

However, they are important in enhancing our notion about the accuracy of the MCMC

outcome.

2.2.5 Burn-in period and thinning

The burn-in period, also seen in literature as the warm-up period, is the early phase of the

simulations where the MCMC has not yet reached a high probability region. During the

first iterations of the algorithm, it is likely that the sampled values are highly biased to the

starting value of the sampler, and the chain represents more the initialisation distribution

rather than the target posterior. This sequence of samples, where the algorithm starts

from an initial value and gets closer to the mass of the distribution, is usually discarded.

There is no rule for the number of first n iterations that will have to be ignored from the

observed chain; it depends on the MCMC algorithm and the problem. Using long runs of

the MCMC and reasonable burn-in periods increases the probability that the chain will

have moved towards a higher probability region.

Thinning an MCMC sequence refers to a sub-sampling technique where every kth ob-
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servation of the resulting chain is kept and all the intermediate estimates are discarded.

In the literature there is sometimes a discussion among Bayesian researchers about the

necessity and benefits of thinning. In some cases, the practice of thinning the final chain,

the result of a long run, is discouraged as it is considered inefficient and not significant

in improving either the estimate-mean of the samples nor potential autocorrelation is-

sues. Using longer runs or multiple chains is suggested instead (Link and Eaton, 2012;

MacEachern and Berliner, 1994; Jackman, 2009). Geyer (1991) acknowledges that thin-

ning can improve statistical efficiency, an idea mentioned by Owen as well (Owen, 2017),

but who also believes that due to the fast decay of the autocorrelations in the MCMC,

using a thinning factor may not add significant value. In any case, it is often supported

in literature that thinning can be a strategy to handle the large volume of MCMC output

and reduce storage cost (Jackman, 2009; Link and Eaton, 2012). In this project we adopt

this approach since we want to achieve MCMC scalability for bigger problems.

Alternative approaches to the common practice of using burn-in period and the typical

thinning of every kth element of the MCMC output for compression, have also been

proposed. Riabiz et al. (2020) present a method that uses minimisation of a kernel Stein

discrepancy, also mentioned in Section 2.2.4, to select an index set, with size equal to

the desired cardinality, out of all MCMC points such that the empirical approximation is

close to optimal. Another method for sub-sampling of the MCMC outcome is proposed

by Paige et al. (2016). Their approach is based on “Algorithm R”, a reservoir sampling

algorithm that initially fills a reservoir YM , where M << N and N represents the number

of MCMC samples. “Algorithm R” initially fills the reservoir with the first M elements of

the stream of MCMC samples and then it randomly replaces elements of the reservoir with

elements from the remaining output samples {xM+1, . . . , xN}. Their proposed algorithm

instead of randomly replacing elements of the reservoir, uses the elements that constitute

the subset of the MCMC output that minimises the maximum mean discrepancy (MMD),

which represents the distance between the mean embeddings of two distributions in the

reproducing kernel Hilbert space.

2.3 Bayesian hierarchical models

An important category of models in Bayesian statistics is called hierarchical models. They

are used when the data are organised in groups. For this structure, an optimal model

returns a single posterior distribution that accounts, not only for the variability among the

units within a group, but also the heterogeneity between the different groups. Hierarchical

models reflect this structure.

As an example of a basic hierarchical model (Hoff, 2009) we can consider a simple case

for which both the within and the between group models follow a normal distribution,
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described as:

- within group: p(y|θj , σ2θ) ∼ N(θj , σθ
2)

- between group: p(θj |µ, σ2) ∼ N(µ, σ2)

In hierarchical models usually we assign a prior on the group variability measurement,

because we want the model to learn from the data the within-group variation. Then, it is

common to use precision instead of variance because of the conjugacy properties arising

when using a Gamma prior on precision. Therefore, θj ∼ N(µθ, 1/τθ) and τθ ∼ Γ (α, β). In

the above description of this simple model, the unknown parameters are the group specific

means θ = {θ1, ..., θp}, the within-group variance σθ
2, which is common for all groups, as

well as the population mean and variance, µ and σ2. We assume that the within-group

mean is zero.

In Bayesian statistics, models are usually graphically represented using Directed Acyclic

Graphs (DAG), also refered to as Bayesian Networks. DAGs have different interpretations

depending on the field, but in Bayesian statistics they are used to capture conditional inde-

pendence and hierarchy among the variables. The causal relationships between variables

are expressed using directed arrows. Hence, if X is causal to Y , an arrow X → Y is

used (Martin and Fu, 2019). DAGs are particularly useful for hierarchical models as there

might be a multilevel dependency across variables, which is easier to understand when

illustrated. The DAG for the simple hierarchical model we present is shown at Figure 2.2,

θi

yi

i = 1,...,m

µθ σθ
2

µ σ2

Figure 2.2: Graphical representation of a basic hierarchical model

A more complex example is when we have subgroups within groups. Since in the case

of hierarchical models the structure is nested we could imagine Yijk representing the i-th

observation within the j-th subgroup of the k-th group. The correlation between units

of the same subgroups or groups is stronger compared to the correlation between units

coming from different subgroups or groups (Scott et al., 2013). This happens because
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hierarchical models account for the possible dependence and commonality between the

individual units of groups/subgroups. A model like this is defined as:

Yijk = µ+ αk + βjk + εijk, where:

µ ∼ N(µ0, v0) is the overall mean ,

αk ∼ N(0, τα) is the effect of the k-th group ,

βjk ∼ N(0, τβ) is the effect of the j-th subgroup within the k-th group.

Hierarchical models can be evaluated using a Gibbs sampler (2.2.2). In this algorithm,

we sample from the full conditionals of each unknown variable in the hierarchical model,

in order to approximate the target joint posterior distribution. The process involves defin-

ing the prior distributions and the likelihood; multiplying these to result in their joint

distribution, from which we can extract the full conditionals of each variable of interest,

by isolating only the terms that are related to the variable. Since hierarchical models

have multilevel dependencies, DAGs can help us identify the conditional dependencies

among the variables and confirm that we extract the correct terms. This process, briefly

described here, is analytically presented in Section 3.3. There, we will consider a more

complex hierarchical model. We will explicitly define the prior distributions and the like-

lihood, and we will analytically derive the full conditionals for the parameters of interest,

to later implement our own Gibbs sampler.

2.4 Variable selection

In a simple regression problem the aim is to estimate the relationship between the outcome

yi for individual i, i = 1, ..., N and the explanatory variables xij , with the p covariate

weights denoted as βj and j = 1, ..., p. The model describing this relationship is defined

as

yi = α+

p∑
j=1

θjxij + ei.

Statistical analysis focuses on determining an optimal model that best describes our

problem. When a large number of explanatory variables is used to explain the response

variable (p is large), we want to identify the subset that best explains the biggest part of

the variation in the response. The aim is to identify which θjs should be set close or equal

to zero.

Sometimes, there is a priori knowledge reflecting our expectation about the proportion

of the covariates that affect the outcome, and that therefore should be included in the

model. This information should be taken into consideration in the variable selection. The

complexity of the model has some flexibility by defining a prior to the inclusion probability
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of the covariates. A smaller inclusion probability leads to sparser models. The optimal

subset defining the degree of sparseness, along with the number of false detections, depends

on the problem (O’Hara and Sillanpaa, 2009).

There are many variable selection methods, and we are going to use two basic ways

to classify them. The first, is according to O’Hara’s and Sillanpaa’s categorisation, that

is based on how the methods approach various properties (O’Hara and Sillanpaa, 2009).

The second is following Piironen’s and Vehtari’s grouping, based on the choice of prior

distributions imposed on the predictor variables (Piironen and Vehtari, 2017). The next

two sections focus on presenting these categorisations and methodologies. We particularly

focus on two approaches, the Kuo and Mallick and the Horseshoe prior, since they are

going to be used later in our hierarchical modelling case study.

The best strategy depends on the the purpose of the study, type of model, and con-

straints on computational resources. After deciding the structure of the model and the

variable selection method, MCMC techniques can be used to estimate the unknown vari-

ables.

2.4.1 Variable selection methods

According to O’Hara and Sillanpaa (2009) the main approaches used for variable selection

can be classified into four main categories. Each category treats differently important

properties such as tuning parameters in prior distributions, and using global or local

adaptation according to whether one common variance is used for auxiliary variables or

each has its own variance. Most of the prior distributional families used in the following

variable selection methods are motivated more by computational than statistical modelling

considerations as efficiency is usually of interest, but in most cases the choice of prior

parameters can still be scientifically informed. Analytically the four categories are:

1) Indicator model selection

This approach is commonly used, and according to Piironen and Vehtari (2017), often

considered as the “golden standard” for Bayesian variable elimination. It is based on the

idea of using a “spike and slab” prior distribution on each regression coefficient subject to

deletion (George and McCulloch, 1993). The spike represents the probability mass around

zero, and the slab refers to the flat shape of the distribution everywhere else. It involves

one indicator variable, denoted as Ij (Ij ∈ {0, 1}), for each coefficient θj . If Ij = 0, the

coefficient θj comes from the “spike” and is close to zero. Conversely, θj is nonzero, so it

comes from the “slab”, if Ij = 1.

The “spike and slab” prior can be written as a two-component mixture of Gaussians
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(Piironen and Vehtari, 2017)

θj |Ij , c, ε ∼ IjN(0, c2) + (1− Ij)N(0, ε2),

Ij ∼ Ber(p),

so that, ε << c, where c is the slab width. The first term is related to the case where the

variable is included in the model, and the second to when it is not.

In the indicator model selection approach another auxiliary variable βj , associated with

each θj , is also used to represent the effect size, with the final effect of every coefficient

being their product θj = Ijβj . Then, the slab is defined as θj |(Ij = 1) and is set equal to

βj , and the spike θj |(Ij = 0) equal to 0. There are two main methods implementing this

approach, Kuo and Mallick, and Gibbs variable selection (GVS).

1a) Kuo and Mallick

In this method, for every coefficient θj there is a variable selection indicator Ij , and

the effect of every coefficient is their product θj = Ijβj . Independent priors are placed on

each Ij and βj , so P (Ij , βj) = P (Ij)P (βj). Updating the values of θj is achieved using

MCMC. First, we sample Ij if it is equal to one, we also sample βj from its full conditional.

If Ij = 0, we draw a sample for βj from its prior distribution. The disadvantage of this

method is that using a too vague prior might lead to poor mixing because the sampler

will not flipping from Ij = 0 to Ij = 1 often. This approach incorporates all 2p possible

submodels and the marginal posterior distribution of each selection indicator measures

the likelihood of each variable/submodel to be included in the model (Kuo and Mallick,

1998). On average we visit each model proportionally to its posterior distribution.

In this project we are implementing and exploring this approach, to entail some form

of dimensionality reduction and identify the subset of variables that should be included

in the model. In Section 3.3.2, we explain in detail how the Kuo and Mallick method can

be embedded in a particular hierarchical model that we examine. We also show how the

full conditionals are derived for all the parameters of the model, including the auxiliary

variables of this variable selection technique, in order to fit the model with dimensionality

reduction, using a Gibbs sampler.

1b) Gibbs variable selection (GVS)

Gibbs variable selection uses again the notion of the variable selection indicator Ij ,

and the effect of every coefficient being θj = Ijβj , as in the Kuo and Mallick method.

However, when Ij = 0, instead of sampling βj from a too vague prior distribution, it

uses a “pseudo-prior”, that has no effect on the posterior. Unlike the previous approach,

the prior distributions of the indicator and the effect are not independent, so P (Ij , βj) =

P (βj |Ij)P (Ij). The idea is to use a prior for βj |(Ij = 0) that is concentrated around the
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posterior density of θ so that P (βj |Ij = 1) will be large when Ij = 0 that increases the

probability that the chain will move to Ij = 1. Another difference from the Kuo and

Mallick approach is that the GVS requires tuning to determine which values are good for

βj when Ij = 0.

2) Stochastic search variable selection (SSVS)

In this method, as in the case of GVS, we assume that the variable selection indicator

affects the prior distribution of βj , for example P (Ij , βj) = P (βj |Ij)P (Ij). The prior for

βj is a mixture of the type: P (Ij , βj) = (1−Ij)N(0, τ2)+IjN(0, gτ2). The basic idea is to

have a spike centred around zero with prior variances close to zero for the parameters that

should be opted out from the model (first term of the mixture of Gaussians). If the prior

parameters, τ2 and gτ2, are fixed, tuning is necessary. Otherwise, in some multivariate

cases, these parameters can also vary and have a prior distribution.

3) Adaptive shrinkage

The idea of this methodology is to assign directly a prior on θ in order to approximate

the “slab” and “spike”, instead of using auxiliary indicator variables. Consequently, θj =

βj and the prior for βj is (βj |τ2 ∼ N(0, τ2)). A prior is then placed on τ2 as well. The

degree of sparseness can be adjusted by changing the prior distribution of τ2. Based on

the evidence in the data τ2 will shrink towards zero the values of the covariates βj that

should not be included in the model. Sometimes, τ2, is assigned a Jeffrey’s prior, so that

P(τ2)∼ 1
τ2

. In the following Section 3.3.3, we are going to look in more detail at a specific

continuous shrinkage prior that can be used for handling sparsity, called the Horseshoe

prior.

4) Model space approach

In contrast with the methods mentioned so far, that place priors on each coefficient θj ,

this approach sees the model as a whole. It splits the problem of variable selection into two

main steps. Firstly, it places a prior distribution on the number of explanatory variables

selected to be in the model, denoted as Nv with the corresponding vector of coefficients θm,

m = 1, ..., Nv. The second step is to identify which covariates will eventually be selected

to be included in the model.

One of the methods that fall into this category is Reversible jump MCMC. This method

randomly selects a variable j and using Metropolis–Hastings proposes whether it should be

added to the numbers of the variables included or not. Controlling the degree of sparseness

is achieved through adjusting the prior for Nv. Furthermore, setting a binomial prior on

Nv approximates the approach of using independent priors for each Ij . However, the

disadvantage of the algorithm is that it can show increased complexity due to the change

in dimensions, with new variables being constantly added or removed. Setting a maximum
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number of covariates that can be included in the model can restrict the size from escalating

and causing efficiency and complexity issues.

At this point it would be useful to mention that according to Johnson and Rossell

(2012), most of the Bayesian variable selection methods for linear models use local prior

densities for the regression coefficients, that place a significant mass in the vicinity of zero

to the parameters that should be included in the model. Their suggested non-local prior

approach penalises models that include components that are equal to zero, in contrast

to classical Bayesian methods that assign positive density values to these models. They

support that for large sample problems, using the two non-local prior densities proposed

can not only lead to identification of the most probable model, but also to estimates of

the posterior probability that each model is correct, which constitutes a weakness of the

common Bayesian variable selection procedures. So, in the four categories of techniques

mentioned above, non-local prior distributions could be used as an alternative to local

priors centred on zero.

2.4.2 Prior choices and the Horseshoe prior

Another way to differentiate between the methodologies used for Bayesian variable selec-

tion is the choice of priors. Different methods take advantage of different specific charac-

teristics of priors. The categories of priors, can be separated into two main groups: two

component discrete mixture priors, and a variety of continuous shrinkage priors (Carvalho

et al., 2009; Piironen and Vehtari, 2017).

The first approach of discrete mixtures, also referred to as spike-and-slab was presented

in the previous section (2.4.1, part 1). The second, was briefly introduced earlier (2.4.1,

part 3), and will be explained more analytically in this section, using an interesting case

of the continuous shrinkage priors, the Horseshoe prior.

The first application of the Horseshoe prior was for sparse signal and noise detection,

but it can be applied to various domains (Carvalho et al., 2008). For implementing the

Horseshoe, two new variables are introduced, τ (does not relate to precision) and λ. For

the simple example of linear regression with N coefficients, the Horseshoe prior can be

defined as:

βj |λj , τ ∼ N(0, τ2λ2j ), j = 1, ..., N,

λj ∼ C+(0, 1),

τ ∼ C+(0, 1).

(2.11)

Half-Cauchy distributions (C+(0, 1)) are used for defining the Horseshoe prior. The prob-

ability density function of a Cauchy distribution, with s representing the scale and m the
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location, is:

f(x) =
1

πs

s2

(x−m)2 + s2
.

Half-Cauchy is defined as the right part of the symmetric halves of Cauchy, corresponding

to the positive values of the random variable, with the scale being equal to one and the

location to zero. So, its probability density function (pdf) is:

f(x) =
2

π(x2 + 1)
, (2.12)

where x > 0.

The Horseshoe prior, is also called a global-local shrinkage prior. “Global” derives

from the fact that it uses the global hyperparameter τ that tends strongly to pull all

the parameters to zero. On the other hand, the “local” character is defined by the local

parameters λj , that due to the heavy tails of the half-Cauchy prior distribution, allow for

some weights θj to escape and not to be shrunk to zero. All λjs have independent half-

Cauchy priors. The flexibility in the degree of sparseness is provided by τ ; the smaller

the τ the more βjs are shrunk towards zero. Hence, even though the global shrinkage

parameter tries to estimate the sparsity overall, the heavy tails of the prior for the local

shrinkage parameter enable estimates βj to be formed separately from τ . Even though a

half-Cauchy C+(0, 1) is a standard prior choice for the local parameters, there is discussion

about the most appropriate prior on τ , with various alternatives considered (Piironen and

Vehtari, 2017). However, it is common practice to assign a half-Cauchy prior to the global

hyperparameter as well (Gelman et al., 2013; Carvalho et al., 2009).

For each coefficient βj , there is an equivalent shrinkage factor κj (2.13), such that

the posterior mean estimate of the coefficient βj , denoted as β̄j or E(βj |yi, λi2), is equal

to β̄j = (1 − κj)β̂j , where β̂j is the maximum likelihood estimate. The shrinkage factor

describes the weight that the posterior mean for βi places on zero after observing the data

(Carvalho et al., 2009) and actually shows how much βj is shrunk towards zero. It is

defined as:

κj =
1

1 + nσ−2τ2s2jλ
2
j

, (2.13)

where n is the number of observations, σ2 is the model error and s2j is the variance of the

predictors. The closer to one κj is, the more shrinkage it indicates and vice versa. From

2.13, we can see that β̄j → 0 as τ → 0 and β̄j → β̂j as τ → ∞ (Piironen and Vehtari,

2017).

Different prior choices on λj change the prior distribution of κj . When a half-Cauchy

is assigned to the local parameters as their prior and under particular assumptions, the
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shrinkage factor’s distribution becomes a Beta
(
1
2 , 1

2

)
, taking the shape shown in Figure

2.3, where the name “Horseshoe” derives from (Carvalho et al., 2009).

Figure 2.3: Shape of the Horseshoe prior

According to Piironen and Vehtari (2017) the standard Horseshoe approach does not

guarantee that the prior will always shrink the coefficients by at least a small amount.

Therefore, they introduce the regularised horseshoe prior that is defined as:

βj |λj , τ, c ∼ N(0, τ2λ̃2j ), λ̃2j =
c2λ2j

c2 + τ2λ2j
,

λj ∼ C+(0, 1), j = 1, ..., N.

(2.14)

In the case where τ2λ2j << c2, the coefficient βj is close to zero, λ̃2j → λ2j and the prior

approaches the original horseshoe. On the contrary, when τ2λ2j >> c2, the corresponding

coefficient is far from zero. Then, λ̃2j → c2

τ2
and the prior approaches N(0, c2), so it will

also shrink coefficients with larger values. The variance c2 can have a fixed value, but is

usually assigned an inverse-Gamma prior distribution.

The use of continuous shrinkage priors, including the Horseshoe prior, is very im-

portant in developing variable selection in the Bayesian framework. These priors allow

MCMC algorithms that use integration and need a continuous parameter space, such as

the Hamiltonian Monte Carlo, to be used for implementing variable selection. In Section

7.4 we will present analytically how the Horseshoe prior can be incorporated in a two-way

Anova variable selection model using a Gibbs sampler.
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2.5 Model comparison

In many cases there are various candidate models, out of the model/hypothesis space (the

set of all possible models), that ascribe the competing hypotheses about how the data were

generated. It is then necessary to decide which model is best supported by the available

evidence, and therefore, more likely to have generated the observed data, by introducing

model comparison and selection.

In Bayesian statistics, model comparison is implemented using either a Bayes factor,

or one of the available predictive information criteria, such as the Deviance information

criterion (DIC). Before continuing with the presentation of these two approaches, we are

going to introduce some of their key concepts, the marginal likelihoods, used in the former

approach, and the deviance and selection bias which are important aspects of the latter.

2.5.1 Marginal likelihood

At the core of Bayesian inference is Bayes’ rule (2.4), repeated here for convenience:

p(θ|y) =
p(y|θ)p(θ)
p(y)

. (2.15)

Typically, in the traditional use of Bayes’ rule for inferring the posterior distribution of

one or more unknown variables, there is one single model (M1) that we examine. Therefore,

technically in 2.15 every term can also be considered as conditioning on the model M1.

So, Bayes’ rule could also be written as:

p(θ|y,M1) =
p(y|θ,M1)p(θ|M1)

p(y|M1)
. (2.16)

The denominator of 2.16 is known as the marginal likelihood of the model or model

evidence. It constitutes a likelihood function from which the unknown parameters of the

model have been marginalised, with the remaining part representing the probability of

the data given the model type, with no assumptions about the underlying specific model

parameters. For discrete parameters this marginalisation is achieved through summation.

For a continuous parameter vector, marginalisation is attained through integration with

respect to the unknown parameters, so that the marginal density does not depend on θ.

It conceptualises the likelihood of the observed data under the specific generating process

that we consider in the model. In the univariate case, the marginal likelihood can be

written as:

p(y|M1) =

∫
p(y|θ,M1)p(θ|M1)dθ. (2.17)
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The integral in 2.17 becomes a high-dimensional one, when θ is a multiparameter vector,

that renders its calculation difficult.

2.5.2 Bayes factor

In the case where two models (M1 and M2) are under comparison, the Bayes factor has

the underpinning rationale of comparing their posterior distributions, using a ratio of

the measures of goodness of fit of the two statistical models. Based on Bayes’ rule, the

posterior distribution of model M1, given the data is

p(M1|y) =
p(y|M1)p(M1)

p(y)
. (2.18)

The numerator consists of the marginal likelihood (2.17) multiplied by the prior distribu-

tion of the model (p(M1)). The denominator is the marginal likelihood of the data across

all models, so P (y) = P (y|M1)P (M1) + P (y|M2)P (M2).

After having defined the posterior densities of the models (2.18), the ratio of these

densities, known as posterior odds for the model M1 against M2 is defined as:

p(M1|y)

p(M2|y)︸ ︷︷ ︸
Posterior

odds

=
p(y|M1)

p(y|M2)︸ ︷︷ ︸
Bayes
factor

p(M1)

p(M2)︸ ︷︷ ︸
Prior
odds

. (2.19)

The Bayes factor in 2.19 is the ratio of the marginal likelihoods for the two models.

When the same prior distribution is assigned to both models, their comparison through

the posterior odds, is only based on the Bayes factor. A value of that ratio greater than

one indicates preference over the model M1.

Even though the Bayes factor is a known method for model comparison, there are

some issues arising with its use for that purpose. Firstly, in complex examples with

many unknown parameters, the high-dimensional integrals, necessary for calculating the

marginal likelihood, can be intractable. Secondly, marginal likelihoods can be sensitive

to prior choices for the unknown parameters, irrespective of the insignificant changes

that they may cause to the posterior probabilities of the parameters themselves. Finally,

assigning prior probabilities to models can also be difficult (Gelman et al., 2013).

The above addressed issues lead to suggestion of alternative methodologies for model

evaluation and comparison, that are based on measurements of expected predictive accu-

racy which are introduced in the following section.
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2.5.3 Information criteria and cross-validation

In determining the parameters of a model, a specific dataset is used. There is then the

expectation that the accuracy of the fitting model will be higher for the data coming

from this dataset, compared to that of fitting the same model on future out-of-sample

observations.

Ideally the predictive accuracy should be its out-of-sample predictive performance,

however, out-of-sample data are not always available. Therefore, several measures of

estimating the expected predictive accuracy have been developed, that use the same sample

that is used to fit the model to. These measures are known as information criteria and

share two common characteristics; they all include a term corresponding to a measure

of fit and a term aiming to account for the selection bias. For a goodness-of-fit measure

some criteria are based on the log-likelihood or log predictive density. More precisely, they

involve the deviance, which is the log predictive density of the data at a point estimate,

multiplied by -2, hence −2 log(p(y|θ̂) 1. The second common characteristic is the inclusion

of a term that will act as a “penalty term” and is necessary to account for the fact that

a larger model has a natural ability to fit the data better, which is often referred to as

selection bias. This term is a correction for the effective number of parameters (complexity)

and adjusts for overfitting. As an alternative to the techniques that use the within-sample

predictive accuracy, there is cross validation that captures the out-of-sample prediction

error by using a training set to fit the data and a test set to evaluate the model’s predictive

accuracy (Gelman et al., 2013).

The four criteria that share the consensus of within-sample predictive accuracy include

a measure to denote the expectation under the true data distribution f(y). This measure

is called expected log predictive predictive density (elpd), and, when there is a new data

point ynew, quantifies how close the estimated posterior predictive distribution p(ynew|y),

is to the true distribution f(y). More analytically the four criteria are:

1. Akaike information criterion (AIC)

For this criterion, the expected log predictive density (elpd) for a new dataset is

estimated using the maximum likelihood estimate, and is given by:

êlpdAIC = log p(y|θ̂mle)− k,

where k is the number of parameters in the model. This term acts as a penalty

to the increase in the predictive accuracy due to an increase in the number of pa-

rameters. AIC is actually defined as the product of êlpdAIC by -2, hence AIC =

−2 log p(y|θ̂mle) + 2k (Gelman et al., 2013).

1Deviance has a different definition in the context of generalised linear models, denoting the deviation
of a model under exploration, from the saturated model for which the data are fitted perfectly.
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This criterion has the disadvantage that it can be mainly used for simpler models,

as hierarchical structures tend to affect and more specifically reduce the amount of

overfitting. Furthermore, in hierarchical models, it is often unclear what the number

of parameters k should be.

2. Deviance information criterion (DIC)

For this criterion, the expected log pointwise predictive density is now estimated

using the posterior mean that maximises the posterior density, θ̂Bayes = E(θ|y), as a

measure of fit. The bias correction is now data based, two times the variance across

all of the posterior draws of the log of the likelihood. This penalty is based on the

idea that if there is a lot of uncertainty in the parameter values, then there will be

a lot of uncertainty in the fit (measured by the variance), meaning that the model

could be too complex, so maybe there is overfitting (Lambert, 2018).

So, DIC is computed as (Gelman et al., 2013):

DIC = −2 log p(y|θ̂Bayes) + 4varpost(log p(y|θ)).

3. Watanabe - Akaike or widely available information criterion (WAIC)

The previous two criteria use measures of fit that are point estimates to the param-

eter values. A measure of fit that would take into account the uncertainty in the

value of the unknown parameters estimated, would reflect more the Bayesian logic.

WAIC incorporates this uncertainty in the estimation of predictive accuracy.

The measure of fit in this case is the computed log pointwise predictive density

(lppd), that is the average fit of the model across all of the draws of θ representing

the posterior uncertainty (Lambert, 2018). The bias correction is similar to the

correction term used in DIC, but now it computes the variance separately for each

data point of the posterior draws, and then calculates their sums. So WAIC is

formulated as (Gelman et al., 2013):

WAIC = −2

n∑
i=1

log

(
1

S

S∑
s=1

p(yi|θs)

)
+ 2

n∑
i=1

V S
s=1(log p(yi|θs)),

where the first term is the computed log pointwise predictive density (lppd).

4. ‘Bayesian’ information criterion (BIC)

According to Gelman, the name ‘Bayesian’ in this criterion is misleading, and the

measure might give poor results for complicated models. Furthermore, unlike the

other three criteria, BIC is not intended to predict the out-of-sample performance.

However, since it is mentioned in the literature, we also make a reference to it here.
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BIC has a predictive measure, and a penalty term, that increases with the sample

size, n in order to favour simpler models with fewer observations and parameters.

More precisely BIC is defined as: BIC = −2 log p(y|θ̂) + k log n.

The above techniques try to predict the out-of-sample performance by using the same

dataset, used to fit the model. In contrast, a technique called Leave One Out Cross

Validation (LOO-CV), splits the data into a training set, and a test/cross validation test.

The former set is used to fit the model, whereas the latter, is used to validate the models’

predictive performance.

Estimating LOO-CV is a repetitive process, where one data point is used as a validation

set, and the remaining data points constitute the training set. This process is repeated n

times, as the number of sample size, but can be computationally expensive.

At each iteration of LOO-CV the log posterior predictive density, the out-of-sample

predictive fit, is estimated across all samples from the posterior distribution, as (Gelman

et al., 2013):

lppdloo−cv =
n∑
i=1

log ppost(−i)(yi) =
n∑
i=1

log

(
1

S

S∑
s=1

p(yi|θis)

)
. (2.20)

The bias correction here accounts for the fact that each prediction is conditioned on n− 1

points and we want to estimate the improvement in predictions if we were conditioning

on n data points:

b = lppd− lppd−i, (2.21)

where lppd−i is calculated as:

lppd−i =
1

n

n∑
i=1

n∑
j=1

log

(
1

S

S∑
s=1

p(yi|θis)

)
. (2.22)

So, the bias corrected Bayesian LOO-CV is then lppdcloo−cv = lppdloo−cv + b. An estimate

of the effective number of parameters is used in order to make comparisons to other

methods, calculated as:

ploo−cv = lppd−i − lppd. (2.23)

Vehtari et al. (2016) suggest a more tractable approximation to LOO-CV, using Pareto

smoothed importance sampling (PSIS). Their approach, PSIS-LOO, provides an improved

and more reliable estimate. They fit a Pareto distribution to the upper, potentially long,

tail of the distribution of the importance weights, in order to smooth the larger values.

Their method is available both in R and Stan packages, to provide an efficient approach
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to LOO-CV for model comparison.

Each of the techniques mentioned above, from both the within sample and out-of-

sample framework, has advantages and disadvantages, and depending on the problem they

can return similar results. According to Gelman et al. (2013), AIC does not work properly

when we assign strong prior distributions, and DIC returns non-sensible results when “the

posterior distribution is not well summarised by its mean”. According to Lambert (2018),

both these criteria are not fully Bayesian as they rely on point estimates. On the other

hand, WAIC which is fully Bayesian, relies on partitioning data, that can be problematic

for some sorts of models, e.g. related to spatial data. Finally, cross-validation can be

computationally demanding. They suggest that for these reasons, Bayesian statisticians

sometimes avoid using these predictive comparisons, unless they want to compare very

different models, in which case, WAIC and cross validation are recommended. However,

DIC is often encountered in the literature as it constitutes a simpler criterion to compute

using MCMC samples, hence it remains a popular choice.

2.6 Summary

In this chapter we introduced some of the key points of Bayesian computation. We saw that

in the Bayesian framework, our uncertainty about the unknown parameters of a model

is expressed through probability distributions. Estimation of these parameters involves

complex integrals that can lead to difficult and intractable calculations. The Markov

Chain Monte Carlo family of algorithms aims to avoid analytical integral solutions and

through repetitive sampling, numerically approximate the quantities of interest by taking

advantage of fundamental properties of Markov Chains. MCMC methods have a wide

range of applications, including hierarchical modelling, particularly useful when the data

have a multilevel structure.

Models often have a large number of covariates. In that case, it is frequent practice to

apply dimensionality reduction by identifying the parameters that affect the response the

most. Variable selection methods, such as using variable selection indicators and shrinkage

prior distributions, are a valuable tool to specify the best subset of predictors to include

in the model. The Gibbs sampler, one of the most widespread MCMC algorithms, can be

used for variable selection, however, its implementation requires analytical derivation of

the full conditional distributions of the unknown parameters.

In the following chapter we will explore a specific form of hierarchical models called

two-way Anova. We will also present how the full conditional distributions of the model

parameters are derived, in order to use Gibbs sampling to evaluate the model.
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Bayesian analysis of Anova models

Anova models are a form of hierarchical model used when the independent variables are

categorical. The term two-way Anova is used to describe an Anova model that includes

two independent variables. In the following parts, after introducing this type of model

design, we will demonstrate the derivation of the full conditionals of the parameters of

interest, for an expansion of a basic two-way Anova that involves interactions, random

effects and variations in the “symmetry” of main and interaction effects, in order to use

a Gibbs sampler to build it. Firstly, we will explore the case where all the predictor

variables are included in the model, which is called saturated. Then, we will expand and

adapt these full conditional distributions to incorporate variable selection, where we will

be mainly focused.

3.1 Introduction to Anova

Analysis of variance (Anova) is a statistical technique to test the variation among the

population means of groups encoded in the form of discrete categorical predictors. The

term “two-way” refers to the fact that there are two independent variables in the model.

The response is a continuous variable. In two-way Anova, we are often interested not only

in the main effects of each categorical variable, but also in their interactions. The full sat-

urated model includes all the main and interaction effects. In this project we are focusing

on a more complex version of the basic two-way Anova model by incorporating interactions

and random effects, with further application of variable selection on the interactions. A

simple description of a basic two-way Anova model is

xijk = µ+ αi + βj + eijk without interactions,

xijk = µ+ αi + βj + γij + eijk with interactions,

39



Chapter 3. Bayesian analysis of Anova models

where, α denotes the first categorical variable with nα levels and i = 1, ..., nα, and β

represents the second categorical variable with nβ levels and j = 1, ..., nβ. The interactions

between the ith level of the first and the jth of the second independent variable is denoted

as γjk.

In Bayesian statistics, linear Anova models have the statistical power of linear hier-

archical models (Section 2.3). This is due to the fact that the categorical variables are

seen as batches/groups of coefficients, considered to be “sources of variation”. With every

Anova model there is an associated Anova table, where each batch of coefficients holds

one row of the table. A batch can consist of a single experimental block, or a level/factor

of the categorical variables, or even interactions of two or more factors. The hierarchical

structure of Anova allows the estimation of not only the individual coefficients but also

their variance within each group (Gelman et al., 2013).

An important aspect to consider when fitting an Anova model is the decision upon

the use of fixed or random effects. In both cases in the Bayesian framework, we assign a

prior distribution on the effects. For fixed effects, the parameters of the prior distribution

are “fixed” and the samples are independent. Identifiability problems might arise in this

case. Hence, there is not a unique set of parameters to optimise the fit of the model to

the given data sample. This issue can be solved using treatment contrasts and sum-to-zero

constraints. The first technique works by setting the first level of a categorical variable as

base. Its mean is the intercept, so the means of the other levels reflect the change from

the first. Adding a sum to zero constraint means that the effects are constrained to sum

to zero. The intercept now represents the overall population mean and each coefficient

represents the mean difference between what it expresses and the intercept. On the other

hand, random effects are not independent even though they are conditionally independent

a priori, given the parameters of the distribution of the random effects. They are drawn

from a prior distribution with parameters which are not fixed. Given that this distribution

is often centred to zero, it is then the variance that is assigned a prior, adding an extra

level of hierarchy to the model (Wilkinson, 2014; Hoff, 2009). In literature there are often

conflicted suggestions about when to use fixed or random effects models. There is an

assumption about the random effects, that in order for this approach to return unbiased

estimates, conditional independence of the group-specific effects must apply. As long as

this assumption is valid, random effects are considered to be more efficient and to have a

stronger predictive power than using fixed effects (Scott et al., 2013).

3.2 Variable selection for Anova models

Gibbs sampling is often selected among MCMC algorithms for fitting Bayesian Anova

models. The saturated model of a hierarchical two-way Anova problem involves all the
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main and all the interaction effects. In a statistical problem where the explanatory cate-

gorical variables have a large number of levels, the saturated case can lead to a very big

model with many independent variables and interpretational difficulties. As we mentioned

in Section 2.4, there are Bayesian dimensionality reduction techniques that identify the

predictors considered as the most significant for the model. In this project, we assume

that all main effects are present and we only apply variable selection to their interactions,

since probably not all of the interaction covariates are useful for predicting the response

variable. We choose this implementation because otherwise we could result to a model

containing interactions of variables for which there is no main effect, which would be

unusual, at least for hierarchical modelling (Gelman et al., 2013).

In order to determine which variable selection approach is more effective and perfor-

mant in the case of hierarchical two-way Anova models, we will explore both spike-and-slab

and the shrinkage priors, which are the two main groups of variable selection methods.

The first category is a classical approach in Bayesian statistics and is often combined with

Gibbs sampling. The priors of the second category aim to enable variable selection with

those MCMC algorithms that do not support discrete variables and can sometimes lead

to better mixing and faster convergence (Piironen and Vehtari, 2017). We will specifically

emphasise two variable selection techniques, the Kuo and Mallick approach (2.4.1, 1a)

from the former group and the Horseshoe prior (2.4.2) from the latter, to see how they

are applied to Anova problems.

There are existing probabilistic programming frameworks, such as JAGS for Gibbs

sampling and STAN for Hamiltonian Monte Carlo, that will be presented in Chapter 6

and used in this thesis as described in Chapter 7, that enable implementation of both

variable selection approaches without requiring analytical algebraic calculations from the

user. However, when implementing an MCMC algorithm from the ground up, as is the

aim of this thesis, algebraic calculations are necessary. We want to implement a Gibbs

sampler in the Scala programming language and at the time of working on this research

project there was no such active library. When we presented Gibbs sampler (Section

2.2.2), we saw that it draws samples from the full conditional distributions of the unknown

parameters to approximate the target posterior distribution. The same process applies to

the various models that we explore in this thesis. Even though it is possible to find

analytical calculation of full conditional distributions for the parameters of typical Anova

models in the literature and on-line sources, our models are non-standard Anova models.

The special cases of symmetry in the effects as explained in Section 3.3 and the additional

inclusion of particular variables to enable variable selection using the two techniques that

we examine, render our models non-trivial cases. Hence, analytical calculation of the full

conditional distributions of the parameters of interest is required.

One disadvantage of not using an already existing probabilistic programming frame-
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work is the fact that pen-and-paper calculations are prone to errors. In order to be

confident that there are no algebraic errors we firstly verify that the calculated full condi-

tional distributions are of the expected form since we use conjugate priors. Furthermore,

we conduct a simulation study (Chapter 7) with synthetic examples and compare the

results of our code to the true simulated values of the variables. Additionally, we com-

pare the univariate marginal posterior distributions produced from our code in Scala and

long-established JAGS. Another disadvantage of this approach is the fact that alterations

in model assumptions, such as changes in prior distributions, tend to be inflexible and

impractical to directly implement as they require algebraic recalculations.

In the following section we will demonstrate the derivation of the full conditionals

of the unknown parameters that we want to estimate for a hierarchical two-way Anova

model. In this model, we account for the interactions, as well as the main effects, all of

which are treated as random effects. We will develop both the saturated case and the

variable selection on the interaction terms.

3.3 Full conditional distributions for two-way Anova

In the following analysis we will consider some variations of symmetry in the effects. More

precisely, we examine four cases: both main and interaction effects being asymmetric,

both main and interaction effects being symmetric, only the main effects are symmetric

and the interactions are asymmetric, and only the interaction effects are symmetric and

the main effects are asymmetric. The reason for this approach will become clear when

we explore the real dataset of the yeast genome case study in Section 9.2. Treating the

effects in a symmetric/asymmetric way is of scientific importance due to the nature of the

genetic experiment.

Suppose that the two independent categorical variables of the model are denoted as α

and β, each having j = 1, ..., nα and k = 1, ..., nβ levels. The interaction between αj and

βk is denoted as γjk. By using the term “symmetric main effects”, we refer to the fact

that we assume that the main effects of the two independent categorical variables come

from the exact same distribution and that nα = nβ and αi = βi for all i. By “symmetric

interactions”, we mean that the effect of the interaction γjk is treated by the model as the

same as γkj .

3.3.1 Saturated model

In the saturated case, we want to quantify the relationship of each level of the explanatory

variables with the response, and we assume that all interaction effects are present in the

model. Therefore, we estimate all the main effects for each level of the two categorical

variables, as well as all the interactions between them.
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Here, we only examine the case where both the main and the interaction effects are

considered to be asymmetric. This means that the two groups of main effects are differ-

ent, and the effect of the interaction γjk is different from γkj . All effects are treated as

random, hence, we consider that the mean of the prior distribution of the effects is zero

(µα = µβ = µγ = 0) and we assign a gamma prior on their precision. Based on these

characteristics, the model is formed as follows:

Model:

Xijk|µ, αj , βk, γjk, τ ~ N(µ+ αj + βk + γjk, τ
−1), i=1,...,Njk,

N =
nα∑
j=1

nβ∑
k=1

Njk

µ ~ N(µ0,τ
−1
0 )

τ ~ Γ (a, b)

αj |τα ~ N(µα, τ
−1
α ), j=1,...,nα

βk|τβ ~ N(µβ, τ
−1
β ), k=1,...,nβ

γjk|τγ ~ N(µγ ,τ−1γ )

τα ~ Γ (aτα ,bτα)

τβ ~ Γ (aτβ ,bτβ )

τγ ~ Γ (aτγ ,bτγ )

Where αj is the effect of the jth α, βk is the effect of the kth β and γjk is their

interaction.

Notation:

nα is the number of levels of the independent categorical variable α

nβ is the number of levels of variable β

nγ = nα · nβ is the number of levels of interactions

Nj =
nβ∑
k=1

Njk is the number of observations that have αj

Nk =
nα∑
j=1

Njk is the number of observations that have βk

Njk is the number of observations for which the α is j and the β is k

The corresponding Directed Acyclic Graph (DAG) representing the random variables

of the model along with their conditional dependencies is presented in Figure 3.1 in form
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of a plate diagram. Plate notation is used following the convention for WinBUGS (Spiegel-

halter et al., 2003). Repeated parts of the graph are represented using a ‘plate’ (rectangle)

to group variables together. The equivalent indices and their range are denoted at the

bottom of each plate.

xijk

i = 1, . . . , Njk

j = 1, . . . , nα
k = 1, . . . , nβ

αj βkγjk

τα τβτγ

µ τ

Figure 3.1: DAG for the saturated model

The prior distributions, the likelihood of the model and the derivation of the full con-

ditionals of the unknown parameters are formed as follows:

Priors

� For τ ~ Γ (a, b)

f(τ |a, b) =
baτa−1e−bτ

Γ (a)
∝ τa−1e−bτ .

� For µ ~ N(µ0,τ
−1
0 )

f(µ|µ0, τ0) =

√
τ0
2π
e
−τ0(µ−µ0)

2

2 ∝
√
τ0e

−τ0(µ−µ0)
2

2 = τ
1
2
0 e
− τ0

2
(µ−µ0)2 .

� For αj ~ N(µα,τ−1α ) [The effects of α]

Similarly,

f(αj |µα, τα) ∝
√
ταe

−τα(αj−µα)2

2 = τ
1
2
α e
− τα

2
(αj−µα)2 .
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So,

f(α|µα, τα) ∝ τ
nα
2

α e
− τα

2

nα∑
j=1

(αj−µα)2
.

� For βk ~ N(µβ,τ−1β ) [The effects of β]

Similarly,

f(βk|µβ, τβ) ∝ √τβe
−τβ(βk−µβ)2

2 = τ
1
2
β e
−
τβ
2
(βk−µβ)2 .

So,

f(β|µβ, τβ) ∝ τ
nβ
2
β e

−
τβ
2

nβ∑
j=1

(βk−µβ)2
.

� For γjk ~ N(µγ ,τ−1γ ) [The effects of interactions γ]

Similarly,

f(γjk|µγ , τγ) ∝ √τγe
−τγ (γjk−µγ )

2

2 = τ
1
2
γ e
− τγ

2
(γjk−µγ)2 .

So,

f(γ|µγ , τγ) ∝ τ
nγ
2
γ e

− τγ
2

nα∑
j=1

nβ∑
k=1

(γjk−µγ)2
.

� For τα ~ Γ (aτα , bτα)

f(τα|aτα , bτα) =
baτα τ

aτα−1
α e−bτατα

Γ (a)
∝ τaτα−1α e−bτατα .

� For τβ ~ Γ (aτβ , bτβ )

Similarly,

f(τβ|aτβ , bτβ ) ∝ τ
aτβ−1
β e−bτβ τβ .

� For τγ ~ Γ (aτγ , bτγ )

Similarly,

f(τγ |aτγ , bτγ ) ∝ τaτγ−1γ e−bτγ τγ .

Likelihood

p(x|τ, µ, α, β, γ) =

nα∏
j=1

nβ∏
k=1

Njk∏
i=1

(√
τ

2π
e
−τ(xijk−µ−αj−βk−γjk)

2

2

)

= (2π)−
N
2 τ

N
2 e
− τ

2

nα∑
j=1

nβ∑
k=1

Njk∑
i=1

(xijk−µ−αj−βk−γjk)
2

.

45



Chapter 3. Bayesian analysis of Anova models

Joint density

The joint density is the likelihood multiplied by the priors.

p(x, τ, µ, α, β, γ) = (2π)−
N
2 τ

N
2 e
− τ

2

nα∑
j=1

nβ∑
k=1

Njk∑
i=1

(xijk−µ−αj−βk−γjk)
2

︸ ︷︷ ︸
Likelihood

τa−1e−bτ︸ ︷︷ ︸
prior τ

τ
1
2
0 e
− τ0

2
(µ−µ0)2︸ ︷︷ ︸

prior µ

τ
nα
2

α e
− τα

2

nα∑
j=1

(αj−µα)2︸ ︷︷ ︸
prior αs

τ
nβ
2
β e

−
τβ
2

nβ∑
j=1

(βk−µβ)2︸ ︷︷ ︸
prior βs

τ
nγ
2
γ e

− τγ
2

nα∑
j=1

nβ∑
k=1

(γjk−µγ)2︸ ︷︷ ︸
prior γs

τaτα−1α e−bτατα︸ ︷︷ ︸
prior τα

τ
aτβ−1
β e−bτβ τβ︸ ︷︷ ︸

prior τβ

τ
ατγ−1
γ e−βτγ τγ︸ ︷︷ ︸

prior τγ

.

After extracting the common factors and using exp for the exponential for clarity, the

joint density for the saturated model becomes:

p(x, τ, µ, α, β, γ) = (2π)−
N
2 exp

{
− τ
[
b+

1

2

nα∑
j=1

nβ∑
k=1

Njk∑
i=1

(xijk − µ− αj − βk − γjk)2
]

− τ0
2

(µ− µ0)2 −
τα
2

nα∑
j=1

(αj − µα)2 −
τβ
2

nβ∑
j=1

(βk − µβ)2

− τγ
2

nα∑
j=1

nβ∑
k=1

(γjk − µγ)2 − βτατα − βτβτβ − βτγτγ

}
τa+

N
2
−1

τ
aτα+

nα
2
−1

α τ
aτβ+

nβ
2
−1

β τ
aτγ+

nγ
2
−1

γ .

Full conditionals

For the posterior probability densities we adopt the letter π, that is often used in the liter-

ature to denote the target distribution. Furthermore, when displaying the full conditional

distribution of a variable, conditioning on “all other variables” is denoted using a dot e.g.

variable of interest|·.
� For τ

π(τ |·) ∝ τa+
N
2
−1e
−τ
(
b+ 1

2

nα∑
j=1

nβ∑
k=1

Njk∑
i=1

(xijk−µ−αj−βk−γjk)
2

)
.
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So,

τ |· ∼ Ga

a+
N

2
, b+

1

2

nα∑
j=1

nβ∑
k=1

Njk∑
i=1

(xijk − µ− αj − βk − γjk)2
 .

� For αj

π(αj |·) ∝ exp

−1

2

(αj − µα)2τα + τ

nβ∑
k=1

Njk∑
i=1

(xijk − µ− αj − βk − γjk)2


∝ exp

{
− 1

2

(
(αj − µα)2τα + τ

nβ∑
k=1

Njk∑
i=1

(α2
j − 2xijkαj + 2µαj + 2βkαj

+2αjγjk)

)}

∝ exp

{
−1

2
α2
jτα + αjµατα −

1

2
τNjα

2
j + ταj

nβ∑
k=1

Njk∑
i=1

xijk − τNjµαj

−ταj
nβ∑
k=1

βkNjk − ταj
nβ∑
k=1

γjkNjk

}

∝ exp

{
α2
j

(
−1

2
τα −

1

2
τNj

)
+ αj

(
µατα + τ

( nβ∑
k=1

Njk∑
i=1

xijk −Njµ−
nβ∑
k=1

βkNjk

−
nβ∑
k=1

γjkNjk

))}
.

So,

αj |· ∼ N


µατα + τ

(
nβ∑
k=1

Njk∑
i=1

xijk −Njµ−
nβ∑
k=1

βkNjk −
nβ∑
k=1

γjkNjk

)
τα + τNj

,
1

τα + τNj

 .

� For βk

Similarly with the full conditional of αj .

So,

βk|· ∼ N


µβτβ + τ

(
nα∑
j=1

Njk∑
i=1

xijk −Nkµ−
nα∑
j=1

αjNjk −
nα∑
j=1

γjkNjk

)
τβ + τNk

,
1

τβ + τNk

 .
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� For µ

Similarly with the full conditional of αj .

µ|· ∼ N


µ0τ0 + τ

(
nα∑
j=1

nβ∑
k=1

Njk∑
i=1

xijk −
nα∑
j=1

nβ∑
k=1

αjNjk −
nβ∑
k=1

nα∑
j=1

βkNjk −
nα∑
j=1

nβ∑
k=1

γjkNjk

)
τ0 + τN

,

1

τ0 + τN

 .

� For γjk

π(γjk|·) ∝ exp

{
− 1

2

[
(γ − µγ)2τγ + τ

Njk∑
i=1

(
xijk − µ− αj − βk − γjk

)2]}

∝ exp

{
− 1

2

[
(γ − µγ)2τγ + τ

(
− 2

Nkj∑
i=1

xijkγ + 2Njkµγ + 2βkNjkγ

+2αjNjkγ +Njkγ

)2]}

∝ exp

{
γ2
(
−1

2
τγ −

1

2
τNjk

)
+ γ

[
µγτγ + τ

( Njk∑
i=1

xijk +Njk(−µ− αj − βk)

)]}

So,

γjk|· ∼ N


µγτγ + τ

(
Njk∑
i=1

xijk −Njk(µ+ αj + βk)

)
τγ + τNjk

,
1

τγ + τNjk

 .

� For τα

π(τα|·) ∝ τaτα−1α e−bτατα
nα∏
j=1

(
√
ταje

−τα(αj−µα)2

2

)

∝ τaτα−1α e−bτατατ
nα
2

a e

nα∑
j=1

−τa(αj−µα)2

2

∝ τ
aτα+

nα
2
−1

α e
−τα
(
bτα+

1
2

nα∑
j=1

(αj−µα)2
)
.
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So,

τα|· ∼ Γ

(
ατα +

nα
2
, βτα +

1

2

nα∑
j=1

(αj − µα)2

)
.

� For τβ

Similarly,

π(τβ|·) ∝ τ
aτβ−1
β e−bτβ τβ

nβ∏
k=1

(
√
τβe

−τβ(βk−µβ)2

2

)
.

So,

τβ|· ∼ Γ

(
aτβ +

nβ
2
, bτβ +

1

2

nβ∑
k=1

(βk − µβ)2

)
.

� For τγ

Similarly,

π(τγ |·) ∝ τ
aτγ−1
γ e−bτγ τγ

nα∏
j=1

nβ∏
k=1

(
√
τγe

−τγ (γjk−µγ )
2

2

)
.

So,

τγ |· ∼ Γ

(
aτγ +

nγ
2
, bτγ +

1

2

nα∑
j=1

nβ∑
k=1

(γjk − µγ)2

)
.

3.3.2 Variable selection using variable selection indicators

The saturated model of the previous section (3.3.1), depending on the number of levels of

the categorical variables, may involve numerous parameters that increase the complexity

of the model and reduce its interpretability. Dimensionality reduction can be applied in

order to tackle this problem.

The first technique, by which we will implement Bayesian variable selection, is the

Kuo and Mallick approach (Kuo and Mallick, 1998). We saw in Section 2.4.1 (1a) that

this method requires the use of a variable selection indicator I, to indicate the presence

or absence of a particular covariate in the model. The indicators follow a Bernoulli dis-

tribution with inclusion probability p. Sometimes p is fixed. However, introducing a Beta

prior on the inclusion probability allows the model to learn about the degree of sparsity

from the data. Here, we are embedding this prior in the model. An auxiliary variable

denoted as θ is also added to represent the effect size of the interaction covariate γjk, so

that γjk = Ijk · θjk.
In the following sections, we will examine all four variations of symmetry for our two-

way Anova model, which includes variable selection via the Kuo and Mallick approach. In

the first case, where both the main and interaction effects are asymmetric, we will declare

all the prior distributions. In the following cases, to avoid repetition, we will only present
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analytically the prior distributions that change. In addition, all main and interaction

effects are treated as random, hence, we consider that the mean of their prior distribution

is zero and a gamma prior is assigned to their precisions.

3.3.2.1 Asymmetric main and asymmetric interaction effects

In this case, the two main effects come from different distributions. We do not assume any

symmetry information for the interactions effects either. The model has a lot of common

elements with the saturated case 3.3.1 and is defined as:

Model:

Xijk|µ, αj , βk, Ijk, θjk, τ ~ N(µ+ αj + βk + Ijkθjk, τ
−1), i=1,...,Njk,

N =
nα∑
j=1

nβ∑
k=1

Njk

µ ~ N(µ0,τ
−1
0 )

τ ~ Γ (a, b)

αj |τα ~ N(µα,τ−1α ), j=1,...,nα

βk|τβ ~ N(µβ,τ−1β ), k=1,...,nβ

θjk|τθ ~ N(µθ,τ
−1
θ )

Ijk|p ~ Bern(p)

p ~ Beta(ap, bp)

τα ~ Γ (aτα ,bτα)

τβ ~ Γ (aτβ ,bτβ )

τθ ~ Γ (aτθ ,bτθ)

The corresponding DAG for the model is presented in Figure 3.2. It includes a de-

terministic node (marked in a double circle) for the product of each variable selection

indicator and the corresponding effect size.

The prior distributions, the likelihood of the model and the derivation of the full con-

ditionals of the unknown parameters are formed as follows:

Priors

To the priors mentioned in Section 3.3.1 we add the priors for the indicator variable and

the inclusion probability. Furthermore, priors for θjk and τθ replace the priors for γjk and

τγ .
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xijk

i = 1, . . . , Njk

j = 1, . . . , nα
k = 1, . . . , nβ

αj βk
θjkIjk

τα τβp

γjk

τθ

µ τ

Figure 3.2: DAG for variable selection for asymmetric main and interaction effects

� Ijk|p ~ Bern(p)

f(Ijk|p) = pIjk(1− p)1−Ijk .

� p ~ Beta(ap, bp)

f(p|ap, bp) =
pap−1(1− p)bp−1

B(ap, bp)

∝ pap−1(1− p)bp−1.

Likelihood

The likelihood here is similar to the likelihood of the saturated model. Now instead of γs

there are Is and θs.

p(x|τs, µ, p, α, β, I, θ) =

nα∏
j=1

nβ∏
k=1

Njk∏
i=1

(√
τ

2π
e
−τ(xijk−µ−αj−βk−Ijkθjk)

2

2

)

= (2π)−
N
2 τ

N
2 e
− τ

2

nα∑
j=1

nβ∑
k=1

Njk∑
i=1

(xijk−µ−αj−βk−Ijkθjk)
2

.
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Joint density

The joint density after multiplying the likelihood by the priors and simplifying becomes:

p(x, τ, µ, α, β, I, θ) = (2π)−
N
2 exp

{
− τ
[
b+

1

2

nα∑
j=1

nβ∑
k=1

Njk∑
i=1

(xijk − µ− αj − βk − Ijkθjk)2
]

− τ0
2

(µ− µ0)2 −
τα
2

nα∑
j=1

(αj − µα)2 −
τβ
2

nβ∑
j=1

(βk − µβ)2

− τθ
2

nα∑
j=1

nβ∑
k=1

(Ijkθjk − µθ)2 − βτατα − βτβτβ − βτθτθ

}
τa+

N
2
−1

τ
aτα+

nα
2
−1

α τ
aτβ+

nβ
2
−1

β τ
aτθ+

nγ
2
−1

θ p

nα∑
j=1

nβ∑
k=1

Ijk+ap−1
(1− p)

nγ−
nα∑
j=1

nβ∑
k=1

Ijk+bp−1
.

Full conditionals

The full conditionals for τ , µ, αj and βk change to include the variable selection indicators

and are estimated in the same way as in the previous section for the saturated model

(3.3.1). We only illustrate how τ changes to incorporate Ijk and θjk , with the other vari-

ables following the same logic of replacing γ with the product of I and θ. Precisions for

the main effects, τα and τβ, remain the same as for the saturated model. Full conditionals

for τγ , γjk are replaced with full conditionals for τθ, θjk , estimated in the same way. Ad-

ditionally, we calculate the full conditionals for Ijk and p.

� For τ

τ |· ∼ Ga

a+
N

2
, b+

1

2

nα∑
j=1

nβ∑
k=1

Njk∑
i=1

(xijk − µ− αj − βk − Ijkθjk)2
 .

� For τθ

π(τθ|·) ∝ τ
aτθ−1
θ e−bτθ τθ

nα∏
j=1

nβ∏
k=1

(
√
τθe

−τθ(θjk−µθ)
2

2

)
.

So,

τθ|· ∼ Γ

(
aτθ +

nγ
2
, bτθ +

1

2

nα∑
j=1

nβ∑
k=1

(θjk − µθ)2
)
.

� For θjk

There are two cases; if Ijk=0 and if Ijk=1.
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� If Ijk=0,

θjk|Ijk = 0, · ∼ N
(
µθ, τ

−1
θ

)
,

which is simply the prior.

� If Ijk=1,

θjk|Ijk = 1, · ∼ N


µθτθ + τ

(
Njk∑
i=1

xijk −Njk(µ+ αj + βk)

)
τθ + τNjk

,
1

τθ + τNjk

 .

� For Ijk

According to the Law of Total Probability

π(I|y) =
π(I, y)

π(0, y) + π(1, y)
.

We want the probability:

Pr(Ijk = 1|·) =
π(Ijk = 1|·)

π(Ijk = 1|·) + π(Ijk = 0|·)
,

and we know that:

π(Ijk|·) ∝ pIjk(1− p)1−Ijk exp

−τ2
Njk∑
i=1

(xijk − µ− αj − βk − Ijkθjk)2


∝ pIjk(1− p)1−Ijk exp

{
τ

Njk∑
i=1

(
xijkIjkθjk − µIjkθjk − αjIjkθjk − βjIjkθjk

−1

2
Ijkθ

2
jk

)}

∝ pIjk(1− p)1−Ijk exp

{
τ

[
Ijkθjk

Njk∑
i=1

xijk −Njk

(
µIjkθjk + αjIjkθjk + βkIjkθjk

+
1

2
Ijkθ

2
jk

)]}

∝ pIjk(1− p)1−Ijk exp

{
τIjkθjk

[ Njk∑
i=1

xijk −Njk

(
µ+ αj + βk +

1

2
θjk

)]}
.

Then we normalise,
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Pr(I = 0|·) =
1− p

1− p+ p exp

{
τθjk

(Njk∑
i=1

xijk −Njk(µ+ αj + βk + 1
2θjk)

)}

Pr(I = 1|·) =

p exp

{
τθjk

(Njk∑
i=1

xijk −Njk(µ+ αj + βk + 1
2θjk)

)}
1− p+ p exp

{
τθjk

(Njk∑
i=1

xijk −Njk(µ+ αj + βk + 1
2θjk)

)} .
� For p

π(p|·) ∝ pap−1(1− p)bp−1
nα∏
j=1

nβ∏
k=1

(
pIjk(1− p)1−Ijk

)

∝ pap−1(1− p)bp−1p
nα∑
j=1

nβ∑
k=1

Ijk
(1− p)

nγ−
nα∑
j=1

nβ∑
k=1

Ijk
.

So,

p|· ∼ B

(
ap +

nα∑
j=1

nβ∑
k=1

Ijk, bp + nγ +

nα∑
j=1

nβ∑
k=1

Ijk

)
.

3.3.2.2 Symmetric main and asymmetric interaction effects

For the case where the main effects are treated as symmetric and the interaction effects

as asymmetric, we assume that both main effects are the same. There is only one set

denoted z, with nz number of levels, zj , j = 1, ..., nz. Every zj is updated at every step of

the Gibbs sampler by its full conditional distribution that takes into consideration all the

observations for which either the first or the second independent variable is equal to j, or

they both are.

The model for this case is defined as follows:
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Model:

Xijk|µ, zj , zk, Ijk, θjk, τ ~ N(µ+ zj + zk + Ijkθjk, τ
−1), i=1,...,Njk,

N =
nα∑
j=1

nβ∑
k=1

Njk

µ ~ N(µ0,τ
−1
0 )

τ ~ Γ (a, b)

zj |τz ~ N(0, τ−1z ), j=1,...,nz

θjk|τθ ~ N(µθ,τ
−1
θ )

Ijk ~ Bern(p)

p ~ Beta(ap, bp)

τz ~ Γ (aτz ,bτz)

τθ ~ Γ (aτθ ,bτθ)

The notation used for this model changes slightly from the previous cases and is the

following:

Notation:

nz is the number of levels of the independent categorical variable z

Njk is the number of observations for which the first independent variable is zj and

the second is zk and j 6= k

Nkj is the number of observations for which the first independent variable is zk and

the second is zj and j 6= k

Nj is the number of observations for which either the first or the second independent

variable is zj, but not both

Njj is the number of observations for which both zs are j

The corresponding DAG for the model including variable selection and symmetric main

effects is presented in Figure 3.3. It includes one level of main effects indexed twice to

indicate that it appears twice in the model.

There is a new prior added for the symmetric main effects z, similar to the prior dis-

tributions that we had for α and β. The likelihood and the posterior distributions change

to incorporate this new concept.
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xijk

i

j = 1, . . . , nz
k = 1, . . . , nz

zj
θjkIjk

γjk

τz p τθ

µ τ

Figure 3.3: DAG for variable selection for symmetric main effects

Priors

� zj ~ N(µz,τ
−1
z )

f(zj |µz, τz) ∝
√
τze

−τz(zj−µz)
2

2 = τ
1
2
z e
− τz

2
(zj−µz)2 .

So,

f(z|µz, τz) ∝ τ
nα
2

z e
− τz

2

nα∑
j=1

(zj−µz)2
.

Likelihood

The likelihood changes to:

p(x|τ, µ, z, I, θ) =

nz∏
j=1

nz∏
k=1

Njk∏
i=1

(√
τ

2π
e
−τ(xijk−µ−zj−zk−Ijkθjk)

2

2

)

= (2π)−
N
2 τ

N
2 e
− τ

2

nz∑
j=1

nz∑
k=1

Njk∑
i=1

(xijk−µ−zj−zk−Ijkθjk)
2

.

Joint density

The joint density is the result of multiplying all the prior distributions with the likelihood.

Since we have not repeated all the priors in this section, and the logic of the model has

changed, for clarity we are presenting the joint density explicitly without factoring out the
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common terms.

p(x, τ, µ, α, β, γ) = (2π)−
N
2 τ

N
2 e
− τ

2

nz∑
j=1

nz∑
k=1

Njk∑
i=1

(xijk−µ−zj−zk−Ijkθjk)
2

︸ ︷︷ ︸
Likelihood

τa−1e−bτ︸ ︷︷ ︸
prior τ

τ
1
2
0 e
− τ0

2
(µ−µ0)2︸ ︷︷ ︸

prior µ

τ
nz
2
z e

− τz
2

nz∑
j=1

(zj−µz)2︸ ︷︷ ︸
prior zs

τ
nγ
2
θ e

− τθ
2

nz∑
j=1

nz∑
k=1

(θjk−µθ)2︸ ︷︷ ︸
prior θs

τaτz−1z e−bτz τz︸ ︷︷ ︸
prior τz

τ
aτθ−1
θ e−bτθ τθ︸ ︷︷ ︸

prior τθ

pap−1(1− p)bp−1︸ ︷︷ ︸
prior p

p

nz∑
j=1

nz∑
k=1

Ijk
(1− p)

nγ−
nz∑
j=1

nz∑
k=1

Ijk︸ ︷︷ ︸
prior Is

.

Full conditionals

The full conditionals change equivalently to incorporate the notion of the symmetric main

effects.

� For τ

τ |· ∼ Ga

a+
N

2
, b+

1

2

nz∑
j=1

nz∑
k=1

Njk∑
i=1

(xijk − µ− zj − zk − Ijkθjk)2
 .

� For µ

µ|· ∼ N


µ0τ0 + τ

(
nz∑
j=1

nz∑
k=1

Njk∑
i=1

xijk −
nl∑
j=1

zjNj −
nl∑
k=1

zkNk −
nz∑
j=1

nz∑
k=1

IjkθjkNjk

)
τ0 + τN

,

1

τ0 + τN

 .
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� For zj

π(zj |·) ∝ exp

−1

2

(zj − µz)2τz + τ

nz∑
k=1

Njk∑
i=1

(xijk − µ− zj − zk − Ijkθjk)2


∝ exp


−1

2


(zj − µz)2τz + τ



for the observations with
zj on either side, not both︷ ︸︸ ︷

nz∑
k=1
k 6=l

Njk∑
i=1

(
z2j − 2xijkzj − 2xikjzj + 2µzj + 2zkzj + 2zjIjkθjk

)2

+

for the observations with
zj on both sides︷ ︸︸ ︷

Njj∑
i=1

(
4z2j − 4xijjzj + 4µzj + 4zjIjjθjj

)2





∝ exp

−
1

2

(zj − µz)2τz + τ

Njz
2
j − 2zj

nz∑
k=1
k 6=j

Njk∑
i=1

xijk − 2zj

nz∑
k=1
k 6=j

Njk∑
i=1

xikj + 2zj

nz∑
k=1
k 6=l

zkNj

+ 2zj

nz∑
k=1
k 6=l

IjkθjkNjk + 2zj

nz∑
k=1
k 6=l

IjkθkjNkj + 2Njµzj + 4z2jNjj − 4zj

Njj∑
i=1

xijj

+ 4Njjµzj + 4zjIjjθjjNjj





∝ exp

z2j
(
−1

2
τz −

1

2
τNj − 2Njjτ

)
+ zj

µzτz + τ

 nz∑
k=1
k 6=j

Njk∑
i=1

xijk +

nz∑
k=1
k 6=j

Njk∑
i=1

xikj −Njµ

−
nz∑
k=1
k 6=l

zkNj −
nz∑
k=1
k 6=j

IjkθjkNjk −
nz∑
k=1
k 6=l

IjkθkjNkj + 2

Njj∑
i=1

xijj − 2Njjµ− 2IjjθjjNjj



 .

So,
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zj |· ∼ N



µzτz + τ



sum of the observations with
zj on either side, not both︷ ︸︸ ︷

nz∑
k=1
k 6=j

Njk∑
i=1

xijk +

nz∑
k=1
k 6=j

Njk∑
i=1

xikj −Njµ−
nz∑
k=1
k 6=l

zkNj


τz + τNj + 4τNjj

+

τ


−

sum of the interactions
with zj on either side, not both︷ ︸︸ ︷

nz∑
k=1
k 6=j

IjkθjkNjk −
nz∑
k=1
k 6=l

IjkθkjNkj +

terms for the observations with
zj on both sides︷ ︸︸ ︷

2

Njj∑
i=1

xijj − 2Njjµ− 2IjjθjjNjj


τz + τNj + 4τNjj

,
1

τz + τNj + 4τNjj



.

� For τz

π(τz|·) ∝ τaτz−1z e−bτz τz
nz∏
j=1

(
√
τzje

−τz(zj−µz)
2

2

)

∝ τaτz−1z e−bτz τzτ
nz
2
z e

nz∑
j=1

−τz(zj−µz)
2

2

∝ τ
aτz+

nz
2
−1

z e
−τz
(
bτz+

1
2

nz∑
j=1

(zj−µz)2
)
.

So,

(τz|· ∼ Γ

(
aτz +

nz
2
, bτz +

1

2

nz∑
j=1

(zj − µz)2
)
.
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� For τθ

τθ|· ∼ Γ

(
aτθ +

nγ
2
, bτθ +

1

2

nl∑
j=1

nl∑
k=1

(θjk − µθ)2
)
.

� For θjk

There are two cases again; if Ijk=0 and if Ijk=1.

� If Ijk=0,

π(θjk|Ijk = 0, ·) ∼ N
(
µθ, τ

−1
θ

)
,

which is simply the prior.

� If Ijk=1,

θjk|Ijk = 1, · ∼ N


µθτθ + τ

(
Njk∑
i=1

xijk −Njk(µ+ zj + zk)

)
τθ + τNjk

,
1

τθ + τNjk

 .

� For Ijk

Pr(I = 0|·) =
1− p

1− p+ p exp

{
τθjk

(Njk∑
i=1

xijk −Njk(µ+ zj + zk + 1
2θjk)

)} .

P r(I = 1|·) =

p exp

{
τθjk

(Njk∑
i=1

xijk −Njk(µ+ zj + zk + 1
2θjk)

)}
1− p+ p exp

{
τθjk

(Njk∑
i=1

xijk −Njk(µ+ zj + zk + 1
2θjk)

)} .

3.3.2.3 Asymmetric main and symmetric interaction effects

For the case where the main effects are asymmetric and the interaction effects symmetric,

we assume that the effect of the interaction γjk is treated by the model as the same as

γkj . Thus, at every step of the Gibbs sampler we estimate only the interaction term γjk.

The model and the full conditionals are the same as in the case where both the main

and the interaction effects are asymmetric (3.3.2.1), except for the full conditionals of the

interaction effects and the variable selection indicators. The DAG is the same as in Figure

3.2, with one condition added in the indexing of the interaction effects, j should be less
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or equal to k, j ≤ k. This is a characteristic of the symmetry assumption.

Using the same notation as in the case of symmetric main effects (3.3.2.2), the updated

full conditionals for this case are presented below.

Full conditionals

� For θjk

There are two cases again; Ijk=0 and Ijk=1.

� If Ijk=0,

θjk|Ijk = 0, · ∼ N
(
µθ, τ

−1
θ

)
,

which is simply the prior as in the previous cases.

� If Ijk=1

w =



sum of the observations
with θjk or θkj︷ ︸︸ ︷

Njk∑
i=1

xijk +

Nkj∑
i=1

xikj −Njµ−Njk(αj + βk)−Nkj(αk + βj), if j 6= k,

sum of the observations
with θjk or θkj︷ ︸︸ ︷

Njk∑
i=1

xijk +

Nkj∑
i=1

xikj −Njjµ−Njj(αj + βk), if j = k.

So,

θjk|Ijk = 1, · ∼


N

(
µθτθ + τw

τθ + τNj
,

1

τθ + τNj

)
, if j 6= k,

N

(
µθτθ + τw

τθ + τNjj
,

1

τθ + τNjj

)
, if j = k.

� For Ijk

Pr(I = 0|·) =
1− p

1− p+ p exp

{
τθjk(w − 1

2θjk)

} .

P r(I = 1|·) =

p exp

{
τθjk(w − 1

2θjk)

)}
1− p+ p exp

{
τθjk(w − 1

2θjk)

)} .
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3.3.2.4 Symmetric main and symmetric interaction effects

The last model that we examine using the Kuo and Mallick approach for applying variable

selection on two-way Anova models is the case where both the main and the interaction

effects are treated as symmetric. We assume that the main effects come from the same

distribution and the effect of the interaction γjk is treated by the model as the same as

γkj .

This case constitutes a combination of the previous two cases, where the full condi-

tionals for τ , zl, τz and µ are the same as in the case where only the main effects are

symmetric (3.3.2.2), and the full conditionals for Ijk and θjk are the same as in the case

where only the interaction effects are symmetric (3.3.2.3), with the only difference being

that w is now defined as:

w =



sum of the observations
with θjk or θkj︷ ︸︸ ︷

Njk∑
i=1

xijk +

Nkj∑
i=1

xikj −Njµ−Nj(zk + zj), if j 6= k,

sum of the observations
with θjk or θkj︷ ︸︸ ︷

Njk∑
i=1

xijk +

Nkj∑
i=1

xikj −Njjµ− 2Njjzj , if j = k.

The DAG in this case is similar to 3.3 with the condition that j ≤ k for the interaction

effects, as it also happened in the case where only the interactions are symmetric.

An example of the results of these approaches will be presented in Section 7.2, where

we examine how MCMC and more specifically the Gibbs sampler works, using synthetic

datasets. The models fitted involve two categorical explanatory variables and their interac-

tions on which we apply variable selection using the Kuo and Mallick approach accounting

for the levels of asymmetry previously described.

3.3.3 Variable selection using the Horseshoe prior

The Horseshoe prior is the second variable selection technique that we examine. It was

analytically presented in Section 2.4.2 and falls into the category of shrinkage priors. It

can be used to apply variable selection to models built with algorithms, such as HMC,

that are not applicable to problems with discrete variables. Thus, two component discrete

mixture priors, like the ones used in the previous section (3.3.2) are not suitable. Other

MCMC algorithms, such as the Gibbs sampler, can use spike-and-slab approaches, however

it is sometimes suggested that the Horseshoe prior can be more tractable computationally

(Piironen and Vehtari, 2017).

Examining the case where both the main and the interaction effects are asymmetric,
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we want to apply variable selection to the interaction coefficients γjk using the Horseshoe.

Based on the description of the Horseshoe parameterisation (2.11), half-Cauchy prior

distributions are used for the hyperparameters determining the variance of γs, therefore:

γjk|λjk, τHS ∼ N(0, τ2HSλ
2
jk),

λjk ∼ C+(0, 1),

τHS ∼ C+(0, 1).

To avoid confusion with precision τ , we are denoting the hyperparameter of the Horse-

shoe τ , as τHS .

The model for the variable selection with the Horseshoe has many similarities to the

saturated model presented in Section 3.3.1 and it is defined as:

Model:

Xijk|µ, αj , βk, γjk, τ ~ N(µ+ αj + βk + γjk, τ
−1), i=1,...,Njk,

N =
nα∑
j=1

nβ∑
k=1

Njk

µ ~ N(µ0,τ
−1
0 )

τ ~ Γ (a, b)

αj |τα ~ N(µα, τ
−1
α ), j=1,...,nα

βk|τβ ~ N(µβ, τ
−1
β ), k=1,...,nβ

γjk|λjk, τHS ~ N(0, τ2HSλ
2
jk)

τα ~ Γ (aτα ,bτα)

τβ ~ Γ (aτβ ,bτβ )

τHS ~ C+(0, 1)

λjk ~ C+(0, 1)

τγ = 1
τ2HSλ

2
jk

Where αj is the effect of the jth α, βk is the effect of the kth β and γjk is their

interaction.
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Notation:

nα is the number of levels of the independent categorical variable α

nβ is the number of levels of variable β

nγ = nα · nβ is the number of levels of interactions

Nj =
nβ∑
k=1

nγ is the number of observations that have αj

Nk =
nα∑
j=1

nγ is the number of observations that have βk

Njk is the number of observations for which the α is j and the β is k

The corresponding Directed Acyclic Graph (DAG) representing the variables of the

model using the Horseshoe is presented in Figure 3.4.

xijk

i = 1, . . . , Njk

j = 1, . . . , nα
k = 1, . . . , nβ

αj βk
λjk

γjk

τα τβτHS

µ τ

Figure 3.4: DAG for variable selection using the Horseshoe prior

Most of the prior distributions of the unknown parameters are similar to the priors

for the saturated model 3.3.1. The difference now is that there is no prior for one com-

mon τγ , but priors for the newly introduced parameters, τHS and λjk instead, and since

τγjk = 1
τ2HSλ

2
jk

, the prior for γjk is adjusted respectively. The likelihood is unchanged,

but the joint density is modified to include the new parameters. Finally, the posterior

distributions for most parameters are analogous to the ones for the saturated model, thus

only the derivation of the posterior distributions for τHS and λjk will be displayed.

Priors

� For γjk ~ N(µγ , τγjk
−1)
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f(γjk|µγ , τγjk) ∝ τγjk
1
2 e−

τγjk
2

(γjk−µγ)2 =

(
1

τ2HSλ
2
jk

) 1
2

e
−

γ2jk

2τ2
HS

λ2
jk .

So,

f(γ|µγ , τγjk) ∝
nα∏
j=1

nβ∏
k=1

( 1

τHSλjk

)
e
−

γ2jk

2τ2
HS

λ2
jk

.
� τHS ~ C+(0, 1)

f(τHS) ∝ 2

π(τ2HS + 1)
.

Similarly,

� λjk ~ C+(0, 1)

f(λjk) ∝
2

π(λ2jk + 1)
.

So,

f(λ) ∝
nα∏
j=1

nβ∏
k=1

2

π(λ2jk + 1)
.

Joint density

The joint density is the likelihood multiplied by the priors.

p(x, τ, µ, α, β, γ, τHS , λ) = (2π)−
N
2 τ

N
2 e
− τ

2

nα∑
j=1

nβ∑
k=1

Njk∑
i=1

(xijk−µ−αj−βk−γjk)
2

︸ ︷︷ ︸
Likelihood

τa−1e−βτ︸ ︷︷ ︸
prior τ

τ
1
2
0 e
− τ0

2
(µ−µ0)2︸ ︷︷ ︸

prior µ

τ
nα
2

α e
− τα

2

nα∑
j=1

(αj−µα)2︸ ︷︷ ︸
prior αs

τ
nβ
2
β e

−
τβ
2

nβ∑
j=1

(βk−µβ)2︸ ︷︷ ︸
prior βs

nα∏
j=1

nβ∏
k=1

( 1

τHSλjk

)
e
−

γ2jk

2τ2
HS

λ2
jk


︸ ︷︷ ︸

prior γs

τaτα−1α e−bτατα︸ ︷︷ ︸
prior τα

τ
aτβ−1
β e−bτβ τβ︸ ︷︷ ︸

prior τβ

2

π(τ2HS + 1)︸ ︷︷ ︸
prior τHS

nα∏
j=1

nβ∏
k=1

2

π(λ2jk + 1)︸ ︷︷ ︸
prior λ

.
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Full conditionals

� For τHS

π(τHS |·) ∝
2

π(τ2HS + 1)

nα∏
j=1

nβ∏
k=1

( 1

τHSλjk

)
e
−

γ2jk

2τ2
HS

λ2
jk


∝ 2

(τ2HS + 1)τ
nγ
HS

e
− 1

2τ2
HS

nα∑
j=1

nβ∑
k=1

γ2jk

λ2
jk .

� For λjk

π(λjk|·) ∝
2

π(λ2jk + 1)

(
1

τHSλjk

)
e
−

γ2jk

2τ2
HS

λ2
jk

∝ 2

(λ2jk + 1)λjk
e
− 1

λ2
jk

γ2jk

2τ2
HS .

For both τHS and λjk, the resulting posterior density is not of a known form, conse-

quently a Metropolis step will be required for updating the values of these two parameters

within the Gibbs sampler.

� For γjk

γjk|· ∼ N


µγτγ + τ

(
Njk∑
i=1

xijk −Njk(µ+ αj + βk)

)
τγjk + τNjk

,
1

τγjk + τNjk

 ,

where τγjk = 1
τ2HSλ

2
jk

.

An example of variable selection using the Horseshoe will be presented in Section 7.4,

where this method will be examined as an alternative to the Kuo and Mallick approach

for applying variable selection to the interactions of a two-way Anova model with random

effects.
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3.4 Summary

Two-way Anova models are a case of hierarchical models with two independent variables,

with each having many levels. If we are also interested in the interactions between the

main effects, the corresponding model may have a considerable number of covariates.

Using Gibbs sampling to identify the saturated model and incorporate variable selection

can help us numerically approximate the parameters of interest. However, deriving the

full conditionals can be challenging, depending on the complexity of the problem and the

levels of hierarchy in the case of hierarchically structured datasets.

MCMC methods are revolutionary in the field of Bayesian statistics. Nevertheless, due

to the increase of volume of data and model complexity, these methods sometimes tend

to be computationally expensive. Therefore, in the following chapter we will establish the

current state-of-the-art approaches to render these Bayesian inference algorithms more

scalable, but at the same time accurate. We will also review the general principles that

are followed in order to exploit computing resources efficiently.
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Scalable Bayesian inference

The evolution of Information and Communication Technology (ICT) has led us to the era

of “Big Data”. Massive amounts of data are generated every day, and their complexity

and size create a need for richer models. Modern technologies and scalable solutions aim

to provide researchers and corporations with the appropriate tools to analyse data and

extract knowledge from them, which can later be used for scientific, business, social and

other purposes.

Bayesian methods are widely used for modelling, but their scalability is a challenge.

Due to the size of datasets and the complexity of the models, problems like memory con-

straints, limited storage capacity and excessive computation time arise. Consequently,

there is a lot of research to improve these methods, focusing on topics such as the com-

putational resources and programming languages used, the structure of the model, the

assumptions made and others.

We will start by mentioning a few reasons that indicate why it is difficult to scale

Bayesian approaches in order to cope with the high demands for computational speed and

efficiency. We will then analyse some techniques developed over the last years for making

MCMC algorithms more computationally efficient and scalable. These techniques mainly

fall into two categories: subsampling and divide-and-conquer techniques (Wu and Robert,

2017). After pointing out some aspects of these two approaches and of the ones used

specifically in hierarchical modelling we will present some of their limitations.

4.1 Scaling Bayesian methods is a challenge

The concept of scalability has slightly different definitions and interpretations depending

on the scientific field. After reviewing the current literature about MCMC techniques,

we concluded that there are two notions of scalability, not necessarily uncorrelated. The

first is related to how easily MCMC techniques could extend to larger models, either in
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the sense of model complexity or of sample size. The second is associated with practical

speed-up of the sampling process, either by modifying specific parts of the algorithm or by

exploiting available technologies. There is an overlapping part in these concepts. Easier

extension of the MCMC techniques to bigger models can be achieved if sampling is faster

in the algorithmic steps and modern technologies enable processing and storage of large

datasets and multidimensional results in an efficient way.

Since the introduction of the Markov Chain Monte Carlo algorithm, the increase of

computing capacities have helped Bayesian methods become very popular. However, due

to the nature of the algorithms, there are some limitations concerning handling large

amounts of data. VanDerwerken and Schmidler (2013) emphasise how MCMC algorithms

follow an inherently serial process. Long and time-consuming runs are the result of the iter-

ative character of the algorithms, necessary to obtain convergence to an equilibrium distri-

bution. Moreover, the dependence of the calculations at each step on the estimated values

of the previous renders parallelising the process a challenging task. Posterior sampling

in MCMC can be computationally intensive and time demanding. The implementation

of some MCMC algorithms, such as Metropolis–Hastings, requires a pass over the whole

dataset at every iteration while estimating the likelihood. This can be computationally

expensive, especially if we deal with a large dataset (Wu and Robert, 2017; Korattikara

et al., 2014). Additionally, the complexity of the target density, necessary to calculate the

acceptance ratio, may slow down the execution of the algorithms (Banterle et al., 2014).

Furthermore, chains appear to have convergence problems when we have high-dimensional

posteriors (Rajaratnam and Sparks, 2015). Finally, case-specific problems seem to arise

with particular kinds of datasets and models, such as modelling tall data (Bardenet et al.,

2014) or hierarchical modelling (Wei and Conlon, 2017).

The above challenges of the algorithms and the calculations involved along with the

complex nature of the data structures led to the development of various scaling strate-

gies that try to improve performance by tackling specific parts of the simulation process.

Martin et al. (2020) study the evolution of Bayesian computation over the years and con-

clude that all advances in MCMC have a common aim, to explore the high mass region of

the target posterior distribution more effectively and consequently improve the estimation

accuracy. They also identify three main aims that the scaling methods try to achieve:

reduction of the cost per iteration that enables drawing more samples, bias elimination

and reduction of dependencies in the chain. The next section aims to present some of the

available techniques and outline the latest trends in the field.
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4.2 Scaling strategies

According to the current literature there are two main tendencies among the scaling strate-

gies of the MCMC algorithms; subsampling and divide-and-conquer techniques. The first

category takes advantage of using random samples of the dataset for the calculations,

whereas the second, focuses on parallel processing and spreading the calculations across

multiple machines. We devote a section to each technique by gathering and summarising

various approaches appearing in the existing literature. We also include a section for some

other strategies that either are for more specific problems or do not follow the main two

approaches. Next, we focus on methods aiming specifically at more efficient hierarchical

modelling. Finally, we refer to some limitations of the scaling techniques.

4.2.1 Subsampling strategies

Having to sweep through the whole dataset at every iteration of an MCMC algorithm

can be computationally expensive. Consequently, there are several strategies developed

based on using a subset of the initial dataset at every iteration, a process which is called

subsampling (Angelino et al., 2016; Bardenet et al., 2014). Below we cite some proposed

implementations based on subsampling. The general idea is to decrease the complexity

O(N) of regular MCMC, where N is the sample size, by operating on subsets of the

original dataset (Quiroz et al., 2018). This approach aims to improve the performance of

the algorithm by optimising the algorithm itself (Korattikara et al., 2014).

Angelino et al. (2016) prove why subsampling works. For the problems that we mostly

deal with, the data are conditionally independent given the parameters θ. When this is

the case, not only can the posterior be expressed in terms of the product of the likelihood

and the prior, but also the likelihood can be decomposed into a product of the probability

that we observe each data-point given θ as follows:

π(θ|x) ∝ π(θ)π(x|θ) = π(θ)
N∏
n=1

π(xn|θ). (4.1)

According to Angelino et al. (2016), when N is large the above factorisation (4.1) can be

used in MCMC algorithms where updates will only depend on subsets of the data and

not the entire dataset. It is also pointed out that these subsets can be used to form an

unbiased MC estimate of the log likelihood and the log joint density. This derives from

the fact that the log likelihood is the following sum:

log π(x|θ) =

N∑
n=1

log π(xn|θ), (4.2)
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that can be approximated with the following sum, using a random subset of m terms:

log π(x|θ) ≈ N

m

m∑
n=1

log π(x∗n|θ), (4.3)

where {x∗n}mn=1 is a uniformly random subset of {xn}Nn=1 and m < N . This approximation

leads to an unbiased estimate of the log joint density which is the product of the log

likelihood and the log prior density.

MCMC algorithms are based on sampling, and contain some kind of accept/reject step

to evaluate the sampled value and determine their next move. Hence, some of the methods

developed focus on applying subsampling strategies on the accept/reject step. Another

group of techniques introduces auxiliary variables and some alternative methods add noise

to stochastic optimization techniques to incorporate subsampling (Angelino et al., 2016).

Finally there are some other approaches that do not strictly fall in these categories.

• Reformulation of the accept/reject step

Metropolis–Hastings is one of the most widely used MCMC algorithms and there is an

effort to reformulate the way its accept/reject step is estimated by incorporating the idea

of subsampling. According to Korattikara et al. (2014), this step, also referred to as MH

test, can be very time-consuming. This is due to the fact that it necessitates calculation of

the likelihood over thousands of data points. Using all data points at every iteration can

be inefficient. MCMC has a finite amount of computational time T to calculate its output.

During this time there are two features that affect the stepsize of the proposal (ε) that is

involved in the calculation process; the bias and the variance. The bias is mostly related to

the burn-in period, when the algorithm is sampling from the wrong distribution, and has a

decreasing tendency. The sampling variance is related to the random nature of the process.

They point out that using subsamples at the accept/reject step can lead to unbiased like-

lihood estimators that will, however, have high variance and vice versa. To eliminate this

bias-variance trade-off, they develop an approximate MH test that introduces some bias in

the stationary distribution, but compensates it by reducing the variance more quickly and

decreasing the computational complexity. Based on the same principle, Bardenet et al.

(2014) also develop a method that accounts for the bias-variance trade-off. Angelino et al.

(2016) use the term “Adaptive subsampling” when referring to this category of methods.

Most of these methods apply uniform subsampling at each iteration. Another approach,

suggested by Maire et al. (2018), involves a subsampling mechanism based on summary

statistics. Their algorithm, Informed Sub-Sampling MCMC (ISS-MCMC), extends the

state space Θ with an n-dimensional vector (Uk), that at every iteration (k) indicates the

subset of the original N data points used, hence Uk ⊂ {1, ..., N} where n << N . The

sub-samples are assigned a distribution that reflects their similarity to the full dataset and
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summary statistics are used as a similarity measure.

• Usage of auxiliary variables

Firefly Monte Carlo (FlyMC) is an approach proposed by Maclaurin and Adams (2014).

In this strategy a binary auxiliary variable for each observed data-point is used to indicate

at each iteration which of the data-points are used for estimating the posterior distribu-

tion.

• Noise addition to stochastic optimisation

Welling and Teh (2011) developed a subsampling technique called Stochastic Gradient

Langevin Dynamics (SGLD) algorithm. It is based on another MCMC algorithm, the

Metropolis-adjusted Langevin algorithm (MALA), which uses stochastic optimisation.

SGLD computes gradients on various subsets and uses them to approximate the true

gradient over the whole dataset. It introduces noise to the stochastic gradient estimator

in order to optimise the un-normalised density. Then, by decaying this noise they manage

to accept all proposals and therefore never evaluate the acceptance probability (Angelino

et al., 2016).

• Other approaches

Based on the Pseudo-marginal MCMC, where a MH algorithm uses auxiliary random vari-

ables (not introduced to apply subsampling but already included) to form the likelihood

estimates in order to make the intractable distribution tractable, comes the approach pro-

posed by Quiroz et al. (2018). At each MCMC iteration they use a small random subset

of the data and two types of control variates to obtain an unbiased estimate of the exact

log-likelihood.

Linear mixed models, composed by fixed and random effects, are widely used in many

real-world applications. Tan et al. (2018) investigate ways to model high-dimensional

Linear Mixed Models (LLM) using a kernel matrix, computed using the subsampled

Hadamard transformation. They also introduce approximate variance components to es-

timate the fixed-effects coefficients. Their approach results in computational complexity

that depends sublinearly on the number of covariates p.

Despite their differences, all of the approaches mentioned above are based on the

idea that at each iteration, a random subset of the dataset is used in order to speed-

up the algorithms and make them more efficient. Some of the sub-sampling techniques

mentioned, allow the sub-sample size to vary (Korattikara et al., 2014; Bardenet et al.,

2014), whereas others use a fixed sub-sample size (Maire et al., 2018). For the first

category of methods there is an associated computational cost stochastically defined at

each iteration, due to the calculation of the data mini-batch size used for this particular
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iteration, that could potentially outweigh the efficiency gain of performing calculations

on a subset of the original dataset. Since there is not a gold standard scaling strategy

applicable to all statistical problems, it is important that more than one methods are

explored to identify the best approach for each situation, if efficiency is of interest.

The next category of scaling methods aims to achieve speed-up by taking advantage

of parallel computing resources.

4.2.2 Divide-and-conquer strategies

With the evolution of technology and computing science, multi-core and cloud technologies

that allow for parallel processing became extensively used for various algorithms. It is a

challenge to manage to embed them in the MCMC class of algorithms in order to improve

mixing and distribute the computational load more efficiently. A lot of research has been

done in this area, and the methods mentioned in this section aim to take advantage of

modern computing resources to make MCMC algorithms more scalable. Methods based

on the idea of spreading the calculations across multiple machines are called divide-and-

conquer methods (Wu and Robert, 2017). According to Wilkinson (2005) there are two

main strategies for parallelising MCMC; one is based on using multiple processors to run

multiple MCMC chains in parallel and the other is based on parallelising a single MCMC

chain. Some more recent techniques do not necessarily fall into this categorisation since

they aim to parallelise specific parts of the algorithms.

The introduction of fast graphics processing units (GPU) managed to decrease the pro-

cessor bottleneck, but memory and disk bottlenecks were still an issue. Splitting the data

across machines could be a solution. However, the communication cost among multiple

machines can be quite expensive, so it must be minimised. Scott et al. (2016) introduced

Consensus Monte Carlo (CMC) that aims to tackle the communication cost problem. The

algorithm divides the data across many nodes, where each node samples independently

from the posterior distribution given the data that are allocated to it. So, a separate

Monte Carlo algorithm runs on each machine and only at the end the posterior draws are

combined to a ‘consensus chain’, which is the weighted average of the separate chains, that

reflects the results from all the worker nodes of the distributed system. Several variations

of the consensus Monte Carlo approach have been developed. The limitation of CMC

is that it is exact only with Gaussian posterior and sub-posterior distributions (Scott,

2017a). Neiswanger et al. (2014) propose a similar approach, sampling from an estimate

of the subposterior density product, which is proportional to the full-data posterior, us-

ing kernel smoothing. Unlike consensus Monte Carlo, their algorithm is asymptotically

exact for any posterior, but has high computational complexity (Bumbaca et al., 2017).

Another approach that again connects the independent draws at the end is followed by

the Weierstrass Sampler which is in fact two alternative algorithms: refinement sampling
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and rejection sampling, both based on application of a Weierstrass transformation on the

sub-posteriors (Wang and Dunson, 2014). Instead of sampling from independent sub-

posteriors as in the previous methodologies, Wu and Robert (2017) suggest sampling from

rescaled sub-posteriors, across many machines. They recentre each sub-posterior to their

common mean and then average to take the approximation of the true posterior.

VanDerwerken and Schmidler (2013) introduce an asynchronous parallelisation ap-

proach where running an arbitrary number of independent and parallelisable copies of a

Markov chain and then combining the results can accelerate the process of estimating the

equilibrium. This can be achieved by partitioning the parameter space Θ into j partitions

whose sampling average of the target distribution combined with a weight w will result in

an unbiased estimate of the unknown parameter. Another technique that does not involve

exchange of information between the nodes over which the workload is spread until the

end of the algorithm is called “Powered Embarrassing Parallel MCMC”, where the data

posterior density is again the product of the posterior densities of different subsets of the

data that run on different machines (Li et al., 2017). On the other hand, the “Generalized

Elliptical Slice Sampling” (Nishihara et al., 2014) functions by allowing information shar-

ing between the chains. This approach uses latent Gaussian models and takes advantage of

Gaussian priors to enable faster mixing. The target distribution is reframed accordingly.

The transition operator carries information about the shape of the target distribution and

parallelism is used to choose the tuning parameters of the scale mixture of Gaussians.

Another group of methods tries to combine optimisation techniques with MCMC. It is

based on the alternating direction method of multipliers (ADMM) algorithm which aims

to solve optimisation problems by breaking them into smaller pieces. The variables of

interest, which are subject to constraints, are split into a pair of variables. This enables

simplification of the objective function, which is now a sum of the data fitting term and a

regularisation function (Vono et al., 2018). In the case of the MCMC, it is the target pos-

terior distribution that is split and the subposteriors are distributed across nodes (Rendell

et al., 2020).

A technique that aims to parallelise a single chain is implemented by Banterle et al.

(2014). It divides the acceptance step into several parts by partitioning the “prior ×
likelihood” term into a product. The less costly components are evaluated first and com-

pared to a sample from a Uniform distribution. If one of the components is rejected the

algorithm does not proceed in calculating the remaining components. Moreover, their

algorithm takes advantage of a computer science technique which is called prefetching. It

can calculate, in parallel, operations that are expected to be needed soon. In this case,

the potential posterior values are computed in advance based on a binary tree representa-

tion of the probable outcomes. The left branches represent the acceptance and the right

the rejection. A prerequisite is that the random-walk steps and the sequence of uniform
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samples driving the accept/reject steps will be simulated beforehand in order to build the

tree.

According to Wilkinson (2005), parallelising MCMC can get complex due to the de-

pendencies between the various parts of the model. Therefore, another approach that aims

to parallelise a single MCMC chain is based on the identification of groups of variables

that are conditionally independent. A natural way to identify which tasks can be carried

out independently of one another is to use a Directed Acyclic Graph (DAG), that can

give a natural representation of the terms of the model and show the conditional inde-

pendences. Then, these variables can be updated in parallel on the available processors.

Their summary statistics can also be computed in parallel. Variables that depend on

other variables are updated sequentially to ensure correctness. This strategy can extend

to complex models as well, as long as the conditional independence assumption holds.

When it comes to MCMC algorithms that take advantage of parallelisation there is

a range of possible solutions with two extreme ends. The one involves running a large

number of independent Markov Chains in parallel but according to Nishihara et al. (2014)

this approach will enable running longer chains in the same time and improve the accuracy

but not the mixing or the speed of convergence. At the other end, there is one chain that

parallelises the transitions and potential expensive operations that can be calculated in

parallel. Additionally, there is a variation concerning the level and amount of communi-

cation among the nodes, with many approaches trying to minimise this communication

during the process and allowing it only for the final calculations.

4.2.3 Other strategies

Some strategies aim specifically to models that have intractable likelihood functions. Friel

et al. (2016), introduce control variables to approximate the likelihood, and at the same

time reduce the estimator variance. They use K forward-simulations, with K being equal

to the number of the available cores, which can run in parallel and reduce the computa-

tional time.

A lot of research has been done for more specific kinds of models. Johndrow et al.

(2018) study ways to use block updating to accelerate the mixing of the global precision

parameter and decrease the computational cost per step of MCMC when the number of

predictors is greater than the number of observations p > N , and especially when the

vector of coefficients β, with β ∈ Rp, is sparse. The idea is to use the Horseshoe prior and

sample from the joint distribution of blocks of the unknown parameters in a specific order.

Papaspiliopoulos et al. (2018) explore scalability in another kind of model, the crossed

random effects models. They use a block Gibbs sampler that updates in a block the levels

of a given factor, and specifically each factor level separately, conditionally on the rest, as

well as a collapsed version of this algorithm that samples again in blocks the levels of each
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factor after having integrated out the global mean first.

An approach based on “blocking” and the use of the topology of DAGs as well as

the sparsity of the conditional independence while working with models containing a large

number of latent (unobserved) variables is proposed by Wilkinson and Yeung (2004). They

show how using sparse matrix algorithms and the canonical parameterisation of a Mul-

rivariate Normal Distribution can lead to more convenient schemes that can be used to

implement more efficient MCMC algorithms. Another study on latent Gaussian models

uses nested Laplace approximations. A three-step algorithm is proposed to approximate

posterior marginals in this type of model. The first step involves using Laplace approxi-

mation to approximate the posterior marginal of θ. The second step computes the Laplace

approximation of π(xi|y, θ), for selected values of θ, and the third step combines the pre-

vious two. This algorithm results to computational gains (Rue et al., 2009).

4.2.4 Strategies for hierarchical modelling

Hierarchical modelling is used when the data are organised in groups and we want to

identify the within and between group variabilities. There are many problems of that

form and, due to the nature of the data, the methodologies mentioned earlier can be

applied but are not adequate for hierarchical modelling. Their limitation is that they have

a significant cost either in accuracy of results or in the computational gain (Bumbaca

et al., 2017). Consequently, there is a need for further improvement since, specifically for

hierarchical models, it is necessary to take into consideration the multilevel structure of

the datasets.

One approach that can be used for scalable hierarchical modelling is an extension of

the consensus Monte Carlo idea mentioned earlier (4.2.2). This version of the algorithm

is implemented in two stages. For each stage, the full dataset (Y ) is partitioned into S

shards, with each shard being on a different machine, such that all of the observations for a

group are in the same shard. The first stage simulates both the common parameter among

all groups, denoted as θ, and all the group-level parameter draws. At every iteration of the

MCMC, it only combines the S collections of θ and drops the rest. The common parameter

draws from that stage are combined as a product of S subposteriors (p(θ|Y ) ∝
∏
s

(θ|Ys))

and used at the second stage. The second stage draws the group-specific parameters in an

embarrassingly parallel (i.e. without communication among the machines) manner using

the product of subposteriors from the previous stage (Scott, 2017b).

Wei and Conlon (2017), suggest partitioning the data grouped by factors, since most

parameters are group-specific, and then use parallel computing and split the groups on

different cores. They also propose a two-stage approach that uses Metropolis-Hastings.

In this case, after partitioning the full dataset by groups, the first stage involves the

group-specific parameters’ independent parallel estimation. The second uses the posteri-
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ors produced from the first stage as proposal. In a similar approach Bumbaca et al. (2017)

construct an estimator for the posterior predictive distribution of the group-specific param-

eters in the first stage, and use the estimator as the prior distribution in the second stage,

with both stages being embarrassingly parallel. Finally, another algorithm for parallelising

Bayesian hierarchical models is implemented in MultiBUGS, which is a version of BUGS1

aiming to speed up posterior inference of this specific type of model. MultiBUGS uses a

directed acyclic graph, where each node (n) is a component DAG G=(VG, EG), where VG

includes all the stochastic parameters of the model, including the hyperparameters, and

the observations, and EG represents the arrows. Due to the assumption of conditional

independence the full joint distribution of all quantities denoted as V, is a factorisation

of each node v, given its parents p(V ) =
∏
v∈V

p(v|pa(v)). MultiBUGS identifies a partition

of a set of stochastic parameters (S(V)) for which each partition component contains only

mutually conditionally independent parameters which enables them to be sampled in par-

allel. So, this algorithm parallelises the evaluation of the likelihoods formed as products

and the sampling of conditionally independent sets of parameters (Goudie et al., 2018).

4.2.5 Limitations of scaling approaches

All the approaches mentioned earlier aim to make MCMC algorithms more efficient and

less prone to delays due to increasing complexity of the models. However, there are some

limitations that have to be considered when applying one of these strategies.

According to Bumbaca et al. (2017) some of the algorithms work efficiently only when

they deal with Gaussians and mixture component distributions can increase the computa-

tional complexity. This is also supported by Wei and Conlon (2017). Additionally, some

methods use kernel density estimation that becomes infeasible when dealing with higher

dimensions. Furthermore, sometimes proper priors for the full dataset might be improper

for the subsets that can lead to improper posteriors for these subsets. Angelino et al.

(2016) also point out that in most cases more parallelism means less accuracy. Moreover,

although there is an overall speed up not many algorithms try to speed-up the burn-in

process (Neiswanger et al., 2014). Finally, from a time consumption perspective commu-

nication between the machines can be inefficient, since multiple machine coordination can

be computationally expensive (Scott et al., 2016).

4.3 Summary

With the rapidly growing scales of statistical problems and datasets, there is high demand

to change the implementations of existing MCMC algorithms in a way that they can be

1Software for Bayesian analysis (BUGS, 1989).
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more scalable, efficient and at the same time accurate. There are two main approaches

to this problem. One is subsampling, where random subsets of the original dataset are

used for the calculations. The second approach involves distributed computation, de-

scribed often as divide-and-conquer techniques. These strategies use parallel processing

and computing resources. Some implementations of these strategies demand communi-

cation between the mini batches of data stored on different machines, a factor that can

increase the communication cost. Consequently, there have been efforts to minimise this

cost by creating “embarrassingly” parallel algorithms that demand no communication until

the end when the chains are combined to mimic draws from the full data posterior distri-

bution. Most approaches have limitations. Some parameters to consider before deciding

which scaling strategy is more suitable for a problem are the structure of the dataset, the

model to be used, the final aim of the research and all the trade-offs and the properties

that are important for the specific study.

MCMC is a powerful simulation technique and although there are computing tools

and libraries developed for running its algorithms, in some cases where the model is non-

standard it is necessary to practically reimplement the algorithm. Some of the program-

ming languages that are widely used for probabilistic programming are R, Python, Java,

Matlab and C. Most of those languages are imperative or object-oriented with embed-

ded features of other programming paradigms as well. Over the last few years however,

functional programming has been gaining ground. The functional programming paradigm

is based on binding the structure of the program in a mathematical functions style and

it has started being used in probabilistic programming as well. Examples of functional

programming languages are Haskell and Scala. The latter is the language of choice for

this project. In the following chapter we will describe what functional programming is, its

main principles, its advantages and disadvantages, and how it can be used in statistical

computing.
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Functional programming

“Computational statistics” or “statistical computing” are two terms, often used inter-

changeably, referring to applying computing science to statistics in order to deal with

demanding problems. In the era of “Big Data”, where large scale and complex datasets

can be difficult to handle, computer resources are used to increase statistical power and

enable faster and more accurate statistical inference and prediction, data analysis and

graphical representation, even for analytically intractable problems. Some of the latest

technological trends, such as machine learning and artificial intelligence, are based on sta-

tistical methods and there is a lot of research in the field of improving the algorithms

used and making them faster and more scalable, as we examined in Chapter 4. Therefore,

it is important to select from among the various programming languages and computing

environments, the tools and technological resources that correspond better to the needs

of each application.

Programming languages, based on their features, can be classified in categories which

are called programming paradigms. Among others, one common programming paradigm

is the imperative, in which the code is a series of instructions that modify the variables

in the memory and describe how the program operates. Another widely used paradigm

is object-oriented programming (OOP). Its core attribute is the “objects” that contain

various fields of data defining the object’s state and methods that can modify these states.

Most programming languages, such as Java, C++ and Python, support multiple paradigms

since they borrow features from more than one paradigms.

Functional programming constitutes another programming paradigm that is continu-

ally gaining ground. Unlike OOP, it is based on the idea that the structure of a program

is formed with functions that avoid changing any state. Instead, when data are being

processed, a new representation of them is being created and returned. A pure functional

programming language is Haskell, and an impure language is Scala, which falls into the

category of multi-paradigm, with object-oriented and functional programming features.
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The extent to which a Scala program will borrow features from each programming direc-

tion depends on the programmer. Scala was introduced in 2001 by Martin Odersky at the

École Polytechnique Fédérale de Lausanne (EPFL). It runs on the Java Virtual Machine

and is becoming more popular in Big Data analytics due to its flexibility, parallelisation

properties and conciseness.

In the following sections we will present the principles of functional programming

and provide examples in Scala in order to better explore this programming style and

showcase how it can be used for statistical computing and scaling of widely used statistical

methodologies.

5.1 Principles of functional programming

At the core of functional programming is the idea that a program is composed of many

smaller functions, each following the principles of this paradigm that facilitate writing

properly structured code. In the following sections we will present a definition of func-

tional programming and we will introduce some of its main concepts along with some

important language-specific features of Scala that facilitate writing programs using this

programming approach. A simple tool to evaluate expressions in Scala is an interactive

command line interpreter shell called the Scala REPL. Furthermore, integrated develop-

ment environments (IDE), such as IntelliJ IDEA provide Scala plugins. Both tools were

used to produce the code snippets that follow. Additionally, some programmers prefer

using text editors such as Emacs.

5.1.1 Pure functions, immutable values and referential transparency

The functional programming paradigm is based on the idea of mathematical functions. In

the literature there are a lot of definitions for it but as Alexander (2014) emphasises, all

of them include the following statements:

A functional program should:

1. consist of pure functions

2. only include immutable values

“Pure functions” constitute one of the most important concepts of functional program-

ming. The term is used to denote functions that do not have any side effects. For a function

to be considered pure, it has to not interact with the environment outside its local scope.

Some examples of interaction could be reading user input from a file or database, writing

output to a memory unit or a web service, or mutating a global variable. This property

ensures that a pure function only depends on its input parameters and its internal code.
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Hence, for a given input parameter x the returned output y will always be the same for

an infinite number of function calls. An example of a pure function is the max method

of a List. For a given List as an input, it will always return the same maximum value.

On the other hand, an example of a function that is not pure is the method nextInt of a

Random class that will return a new random value every time it is called.

The second statement of the definition, immutable values, is another important feature

of functional programming. It is based on the algebraic notion incorporated in the pro-

gramming perspective, that a variable can be substituted with its value at any point in the

program as it retains the same value, since nothing has allowed its alteration throughout

the execution of the program. Immutable variables are denoted as val in Scala and there

is always a compile error if the programmer tries to reassign a value to an immutable

variable throughout the program. The only variables that can be reassigned are declared

with the keyword var.

Unlike single variables, of which the mutability is determined by just using the appro-

priate keyword, using val for a collection does not guarantee that the collection cannot

change. There are specifically immutable collections for this purpose. This is because us-

ing val with a mutable collection ensures that the whole collection cannot be reassigned,

however individual elements can be changed and new elements can be added and deleted

since the collection is mutable. Complete immutability is achieved only if a collection is

immutable and the keyword val is used. Only in that case the collection cannot change

in any way.

Functional programmers liken pure functions to algebraic equations. They combine

these functions to create series of expressions that have a clear input and output in order to

solve a programming problem the same way mathematical functions are combined to solve

a mathematical problem. Function composition is a key part of functional programming

as the creation of a chain of functions leads to structured and clear pieces of code that

follow the logical order of problem solving.

Pure functions and immutability offer Referential Transparency (RT). Referential trans-

parency is a term used in functional programming to describe the property that an expres-

sion, which is called referential transparent, can be replaced with its resulting value without

changing the program semantics. For example, there are three immutable variables y, a

and b, with the association val y = a + b. Whenever the referential transparent expres-

sion a + b is used, it can be replaced by y and vice-versa, and this action does not affect

the output of the program (Odersky, 2008). This “substitution principle” does not hold

for imperative programs.
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5.1.2 Higher-order functions

A feature that is not part of the core definition of functional programming, but constitutes

an important element of Scala, is Higher-Order functions (HOFs). In this part firstly we

will give a simple example to introduce the idea of higher order functions and then we will

present some HOFs that are long established and widely used in functional programming.

5.1.2.1 HOFs – a simple example

In Scala, functions are treated as first class citizens and they can be passed as arguments

to other functions or be returned from other functions, such functions are called Higher-

Order functions (Odersky, 2016). To make the notion of HOFs more clear, we will use a

simple example to demonstrate how a function can be a variable too, in order to be passed

to other functions or be returned from other functions based on the definition of HOFs.

Consider a function that checks if an integer is even. In Scala it could be written as:

val isEven = (i:Int) => i % 2 == 0

This function checks the modulo of an integer and returns a Boolean value true if the

modulo is 0 indicating that the integer is even. The function reference has:

� the name “isEven”

� the input parameter “i” of type “Int”

� the function body “i % 2 == 0” that is the algorithm that defines its functionality

� the type “Int => Boolean” declares a function that transforms the input parameter

of type Int into a “Boolean”

If we want to call this function in Scala to check if number 4 is even we write: isEven(4)

and we would get the result res: Boolean = true.

We can expand the example above to show how the function isEven can be passed as

an argument to a HOF. Consider a list of integers (List[Int]):

val listofInts = List(1,2,3,4,5)

In Scala there is a function named “filter” that is supported by, among others, the

immutable collection List, and selects all the elements that satisfy a specific condition

passed as an argument in it. Since the function isEven acts as a variable and can be

passed in another function as an argument, we can write:

listofInts.filter(isEven)

that will select only the even elements of the list listOfInts and return:

res: List[Int] = List(2,4)
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So, “isEven” is a reference to a function and can be passed as an argument in the

HOF filter (Alexander, 2014). This simple example captures the idea, but does not

illustrate the power of higher order functions. In bigger problems HOFs provide reusable

functionality which can decrease problem complexity. Some other HOFs widely used in

functional programming are map and flatMap, that will be analysed in the following section.

5.1.2.2 map, flatMap, foldLeft

Applying a function to all elements of a list is a common operation. For all the core data

structures in Scala there is a Higher Order Function, named map that as filter accepts

a function as an argument (function input parameter), but unlike filter that returned a

subset of the initial list, map applies the function to all the elements of the original list.

It returns a new list that has the same size as the initial, containing the resulting values

after having applied the function input parameter.

To make the use of map more clear, consider a list of integers (List[Ints]):

val listofInts = List(1,2,3,4,5)

Suppose that we want to transform every integer of the listofInts into its double. Using

the function map on the list:

val x = List(1,2,3,4,5).map(_*2),

results in:

x: List[Int] = List(2,4,6,8,10).

A List, or any other data collection, that has been subject to transformation by map

will not always be of the same data type as the initial collection. For example, it might

be necessary to transform a String to an Int corresponding to its length, so if we have

multiple strings stored in a List, a List[String] will be transformed to a List[Int].

Hence, the type signature of the map function of the Scala List[A] class is of the form:

map[B](f: A => B): List[B]

The part “f: A => B” indicates that map takes as argument a function that transforms an

element of type A, denoting the type of the initial List, to an element of type B. Then

“: List[B]” denotes that the transformed elements are stored in a List of type B. The

ability to abstract over the type of the data structure is due to an important feature

supported by many languages, including Scala, which is called polymorphism. A more

detailed explanation of polymorphism will be provided in Section 5.1.3.

Another important Higher Order Function is flatMap. Its type signature for a List is

defined as:

flatMap[B](f: A => List[B]): List[B]
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This is translated as flatMap taking as argument a function that transforms a variable of

type A to a List[B] and returns a List[B].

An example that will display both the functionality of flatMap and the difference between

map and flatMap includes a List[Int] and a method that takes an integer and returns a

List with the initial and an increased integer:

val listReduced = List(1,2,3)

def increment(x:Int) = List(x, x+1)

Applying map:

listReduced.map(x => increment(x))

results in: List(List(1,2), List(2,3), List(3,4))

However, applying flatMap:

listReduced.flatMap(x =>increment(x))

results in: List(1,2,2,3,3,4)) which is the flattened result of map.

This difference between map and flatMap does not seem very important for this simple

example but is extremely useful for complex programs and applications.

The final HOF presented in this section is foldLeft that is commonly used for travers-

ing a collection from left to right and applying a binary operation to its elements in order

to collapse them to one resulting value. The type signature of foldLeft is:

def foldLeft[B](z: B)(op:(B, A)=>B): B

foldLeft accepts two arguments, (z: B) which is a seed of type B, and a binary operator

op:(B, A) that returns a value of type B. The result of foldLeft is again a value of type B.

For example, in the case of x: List[Int] = List(1,2,3,4,5)

val sum = x.foldLeft(0)(_+_) results in sum = 15.

foldLeft starts with the value 0 and adds it to the the first element of the list which is 1.

The resulting value is then added to the second element and the process continues until

the list is exhausted. Then the final result is returned.

So far we have presented how some of the most common Higher Order Functions are

used on collections where they are already embedded. Programmers can define their own

map when they do not use one of the language’s standard collections. In the following part

we present how map is defined for the immutable Scala collection List, examples of which

we used in this section, however without providing more details about its implementation.

Similarly, the implementation of map can extend to other custom collections based on their

functionality and characteristics.
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5.1.2.3 Implementation of map for List

Before presenting how map can be defined for List, in order to modify every element of

the list while maintaining its structure, it is worth providing some more details about this

core Scala collection.

The immutable linked lists represent a sequence of data where each element contains

a link to its successor. A List is an algebraic data type which means that it is a data type

that is defined by one or more data constructors, each of which may contain zero or more

arguments. A List consists of two elements, the head, which is its first, and the tail that

contains all the other elements, or it can be an empty list Nil. Consequently, based on the

definition of List in Scala’s standard library after being subject to alteration for the case

of Int, there are two data constructors as shown below (Chiusano and Bjarnason, 2017):

sealed trait List[+Int]

case object Nil extends List[Nothing]

case class Cons[+Int](head: Int, tail: List[Int]) extends List[Int]

A Scala trait is a way to define object types such as the List that we refer to. According

to the definition of List a new List of four integers (1,2,3,4) can be created as:

val list = Cons(1, Cons(2, Cons(3, Cons(4, Nil))))

A common operation on a list is to apply a function f to every element while main-

taining its structure. As mentioned earlier this is feasible by using a map function, that for

the List could be defined by:

def map[A,B](l: List[A])(f: A => B): List[B] = l match {

case Nil => Nil

case Cons(h, t) => Cons(f(h), map(t)(f))

}

The function map takes a list of elements and a function operating on them. If the list is

empty it returns an empty list (Nil). If the list has elements, the function f is applied

to the head (h) which is followed by a call of map on the rest of the elements tail(t), all

stored in a new list. This procedure uses recursion since every step involves a call of map

to itself and ends when the final element of the list is processed.

Higher order functions are highly significant in functional programming as they allow

for abstraction over the control flow. They can be combined and act as binders of functions

in order to support the proper structure of a functional program and implement the main

idea of the functional programming paradigm, that is, as Alexander (2014) points out

“to make the code look and work like algebraic expressions”. These functions can be

extremely powerful when combined with functions intended to solve problems of real world

applications.
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5.1.3 Polymorphism

Parametric polymorphism is an important concept in programming that allows program-

mers to write more generic code in order to avoid repetition of code that provides the

same functionality to different types. It refers to the ability of a function to be applied

to arguments of many types that do not need to be predefined in the declaration of the

function (Odersky, 2016). This concept leads to the redefinition of List, presented in the

previous part to embed the idea of using A as the placeholder for any type that a list could

consist of. The more abstract definition of List is (Chiusano and Bjarnason, 2017):

sealed trait List[+A]

case object Nil extends List[Nothing]

case class Cons[+A](head: A, tail: List[A]) extends List[A]

With this definition, as long as all elements have the same type, the contents of the

List could be of any type, e.g. Double, Int, String. Otherwise, the collection would

lack type safety and we would not be able to recover information about the type of any

of the elements of the List, because it would be List[Any]. Note that when declaring

the type parameters in List the +A is used. This signals that A is a positive parameter

(covariant) of List denoting that subtypes of A can be used as elements of the List, such

as Nothing which is a subtype of all types and therefore Nil can also be considered as a

List. Another type of polymorphism is called ad-hoc polymorphism. It is also referred to

as overloading, and allows for the creation of multiple functions with the same name but

different implementations.

Concepts such as pure functions, immutable values, Higher Order Functions and poly-

morphism, that were presented in this section, are fundamental building blocks of func-

tional programming. More complex concepts are often based on these principles and are

the tools to build solutions to real world applications. In the following section we will

introduce Streams, a Scala collection with particular characteristics.

5.2 Streams

Collections in Scala can be classified into two big categories; the strict and lazy collections.

The former category refers to the collections that evaluate their elements when they are

created, while the latter involves the collections that will only evaluate their elements

when they are needed.

Lists constitute a data structure that is widely used in Scala. They are not lazy

evaluated, which means that when a list is created or transformed, all of its elements are

computed. However, in cases where there is complex computation, a lazy collection such
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as Stream[A], whose elements are computed only when we iterate through the structure,

can prove very beneficial. Unlike lists, streams can be created and transformed without

computing their elements and this can allow for the creation of a potentially infinite

collection (ScalaDocs, 2020).

An example where streams can be advantageous is when using a Markov Chain Monte

Carlo algorithm, examined analytically in Section 2.2. Streams, as lazy data structures,

can capture the logic of the convoluted steps and numerous iterations. Actual evaluation

of the stream and extraction of its values is achieved through its conversion to a regular

collection, after truncating it to one of finite length. To demonstrate how a Stream[A] can

be used in MCMC and specifically in the implementation of a Gibbs sampler, we will use

a simple linear regression problem.

Consider the model: y = α1 + Xβ + ε with n observations, p covariates and X an

n×p matrix, and suppose that all p covariates will be used for predicting y. The unknown

parameters that we want to estimate are α, β and τ . Programmatically we can organise

the updated values of all the parameters at the end of each iteration/update, using a

particular type of class called case class named FullState and defined as:

case class FullState(alphaTau: Vector[Double], bcoefs: Vector[Double])

where alphaTau is a vector consisting of two values, the updated α and τ and bcoefs

represents the covariates.

Suppose that there is a function calculateNextState that, as illustrated below, updates

the unknown variables by updating α and τ and then the β coefficients through two

functions named nextAlphaTau and nextCoefs respectively. These functions use the full

conditional distributions of the variables of which the implementational details are not of

interest at the moment.

def calculateNextState(fstate: FullState): FullState = {

val latestAT = nextAlphaTau(fstate)

val latestFullyUpdatedState = nextCoefs(latestAT)

latestFullyUpdatedState

}

This function takes as argument an object of the case class FullState. It will be the

initial value of the variables to initialise the Gibbs sampler during the first iteration and

the latest updated state at every other iteration of the algorithm. The returned value of

the function is the fully updated state of the unknown variables, again of type FullState.

An approach that does not make use of streams would require a loop to iterate through

the algorithm for as many times as we would like to run the MCMC. At the end of every

iteration the new state with the latest updated variables should be appended to a list that

stores the results. Alternatively, we could use recursion for a more functional implementa-
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tion. However, for a stream-based approach we specify a function streamStates, that en-

ables the production of the infinite stream, using the native Scala function Stream.iterate

with the type signature:

def iterate[A](start: A)(f: A => A): Stream[A]

iterate accepts the start value of the stream and the function f that is repeatedly applied,

and returns the infinite sequence of values: start, f(start), f(f(start)),... .

def streamStates(fState: FullState): Stream[FullState] =

Stream.iterate((fstate))(fstate => calculateNextState(fstate))

Finally, we have to declare the number of the elements of the stream that we would

like to keep, extract the values by converting the stream to another regular collection such

as a list or a vector, and get a sequence representing the results of each update of the

MCMC as follows:

// Initialise the parameters

val initAT = Vector(0.0, 1.0)

val initBetas = Vector.fill(p)(0)

val updatedState = FullState(initAT, initBetas)

val iterationsNo = 100000

val results = streamStates(updatedState)

.drop(100) // do not evaluate first 100 iterations, burn-in

.take(iterationsNo) // returns the iterationsNo first elements of this

Stream

.toVector // converts the Stream to a Vector

Thinning can also be implemented using filter. In smaller examples this implementation

works perfectly and efficiently, however when the number of variables or iterations in-

creases, as with using other implementations not involving streams, memory issues might

appear. This problem can be easily solved by saving the results to a file while sampling.

In the above example we used the embedded Scala Stream collection. Alternatively,

there are libraries, such as Akka Streams, FS2 and Monix, that define their own stream

data types with various properties and functions in order to facilitate large scale processing

from various sources. Stream-based approaches, and especially when using MCMC, can

lead to clean solutions that can handle issues such as burn-in and thinning in an elegant

and easy to understand way.
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5.3 Functional programming and category theory

An important consideration in programming is code re-usability that aims to reduce re-

dundancy and processing time and efficiently make use of the available resources. Apart

from various rules that apply when trying to write reusable code there are some embedded

features in programming languages that help programmers towards this goal. Collections

such as Lists, Tuples and Options share common characteristics and abstractions, com-

binations of which can lead to polymorphic, cleaner and more structured reusable code.

Some of these abstractions originate from a field of Mathematics known as Category The-

ory.

In this section we present how category theory has influenced functional programming.

After introducing some of the principal terms of this field we will show how they are

embedded into the functional programming paradigm. Finally, we will showcase how

Monads are used in functional programming to achieve the main aim of this programming

style: to compose functions for a more concise and structured programming solution.

5.3.1 Basic terminology in category theory

Understanding the structures and applications in programming that are influenced by

category theory does not require having in-depth knowledge of the corresponding mathe-

matical definitions. However, comprehension of some principal ideas of this mathematical

discipline can prove beneficial. Therefore, in this part we introduce definitions for some

fundamental concepts in category theory.

5.3.1.1 Category

A category (C) is an algebraic structure that consists of a collection of objects and a

collection of arrows showing the relations between them, called morphisms. The set of

morphisms from object x to y in a category C is denoted as: homC(x, y), and the set of

objects as obj(C). Figure 5.1 illustrates an example of a category with three objects.

Figure 5.1: A category of three objects
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A morphism is expressed as: x
f−→ y , which can also be written as: f : x→ y. Adjacent

morphisms can be composed, for example: x
f−→ y

g−→ z, can be written as: x
g◦f−−→ z,

meaning that their composition defines a relation between x and z. This composition is

associative so h ◦ (g ◦ f) = (h ◦ g) ◦ f (nLab, 2020). Furthermore, for every object of the

category there is an identity arrow that connects the object with itself, hence there is a

loop in every object in Figure 5.1.

Definition. A category C is a collection of objects and the morphisms between them,

such that for the objects x, y and z, and the morphisms f : x → y and g : y → z (Law,

2019; Grozev, 2016):

1. There must exist a morphism h : x→ z which is the composition of f and g, h = g◦f

2. Composition of morphisms must be associative, so h ◦ (g ◦ f) = (h ◦ g) ◦ f

3. Each object in C must have an identity morphism idx : x→ x

4. For every morphism f : x → y, idy ◦ f = f = f ◦ idx. Thus, identities must be

neutral to composition.

5.3.1.2 Functor

Transformations between two categories A and B are called functors (F ). A functor maps

every object and every morphism of the first category to the second, whilst preserving the

structure. It is denoted as: F : A → B. An example of a functor is presented in Figure

5.2.

Figure 5.2: F: A functor from category A to B

In this graph we can see that (Grozev, 2016):

� Each identity arrow in A is preserved in the transformed category B

� Every association between the objects of the category A is preserved in B
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� F (g ◦ f) = F (g) ◦ F (f)

Definition. If A and B are two categories, then a functor F : A → B maps an object

x in A, to an object F (x) in B and each morphism f : x → y in A to a morphism

F (f) : F (x)→ F (y) such that:

1. F (idx) = idF (x) for each x in A

2. F (g ◦ f) = F (g) ◦ F (f) for all morphisms f and g in A

A special case where a functor F transforms a category to itself is called an endofunctor

and is denoted as F : A → A. Set is the category of sets and set functions. Functional

programming is mainly concerned with the category of data types and functions which is

very similar to the category of “Set”. Therefore, in this context all functors are considered

endofunctors of type F : Set → Set (Law, 2019).

5.3.1.3 Natural Transformation

For every category there are morphisms between the objects that show their relationship

and how one object can be transformed to another. Transformations exist between cate-

gories as well, through the functors that were presented at the previous part. Respectively

there are also morphisms between functors, which are called natural transformations and

preserve the structure of the categories.

Suppose that there are two categories A and B, two objects x and y from category

A and two functors F,G : A → B, then the natural transformation η (η : F ⇒ G) is a

family of morphisms between F and G. It represents an assignment to every object x in

A of a morphism ηx : F (x) =⇒ G(x) in B, such that for any morphism f : x → y in A

the combinations of relationships, illustrated in Figure 5.3, commute in B (nLab, 2020).

F (x) F (y)

G(x) G(y)

ηyηx

F (f)

G(f)

Figure 5.3: Natural transformation η : F ⇒ G along with its components

Definition. If F and G are two functors between two categories A and B (F,G : A→ B)

then a natural transformation ηx : F (x) =⇒ G(x) is a family of morphisms such that

(Law, 2019):
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1. For every object x ∈ A, the component of η at x, ηx : F (X)→ G(X), is a morphism

in B

2. For every morphism of category A f : x→ y, ηy ◦ F (f) = G(f) ◦ ηx

The second statement of the definition is visualised in the commutative diagram in

Figure 5.3, that shows how the two sequences of morphisms, with F (G) as the starting

point, lead to the same result G(Y ).

5.3.1.4 Monad

Another term that is widely used in functional programming is Monad that derives again

from category theory.

Definition. A monad (T) on a category C is an endofunctor T : C → C with two natural

transformations:

� a unit (η : IdC → T ), which is a natural transformation of the identity functor to

the monad

� µ : T ◦ T → T , which is a natural transformation from C to C

and the monadic laws (Law, 2019):

1. µ ◦ Tµ = µ ◦ µT

2. µ ◦ Tη = µ ◦ ηT = IdT

TTT TT

TT T

µµT

Tµ

µ

(a)

T TT T

T

µ

ηT Tη

(b)

Figure 5.4: Commutative diagram expressing (a) the first condition (b) the second condition of
the monad laws (nLab, 2020).

In the following part we will demonstrate how these the basic concepts of category

theory are embedded and implemented in functional programming.
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5.3.2 Application of category theory in functional programming

In this part we will demonstrate how functional programming uses category theory prin-

ciples to implement structures that are at the core of this programming paradigm. These

structures, with monadic characteristics, are used to write composable blocks of code. The

examples included are implemented in Scala. The theoretical background is based on the

library Cats (2019b) for Scala, designed to provide abstractions based on category theory.

5.3.2.1 Type constructor and higher-kinded types

In Section 5.1.2 we saw that one way to calculate the sum of all the elements within a List

is using foldLeft. Similarly we can calculate the sum of other structures as well, such as

Trees or Vectors. To capture this commonality in a concept where the type of a structure

is not important as long as it supports a foldLeft method, we use a trait:

trait Foldable[F[_]]{

def foldLeft[A,B](strc: F[A])(z:B)(f: (A,B) => B): B

//foldRight combines the items from right to left

def foldRight[A,B](strc: F[A])(z:B)(f: (A,B) => B): B
...

}

The trait includes all the methods that will have to be implemented in the class/classes

that extend it, according to their functionality.

The argument of Foldable is F[_] and it is called type constructor. Type constructors

take a type parameter as indicated by the underscore. Foldable that takes a type con-

structor as an argument, is referred to as a higher-order type or higher-kinded type with

respect to the higher-order functions mentioned in Section 5.1.2.

Type constructors and higher-kinded types are also a feature that enables polymor-

phism and will be used often in the following parts.

5.3.2.2 Type classes

Type classes are a powerful tool in functional programming and they enable ad-hoc poly-

morphism. Features from Category theory are embedded in some functional programming

languages, such as in Scala, by the use of type classes. One of the simplest type classes in

Scala is Monoid. More complex type classes are Functors, Applicatives and Monads, that

gradually build their functionalities by extending other type classes.

Type class: Monoid

Suppose that we were interested in collapsing a list in various cases:
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def sumIntegers(list: List[Int]): Int = list.foldRight(0)(_ + _)

def sumDoubles(list: List[Double]): Int = list.foldRight(0.0)(_ + _)

def concatenateStrings(list: List[String]): String = list.foldRight("")(_ ++ _)

def unionSets[A](list: List[Set[A]]): Set[A] = list.foldRight(Set.empty[A])(_

union _)

All the above examples follow a similar pattern. They start with an initial value that

depends on the type (0 for Int, empty string “ ” for String etc.) and they combine

the elements using a function (+ for Int, ++ for String etc.). It is easy to avoid using

unnecessary re-implementation of the same function for each case with abstraction. This

can be implemented in Scala as follows:

trait Monoid[A]{

def empty: A

def combine(x: Int, y:A): A

}

//Implementation for Int

implicit val intAddMonoid: Monoid[Int] = new Monoid[Int]{

def empty: Int = 0

def combine(x: Int, y:Int): Int = x + y

}

//Implementation for String

implicit val stringConcatMonoid: Monoid[String] = new Monoid[String]{

def empty: Int = ""

def combine(x: String, y: String): String = x ++ y

}

// A common function for all types

def collapse[A](list: List[A])(implicit A: Monoid[A]): A =

list.foldRight(A.empty)(A.combine)

This implementation is an example of a type class that involves:

� a trait defining the signatures of the functions that each case will have to implement

based on the properties and functionality of its type

� creation of an instance of the trait for each type and implementation of its functions

� implementation of functions that are common for all types.
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For monoids, there are two function definitions, an associative binary function and an

identity. Having declared the instances of the trait and the monoid parameter in collapse

as implicit, the compiler will know which empty and combine implementation to call based

on the type parameter of the List argument given in collapse. A compile error will occur

if collapse is called with a List with a type parameter for which there is no monoid

implementation.

Type class: Functor

In Section 5.3.1 we saw that a functor is a transformation between two categories that

maps every object and every morphism from the first category to the second, keeping the

structure intact. In Scala a Functor is in accordance with this definition and is a type class

that abstracts over the type constructors that can be mapped over. Type constructors are

the types that take one type argument F[_], such as List and Option. In Scala, Option[T]

is a structure that acts as a container for zero or one element of a given type. It can be

either Some[T] or None. As in the case of the Monoid type class, for the Functor first we

define a trait and then we provide with implementations for various type constructors.

trait Functor[F[_]]{

def map[A, B](fa: F[A])(f: A => B): F[B]

}

//Implementation for List

implicit val functorList: Functor[List] = new Functor[List] {

def map[A, b](fa: List[A])(f: A => B): List[B] = fa map f

}

//Implementation for Option

implicit val functorOption: Functor[Option] = new Functor[Option] {

def map[A, b](fa: Option[A])(f: A => B): Option[B] = fa match {

case None => None

case Some(a) => Some(f(a))

}

}

To illustrate how the List Functor can transform various types we use the example

in Figure 5.5. Every type A becomes List[A] e.g. Int => List[Int]. The List Functor

also affects the morphisms/functions by allowing the lifting of every function A => B into

the function F[A] => F[B], for example toDouble => map(toDouble), so that List[A] =>

List[B]. This can be coded by the use of a lift function added to the definition of the

Functor trait:
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def lift[A,B](f: A => B): F[A] => F[B] =

fa => map(fa)(f)

Figure 5.5: An example for the List Functor

Type class: Applicative

The Applicative type class extends Functor and adds a pure function that “lifts”/“wraps”

a value into the type constructor. Hence, for List the pure function creates a singleton

list, and for Option, it creates Some(_). The trait Applicative is defined as:

trait Applicative[F[_]] extends Functor[F] {

def pure[A](a: A): F[A]

def ap[A, B](fa: F[A])(f: F[A => B]): F[B]

}

Applicative also includes an ap function that allows application of a function wrapped in

the context F[_], to a value wrapped in the context F[_], by unwrapping both the function

and the value, applying the function to the value and then wrapping the resulting new

value in the same context. Supposing that we have an Option[Char => Double] and an

Option[Char] to which we want to apply the function, a typical map would not be able to

achieve that, therefore ap can be very powerful in this case.

Applicative also supports composition. If F and G have Applicative instances, so does

their composition F[G[_]]. Furthermore it offers mapN (N = 2,...,22) functions that can

apply an n-argument function to n wrapped in the context values and preserve the outer

context. However this requires knowing in advance the exact number of values that will

have to be used. There are cases where this is unknown, such as when reading from

a database or when there is user generated input. This problem is solved by another

type class, Traverse, that is actually a Functor and includes a function traverse to walk

through a structure.
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Type class: Traverse

Traverse is a type class that provides an abstraction over the structures that can be

traversed over, such as Lists and Trees. The trait is defined as follows:

trait Traverse[F[_]] {

def traverse[G[_]: Applicative, A, B](fa: F[A])(f: A => G[B]): G[F[B]]

}

// Example implementation for List

implicit val traverseForList: Traverse[List] = new Traverse[List] {

def traverse[G[_]: Applicative, A, B](fa: List[A])(f: A => G[B]): G[List[B]] =

fa.foldRight(Applicative[G].pure(List.empty[B])) {(a, acc) =>

Applicative[G].map2(f(a), acc)(_ :: _)

}

}

For the example of the List as F, traverse will walk through the list fa, using the function

provided f, that returns an Applicative G[B], suppose an Option[B], and will return a

List[Option[B]], instead of Option[List[B]] that would be returned if map was used.

Type class: Monad

A Monad is a type class in functional programming that is widely used. It enables function

composition and computation sequencing through its supported function implementations.

Furthermore, since one of the main principles in functional programming is avoiding side

effects such as input/output actions, some monads, such as the IO Monad are not only

wrapped around these actions in order to clearly define that a side effect is taking place,

but also they perform the “unsafe” action at the end of the program.

The type class Monad extends Applicative with the addition of a new function flatten

which takes a value in a nested context (e.g. F[F[A]]) and after joining the context

together it returns the value wrapped in a single context (e.g. F[A]). In Section 5.3.1

where we defined some of the main concepts of category theory for monads we mentioned

two characteristics. The first was unit (η : 1A → T ), which is provided in Scala by

Applicative through pure, and the second was µ : T ◦ T → T , supported in Scala by

flatten also referred to as join

def flatten[A](fa: F[F[A]]): F[A]

However, it is established in functional programming that we express Monad in terms

of pure and flatMap. So, instead of Applicative, Monad extends Functor which provides

map and implements its own pure and the newly introduced flatMap as shown below:
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trait Monad[F[_]] extends Functor[F] {

def pure[A](x: A): F[A]

def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]

}

where flatMap could be defined using map and flatten as follows:

def flatMap(fa:F[A])(f: A => F[B]) =

flatten(map(fa)(f))

Both map and flatMap are very powerful in functional programming as they facilitate

the process of composing functions as part of solving bigger problems. To demonstrate

function composition consider three functions, div, log and sqr defined as:

def div(x: Int, y: Int): Option[Int] =

if (y == 0) None else Some(x/y)

def log(x: Int): Option[Double] =

if (x <= 0) None else Some(math.log(x))

def sqr(x: Double): Option[Double] =

Some(x*x)

}

To ensure correctness of the constraints imposed on the first two functions we use an

Option that returns None for div if the denominator equals 0, and for log if the input

is negative or 0. The third function does not have any constraints but has to return an

Option as well, so as to be composable along with the other two functions, and to match

the output of the one with the input of the other. The three functions can be combined

as:

def functionComposition(x: Int, y: Int ): Option[Double] =

div(x,y).flatMap(z => log(z)).flatMap(i => sqr(i))

}

In functionComposition, flatMap is used, and not map, in order to avoid cumulative

creation of Options every time that a new function is applied. This leads to a clean result

which is an Option[Double]. In Scala there is also another way of expressing sequence com-

prehensions, which is called for-comprehension and for our example functionComposition

would be redefined as:

def functionCompositionForComp(x: Int, y: Int ): Option[Double] = for {

a1 <- div(x,y)

a2 <- log(a1)
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a3 <- sqr(a2)

} yield a3

}

For-comprehensions as shown in functionCompositionForComp have the form: for -

enumerators - yield e. An enumerator can have various forms. It can be of the general

form “pattern �expression” which introduces new variables and is then called a generator.

The right side of the generator can be a container of elements resulting in the left side of

the arrow after iterating over all the elements of the container. The right side can also

be a monad, as in the above example, where a1 �div(x,y), and div(x,y) is an Option

monad. In this case, the arrow is extracting the value from the monadic context and

assigns it to the variable on the left. An enumerator can also be a definition of the form

“pattern = expression”. Then, the left side consists of a variable that is bound to the

value of the right side of the equality. Finally, an enumerator can be a filter of the form

“if(expression)”. The final part of a for-comprehension yield e is what is produced

by this block of code (Alexander, 2014).

A for-comprehension is considered to be syntactic sugar in Scala for a series of flatMap

calls followed by a map. It is easier for humans to understand the clearer representation

of a for-comprehension rather than a sequence of flatMaps and a map, that the compiler

translates the for-comprehension to. Even though in the above example map is not visible

in functionComposition the compiler adds it at the end as:

div(x,y).flatMap(z => log(z)).flatMap(i => sqr(i).map(c => c))

To clarify the sequence of flatMaps followed by a final map suppose that we want

to add the Double 2.0 following the other operations, then functionComposition and

functionCompositionForComp would be modified as follows:

def functionComposition(x: Int, y: Int): Option[Double] =

div(x,y).flatMap(z => log(z)).flatMap(i => sqr(i).map(z => z + 2.0))

}

//OR

def functionCompositionForComp(x: Int, y: Int): Option[Double] = for {

a1 <- div(x,y)

a2 <- log(a1)

a3 <- sqr(a2)

} yield a3 + 2.0

}

In the example above, function composition was possible because all functions returned

the same monadic instances. Combining functions in this way would not have been feasible

if they were returning different monads, for example, if div was returning an Option[Int]

and log a singleton list List[Double]. However, there are other ways that enable mixing
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of monadic contexts inside for-comprehensions such as monad transformers.

5.3.2.3 Kleisli composition and monad transformers

One of the cornerstones in functional programming is the ability to break complex prob-

lems into smaller pieces and use function composition to combine the solutions to those

subproblems. In the cases where the returned types and the arguments of the functions

composed are classified among the main data types supported by the functional program-

ming language there are usually trivial ways to create the pipeline that will produce the

integrated solution. For instance, in Scala andThen and compose are used to join functions

together. Suppose that there are two functions:

def f[A, B]: A => B

def g[B, C]: B => C

Their composition can be achieved by defining a function composeAll

def composeAll[A, C]: A => C = f andThen g

//equivalent to g compose f, f.andThen(g) and g.compose(f)

However, if the functions were monadic, and returned the values in a context, they

should be chained with a for-comprehension or with a sequence of flatMaps and a map as

shown in the previous part.

def f[A, B]: A => Option[B]

def g[B, C]: B => Option[C]

def composeAllForComp[A, C]: A => Option[C] = (a: A) =>

for {

b <- f(a)

c <- g(b)

} yield c

def composeAllFlatMap[A, C]: A => Option[C] = (a: A) =>

f(a).flatMap (b => g(b))

Note that again the final map is not necessarily explicitly written because the final value

is not subjected to any further computations. However, the compiler does translate the

body of composeAllFlatMap as being:

(a: A) => f(a).flatMap(b => g(b)).map(c => c)

While the above ways to chain monadic functions are extensively used in functional

programming, there is also another way to compose functions of this kind by using a

wrapper around the function A => F[B], known as Kleisli[F[_], A, B]. Some functional
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programming languages support this data type natively, but for Scala it is supported by

libraries like Cats and Scalaz. If we can call flatMap on F[A], hence F[_] has a flatMap[F]

instance Kleisli takes the following form as defined in Cats (Cats, 2019a):

import cats.FlatMap

import cats.implicits._

case class Kleisli[F[_], A, B](run: A => F[B]) {

def compose[Z](k: Kleisli[F, Z, A])(implicit F: FlatMap[F]): Kleisli[F, Z, B]

= Kleisli[F, Z, B](z => k.run(z).flatMap(run))

Kleisli contains a function compose that enables function composition in the same way as

for functions which return values not in the monadic context. In the following example:

def charToInt(c: Char): Option[Int] =

if (c >= ’a’ && c <= ’z’) Some(c.toInt) else None

def log(n: Int): Option[Double] =

if (n <= 0) None else Some(Math.log(n))

def charToIntThenLog(c: Char): Option[Double] =

for {

a <- charToInt(c)

b <- log(a)

} yield b

//Call the function by passing the argument of the first function to be called,

for example:

charToIntThenLog(’a’)

The two functions charToInt and log return an Option and the function charToIntThenLog

combines them. In that example the result of parsing a Char to Int within the range [‘a’,‘z’]

will always be a positive number. Using Kleisli leads to the following implementation:

def charToInt: Kleisli[Option,Char,Int] =

Kleisli((c: Char) => if (c >= ’a’ && c <= ’z’) Some(c.toInt) else None)

def log: Kleisli[Option,Int,Double] =

Kleisli((n: Int) => if (n <= 0) None else Some(Math.log(n)))

def charToIntThenLog: Kleisli[Option,Char,Double] =

log.compose(charToInt)

charToIntThenLog(’a’)

In all the examples illustrated so far the returned types were values in a monadic

101



Chapter 5. Functional programming

context of the same type, e.g. Option or List. There are ways to compose the Monad

instance of a data type with any other Monad instance using monad transformers. A

monad transformer for Option is OptionT[F[_], A] and allows us to combine the properties

of Option with any other F[_], such as a List. It is a wrapper around F[Option[A]] but

more convenient to use. Consequently, another way to think of Kleisli is as a monad

transformer for functions, as it allows us to combine the effects of a function with the

effects of any F[_].

5.3.3 Category theory and functional programming summary

Structures based on category theory are embedded in functional programming in the form

of type classes to create cleaner and reusable code. Monads are a commonly used example

of a type class. It not only enables function composition through the implementation of

map and flatMap, but also ensures that potential side effects will be handled in a safe way.

In the following section we will demonstrate how probabilistic programming languages

are based on type classes to implement Bayesian inference while hiding implementational

details from the users.

5.4 Functional programming and probabilistic programming

The Bayesian paradigm is a long-established reliable way to build models that define

uncertainty about problems, after taking into account the judgment of statisticians and

field experts, reflected in the prior distributions, and the available data. However, building

a Bayesian model can be challenging and complicated, and therefore a prohibiting factor

for exploring new models that need a deeper knowledge of Bayesian statistics. This barrier

could be reduced by a programming paradigm, along with the equivalent programming

languages, that would aim to specify and define probabilistic models at a higher-level,

with the use of traditional programming ideas, in order to automate the process of making

inference for these models. This notion defines the concept of probabilistic programming;

a programming approach that does not rely on detailed comprehension neither of the

programming aspects nor of the Bayesian inference algorithms (Law and Wilkinson, 2019).

Probabilistic programming languages (PPLs) allow the declaration and description

of inference problems whilst retaining a level of abstraction. The aim of probabilistic

programming is to enable users to fully specify a probabilistic model, by writing code

that defines the data, the prior distributions and the likelihood, and set some algorithmic

parameters, without obligatory further involvement in the sampling process. Then, the

program automatically uses this model specification for inference. PPLs internally evalu-

ate and computationally solve the denoted problems, resulting in probability distributions

for the unknown parameters using the provided data. Observations are used to condi-
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tion the distribution of the unknown variables, reducing our uncertainty about them. In

order to achieve automation, to the highest degree, of the steps of statistical modelling,

PPLs combine the fields of machine learning, statistics and computer science. There are

numerous domain specific languages (DSLs) used for probabilistic programming such as

Figaro (Pfeffer, 2015), STAN (Stan, 2015), JAGS (Plummer, 2017), BUGS (Lunn et al.,

2009), Rainier (Bryant, 2018), and many others. Some are based on an already existing

language and some others have their own syntax. Typically a PPL includes widely used

features of common programming languages, such as primitive operations and conditional

statements.

Probabilistic programming enables users to write programs that facilitate Bayesian

inference and answer different queries residing in three main categories: expectation, sam-

pling and support. The expectation of a function f is the mean of f over the distribution,

whereas sampling refers to drawing a value from a distribution. If a large number of sam-

ples are drawn repeatedly we can approximate both the expectation and the shape of the

distribution. Finally, support identifies with non zero probability the subset out of the

entire sample space, from which a sample came (Ramsey and Pfeffer, 2002).

Usually, probabilistic programs can be translated to graphical models represented with

graphs, where the nodes correspond to variables and operations. Variables act as inputs to

operations/functions of which the output becomes the input of other operations/functions.

This translation is important because some existing inference algorithms are expressed

with regard to graphical models, and therefore these algorithms can be more easily written

in a probabilistic programming language (van de Meent et al., 2018).

Similarly to deterministic programming languages, probabilistic languages can be de-

veloped within the imperative, functional, and logical frameworks. Here, we will focus on

the functional programming paradigm. Functional probabilistic programming languages

and libraries incorporate the fundamental functional programming concepts developed in

the previous sections. A foundational property in functional programming is referential

transparency. As described in Section 5.1.1, this property conveys that a function f , when

applied to a value x, will always return the same value y = f(x). This notion, however,

contradicts the purpose of probabilistic events, that due to their non deterministic nature,

cannot guarantee the same outcome every time they happen. A solution to that prob-

lem could be the encapsulation of probabilistic values in a data type known as probability

monad (Erwig and Kollmansberger, 2006).

In the following parts we will provide a high-level presentation of the probability monad

and its usage in writing probabilistic programs in a functional scheme. We will then

introduce Rainier, a probabilistic programming library for Bayesian inference in Scala, to

show how the modelling API is decoupled from the inference algorithm.
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5.4.1 Probability monad

In Section 5.3.2 we presented type classes, such as Monads. They are particularly useful in

functional programming as they have some properties that enable easier implementation

of functionalities. Moreover, they facilitate the process of composing smaller functions,

are easier to reason about, implement and test, in order to a form a more structured and

correct larger program. The idea of a probability monad was first established by Lawvere

in 1962 (Lawvere, 1962), and was further extended by Giry (1982) 20 years later. The

extension, application and usage of monads in functional probabilistic programming, via

a probability monad, is proved to be an important component. Functional programming

languages and libraries that support monads have the ability to use the monadic properties

offered by FP languages and broaden the range of capabilities a user has in order to define

and manipulate a model.

Recalling from 5.3.2 a Monad in Scala is defined as:

trait Monad[F[_]] {

def pure[A](x: A): F[A]

def map[A, B](fa: F[A])(f: A => B): F[B]

def flatten[A](fa: F[F[A]]): F[A]

}

where flatMap is expressed in terms of a map followed by flatten or join

def flatMap(fa: F[A])(f: A => F[B]) =

flatten(map(fa)(f))

Embedding the monadic notion in the probabilistic programming framework is achieved

through some main building blocks. Firstly, there is a data type Prob[T], representing

probabilities and probability densities. Secondly, there is a data type Distribution[T]

representing probability distribution over objects of type T, along with some primitives

consisting of widely used distributions such as uniform and normal. Thirdly, there is a

monadic instance for Distribution that enables construction and composition of distribu-

tions. Finally, it is necessary to have an implementation that would allow the probabilistic

system to observe the data and condition the distributions to update the prior and result

in the posterior distributions, and a way to sample from a Distribution (Scibior et al.,

2015).

These concepts can only be applied if probability distributions form a monad, hence

they need to support the functions in the definition of the trait Monad:

� pure - Represents the unit ηX : X -> Distribution(X). It takes a value x (x ∈ X),

where X is a measurable space, and encapsulates it in a distribution. It actually

represents the Dirac distribution, which results in a constant distribution with only
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one possible outcome with probability 1.

� map - maps a function f: T =>U over a probability distribution Distribution[T] and

this results in an object of type Distribution[U]. It is a transformation that pre-

serves semantics.

� flatten - Represents the multiplication:

µX : Distribution(Distribution(X))-> Distribution(X). It can be depicted as a

tree with two levels where join can have a dual representation depending on the na-

ture of the problem. In applications regarding simulation or simulation based opti-

misation that use domain specific algorithms, it can be represented as sampling from

a distribution of distributions, which can be achieved using a pseudo-random number

generator. In applications related to linear and dynamic programming that require

a more holistic approach and modelling of the entire distribution, this distribution

of distributions can be flattened after considering all the paths and multiplying all

the probabilities (Jelvis, 2017).

In probabilistic programming there are several ways to represent a probability distri-

bution, in this part we focus on two. The first representation is with a function mapping

objects to their probabilities, as shown in the implementation of Dist[T] (Listing 5.1). The

second option is as a sequence of samples that leads to the sampling based distribution

Rand[T]. A large number of samples will approximate Dist[T].

//General distribution

trait Dist[T] {

def probOf(t: T): Double

}

//Sample based distribution

trait Rand[A]{ self =>

def draw(): A

def sample(n: Int): List[A] = List.fill(n)(draw)

def map[B](f: A => B): Rand[B] = new Rand[B] {

override def draw = f(self.draw)

}

def flatMap[B](f: A => Rand[B]): Rand[B] = new Rand[B] {

override def draw = f(self.draw).draw

}

def pure[A](a: A):Rand[A] = new Rand[A] {

override def draw = a

}

}

Listing 5.1: Traits to represent distributions
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Calling the function map on a distribution applies a function to all the elements of that

distribution. For example, the support [0,1] of a uniform distribution can be altered by

multiplying each element with a number a: uniform.map(x => x * a).

The use of flatMap can be very helpful in Bayesian statistics to add variables to an

existing model and to combine the prior distribution of each parameter with the likelihood

in order to get the posterior distribution, after having observed the data. Using map to fit

the model leads to two levels of distributions Rand[Rand[T]], one for the prior distribution

and one for the likelihood. However, using flatMap removes the extra layer of distribution

by first applying the function and then flattening the result. In order to take advantage of

the monadic properties, Rand must also have an implementation for pure, map and flatMap.

Then, the Rand trait can have a draw function as abstract in order to be implemented by

the new object representing a distribution according to its characteristics.

These traits (Listing 5.1) can be used to define specific distributions. For example, the

discrete probability distribution for a Bernoulli trial with two possible outcomes “Success”

and “Failure”, can be written using a case class:

case class Bernoulli(p: Double) extends Dist[Boolean] {

def probOf(t: Boolean): Double =

if (t) p else (1 - p)

}

Listing 5.2: The Bernoulli distribution

According to the two axioms of probability, the probability distribution must assign a

non-negative probability to each possible outcome, and the sum of the probabilities of all

the possible outcomes should be one. The validation of the axioms can be defined as:

def sumEqualsOne[T](dist: Dist[T], allOutcomesProbs: List[T]): Boolean =

allOutcomesProbs.map(dist.probOf).sum == 1.0

def nonNegativeProb[T](dist: Dist[T], allOutcomesProbs: List[T]): Boolean =

allOutcomesProbs.map(dist.probOf).forall(_ >= 0)

In the implementation of the Bernoulli distribution (Listing 5.2), the function probOf

corresponds to the probability mass function of the distribution. In discrete distributions

it is possible to define a probability for a specific possible outcome. However, in continuous

distributions there are infinite values and the probability that a random variable will be

exactly equal to a specific value is zero. For example, in the case of a random variable

following a continuous uniform distribution in the interval [0, 1], we can only calculate the

probability that the variable will take a value between a given interval [a, b] Pr(a < X ≤
b), and not a single value from the infinite number of values in the interval. Therefore,

for the cases of continuous distributions we would like to evaluate the probability density
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function, and more specifically the natural logarithm of it, logpdf. Respectively, the

discrete distributions involve the natural logarithm of the probability mass function logpmf.

The abstract interfaces that code for the cases of continuous and discrete variables are:

trait ContinuousDist[T]{

def logpdf(t: T): Double

def generate: Rand[T]

}

trait DiscreteDist[T]{

def logpmf(t: T): Double

def generate: Rand[T]

}

Listing 5.3: Abstract interfaces for discrete and continuous distributions

We can use both distributions Dist and Rand to build a function that takes deterministic

inputs and returns stochastic outputs as follows:

case class Binomial(n: Int, p: Double) extends Dist[Int] with Rand[Double] {

// Invoke probabilityOf() from Breeze library

override def probOf(k: Int): Double =

breeze.stats.distributions.Binomial(n,p).probabilityOf(k)

override def draw(): Double = breeze.stats.distributions.Binomial(n,p).draw()

}

def createBinomialDist(N: Int, l: Double): Dist[Int] =

new Dist[Int] {

def probOf(t: Int) = Binomial(N,l).probOf(t)

}

def createBinomialRand(N: Int, l: Double): Rand[Double] =

new Rand[Double] {

def draw = Binomial(N,l).draw()

}

We can also use the sampling based distribution to approximate the probability of a

random variable having a specific value if we use a large number of samples, as we can see

in the following example:

class ApproxProb[T](rand: Rand[T]){

val sampleNo = 1000000

def probOf(t: T) = {

def calcSuccessCount(sC: Int, i: Int): Int = {

if (i == sampleNo) sC
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else if (rand.draw == t) calcSuccessCount(sC + 1, i + 1)

else calcSuccessCount(sC, i + 1)

}

calcSuccessCount(0, 0).toDouble / sampleNo.toDouble

}

}

val randBinom = createBinomialRand(10,0.5)

val approxProb = new ApproxProb[Double](randBinom)

approxProb.probOf(3) // Returns: 0.1173. . .

Binomial(10,0.5).probOf(3) // Returns: 0.1171. . .

The average of a large number of draws will approximate the value of probOf of Dist.

An implementation of a function sample should be added to enable us to sample many

times from the sampling based distribution.

Developing a functional probabilistic programming language or library is a complex

procedure that necessitates combining concepts from category and measure theory, lambda

calculus, functional programming, the compilation process and other related fields. By

hiding implementation details, probabilistic programming renders probabilistic modelling

more accessible to people who do not have sufficient expertise in probability theory but

are involved in the field of statistics and machine learning and want to broaden the range

of tools they are using for inference.

5.4.2 Rainier – a probabilistic programming library for Scala

Rainier is a probabilistic programming language written in Scala for fitting Bayesian sta-

tistical models using MCMC. It is developed by Stripe, an American company that builds

software platforms for online financial transactions. Rainier was first available in 2018 and

its primary author is Avi Bryant (Bryant, 2018). It supports models with fixed structure

and continuous parameters.

As other domain specific languages (DSLs), Rainier associates a compute graph to the

predefined model, with the nodes representing the parameters of the model determined by

the user. Then, it translates this graph to a function that represents the un-normalised

log-posterior density. The library uses HMC and eHMC, hence it involves calculation of

the gradient of the log-posterior density since the exact derivatives are necessary in order

to perform the leapfrog steps. Many inference and optimisation algorithms use gradients

to adjust their parameters in a direction that will minimise the error of a specific task that

they aim to accomplish. The wide use of differentiation motivated the scientific community

to develop more generic processes and automatic differentiation (AD) routines. Automatic

differentiation is a set of techniques to calculate the gradient of functions and at the

108



Chapter 5. Functional programming

same time numerically evaluate them. It is based on the idea that a computer program,

irrespective of its complexity, can be converted to a sequence of primitive operations

which determine specified procedures for computing derivatives using the chain rule. AD

techniques include “Forward Mode AD” and “Reverse Mode AD” (Wang et al., 2019).

Rainier uses AD to compute the gradient of the log-density function and implement the

Hamiltonian Monte Carlo algorithm. Developing a model in Rainier requires a level of

familiarity with Scala and the basic concepts of functional programming, in order to

understand and take advantage of the functional features embedded in this probabilistic

language.

To demonstrate how Rainier works in version 0.2.2 we will use a simple one-way Anova

example as a starting point in building a probabilistic program with this library. Suppose

that the synthetic dataset consists of n groups/levels, with N observations per group. The

data is stored in a two-dimensional array with n rows, where each row represents a group,

and N columns with the columns representing the observations within the groups. This

model in Rainier is defined as follows:

// Define parameters and priors

val prior = for {

mu <- Normal(0, 100).param // overall mean

sdObs <- LogNormal(0, 10).param // observational sd

sdEff <- LogNormal(1, 5).param // random effect sd

} yield Map("mu" -> mu, "sdObs" -> sdObs, "sdEff" -> sdEff) // save to a Map

// Update by observing the data per group

def addEffect(current: Map[String, Real], i: Int): RandomVariable[Real] =

for {

gm <- Normal(0, current("sdEff")).param

_ <- Normal(current("mu") + gm, current("sdObs")).fit(data(i))

} yield gm

// Apply to all groups

val model = for {

current <- prior

_ <- RandomVariable.traverse((0 until n) map (addEffect(current, _)))

} yield current

// Fit the model

implicit val rng = ScalaRNG(3)

val iterations = 10000

val thin = 1

val lfrogStep = 50

val output = model.sample(HMC(lfrogStep), warmupIterations = 1000, iterations *
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thin, thin)

Listing 5.4: One-way Anova in Rainier (version 0.2.2)

Rainier has a special numeric type to represent the parameter values of the model,

which is called Real. It is a random variable and reflects a set of possible values and not

a specific known value. Listing 5.4 shows that the first step of a probabilistic model in

Rainier is to set up the prior distributions for the unknown parameters of interest. This

is defined in the variable prior, using the typical Scala for-comprehension (5.3.2.2) and

calling param on the distribution of the prior for each parameter. The method param, allows

the distribution to be used as a prior distribution by returning a RandomVariable[Real]

which is Rainier’s probability monad (5.4.1). The library includes and supports various

predefined distributions that are used to build the function to evaluate the log of the

un-normalised posterior. Using param actually transforms the parameters to the support

of the distribution. Some distributions, such as the Gamma and the half-Cauchy, have

bounded support which needs to be taken into account by transforming the parameters in

a way that leads to proposals in an unconstrained space. Therefore there are embedded

functions that add the log-Jacobian of the transformation to the log-density and enable

an unconstrained random walk proposal (Bryant, 2018).

The second step is to fit the parameters to the observational data and update our

beliefs about their values using fit (in this example, per group). The result of applying

fit on a distribution is the enabling of the log-density of that distribution to represent

the likelihood of the provided data being produced by that specific distribution. Finally,

the last step is to generate samples of the posterior distribution of interest by defining the

number of iterations and the thinning factor, as well as the number of leapfrog steps for

the HMC. Implementation of a two-way Anova using a random effects model with and

without interactions is available at the GitHub repository TWI Saturated Rainier v022 1.

As of February 2020, a new version of Rainier (0.3.2) is available with significant

changes compared to the previous (0.2.2). It is worth showing the evolution of the library

by embedding the appropriate alterations in the implementation of the above one-way

Anova example, that leads to the following listing 5.5:

// Define parameters and priors

val mu = Normal(0, 100).latent

val sdObs = LogNormal(0, 10).latent

val sdEff = LogNormal(1, 5).latent

val eff = Vector.fill(n)(Normal(mu, sdEff).latent)

// Update by observing the data per group

1TWI Saturated Rainier v022: https://github.com/antoniakon/TWI_Saturated_Rainier_v022.
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val models = (0 until n).map(i =>

Model.observe(data(i), Normal(eff(i), sdObs)))

// Merge the different models

val model = models.reduce{(m1, m2) => m1.merge(m2)}

// Fit the model

implicit val rng = ScalaRNG(3)

val iterations = 2500

val lfrogStep = 50

// The new implementantion of HMC runs 4 parallel chains

val output = model.sample(HMC(warmupIterations = 1000, iterations, lfrogStep))

Listing 5.5: One-way Anova in Rainier (version 0.3.2)

The logic behind the implementation remains the same. First, the user defines the

parameters and their prior distributions. Then, the distributions are used to update our

beliefs about the random variables of interest, based on the observed data, and finally we

run the sampler on the model. However, the details of building the probabilistic model are

now different. A new latent random variable is created using latent, rather than param in

a for-comprehension. Then, the likelihood is formed by using observe which now enables

the connection of the prior with the observations. Next, the separately constructed models

for each group are merged into one model using merge. Finally we sample the full posterior

distribution using sample, and HMC or eHMC are now running four different chains in

parallel.

Rainier 0.3.2 provides a more user friendly but less functional way to build Bayesian

models compared to the previous version, that showed more research interest regarding the

hands-on experience acquired from delving into structural details of its implementation.

Benchmarking tests on the above two versions and snippets have shown that version 0.3.2

presents poorer performance compared to 0.2.2 by roughly 26% increase in runtime, for

an one-way Anova example with 50 groups (n = 50) and 250 observations per group

(N = 250). In both cases HMC of ten 10,000 iterations with 50 leapfrog steps was used.

The efficiency decreases further as the complexity of the data and the model increases.

The full code of the examples regarding Rainier, along with implementations for a satu-

rated two-way Anova model, is available at GitHub repository TWI Saturated Rainier v032
2. Furthermore, we will refer to Rainier again in Section 7.4.2 as it is considered, among

others, as an alternative implementation to a variable selection problem.

2TWI Saturated Rainier v032: https://github.com/antoniakon/TWI_Saturated_Rainier_v032.
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5.4.3 Probabilistic programming and functional programming summary

In this section we presented some of the most important type classes in functional pro-

gramming. We showed that they are influenced by category theory and how they can

be implemented in Scala to abstract over structures and functionalities, providing ad-hoc

polymorphism. Widely used type classes, such as monads, enable chaining actions in order

to build a function pipeline within the program. Implementations for popular type classes

are already defined in libraries for functional programming languages, such as Cats for

Scala. Programmers can use these libraries and extend the implementations provided to

develop solutions that will be more structured, less prone to errors and code repetition,

and more agile. We then introduced the concept of probabilistic programming used for

statistical modelling. Combination of various scientific fields can lead to the development

of domain-specific and stand-alone languages or libraries, that can hide the details of prob-

abilistic modelling, rendering it more accessible to users. Finally, we introduced Rainier,

a probabilistic programming library in Scala that uses HMC.

In the following section we will be concerned with parallel programming and how it

can affect performance.

5.5 Parallel programming in Scala

Parallel computing is the type of computation where many calculations are performed

simultaneously. Efficient parallelism needs support from the programming language and

the available libraries, the virtual machine, as in the example of Scala and Java that run

on the Java Virtual Machine (JVM), the operating system and the hardware. If all the

resources are available a parallel program can run faster than its equivalent sequential

version under certain conditions.

5.5.1 Fundamental concepts of parallel computing

In earlier stages of parallel computing the main focus was to increase the frequency of

the single processor in the CPU. The most important limitation of this approach was the

increased power consumption that raised concerns about financial and environmental im-

pacts. Over the last years, parallel programming architectures became more popular due

to the advances in parallel hardware. Computation is divided into smaller sub-problems

that can then be executed simultaneously while exploiting the underlying parallel hard-

ware, in order to achieve the optimal speed-up. Parallel programming is very useful to

increase performance. However the division of a sequential program into smaller problems

can sometimes be difficult or impossible. Assuring correctness in the process can also be

challenging.
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Nowadays, parallelism can be achieved at various levels, depending on the nature and

structure of the program. Considering a computer program as a stream of instructions,

the computer can group, reorder and execute non-depending instructions in parallel, a

technique which is called instruction-level parallelism. Task, also known as function, par-

allelism is another form of parallelism where streams of instructions, that are considered

as different calculations performed on the same or different datasets, can be executed in

parallel. Finally, another type of parallelism is called data parallelism, and takes place

when the same calculation is performed in parallel along different processor nodes, each

working on a subset of the data (Dongarra et al., 2003).

There is a wide range of parallel hardware architectures that enable parallel comput-

ing. Some of the most popular classes of parallel computers include, but are not limited

to, multicore processors, symmetric multiprocessors, general purpose graphics process-

ing units, and computer clusters. Multicore processors constitute a technology where on

one chip there is a processor with multiple processing units, called cores. When more

identical processors (either multicore or single-core) which are on different chips, are com-

bined together, they build a computer system named “symmetric multiprocessors”. One

of the latest trends in parallel computing is the general purpose graphics processing unit

(GPGPU). This unit acts as a co-processor in the system. It is connected on the computer

and executes a program whenever this is explicitly requested from the host processor. All

three previously mentioned classes have a shared memory. Finally, computer clusters are

groups of computers connected by a network, each having its own memory (Kuncak, 2016).

In computer science, a process is an instance of a program. The operating system is

responsible for scheduling program execution and multitasking. Processes are assigned

small time intervals to run on the CPU. Once their time slice is finished, they are replaced

by another. Each process has its own memory area, which is secure since processes can

only mutate their own data and interprocess communication is not an easy task. Processes

contain multiple units as their building blocks called threads. Threads can be explicitly

defined by the user and triggered from within the program. Another important property

of threads is that they share the same memory, rendering information exchange feasible.

In the JVM, each thread has its own program stack, a location in memory to store its

local variables and methods, as well as its own program counter, to know the position

in its sequence of instructions. Even though the program stack is private to the thread,

inter-thread communication is achieved through the heap memory, which is the part of the

memory that all threads have access to. The most important thread in a Scala program

running on the JVM is the one that executes the main method. In serial programming the

main thread is the only one that starts when a process is running. In parallel programming

however, multiple threads can start from a process and run in parallel as determined

by the OS, that takes advantage of the parallel hardware technology of the computer.
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Threads are created at the OS kernel level and they are expensive since they have some

implementational workload. More modern programming approaches involve creation of

tasks from within the program rather than threads directly. Tasks can be considered

as objects that represent some work that should be done (Kuncak, 2016). Embedded

libraries, such as the executors in Java, manage these tasks and the threads on which

these tasks will run on various cores.

Another term which is frequently used and often confused with parallelism is con-

currency. Concurrency occurs when there are two or more tasks running simultaneously

(Dongarra et al., 2003), but not necessarily in parallel. More specifically, the CPU is not

involved in operations such as read or write from and to the memory, as they happen

through a communication system that transfers data between these components known as

bus. In the meantime, while these kinds of operations take place, the CPU is available to

execute other tasks. Concurrency can be achieved even on a single-core CPU. Parallelism,

by definition, is achieved when multiple cores or processors are available and used.

With blocks of code running in parallel and multiple threads having access to shared

memory, without mechanisms to secure the correctness of commands executed, parallel

computing can lead to inconsistencies. To avoid potential problems, the main thread,

depending on the sequence of the instructions, will have to wait at various parts of the

program for the completion of additional threads started. Once the result is computed, it

will be returned and the main thread will continue; this is known as “join”. Furthermore,

some threads might change variables in the shared memory, that other threads are pro-

cessing as well, leading to wrong calculations at one thread and concurrency issues. To

overcome this problem the JVM has a mechanism called “synchronisation”, so that only

one thread can invoke a code block at a point in time. This block is called a synchronised

block and constitutes a way through which various threads exchange information. Com-

plex programs and high-level frameworks have nested synchronised blocks to ensure that

all threads function properly. The disadvantage of synchronised blocks is that the whole

block cannot be executed in parallel with another, with the undesirable outcome that we

cannot exploit parallelism for potential expensive operations in the rest of the block. To

resolve this difficulty, the JVM provides a more modern “locking” technique. Locks can

be used at specific points in a block, so the rest of the block can be executed in parallel

(Kuncak, 2016). Finally, for operations causing side-effects, there are concurrent collec-

tions that a programmer can use, which handle multiple threads simultaneously without

needing deeper knowledge of the collection’s internal representation.

When multiple threads are running, a situation known as deadlock, can occur. In this

condition, two or more threads compete for the same resources and each might be waiting

indefinitely for the other to finish and release the resource. Another issue occurring with

competing processes is that with using synchronised blocks the competing resources have
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no specific order. One solution is to keep an order in the resource acquisition, this is valid

when locks are used. Assigning unique identifiers to processes and providing the resources

based on the identifier, e.g. prioritising the smallest identifier, could be a potential solution.

Concerning possible issues related to accessing and modifying the locations of the shared

memory, the JVM has a set of rules called the Java Memory Model. One of these rules is

that if two threads write to different positions in memory, synchronisation is not necessary.

A second rule is applied when a thread calls join on another thread. There is a guarantee

that the second thread will implement all the writes in memory first before join returns,

ensuring that the first thread will have all the up-to-date information (Kuncak, 2016).

5.5.2 Parallelism

In this section we will see how parallel programming for two of the main types of par-

allelism, task and data parallelism, can be achieved in Scala. The first type distributes

different execution processes/computations across multiple processing units, whereas the

second runs the same computation on distributed data across different nodes.

5.5.2.1 Task parallelism

The idea behind task parallelism is to perform independent computations across multiple

nodes. A task in this context, is considered to be an operation that leads to a unique value.

Thus, one example of task parallelism could be running operations such as summation and

finding the maximum value of one or more arrays, in parallel.

Due to implementational details of the various collections, it is more efficient to apply

parallelism on some types than others. For example, even though List is a widely used

collection, due to its implementation where it consists of head and tail, searching for the

position of the middle of the list, or later concatenating lists in order to obtain parallelism,

can be expensive. On the other hand, arrays and trees are more efficient.

Suppose that there are two arrays where we want to apply a function f to every element

and then get the total sum of the elements. The sequential version of that operation, taking

an input array and returning the sum of the transformed elements could be implemented

as presented in Listing 5.6. For illustrational purposes a while loop is used instead of the

embedded map function of Scala.

def sqrForArraySerial(inputArr: Array[Int], f: Int => Int): Int = {

val outputArr = new Array[Int](inputArr.length)

var i = 0

while (i < inputArr.length) {

outputArr(i) = f(inputArr(i))

i += 1

}
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outputArr.sum

}

// Define input

val inputA = Array(2,3,4,5)

val inputB = Array(5,7,8,9)

// Define function for power of two

val sqr = (x:Int) => x * x

// Function call

val sumSeq = sqrForArraySerial(inputA, sqr) + sqrForArraySerial(inputB, sqr)

//sumSeq: Int = 273

Listing 5.6: Sequential implementation of map and sum for two arrays

The parallel version can be then implemented as:

def sqrForArrayParallel(inputArrA: Array[Int], inputArrB: Array[Int], f: Int =>

Int) = {

parallel(sqrForArraySerial(inputArrA, f),

sqrForArraySerial(inputArrB, f))

}

// Function call

val sumPar = sqrForArrayParallel(inputA, inputB, sqr)

//sumPar: Unit = () result = 273

Listing 5.7: Parallel implementation of map and sum for two arrays

The serial and the parallel implementation return the same results. In the serial code

all calculations are executed sequentially. In the parallel version, we invoke two function

calls in parallel for the two arrays. This is achieved through parallel, a function that

uses Scala’s trait Future. When an operation is executed in parallel its result will not be

returned instantly but in an asynchronous way. In some cases we might want to be able

to process this result further in following computations. Futures (Scala Future) provide a

way to perform these operations by representing values that may not yet exist, without

blocking the underlying execution threads. When a task/future is completed, subsequent

executable code, known as callback, can be called to define the operations to be carried

on. Futures are monads, so they can be composed through combinators such as flatMap

and filter. The following implementation for parallel, used specifically in Listing 5.7,

is a simple example of a Future:

import scala.concurrent._

import ExecutionContext.Implicits.global

import scala.util.{Failure, Success}

def parallel(taskA: => Int, taskB: =>Int) = {
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val fA = Future { taskA }

val fB = Future { taskB }

val result = for {

r1 <- fA

r2 <- fB

} yield (r1 + r2)

result.onComplete {

case Success(x) => println(s"\nresult = $x")

case Failure(e) => e.printStackTrace()

}

}

Listing 5.8: Implementation of parallel using Furure

In this example parallel takes two arguments, passed by name indicated with :=>, neces-

sary to achieve parallelisation since otherwise the program would be executed sequentially

by first evaluating the first expression and then the second (Kuncak, 2016). It then creates

a Future for each task and since futures are monads they can be composed using a for

comprehension. This returns a new future named result. When this future is completed,

either through a value in case of success or an exception in case of failure, it applies the

provided function. Then, it prints either the result or an exception error. This is an

impure operation helpful for illustrative purposes.

Parallelising operations on collections can lead to significant speed-ups, however not

all operations are parallelisable. For example, some common operations that lead to single

values are foldLeft/foldRight and reduceLeft/reduceRight. Some examples of how they

operate are:

Array(1,2,3,4).foldLeft(5)(_-_) //res0: Int = -5

Array(1,2,3,4).foldRight(5)(_-_) //res1: Int = 3

Array(1,2,3,4).reduceLeft(_-_) //res2: Int = -8

Array(1,2,3,4).reduceRight(_-_) //res4: Int = -2

// Signatures

def foldLeft[B](z: B)(f: (B, A) => B): B //similarly for foldRight

def reduceLeft[B >: A](f: (B, A) => B): B //similarly for reduceRight

Listing 5.9: fold and reduce examples

In the above examples, foldLeft starts from the initial element 5 and applies, from

left to right, a function f passed as an argument. Here, f is a subtraction, so foldLeft

subtracts the elements from the previous result as: ((5-1)-2)-3)-4). Likewise, foldRight

applies f again, but starts from the last element: (1-(2-(3-(4-5)). reduce works in a
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similar way but without having initial values. Operating on the same array, foldLeft and

foldRight perform the operation f: (B, A)=> B in a different order and return different

results. Therefore, these operations could not be implemented in parallel and guarantee

validity of results. This is due to the nature of the function. In order to perform these

operations in parallel and assure correctness of results, function f used in these operations

must be associative. The associative law for binary operations defines that an operation

f: (A,A) ⇒ A is associative iff for every x, y, z : f(x,f(y,z)) = f(f(x,y),z). Associativity

allows the reordering of the sequence of computations, that lead to the same value, given

that the ordering of elements is preserved. It enables parallel execution and reduction on

the parts of the collection, and their combination to a final resulting value.

Another assumption that needs to hold for foldLeft and foldRight to be parallelisable

is that the accumulator type (z: B) must be of the same type as the elements in the

collection. Even though in this example an integer accumulator was used on an array of

integers, we can see from the signature that using an accumulator of a different type from

the collection’s elements is allowed. This leads to the definition of fold with signature:

def fold(z: A)(f: (A, A)=>A): A. Now, f takes two arguments, the accumulator and the

current element of the collection, both having the same type, combines them according to

the definition of the function and returns an element of the same type. The same applies

to reduce (Kuncak, 2016).

In the following part we will see how data and collections can be split on several

nodes to run computations on them in parallel and return new transformed collections.

Operations that we saw in this part, such as fold, can then be operated in parallel as well,

on the resulting collections.

5.5.2.2 Data parallelism

In data parallelism, the same computation is executed in parallel on different parts of the

data, spread across multiple computational units. Operations such as parallel loops belong

in this category and can be highly performant compared to their serial implementations.

However, when there are side effects we need to ensure that results are written to separate

memory locations or use some form of synchronisation, so as to return correct results.

Modern programming languages offer parallel alternatives of their built-in collections.

A method par is applicable to most collection types and converts them to their equivalent

parallel alternatives. The parallel implementations are prefixed with “Par”, e.g. Array

and ParArray. Fragments of the structure are then processed in parallel through usual

operation calls. Similarly, accessor built-in operations, such as fold and count, as well as

transformer operations, such as filter and map, can take place in parallel. Nevertheless,

not all collections and operations are parallelisable. Parallel collections use embedded

language features to split their data, do the independent parallel calculations and combine
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the separate results.

A simple example of finding the sum of an array using its parallel collection and fold

is the following:

def mySum(ar: Array[Int]): Int = {

ar.par.fold(0)(_+_)

}

val inputA = Array(2,3,4,5)

mySum(inputA) //res0: Int = 14

Listing 5.10: Example of parallel array sum

Here, par copies all the elements in the array, in linear time, and creates a new parallel

collection. The returned result is correct and the method is deterministic in the sense

that it will always return the same output for the same input on different runs. This is

valid because two requirements are met. Firstly, the parallel reduction operator, sum, is

associative. Secondly, the neutral element not only has the same type as the collection,

but also it is the identity element. These properties, make the neutral element z and the

binary operation f form a monoid, a term that we also saw in Section 5.3.2.2 when we

presented the basic type classes in functional programming. These prerequisites show that

there are different aspects to consider when writing parallel programs that may not be

applicable in the serial case.

The set of data structures in Scala constitutes a network of collections and subcollec-

tions forming a hierarchical system. This applies to both serial and parallel collections.

To allow the development of code which works with both categories, there are generic col-

lection traits which are supertypes of both versions. For example, the generic GenMap is a

supertype for both the serial Map and the parallel ParMap. This facilitates the programmer

in writing more generic and flexible code that will be called either on the serial or on

the parallel version of a collection, depending on the nature of the problem to which it is

applied (Kuncak, 2016).

5.5.3 Summary of the parallel programming framework

Parallelism is a type of computing that allows the running of multiple threads in parallel

on different computing nodes in order to execute operations faster than their serial coun-

terparts. Performance improvement is the main motivation behind parallel programming,

that can otherwise be more complex. Especially when dealing with mutable structures and

side effects, parallel programming introduces new aspects, like concurrency and inconsis-

tencies, that have to be considered. Luckily there are mechanisms to overcome these prob-

lems, such as synchronisation, locking, and built-in concurrent collections. Furthermore,

the lack of shared mutable states in functional programming helps to avoid concurrency
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issues and makes parallelism easier. The two main types of parallelism, task and data par-

allelism can be applied depending on the problem. The first focuses on running different

processes in parallel on the same or different data. Data parallelism aims to distribute

data across computing nodes and execute the same computation in parallel. Parallel col-

lections and their supported operations, such as map and fold, render parallelism an easier

task for the programmer, with their underlying implementations handling efficient split,

processing and recombination of the data. Often in the literature and online sources there

is a very fine line of distinction between task and data parallelism examples. Despite the

complex concepts involved in parallel programming, its performance gain renders it very

popular for large-scale problems.

5.6 Benchmarking

Benchmarking is a concept used in computing, related to testing and comparing the per-

formance of software, hardware or networks. For programming, it refers to the act of

running a computer program in order to assess the performance of the whole system or

some of its components. There are various performance metrics, such as runtime, memory

utilisation and disk operations and usage.

Measuring runtime is the most common performance metric. It is also the metric that

we are going to use in the scope of this project. In order for the measurements to be

consistent, not only among various trials on the same program, but also among different

programs, some factors affecting runtime must remain fixed during all experiments. More

specifically, these factors can be related to the CPU, such as the processor’s speed, the

number of available processors (the last applies mostly on parallel programming), and the

throughput, which measures how many units of information a system can process in a

time unit (Kuncak, 2016). They can also be related to memory, and particularly latency

and bandwidth. Both terms are associated with retrieving data from the main memory.

The former refers to the waiting time from the moment a processor initiates a request

for data from memory until it receives them. The latter, regards the rate at which data

can actually be read from and stored to memory per time unit (Dongarra et al., 2003).

Additionally, another factor that can affect performance is the runtime environment, such

as the operating system or a virtual machine. Each system has its own characteristics

and components running in the background. For example, the JVM runs a process which

is called “Garbage Collection” (GC) every time memory space becomes limited. It is an

automated process for cleaning the memory from objects, created during the execution of

programs, that are no longer useful. Finally, other programs running at the same time

with our program of interest might affect its runtime due to competition in accessing

memory and other resources.
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To ensure that the runtime recorded reflects the actual speed of the program and gives

us a sensible idea of the program’s overall behaviour, it is sometimes important, depending

on the case, to repeat the measurement multiple times. It is then useful to compute the

mean and variance of these measurements, after identifying potential outliers related to

the underlying system’s implementation, such as the garbage collection mentioned earlier.

This is mostly important in applications where the functions of interest are short and the

runtime small. Then the impact of GC and lack of a warm-up period can have a notable

effect on the overall time, leading to significant inconsistencies between measurements.

The easiest way to measure the runtime is to calculate the difference in the system time

between the moment that the program of interest started and when it ended. There are also

more sophisticated tools and frameworks that offer more integrated solutions to calculating

performance metrics. For example, in Scala there is a library called ScalaMeter specifically

designed for performance tests and micro-benchmarking. Finally, it is worth clarifying a

concept that is sometimes confused with benchmarking which is called profiling. Whereas

benchmarking aims to present the overall performance of a program, profiling is about

understanding how the time is spent in specific functions or sets of instructions, and

eventually optimising and improving the application (Kuncak, 2016).
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Implementing Bayesian

hierarchical modelling

Since the beginning of the BUGS (Bayesian inference Using Gibbs Sampling) project in

1989, there has been a significant growth in the application of Bayesian methodologies for

both academic and commercial purposes (Lunn et al., 2009). Various statistical packages

such as WinBUGS, that runs on Windows, and OpenBUGS, that constitutes its open

source equivalent, are widely used for Bayesian modelling. Another piece of software which

is also widespread for Bayesian inference is called JAGS (Just Another Gibbs Sampler)

and is based on the BUGS language. It is implemented in C++ and is cross-platform.

JAGS interfaces well with R through ‘rjags’, an R package included in the R Archive

Network (CRAN) which makes it popular among R users involved in Bayesian statistics.

Both BUGS and JAGS use their own language for the textual specification of models that

can be built with MCMC algorithms. These packages are established, acknowledged and

highly appreciated by the academic and professional communities.

Over the last few years, functional programming has became a popular programming

paradigm for many applications, including its usage for probabilistic programming. There-

fore, it is interesting to explore a functional approach to Bayesian hierarchical modelling.

It is worth investigating whether with functional programming there is potential for im-

provement in speed and performance issues that might arise due to the increasing volume

of data and complexity of models. However, unlike R, where there are libraries that enable

users to define at a higher level the structure and parameters of models and use a Gibbs

sampler, the particular MCMC algorithm that we are interested in, to approximate the

values of interest, in Scala there is no equivalent active library at the time of this project.

So, in order to build a model using a Gibbs sampler in Scala it is necessary to analytically

implement the algorithm after obtaining the analytical forms of the full conditional dis-

tributions of each parameter to sample from at every iteration, as shown in Section 3.3,
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and code up the sampling process.

The main model that we examine in this project is an extension of a hierarchical two-

way Anova problem. It involves two independent categorical variables and identification

of the most important interaction terms through variable selection. All effects are treated

as random effects. It also accounts for four cases of asymmetry in the effects according

to the analysis presented in Section 3.3, that is, the main and/or interaction effects being

symmetric/asymmetric. For variable selection we consider two main approaches, the Kuo

and Mallick method using variable selection indicators, and the use of adaptive shrinkage

priors, and more precisely, the Horseshoe prior. For both methodologies a Gibbs sampler

in Scala and JAGS was developed and all variations of asymmetry in the effects were

considered. In addition, since adaptive shrinkage priors are mostly intended to be used for

variable selection in algorithms that do not support discrete variables, such as Hamiltonian

Monte Carlo, two supplementary implementations were built. The two libraries explored

to showcase how HMC is combined with the Horseshoe are Stan for R and Rainier for

Scala. These two programs only implement the asymmetric main and interaction effects

case.

In this chapter we present some implementational details of the alternative probabilistic

programming approaches considered, with particular emphasis on the development of the

code in Scala which will be referred to as TWIiS (Two-way Interactions in Scala) indicating

its main purpose. For TWIiS, along with a serial approach, a parallel implementation is

also examined and a comparison between the two is performed to clarify under which

conditions each version is preferable.

6.1 JAGS

Developing code in JAGS has to follow the norms of the language, in order for it to compile

and produce useful output. The main points of the JAGS workflow include definition of the

model and compilation, initialisation of the parameter values, adaptation and run of the

model, and finally monitoring the parameters of interest (Plummer, 2017). Our program

uses the library ‘rjags’ and combines R and JAGS to build the examined model. The code

follows a typical pattern. It starts with reading and preprocessing the data, and setting

the initial values of the model. Next, it follows the definition of the model in JAGS based

on the rules of the language. The stochastic and deterministic relations among parameters

are clearly defined for all four cases of asymmetry in the effects. Depending on how we

set the logical flags defining the existence of symmetries, a different part of the code is

triggered, gradually constructing and eventually leading to a complete definition of the

model. Then, the model is set to run, after specifying characteristics such as the number of

chains and iterations, the size of burn-in, and the parameters to be monitored. Internally,
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a graphical model is constructed and the conditional dependencies are used to produce the

full conditionals of all variables, followed by the application of a Gibbs sampler. Finally,

the saved posterior samples are processed using R. The meta-analysis includes production

of diagnostic graphs and tests for convergence, as mentioned in Section 2.2.4, as well as

measures of fit and efficiency. This process is typical in statistical modelling using R

and JAGS. Numerous variations can occur depending on the nature of the model and

the data. An example is the implementation of variable selection using Horseshoe priors

instead of selection indicators, even though the two methodologies have some important

conceptual differences, only some minor changes in the JAGS code were necessary. Overall,

the consensus of defining the modelling process remains similar for most Bayesian models

fitted in JAGS.

6.2 TWIiS

Unlike R, where there are libraries to facilitate Bayesian inference, developing a Gibbs

sampler in Scala is more challenging since at the time of this research project there was no

active library serving a similar purpose. Therefore, a lot of time and work was allocated

to develop from the ground up this MCMC algorithm implementation in Scala, focused

on our model of interest. The aim of the following sections is to unfold the flow of the

code and explain its major components. The building blocks of the program combine

the framework of the algorithm established in Section 2.2.2, the calculations of the full

conditional distributions presented in Section 3.3 and the principles and techniques for

functional programming in Scala discussed in Chapter 5. Finally, we are going to expand

the serial version and see how parallelism can be incorporated in the code. The code for

developing TWIiS using variable selection indicators is available at the GitHub repository

TWIiS VSI 1, and with the Horseshoe priors at repository TWIiS HS 2.

6.2.1 Main structure and optimisation

One of the main parts during the development of the code was the decision upon the

implementation of the basic structure that would hold and manipulate the data. In this

part we will show why the form of this structure is important and mention some of the

implementations tested.

The nature of our hierarchical model requires estimation of several explanatory vari-

ables using their full conditional distributions, leading to numerous calculations. There are

also four different variations of the model depending on the symmetry of the effects to be

taken under consideration. It was important to identify the structure that best fitted the

1TWIiS VSI: https://github.com/antoniakon/TWIiS_VSI.
2TWIiS HS: https://github.com/antoniakon/TWIiS_HS.
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computational and speed requirements of the model, therefore a lot of trials took place.

An easy way to be able to experiment on various implementations is to define a trait (also

known as interface in other programming languages) that encapsulates methods, that will

then be defined and implemented by the classes that extend it. The classes of structures

tested work in this manner. After defining the trait, for every different class that extends

that trait and holds a different implementation of the structure, it is necessary to define

exactly how the methods work to perform their functionalities.

The structure of the dataset is simple; for each observation there is information about

its response value and the level of each of the two categorical variables. Most synthetic

datasets have 10,000 observations and the real datasets have approximately 80,000 obser-

vations, resulting to a large number of calculations during the sampling process. When

updating the parameters of interest using their full conditional distributions there are a

lot of selections of subsets of data and numerous calculations performed on these sets. For

example, in the case of two main effects when updating a specific first main effect all the

observations that include it must be selected and summed. Furthermore, all the effects

of the second main effect for which the observation has the first effect equal to the effect

being updated have to be accounted for and summed over. In addition, there are summa-

tions over the interaction effects involving the main effect being updated. These selections

and calculations get more perplexing when there is symmetry in the effects involved. For

instance, when updating a main symmetric effect, it is necessary to identify and select all

the observations for which this effect is either in the first or the second categorical variable

and then perform the necessary calculations on this group. Consequently, there is a need

to store the data in a structure that will enable easy access to specific combinations of

main effects and allow for fast main operations, such as summations and counts. Struc-

tures that loop over all their data to search, find and retrieve data can cause delays and

inefficiencies.

For a serial implementation of the Gibbs sampler in Scala, the simplest architecture

to store and access the data which was tested was a two-dimensional array of lists. Each

dimension represents each one of the two categorical variables and the list holds the ob-

servations of the group. Even though a multidimensional array offers a straightforward

way to access specific data, the major problem that appeared during the trial on a syn-

thetic dataset was the fact that this implementation lacks support for “missing” levels of

either one of the categorical variables. Serial access and looping through the structure

and multidimensional array leads to “index out of bound” exceptions when an array is

empty. Possible workarounds could solve the problem, but potential bugs and errors in

calculations would then be difficult to debug even in smaller synthetic datasets.

To overcome the problem with the implementation that used arrays, we developed an

implementation of a structure that used Maps. Maps are dictionary-like containers offering
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the possibility to use keys of some form for faster lookup. In our example the keys are

a pair of integers representing the two levels of the categorical variables. Each key has a

custom list that contains the corresponding observations of the group. Using maps allows

accessing the data for each key in the map and since the keys are created from the data,

they will only contain levels of categorical variables that are present in the actual dataset.

Hence, we secure that “missing” levels will not interrupt the flow of the code.

Additional substructures in the structure class, in later stages of the development,

aimed in further optimisation of the serial version by enabling preprocessing and storage of

repeated calculations over each iteration. Another programming feature that was applied

in the methods of the structure objects and proved useful in moving towards performance

improvement is called memoisation. It is an optimisation technique for expensive functions

and can be applied irrespective of the collection used. The first time that an expensive

function is called its result is stored and in subsequent function calls with the same input

it is returned directly without being computed again. Further techniques for optimisation

will be presented in Section 6.2.3.

To conclude, the type of structure plays a key role in the efficiency and speed of the

methods that act on the data to perform calculations over specific groups, observations

and effects.

6.2.2 Program flow

A convenient way to illustrate the flow of TWIiS is through a graphical representation of

the steps followed, as shown in Figure 6.1. The description that follows pertains to both

the implementation using variable selection indicators and the one using Horseshoe priors.

There are two main implementational differences between the two approaches. The first

is the step to update the inclusion probability which applies only to the variable selection

indicators method. The second difference is associated with the stage that updates the

interaction coefficients and will be further clarified when this step is demonstrated below.

The basic processes that compose the program are:

� The program starts by reading the input data file in Comma Separated Values (CSV)

form. In our examples this was either a synthetic dataset or one of the multiple real

data files coming from the yeast genome case study examined. In either case the

data were clean and did not contain any missing values.

� Preprocessing Stage 1 is related to processing the data. At this point the number of

levels for each categorical variable is extracted and any prior assumptions about the

parameters of the model are defined. Furthermore, there is a call to the constructors

of the classes that create the structures using maps to store the data, as mentioned

in Section 6.2.1.
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Figure 6.1: Scala code flowchart

There are two main structures created, the first has as keys pairs of the levels of

the categorical variables unsorted, for example (CV1, CV2) where the first term

represents the level of the first categorical variable and the second term the level of

the second. The second structure has the levels sorted (min(CV1, CV2), max(CV1,

CV2)), irrespective of which level belongs to which variable. The latter is useful

in the implementation of symmetric cases. The fact that in this structure there is
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no knowledge about the order of the levels is in accordance with the rationale of

symmetry in interaction effects where the order is of no importance.

� Preprocessing Stage 2 is the part of the program where the structures are actually

created and their methods defined. In the related class, apart from the creation of the

main structures from the data, there are also various other private structures created

that aim to allow methods to perform computations faster since they have the data

already gathered in useful forms. Some computationally demanding calculations

that are repeated at every iteration of the algorithm but remain unchanged, e.g.

summations of group observations, are pre-calculated at this point and stored in

memory to accelerate the sampling process. This tactic created no memory overflows

with the volume of data involved in our models.

� The stage Select case is the point where the user has defined which one of the four

possible models he/she wants to run, the equivalent object is created and the method

triggering the sampling process is called on that object.

� The Sampling process runs N times, where N is the number of iterations. At this

stage, each unknown variable is sampled using its full conditional. As defined by the

Gibbs sampler algorithm, we start with a state of the unknown variables (usually

initialised at zero or one) and at the end of each iteration, after having updated

each variable, we get the fully updated state which is then used for sampling the

parameters at the next iteration. For each parameter that has already been updated

at the current iteration and is necessary for updating another parameter, the recently

updated value is used.

For our example, it appeared reasonable to divide the unknown variables into four

groups, consequently the sampling process logically and implementationally consists

of four stages:

1. Update inclusion probability is associated with the process and equivalent method

that updates the inclusion probability (p) of the interaction effects and defines

the sparsity of the model. It is implemented only for the variable selection

indicators approach.

2. Update τs represents the process and corresponding method that updates the

precisions (τ) of the main and interaction effects. Please note that in the ver-

sion implementing the Horseshoe prior there is no precision for the interaction

effects.

3. The main effects are updated at this stage. Depending on the case, either sym-

metric or asymmetric main effects, each object reflecting the case has a different
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implementation of this function, to incorporate the differences in calculations

as defined by the full conditionals.

4. This step involves updating the terms for the interaction effects. As in the pre-

vious step, each object has its own implementation associated with the existence

of symmetry or not.

At this point it is worth clarifying that this is the step where there is a major

implementational difference between the version using variable selection indi-

cators to identify the important interactions and the version using Horseshoe

priors. This difference is based on the logic behind the two methodologies and

the corresponding derivation of the full conditionals of the involved parameters.

In the former method, there is an update for each interaction coefficient regard-

ing its strength and an update for its equivalent variable selection indicator.

The final coefficient is their product. In the latter method, there is a common

variable τHS for all the interaction coefficients that causes shrinkage to zero,

and a variable λ associated with each coefficient separately that allows some co-

efficients to escape shrinkage. All these parameters are estimated at each state

using high dimensional matrices and combined calculations. In the case of the

Horseshoe prior, automatic adaptation of the tuning parameters, necessary for

the correct and efficient function of the algorithm, is also included. It is based

on the “Adaptive Metropolis–within–Gibbs” algorithm proposed by Roberts

and Rosenthal (2009), where during the burn-in period, an increment is added

to or removed from auxiliary variables, adapted according to the acceptance

ratio.

5. The final step of the sampling process is the update of the mean (µ) and preci-

sion (τ). If the log-likelihood needs to be calculated, it takes place at this stage.

This group of variables is not randomly chosen to be the last group updated

at each iteration. This decision is based upon the fact that the calculation

of the log-likelihood, that must happen at the fully updated state, has some

common mathematical operations with the calculation of the rate parameter in

the Gamma distribution from which τ is sampled. Hence, we avoid calculating

the same values multiple times, which is an important factor considering the

numerous iterations required.

� At the same time as the sampling process, a CSV file is opened to save the output

every time the buffer is full. However, not all states produced from the sampling

process are stored in the buffer. Only every nth element, with n representing the

number of the thinning factor, is saved to the output file.

� The buffer is set to have a storage capacity of 1,000 states, where each state consists
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of the updated parameter vector holding all the recently updated variables. When

the buffer is full, it writes its content to the CSV and is emptied.

� The program finishes when all iterations are completed and when the last buffered

results are saved to the output CSV.

6.2.3 Parallel implementation

In Section 5.5 we distinguished between two main types of parallelism, task and data

parallelism. We mentioned that the first category mainly refers to running different com-

putations on multiple cores on the same or different datasets, whereas the second is the si-

multaneous execution of the same computation in parallel across the elements of a dataset.

In this part we will explore if and how parallelism techniques can be used in our program,

and test whether they result in a considerable speed-up.

The Flowchart 6.1 illustrated the main logical and implementational parts of TWIiS,

our implementation of a Gibbs sampler in Scala that aims to perform variable selection

on the interactions of a two-way Anova model. Looking at the clear demarcation of the

tasks and functions, parallelisation through an adaptation of the example in Listing 5.7,

following the abstract logic:

def updateState(list of arguments ...): newState = {

parallel(updateTaus(...), updateMainEffects(...),

updateInteractionEffects(...), updateMuTau(...))

}

// block of code to call updateState using recursion or a for-loop

{

...

updateState(...)

}

would seem a reasonable solution. However, thinking about the algorithmic steps of the

Gibbs sampler that impose dependence of groups of variables on the latest updated values

of others makes it clear this type of parallelism is not feasible, at least not across different

update functions as only conditionally independent variables can be computed at the same

time. This is also the reason why, in within-function level in the case of symmetric main

effects, we cannot consider parallelising the updates of the main effects zs as they depend

not only on other values, such as τz, and µ, but also on other zs. On the other hand, we

can consider using parallelism on the asymmetric main effects cases, on each main effect

separately. The main effects αs are conditionally independent; each α only depends on

other variables, such as µ and τ , but not on other αs. Similarly, updating βs and the

interaction effects can also be parallelised. Therefore, αs, βs and interaction effects could
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be updated in parallel in their own update function. In addition, some summations in

various parts of the program can also be calculated in parallel, contributing to further

acceleration of runtime.

Sometimes, the overhead of using parallelisation, related to the extra amount of work

in creating and deleting threads as well as splitting and combining results, can be greater

than the actual benefit of parallelism. This can lead to either insignificant speed-ups

or even delays when the data or collection on which parallelisation is applied, is not big

enough. There is no golden rule for the size of a collection, so that parallelism would really

have a positive effect. Usually, experimentation with various techniques on different parts

of the program provides an insight about the benefit or not of using parallel approaches.

In our program, firstly we focused on updating αs in parallel and βs in parallel, which

did not lead to improved runtimes. This is most probably due to the “small” size of an

internal helper Map structure, different from the main structure described in 6.2.1. This

Map, used to update the main effects, has 113 keys in the case of the biggest example on

which we run the program. Therefore, for the main effects we kept the sequential update,

to avoid the extra complexity of accounting for concurrency problems when accessing the

same locations in memory.

Our next aim was to apply parallelism on the interactions update. Since the number

of interactions is the product of the number of levels of the two main effects resulting

in a collection of a significant size, parallelisation, theoretically, should have a positive

impact on speed-up. Both the serial and the parallel versions, the code of which at an

abstract level will be presented below, implement the function nextIndicsInters which

updates the indicators and the interaction coefficients, and calculates their product as

well. It takes two case class instances as arguments. The first, oldfullState, contains

the updates for the unknown parameters estimated at the previous step of the algorithm.

The second, info, contains general information such as priors, the number of iterations,

the structures and the number of levels for the first and the second categorical variable,

denoted as info.alphaLevels and info.betaLevels respectively. In both versions there

are two matrices for storing the results of the indicators and the interaction coefficients,

curIndicsEstim and curThetaEstim of type DenseMatrix, which is a matrix implementation

provided by Breeze (2020), a library for numerical processing.

The serial version (Listing 6.1) for updating the interactions starts with declaring an

initialised with zeros, mutable matrix of size M ×N , where M is the number of levels for

the first main effect and N for the second. Then, we access each element, representing a

pair of interactions, of the main Map structure (Section 6.2.1), using foreach. We apply

the necessary calculations to get the new coefficients and save the result to the correct

position in the matrix. After exhausting the whole structure, at the end of the step, the

matrix holds all the recently updated estimates of the existing interactions.

131



Chapter 6. Implementing Bayesian hierarchical modelling

override def nextIndicsInters(oldfullState: FullState, info: InitialInfo):

FullState = {

val curIndicsEstim = DenseMatrix.zeros[Double](info.alphaLevels,

info.betaLevels)

val curThetaEstim = DenseMatrix.zeros[Double](info.alphaLevels,

info.betaLevels)

// The type of structure is a Map[(Int, Int), DVList]}

info.structure.foreach(item => {

// block of code for calculations to estimate current indicator and theta

...

curIndicsEstim(item.a, item.b) = ... // 0 or 1

curThetaEstim(item.a, item.b) = breeze.stats.distributions.Gaussian(mean,

sqrt(1 / tauInter)).draw()

})

oldfullState.copy(thcoefs = curThetaEstim, indics = curIndicsEstim,

finalCoefs = curThetaEstim *:* curIndicsEstim)

}

Listing 6.1: Example of sequential update of interactions

Alternatively, a more functional solution could be to use map instead of foreach. Then,

we would not have side effects of mutating the matrix inside a loop. However, there was

a performance cost which led to adopting the non-functional approach.

For the parallel implementation (Listing 6.2) we turn the Map structure into a parallel

Map (parMap). We then apply the interaction update function on the parallel structure. This

means that all the elements are copied to a parallel collection that recursively splits the

collection, applies the operation on each partition in parallel and recombines the results.

There could be a considerable speed-up since the same operation is invoked in parallel

on different partitions of the data. However, we have not yet accounted for potential

concurrency problems occurring when multiple threads write on memory at the same time

by accessing simultaneously the matrix holding the results. This requires the map instead

of foreach approach described above to avoid possible concurrency problems. Hence, the

resulting collection is again a parallel Map as our data structure. We then populate the

matrix where we save the results by sequentially accessing the resulting parallel ParMap.

By using seq we ensure that the results are consistent.

override def nextIndicsInters(oldfullState: FullState, info: InitialInfo):

FullState = {

val curIndicsEstim = DenseMatrix.zeros[Double](info.alphaLevels,

info.betaLevels)

val curThetaEstim = DenseMatrix.zeros[Double](info.alphaLevels,
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info.betaLevels)

//The type of structure is a ParMap[(Int, Int), DVList]}

val estimations = info.structure.map(item => ((item.a, item.b), {

// block of code for calculations to estimate current indicator and theta

...

val indicsEstim = ... // 0 or 1

val thetaEstim = breeze.stats.distributions.Gaussian(mean, sqrt(1 /

tauInter)).draw()

(indicsEstim, thetaEstim)

}))

estimations.seq //make sure we are on single thread to access the collections

above without concurrency problem

.foreach { case (key, value) =>

curIndicsEstim(key._1, key._2) = value._1

curThetaEstim(key._1, key._2) = value._2

}

oldfullState.copy(thcoefs = curThetaEstim, indics = curIndicsEstim,

finalCoefs = curThetaEstim *:* curIndicsEstim)

}

Listing 6.2: Example of parallel update of interactions

We confirm the correctness of the parallel implementation by running the program

multiple times and comparing the results of each run to the results derived from the serial

version. For the comparison we use the synthetic datasets of the simulation study and the

posterior analysis methods that are presented in Section 7.2 of the following chapter.

Another remark concerning the parallel implementation is the need to ensure that the

random number generator, used when sampling from a distribution, supports concurrent

applications. Here we are using the Breeze package. Earlier versions of the library created

identical random number generators for each thread, and consequently the same random

numbers. Later versions of the library support the parallel mode. If multiple threads use

the random number generator, each thread gets a new generator with a different state.

Finally, it is worth mentioning that Scala is not the only language that provides pro-

gramming tools such as the parallel collections that we examined above and used for the

parallel version of TWIiS. For example, Java SE 9 introduced streams which make func-

tional manipulation of collections possible (e.g. using map and fold). Part of this streams

feature is a method called parallelStream which returns a stream that will process the

collection in a parallel way similarly to the parallel collections in Scala.
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In the next part we will test the impact of parallelism on the runtime of TWIiS and

compare it to the serial implementation.

6.2.4 Efficiency comparison parallel vs serial implementation

Here, we are going to explore the impact of parallelism on the performance of TWIiS.

More specifically we are going to compare the parallel implementation that uses data

parallelism and a parallel Map for the main structure, as discussed earlier, with two serial

versions. In order to make these comparisons we will first introduce the concept of speed-

up in parallel computing, as well as two important laws associated with the theoretical

maximum speed-up that can be achieved through parallelism.

In parallel computing, speed-up or speed-up ratio measures the relative performance

of the serial and the equivalent parallel system. It is calculated typically as:

speed-up = T1/TN ,

where T1 denotes the computational time of the serial version, and TN is the computational

time of running the parallel version of a program using N processors. The speed-up ratio

shows how much faster the parallel version is compared to the serial.

In an ideal situation, if T1 is the computational time of the serial version and there are

N processors available, the parallel time TN would be T1/N and there would be a linear

relationship between the speed-up and the number of processors. However, not all parts of

a program can be parallelised. In parallel computing, there are two main laws, Amdahl’s

law and Gustafson’s law, developed in 1980s, that account for this limitation of the serial

part that is not parallelisable. According to Gustaphson (1988), they both define the

maximum theoretical speed-up using fractions of times spent on strictly sequential parts

and on parts that can be executed in parallel. Amdahl’s law is defined as:

speed-upAmdahlLaw = 1/(s+ p/N), (6.1)

where s is the proportion of the runtime spent on the serial part and p is the proportion

of the runtime spent on the part that is parallelisable. According to Amdahl’s formula,

speed-up has an upper limit that depends on the proportion of execution time that the

serial part holds. Amdahl’s law sets a theoretical background for the potential speed-up

in a fixed size problem.

On the other hand, Gustafson’s law focuses on the idea that as the number of available

resources increases, people tend to increase the size of problems to exploit the computing

power provided, against the assumption of fixed workload of Amdahl’s law. The maximum
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speed-up of large problems according to this law is defined as:

speed-upGustafsonLaw = s+ p ·N. (6.2)

The notation for Gustafson’s law is the same as for Amdahl’s law. However, here, N can be

perceived not only as strictly the number of processors, but also as an indirect measure of

the problem size, since increasing the number of available processors, theoretically, allows

an equivalent increase in the amount of work executed in parallel in the same amount

of time. As a final remark about these laws, we should mention that neither of the two

accounts for memory limitations that can bound the problem size and the potential speed-

up. Subsequent laws, such as Sun–Ni’s Law (Sun and Ni, 1990), incorporate the memory

capacity in their estimation of theoretical speed-up.

In order to explore the impact of parallelism in speed-up we considered two serial

implementations. The first serial case is the fastest serial version achieved and includes

techniques to speed up the code, such as mutable collections, that can lead to concurrency

problems when used in the parallel case. Therefore, it cannot be directly “translated”

to parallel implementation without modifications. The second serial version is in exact

accordance with the parallel, in the sense that it is the same code as the parallel version,

with the difference that instead of using a parallel Map, we are using a regular Map. In

other words, the former serial version is not concurrent safe to be used in parallel mode.

However, it is faster than the latter which is more functional and can easily and safely be

transformed to a parallel implementation.

Table 6.1: Efficiency comparison between serial and parallel.
Runtimes (RT) are measured in seconds.

Example Version RT Speed-up RT Speed-up RT Speed-up

10k obs. 80k obs. 300k obs.

15×20

(100k iter.)

Serial 45s 0.32 210s 1.09 985s 2.70

Serial-

conc. safe
65s 0.47 339s 1.77 1158s 3.17

Parallel 139s - 192s - 365s -

80k obs. 200k obs. 500k obs.

113×143

(10k iter.)

Serial 126s 1.40 181s 1.77 342s 2.39

Serial-

conc. safe
143s 1.59 285s 2.79 419s 2.93

Parallel 90s - 102s - 143s -

The comparisons among the three versions are illustrated in Table 6.1 above. We de-

note as “Serial” the faster, less functional serial implementation. The concurrent safe serial
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approach is referred to as “Serial-conc. safe”, and the parallel is denoted as “Parallel”.

We are interested in not only measuring the time and speed-up of the three implementa-

tions but also in understanding if and how the volume of data affects the performance.

Therefore, we use synthetic datasets with varying sizes. The first example has 15 levels

for the first and 20 levels for the second categorical variable. We examine three different

cases of 10,000, 80,000, and 300,000 observations. The second example has 113 and 143

levels for the categorical variables and we compare the runtimes and speed-up for 80,000,

200,000 and 500,000 observations.

For these experiments, from a model point of view, we used the asymmetric main and

interactions two-way Anova. Regarding the technical specifications, a Standard D8s v3

Azure instance with 8 cores and 32 GB memory was used.

Looking in Table 6.1 we can see that in the smallest example that consists of 15×20

levels and 10,000 observations, parallelism had the opposite results from those expected.

Not only there was no speed-up, on the contrary it caused significant slow down in the

execution time. This stems from the fact that in order for parallelisation to improve

runtime the dataset should be big enough so that the computational cost of creating

multiple tasks, running parallel threads and combining the results, would outweigh the

serial simplicity. There is no golden rule for the size of data. Experiments can clarify, for

each particular problem, which approach is more efficient. Indeed, we can see that as the

number of observations increases, the speed-up improves significantly. Similarly, in the

bigger example of 113×143 levels, the speed-up is higher for bigger datasets. Consequently,

parallelism has an important effect on execution times when the volume of data is big.

From the results we can see that in some cases the parallel code is three times faster than

the serial. Conversely, small amounts of data constrain its performance gain and can even

lead to negative effects. Concerning the difference between the two serial versions, we

can confirm that in both cases the concurrent safe approach is slower and therefore its

parallelisation leads to higher speed-up.

Finally, we can calculate the theoretical maximum speed-up defined by Amdah’s

(Equation 6.1) and Gustafson’s (Equation 6.2) laws and see if our results are in accordance

with these measures. Even though these formulae were originally developed many years

ago, researchers still often use them as reference points when they want to reason about

speed-up (Al-hayanni et al., 2020). VisualVM is a tool for acquiring detailed informa-

tion about applications that run on the JVM during their runtime. Using VisualVM for

profiling and seeing the proportions of runtimes for the concurrent safe serial approach,

we conclude that the proportion of runtime for the code that we decided to implement

in serial is 0.57 and the proportion of code that we chose to parallelise is 0.43. Then,

according to Amdahl’s law, the potential maximum speed-up is 1.6. In Table 6.1 we can

see that in both examples, some of the actual speed-ups are close to that value. As the

136



Chapter 6. Implementing Bayesian hierarchical modelling

problem size increases, the speed-ups tend to increase and approximate Gustafson’s the-

oretical speed-up estimation which after substituting our measurements in Equation 6.2,

is 4.01.

6.3 Stan

Stan constitutes a probabilistic programming language that uses HMC for Bayesian infer-

ence. It is named after Stanislaw Ulam, one of the main contributors in the development

of the Monte Carlo method. Its syntactical features are similar to those of JAGS, but

with higher complexity. It provides an interface for R, through the ‘rstan’ library, but it

also has an API for Python.

Stan is written in C++ and it is free and open source. A Stan program is written in

a text editor or RStudio, using the syntactic rules of the language and saved in a .stan

file. When running a Stan program, the parser first checks the syntactic correctness of

the code, which is then translated to C++ source code and compiled to an executable file.

The resulting “stanfit” object contains the output from fitting the Stan model, and can

be further processed using convergence diagnostics and tools for manipulating the results.

Stan uses HMC and more specifically a no-U-turn (NUTS) sampler which is an exten-

sion of the HMC, developed by Hoffman and Gelman (2011). NUTS aims to improve the

performance of the algorithm by eliminating the user-specified tuning parameters, stepsize

ε and desired number of steps L.

Even though for a user experienced in JAGS or BUGS, writing a program in Stan is

a familiar process, making Stan more efficient demands deeper understanding of the un-

derlying algorithms and usage of programming techniques and statistical transformations

that render Stan more challenging and difficult to use. Stan spends the majority of its

runtime computing the gradient of the log probability function and using differentiation

for these calculations is computationally demanding. Furthermore, difficult posterior ge-

ometries add extra computational cost. Two of the main suggestions in order to speed up

statistical inference in Stan are to use vectorisation and reparameterisation. The former

requires using vectors or arrays instead of loops when possible, to facilitate the build-in

operations for gradient calculations. The latter aims to transform distributions with more

complex geometries to simpler that will require a more reasonable number of steps to enter

the higher probability regions. For example, approaching a heavy-tailed Cauchy using a

standard uniform distribution (Betancourt, 2018b), or using a centred parameterisation

when using a normal distribution can lead to a better effective sample size, depending on

the model and structure and size of data (Stan, 2019e).

In this project, Stan was examined as an alternative method to implement variable

selection using the Horseshoe prior, presented in Section 3.3.3. The standard Horseshoe
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approach, for the particular model that we examine, led to poor mixing and warnings to

adapt the step-size (Stan, 2019a) and the depth of the trees that the algorithm evaluates

during each iteration (Stan, 2019d). Adapting these parameters improved mixing, led to

faster convergence but also to significant sampling delays especially for larger examples

tried out. Keeping the parameters adapted and replacing the standard Horseshoe with the

regularised Horseshoe (2.14) led to improvement in mixing and execution time. In order

to decide which implementation is the most efficient for our hierarchical two-way Anova

model, we finally examined the regularised Horseshoe with the default settings for the step-

size and the tree-depth, which improved the runtime but deteriorated the mixing and the

effective sample size. Therefore, the regularised Horseshoe with the adapted parameters

appears to be the most appropriate approach for our model of interest in the particular

example considered.

6.4 Rainier

In Section 5.4.2 we presented Rainier, a probabilistic programming library for Bayesian

inference in Scala that uses HMC. For implementing variable selection with the Horse-

shoe prior we use its fastest version 0.2.2. The implementational logic follows the norms

of Listing 5.4 with increased complexity deriving from the additional main effects and

interaction terms.

Rainier has its own implementation for Cauchy distribution. Nevertheless, at the time

of this research project, a half-Cauchy, necessary to add a Horseshoe prior on important

parameters (λs and τHS) for this variable selection approach, is not yet embedded in the

library. It is suggested by Rainier’s author to approximate a half-Cauchy using the absolute

value of a parameter that follows a Cauchy distribution. However, this can potentially

affect diagnostics since some chains place parameters in positive and others in negative

space, which can inflate the between-chain variance (Bryant, 2020).

6.5 Summary

In this chapter we emphasised the implementational details of TWIiS, a Gibbs sampler

developed in Scala for Bayesian hierarchical modelling and in particular for fitting a two-

way Anova model with interactions and random effects that constitutes our main model

of study. In addition, we looked at the implementational logic behind programs written

in JAGS, Rainier and Stan which are probabilistic programming languages with corre-

sponding libraries for statistical inference in the Bayesian framework. In the following

chapter these programs are applied to a simulation study using synthetic datasets and

models with varying complexity levels. The main focus is placed on the results deriving
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from JAGS and TWIiS with further exploration of their performance and comparison of

their efficiency.
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Simulation study

We presented in earlier chapters that for the Bayesian hierarchical two-way Anova model

that we study, two possible ways to apply variable selection on the interaction effects are

using indicator variables and Horseshoe priors. Both methodologies can be implemented

with a Gibbs sampler. The relevant code for fitting the models of interest was developed in

JAGS using R and in Scala through an implementation of a Gibbs sampler specifically for

these models, which we named TWIiS (Two-way interactions in Scala). However, adap-

tive shrinkage priors mostly aim to enable variable selection in algorithms that support

only continuous variables, such as Hamiltonian Monte Carlo. Therefore, two additional

implementations were also considered, using Stan in R and Rainier in Scala, both based

on HMC.

This chapter is dedicated to exploring, through a simulation study, examples with

varying sizes and complexity for both variable selection approaches. Out of all imple-

mentations examined, the main focus is placed on TWIiS and JAGS. For these programs

we are not only interested in assessing their actual results but also in evaluating their

efficiency and comparing their performance. This comparison is valuable to decide which

methodology appears to perform better for the type of modelling that we examine.

7.1 Design of the simulation process

In order to ensure that TWIiS is implemented correctly and to validate its results against

JAGS, synthetic datasets were simulated and used for modelling in both cases. Variable

selection for the interactions of the two-way Anova models, as presented in Chapter 3, is

applied for each of the four cases: “asymmetric main and interaction effects”, “symmetric

main and asymmetric interaction effects”, “ asymmetric main and symmetric interaction

effects” and “symmetric main and interaction effects”. Therefore, synthetic datasets must

be simulated for each case. In all cases the models involve two independent categorical
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variables and their interactions.

The aim was to simulate three different examples for each case, with varying sizes of

levels for each categorical variable, to assess the results and performance of programs as

model complexity increases. The sample size was set to 10,000 observations. The first

example has 15 levels for the first categorical variable denoted as α and 20 levels for the

second denoted as β, for the cases that include asymmetric main effects. The number

of potential interactions is 15 × 20 = 300. The example is referred to as 15×20. When

the main effects are treated as symmetric, we assume that there is only one categorical

variable denoted as z. Since the model is a two-way Anova, z is present twice, with its

level being either the same or different for the first and the second categorical variables for

each observation. The number of levels for z for each example is set to be the maximum

value between the numbers of levels for α and β. Hence, in the example of 15×20, for

the cases that treat the main effects as symmetric, z has 20 levels and is referred to as

20×20. The other examples simulated are 50×60 and 113×143. For the latter we also

simulated a dataset with 80,000 observations in order to approach the number of levels

and observations that the actual dataset of the yeast genome case study has.

For all examples we set the levels 9 and 14 for variable α to be “missing”. Hence,

there were no observations in the simulated datasets that have either value. This was a

deliberate choice in order to assess the behaviour of the code and ensure that it works

properly for “missing” data, since the real dataset has some combinations missing.

The synthetic data simulation process was implemented in R. It is similar for all cases

and consists of the following steps:

1. Definition of sample size, and number of levels for the first (nj) and the second

categorical variables (nk). Usage of flags to denote whether the main or interaction

effects are treated as symmetric.

2. Sampling with replacement the “observed” levels for each variable per observation.

Levels 9 and 14 for the first categorical variable are excluded.

3. The error for each observation is sampled from a standard normal distribution N(0,1)

and the intercept term is fixed to 3.1.

4. The variances of the main effects, σ2α and σ2β, are sampled from a Gamma distribution

Gamma(4, 1) and used to sample the actual main effects for each of their levels from

a normal distribution, N(1.5, σα) and N(5.0, σβ) respectively.

5. Using an inclusion probability p = 0.2 for the cases where the interaction effects

are asymmetric we fill a matrix of size nj × nk, which is the number of potential

interactions, with samples from a binomial distribution that show which interactions

should be included in the model.
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For the cases that treat the interaction effects as symmetric the inclusion probability

is p = 0.1 and only the lower diagonal matrix is filled with binomial samples, with

the symmetric values being set correspondingly equal.

6. The variance of the interaction effects is sampled from Gamma(4, 1), and further

used to sample the interaction effects from a normal distribution, N(1.5, σγ). The

interactions for the coefficients that should not be included in the model are fixed

to zero.

7. The response for each observation is calculated after adding the intercept value, the

main effects for the first and the second categorical variables, the corresponding

interaction effect and the error.

8. The synthetic dataset is then exported to a CSV file. The expected values are also

saved and used in the posterior analysis to evaluate the results.

Finally, it is worth adding that as the number of levels of the categorical variables

increases in bigger examples, some combinations of levels do not have any observations.

For these cases and for the cases where we deliberately excluded some levels (i.e. levels

9 and 14 for α) the corresponding interactions will be highlighted in the relevant plots

presented in the following sections.

7.2 Posterior analysis methods

In the examples of the following sections, the results are summarised through various ta-

bles. For validation and comparison of the sampling outcome we are using convergence

diagnostics and plots, colour-coded heatmaps, and MCMC efficiency measurements. Fol-

lowing some convergence diagnostics and metrics mentioned in 2.2.4, the methods used in

this chapter are detailed below:

� Convergence diagnostics and plots

To ensure that after a long run the MCMC has converged we look at some diagnostics

plots such as the traceplots and aurocorrelation plots, and the Effective Sample Size

(ESS).

Regarding the traceplots, no visible anomalies are expected to be observed. Good

mixing indicates that the Gibbs sampler has explored adequately the sample space

multiple times. The autocorrelation function (ACF) plot must have a declining

tendency indicating that there is a decreasing sample autocorrelation among the

draws of the variable examined as the lag increases. Consequently, the further apart

two samples are in the chain the more independent they are, which is an important
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and desirable characteristic to conclude that the results are sufficiently independent

and represent quite accurately the target posterior distribution.

Ideally, the random samples drawn from complex distributions should be indepen-

dent. Even though this is not feasible for the MCMC, there is an estimate to assess

a notion of “ratio” between the dependent samples drawn and the amount of the

equivalent independent ones, which is called Effective Sample Size (ESS). ESS is

based on the number of samples (n) and the autocorrelation at lag k (ρ(k)). It is

defined as:

ESS =
n

1 + 2
∑∞

n=1 ρ(k)
.

The ESS is actually an estimate of the sample size needed to attain an equal level

of posterior accuracy if that sample was a simple random independent sample. Usu-

ally the ESS increases as the number of iterations increases. The closer the ESS to

the actual number of samples the weaker the autocorrelation between the samples.

Ideally the ESS for efficiency comparisons should be estimated based on the poste-

rior samples drawn without thinning after the algorithm has achieved convergence.

Thinning reduces autocorrelation in the samples and can produce a higher effective

sample size than the unthinned alternative (Stan, 2019b). Due to the large amount

of the MCMC output that can lead to increased memory requirements and limit the

storage and processing capacities, thinning is sometimes necessary. Thinned sam-

ples that retain autocorrelation can also be used to reach a consensus about this

measure. The minimum ESS across all variables in the model is considered in order

to compare the parameter which is the least efficient.

� Efficiency measurement

The efficiency of MCMC algorithms depends not only on the computational speed

but also the mixing. A metric which constitutes a combination of these two notions

is the ESS/sec, thus

MCMC efficiency =
effective sample size

computation time (in sec)
.

Hence, it is the number of independent samples per second. This metric is useful to

evaluate the performance of different MCMC implementations, and we will use it to

compare the alternative programs explored.

� Test of equality between the posterior densities

To assess whether the inferred posterior distributions from two or more implementa-

tions are similar, we can visualise and observe their densities after overlaying them.

The plots will then display the moments and the tail behaviour, and if they overlap
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they confirm that the two inferred posterior densities are alike. In terms of exploring

the equality of posterior distributions of various programs that we examine, in this

thesis we adopt an approach where we examine and overlay the univariate marginal

posterior distributions for numerous variables. Even though it is technically possible

that the univariate marginal posterior distributions of two implementations could

be similar but the full posterior distribution could be different, this is very unlikely.

However, we have to note that equality of the univariate marginal posterior distri-

butions does not absolutely guarantee equality of the full posterior distributions,

but strongly suggests their similarity. Therefore, we compare numerous univariate

marginal posterior distributions produced from our programs of interest by over-

laying them and provide examples of these comparisons throughout the relevant

sections of this chapter.

In the literature, there are also more formal hypothesis tests performed to verify

the similarity between the two densities, including the Kolmogorov-Smirnov test

and the permutation test of equality. Supposing that the posterior distribution

estimated from one program is denoted as F1(x) and from a second as F2(x), the

null hypothesis for the two tests is that the two distributions are the same. For

the Kolmogorov-Smirnov test, which is available in the R package “stats”, the null

hypothesis is accepted or rejected based on the statistic q = maxx|F1(x) − F2(x)|.
The second test, is also available in R through the library “sm”, which calculates

the test statistic as the sum of the squared differences in the density estimates

ts = sum((F1 − F2)
2). The permutation test of equality involves calculation of the

initial test statistic and numerous permutations at the posterior estimates of two

programs through sampling. For every permutation considered the corresponding

test statistic is calculated and compared to the initial. The p-value is then calculated

as the proportion of test statistics that were greater than the initial.

7.3 Variable selection using indicators

In the following sections, we present and compare the results and performance of the Gibbs

sampler for a two-way Anova implemented in TWIiS and JAGS through three examples

using synthetic datasets. Variable selection is applied on the interactions using variable

selection indicators and more precisely the Kuo and Mallick approach. The first example

involves a model with a small number of levels for the categorical variables in order to

graphically illustrate the results in a clearer way. The second and third examples expand

the comparison to bigger models to demonstrate how the results and runtimes of the

two blocks of code evolve for more complex and computationally demanding problems.

Regarding the computing resources, a Standard D8s v3 Azure instance with 8 cores and
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32 GB memory was used.

7.3.1 Example 1: Synthetic dataset with 15×20 levels

In this example we examine a two-way Anova model with interactions where in the cases of

asymmetric main effects the first categorical variable α consists of 15 levels and the second

variable β of 20. For the cases where the main effects are symmetric, both variables

are denoted with z and have 20 levels. The process followed to simulate this dataset

was discussed in Section 7.1. The methodology used to apply variable selection on the

interactions in every case considered is the Kuo and Mallick approach. The low number of

levels facilitates the graphical representation of the estimated interaction terms through

various heatmaps that allow the display of which interactions are considered important

after applying variable selection, the strength of these interactions and the estimated group

means.

Initially, running the algorithm for 100,000 iterations with a thinning factor of 10

resulted in good convergence diagnostics for the interaction coefficients and precisions, but

showed inadequate mixing and high autocorrelations between the samples for the main

effects and µ for both JAGS and TWIiS. Increasing the number of iterations to one million

and adapting the thinning factor to a hundred led to convergence and improved the mixing

of the main effects and the mean. Regarding the equivalent autocorrelation values, they

remained high however decreasing for both programs. The ESS/sec used as a measurement

of efficiency comparisons between JAGS and TWIiS is calculated and derived from this

run. At ten million iterations with respective adaptation of the thinning factor the mixing

and the within-chain autocorrelations were significantly improved for the overall mean

and the main effects. Nevertheless, the effective sample size was relatively low for µ and

some main effects, such as the second categorical variable β in the case of asymmetric and

z in the case of symmetric main effects. Further increase in the number of iterations of

the Gibbs sampler to 100 million has a double purpose. Firstly, this long run leads to

additional reduction of the earlier autocorrelation between the samples. Secondly, it can

lead to safe conclusions about the proximity of the posterior densities estimated from both

programs and subsequent verification of the correctness of the Gibbs sampler developed in

Scala. The inference results as well as the graphical depiction presented in the following

sections are the outcome of this long MCMC run, which requires longer runtimes but also

leads to significant improvement in earlier inefficiencies. Burn-in period and thinning that

led to 9,900 MCMC samples were applied to all cases.

Of the four different cases of asymmetry considered, first we examine thoroughly the

case with both the main and interaction effects treated as asymmetric. The analysis of

the results for the remaining cases is less detailed but aims to highlight the key points of

comparison between JAGS and TWIiS.
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7.3.1.1 Asymmetric main and asymmetric interaction effects

In the case where both the main and interaction effects are asymmetric we assume that

each of the two independent categorical variables comes from a different distribution and

the effect of the interaction γjk, defined as the result of the product of the variable selec-

tion indicator Ijk and the strength of the interaction estimate θjk, is different from the

effect of the interaction γkj . Recalling the model for this case from 3.3.2.1 it is specified

as:

Model

Xijk|µ, αj , βk, Ijk, θjk, τ ~ N(µ+ αj + βk + Ijkθjk, τ
−1), i=1,...,N ,

where N is the number of observations.

Results

The returned results for the interaction coefficients estimated are presented graphically in

Figure 7.1. We can observe that both TWIiS and JAGS highlight the same interactions

as important. The strength of the indicators is colour-coded, with cells in grey represent-

ing the interactions with inclusion probability close to zero and therefore considered as

less significant. On the other hand, cells in red indicate high inclusion probabilities and

point out the interactions that should be included in the model. Comparison between the

heatmaps of the two implementations and the heatmap representing the true interaction

effects (7.1c) confirms that they are very similar. In all heatmaps we can see that the

interaction effects for the levels 9 and 14 of the first categorical variable α are marked

with white. This indicates that the simulated dataset did not contain any observations

with these levels for the first categorical variable. “Missing” levels are imported delib-

erately to ensure that the algorithms will work properly for datasets potentially having

this characteristic. The two methodologies handle the “missing” levels differently during

MCMC sampling. In TWIiS the Gibbs sampler is implemented to assign zero to the ef-

fects involving “missing” levels, whereas JAGS samples from the prior distribution of these

variables. This implementational difference is also visible in Figure 7.2 that illustrates the

mean and standard deviation of each main effect estimate. In this plot we can also see

that there is similarity in the other estimates produced by the two programs. Compari-

son of the results to the true main effects reveals that there is a divergence between the

estimated values from both TWIiS and JAGS and the equivalent expected true values as

shown in Table 7.1 for some indicative and randomly chosen variables. Most probably,

this an identifiability problem due to the small number of levels in this example. Never-

theless, in the same table we notice that the resulting group means estimated from TWIiS

and JAGS are in close proximity to the true equivalent values. Graphical representation

of the group means estimated from both programs compared to the true group means is
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available in Figure 7.3, where it is shown that the three heatmaps follow the same pattern.

(a) JAGS

(b) TWIiS
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(c) True coefficients

Figure 7.1: Comparison of the results among JAGS, TWIiS and the true coefficients. The y-axis
represents the levels of the first and the x-axis of the second categorical variable.

Case: Asymmetric main & interaction effects

Table 7.1: Comparison of some effects and group means among JAGS, TWIiS and the true
simulated coefficients.

Case: Asymmetric main & interaction effects

Variable JAGS TWIiS Simulated

α1 2.100 2.096 4.0
α10 -1.133 -1.134 0.6
β4 3.523 3.543 8.4
β15 1.742 1.751 6.5
γ1,4 9.467 9.467 9.0
γ10,15 7.591 7.588 7.6
µ 9.704 9.699 3.1
τa 1.193 1.201 2.0
τb 0.125 0.125 5.3

µ+ α1 + β4 + γ1,4 24.794 24.805 24.5
µ+ α10 + β15 + γ10,15 17.904 17.904 17.8
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(a) Comparison for αs

(b) Comparison for βs

Figure 7.2: Comparison of main effects means estimated from JAGS and TWIiS.
Case: Asymmetric main & interaction effects

Convergence diagnostics and plots

To verify that the MCMC has achieved convergence after a long run we look at some

diagnostic plots such as the traceplots of some randomly selected estimated variables

presented in Figure 7.4, where we can see that there are not any visible anomalies. There

is a good mixing and the Gibbs sampler appears to have explored adequately the sample

space for all the parameters in both programs. The autocorrelation function (ACF) plots
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(a) JAGS (b) TWIiS

(c) True coefficients

Figure 7.3: Comparison of the group means among JAGS, TWIiS and the true coefficients. The
y-axis represents the levels of the first and the x-axis of the second categorical variable.

Case: Asymmetric main & interaction effects

displayed in Figure 7.5 indicate that there is a decreasing sample autocorrelation of the

draws for all the covariates examined as the lag increases for both JAGS and TWIiS.

Consequently, there is a decaying dependence between the samples which indicates that

they represent with sufficient accuracy the stationary distribution.

Another heuristic of the posterior analysis of the MCMC is the effective sample size.

It accounts for the autocorrelation and dependence between the samples produced during

the MCMC run and denotes the number of corresponding equivalent independent samples.

Table 7.2 summarises the ESS estimated at different number of iterations of the Gibbs

sampler for the variables that presented the minimum ESS in their group. To be more

specific about which variable is identified as having the minimum ESS we also include their

index. For example at one million iterations for the first categorical variable α, α12 has

the smallest ESS for JAGS, whereas α8 is the variable with the smallest ESS for TWIiS.

However, as long as we compare the smallest ESS for each category of variables, the index

is of no importance.

150



Chapter 7. Simulation study

For all cases, the first 7,000 samples after the algorithm achieved convergence were

used to produce the efficiency metrics. We can observe that for the variables that have

low ESS for the runs with one million iterations, such as the αs, the ESS increases as the

number of iterations and thinning increase. This is caused by the fact that long runs and

thinning reduce autocorrelation and produce higher effective sample sizes. We consider

as a reliable ESS estimate for efficiency comparisons, a value that derives from a chain

that has converged and is either unthinned or thinned but still retaining autocorrelation,

such as in the case of one million iterations. Furthermore, it is important to look at

the minimum ESS across all variables in the model. As an example we can consider the

minimum ESS for one million iterations, which is 69.29 for µ and derives from JAGS. An

ESS value of 69.29 suggests that the 7,000 samples of the Markov chain correspond to

69.29 independent samples. For inference, the ESS must be close to the sample size.

One other aspect that was taken into account during the implementation of variable

selection using the Kuo and Mallick approach is the decision upon the prior assigned to the

inclusion probability p. Knowing that the model is sparse and therefore most of the prior

mass should be less than 0.5, a Beta(2, 10) was chosen as a fairly weak but informative

prior. This prior encourages the model to explore a sensible range of ps and allows it to

determine from the data the inclusion probability that best describes the sparsity. The

comparison between the prior distribution of p and its estimated posterior distribution

from TWIiS and JAGS can be seen in Figure 7.6. Knowing that the true value of the

inclusion probability used to simulate the synthetic dataset is 0.2, we can see that the

posterior mass is focused at that point and therefore the model has successfully estimated

the inclusion probability that best describes the sparsity of interactions.

Test of equality between the posterior densities

To determine whether the inferred posterior distributions deriving from the two programs

are similar we can visualise and observe the two densities after overlaying them to com-

pare their moments and tail behaviour. As mentioned in 7.2 similarity in the univariate

marginal posterior distributions does not absolutely guarantee similarity in the full poste-

rior distributions. In the scope we are examining, we plot, overlay and compare numerous

univariate marginal posterior densities to assume agreement of the full posterior distri-

butions. Examples of these plots for some of our variables are shown in Figure 7.7, and

since they overlap we consider them alike. Further confirmation of the visual evaluation of

convergence was achieved, when necessary, through the Kolmogorov-Smirnov test and the

permutation test of equality. Consequently, we can conclude that in the case of the two-

way Anova with application of variable selection on the interactions and the assumption

that both the main and the interaction effects are asymmetric, JAGS and TWIiS produce

similar posterior distributions of draws.
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(a) JAGS - effect α5 (b) TWIiS - effect α5

(c) JAGS - effect β10 (d) TWIiS - effect β10

(e) JAGS - interaction effect γ12,5 (f) TWIiS - interaction effect γ12,5

(g) JAGS - µ (h) TWIiS - µ

Figure 7.4: Traceplots from JAGS and TWIiS. The y-axis represents the value and the x-axis the
iterations.

Case: Asymmetric main & interaction effects
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(a) JAGS - effect α5 (b) TWIiS - effect α5

(c) JAGS - effect β10 (d) TWIiS - effect β10

(e) JAGS - interaction effect γ12,5 (f) TWIiS - interaction effect γ12,5

(g) JAGS - µ (h) TWIiS - µ

Figure 7.5: Autocorrelation plots from JAGS and TWIiS. The y-axis represents the
autocorrelation value and the x-axis the lag.

Case: Asymmetric main & interaction effects
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Figure 7.6: Comparison of the prior and the posterior distributions for p.
Case: Asymmetric main & interaction effects

(a) Overlaid densities - effect α5 (b) Overlaid densities - effect β10

(c) Overlaid densities - interaction effect γ12,5 (d) Overlaid densities - µ

Figure 7.7: Posterior density plots from JAGS and TWIiS.
Case: Asymmetric main & interaction effects
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Efficiency measurement

In order to assess the efficiency of MCMC algorithms ESS/sec is used as a metric that

accounts for both the actual runtime of the algorithm and the level of mixing. ESS/sec

represents the number of independent samples per second. This metric is useful to eval-

uate and compare the performance between different MCMC implementations such as

JAGS and TWIiS in our case. The runtimes used for producing the results deriving from

TWIiS in this and the following sections correspond to the actual runtime of the serial

version of the program as described in Section 6.2.4. The last column of Table 7.2 dis-

plays the smallest ESS/sec measurements for each category of variables. As with the

evaluation of the ESS that requires the minimum ESS across all variables in the model

to be accounted for, the minimum ESS/sec has to be identified and compared. We can

see that, in this particular example with 15×20 levels, the Gibbs sampler implemented

in Scala at one million iterations presents the smallest ESS/sec for the variable µ that

has the value 0.286. For JAGS the minumum ESS/sec is for the same variable evaluated

at 0.030. This difference indicates that TWIiS performs better than JAGS by generating

more effectively independent samples per second. Furthermore, their ratio is 9.53 which

suggests that TWIiS is approximately nine times more efficient than JAGS in this case.

We notice that even though the effective sample sizes do not present substantial differ-

ences for the two programs, the runtime of TWIiS is significantly faster than JAGS. This

fact is reflected in the ESS/sec rendering TWIiS notably more efficient for the model with

the certain characteristics assumed in terms of complexity, sample size and symmetry in

the effects. In the following sections we are going to explore the results, metrics and

features of the remaining cases of asymmetry in order to verify that the results derived

from TWIiS and JAGS are similar for all models examined and assess the efficiency of the

two implementations in all cases.
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Table 7.2: Efficiency measurement and comparison between JAGS and TWIiS for Example 1:
15×20. Case: Asymmetric main & interaction effects

Iterations Time (secs) Variable ESS ESS/sec

JAGS 1m 2,193

α12 484.22 0.221
β6 69.20 0.032

γ12,11 4,839.82 2.207
µ 65.63 0.030

TWIiS 1m 242

α8 469.33 1.939
β12 79.25 0.327
γ11,18 7,807.00 22.563
µ 69.29 0.286

JAGS 10m 20,437

α4 3,982.39 0.195
β8 706.55 0.035
γ12,1 4,673.21 0.229
µ 789.18 0.039

TWIiS 10m 1,916

α7 4,271.04 2.229
β3 748.73 0.390
γ6,3 4,742.43 2.475
µ 739.97 0.386

JAGS 100m 200,390

α9 6,545.75 0.033
β11 5,757.84 0.029
γ10,10 4,993.72 0.025
µ 5,794.72 0.029

TWIiS 100m 24,682

α10 7,000.00 0.284
β11 5,669.07 0.230
γ10,3 5,375.16 0.218
µ 7,990.36 0.226

7.3.1.2 Symmetric main and asymmetric interaction effects

In the case where the main effects are symmetric and the interaction effects are asymmetric,

we assume that αi = βi for all i and the effect of the interaction γjk is different from the

effect of the interaction γkj . Both main effects are denoted as z, with zi indicating each

effect and i = 1, ..., nz. The corresponding model was presented in Section 3.3.2.2 and is

expressed as:

Model

Xijk|µ, zj , zk, Ijk, θjk, τ ~ N(µ+ zj + zk + Ijkθjk, τ
−1), i=1,...,N ,

where N is the number of observations.

Results

Regarding the interaction effects, comparing the heatmaps that present the estimates from
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JAGS and TWIiS illustrated in Figure 7.8 shows that they follow a similar pattern and

the same interactions are estimated as important to be included in the model from both

applications. In addition, the values estimated from both programs are similar and at the

same time close to the true interactions of the synthetic dataset.

Regarding the main effects, in Table 7.3 we can see at the examples that even though

the estimated coefficients from TWIiS are close to the ones estimated from JAGS, they are

both different from the expected coefficients. This is possibly again due to an identifiability

problem, since the group means from both programs are close to the expected group means

of the synthetic dataset.

Indicative traceplots and autocorrelation plots are displayed in Figure 7.9. For both

TWIiS and JAGS there is good mixing and decreasing autocorrelation. The overlaid

densities presented in Figure 7.10 show that the posterior densities produced by both

programs are very much alike.

As in the asymmetric main and interaction effects case, the performance of the two

programs is compared through the efficiency metric ESS/sec, which combines the runtime

and the ESS and expresses the effect of sample dependence in terms of performance. Table

7.4 shows that this metric presents higher values for TWIiS, suggesting that it has better

performance than JAGS for this particular example. Comparing the ESS/sec leads us to

the conclusion that the TWIiS code is approximately ten times faster than JAGS.

(a) JAGS
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(b) TWIiS

(c) True coefficients

Figure 7.8: Comparison of the results among JAGS, TWIiS, and the true coefficients. The y-axis
represents the levels of the first and the x-axis of the second categorical variable.

Case: Symmetric main & asymmetric interaction effects
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(a) Comparison - effect Z8 (b) Comparison - µ

Figure 7.9: Comparison of traceplots and autocorrelation plots between JAGS and TWIiS.
Case: Symmetric main & asymmetric interaction effects

Table 7.3: Comparison of some effects and group means among JAGS, TWIiS and the true
simulated coefficients.

Case: Symmetric main & asymmetric interaction effects

JAGS TWIiS Simulated

z1 0.157 0.163 1.3
z5 2.140 2.147 3.3
z8 1.195 1.203 2.3
z9 -1.114 -1.108 0.0
γ5,1 2.763 2.760 2.9
γ8,9 3.173 3.170 3.6
µ 5.370 5.354 3.1
τz 0.388 0.387 3.5

µ+ z5 + z1 + γ5,1 10.430 10.424 10.6
µ+ z8 + z9 + γ8,9 8.624 8.619 9.0
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(a) Overlaid densities - effect Z8 (b) Overlaid densities - effect Z10

(c) Overlaid densities - interaction effect γ1,8 (d) Overlaid densities - µ

Figure 7.10: Posterior density plots from JAGS and TWIiS.
Case: Symmetric main & asymmetric interaction effects

Table 7.4: Efficiency measurement and runtime comparison for Example 1: 15×20.
Case: Symmetric main & asymmetric interaction effects

Code Iterations Time (secs) Variable ESS ESS/sec

JAGS 1m 2,018
Z5 85.14 0.042
θ20,1 5,890.09 2.918
µ 85.71 0.042

TWIiS 1m 220
Z15 91.72 0.417
θ20,12 5,671.52 25.780
µ 94.56 0.430

JAGS 10m 19,714.8
Z10 783.88 0.039
θ20,1 5,662.85 0.287
µ 853.85 0.043

TWIiS 10m 2,191
Z18 816.25 0.372
θ8,4 4,934.26 2.25
µ 805.32 0.368
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7.3.1.3 Asymmetric main and symmetric interaction effects

When considering the model where the main effects are asymmetric and the interaction

effects are symmetric we assume that each of the two independent categorical variables

comes from a different distribution and that only the effect of the interaction γjk exists,

with j ≤ k. Implementationally the effect γkj is set to be the same as the effect of the

interaction γjk. Recalling the model for this case from 3.3.2.3 it is characterised as:

Model

Xijk|µ, αj , βk, Ijk, θjk, τ ~ N(µ+ αj + βk + Ijkθjk, τ
−1),

where j ≤ k for the indices of the interaction effects to impose symmetry, i=1,...,N , and

N is the number of observations.

Results

Following the same logic in presenting the results as for the previous models, first we depict

the interaction terms in the form of heatmaps in Figure 7.11, to show the resemblance of

the results from both programs to the true expected coefficients. The white cells of the

graphs represent interactions for combinations of levels of the two categorical variables for

which there are no observations in the dataset. In Table 7.5 we can see that, again as in

the previous models, even though the main effects and µ estimated from both programs

do not approximate the true values, the group means are very close to the expected.

In order to assess the convergence of the MCMC runs for this case we examine both the

traceplots and the autocorrelation plots. An indicative illustration of two of these plots

is shown in Figure 7.12. The traceplots display good mixing of the Gibbs sampler for

both programs, proving that they explored well the posterior space. The autocorrelation

plots have a decreasing tendency as the lag increases showing that the Gibbs sampler has

converged to the target distribution. It is equally important for the validity of the results,

to overlay the posterior densities from TWIiS and JAGS and check if they overlap, proving

that they produce similar posterior draws. Figure 7.13 illustrates that this is valid for the

variables randomly chosen for this example.

Finally, to compare the efficiency of the two programs examined and infer which shows

better performance, we measure the runtime and assess the ESS and the ESS/sec. Table

7.6 summarises these metrics and we observe that, as in the previous two cases (7.3.1.1

and 7.3.1.2), the the ESS/sec is approximately seven times higher for TWIiS compared to

JAGS, leading to the conclusion that the code written in Scala is more efficient than the

equivalent JAGS program for modelling the asymmetric main and symmetric interaction

effects approach using a Gibbs sampler.
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(a) JAGS

(b) TWIiS

162



Chapter 7. Simulation study

(c) True coefficients

Figure 7.11: Comparison of the results among JAGS, TWIiS and the true coefficients. The y-axis
represents the levels of the first and the x-axis of the second categorical variable.

Case: Asymmetric main & symmetric interaction effects

Table 7.5: Comparison of some effects and group means among JAGS, TWIiS and the true
simulated coefficients.

Case: Asymmetric main & symmetric interaction effects

Variable JAGS TWIiS Simulated

α12 -0.960 -0.957 0.8
α15 -0.240 -0.237 1.6
β3 -0.452 -0.448 4.3
β7 1.272 1.275 6.0
γ12,7 -4.457 -4.457 -4.6
γ15,3 10.139 10.138 10.3
µ 9.702 9.697 3.1
τα 1.159 1.146 2.0
τβ 0.126 0.126 5.3

µ+ α12 + β7 + γ12,7 5.557 5.558 5.3
µ+ α15 + β3 + γ15,3 19.149 19.150 19.3
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(a) Comparison - effect γ12,7 (b) Comparison - µ

Figure 7.12: Comparison of traceplots and autocorrelation plots between JAGS and TWIiS.
Case: Asymmetric main & symmetric interaction effects

Table 7.6: Efficiency measurement and comparison for Example 1: 15×20.
Case: Asymmetric main & symmetric interaction effects

Iterations Time (secs) Variable ESS ESS/sec

JAGS 1m 2,243

α13 445.25 0.199
β7 108.38 0.048
γ1,6 3,968.76 1.769
µ 106.29 0.047

TWIiS 1m 297

α11 480.64 1.618
β9 92.89 0.312
γ12,7 9,900.00 2.656
µ 94.20 0.317

JAGS 10m 20,901.6

α5 3,942.14 0.189
β6 765.35 0.036
γ17,5 4,256.12 0.204
µ 805.38 0.026

TWIiS 10m 2,608.9

α15 3,859.52.00 1.479
β3 749.21 0.287
γ1,11 4,809.89 1.844
µ 697.21 0.267
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(a) Overlaid densities - effect α15 (b) Overlaid densities - effect β4

(c) Overlaid densities - interaction effect γ12,7 (d) Overlaid densities - µ

Figure 7.13: Posterior density plots from JAGS and TWIiS.
Case: Asymmetric main & symmetric interaction effects

7.3.1.4 Symmetric main and symmetric interaction effects

The last case that we examine is a combination of the previous two models (7.3.1.2 and

7.3.1.3) and treats both the main and interaction effects as symmetric. The model for this

case was presented in Section 3.3.2.3 and is specified as:

Model

Xijk|µ, zj , zk, Ijk, θjk, τ ~ N(µ+ zj + zk + Ijkθjk, τ
−1),

where j ≤ k for the indices of the interaction effects to impose symmetry, i=1,...,N , and

N is the number of observations.

Results

Similarly to the previous models, we can see that the values of the estimated interaction

coefficients, from both TWIiS and JAGS, are close to the true values and the same interac-
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tions are considered important. The corresponding heatmaps illustrating these similarities

are displayed in Figure 7.14. Regarding the mixing and convergence of the MCMC runs,

the traceplots illustrated in Figure 7.15 show that both samplers have converged and

adequately explored the posterior parameter space. Furthermore, the decreasing autocor-

relation shows that the MCMC sample provides a more precise posterior estimate.

As in the models analysed earlier the same identifiability issue is encountered in this

case as well; even though the main effects and µ estimated from TWIiS and JAGS are

close, as illustrated in Figure 7.16, they differ from the true values of the simulated dataset.

The same cannot be stated for the interaction effects estimated from both programs that

are indeed similar to the true expected values. These observations are shown in Table

7.7. The similarity of the posterior distributions from the TWIiS and the JAGS code is

apparent when overlaying the resulting posterior densities as presented in Figure 7.17.

Finally, regarding the efficiency measures that allow us to compare the speed and

effectiveness of the two programs, in Table 7.8 we can observe that even though the ESS

for both programs is not significantly different, the smallest ESS/sec is better for TWIiS. In

fact, it is approximately six times higher than the equivalent value for JAGS, suggesting

that the Gibbs sampler implemented in Scala produces more independent samples per

second and therefore has better performance than Jags.

(a) JAGS
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(b) TWIiS

(c) True coefficients

Figure 7.14: Comparison of the results among JAGS, TWIiS and the true coefficients. The y-axis
represents the levels of the first and the x-axis of the second categorical variable.

Case: Symmetric main & interaction effects
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(a) Comparison - effect Z15 (b) Comparison - effect γ10,6

Figure 7.15: Comparison of traceplots and autocorrelation plots between JAGS and TWIiS.
Case: Symmetric main & interaction effects

Figure 7.16: Comparison of main effects means between JAGS and TWIiS.
Case: Symmetric main & interaction effects
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Table 7.7: Comparison of some effects and group means among JAGS, TWIiS and the true
simulated coefficients.

Case: Symmetric main & interaction effects

JAGS TWIiS Simulated

z1 0.174 0.178 1.3
z6 -1.498 -1.492 -0.4
z10 -2.639 -2.634 -1.5
γ6,1 1.657 1.658 1.7
γ10,6 4.273 4.273 4.2
µ 5.341 5.330 3.1
τz 0.387 0.389 3.5

µ+ z1 + z6 + γ1,6 5.674 5.674 5.7
µ+ z6 + z10 + γ6,10 5.477 5.477 5.4

(a) Overlaid densities - effect Z4 (b) Overlaid densities - effect Z15

(c) Overlaid densities - interaction effect γ10,6 (d) Overlaid densities - µ

Figure 7.17: Posterior density plots from JAGS and TWIiS.
Case: Symmetric main & interaction effects
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Table 7.8: Efficiency measurement and comparison for Example 1: 15×20.
Case: Symmetric main & interaction effects

Iterations Time (secs) Variable ESS ESS/sec

JAGS 1m 1,928
Z20 82.7 0.043
γ18,4 4,508.47 2.34
µ 88.06 0.046

TWIiS 1m 278
Z5 85.94 0.309
γ1,8 4,606.68 16.57
µ 95.84 0.344

JAGS 10m 18,928.7
Z7 880.085 0.046
γ1,4 4,144.07 0.219
µ 865.17 0.046

TWIiS 10m 3,699.5
Z7 747.19 0.201
γ1,2 4,625.95 1.250
µ 727.76 0.196

7.3.1.5 Summary of efficiency results for Example 1: 15×20

A collective presentation of the performance metric ESS/sec for all four model cases studied

so far for both implementations is available in Table 7.9. Comparing the smallest values

for each case between JAGS and TWIiS shows that TWIiS appears to be more efficient

in a range that fluctuates between six and ten times depending on the model examined.

The least efficiency gain appears in the case where both main and interaction effects are

symmetric, whereas the best TWIiS performance compared to JAGS is for the case where

the main effects are treated as symmetric. Finally, we can observe that both programs

appear to draw more independent samples for the interaction effects compared to other

estimated variables.

Table 7.9: Efficiency summary and comparison between JAGS and TWIiS for Example 1: 15×20,
using variable selection indicators.

Code Variable ESS/sec

Both

Asymmetric

Symmetric

Main

Symmetric

Interactions

Both

Symmetric

JAGS

(2193 sec) ( 2018 sec) (2243 sec) (1928 sec)

γs 2.2 2.92 1.77 2.34

µ 0.03 0.04 0.05 0.05

αs 0.22 - 0.2 -

βs 0.03 - 0.05 -

zs - 0.04 - 0.04
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TWIiS

(242 sec) (220 sec) (297 sec) (278 sec)

γs 23.5 26 15 16.5

µ 0.29 0.5 0.31 0.35

αs 1.87 - 1.62 -

βs 0.33 - 0.31 -

zs - 0.4 - 0.31

7.3.2 Example 2: Synthetic dataset with 50×60 levels

In order to verify the proper function and efficiency of the methods developed for variable

selection, as well as the correctness of the results, it is necessary to extend the study and

build a more complex model. Therefore, the code for both TWIiS and JAGS was tested on

a bigger synthetic dataset including again two categorical variables, with 50 levels for the

first and 60 levels for the second in the cases that involve asymmetric main effects, and 60

levels for both main effects in the cases where they are treated as symmetric. Similarly to

the first example (7.3.1), variable selection using the Kuo and Mallick approach is applied

to all four combinations of asymmetry in the effects.

To avoid repetition of similar findings we will provide a more analytical presentation

of the results derived from the case where both the main and the interaction effects are

asymmetric and we will selectively demonstrate the outcome of the remaining cases. For

all cases the effective sample size and efficiency measures derive from one million iterations

with a thinning factor of a hundred and further subsampling of the first 7,000 samples after

achieving convergence, whilst retaining high autocorrelation values for the main effects and

µ. For inference, runs of ten million iterations with respective adaptation of the thinning

factor and an additional burn-in period which led to 9,000 samples were used.

7.3.2.1 Asymmetric main and asymmetric interaction effects

The unknown variables in this case include the main effects α (50 levels) and β (60 levels)

as well as the interaction coefficients γjk which are the product of the variable selection

indicators and the strength of the interaction estimates. Furthermore, µ and τ which are

the overall mean and precision, and τa, τb and τγ which represent the precision of the two

main effects and the interactions respectively, are also unknown and have to be estimated.

The first step of the posterior analysis is to check the mixing and the autocorrelation

for all the estimated variables. The diagnostic plots presented good mixing and decreasing

autocorrelations for the estimated parameters suggesting that both algorithms explored

sufficiently the posterior space and that the MCMC chains of both programs converged

to the target distribution. Indicatively, there is an illustration of the traceplots and the

autocorrelation plots for one main and one interaction effect in Figure 7.18.
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(a) Comparison - effect α6 (b) Comparison - effect γ10,59

Figure 7.18: Comparison of traceplots and autocorrelation plots from JAGS and TWIiS.
Case: Aymmetric main & interaction effects. Example 2: 50×60

Overlaying the posterior densities also showed that both pieces of code produce similar

posterior distributions. Figure 7.19 illustrates the estimated posterior densities of the two

programs for two randomly chosen variables.

(a) Comparison - effect β52 (b) Comparison - effect γ23,25

Figure 7.19: Posterior density plots from JAGS and TWIiS.
Case: Asymmetric main & interaction effects. Example 2: 50×60

The comparison of the expectations for the main effects α and β estimated from both

programs are presented in Figure 7.20. They are very similar, with the exception of the

effects α9 and α14 due to the different way that the two programs handle missing levels.

As mentioned earlier, JAGS samples from their prior, whereas TWIiS, since the levels do
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not exist, sets their value to zero. The expected coefficients are not depicted in these plots

because similarly to the previous example with fewer levels, an identifiability issue arose

for the main effects. Therefore, the true coefficients of the synthetic dataset for the main

effects, do not correspond to the ones estimated from JAGS and TWIiS. Nevertheless, there

is accordance between the group means of the estimated and the expected coefficients that

will be illustrated later in this section.

Since the number of interactions in this example is large (3,000), heatmaps constitute

a useful tool to compare the interaction effects estimated from JAGS and TWIiS. Firstly,

Figure 7.21 displays a heatmap presenting the strength of the variable selection indicators.

Secondly, the heatmap in Figure 7.22 depicts the strength of the interaction effects. In

both cases, the heatmaps illustrating the results from TWIiS and JAGS follow very similar

patterns. This is also accurate when we examine the equivalent heatmap of the true

coefficient values of the synthetic dataset. In all heatmaps the cells for the interactions

with no relevant observations in the dataset are denoted with white. Even though these

heatmaps emphasise the general pattern followed rather than individual estimates, it can

be noticed that for some interactions, the indicator heatmaps for both JAGS and TWIiS

suggest a low inclusion probability, whereas the equivalent true coefficient shows that this

interaction was simulated to be included in the model. This is due to the fact that the

corresponding strength of the interaction is low. Therefore, for some low (in absolute

value) values of interaction coefficients JAGS and TWIiS usually assign lower inclusion

probabilities.

As mentioned earlier in this section, the identifiability problem results in different

estimated values for the main effects and the mean, than the expected ones. The third

type of heatmap (Figure 7.23) aims to depict the proximity of the results regarding the

group means derived from JAGS and TWIiS to the true group means.
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(a) Comparison - αs

(b) Comparison - βs

Figure 7.20: Comparison of main effects means estimated from JAGS and TWIiS.
Case: Asymmetric main & interaction effects. Example 2: 50×60
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(a) JAGS

(b) TWIiS

(c) True coefficients

Figure 7.21: Comparison of the strength of indicators from JAGS and TWIiS, and the true
coefficients. The y-axis represents the levels of the first and the x-axis of the second categorical

variable.
Case: Asymmetric main & interaction effects. Example 2: 50×60
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(a) JAGS

(b) TWIiS

(c) True coefficients

Figure 7.22: Comparison of the strength of interaction coefficients among JAGS, TWIiS and the
true coefficients. The y-axis represents the levels of the first and the x-axis of the second

categorical variable.
Case: Asymmetric main & interaction effects. Example 2: 50×60
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(a) JAGS

(b) TWIiS

(c) True coefficients

Figure 7.23: Comparison of the group means among JAGS, TWIiS and the true coefficients. The
y-axis represents the levels of the first and the x-axis of the second categorical variable.

Case: Asymmetric main & interaction effects. Example 2: 50×60
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7.3.2.2 Remaining cases of Example 2: 50×60

The remaining cases that were explored for this dataset are models that treat the main

effects only as symmetric, the interaction effects as symmetric and their combination.

Overall the outcome of these models follows a similar logic as the results presented for the

previous case. The diagnostic plots show that the posterior samples generated from both

MCMC implementations are sufficient to provide accurate approximations of the target

distribution. The traceplots do not include flat regions and indicate good mixing. In addi-

tion, the autocorrelation plots show decaying dependence between the samples as the lag

increases. Samples of some indicative diagnostic plots for the case where the main effects

are treated as symmetric are available in Figure 7.24. The posterior densities produced by

JAGS and TWIiS overlap in all cases proving their similarity as shown in Figure 7.25 for

some parameters estimated from the model involving symmetric interactions. The iden-

tifiability issue is still present in all cases. Consistent with the findings so far is also the

identification of the same interactions as important and the calculation of the group means

that shows proximity between the results from JAGS, TWIiS and the true coefficients as

illustrated in the heatmaps presented in Figure 7.26 and with regard to the case where

both the main and the interaction effects are symmetric.

(a) Comparison - µ (b) Comparison - effect Z44

Figure 7.24: Comparison of traceplots and autocorrelation plots from JAGS and TWIiS.
Case: Symmetric main & asymmetric interaction effects. Example 2: 60×60
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(a) Comparison - effect β3 (b) Comparison - effect γ47,34

Figure 7.25: Comparison of overlaid densities from JAGS and TWIiS.
Case: Asymmetric main & symmetric interaction effects. Example 2: 50×60

(a) JAGS (b) TWIiS

(c) True coefficients

Figure 7.26: Comparison of the group means among JAGS, TWIiS and the true coefficients. The
y-axis and the x-axis represent Zs.

Case: Symmetric main & interaction effects. Example 2: 60×60
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7.3.2.3 Summary of efficiency results for Example 2: 50×60

Concerning the efficiency comparison between JAGS and TWIiS, Table 7.10 provides a

summary of the efficiency metrics estimated from all models. It includes the smallest mea-

surements for all groups of variables to emphasise how the trend is formed. For each case

we compare the minimum ESS/sec value and we can see that TWIiS has better perfor-

mance than JAGS in this example with the particular characteristics considered regarding

the sample size and complexity of the model. The degree of performance improvement

differs with the case. For models assuming the interactions as symmetric TWIiS appears

to be 3.7 times more efficient than JAGS, whereas this ratio is approximately 2.4 for the

case that treats both effects as symmetric. In addition, the Gibbs sampler developed in

both programs appears to sample the interaction effects more efficiently than the main

effects.

Table 7.10: Efficiency summary and comparison between JAGS and TWIiS for Example 2:
50×60, using variable selection indicators.

Code Variable ESS/sec

Both

Asymmetric

Symmetric

Main

Symmetric

Interactions

Both

Symmetric

JAGS

(3436 sec) ( 4421 sec) (2993 sec) (3643 sec)

γs 1.45 1.18 1.68 1.21

µ 0.1 0.03 0.1 0.05

αs 0.14 - 0.17 -

βs 0.2 - 0.2 -

zs - 0.03 - 0.05

TWIiS

(912 sec) (1583 sec) (958 sec) (1105 sec)

γs 5.52 3.22 4.65 4.09

µ 0.32 0.09 0.37 0.14

αs 0.52 - 0.53 -

βs 0.63 - 1.66 -

zs - 0.09 - 0.12
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7.3.3 Example 3: Synthetic dataset with 113×143 levels

Further exploration of the behaviour of the two programs in more complex models was

achieved with the use of two synthetic datasets with 113 levels for the first and 143 for

the second categorical variable and varying sizes; the first dataset involves 10,000 and the

second 80,000 observations. A model that treated both the main and interaction effects

as symmetric was fitted for both examples. After assessing the MCMC diagnostics that

were mentioned in the previous examples and confirming the similarity of the posterior

estimates between JAGS and TWIiS, an efficiency comparison was made to understand

how their performance is formed in this case. Table 7.11 summarises these results and

shows that as in the previous examples TWIiS seems to be more efficient than the code

written in JAGS. Looking at the smallest values of the ESS/sec for the example with

10,000 observations TWIiS appears to be 2.7 times more efficient than JAGS. This ratio

is increased for the biggest dataset, where comparing the values for the means that have

the smallest ESS/sec for both programs renders TWIiS five times more efficient than the

equivalent JAGS code.

Table 7.11: Efficiency summary and comparison between JAGS and TWIiS for Example 3:
113×143, using variable selection indicators.

Case: Asymmetric main & interaction effects

Code Variable ESS/sec

10,000

observations

80,000

observations

JAGS

(8543 sec) ( 51599 sec)

γs & τs 0.54 0.076

µ 0.14 0.004

αs 0.22 0.008

βs 0.39 0.005

TWIiS

(2912 sec) (7326 sec)

γs & τs 1.7 0.54

µ 0.38 0.02

αs 0.64 0.053

βs 1.23 0.028
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7.4 Variable selection using the Horseshoe prior

In the previous examples we used the Kuo and Mallick approach to identify the important

interactions of the two-way Anova models that we examined. This is a classical approach

in Bayesian variable selection for linear regression, as the embedded indicator variables,

one for each predictor p, incorporate all possible 2p submodels. The posterior likelihood

of each indicator represents the probability of its corresponding predictor being included

in the model and can be estimated using classical MCMC algorithms. One characteristic

of the Kuo and Mallick approach is that it involves discrete variables. Gibbs samplers can

target discrete distributions. Therefore, since JAGS uses this MCMC sampler, it was used

for developing this variable selection method in R. Equivalently, the code for TWIiS was

implemented in Scala sharing similar logic.

Another Monte Carlo algorithm, Hamiltonian Monte Carlo (HMC), explored in Sec-

tion 2.2.3, uses information about the geometry of the posterior distribution through its

gradient to propose new values. HMC can be more efficient than the Gibbs sampler,

but due to the fact that the log-posterior needs to be differentiable everywhere, it does

not allow inference for discrete parameters, especially in cases where it is not possible to

analytically marginalise out the discrete variables. Consequently, HMC cannot be used

in Bayesian variable selection using the indicator approach previously examined and im-

plemented. However, variable selection using HMC can be achieved using the Horseshoe

prior (Section 2.4.2), that depends only on continuous distributions and more precisely

the half-Cauchy.

In this section we are going to explore the application of the Horseshoe prior for variable

selection on the interactions of our two-way Anova model with random effects and various

levels of asymmetry. This alternative implementation is embedded in JAGS and TWIiS

by alterations in the code to associate Horseshoe priors to the categorical variables, with

both programs still using a Gibbs sampler. Variable selection using Horseshoe priors along

with HMC, is also considered and carried out in R using the probabilistic programming

language Stan and in Scala using the library Rainier. Although the cost per iteration is

greater for HMC than for other MCMC algorithms such as the Gibbs sampler, HMC is

considered to generate proposals more efficiently and can show better mixing with fewer

samples.

In the following sections, we are going to present and compare the results derived

from the versions of JAGS and TWIiS that incorporate the Horseshoe prior, using the

same synthetic datasets of the previous examples for the indicator approach (Section

7.3). Then, we will introduce the results obtained from Rainier and Stan using a smaller

example and compare them to the equivalent results obtained from JAGS and TWIiS not

only on the basis of posterior estimates but also in terms of efficiency. Finally, the last
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part aims to compare the implementations using the Horseshoe prior and the variable

selection indicators and highlight the methodology that appears to be more appropriate

and efficient for the particular models studied.

7.4.1 Horseshoe with JAGS and TWIiS

Recalling the intuition behind the Horseshoe prior presented in Section 2.4.2 and ana-

lytically embedded in a Gibbs sampler in Section 3.3.3, there exists a global parameter

τHS that pulls all the weights of the interaction effects globally towards zero. In addition,

for each interaction γjk there is an associated local parameter λjk that due to the thick

tails of the half-Cauchy distribution that it follows, allows some of the weights to escape

shrinkage.

The results and performance of JAGS and TWIiS implementing variable selection on

the interactions using the Horseshoe prior were tested on three examples with synthetic

datasets of 10,000 observations. As in the case of the Kuo and Mallick approach the

model built in the first example involved 15 levels for the first and 20 levels for the second

categorical variable, while the second example had 50 and 60 levels respectively. The

third example included more levels and varying sample sizes. Both JAGS and TWIiS

were assessed for all cases of asymmetry in the effects for the first two examples, whereas

the third was applied only in the case where both the main and interaction effects are

asymmetric. For producing the efficiency measurements the programs run for one million

iterations with a thinning factor of a hundred. An extra burn-in period was added leading

to 9,900 samples. For these runs the algorithms showed convergence whilst retaining au-

tocorrelation between the samples. Longer runs of ten million iterations and proportional

adaptation of the thinning factor were used for inference.

7.4.1.1 Example 1: Synthetic dataset with 15×20 levels

For the models that treated both the main and the interaction effects as asymmetric, only

the interaction effects as symmetric and both main and interaction effects as symmetric,

the results were similar to the equivalent estimates produced from the models using the

Kuo and Mallick approach. The mixing was good for all the unknown parameters show-

ing that the MCMC has explored the parameter space adequately. The autocorrelation

plots showed low autocorrelation for the samples regarding the interaction effects and the

precisions, and decreasing tendencies as the lag increased for the main effects and µ. The

posterior densities estimated from both programs for the unknown variables of the model

overlap indicating their equality. Comparison of the results regarding the main effects

from both programs show that identifiability issues have arisen, however both programs

return similar estimates for these values. Nevertheless, the group means produced from
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TWIiS were in close proximity to the equivalent estimates deriving from JAGS, as well as

the true expected values. Samples of these plots for some randomly chosen variables can

be found in Appendix A.1 (Figures A.1 and A.2). The main inaccuracy of the Horseshoe

prior approach appears in the case where only the main effects are symmetric. Know-

ing that during the simulation process of the synthetic dataset some levels for the first

categorical variable were intentionally omitted, it would be expected that the estimated

coefficients of the interactions involving these levels would be close to zero. However,

JAGS returns high estimated values for two interaction effects that fall in this category,

and more precisely γ9,19 = 11 and γ14,3 = −60. The heatmaps presented in Figure 7.27

illustrate the estimated interaction coefficients for this case.

(a) JAGS before removing wrongly
identified variables

(b) JAGS after removing wrongly identified
variables

(c) TWIiS

Figure 7.27: Heatmaps of the interaction strengths using variable selection with the Horseshoe
prior for the symmetric main effects case. Highlighted inaccuracies for γ9,19 and γ14,3 in (a).

Values from JAGS corrected in (b) resulting to a heatmap similar to TWIiS (c).
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In these heatmaps the cells regarding missing levels are not marked in white as in the

cases where they were previously used in order to highlight the differences in this example.

Regarding the efficiency measurements in all four cases of asymmetry using the Horse-

shoe prior, Table 7.12 summarises the relevant values calculated. As in the analysis for

the variable selection with indicators, the table presents the minimum ESS along with

the variable for which it was observed and the corresponding ESS/sec for both programs

based on the runtimes referred below. Calculating the ratio between the two programs

for the various implementations indicates that TWIiS is approximately four to five times

more efficient than the equivalent JAGS code for the model complexity and sample size

considered in the example. Furthermore, similarly to the indicator approach, the Gibbs

sampler with the Horseshoe prior draws samples more efficiently for the interaction effects

than the other parameters.

Table 7.12: Efficiency summary and comparison between JAGS and TWIiS for Example 1:
15×20, using the Horseshoe prior.

Code Variable ESS/sec

Both

Asymmetric

Symmetric

Main

Symmetric

Interactions

Both

Symmetric

JAGS

(1699 sec) (1815 sec) (1559 sec) (1542 sec)

γs 2.19 3.2 3.21 3.08

µ 0.05 0.05 0.03 0.06

αs 0.31 - 0.24 -

βs 0.06 - 0.03 -

zs - 0.05 - 0.06

TWIiS

(382 sec) (378 sec) (481 sec) (342 sec)

γs 15.4 15.7 11.35 17.55

µ 0.25 0.22 0.13 0.24

αs 1.8 - 1.08 -

βs 0.26 - 0.15 -

zs - 0.22 - 0.21

7.4.1.2 Example 2: Synthetic dataset with 50×60 levels

Using a second example with more levels increases the complexity of the model and allows

us to understand whether and how the results and efficiency are influenced. The models

used for the synthetic dataset with 50 levels for the first and 60 levels for the second

categorical variable result in similar estimates as using the Kuo and Mallick approach.

The traceplots and the autocorrelation plots examined indicate that the Markov chain

has converged to the target distribution after the algorithm has sufficiently explored the
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posterior space for all the unknown variables. Again, identifiability issues are observed

regarding the estimates for the main effects, that even though similar for JAGS and TWIiS

differ from the expected values. However, as in the previous examples the estimated group

means are similar to the true group mean values. Both programs identify correctly the

interaction coefficients that should be included in the model based on our knowledge about

the simulation process of the synthetic dataset and the true values. An exception holds for

the case where both the main and interaction effects are asymmetric. As in the previous

smaller example, the model built using the Gibbs sampler along with the Horseshoe prior

in JAGS wrongly identifies as important interactions that concern combinations of levels

for which there are no observations. Samples of heatmaps, diagnostic plots and overlaying

posterior density plots for this example are available in Appendix A.2.

Conclusions about the efficiency of the two programs can be drawn by looking at

Table 7.13. TWIiS presents two to five times higher ESS/sec compared to JAGS showing

that, similarly to the previous example, its implementation is more efficient than the more

classic approach.

Table 7.13: Efficiency summary and comparison between JAGS and TWIiS for Example 2:
50×60, using the Horseshoe prior.

Code Variable ESS/sec

Both

Asymmetric

Symmetric

Main

Symmetric

Interactions

Both

Symmetric

JAGS

(7254 sec) (8564 sec) (4979 sec) (4972 sec)

γs 0.57 0.5 0.7 0.7

µ 0.04 0.02 0.07 0.03

αs 0.07 - 0.11 -

βs 0.09 - 0.12 -

zs - 0.02 - 0.03

TWIiS

(1835 sec) (2075 sec) (1773 sec) (2016 sec)

γs 2.96 2.7 3.11 2.75

µ 0.18 0.07 0.22 0.08

αs 0.25 - 0.34 -

βs 0.32 - 0.36 -

zs - 0.07 - 0.07

7.4.1.3 Example 3: Synthetic dataset with 113×143 levels

The last example tested was a model with augmented number of levels and two different

sample sizes, to understand how an increase in the complexity and number of observations

affects the performance of each program in the case of the Horseshoe prior approach. This
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example regards a model where both the main and interaction effects are considered to be

asymmetric. After assessing all the necessary diagnostics the performance metrics were

calculated and are summarised in Table 7.14. In the example with a sample size of 10,000

observations TWIiS appears to be six times more efficient than its equivalent JAGS code.

This ratio increases to seven in the model that involved 80,000 observations, showing that

it is likely for TWIiS to perform even better compared to JAGS in bigger datasets.

Table 7.14: Efficiency summary and comparison between JAGS and TWIiS for Example 3:
113×143, using the Horseshoe prior.

Case: Asymmetric main & interaction effects

Code Variable ESS/sec

10,000

observations

80,000

observations

JAGS

(25,232 sec) (77,324 sec)

γs & τs 0.13 0.04

µ 0.04 0.002

αs 0.07 0.005

βs 0.14 0.003

TWIiS

(4657 sec) (11333 sec)

γs & τs 1.09 0.44

µ 0.24 0.015

αs 0.44 0.04

βs 0.71 0.024

7.4.2 Results from Rainier

In this part we explore Rainier’s performance and correctness of results for a two-way

Anova model of 10 levels for the first and 15 levels for the second categorical variable. We

apply variable selection to the interactions using the Horseshoe prior approach, according

to the implementational details for Rainier mentioned in Section 6.4, assuming that both

the main and the interaction effects are asymmetric.

Rainier needs a longer time period to converge than JAGS and TWIiS. The initial

warm-up iterations were not enough to achieve convergence for one million iterations of

the HMC with a thinning factor of a hundred. Therefore, an additional burn-in period

led to 5,000 samples, which is the sample size used for the following analysis for inference.

The posterior point estimates returned from Rainier are very similar to the ones estimated

from JAGS and TWIiS, with the all group means being close to the expected true values,

confirmed by the similar patterns of the equivalent heatmaps shown in Figure 7.28.

The produced diagnostic plots showed that regarding the interaction effects Rainier’s
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(a) JAGS (b) TWIiS

(c) Rainier (d) True group means

Figure 7.28: Comparison of the group means among JAGS, TWIiS Rainier and the true
coefficients. The y-axis represents the levels of the first and the x-axis of the second categorical

variable. Case: Asymmetric main & interaction effects with 10×15 levels.

mixing is poorer and the autocorrelation is higher compared to the other programs con-

sidered. This applies in particular for interaction coefficients closer to zero. Regarding

the mixing of the main effects and µ there is margin for improvement for both Rainier

and TWIiS as shown in Figure 7.29. JAGS presents similar results. Increasing the num-

ber of iterations improves mixing and reduces the autocorrelation between the samples.

However, for this particular example, longer MCMC runs for Rainier are time demanding

compared to the runtimes of JAGS and TWIiS, and therefore not further explored in this

part.

Regarding the efficiency measurements, the first 5,000 samples after having achieved

convergence were used for each program. Table 7.15 summarises the runtimes and the

ESS/sec for the three implementations. Rainier presents the highest ESS values for the

main effects and µ, however there is a significant difference in the equivalent values for the

interaction effects. It is likely that HMC draws more efficient samples for the main effects

in earlier stages of the chain, as opposed to Gibbs sampler that appears to be more efficient

for the interactions, as we saw in earlier cases explored. Rainier’s runtime is higher and
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(a) TWIiS α10 (b) Rainier α10

(c) TWIiS γ1,13 (d) Rainier γ1,13

(e) Posterior
densities α10

(f) Posterior
densities γ1,13

Figure 7.29: Diagnostic plots for α10 (top row) and γ1−13 (middle row), and posterior density
plots comparison (bottom row). Case: Asymmetric main & interaction effects with 10×15 levels.

the ESS/sec is significantly lower than the two alternatives tested. Hence, Rainier appears

to be less efficient for the particular model and example that we study.
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Table 7.15: Efficiency comparison between JAGS, TWIiS and Rainier. Variable selection using
Horseshoe prior. Case: Asymmetric main & interaction effects with 10×15 levels.

Variable ESS ESS/sec

JAGS TWIiS Rainier JAGS TWIiS Rainier

(1305 sec) (155 sec) (15659 sec)

γs & τs 3,945 4,252 143 3.02 27.43 0.09

µ 38 31 133 0.03 0.20 0.009

αs 64 44 125 0.05 0.29 0.008

βs 100 110 128 0.08 0.71 0.008

The code for developing variable selection with Rainier using Horseshoe priors for a

two-way Anova model is available at the GitHub repository TWI HS Rainier 1.

7.4.3 Results from Stan

Stan is explored as alternative software that uses HMC and the Horseshoe prior to im-

plement variable selection on the hierarchical two-way Anova problem that we examine.

The synthetic dataset used for this part is the same as for Rainier, with 15 levels for the

first and 20 levels for the second categorical variables. For this model we adopt the regu-

larised Horseshoe approach with tuned step-size and tree-depth for the HMC as discussed

in Section 6.3.

Stan, particularly after having tuned the necessary parameters applying the optimisa-

tion techniques mentioned in Section 6.3, appears to be time demanding. Consequently,

the results presented in this part for inference regarding Stan derive from 100,000 itera-

tions with a thinning factor of 10, where the program was running for 76 hours. Potential

further optimisation techniques were not explored in the scope of this project. Despite the

long runtime the algorithm showed convergence and presented no autocorrelation between

the samples. On the other hand, for this number of iterations TWIiS and JAGS did not

show convergence for some variables. Therefore, these two programs were set to run for

one million iterations with a thinning factor of a hundred which corrected the previous

diagnostics. This run was also used for calculating their efficiency metrics. The corre-

sponding runtime for JAGS was 43 minutes and for TWIiS only five. Indicatively, Figure

7.30 illustrates the traceplots and autocorrelation plots of two interaction effects, as well

as their corresponding posterior densities. We can observe that the estimated posterior

densities from all three programs overlap, indicating their accordance.

Regarding the ESS calculation of Stan, another run of 10,000 iterations was considered

without thinning since it presented good mixing and retained autocorrelation. For all three

1TWI HS Rainier, https://github.com/antoniakon/TWI_HS_Rainier.
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(a) TWIiS γ1,1 (b) Stan γ1,1

(c) TWIiS γ1,13 (d) Stan γ1,13

(e) Posterior
densities γ1,1

(f) Posterior
densities γ1,13

Figure 7.30: Diagnostic plots for γ1,1 = 0 (top row) and γ1,13 = 3.58 (middle row), and their
posterior densities (bottom row). Case: Asymmetric main & interaction effects with 10×15

levels.
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programs the first 5,000 samples after burn-in and convergence were used for calculating

the ESS and efficiency measurements which are summarised in Table 7.16 that displays

the minimum values for each category of variables. Looking at the individual categories

we can see that Stan presents high ESS values for the main and low for the interaction

effects as opposed to TWIiS and JAGS. This could be due to the fact that HMC might

present better mixing for some parameters and Gibbs sampling for others. Comparison of

the minimum ESS/sec from all three programs shows that Stan has similar performance

to JAGS, with TWIiS being more efficient. However, looking at the individual categories

Stan seems to have better performance for the main effects.

Table 7.16: Efficiency comparison between JAGS, TWIiS and Stan. Variable selection using
Horseshoe prior. Case: Asymmetric main & interaction effects with 10×15 levels.

Variable ESS ESS/sec

JAGS TWIiS Stan JAGS TWIiS Stan

(1,305 sec) (155 sec) (1,836 sec)

γs & τs 3,945 4,252 41 3.02 27.43 0.02

µ 38 31 29 0.03 0.20 0.02

αs 64 44 2,522 0.05 0.29 1.37

βs 100 110 3,001 0.08 0.71 1.64

Finally, a heatmap of the pattern that the group means estimated by Stan follows, is

shown in Figure 7.31. Comparing it to the heatmaps in Figure 7.28 illustrating the group

means estimated from JAGS, TWIiS and Rainier, we can see that they all follow the same

pattern.

Figure 7.31: Group means heatmap for Stan. The y-axis represents the levels of the first and the
x-axis of the second categorical variable. Case: Asymmetric main & interaction effects with

10×15 levels.
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7.5 Efficiency comparison between variable selection using

indicators and Horseshoe priors

So far in this chapter we have presented through various examples how variable selection

can be applied on the interactions of a hierarchical two-way Anova modelling problem

that we examine associated with four different cases of symmetry in the effects, using

two alternative methodologies, the Kuo and Mallick approach and the Horseshoe prior.

In order to assess the results and efficiency of the two variable selection methods on this

particular model, it was necessary to run multiple simulations for all cases, record their

runtimes and further investigate the effective samples sizes and the ESS/sec. Especially

when dealing with complex hierarchical models that can be computationally demanding

or when the volume of data is large, leading to increases in runtime, we are interested in

both the correctness of results, and computational time and efficiency.

This section aims to summarise the performance of all methods studied in JAGS and

TWIiS, facilitate performance comparisons and highlight the methodology that is more

appropriate for our model in terms of speed and accuracy of results. As the real datasets

of the yeast genome case study are more complex, it is worth observing how the efficiency

metrics are influenced as the levels of the categorical variables change and the number of

observations increase.

All the results regarding the various measurements for the example with 15 levels

for the first and 20 levels for the second categorical variables are summarised in Table

7.17. There we can see that for the Gibbs sampler written in Scala, the runtimes and the

ESS/sec deteriorated using the Horseshoe prior compared to the equivalent measurements

coming from the implementation using an indicator for each parameter. In some cases

the decrease in performance is slight and in others the program using Horseshoe priors

is approximately two times slower. For JAGS, both the running time and the efficiency

metric using the Horseshoe prior showed slight improvement compared to the indicator

approach. The synthetic dataset used had a sample size of 10,000.

Nevertheless, when looking at the results for the second example in Table 7.18 concern-

ing the synthetic dataset with 50 levels for the first and 60 levels for the second categorical

variables for the same number of observations, we can see that the improvement observed

for JAGS in the smaller example is no longer valid.

After examining the two previously mentioned cases, an example with number of levels

equal to the yeast genome case study dataset was explored, in order to test the performance

of the two implementations at a larger scale. This model has 113 levels for the first and

143 levels for the second categorical variable, with a sample size of 10,000 observations

and assumes that both the main and the interaction effects are asymmetric. The results

for this case are illustrated in Table 7.19, at the top row of each case. There, we can
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see that the implementation of variable selection with indicators preforms better than the

one using Horseshoe priors. This difference is more significant for JAGS where the first

implementation appears to be 3.5 times faster than the second, whereas for TWIiS, this

ratio is 1.6.

In order to have a more complete understanding of the pattern in the efficiency of

the two methodologies, and be more certain about which implementation appears to work

better for our modelling process, we also considered a last synthetic example that also has

113×143 levels, but 80,000 observations. This last example intends to reflect more the

actual structure of the yeast genome dataset and model, and its results are presented in

Table 7.19 in the bottom row of each case. Again, for both cases variable selection using

indicators appears to be more performant than the Horseshoe prior, even though their

difference for TWIiS is not highly significant. However, the method that uses variable

selection indicators has faster computational time compared to the Horseshoe alternative,

meaning that longer runs often required for inference are easier to implement with the

first technique.

Another comparison that would be interesting is to see how the efficiency differences

are formed for the case that is common in all examples, the model where both the main and

the interaction effects are considered to be asymmetric. For the smallest example, TWIiS

is approximately nine times more efficient than JAGS for the indicator approach, a ratio

that drops to five for the Horseshoe prior implementation. The corresponding values for

the second and third examples are approximately three times for the indicator approach

and they remain similar for the Horseshoe prior. These observations lead to the conclusion

that the increase in the complexity of the model reduced the difference in the performance

between the two implementations for the variable selection indicator, but did not affect

the Horseshoe prior approach in the same way. However, this difference increases again

as the sample size increases in the last example showing that TWIiS probably processes

more data in a faster way, since the ESS is similar in both programs with the different

sample sizes examined.

Regarding the overall performance of JAGS and TWIiS, looking at the case where

the main and interaction effects are asymmetric for all examples with 10,000 observations

shows that the ESS/sec metrics for JAGS are more consistent across the examples for

the case of the Horseshoe prior and present greater variation when the variable selection

indicators are used. TWIiS shows greater variation in the efficiency metric across both

implementations. Both performance metrics change significantly when the sample size

increases.

To sum up, efficiency comparison across all examples explored showed that for both

JAGS and TWIiS, variable selection using the indicator approach appears to have bet-

ter performance than the equivalent implementation that combines a Gibbs sampler and
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Horseshoe priors. Furthermore, TWIiS is generally more efficient than JAGS. The extent

to which TWIiS and the variable selection using indicators method are more performant

than their counterparts depends highly on the model case in terms of symmetry in the

effects, complexity and sample size.

As a remark about the efficiency difference between the implementations in TWIiS

and JAGS, detailed exploration of the JAGS source code is beyond the scope of this

project. However, regarding TWIiS, using long established collections and operations

from the JVM leads to performant code that lets programmers focus on the high-level

of implementing the algorithm, while leaving the low-level operations such as memory

management to the JVM. Using Scala and functional code has an additional advantage of

guarding against bad object-oriented practices, such as keeping states in mutable variables

in memory longer than actually needed and thus wasting computer resources. Additionally,

functional code and immutable collections allow for safe leverage of computer resources

by using parallelism that depending on the problem leads to further speed-up as we saw

in Section 6.2.4. Intentionally, we avoided using the parallel code of TWIiS, to provide a

fairer comparison among the examined implementations.

Table 7.17: Efficiency comparison between JAGS and TWIiS for variable selection using
indicators or the Horseshoe prior. Example 1: 15×20 levels.

Case VSI Horseshoe

ESS ESS/sec ESS ESS/sec

JAGS TWIiS JAGS TWIiS JAGS TWIiS JAGS TWIiS

Both asym. µ: 66 µ: 69
0.03

(2,193s)

0.29

(242s)
µ: 83 µ: 97

0.05

(1,699s)

0.25

(382s)

Sym. main Z: 85 Z: 92
0.04

(2,018s)

0.4

(220s)
µ: 83 µ: 82

0.05

(1,815s)

0.22

(378s)

Sym. inters µ: 106 µ: 93
0.05

(2,243s)

0.31

(297s)
α: 37 µ: 63

0.03

(1,559s)

0.13

(481s)

Both sym. Z: 83 Z: 86
0.04

(1,928s)

0.31

(278s)
Z: 93 Z: 72

0.06

(1,542s)

0.21

(342s)
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Table 7.18: Efficiency comparison between JAGS and TWIiSfor variable selection using
indicators or the Horseshoe prior. Example 2: 50×60 levels.

Case VSI Horseshoe

ESS ESS/sec ESS ESS/sec

JAGS TWIiS JAGS TWIiS JAGS TWIiS JAGS TWIiS

Both

asym.
µ: 339 µ: 296

0.1

(3,436s)

0.32

(912s)
µ: 319 µ: 321

0.04

(7,254s)

0.18

(1,835s)

Sym.

main
Z: 144 Z: 136

0.03

(4,421s)

0.09

(1,583s)
µ: 147 µ: 153

0.02

(8,564s)

0.07

(2,075s)

Sym.

inters
µ: 301 µ: 353

0.1

(2,993s)

0.37

(958s)
µ: 370 µ: 394

0.07

(4,979s)

0.22

(1,773s)

Both

sym.
Z: 163 Z: 140

0.05

(3,643s)

0.12

(1,105s)
µ: 145 µ: 152

0.03

(4,972s)

0.08

(2,016s)

Table 7.19: Efficiency comparison between JAGS and TWIiS for variable selection using
indicators or the Horseshoe prior. Example 3: 113×143 levels.

Case: asymmetric main and interaction effects.

Method Case ESS ESS/sec

JAGS TWIiS JAGS TWIiS

VSI

10k obs µ: 1,173 µ: 1,082
0.14

(8,543s)

0.38

(2,912s)

80k obs µ: 139 µ: 139
0.004

(51,599s)

0.02

(7,326s)

Horseshoe

10k obs µ: 1,103 µ: 1,105
0.04

(25,232s)

0.24

(4,657s)

80k obs µ: 128 µ: 174
0.002

(77,324 s)

0.015

(11,333 s)
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Yeast robotic genetic studies

Bayesian hierarchical modelling has a broad range of applications. As a case study in this

project we explore a dataset, and the corresponding model, that comes from the field of

genetics. The data on which we apply the methods developed derive from the Institute

for Cell and Molecular Biosciences in Newcastle University (ICaMB) and are related to

the yeast genome and telomere biology.

Telomeres are regions at the ends of the chromosomes that protect the genetic in-

formation. Chromosome replication and various factors, such as ageing, cause telomere

shortening. Exploring telomere capping defects and potential interactions with specific

genes on model organisms, such as yeast, helps scientists understand the mechanism be-

hind enhancement or suppression of the phenomenon.

The aim of this chapter is to establish the biological background and describe the

genetic experiment and process that leads to the resulting dataset. We will also present

the modelling specifications of the case study that is subject to analysis.

8.1 Introduction to genetics – Important terms

In this section we will provide an introduction to some fundamental terms in genetics

that will be used in the following sections and are helpful to understand the nature of the

experiment.

8.1.1 DNA and RNA

Deoxyribonucleic acid (DNA) is a molecule found in the cells of an organism and consti-

tutes the hereditary material that contains the genetic information and instructions for its

growth and functioning. The DNA has two helical chains coiled around each other and is

made up of monomers called nucleotides. Nucleotides have three components; a 5-carbon

sugar, a phosphate group and a nitrogen base. There are four nitrogen bases, cytosine (C),
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guanine (G), adenine (A) and thymine (T), and the hydrogen bonds that connect them

according to the base pairing rules (A with T and C with G) allow for the two strands to

be held together. Each strand is shaped due to the chemical bonds developed between the

sugar group of the one nucleotide and the phosphate group of the next. An organism’s

total genetic information is called genome. Another molecule essential in various biological

roles is Ribonucleic acid (RNA), which unlike DNA has a single strand. An additional

difference from DNA is that instead of the nitrogen base thymine (T), RNA has uracil

(U).

Both DNA and RNA have an end-to-end chemical orientation. They are synthesised

in the 5′ to 3′ direction, which is also assumed to be the default unless it is otherwise

defined. The 5′-end of a strand is named after the fifth carbon in the sugar-ring of the

deoxyribose or ribose and the 3′-end refers to the hydroxyl group of the third carbon in

the sugar-ring that is the terminating chemical element.

For the double-stranded DNA helix the strands are antiparallel to each other, so that

the nucleotides of the one strand are complemented by the nucleotides of the second strand

as shown below (Hartl and Jones, 1998):

5′...CTCAATGTTCGA...3′ (also called the Watson strand)

3′...GAGTTACAAGCT...5′ (also called the Crick strand)

8.1.2 Chromosomes

In the nucleus of cells, the DNA is packed around proteins which are called histones and

is packaged into structures that are called chromosomes. Humans have 23 pairs of chro-

mosomes. Two of the 46 chromosomes determine the sex of the person so they are called

sex chromosomes (X and Y), while the rest are called autosomes. Chromosomes are not

visible under a microscope in every phase of the cell’s life. This happens only during a

specific phase (metaphase) of the cell division (mitosis) and a picture of a person’s chro-

mosomes is called a karyotype. The karyotype of a human is presented in the karyogram

displayed in Figure 8.1. The final pair of chromosomes indicates the sex of the individual.

In this figure the one chromosome (Y) is smaller than the other (X) which indicates that

the DNA comes from a male. Finally, during mitosis when the chromosome replicates and

two identical copies of the DNA are formed (sister chromatids), both copies are joined

together by a specialised DNA sequence known as “centromere” (Hartl and Jones, 1998).

Centromeres are used as a reference point for the identification of the position of various

DNA sequences (genes) on the chromosome. Figure 8.2 illustrates the relations among

some of these molecules.
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Figure 8.1: Karyogram of human male (National Human Genome Research Institute, 2020)

Figure 8.2: Chromosomes - DNA - RNA. [Image adapted from Wikimedia Commons (2012)]

8.1.3 Genes and proteins

Genes are small sections of the chain of DNA and vary in size. Chromosomes contain many

genes, for example chromosome 1, which is the largest in humans, contains about 8,000

genes. Each gene is situated at a specific location on the chromosome, called the locus, in

two copies inherited from each parent. A variant form of a gene is called allele. Each of

the two copies of a gene can be different, for example people with blood type AB have one

allele A and one B. Most genes are protein-coding, meaning that they provide the genetic

information to define the building blocks, called amino acids, for the synthesis of proteins

after gene expression. Gene expression involves the process of DNA’s transcription to

RNA, which then specifies the order by which amino acids will be linked together by the

ribosomes during translation and synthesise proteins. A triplet of adjacent nucleotides is

called a codon and corresponds to a specific amino acid or start and stop signals during

protein synthesis. Proteins are macromolecules essential to all living organisms. They are

necessary for the structure and function of the body’s tissues and organs (MITx, 2013).
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According to the Human Genome Project humans have between 20,000 and 25,000 protein

coding-genes (International Human Genome Sequencing Consortium, 2004).

8.1.4 Genotype, phenotype and mutations

By the term genotype, scientists refer to the set of genes that an organism has, whereas

phenotype refers to its observable characteristics. Phenotype is affected by the genotype

and by environmental factors. In order to describe the allele that encodes the phenotype

that is the most common in nature we use the term wild-type allele (MITx, 2013).

Permanent changes in the genetic sequence are called mutations. Mutations can be

recessive or dominant. In order for the mutant phenotype to be observed, in the first

case both alleles have to be mutant (homozygous individual) whereas in the second, the

individual can carry one mutant and one normal allele (heterozygous) (Lodish et al., 2000).

In some experiments scientists mutate genes of interest and the organism is then called

mutant. Mutating alleles in two genes of interest renders the organism “double mutant”.

8.1.5 Open Reading Frame (ORF)

During protein synthesis, the nucleotides are read in the 5′ → 3′ direction and are grouped

into consecutive and non overlapping triplets. There are three different ways that a se-

quence can be read, depending on which is considered the first nucleotide of the reading

frame. Consequently there are three different reading frames as shown in the example

bellow:

Sequence: 5′...CTCAATGTTCGACGA...3′

Reading Frame 1: 5′...CTC-AAT-GTT-CGA-CGA...3′

Reading Frame 2: 5′...C-TCA-ATG-TTC-GAC-GA...3′

Reading Frame 3: 5′...CT-CAA-TGT-TCG-ACG-A...3′

Some triplets can be translated to amino acids and we mentioned in Section 8.1.3

that they are then called codons. There are also specific codons in the DNA that act as

signals that can start or stop the translation process. The start (ATG) or stop codons

(TAA, TAG or TGA) define the Open Reading Frames, which are the sequences of bases

between them. These sequences are actually DNA sequences that have the potential to be

transcribed into RNA and translated into proteins. Their identification is very important

in tracing genes (Hartl and Jones, 1998).

8.1.6 Telomeres

Telomeres (Figure 8.3) are specific DNA-protein structures found at the ends of the

chromosomes of eukaryotic organisms. Their length in humans varies according to age but
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they are around 10 kilobases long. Telomeric DNA consists of hundreds of repetitions of

a short sequence of bases, which for humans is TTAGGG. Telomere capping protects the

chromosome from degradation every time it replicates during cell division and consequently

plays a vital role in the preservation of the genome. However, during each DNA replication

hundreds of bases are lost, resulting in telomere shortening. When telomere length reaches

a critical limit the cell can no longer replicate, causing cell malfunction (Aubert and

Lansdorp, 2008) or even death (apoptosis). In most cells an enzyme called telomerase acts

against telomere shortening by synthesising telomeric DNA. Nevertheless, in some cells,

e.g. somatic cells, the activity of the enzyme takes place at lower levels therefore these

cells undergo a faster shortening.

Figure 8.3: Fluorescence-stained chromosomes (blue) and telomeres (green) under a microscope
during the metaphase of the cell cycle (Adam et al., 2019).

The significance of telomeres in an organism’s function and maintenance renders their

study an important topic in the field of genetics. A lot of research has been conducted

regarding how telomere shortening is related to ageing and cancer (Maciejowski and de-

Lange, 2017). There is evidence that telomere shortening is linked to ageing. Short

telomere length for specific age groups can also be associated with increase in age-related

diseases (Herrmann et al., 2018). In addition, factors such as obesity, stress, dietary habits,

as well as environmental factors seem to affect telomere shortening (Shammas, 2011).

8.1.7 Saccharomyces cerevisiae (budding yeast)

Saccharomyces cerevisiae (Figure 8.4) is commonly known as baker’s yeast or budding

yeast and is a single-celled eukaryotic organism. It is widely used in scientific research

because its genome has been sequenced and it constitutes an organism which is easy to

grow and genetically manipulate in vitro. It has a cellular organisation that is similar to

that of higher eukaryotes like humans, so its genes’ functions help scientists understand

more complex organisms.
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Figure 8.4: Saccharomyces cerevisiae under scanning electron microscope (DasMurtey and Ra-
masamy, 2016).

S. cerevisiae is widely studied and this led to the Saccharomyces Genome Database

(2020)(SGD) which constitutes a community resource and scientific database for budding

yeast. The SGD provides information about the yeast genome, interactions between genes

and pathways, datasets and experiments as well as papers and various resources. According

to the SGD there is a standard and consistent nomenclature for a yeast locus, a Systematic

ORF Name and a Standard Gene Name. The Systematic ORF name consists of three

uppercase letters followed by a 3-digit number and a letter.

As an example we will use the open reading frame YFL039C:

� Y stands for ‘Yeast’.

� The second letter is in the range A - P. It denotes the chromosome upon which the

ORF resides. S. cerevisiae has 16 chromosomes and ‘A’ is chromosome I, up to ‘P’

for chromosome XVI.

� L in this example stands for ‘Left’ and indicates that the ORF is on the left arm of

the chromosome. Similarly, R denotes that it is on the right arm.

� The next 3-digit number corresponds to the sequential order of the ORF on the arm

(with direction from the centromere to the telomere).

� W or C denotes whether the ORF is encoded on the ‘Watson’ or ‘Crick’ strand.

So, the ORF YFL039C is the 39th ORF to the left of the centromere on chromosome VI,

and is on the Crick strand.

Sometimes an ORF is also given a standard gene name that consists of three letters

followed by a number. Dominant alleles, usually wild-type, are denoted by uppercase

letters and recessive or mutant alleles by lowercase. The three letters denote a description

of the phenotype or a known gene function. For example, CDC13 is a gene name for the
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gene that encodes for the Cell Division Control protein 13, Cdc13, with the ORF name

YDL220C. Respectively cdc13-1 refers to a temperature sensitive mutant that involves a

telomere capping defect that inhibits the cell-cycle progression. This mutant is of interest

as CDC13 is essential and cannot be studied using deletion.

8.1.8 Epistasis

As mentioned in Section 8.1.6, telomeres are specialised structures at the end of the

chromosomes that protect the genome every time the cell divides. Various non-essential

proteins contribute to telomere capping and when there is a mutation in the genes coding

for these proteins, telomeric DNA and the cell cycle do not function properly. For example,

Cdc13 is a constituent of a protein complex that takes part in telomerase recruitment.

When the cdc13-1 mutant allele is present there can be an acute inactivation of the protein

Cdc13 that can even cause cell death. The reason for this is that cdc13-1 is a temperature

sensitive mutant and at specific temperatures it causes ssDNA (single stranded DNA)

generation and accumulation at telomeres which disrupts their function and pauses the

cell cycles. For example, there is evidence that deleting the gene EXO1 that is responsible

for the production of Exo1 nuclease that contributes to ssDNA production when Cdc13 is

defective, can suppress the poor growth of the cells caused by the presence of the mutant

allele. This is a phenomenon of genetic interaction between those two genes and it is called

epistasis. In this example the poor growth is suppressed, however there are other examples

where the presence of some genes can enhance the poor fitness caused by already defective

telomeres (Addinall et al., 2011).

The length of the telomeres is a complex characteristic determined by a large number

of genes. According to Ungar et al. (2009) and his reference to previous genome-wide

studies on yeast, there are 272 non-essential genes that can cause telomere shortening or

lengthening when they are mutated.

8.2 Quantitative Fitness Analysis

Quantitative Fitness Analysis (QFA) is an experimental and computational workflow aim-

ing to compare fitnesses of microbial cultures that, after being subjected to applied treat-

ments, are spotted onto agar plates which are then incubated and regularly photographed

(Banks et al., 2012). Telomeres degrade and shorten over time. In addition, genes associ-

ated with proteins that contribute to telomere capping can be mutated leading to capping

defects. The aim of the experiment examined in this study is to better understand telomere

biology in budding yeast by identifying genetic interactions between non-essential genes,

which are genes that are not essential for the viability of the organism, and genes that are

related to telomere capping. For the conduction of the experiment, scientists in the Insti-
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tute of Cell and Molecular Biosciences use Synthetic Genetic Array (SGA), a methodology

which is analytically described in the following part.

8.2.1 Synthetic Genetic Array and gene deletion

Synthetic Genetic Array is a methodology developed by Tong and Boone (2006) for identi-

fying genetic interactions between genes. It is based on the construction of double mutants

using gene deletion, where a query mutation is crossed to viable gene deletion mutants.

Scientists look at fitness1 defects in various screens2 and come to conclusions about po-

tential interactions between the genes involved.

In SGA gene deletion actually refers to gene substitution with cassettes. Cassettes

are DNA molecules that act as mobile elements transferring foreign genetic material into

another cell. In gene deletion, cassettes often replace a specific gene with a gene that

encodes for resistance to a certain antibiotic. The position of the gene to be replaced

is determined by a ‘genetic barcode’ carried by the cassette. Suppose that the cassette

natMX, providing antibiotic resistance to nourseothricin, replaces in various yeast strains

the ORF with the gene name GeneX. Then, only the strains with the antibiotic resistance

will be able to survive when they get transferred and allowed to culture in agar plates

containing the specific antibiotic, in this case nourseothricin. A second deletion can also

take place on the same strain by using another antibiotic resistance cassette, such as

the kanMX that provides resistance to kanamycin (Tong and Boone, 2006). A visual

representation of the gene deletion logic is shown in Figure 8.5.

(a) (b)

Figure 8.5: Gene deletion by displacement (a) Gene X from the cassette natMX, gene x∆::natMX
(b) additional Gene Y from the cassette kanMX, gene y∆::kanMX (Tong and Boone, 2006).

1Quantitative representation of organisms’ survival and reproduction in a given environment; acts as a
measurement of growth (Heydari et al., 2016).

2Technique used for identification and selection of individuals with specific traits coming from a popu-
lation subjected to mutations (Heydari et al., 2016).
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8.2.2 QFA – Overview of the experiment and methodology

QFA aims specifically to identify epistasis between genes that affect telomere capping

causing telomere defects and certain non-essential genes, as in the example presented

in Section 8.1.8 where EXO1 was deleted. In budding yeast there is also another non-

essential protein, Yku70, lack of which, due to deletion of gene YKU70 (yku70∆), can

cause telomere shortening and temperature sensitivity, as with the case of the cdc13-1

mutant allele.

To clarify some terms used in the description of the experiment we can summarise the

following:

� Knockout library : ∼4200 viable gene deletions, all related to non-essential genes.

We denote an arbitrary gene deletion as yfg∆ (Your Favourite Gene Deletion), or

sometimes as orf∆ when we refer to a deletion of a specific ORF.

� Query strain: Yeast strain containing one of the cdc13-1 and yku70∆ mutations

that cause temperature sensitive telomere defects.

� Control strain: Yeast strain containing the neutral ura3∆ mutation that has no

effect on the fitness under the experimental conditions. It does not interact with

any yfg∆ and so it is also described as the “wild-type strain” in some contexts.

� Double mutants: Yeast strains that contain both cdc13-1 or yku70∆ mutation and

a non-essential gene deletion (yfg∆).

For QFA, scientists use robotic facilities and Synthetic Genetic Array (SGA, Section 8.2.1)

methodology to combine the systematic gene deletion collection (knockout library) with

cdc13-1 and yku70∆ mutations. Then, the double mutants are spotted onto agar plates

with ∼100 cells placed in each of the 384 spots of each plate. Next, the plates are incubated

under different temperatures, due to the temperature sensitivity of the mutants, and the

yeast colonies start to form (Figure 8.6a). The growth of the colonies under the different

treatment conditions is estimated by the use of time course photography. Multiple images

of the plates are taken at close time intervals to record the progress of the cultured yeast

strains. These photographs are analysed through image processing and after obtaining the

corresponding growth curves (Figure 8.6b), a logistic growth model is fitted to estimate

the quantitative parameters that describe the fitness (Addinall et al., 2011). One of

the resulting estimated parameters is the maximum doubling rate (MDR) measured in

population doubling/day which shows the rate at which the strains divide. Furthermore,

the maximum doubling potential (MDP, population doublings) is estimated to capture the

number of divisions before the culture is observed to undergo saturation. Their product
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(a)

(b)

Figure 8.6: QFA image data and growth curves: (a) time lapse images for two genetically modified
S. cerevisiae (b) corresponding cell density estimated through time (Heydari et al., 2016).

accounting for both attributes is also sometimes used as a measurement of fitness (Heydari

et al., 2016).

More than four million images are captured, processed and analysed in total during

the experiment with the use of an image analysis tool called Colonyzer. It constitutes

an open-source collection of algorithms aiming to automate quantification of important

parameters of cultures grown on solid agar (Lawless et al., 2010).

8.2.3 Quantifying genetic interactions

The objective of the experiment is to identify genetic interactions between the “deleted”

genes and the mutant genes examined and quantify the strength of the existing inter-

actions. According to Mani et al. (2008) and Addinall et al. (2011), based on Fisher’s

multiplicative model of genetic independence, the relative fitness of the double mutants

Fxyz yfg∆ should be equal to the product of the corresponding single mutant relative fit-

ness values. Supposing that the fitness of the control strain is Fura3∆, of the query strain

is Fcdc13-1 and that the query strain cdc13-1 is crossed with orf∆, the expected fitness for

the double mutant should be:
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Fcdc13−1 orf∆ =
Fcdc13−1
Fura3∆

× Fura3∆ orf∆, ∀orf∆. (8.1)

In Equation 8.1, the ratio of fitness of the query over the control strain is a constant,

so we expect a linear relationship between the fitness of the query strain with the orf∆

and the control strain with the same non-essential gene deletion (Heydari et al., 2016).

A deviation between the observed and the expected fitness calculated from Equation 8.1

would indicate that there is a genetic interaction between the query cdc13-1 mutation and

the deleted gene. The genetic interaction strength (GIS) is determined by the size of this

deviation.

Alternative approaches to the multiplicative model chosen by Addinall (Addinall et al.,

2011) could be the additive model on the log-scale, the product or the minimum. Results

of the identification of genetic interactions are described by Mani et al. (2008) who applied

the various methods on two case studies.

8.3 miniQFA

MiniQFA is a research project based on the QFA described in the previous section. The

objective is to find genetic interactions between telomeres that show capping defects and

simultaneous deletion of two non-essential genes, instead of one that was deleted for the

case of the QFA. The miniQFA experiment constitutes our main case study.

8.3.1 miniQFA overview

Proteins play an essential role in an organism’s function and existence. Sometimes they

interact with each other to perform a specific function. A collection of such proteins is

called a protein complex (Levy et al., 2006). If one or more of the genes that encode for

the proteins in a complex are mutated, the biological pathway will be hindered or inhibited

and this will lead to a potential malfunction of the cell.

Research conducted by Ungar et al. (2009) uncovered various essential genes that code

for proteins, parts of protein complexes, mutations of which can exhibit a ‘short’ or ‘long’

telomere phenotype. These complexes are related to functions such as RNA processing

and transcription, degradation of unneeded or damaged proteins and various others. An

example of a complex of interest is the MRX (Mre11-Rad50-Xrs2) complex that is an

important factor in the cells’ response to double-strand breaks (DSB). A lot of research

has been done in to how it affects telomeric DNA ends and how it regulates telomerase

action, since the enzyme Tel1 (Serine/theorine protein kinase) is activated by it, supports

its function and affects telomere length by promoting telomerase recruitment (Gobbini

et al., 2016).
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MiniQFA aims to find genetic interactions between telomeres that show capping de-

fects, and simultaneous deletion of two non-essential genes. This experiment is very im-

portant for the identification of groups of genes that act together in telomere length main-

tenance in S. cerevisiae and the recognition of equivalent genes (homologues) in other

organisms such as humans.

In the miniQFA experiment scientists would like to delete all pairwise combinations

from the knockout library, which includes 4294 non-essential genes. In the QFA exper-

iment, 4135 out of those non-essential genes where actually used, and a genome-wide

analysis for the miniQFA would result in 41352 = 17, 098, 225 different pairwise com-

binations to check. Due to the nature of the experiment that demands mutating and

cultivating yeast strains in different lab conditions, as well as observing them with regu-

larly taken images, examining all these combinations would not be feasible even with the

use of the robotic facilities designed for high throughput experiments. Consequently, a

smaller collection of genes were selected from the knockout library, which led to naming

the experiment miniQFA (Newman, 2017).

Previous experiments highlighted certain genes that affected telomere length, or were

found to interact with mutants causing telomere defects or have homologues in human

cells. Those genes along with some known neutral mutations, such as his3∆, were chosen

to compose a 154 orf∆ knockout library. The number 154 is not randomly selected.

It is the number of spots of a 384-spot agar plate with a 24×16 grid from which edge

spots are discarded as colonies that grow there have a growth advantage since there is no

competition for nutrients. There are 308 spots remaining, so it was decided that 154 genes

would be considered in the knockout library, leading to 1542 = 23, 716 different pairwise

combinations of deletions. On each plate either cdc13-1 mutant or wild-type yeast strains

are used. The query screen, which is the first gene deletion, is the same across all spots

and there are two replicates of each of the 154 genes, that are used for the second deletion,

on each plate. In addition, there are multiple plates incubated for each experiment.

An example of a 384-spot agar plate with the incubated colonies is presented in Figure

8.7.

8.3.2 Notation and multiplicative model

The notation used in the miniQFA experiment is consistent with the one followed for

the QFA. A conditionally defective gene, such as cdc13-1 which is defective at high tem-

peratures, is crossed with the deletion of two other genes from the knockout library, for

example yfg1∆ and yfg2∆, and the triple mutant is denoted as cdc13-1 yfg1∆ yfg2∆. In

cases where the same ORF is targeted twice for deletion, the yeast strain is called double-

l-mutant. This situation leads to cell death due to the nature of the process of applying

the selected mutations presented in Section 8.1.8. The two consecutive cassettes providing
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Figure 8.7: 384-spot format plate provided by Colonyzer (Lawless et al., 2010)

the antibiotic resistance in two different drugs will replace the same ORF so at the end

the mutated part of DNA will only contain the one cassette and will only have the trait

for antibiotic resistance to one of the drugs. Consequently, during the incubation of the

mutated strains on the solid agar plates with the two antibiotics, the cells will not have

resistance to both antibiotics and will eventually either not survive or present very low

growth.

The multiplicative model mentioned in Section 8.2.3 is applied in the miniQFA ex-

periment as well. Suppose that cdc13-1 yfg1∆ has a fitness x and cdc13-1 yfg2∆ has

a fitness y, if yfg1 and yfg2 have independent functions, according to the multiplicative

model cdc13-1 yfg1∆ yfg2∆ should have an expected fitness of x× y. If yfg1∆ and yfg2∆

interact, the resulting fitness will deviate from the expected x× y, which implies that this

pairwise deletion exhibits epistasis.

8.4 Statistical modelling

Both QFA and miniQFA take place multiple times. This repetitive nature of the experi-

ments suggests that hierarchical modelling techniques should be considered while trying to

estimate the parameters of the model related to the identification of genetic interactions.

Hierarchical modelling will let us account for within ORF variability during the multiple
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screens and between ORF variability across all ORFs and multiple screens. In this sec-

tion we will first present a simple approach that was used in the frequentist framework in

earlier studies and use that model as a base to build and improve a Bayesian model.

8.4.1 A simple approach to modelling QFA

As suggested by Heydari et al. (2016) starting with the simplest version of the model

considering random effects and inclusion of all the interaction terms, the model is specified

as:

fclm = µc + Zl + γcl + εclm (8.2)

µc =

µ+ α, if c = 0

µ, if c = 1
γcl =

0, if c = 0

γl, if c = 1

Zl ∼ N(0, σ2Z)

εclm ∼ N(0, σ2),

where,

� c identifies the condition for a given orf∆. It takes the value 0 for the control strain

and 1 for the query,

� m is an index of an orf∆ replicate (denotes the repetition),

� l = 1, ..., L is an index of each orf∆,

� f is a measure of log-fitness.

fclm= log(Fclm+1); in the log-scale the multiplicative model becomes additive. Fclm

are the observed fitnesses.

� Zl represents the fitness of the orf∆ l. It is the random effect that allows us to

account for between orf∆ variation by estimating a single σ2Z .

� γcl is an estimate of genetic interaction for the orf∆ l .

One disadvantage of the model above is that we assume constant variance for all the

orf∆s. Other obstacles such as high computation and time demand for modelling variances

at the orf∆ level and potential restrictions in increasing the complexity of the model in

the frequentist paradigm led to adopting the Bayesian logic.

210



Chapter 8. Yeast robotic genetic studies

8.4.2 Bayesian hierarchical approach for modelling QFA

As Heydari et al. (2016) describe, the above model does not partition variation into pop-

ulation, genotype and orf∆s levels. Furthermore, in the random effects model of the

previous section, orf∆ level variation of the multiple repetitions cannot be modelled ef-

ficiently since the model assumes constant variance for all orf∆s. In addition, the large

number of random effects results in large matrices when the model is fit to data using

typical frequentist methods such as maximum likelihood, manipulation of which would

have high computational demands and would render calculations time consuming if not

impossible. Therefore, they introduced a Bayesian hierarchical model that can account

for all sources of experimental variation and incorporate prior beliefs based on conclusions

from previous experiments.

When modelling genetic interactions, it is very important to identify which of those

are significant and must be included in the model. Therefore in this part we will present a

Bayesian model that includes variable selection indicators based on the Kuo and Mallick

(1998) method for selecting suitable predictors for the model. This concept has already

been introduced in genetics in papers by Avery and Wasserman (1992) and Phenix et al.

(2011). In the latter paper, in order to identify and quantify causal interactions between

genes a strict “ON or OFF” signal is being used, denoting the presence or absence of

interactions without allowing intermediate levels of activity. In our case, we incorporate

this concept by denoting as δl the variable selection indicator for the l -th orf∆. The

indicator is equal to 1 if the corresponding interaction strength is included in the model

and to 0 if it does not. So, after incorporating priors that reflect experts opinions about

specifications, model 8.2 becomes (Heydari et al., 2016)

Fclm ∼ N(F̂cl, τε)

F̂cl = exp(fclm)

fclm = µ+ αc + Zl + δlγcl + εclm

µ ∼ N(0, τ−10 )

(8.3)

αc =

0, if c = 0

∼ N(0, τ−10 ), if c = 1
γcl =

0, if c = 0

∼ N(0, τ−1γ ), if c = 1

Zl ∼ N(0, τ−1Z )

εclm ∼ N(0, τ−1ε )

τε, τZ , τγ ∼ Ga(ατ , βτ )

δl ∼ Bern(pδ).
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Variation, denoted by the scale parameter of the normal distribution, is now expressed

in terms of precision. The equivalent DAG for 8.3 is presented in Figure 8.8.

fclmτε

µ αc Zl δlγcl

τz

τγ

δl γcl

Figure 8.8: DAG for the model 8.3 including variable selection indicators for genetic interaction.

The Bayesian model 8.3 uses variable selection indicators and prior distributions for

the parameters of interest. Our prior belief about the parameters that are systematically

distributed is expressed through a Normal distribution and Gamma priors are assigned to

precisions. In addition, a Bernoulli distribution is used for the variable selection indicator

with pδ probability of success, which reflects our prior belief about the inclusion probability

of the interaction parameters in the model.

8.4.3 Bayesian modelling of the miniQFA

For the miniQFA we want to identify the significant genetic interactions between telomeres

that show capping defects and simultaneous deletion of two non-essential genes. Based on

the previous two models (8.2 and 8.3) and assuming that l represents the ORF deleted

from the background screen and l′ the ORF deleted from the query screen, we define the

following model (Newman, 2017):

fclm = µ+ Zl + Zl′ + δll′γll′ + εclm

µ ∼ N(0, τ−10 ),
(8.4)

Zl =

0, if l = 1

∼ N(0, τ−1Z ), otherwise
δll′ =

1, if l = l’

∼ Bern(pδ), otherwise

212



Chapter 8. Yeast robotic genetic studies

Zl ∼ N(0, τ−1Z )

εclm ∼ N(0, τ−1ε )

τε, τZ , τγ ∼ Ga(ατ , βτ )

γll′ ∼ N(0, τ−1γ ),

� l denotes that ORF l is deleted first from the screen (query deletion) and l′ that

ORF l′ is the second deletion. Zl and Zl′ are the corresponding expected fitnesses.

ORF l = 1 for the neutral deletion, HIS3, and ZHIS3=0 so all the other ORF fitnesses

are contrasts from the neutral deletion.

� γll′ represents the genetic interaction strength between the two deleted ORFs.

� δll′ is the Kuo and Mallick variable selection indicator that determines whether there

is a significant genetic interaction between the two deleted genes and the telomere

cap defect.

For biological reasons it is expected that the order of gene deletion should not impact

the fitness. So, it is anticipated that the fitness of cdc13-1yfg1∆xyz2∆ should be similar

to cdc13-1xyz2∆yfg1∆. However, early experiments showed that this is not always valid

(Newman, 2017). Therefore, variations of the model consider different levels of symmetry

in the effects, as will be further described in Section 9.2.

The miniQFA experiment is of our particular interest since it constitutes the case

study on which we apply the Bayesian hierarchical modelling techniques developed and

examined in Chapters 3 and 6. Variations of models that could effectively describe the

miniQFA process can be explored. In this project we consider a two-way Anova structure

with random main and interaction effects. The main effects represent the two deleted

ORFs and their interactions represent the equivalent genetic interactions between the

genes of interest. In addition, the examined models take into account potential symmetry

in the effects. We approach variable selection using the Kuo and Mallick method since in

Chapter 6 we concluded that it appears to be more efficient for the type, structure and

size of the models that we study.

In the following chapter we will give an overview of the resulting dataset of the miniQFA

experiment, as well as present the specifications and results of various models explored

and built aiming to identify genetic interactions between the genes of interest related to

telomere capping defects.
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Case study: miniQFA – Yeast

robotic genetics

Highlighting important gene interactions in Saccharomyces cerevisiae can lead to under-

standing of how groups of genes connect and contribute to telomere length maintenance

in this model organism, with the potential to extend this knowledge to more complex

eukaryotes. The miniQFA experiment presented in Section 8.3 aims to identify epistatic

relationships between telomere defects and pairs of gene deletions. So, in this chapter,

firstly we will provide an overview of the dataset deriving from this experiment. Then,

we will focus on the specifications of the Bayesian hierarchical modelling methods used to

identify genetic interactions between genes that carry the mutation cdc13-1 and combi-

nations of simultaneous deletion of two genes, coming from a gene deletion library, that

could potentially affect telomere capping. Finally, we will present the results from various

models that concentrate on identifying significant interactions and show whether an exist-

ing telomere capping defect is being suppressed or enhanced by the absence of particular

combinations of genes.

9.1 miniQFA dataset

The dataset, resulting from the miniQFA workflow, includes information about the exper-

iment such as identification of the yeast colony by its exact position on the agar plate,

the experiment number and date. It also contains information about the conditions under

which the strains grow, such as the agar growth medium, that is designed to support the

growth of the micro-organisms and cells inoculated, and the temperature at which the

experiment took place. In this experiment temperature can take two values, either 27oC

or 33oC, due to the nature of temperature sensitive mutations applied to genes related to

telomere capping as discussed in Section 8.2.2.
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Measurements of fitness, that are actually cell density estimates, is another important

attribute provided in the dataset. Measures include the growth rate (r), the carrying

capacity (K) which is the number of a species that an environment can sustain, as well

as transformations in the log-scale and products. Previous research has shown that when

modelling QFA some interactions were only identified when K was used for measuring

fitness and not when other measurements were considered (Heydari, 2014). Therefore, it

is important to explore alternative models, using various measurements of fitness as the

response, and compare them by using statistical criteria such as the deviance information

criterion (DIC), as well as using knowledge about some already discovered interactions

that belong to known complexes. For each observation there is also information about

the pair of deleted genes. Equally important for the development of the model is the

knowledge about the background screen which is provided in the dataset. In some cases

the mutation cdc13-1 is applied, whereas other experiments use wild-type CDC13+ yeast

strains. A sample of the raw data is presented in Figure B.1 of the Appendix.

9.2 Statistical modelling specifications

The aim of this case study is to identify, through Bayesian hierarchical modelling, existing

genetic interactions between genes of interest that are deleted and the particular mutation

cdc13-1 that is known to affect telomere length. The resulting model contains estimates

for the strength of interaction effects, as well as the main effects of each gene separately

and of other important unknown parameters, such as the mean and various precisions that

constitute measurements of variation.

The models built for the yeast genome data are based on the statistical background

established in Section 3.3.2, where we explored variable selection on a non-standard hierar-

chical two-way Anova model with various cases of asymmetry in the main and interaction

effects. According to the results of the simulation study presented in Chapter 7, where we

examined both the Kuo and Mallick approach, and the Horseshoe priors, we concluded

that the first method appears to be more efficient for applying variable selection to the

interactions of the particular models of interest. Therefore, we follow this approach to

model the miniQFA, which is is treated as an extension of a two-way Anova model with

random effects, in accordance with the models explored in the simulation study (Section

7.3).

As we saw in Section 3.3.2.1, the model for the case where both the main and the

interaction effects are asymmetric is defined as:

Xijk|µ, αj , βk, Ijk, θjk, τ ∼ N(µ+ αj + βk + Ijkθjk, τ
−1)

where i = 1, ..., Njk, with Njk being the number of observations for the group with αj
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and βk. In addition, j = 1, ..., nα and k = 1, ..., nβ, with nα representing the number of

levels for the first and nβ the number of levels for the second categorical variable. For the

miniQFA, the numbers of levels represent the numbers of different genes in each of the two

gene groups. The response variable is the fitness measure, that is already available in the

dataset, and measures the growth of the yeast colonies. The main effects are grouped in

two categorical variables. The first variable (αj) is related to the first gene deletion and the

second (βk) refers to the second group of orf∆s. The interactions in the model represent

the genetic interactions between the examined genes from the first and the second groups.

Variable selection is applied on these interactions, in accordance with the logic followed

throughout the previous relevant chapters, in order to distinguish between the ones that

appear to be more meaningful for the model and the ones that are less significant.

Various levels of asymmetry in the effects are also considered in the model. The levels of

asymmetry in the main effects and interactions accounted for throughout the development

of the modelling logic have a biological origin. For biological reasons, it is expected that

ORF fitness distributions behave similarly regardless of whether a gene of interest is deleted

first or second. So, it is expected that the fitness of cdc13-1yfg1∆xyz2∆ should be similar

to cdc13-1xyz2∆yfg1∆. Model variations using symmetric main effects and interactions

reflect this idea. For symmetric main effects, the fitness of the two deleted ORFs come

from the exact same distribution and gene library. In addition, for symmetric interaction

effects the variable selection indicator and the effect of the interaction yfg1∆xyz2∆ are

equal to those of xyz2∆yfg1∆. However, early experiments showed that this assumption

does not always hold (Newman, 2017). To account for this discrepancy, models with

asymmetric effects for both main and interaction terms are explored. In this case, the

main effects come from a different distribution and gene library and the effect for the

interaction yfg1∆xyz2∆ is different from the effect for xyz2∆yfg1∆. A final combination

for symmetry that is reasonable for this experiment is the asymmetric main effects with

symmetric interactions. In this variation we assume that the sequence in which the genes

of interest will be deleted plays an important role in the resulting fitness, nevertheless

their interactions are the same regardless of which gene is deleted first.

The resulting interactions are graphically illustrated through genetic interaction plots

(GIS plots), an example of which is presented in Figure 9.1. These plots contain thousands

of interactions, often difficult to interpret, therefore they are searchable, and supplemen-

tary tables and lists of pairwise deletions are usually used to facilitate demonstration of

results. GIS plots display how the observed fitness deviates from the predicted fitness

under the assumption of no epistasis. The labelled interactions show the most significant

deviations and correspond to interactions with inclusion probability greater than 0.7. This

probability was selected arbitrarily as a pragmatic choice. The horizontal axis represents

the computed ‘predicted fitness’ assuming no interactions occur between the examined
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genes. The values are calculated by adding the individual main effects and the overall

mean. These values reflect Fisher’s multiplicative model of epistasis assumption for what

impact on fitness is expected when each gene is deleted. The vertical axis represents the fit-

ted value of the fitness measure for each pairwise deletion including the interactions. They

are the result of the summation of the individual main effects, their interaction effects and

the mean. Points marked with green represent mutations (deletions of two genes) that

cause phenotypic enhancement. Thus, even less yeast strains that already have a telom-

ere capping defect, such as cdc13-1, survive in the absence of the two genes of interest.

Equivalently, mutations marked with red suggest suppression of the telomere capping de-

fect. This implies that with the absence of these genes the mutant cultures grow more

than they would without this pairwise deletion. For both the phenotypic enhancement

and suppression categorisation we consider interactions with inclusion probability greater

than 0.7. We denote with blue the deletions that show no interaction with the telomere

capping defect. We assume that interactions with inclusion probability less than 0.7 fall

in this category. These points lie close to the line of equal growth, denoted with a dashed

grey line. Double mutants of the form yfg∆yfg∆, with a repeated deletion are marked

in purple. They are expected to be unviable, and hence have zero or very low fitness.

Deviation from double-l mutants’ expected low value might indicate that neighbouring

strains have occupied the space of the colonies that did not survive (Newman, 2017). This

effect is investigated by Boocock and Lawless (2017) that describe a mechanistic model of

the diffusion of nutrients through agar.

The knockout library for the first gene deletion consists of 113 genes and for the second

of 143 different genes. For the models that incorporate symmetry in the main effects, we

assume that both gene deletions derive from the biggest library. It is worth mentioning

at this point that, for the statistical modelling, numerical values are assigned to gene

names deriving from two gene libraries. For the models with symmetric main effects,

only the biggest gene library is used, resulting to “missing” levels for the first categorical

variable. This has already been considered in the simulation study (Section 7.1), in which

we ensured that the code can handle “missing” levels.

Previous research has shown that the genes POT1 and DPH5 cause unexpected be-

haviours, therefore it is suggested that they are removed (Newman, 2017). Consequently,

these genes were discarded from the library and the corresponding observations were re-

moved from the dataset. Various models at different experimental temperatures, either

27oC or 33oC, with varying fitness measurements can be explored. For each model a subset

of the original data is selected, according to specific experimental conditions examined. In

all cases the resulting subset of data involves approximately 83,000 observations.
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9.3 Results from statistical modelling

Different combinations of model specifications and experimental conditions lead to vari-

ations of models related to inferring genetic interactions. In Section 6.2.4 it was shown

that the parallel version of TWIiS, for the particular type of modelling that we examine,

performs better for problems with increased complexity in terms of number of levels of

the categorical variables and sample size. Therefore, for speed and efficiency this version

was used to build the models explored and presented in this section. Their results and

effects on telomere capping are illustrated through GIS plots. All results derive from one

million iterations of the Gibbs sampler with a thinning factor of one hundred. The sci-

entific conclusions drawn in this section are the result of a single run, however MCMC

runs were repeated multiple times from different random starting points to ensure that

the results are consistent. In consistence with the logic followed in the simulation study

(Chapter 7), diagnostic tests were conducted to assess the posterior behaviour of the yeast

genome modelling parameters. More precisely, we look at the traceplots of the estimated

parameters to assess mixing, the autocorrelation plots that should follow a decreasing ten-

dency and the univariate marginal posterior plots. Samples of these diagnostic plots for

the following models are presented in Appendix B.2 and relevant references are available

in the sections of the models that follow.

In the following sections we will explore various models that fit to subsets of the

miniQFA dataset with particular specifications of interest. We will focus on using the

growth rate r as a measure of fitness since it was considered an important fitness mea-

surement in previous relevant research.

9.3.1 Case study 1: Using the growth rate (r) as measure of fitness and

cdc13-1 mutant strains

The first case study considers using the growth rate r, as a measure of fitness for cdc13-

1 mutant yeast strains. The two-way Anova model with random effects fitted on the

subset of the original dataset with the desirable characteristics includes variable selection

using the Kuo and Mallick approach on the interaction effects. We explore the fitness

behaviour at two different temperatures 33oC and 27oC to see how incubation conditions

affect genetic interactions.

In miniQFA the background screen consists of the yeast strain BY4741, with additional

mutations applied for the synthetic genetic array (SGA) technique described in Section

8.2.1 and the temperature sensitive mutation cdc13-1. The query screen is considered to

be the first gene deletion and a second gene deletion is additionally applied, resulting in

the pairwise deletion examined. Therefore, the model can also be viewed as a three-way

Anova, where the mutation can be considered as the first categorical variable with one
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level.

9.3.1.1 Temperature: 33oC

The first model explored in this case assumes that both the main and interaction effects

are asymmetric, and involves cdc13-1. The corresponding GIS plot is presented in Figure

9.1. To see the impact of accounting for symmetry in the effects, a second model was

fitted that treated both the main and the interaction effects as symmetric. The resulting

GIS plot is displayed in Figure 9.2. Finally, we explored an additional model to see how

epistatic genetic interactions are formed in the case where only the interaction effects are

considered to be symmetric. The GIS plot illustrating these relations is available in Figure

9.3. The posterior results and diagnostics were checked for all the cases. Indicatively some

traceplots and autocorrelation plots are available in Appendix B.2.
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Figure 9.1: Genetic interactions plot for experiment: cdc13-1 at 33oC with r as measure of fitness.
Both main and interaction effects are asymmetric.

These plots as expected show that there is vaguely a linear relationship between the

variables and therefore a linear model was correctly assumed to be appropriate for fitting

the data. In addition, GIS plots are anticipated to have three main areas of concentrated
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Chapter 9. Case study: miniQFA – Yeast robotic genetics
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Figure 9.2: Genetic interactions plot for experiment: cdc13-1 at 33oC with r as measure of fitness.
Both main and interaction effects are symmetric.

points. One area is above the line of equal growth for the majority of the interactions

that cause phenotypic suppression, one mass below the line for the enhancement and one

on the line of equal growth for the interactions that appear to not affect the telomere

capping defect. Furthermore, additional interactions from each category are expected to

be spread further away from the majority indicating stronger impact on the background

screen. This is valid for the models that treat the effects as either both asymmetric or

both symmetric as shown in plots 9.1 and 9.2 respectively. The last model accounting for

the assumption that only the interaction effects are symmetric appears to slightly deviate

from this notion and additionally presents negative fitted values for some interactions.

Double repeated deletions indicated in purple are expected to show low observed fitness

as shown in Figures 9.1 and 9.2 as usually these mutant strains are not able to survive.

Higher values can also be observed if neighbouring growing colonies on the agar plate

occupy the spot of repeated deletion mutants, and therefore they are falsely categorised.

Regarding the last model, one disadvantage of presenting its results using a GIS plot

is the fact that since the labels are named after the interactions and the interactions

220
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Figure 9.3: Genetic interactions plot for experiment: cdc13-1 at 33oC with r as measure of fitness.
Only the interaction effects are symmetric.

are symmetric there should be only one label per interaction as the order is not impor-

tant. However, the points on the graph also include information about the main effects,

therefore, in order to be able to distinguish between the sequence of gene deletions two

different labels are used. For example, for the point RAD17 RAD24 the y-axis shows the

value of adding µ to the main effect estimate for RAD17 which was the first deletion,

the main effect for RAD24 which was the second deletion and the interaction effect for

RAD17 RAD24. Similarly, the point RAD24 RAD17 has a fitted value calculated from

adding µ to the main effect estimate for RAD24, the main effect for RAD17 and the inter-

action effect for RAD17 RAD24, since for symmetric interactions we assume that only one

interaction exists for this combination of genes and implementationally we set the estimate

for RAD24 RAD17 to be equal to RAD17 RAD24. Then, the label RAD17 RAD24 would

be presented twice in the plot without further information about the sequence of deletion

that matters for the main effects.

In this case study three different models were fitted on the same dataset. The decision

regarding the model that best describes the biological phenomenon examined is multifac-
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torial. Apart from the expected behaviour reflected on the GIS plots mentioned earlier and

the symmetry assumptions presented in Section 9.2, from a biological perspective, simpler

and sparser models are preferred. All models estimate a similar posterior inclusion prob-

ability for the interactions, with the model treating both the main and interaction effects

as symmetric having p = 0.19, slightly better than its alternatives (both p = 0.22). We

will look at the estimated interactions per category for the models with both main and

interaction effects as symmetric and both asymmetric. Table 9.1 summarises the interac-

tion classification from both models and the number of common elements per category.

As expected the model with both the main and interaction effects as symmetric identi-

fies fewer enhancements and suppressions leading to a model with a decreased number of

interactions. Please note that a posterior inclusion probability p = 0.22 indicates that a

subset with approximately 20% of the interaction variables is considered to be important

and should be included in the model. However, for the genetic experiment and presenta-

tion of results we further restrict the interaction significance and we categorise as causing

phenotypic enhancement or suppression the interactions that have inclusion probability

greater than 0.7. Hence, the ratio of the important interactions over their total number,

as presented in the table, is less than the posterior mass.

Table 9.1: Classification of interactions per category from models with both main and interaction
effects being asymmetric versus symmetric.

Category Both asymmetric Both symmetric Common

Repeated deletion 111 111 111

No interaction 14,230 9,127 6,508

Phenotypic enhancement 322 208 91

Phenotypic suppression 988 535 252

Tables that present the top 20 suppressor and enhancer combinations for these three

scenarios, ranked by the strength of the estimated genetic interaction are available in

Appendix B.2 (Tables B.1 and B.2).

From a statistical point of view, we presented in Section 2.5 some alternative ways used

in the Bayesian framework for model comparison. One criterion which is easy to estimate

when using MCMC and often encountered in the literature is the deviance information

criterion (DIC). It uses the log-likelihood to calculate the deviance, a goodness-of-fit statis-

tic, and penalises models with large numbers of parameters in favour of sparser models.

Models with smaller DIC are preferable. Table 9.2 displays the DIC values for the three

models examined in this section. All values are close, precluding drawing firm conclu-

sions. Besides, information from predictive criteria is usually combined with field-specific

knowledge. Therefore, conclusions about the preferred model should be made after further

biological exploration of the results.

222



Chapter 9. Case study: miniQFA – Yeast robotic genetics

Table 9.2: Deviance information criterion for models regarding mutant cdc13-1 yeast strains with
growth rate (r) as fitness measure at 33oC

Case DIC

Both asymmetric 299,682.8

Both symmetric 306,529.4

Symmetric interactions 301,414.3

In genetics, biological pathways are series of actions that trigger molecular events

leading to creation of molecular products or changes in the state and processes of a cell.

Proteins can contribute to more than one biochemical pathway along with other proteins,

forming complexes. Regarding S. cerevisiae there are some known protein complexes con-

tributing to mechanisms such as DNA damage repair and telomere maintenance. MiniQFA

aims to extend this knowledge through identification of additional pairwise interactions.

The Saccharomyces Genome Database (2020) provides detailed lists of explored interac-

tions resulting from various studies on this microorganism. Regarding the evaluation of

the actual interactions classification, study of the GIS plots for both the model with asym-

metric main and interaction effects and the symmetric model, and cross-validation of their

results with existing interactions in the database, proved that many known relations be-

tween genes are indeed among the model estimates. However, not all known interactions

are expected to be present in the plot, since they are not all involved in pathways related

to telomeres.

One example of epistatic interactions based on the results of the modelling process

involves the gene RAD24. According to the European Bioinformatics Institute (EMBL-

EBI, 2020), Rad24 is a checkpoint protein that forms a complex with replication factor

C (RFC) proteins, further loading the Rad17-Mec3-Ddc1 complex, which is also called

“sliding clamp”. This complex detects DNA damage and sends signals to halt progression

of the cell cycle and activate the repair mechanism. Looking in Figures 9.1 and 9.2 we can

see that in the region illustrating the interactions that enhance the telomere capping defect,

there are two pairwise deletions “RAD24 RAD17” and “DDC1 RAD17” that reflect this

protein cooperation, showing that the model identified correctly proteins involved in the

same pathway. Their presence and position in the plot further implies that their pairwise

absence affects, and in fact enhances, the cdc13-1 telomere capping defect.

On the other hand the pairwise deletion “EDE1 RAD9” is situated above the dashed

line of equal growth and appears to suppress the telomere capping defect. Even though

there is not available research in the literature at the moment to assess this potential

interaction, Ede1 is a protein involved in “cytokinesis”, which is the process of cell division.

Rad9 participates in protein complexes that are related to DNA damage, such as the

Rad9-Hus1-Rad1 (9-1-1) complex which is a sensor for DNA damage, therefore, a possible
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relation is plausible, and so potentially could be subjected to further biological research.

9.3.1.2 Temperature: 27oC

Temperature sensitivity plays an important role in the outcome of the miniQFA experi-

ment as yeast colonies with certain mutations and antibiotic resistance behave differently

depending on the incubation conditions. One way to point out this difference is through

illustrating, in Figure 9.4, the GIS plot for the model that accounts for both the main

and interaction effects as asymmetric, fitted on the dataset where the measure of fitness

is still the growth rate and the background screen is cdc13-1 mutant yeast strains, but

the experimental temperature is 27oC. Comparing this GIS plot to the equivalent Fig-

ure 9.1 for 33oC, we can see that some of the most distinguishable interactions involve

different genes. For example the interaction “PPH3 RAD24” is identified as causing phe-

notypic suppression of the telomere capping defect in both cases but is further away from

the mass in the experiment at 27oC. According to the Saccharomyces Genome Database

(2020), PPH3 regulates recovery from the DNA damage checkpoint.
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Figure 9.4: Genetic interactions plot for experiment: cdc13-1 at 27oC with r as measure of fitness.
Both the main and interaction effects are asymmetric.
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It would be interesting to see how many interactions per category are mutually identi-

fied from these two models at different temperatures. Table 9.3 summarises these results

and points out that most of the interactions estimated at 27oC that appear to have no

impact on the telomere defect are also identified by the model fitted on the dataset for the

experiment at 33oC. The categories with phenotypic impact show greater divergence, with

the model at 27oC identifying more pairwise combinations to have a considerable impact

on the scientific question that we explore.

Table 9.3: Classification of interactions per category from the models with both main and inter-
action effects being asymmetric at 27oC and 33oC.

Category
Both asymmetric

at 27oC

Both asymmetric

at 33oC
Common

Repeated deletion 111 111 111

No interaction 12,086 14,230 11,276

Phenotypic enhancement 1,891 322 167

Phenotypic suppression 1,563 988 308

As in the previous cases, to assess the posterior output we looked at the traceplots of

the estimated parameters, which showed good mixing, the autocorrelation plots that had

a decreasing tendency and the univariate marginal posterior plots. Indicatively we present

some of these diagnostic plots in Appendix B.2 (Figure B.3).

9.3.2 Case study 2: Using the growth rate (r) as measure of fitness and

CDC13+ wildtype strains

Another model that has biological interest is related to the subset of observations for

which the wildtype CDC13+ yeast strain was used as a background screen. Two genes of

interest are also deleted as in the case of the cdc13-1 mutants and the growth rate is used

to measure fitness. Now, the interactions are not in the background of a telomere capping

defect, but they are still relevant to telomeres and potentially participate in biological

pathways and protein complexes related to them, since most of the genes selected for the

miniQFA showed some connection with these chromosomal structures. The classification

in this case shows whether the expected fitness for the pairwise deletion examined is greater

or less than the actual fitness, meaning that the absence of these genes had a negative or

positive impact in yeast culture growth respectively. Similarly to the previous models we

looked at the posterior diagnostic plots of the estimated parameters, examples of which

are available in Appendix B.2 (Figure B.4).

The GIS plot for the model that treats both the main and the interaction effects as
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symmetric is available in Figure 9.5. Among the genes that appear often are COX10,

CTK1 and CBC2. According to the Saccharomyces Genome Database (2020) the first is

involved in the biosynthesis of heme A, a molecule vital for oxygen carrying. CTK1 and

CBC2 are related to RNA regulation and RNA cap-binding respectively. Their potential

impact along with their paired genes to telomeres could be further biologically explored.

Comparison of the mutually identified interactions and classification of this model and

the equivalent for the cdc13-1 mutant yeast strains is available in Table 9.4. Most of

the pairwise deletions that appear to present no interaction in the model that we have

examine are common for both models. However, there are not many common interactions

for the deletions that appear to have a negative or positive impact on growth and the

equivalent model for the mutants with respect to the values for phenotypic enhancement

and suppression, that can alternatively be seen as showing whether the deletion had a

negative or positive effect in the fitness of the yeast cultures studied.
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Figure 9.5: Genetic interactions plot for experiment: CDC13+ at 33oC with r as measure of fitness.
Both main and interaction effects are symmetric.
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Table 9.4: Classification of interactions per category from the model with both main and interaction
effects being symmetric at 33oC using CDC13+ as background screen.

Category
Both symmetric

CDC13+

Common with

cdc13-1

Repeated deletion 111 111

No interaction 7,765 7,193

Negative growth impact 1,280 73

Positive growth impact 825 55

9.3.3 Additional case studies

There exist many combinations of experimental and biological specifications that can be

explored through variations of the two-way Anova models with random effects and variable

selection that we examine. Apart from the models presented in the previous sections we

also fitted additional models that considered alternative fitness measures such as “r logK”

and “logK”. However, the results suggested a potential non-linear relationship and in-

appropriateness of the two-way Anova model that we explored, or estimated inclusion

probabilities close to 0.4 affecting negatively the sparsity assumption. An example of the

resulting GIS plots from using logK as fitness measure at 33oC for the cdc13-1 mutant

background screen is available in Appendix B.2 (Figure B.5).

Depending on the genetic problem and scientific question, further model variations can

be explored and evaluated efficiently using the parallel version of TWIiS. The results pre-

sented are for one million iterations of the Gibbs sampler. As we discussed throughout the

sections of this chapter where we presented the results from various models, for this num-

ber of iterations, the posterior output of the yeast genome modelling parameters showed

good diagnostic plots, with the traceplots indicating mixing and the autocorrelation plots

following a decreasing tendency.

The results for one million iterations of the Gibbs sampler for the particular models that

we use for the yeast genome dataset, with the specific model assumptions that we discussed

in earlier sections, were available within approximately three hours (using 8 cores and 32

GB memory). For the same models, dataset and computing resources, benchmarking

showed that JAGS needed approximately twenty-nine hours, rendering TWIiS almost ten

times faster. The fast processing time and flexibility in adjusting certain model parameters

allows scalability of the problem in terms of variables and sample size, and renders quick

model exploration feasible.
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Chapter 10

Conclusions and further work

In this chapter we present the main objectives, contributions and conclusions of this re-

search project, and discuss some possible directions for future work.

10.1 Objectives and contributions of the thesis

The primary objective of this thesis was to approach the computational and implementa-

tional aspect of Bayesian hierarchical modelling with a functional programming perspec-

tive and assess whether it improves scalability and performance of the MCMC algorithm

used, compared to programs written in more classic probabilistic programming languages.

In particular, the model of interest was a two-way Anova with interactions and random

effects. Variations of the model accounted for different levels of asymmetry in the effects,

with the main and/or interaction effects being symmetric/asymmetric, based on the ra-

tionale of the genetic experiment that was used as a case study. Variable selection was

applied on the interactions using two main methodologies; indicators and adaptive shrink-

age priors. Identification of the technique that appears to be more appropriate for this

type of model was an additional aim. The models were fitted using a Gibbs sampler de-

veloped in Scala, a programming language that integrates functional and object-oriented

features. Assessment of the results and performance was conducted through comparison

against JAGS. Additional implementations in Stan and Rainier, both using Hamiltonian

Monte Carlo (HMC), were also explored to evaluate the performance of HMC for these

models. The final objective of this research project was to apply the developed method in

a case study from the field of yeast genetics.

Through the simulation study presented in Chapter 7, we investigated the results and

performance of the Gibbs sampler code written in Scala, referred to as TWIiS (Two-way

Interactions in Scala), against JAGS, which was developed in R through the library ‘rjags’.

Our main contribution was to show that TWIiS is more efficient than the equivalent JAGS
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code for various levels of model complexity and sample size that were tested. The extent

to which TWIiS is more performant than JAGS depends on the model specifications.

The metric that was used for efficiency comparison is the effective sample size per second

(ESS/sec) that accounts not only for the computational time but also for how well the

algorithm mixes. Further efficiency gain for TWIiS was achieved for models with increased

number of covariates and observations with the parallel version of the code. Parallelism

takes advantage of the multicore technology by spreading some of the computational work-

load across the available nodes.

In the same Chapter we compared two variable selection methods, the Kuo and Mallick

approach and the Horseshoe prior, that were embedded in the Gibbs samplers developed

in TWIiS and JAGS. It was also shown that the first methodology appears to be more ef-

ficient and appropriate for the special cases of two-way Anova models with random effects

that we examine. Variable selection indicators follow discrete distributions, therefore this

technique cannot be used along with HMC that only supports continuous variables. Hav-

ing studied the Gibbs sampler’s performance along with the Horseshoe prior, we further

explored how this continuous prior method performs with HMC using Stan and Rainier.

The results showed that our implementation of a Gibbs sampler appears to be more per-

formant for the type of models that we study, compared to HMC.

The last contribution of this thesis is related to the scientific understanding of the

yeast genetic experiment from which the dataset of our case study derives. The miniQFA

experiment that we studied aims to identify genetic interactions between genes of interest

and specific mutations that cause telomeric defects applied to yeast strains. Using TWIiS

to fit Bayesian hierarchical models to subsets of the original dataset with specific experi-

mental characteristics enables fast exploration and identification of interactions that are

potentially significant after being subjected to further biological evaluation. This analysis

is presented in Chapter 9, which is devoted to the statistical modelling of the yeast genome

case study.

10.2 Conclusions

After introducing some key notions of Bayesian inference in Chapter 2, we presented three

widely used MCMC algorithms, Metropolis–Hastings, the Gibbs sampler and Hamiltonian

Monte Carlo. We also explored variable selection methods in the Bayesian framework and

we focused on two categories, variable selection indicators and in particular the Kuo and

Mallick approach, and the adaptive shrinkage priors and specifically the Horseshoe prior.

In Chapter 3, we introduced hierarchical two-way Anova models that include two

categorical variables, and their interactions on which we applied variable selection. The

effects were treated as random, and different levels of symmetry in the effects resulted in
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four model variations for each variable selection method. The Gibbs sampler, selected to be

used for our modelling approach, requires calculation of the full conditional distributions of

the unknown parameters. The derivation of the full conditionals for our models of interest

was presented in this Chapter. Unlike R where there are libraries, such as ‘rjags’, that

implement a Gibbs sampler, in Scala we had to develop the algorithm from the ground

up. Therefore, the full conditionals presented here were used to develop TWIiS, the Scala

program for the desired model specification.

Chapter 4 contained a literature review of the existing strategies for scaling Bayesian

inference methods that can be computationally expensive. As shown, they can be cat-

egorised in two main directions, subsampling and divide-and-conquer strategies. The

first category refers to methodologies that use subsets of the initial dataset to estimate

expensive calculations such as of the log-likelihood at the accept/reject step of MCMC al-

gorithms. The second involves strategies that take advantage of computing resources and

parallelisation to speed-up the sampling process. Most of these methodologies have limited

application to hierarchical models, since in this case there are both common and group-

specific parameters, therefore we mentioned other approaches that have been developed

for this purpose.

Since we implemented the examined methods using functional programming, we pre-

sented in Chapter 5 some principles of this programming paradigm that were followed

during the development of the code. We also showed how terms and ideas that derive

from category theory are embedded in functional programming features to enable code

re-usability. Furthermore, we showed that probabilistic programming can be incorporated

in the functional framework, and we presented Rainier, that was later explored as an

alternative approach to TWIiS and JAGS.

In Chapter 6 we presented some implementational details for TWIiS, JAGS, Stan and

Rainier, the alternative approaches considered for the two-way Anova model of interest,

with particular emphasis on the first. Particularly for TWIiS we concluded that the choice

of the main structure used to store the data has a significant impact on the efficiency

of the code. The structure affects the time for search and basic calculations that are

repeated multiple times due to the iterative nature of the sampling process. In addition,

we explained the logic behind the parallel version of TWIiS and the main differences

between the serial and the parallel implementation. Due to the nature of the Bayesian

algorithms, only conditional independent variables can be updated in parallel. Therefore,

parallelism was mostly applied to update the interaction coefficients. When writing code

in Scala, there is flexibility in the degree of functional features that can be incorporated

in the code. Benchmarking tests showed that for the serial version, less functional parts

of the code, such as mutable structures, were more performant than more functional

alternatives. However, converting these parts to functional was necessary in order to

230



Chapter 10. Conclusions and further work

avoid concurrency problems during parallelisation. Finally, after exploration of the effect

of parallelism on efficiency using benchmarking, we concluded that for smaller numbers of

interactions and sample sizes, the parallel version had negative impact on the runtime due

to the overhead caused by splitting and combining the workload to and from the worker

nodes. As the problem size, in terms of model complexity and data size, increased, the

parallel implementation became more efficient than the serial version.

In Chapter 7 we presented the results of the simulation study with two main aims:

firstly, to evaluate and assess the results and performance of TWIiS against JAGS, and

secondly to determine which of the two variable selection techniques that were explored

appear to be more appropriate for the models studied. For both variable selection using

indicators and Horseshoe priors, we used three different synthetic datasets with varying

model and sample sizes to explore the impact of complexity and data size on efficiency. The

two smaller examples both involved 10,000 observations. Regarding the number of levels

for the two categorical variables, the first example included 15×20 levels, and the second

50×60. The third and larger example involved 113×143 levels and we have two variations,

one with 10,000 and one with 80,000 observations to approximate the characteristics of

the real dataset of the case study explored in Chapter 9.

Analysis of the results revealed agreement between the estimated and the true coef-

ficients of the synthetic datasets for both JAGS and TWIiS. The posterior MCMC di-

agnostics to assess mixing and convergence included visual evaluation of traceplots and

autocorrelation plots that did not present any visible anomalies. Overlaying the posterior

density plots produced from the results of both JAGS and TWIiS showed overlapping plots

and suggested similarity in the posterior estimates. The only inaccuracy in the findings

was identified for JAGS and the Horseshoe prior method. In this case, some interaction

coefficients that were simulated to be zero, were assigned high values by the program,

wrongly suggesting that they should be included in the model. The effective sample size

per second (ESS/sec) was used as an efficiency measure to account not only for the quality

of mixing but also for the actual runtime. In all cases TWIiS was more efficient than the

equivalent JAGS code. The degree of efficiency improvement using TWIiS varied depend-

ing on the model and variable selection method. For the small example with 15×20 levels

and the assumption that both the main and interaction effects were asymmetric using the

variable selection indicator method, the performance improvement with TWIiS reached

approximately nine times against JAGS whereas, it dropped to approximately three times

for the larger model with 113×143 levels. Conclusions from this chapter continued with

comparison between the two variable selection approaches. The Kuo and Mallick method

appeared to be more efficient than the Horseshoe prior in all examples considered. The

additional inaccuracy of the Horseshoe prior that identified some false positive interac-

tions as important, renders the use of variable selection indicators a safer approach to
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the variable selection problem considered. Comparison of these examples with escalated

complexity helped us decide that using TWIiS with variable selection indicators is a better

option for our real-world scientific application.

A secondary analysis in this chapter involved application of the Horseshoe prior along

with Hamiltonian Monte Carlo through Stan in R and Rainier in Scala. The latter showed

poorer performance, required longer runtimes and was less efficient than its counterparts.

Regarding Stan, after exploring and identifying the appropriate tuning parameters, it

showed fast mixing, and convergence in a small number of iterations, which counterbal-

anced the increased runtimes and led to efficiency metrics that showed similar performance

to JAGS for the particular example that we studied. We also concluded that Stan showed

faster mixing for the main effects, as opposed to JAGS and TWIiS that presented faster

mixing for the interaction coefficients, which indicates that this difference could be deriv-

ing from using HMC or Gibbs sampler. Overall, the Gibbs sampler appeared to be more

appropriate for our models.

In Chapter 8 we set the biological background and explained the miniQFA genetic

experiment. We discussed its relevance to yeast genomics and telomere biology and its

aim to identify combinations of genes, deletion of which has a potential impact on telomere

capping defects that are caused by mutations on a particular non-essential gene for the

survival of yeast strains. Various models could be explored regarding specific experimental

characteristics of interest such as temperature and fitness measure. The results of fitting

the models discussed in previous chapters, on some subsets of the yeast genome dataset

were presented in Chapter 9. All subsets involved 111 different genes for the first gene

deletion, that constitutes the first categorical variable, and 141 for the second, and a

sample size of 83,000 observations. Regarding the programming implementation used to

fit these models, we selected the parallel version of TWIiS using indicators for variable

selection, since as we proved in earlier chapters this combination was the most efficient

among the alternatives examined for the size and complexity of the model. Biological

investigation is required to further validate the results.

10.3 Further work

In this section we will highlight some areas in which further work would be valuable.

In this thesis we focused on using a Gibbs sampler for Bayesian variable selection on

the interactions of two-way Anova models. Our main comparison was between TWIiS and

JAGS and we only explored Stan and Rainier as alternative approaches. Stan was initially

slow, but after tweaking its parameters it showed improvement. Further investigation

could potentially decrease long runtimes that occurred from fitting more complex models.

From a statistical and computational perspective, another MCMC algorithm that we
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could explore is Reversible Jump MCMC (RJMCMC). This algorithm allows changes in

the dimension of the parameter space between iterations. This characteristic appears

in variable selection for which we observe a varying parameter space at every iteration

depending on the variables that are included or excluded. It would be interesting to

see the application of RJMCMC on the two-way Anova models with the specifications

considered, and assess its results and performance. NIMBLE (2020) is an R package that

has an RJMCMC sampler for variable selection and could be used for future exploration.

An alternative approach to MCMC algorithms, are the variational Bayesian inference

methods, such as the mean field variational Bayes (MFVB). Rather than using sampling,

variational inference is based on finding the best approximation of a distribution among a

parameterised family using optimisation that minimises the Kullback-Leibler (KL) diver-

gence to the exact posterior. Variational inference appears to be more computationally

efficient than MCMC methods since it takes advantage of fast optimisation techniques

and is often used for large datasets related to computational biology, computer vision and

many others. However, variational inference results to a density that is close to the tar-

get, unlike MCMC methods that produce asymptotically exact samples from the target

density (Blei et al., 2018). Tan and Nott (2013) focused on applying variational Bayes

methods for generalised linear mixed models (GLMMs) and tested centred, non-centred

and partially non-centred parameterisations on various datasets. They concluded that

the partially non-centred parameterisation produced a fit that was close to the result of

a Gibbs sampler and had faster convergence. Therefore, variational inference techniques

could potentially also be explored for our models in the future, even though it is not clear

without further investigation whether it will be straightforward and beneficial to develop

MFVB approximations for the non-standard models considered in this thesis.

Regarding the code developed in Scala TWIiS is not a generic program at the moment.

It is focused on specific modelling assumptions, for example regarding prior distributions,

rendering model exploration less agile. Developing a probabilistic programming language

and a corresponding library in Scala, could fill the current gap and facilitate Bayesian

learning in the field of functional programming. Furthermore, we implemented a single

chain sampling method. It would be interesting to see how the code could extend to embed

and support multiple chains, and how we could take advantage of parallel programming

and multiple cores to run these chains in parallel. This improvement could potentially

lead to additional efficiency gain.

Concerning the application area and the yeast genome case study, further validation

of the results, through experimental exploration and literature research, is necessary to

assess which identified gene interactions could have scientific interest. Exploration of ad-

ditional models and different distributions could reveal whether alternative models would

be more appropriate in some cases. According to Heydari (2014), apart from the nor-
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mal distribution used to model the orf∆ fitness, Student’s t-distribution could also be

appropriate, or even preferable. Finally, the model comparison applied in Chapter 9 was

fairly informal, and the reason is twofold. Firstly, evaluation of biological models cannot

be conducted strictly by using statistical criteria, as there are specific genetic behaviours

that are expected to be observed in the results, and models that reflect these expectations

are preferred by biologists. Secondly, Bayesian model comparison is a difficult statisti-

cal problem because according to Gelman et al. (2013), the first category of comparison

techniques that are based on expected predictive accuracy, present flaws and are often un-

reliable. In a more fully Bayesian approach, the Bayes factor also presents challenges, as it

involves the marginal likelihood that is sensitive to model assumptions. Therefore, further

scientific judgement is necessary and decision upon model choice varies with context.
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Variable selection using Horseshoe

priors

A.1 Synthetic dataset 15x20

(a) Both symmetric - variable: γ8,12 (b) Symmetric interactions - variable: α11
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(c) Symmetric main - variable: Z7 (d) Both asymmetric - variable: β15

(e) Both asymmetric - variable: β3 (f) Both symmetric - variable: µ

Figure A.1: Diagnostic plots (a, b, c, d) and posterior density plots comparison (e, f) for variable
selection with Horseshoe prior. Example 1: 10×15 levels.

(a) JAGS (b) TWIiS

Figure A.2: Heatmaps of the interaction strengths using variable selection with the Horseshoe prior
for the case of both main and interaction effects as asymmetric. Example 1: 15×20
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A.2 Synthetic dataset 50x60

(a) Both symmetric - variable: Z50 (b) Symmetric interactions - variable: γ31,32

(c) Symmetric main - variable: µ (d) Both asymmetric - variable: α42
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(e) Both asymmetric - variable: γ49,52 (f) Both symmetric - variable: Z50

Figure A.3: Diagnostic plots (a, b, c, d) and posterior density plots comparison (e, f) for variable
selection with Horseshoe priors. Example 2: 50×60 levels.

Figure A.4: (a) Comparison - αs
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(b) Comparison - βs

Figure A.4: Comparison of main effects means estimated from JAGS and TWIiS for the case of
symmetric interactions. Example 2: 50×60

(a) JAGS (b) TWIiS

Figure A.5: Heatmaps of the interaction strengths using variable selection with the Horseshoe prior
for the case of both main and interaction effects as asymmetric. Plot (a) highlights problematic
identification γ14,1 = −600 for JAGS. Removal of this value leads to a JAGS heatmap similar to
TWIiS. Example 2: 50×60
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(a) JAGS

(b) TWIiS

Figure A.6: Heatmaps of the group means using variable selection with the Horseshoe prior for
the case of symmetric interactions. Example 2: 50×60
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Mini QFA

B.1 mini QFA dataset sample

Figure B.1: miniQFA dataset sample. Notable columns used for modelling are: “r”, “K” and
“rK” used as fitness measures, “EID” that shows the background screen and the temperature, and
“GID” that shows the two “deleted” genes.
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B.2 Statistical modelling

(a) Traceplot - effect γ22,3 (b) Traceplot - µ

(c) Autocorrelation plot - effect γ22,3 (d) Autocorrelation plot - µ

(e) Density plot - effect γ22,3 (f) Density plot - µ
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(g) Traceplot - inclusion probability p (h) Prior-posterior density plot - p

Figure B.2: Traceplots, autocorrelation and density plots for the experiment: cdc13-1 at 33oC
with r as measure of fitness. Both the main and interaction effects are asymmetric.

(a) Traceplot - effect γ1,1 (b) Traceplot - β110

(c) Autocorrelation plot - effect γ1,1 (d) Autocorrelation plot - β110
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(e) Density plot - effect γ1,1 (f) Density plot - β110

Figure B.3: Traceplots, autocorrelation and density plots for the experiment: cdc13-1 at 27oC
with r as measure of fitness. Both the main and interaction effects are symmetric.

(a) Traceplot - effect γ41,128 (b) Traceplot - Z51

(c) Autocorrelation plot - effect γ41,128 (d) Autocorrelation plot - Z51
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(e) Density plot - effect γ41,128 (f) Density plot - Z51

Figure B.4: Traceplots, autocorrelation and density plots for the experiment: CDC13+ at 33oC
with r as measure of fitness. Both the main and interaction effects are asymmetric.

Table B.1: Top 20 enhancer combinations, ranked by strength of estimated interaction for the
experiment: cdc13-1 at 33oC with r as measure of fitness. Cases: “Both asymmetric”, “Both
symmetric” and “Symmetric interactions”.

Both asymmetric Both symmetric Symmetric interactions

Genes Strength Genes Strength Genes Strength

RAD9 DUN1 -4.76 DUN1 RAD17 -4.63 MRC1 RAD17 -4.15

MRC1 RAD24 -4.73 MRC1 RAD24 -4.07 MRC1 RAD24 -4.15

MRC1 RAD17 -4.53 DDC1 MRC1 -4.01 RAD9 DUN1 -4.15

CHK1 RAD9 -4.34 MRC1 RAD17 -3.88 MRC1 DDC1 -4.12

MRC1 DDC1 -4.09 DUN1 RAD9 -3.86 UPF3 DDC1 -3.81

UPF3 DDC1 -3.94 CSM3 RAD24 -3.78 RAD17 DUN1 -3.73

RAD17 DUN1 -3.76 DDC1 UPF3 -3.70 RAD24 CSM3 -3.65

RAD9 SCS2 -3.72 CTF18 RAD24 -3.59 POL32 RAD24 -3.62

RAD9 CSM3 -3.66 POL32 RAD24 -3.55 YKU80 DDC1 -3.57

RAD9 UPF3 -3.65 CBC2 RAD24 -3.55 CHK1 RAD9 -3.46

YKU80 DDC1 -3.65 DDC1 YKU80 -3.50 SCS2 DDC1 -3.44

RAD9 MRC1 -3.61 DIA2 RAD24 -3.43 DIA2 RAD24 -3.33

POL32 RAD24 -3.60 CSM3 RAD17 -3.39 CSM3 RAD17 -3.23

RAD9 RAD54 -3.59 CTF18 RAD17 -3.33 VPS4 DDC1 -3.19

DIA2 RAD17 -3.59 CHK1 RAD9 -3.33 MRC1 RAD9 -3.19

CSM3 RAD17 -3.57 PMR1 RAD24 -3.32 PMR1 RAD24 -3.18

DIA2 RAD24 -3.56 MRC1 RAD9 -3.31 DIA2 RAD17 -3.17

SCS2 DDC1 -3.49 DDC1 VPS4 -3.28 RAD24 CTF18 -3.14

RAD9 RAD27 -3.49 CTK1 RAD17 -3.25 CSM3 DDC1 -3.13

CSM3 RAD24 -3.47 DDC1 SCS2 -3.23 XRS2 DDC1 -3.11

245



Appendix B. Mini QFA

Table B.2: Top 20 suppressor combinations, ranked by strength of estimated interaction for the
experiment: cdc13-1 at 33oC with r as measure of fitness. Cases: “Both asymmetric”, “Both
symmetric” and “Symmetric interactions”.

Both asymmetric Both symmetric Symmetric interactions

Genes Strength Genes Strength Genes Strength

MBP1 BAS1 4.67 BAS1 OCA4 3.78 BMH2 RAD9 3.64

RAD9 FKH2 4.68 MAD1 RAD9 3.83 FKH2 RAD9 3.69

RAD9 BCK1 4.81 CHK1 MAD1 3.86 EBS1 MAD1 3.69

HGH1 RAD9 4.82 DPH1 DUN1 3.87 HHO1 RAD9 3.73

OCA4 RAD9 4.87 FKH1 RAD9 3.88 RAD17 SLA1 3.76

CHK1 RIF2 4.89 CHK1 EDE1 3.90 DPH1 DUN1 3.89

SUM1 RAD9 4.90 HGH1 RAD9 3.93 FKH1 RAD9 3.93

CHK1 PAN2 4.93 DDC1 SLA1 4.10 MBP1 BAS1 3.98

RAD9 RIF2 5.02 DDC1 MLP2 4.11 RAD9 YKR070W 4.01

RAD9 HHO1 5.17 RAD9 YKR070W 4.37 HGH1 RAD9 4.06

RAD17 BCK1 5.25 MLP2 RAD9 4.43 MLP2 DDC1 4.15

SOL2 RAD9 5.29 BCK1 RAD9 4.43 BCK1 RAD9 4.47

PAN2 DDC1 5.33 RAD9 SOL2 4.58 MLP2 RAD9 4.48

PAN2 RAD17 5.36 BAS1 MBP1 4.66 RAD9 SOL2 4.62

PAN2 RAD9 5.51 BCK1 RAD17 4.81 RAD9 VPS74 4.64

MLP2 RAD9 5.78 DDC1 PAN2 4.81 BCK1 RAD17 4.82

PAN2 RAD24 5.93 RAD9 VPS74 4.98 PAN2 DDC1 4.89

PPT1 RAD9 6.39 PAN2 RAD9 5.11 PAN2 RAD9 5.17

RAD9 EDE1 6.49 PPT1 RAD9 5.60 PPT1 RAD9 5.75

MBP1 RAD9 6.66 EDE1 RAD9 6.87 RAD9 EDE1 6.51
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(a) Logarithmic scale
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Figure B.5: Genetic interactions plot for the experiment: cdc13-1 at 33oC with logK as measure
of fitness. Both the main and interaction effects are asymmetric. (a) Logarithmic scale. Patterns
suggest potential non-linearity. (b) Natural scale.
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