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Abstract

Monaural speech separation and enhancement aim to remove noise interfer-

ence from the noisy speech mixture recorded by a single microphone, which

causes a lack of spatial information. Deep neural network (DNN) domi-

nates speech separation and enhancement. However, there are still chal-

lenges in DNN-based methods, including choosing proper training targets

and network structures, refining generalization ability and model capacity

for unseen speakers and noises, and mitigating the reverberations in room

environments. This thesis focuses on improving separation and enhancement

performance in the real-world environment.

The first contribution in this thesis is to address monaural speech sepa-

ration and enhancement within reverberant room environment by designing

new training targets and advanced network structures. The second contribu-

tion to this thesis is on improving the enhancement performance by propos-

ing a multi-scale feature recalibration convolutional bidirectional gate recur-

rent unit (GRU) network (MCGN). The third contribution is to improve the

model capacity of the network and retain the robustness in the enhancement

performance. A convolutional fusion network (CFN) is proposed, which ex-

ploits the group convolutional fusion unit (GCFU).

The proposed speech enhancement methods are evaluated with various

challenging datasets. The proposed methods are assessed with the state-

of-the-art techniques and performance measures to confirm that this thesis

contributes novel solutions.
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In the second contribution, a multi-scale feature recalibration convolu-

tional encoder-decoder is proposed for single channel speech enhancement.

The multi-scale convolutional layers utilize the kernel with varied sizes to

capture features in different scales. Moreover, BGRU layers extract the

interdependency among past, current, and future temporal frames. Also,

the fully connected and bottleneck layers are introduced to improve the
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Chapter 1

INTRODUCTION

1.1 Monaural Speech Separation and Enhancement

“One of our most important faculties is our ability to listen to, and follow,

one speaker in the presence of others,” which is defined as cocktail party

problem [1]. It describes there are several speakers are speaking simultane-

ously, the speech from the particular speaker needs to be separated, which

is a common ability for human beings. However, there is a challenge for the

machines, because the intelligibility and quality of the speech signal captured

in a real acoustic scene are often degraded by noise and interfering sound

present in the surrounding environment. Therefore, speech separation and

enhancement aim to design machines and algorithms to recover the target

speech by removing the background noise and interfering sound from the

noisy speech mixture.

(a) (b) (c)

Figure 1.1. Different speech enhancement application contexts, (a)
noisy environment [2]; (b) robotic [3]; (c) hearing aids [2]

.
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Section 1.1. Monaural Speech Separation and Enhancement 2

Such a problem can be founded in many real-world applications such as

mobile communication, speech recognition, hearing aids and robotics [4–9].

All these applications require the cleared target speech from the noisy speech

mixture, which is related to remove the speech or non-speech noises [10,11].

Therefore, speech separation and enhancement are essential for detection,

recognition, which are important front techniques for most speech process-

ing applications. According to the number of microphones (i.e recorded

noisy speech mixture), the speech enhancement problem is categorized as

multichannel, binaural and monaural (i.e. single channel) [7].

The statistical signal processing methods were first introduced to address

speech separation and enhancement for multichannel and binaural cases [12],

such as statistical signal processing based methods [13–15], and computa-

tional auditory scene analysis (CASA) based methods [16, 17]. The mini-

mum mean-square error (MMSE) based estimator has been introduced for

speech enhancement by modeling the speech and noise spectral components

as statistically independent Gaussian random variables [18]. The CASA

methods are designed for auditory scene analysis by computational means,

they aim to imitate the hearing system of human beings, which utilize no

more than two microphones to recording the noisy speech mixture. There-

fore, it is widely used in hearing aid [17]. For example, In CASA based

model-based expectation-maximization source separation and localization

(MESSL) algorithm [19], the spatial features are modelled by a Gaussian

mixture model, whose parameters are estimated using the expectation max-

imum algorithm, and then used to derive time-frequency masks for sepa-

rating the target speech. Statistical approaches mainly focus on statistical

modelling of spatial, spectral, or temporal features derived from the sensor

signals, while CASA based approaches use computational models of human

hearing to separate target speech from sound mixtures [20].

In real life situations, since the availability of limited number of micro-
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phones and the distance between them are a major constraint, the multichan-

nel and binaural cases always restrict enhancement performance. There is an

extreme case that the noisy mixtures are recorded by a single microphone.

Moreover, the target speech, noise interference and transmission paths are

unavailable, only the noisy mixture is available. Therefore, the monaural i.e.

single channel speech enhancement show more significant potential over the

multichannel and binaural cases in real-world applications.

The DNNs based methods are the dominating recent research areas by

the community and offer state-of-the-art performance in monaural speech

enhancement [21, 22]. The DNNs based speech enhancement methods can

be categorized as mapping-based and masking-based methods [23–26]. The

DNNs often take time-frequency (T-F) representations of the noisy speech

mixture obtained by a time-frequency analysis tool, such as short-time Fourier

transform (STFT), as inputs, and train a neural network model to output

the estimate of the target speech directly (i.e. mapping method) or the

T-F mask. For the masking methods, the target speech can be separated

by multiplying the spectrogram of the noisy speech mixture with the T-F

mask which is a matrix of weights representing the occupation probability

of the source in the noisy mixture at each T-F point [27]. Both binary or

soft masks have been considered in the literature, with the ideal binary mask

(IBM), and ideal ratio mask (IRM) proposed to benchmark the performance

of the T-F masks based speech separation and enhancement systems [28,29].

Recent work shows that the mapping method show greater advantages over

the masking method [30]. Moreover, plenty of works have designed new

frameworks to improve the robustness of DNNs. The skip connection be-

tween the input layer and the output layer has also been incorporated in the

DNN model, leading to the S-DNN [31] method, offering improvements over

the DNN. In [32], the separation and acoustic models are jointly trained,

incorporating additional hidden layers with fixed weights into a DNN.
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Although the DNN has dominated the development of single channel

speech enhancement, several disadvantages still limit the enhancement per-

formance of DNN frameworks. Since inappropriate training targets and net-

work structures, the speech components are underestimated or overestimated

in reverberant environment. Furthermore, the DNN-based methods mainly

utilize the current temporal frames to estimate, which underestimates the

interdependency among different structures. Moreover, the standard DNN

framework often captures the feature on a fixed scale due to the fixed fil-

ter size. Besides, in conventional DNN-based methods, the network is con-

structed by using fully connected layers. The robustness and model capacity

may need further improvement. Therefore, a model with a combined struc-

ture would be preferable.

1.2 Aims and Objectives

This thesis aims to overcome and mitigate the aforementioned drawbacks of

DNN-based speech separation and enhancement methods and improve pre-

diction accuracy. More specifically, the detailed objectives are listed below.

• Objective 1: Contribute to improve the separation and enhancement

performance in reverberant environment by exploiting advanced train-

ing targets and network structures based on spatial and temporal in-

formation.

In Chapter 3, in the first solution, the direct-path impulse response is

estimated by using geometric (i.e. spatial) information of the target speaker

and microphone. Then, the reflection and noise is removed by using direct-

path ratio mask, which is estimated by using direct-path impulse response.

In the second solution, parallel long short-term memory networks (LSTMs)

are introduced to capture the interdependency (i.e. temporal information)

among the past and current temporal frames. Moreover, they are exploited
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to estimate dereverberation mask (DM) and IRM, respectively. The rever-

berations and noises are removed by jointly using DM and IRM.

• Objective 2: Contribute to improve enhancement performance by cap-

turing the feature in different scales, and using multi-scale feature and

interdependency.

In Chapter 4, a novel framework is proposed that consists of multi-scale

encoder-decoder with bidirectional gate recurrent units (BGRU). Multi-scale

encoder-decoder offers features on different scales, and BGRU layers capture

the interdependency among the past, current and future temporal frames.

• Objective 3: Contribute to improve generalization ability, model ca-

pacity and enhancement performance by employing convolutional fu-

sion encoder-decoder.

In Chapter 5, the depth-wise separable convolution/deconvolution and

standard convolution/deconvolution are exploited to build fusion encoder-

decoder, which provides better generalization ability and higher parameter

efficiency.

1.3 Thesis Outline

The outline of this thesis is listed as follows:

Chapter 2 offers a relevant literature review of speech enhancement by

using relevant of deep learning methods. The advantage and disadvantages

of each method are also stated. Furthermore, the challenges, that include

generalization ability, model capacity and parameter efficiency, associated

with these methods are also discussed. Moreover, two feasible directions are

offered to these challenges i.e. network framework and training targets.

Chapter 3 provides two solutions for reverberant speech separation and

enhancement. In the first solution, a new DNN training target is proposed
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to improve the performance in reverberant and noisy room environments,

which incorporates geometric information describing the target speaker and

microphone. In the second solution, a two-stage approach using LSTM net-

works is proposed. In the first stage, the dereverberation mask (DM) is

obtained by using a trained LSTM, which aims to dereverberate the noisy

speech mixture. In the second stage, the IRM is estimated by the second

trained LSTM, which is utilized to separate the desired speech signal from

the dereverberated speech mixture. The extensive experiments prove two

solutions provide advantages over DNN-based baseline methods.

Chapter 4 proposes a multi-scale feature recalibration convolutional en-

coder decoder with bidirectional gated recurrent unit (BGRU) architecture

for end-to-end single channel speech enhancement. The features in differ-

ent scales are extracted by using the multi-scale feature recalibration 2-D

convolutional layers, which efficiently utilize the local and contextual infor-

mation in the signal. In addition, a feature recalibration network is designed

by using a gating mechanism to control the information flow among the

layers, enabling different weights to be applied on scaled data, which help

to retain features from the target speech while suppressing features from

noise. The fully connected layer (FC) is employed to compress the output

of the multi-scale 2-D convolutional layer. The BGRU layers is employed

to update the current frame, and to exploit the interdependency among the

past, current and future frames and thereby improve predictions. The ex-

perimental results confirm the proposed MCGN method outperforms several

state-of-the-art methods.

In Chapter 5 provides a new convolutional fusion network (CFN) for

monaural speech enhancement by improving model performance, inter-channel

dependency, information re-use and parameter efficiency. First, a new group

convolutional fusion unit (GCFU) consisting of the standard and depth-

wise separable CNN is used to reconstruct the signal. Second, the whole
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input sequence (full information) is fed simultaneously to two convolution

networks in parallel, and their outputs are re-arranged (shuffled) and then

concatenated, in order to exploit the inter-channel dependency within the

network. Third, the intra skip connection mechanism is used to connect

different layers inside the encoder as well as decoder to further improve the

model performance. Extensive experiments are performed to show the im-

proved performance of the proposed method as compared with three recent

baseline methods.

Finally, conclusions are drawn and future work is then discussed in Chap-

ter 6.



Chapter 2

BACKGROUND METHODS

2.1 Introduction

In this chapter, the background methods relate to speech separation and

enhancement are provided, and the discussion of related methods is offered.

These methods include statistical signal processing, CASA and DNN based

methods. Then, within the monaural case, brief overviews of DNN-based

methods are provided, which include network structures and training tar-

gets. Furthermore, the limitations of these methods are described. Then,

three performance measures and datasets are described. Finally, the chapter

summary is provided.

2.2 Statistical Signal Processing based Methods

Speech separation and enhancement have drawn enormous attentions due

to the increasing demand of speech-related applications such as mobile com-

munication and robotics. As mentioned in Chapter 1, the statistical signal

processing, such as independent component analysis (ICA) and independent

vector analysis (IVA) are proposed to solve the over-determined and deter-

mined speech separation and enhancement.

8
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2.2.1 Independent Component Analysis

ICA models the observed data as a linear combination of underlying latent

variables [33, 34], which assumes each component is statistically indepen-

dent with other components. Moreover, this model is instantaneous and the

time delay is neglected. For the several independent components, the joint

probability density function (PDF) is as followed:

p(s1, s2, s3 · · · ) = p1(s1)p2(s2)p3(s3) · · · (2.2.1)

where p1(s1), p2(s2), p3(s3) denote PDF of three independent components.

For the noisy speech mixture, there is at least one speech have non-Gaussian

distribution. And, the unknown mixing matrix is assumed to be invertible.

Moreover, at least one source must have non-Gaussian distribution and

the unknown mixing matrix is assumed to be invertible, in which the number

of sources is equal or less than the number of mixtures. According to the cen-

tral limit theorem, any mixture of components will become more Gaussian

than the individual components. Thus, separating the target speech is real-

ized by maximization of non-Gaussianity [35]. Besides, the non-Gaussianity

is measured by negentropy [36]. Although the ICA provides the feasible so-

lution for speech separation and enhancement, the permutation and scaling

problem limited the enhancement performance [37].

2.2.2 Independent Vector Analysis

The main cause of the permutation problem of ICA is the under-estimated

inter-independent of components. Therefore, the IVA is introduced to miti-

gate the permutation problem using the inter-frequency dependencies in the

desired speech signals. The multivariate score function is also applied to

describe the source prior [38–40], which is the higher-order frequency depen-

dency. There are two important assumptions of IVA. Firstly, each source
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is independent with other sources. Secondly, elements of source maintain

dependency with other elements. Therefore, the IVA maintains the inter-

source dependency by introduce approximated pdfs of individual source vec-

tors
∏L
i=1 q(ŝi). Mathematically, The cost function and core function of IVA

reserve the inter-frequency dependency [38].

J = KL

(
p(ŝ1 . . . ŝL)‖

L∏
i=1

q(ŝi)

)
=

∫
p(ŝ1 . . . ŝL)

p(ŝ1 . . . ŝL)∏L
i=1 q(ŝi)

dŝ1 . . . dŝL

= const.−
K∑
k=1

log|detG(k)| −
L∑
i=1

∫
E{log(q(ŝi))} (2.2.2)

where si =
[
s
(1)
i , s

(2)
i , ..., s

(K)
i

]T
denotes the ith estimated separated source,

K represents the kth frequency bin. KL represents Kullback-Leibler (KL)

divergence, it is used to measure the difference between one probability dis-

tribution and a reference probability distribution.

And the third term of (2.2.2) represents entropy. Then the gradient

descent is applied to minimize the cost function. By using this cost function,

the dependency between sources are removed but the interdependency of

each source is preserved. Although the IVA offers better performance when

compared with the ICA, it can only address the determined problem, which

means the number of sensors is at least equal to number of sources. Thus,

the MESSL algorithm is applied to solve the under-determined case.

However, the separation performance of these methods cannot be im-

proved even the data amount of the speech signals is increased. Therefore,

the machine learning and the deep learning algorithms are introduced.

2.3 CASA based Methods

According to Section 2.2, the statistical signal processing based methods

are proposed to address the overdetermined and determined speech sepa-
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ration and enhancement, which means the number of sources is no more

than the number of microphones. CASA methods are introduced to address

determined (binaural) speech separation and enhancement [16, 17, 41]. The

most well known CASA method is MESSL algorithm, which mainly focus

on time-frequency analysis.

In MESSL method, two microphones located in different positions are

used to record the noisy speech mixtures. Two binaural cues i.e. interaural

phase difference (IPD) and interaural level differences (ILD) are modelled

as the Gaussian distributions, respectively. According to W-disjoint Or-

thogonality theory, only one source is active at each T-F point [42]. More

specifically, the IPD and ILD are exploited to build sources’ probabilistic

model, which is employed to evaluate the hidden variable at each T-F point.

The expectation maximization (EM) algorithm is applied to optimized the

expectation of hidden variables until convergence. The estimated mask is

then multiplied with the spectrogram of noisy speech mixture to generate

the estimated sources.

The above methods offer competitive performance in binaural and multi-

channel speech enhancement and separation, which can be further used in

multi-channel speech recognition and hearing aid [17]. Nevertheless, in single

channel speech enhancement, the spatial information is unavailable, as a

result, the above methods cannot be used to estimate the target speech.

2.4 Problem Statement of Monaural Speech Enhancement

In speech enhancement, there is an extreme case i.e. monaural speech en-

hancement, the only one microphone is used to record the noisy speech mix-

ture. As a result, the transmission path and mixing process are unknown,

which means the spatial information is unavailable. Therefore, the above

methods designed for over-determined and determined cases are not feasi-
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ble for monaural speech enhancement, and many methods are proposed to

address the monaural issue. The minimum mean-square error (MMSE) esti-

mator realizes speech enhancement by modelling the speech and noise spec-

tral components as statistically independent Gaussian random variables [5].

Also, the non-negative matrix factorization (NMF) is employed to decom-

pose the magnitude and power spectrum of the noisy speech mixture [43].

Furthermore, the weighted sums of non-negative target speech are utilized

to model the noisy speech mixture [44].

Mathematically, in monaural i.e. single channel speech enhancement,

the noisy speech mixture can be written as:

y(m) = s(m) + n(m) (2.4.1)

where y(m) denotes the noisy speech, s(m) and n(m) represent the clean

speech signal and noise at discrete time m, respectively. If noise is speech

signal, it is speech separation. For environment noises, it is speech enhance-

ment. Using STFT, the noisy speech mixture at time frame t and frequency

bin f is represented as:

Y (t, f) = S(t, f) +N(t, f) (2.4.2)

where S(t, f) and N(t, f) are the STFT of the clean speech signal and noise,

respectively.

Recently, DNN techniques attract the researchers’ attention in monaural

speech enhancement. In DNN-based algorithms, the desired speech signal is

obtained from the trained neural network model [45], a supervised learning

algorithm. In Section 2.5, the structures and training targets of the DNN-

based algorithm are discussed firstly, then the different relevant solutions for

each of them are reviewed.
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2.5 Deep Neural Network based Methods

2.5.1 Network Structure

Meanwhile, the DNNs show great potential for signal processing problems,

e.g. speech recognition, speech separation and enhancement [46]. The DNNs

imitate human beings, learn information from the training data structure,

and make predictions based on the testing data and learned information.

Thus, the DNNs are introduced to address the speech enhancement problem,

and they play a role as black-box, learning the masking and mapping relation

between the target speech and noisy speech mixture [25, 47]. There are two

essential aspects of DNN-based methods, and they are network structures

and training targets. In this section, we will provide a brief review of them.

A DNN model is constructed by three kinds of layers: the input layer,

hidden layer, and output layer, and these layers contain numerous neurons.

The core of DNNs is the neuron that is a fundamental computational unit,

and the followed diagram can represent the single neuron.

Neuron

1

2

3

+b

w,b( )

Figure 2.1. Typical structure of single neuron

The ”plus one ” is called intercept term. x1, x2, x3 are inputs, zw,b(x) is the

output. Mathematically, this process can be written as:

zw,b(x) = f (wx) = f

(
3∑
i=1

wixi + b

)
(2.5.1)

where f(·) is called the activation function, wi denotes the weight of ith

input.

For each neuron, there are plenty of activation functions, and they have
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different characteristics. The widely used activation functions are summa-

rized as below.

• Sigmoid: f (a) =
1

1 + e−a

• Hyperbolic tangent: f (a) = tanh (a) =
1− e−2a

1 + e−2a

• Softmax: f (a) =
eai∑
j e

aj
. And

∑
i fi (a) = 1 and fi (a) > 0

• Softplus: f (a) = ζ (a) = log (1 + ea)

• Absolute value rectification: f (a) = |a| [48]

• Hard tanh: f (a) = max (−1,min (1, a)). [49].

• Rectified Linear Unit(ReLU): f(a) = max(0, a)

• Leaky ReLU: f(a) = max(a, ka), and 0 < k < 1.

Combine together many neurons, the neural networks can be built as

shown below.

Figure 2.2. Example of DNNs

The DNNs are capable to fit the relationship between the training target

and the output by adjusting the inter parameters i.e. weights and bias.

The loss function is employed to measure the difference between the training

target and the output of DNNs, which is minimized by using gradient decent

algorithm. Finally, the optimized model is selected.
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2.5.2 DNN-based Mapping methods

Unlike the traditional methods, the DNNs are exploited to learn the training

targets include mapping and masking relations [25,50]. Mathematically, the

neural network model is trained to find the mapping relation Gθ between

the magnitude spectrum of the clean speech signal |S(t, f)| and the noisy

speech mixture |Y (t, f)|. The mapping function is estimated by optimizing

the loss function as:

Lossmapping =
1

TF

T∑
t=1

F∑
f=1

[Gθ(|Y (t, f)|)− |S(t, f)|]2

=
1

TF

T∑
t=1

F∑
f=1

(|Ŝ(t, f)| − |S(t, f)|)2 (2.5.2)

where |Ŝ(t, f)| is the magnitude spectrum of the estimated target speech,

which is combined with phase information of the noisy mixture to recover

the target speech.

2.5.3 DNN-based Masking methods

For the DNN-based masking methods, similarly, the neural network model

is trained to find the masking relation between the representation of target

speech and noisy mixture.

Lossmasking =
1

TF

T∑
t=1

F∑
f=1

(M̂(t, f)−M(t, f))
2

where the M̂(t, f) represents the estimated mask. More specifically, the

mainly used masks are IBM [51] and IRM. The masks are multiplied with

the spectrum of noisy speech mixture to generate the enhanced target speech.
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The IBM can be represented as:

IBM(t, f) =

 1, if SNR(t, f) > LC

0, otherwise
(2.5.3)

where LC denotes the local criteria, and it is employed to determine the value

of each T-F unit in IBM. If the value of IBM equal to one, it means this T-F

point belongs to the target speech. Otherwise, this T-F point belongs to the

noise. Therefore, IBM is associated hard decision, which causes information

loss in speech enhancement [51]. To mitigate the information loss, the mask

i.e. IRM associated soft decision is proposed [26]. The representation of

IRM is shown as:

IRM(t, f) =

√
S2(t, f)√

S2(t, f) +N2(t, f)
(2.5.4)

where S2(t, f) represents the energy of target speech, and N2(t, f) denotes

the energy of noise. The IRM is the ratio between the energy of target speech

and energy of the noisy speech mixture. As shown in (2.5.4), each T-F point

of noisy mixture can be decided how much information from target speech

by using the IRM, that ranges from 0 to 1. The experiments results prove

the IRM outperforms the IBM.

2.5.4 Advanced Network Architecture

Apart from selecting a proper training target, the neural network archi-

tecture (structure) is also essential for speech enhancement. Plenty of re-

searchers have proposed advanced architectures that offer varied advantages

in signal processing. Meanwhile, many advanced architectures are intro-

duced to address speech separation and enhancement problems.

Conventional DNNs often consider the local temporal frames, the tempo-

ral information is not well utilized, which is vital to capture interdependency
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among different frames. As a result, the conventional DNNs are less effec-

tive in generalization to mismatch conditions such as speaker independent

and noise independent cases. The context window is proposed to utilize the

temporal information, which feeds several temporal frames to the DNNs and

estimates the single frame. However, the larger size would increase the com-

putational cost. Furthermore, the recurrent neural network (RNN) has been

introduced to address speech enhancement problems to better utilize tem-

poral information. In RNN, each neuron is connected with the neurons of

last and same layers, which employs the past hidden state to update the cur-

rent hidden state. Thus, the interdependency between the past and current

temporal frames are extracted. In [52], the DRNN is employed to estimate

target speech, and the discriminative term is used to optimize the objective

function.

Although the DRNN can extract the interdependency among adjacent

temporal frames, the temporal information with long-term interval is ne-

glected. Therefore, the LSTM RNN is proposed to capture interdependency

among long term interval [53, 54]. The LSTM exploits the cell memory to

keep and memory the temporal information even with long term interval.

Also, it uses the input, output and forget gates to control how much past

information is used to update the current temporal frame. The evaluation

proves the past information can improve the enhancement performance and

LSTM outperforms the DNN. The details of LSTM based speech enhance-

ment are discussed in Chapter 3.

Recently, many other network structures are introduced for speech en-

hancement. For example, inspired by the success of computer version [55,56],

the convolution neural network is used to learn the masking or mapping re-

lation in speech enhancement [57, 58]. Moreover, the generative adversarial

network (GAN) is employed to estimate the target speech [59]. The GAN

includes generator (G) and discriminator (D). The G aims to learn a map-



Section 2.6. Research Challenges Associated with Monaural Speech Enhancement 18

ping that can imitate the real data distribution. The D is a binary classifier,

which is employed to classify the G’s output is real or fake. By using adver-

sarial training, the G is optimizing its parameter to fool the D and generate

the final output. Although the above network structures provide completive

enhancement performance, further improvement is desired.

2.5.5 Generalization Ability

The generalization ability of speech enhancement means the model can well

estimate the target speech with unseen speakers and noises. The speech

signal is highly random, related to the speaker’s accent, gender, age, etc.

In addition, environmental noises are countless. Therefore, it is impossible

to train the neural network model with all kinds of noisy speech mixture.

Meanwhile, since the computational resource limitation, the neural network

model is trained with limited data. Consequently, a model with strong

generalization can retain enhancement perform with unseen speakers and

noises, which is positively related to the overfitting [60].

2.6 Research Challenges Associated with Monaural Speech En-

hancement

Although DNNs show advantages over the conventional speech enhancement

methods, they still have limitations and their performances need to be im-

proved since the speech and noise signals are high randomnesses. Therefore,

we summarize the challenges of DNN-based methods as below:

• Training target: selecting robustness training targets to refine the

masking or mapping relationship between target speech and noisy

speech mixture, which can help the network to improve prediction

accuracy.

• Neural network framework: selecting proper network architectures and
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hyperparameters, which utilize advantages of different network frame-

works to improve parameter efficiency and enhancement performance.

• Generalization ability and model capacity: the network models need

to offer strong generalization ability and model capacity to address the

speech enhancement problem with varied unseen speakers and noises.

• Room environment: the recorded noisy speech mixtures also contain

components of reverberations in room environment, which is generated

by the reflections of wall, window, furnitures, etc. The reverberations

increase the difficulty of speech enhancement. Consequently, DNNs

based methods need to overcome the reverberation environment.

2.7 Performance Measures and Datasets

2.7.1 Performance Measures

Three measures are introduced to evaluate the experimental results of the

enhanced speech signal. They are perceptual evaluation of speech quality

(PESQ) [61], short-time objective intelligibility (STOI) [62] and signal to

distortion ratio improvement (∆SDR) [63].

For PESQ, the estimated speech and target speech are level aligned to a

standard listening level. Then an input filter is used to model them to the

standard telephone handset. The filtered speech signals are processed by an

auditory transform, which is employed to estimate the distortion parame-

ters from the transformed signals. Two distortions are aggregated in time

frequency, and mapped to subjective mean opinion score (MOS). The PESQ

ranges from -0.5 to 4.5, and the higher value indicates better enhancement

performance.

The STOI is introduced to evaluate the intelligibility of speech quality

by calculating the correlation coefficient between the temporal envelope of



Section 2.7. Performance Measures and Datasets 20

the clean target speech and enhanced target speech within the short-time

region. STOI is ranged from 0 to 1. The higher value of STOI means better

intelligibility quality. More specifically,

STOI =
1

TF

∑
dt,f (2.7.1)

where dt,f is the sample correlation coefficient between estimated speech

signal and desired speech signal, f is the fth frequency band, t is the time

frame, F is the total number of frequency bands and T is the total number

of time frames.

To further evaluate the performance, the SDR improvement is introduced

to measure the distortion ratio. The enhanced speech is decomposed into

four parts: target signal, error terms for interference, noise, artifacts. The

SDR is calculated as:

SDR = 10log10
||starget||2

||einterf + enoise + eartif ||2
(2.7.2)

Based on the SDR of unprocessed noisy mixture and enhanced target speech,

we can estimate the SDR improvement as:

∆SDR = SDRenhanced − SDRmixture (2.7.3)

2.7.2 Datasets

In this thesis, different databases are exploited to generate the training

and testing noisy mixtures. The speech signals are selected from TIMIT

[64], IEEE [65], VCTK [66] databases. And noise signals are selected from

NOISEX-92 [67], NON-speech Sound [68] and DEMAND [69] databases.

The clean speech signals are mixed with noise signals to generate the train-

ing and testing datasets.
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The TIMIT database includes 6300 utterances spoken by 630 female and

male speakers. IEEE database contains 720 recording utterances from one

male speaker. The VCTK database includes about 40000 utterances from

110 speakers, and each speaker read about 400 sentences. For the noises,

the NOISEX-92 database includes 15 noises, such as human conversation

and machine noises. The Non-speech Sound database offers 100 environment

noises, and the DEMAND database provides 15 recorded noises. In total,

over 40 noises are used to train the networks, and more than 15 noises are

used test the networks.

2.8 Summary

This chapter provided a literature review of speech separation and enhance-

ment methods. Firstly, we discussed the existing methods for over-determined

and under-determined speech enhancement problems, and their advantages

and disadvantages were provided. Then, the fundamental network structure

of DNN-based speech enhancement methods was discussed. Furthermore,

two commonly used training targets of DNN-based methods were stated.

Then, the main challenges of the DNN-based methods were discussed. In

summary, the requirements of the advanced speech enhancement methods

were listed as:

• best possible estimation the target speech within noisy reverberant

room environment.

• generalization ability for mismatch conditions that include unseen-

speakers, unseen-noises and unseen signal-to-noise ratios.

• improvement in the model capacity and parameter efficiency of the

speech enhancement system

In the next chapter, the DNN-based method with a direct-path ratio
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mask is proposed to improve performance enhancement with the noisy rever-

berant room environment. Moreover, we also introduce the LSTM method

to improve the generalization ability and enhancement performance.



Chapter 3

SPATIAL AND TEMPORAL

INFORMATION BASED

SPEECH SEPARATION AND

ENHANCEMENT

3.1 Introduction

Recently, DNN dominates the development of speech separation and en-

hancement. The DNN-based methods can be categorized as mapping and

masking methods. The time-frequency features of noisy mixtures are fed into

DNN, and it is employed to learning mapping or masking relations between

the target speech and noisy mixture. For DNN-based masking methods, two

important masks are proposed. The IBM judges the belonging of each time-

frequency point, this procession is a hard decision [28]. In addition, the soft

decision is employed in the IRM, each T-F points is assigned by the ratio

between the energy of target speech and noisy mixture [26], which shows

advantages over the IBM.

However, the existing methods still have limitations for addressing the

speech enhancement in the reverberated room environment. (1) The DNN-

based masking methods offer limited generalization to the dereverberation

23
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problem, and new training targets that can better reflect the clean speech

and noise are still needed. (2) The vanilla DNN utilizes a window to capture

temporal dynamics, which is insufficient for speaker characterization and

speech separation [54]. The enhancement performance of these state-of-the-

art methods needs to be improved within reverberant room environments

for speaker independent case.

In this chapter, two different methods are proposed to solve the lim-

itations above. First, Based on spatial information, the direct-path ratio

mask (DRM) is proposed to realize the dereverberation and denoising si-

multaneously. The geometric i.e. spatial information is used to describe the

target speaker and microphone to calculate the direct-path impulse response,

which is used to estimate the direct-path speech. The DRM is proposed us-

ing direct-path speech, which improves performance in noisy and reverberant

room environments. Second, the parallel LSTMs are introduced to capture

the interdependency i.e. temporal information between the past and cur-

rent temporal frames even among long-term interval, which firstly achieve

dereverberation, then realize denoising. The long-term speech context is

captured by the LSTM, which improves the robustness of the system. Two

parallel LSTMs are used to estimate two different training targets. One of

the LSTMs is used to estimate DM, and another LSTM is applied to estimate

IRM. Then, both DM and IRM are integrated for speech enhancement.

The remainder of this chapter is organized as follows. Section 3.2 states

the algorithm of DRM. Section 3.3 states the algorithm of parallel LSTMs

method. Section 3.4 provides the experimental setup and evaluation of

DRM. Section 3.5 offers the experimental setup and evaluation of parallel

LSTMs. Section 3.6 draws conclusions.

This chapter focuses on the first objective of this thesis, which relate to

new training targets and advanced structures based on spatial and temporal

information for published two conference papers [70,71].
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3.2 Direct-path Ratio Mask

3.2.1 Mixture Model and Direct-path Impulse Response

Figure 3.1. Monaural speech separation setup within a reverberant
room environment, the distance and angle between the target speaker
and sensor are shown.

The reverberant speech can be modelled as the convolution result of the

speech source and impulse response as:

sr(m) = s(m) ∗ hs(m) (3.2.1)

where ∗ represents the convolution operator, sr(m) denotes the reverberant

speech at discrete time m, s(m) represents the speech source and hs(m) is the

impulse response. The impulse response can be divided into the direct-path

and reflections as:

hs(m) = hd(m) + ha(m) (3.2.2)

where hd(m) is the impulse response of the direct-path and ha(m) denotes

the impulse response of reflections.

The geometric information provides the distance and bearing between

the speech source and the microphone, which helps to estimate direct-path

impulse response. The direct-path impulse response, as shown in Fig. 3.1,
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is calculated as:

hd(m) = βδ(m− τ) =
κ

d2sm
cos

(
θ

r

)
δ

(
m− fs

Cs
dsm

)
(3.2.3)

where β denotes the attenuation rate, δ represents the unit impulse, κ repre-

sents the attenuation per unit length in air, and dsm is the distance between

the speech source and microphone. The parameter θ represents the angle

between the speech source and microphone, and r is the directionality coef-

ficient. Besides, τ is the propagation time, fs is the sample frequency, and

Cs denotes the sound velocity in air.

Based on the distributive property of convolution, the reverberant speech

can be represented as [72]:

sr(m) = s(m) ∗ hd(m) + s(m) ∗ ha(m)

= sd(m) + sa(m) (3.2.4)

where sd(m) is the direct-path speech and sa(m) includes only reverbera-

tions. To simulate the real room environment, the mixture of reverberant

speech with additional noises is provided as:

yad(m) = sd(m) + sa(m) + n(m) (3.2.5)

where n(m) denotes the noise at timem. Using the Fourier transform, (3.2.5)

can be represented as:

Yad(t, f) = SD(t, f) + SA(t, f) +N(t, f) (3.2.6)

where Yad(t, f) denotes the mixture of reverberant speech and additional

noise in time frame t and frequency bin f .
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The DRM can be calculated as:

DRM(t, f) =

(
S2
D(t, f)

S2
D(t, f) +N2(t, f)

)η
(3.2.7)

where S2
D(t, f) denotes the energy of the direct-path speech at time t and

frequency frame f , and N2(t, f) is the energy of noise. And η is the tunable

parameter to scale the mask. The proposed DRM is used as a training target,

which requires less accuracy in the separation of noisy reverberant speech

mixture, because the DRM mitigates reflections and noise. The direct-path

impulse response based speech is estimated as:

ŜD(t, f) = Yad(t, f)DRM(t, f) (3.2.8)

3.2.2 Speech Reconstruction

Since the DRM can only separate the direct-path signal from the noisy re-

verberant mixture, the speech reconstruction module is used to separate the

desired speech source. At the testing stage of the speech reconstruction mod-

ule, there are two inputs: (1) the estimated direct-path speech ŜD(t, f) based

on the DRM, (2) direct-path impulse response HD(t, f) based on geometric

information. The frequency domain separated speech source is calculated

as:

Ŝ(t, f) =
[(
ŜD(t, f)

)
(HD(t, f))−1

]
(3.2.9)

Then, the time domain target speech can be obtained by using the inverse

fast Fourier transform (IFFT) operation.

3.2.3 System Architecture

The system architecture is shown in Fig. 3.2. The geometric information

of the target speaker and microphone for monaural speech separation can
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Figure 3.2. The block digram of the propose reverberant and noisy
speech separation system.

be obtained from our multiple human tracking systems [73, 74], which are

successfully used in multimodal binaural and overdetermined speech sepa-

ration [6, 20]. At the training stage, the geometric information is applied to

generate the proposed DRM and at the testing stage, the trained DNN with

geometric information is used to estimate the final desired speech signal.

3.3 Parallel Long-short Term Memory

3.3.1 The Proposed Method

The reverberant speech mixture can be modelled as:

yr(m) = s(m) ∗ hs(m) + n(m) ∗ hn(m) (3.3.1)

Where yr(m) denotes the reverberant speech mixture at discrete time m, ∗

denotes the convolution operator, s(m) and n(m) represent the speech source

signal and noise signal at time m, respectively. And hs(m) and hn(m) are

impulse responses of speech signal and noise signal, respectively. Besides,
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the noise can be background noise or speech interference signal. The spectra

of reverberant speech mixture is obtained by using Fast Fourier Transform

(FFT), and can be written as:

Yr(t, f) = S(t, f)Hs(t, f) +N(t, f)Hn(t, f) (3.3.2)

whereHs(t, f) is the impulse response of clean speech signal, andHn(t, f) de-

notes the impulse response of noise signal both in frequency domain. N(t, f)

and S(t, f) are the spectra of noise and clean speech signal, respectively. The

dereverberanted speech mixture can be represented as:

Y (t, f) = S(t, f) +N(t, f) (3.3.3)

According to (3.3.2) and (3.3.3), the reverberant speech mixture can be

rewritten as:

Yr(t, f) = Y (t, f)

 Hs(t, f)

1 +
N(t, f)

S(t, f)

+
Hn(t, f)

1 +
S(t, f)

N(t, f)

 (3.3.4)

3.3.2 Training Targets

According to (3.3.4), the DM is expressed as [75]:

DM(t, f) =

 Hs(t, f)

1 +
N(t, f)

S(t, f)

+
Hn(t, f)

1 +
S(t, f)

N(t, f)


−1

(3.3.5)

By using the DM(t, f), the reflections in the reverberant mixture are re-

moved, the estimated dereverberanted speech mixture can be generated as:

Ŷ (t, f) = Yr(t, f)DM(t, f) (3.3.6)



Section 3.3. Parallel Long-short Term Memory 30

The IRM is calculated as [26]:

IRM(t, f) =

(
S2(t, f)

S2(t, f) +N2(t, f)

)η
(3.3.7)

where S2(t, f) is clean speech signal energy, and N2(t, f) is the noise energy.

And η is the tunable parameter to scale the mask, and it is fixed to 0.5.

According to (3.3.6) and (3.3.7), the estimated desired speech signal can be

separated as:

Ŝ(t, f) = Ŷ (t, f)IRM(t, f)

= Yr(t, f)DM(t, f)IRM(t, f) (3.3.8)

Since the DM ranges from 0 to +∞, which is not consistent with the IRM,

the compression is applied to constraint the value of DM to (0, V ] [75]. The

compressed DM is written as:

DMc(t, f) = V
1− eC·DM(t,f)

1 + eC·DM(t,f)
(3.3.9)

Where C is the steepness constraint, and V is the scaling parameter. Em-

pirically, the values of C and V are 1 and 10 respectively. At the test stage,

the DM is decompressed to its original value:

ˆDM(t, f) = − 1

C
log

(
V −DMc(t, f)

V +DMc(t, f)

)
(3.3.10)

3.3.3 LSTM

The LSTM utilizes forget, input, output and memory gates to control how

much past information is employed to update current output. A LSTM block

is shown in Fig. 3.3. The LSTM is defined as:

ft = σ (Wfxt + Ufht−1 + bf ) (3.3.11)
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it = σ (Wixt + Uiht−1 + bi) (3.3.12)

c̄t = tanh (Wcxt + Ucht−1 + bc) (3.3.13)

ct = ftct−1 + itc̄t (3.3.14)

ot = σ (Woxt + Uiht−1 + bo) (3.3.15)

ht = ot · tanh (ct) (3.3.16)

Figure 3.3. The block digram of LSTM network

The ft and it denote the forget gate and input gate at LSTM, c̄t is the

block input, ot represent the forget gate. There are three inputs ht−1, xt,

ct−1 and two outputs ht, ct. The W , U denote weights, b’s represents biases.

σ and tanh represent the sigmod function and hyperbolic tangent function.

More specifically, the forget gate is employed to control what information

is forget from the cell state ct−1. It is calculated by using sigmoid function

based on time frame xt and hidden state ht−1. Then, the input gate uses

sigmoid function to control how much information is used to update cell

memory. Besides, tanh function is used to calculate the c̄t which will be

added to the cell memory of last frame (ct−1) to generate the new cell cell

memory ct. After that, a sigmoid function is utilized to control how much

cell memory are outputting, which is fed to a tanh function. Finally, the hid-

den state ht is estimated by using output gate. Since the LSTM can preserve
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the previous information, which can provide the model with the sufficient

information, the mask prediction of LSTM exploited not only present infor-

mation but also the information from previous frames. Therefore, the LSTM

structure is exploited to solve monaural speech separation problem.
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Figure 3.4. The block diagram of the propose two-stage speech en-
hancement system. Two LSTMs are trained separately. The LSTM1 is
used to estimate the DM, and the LSTM2 is exploited to estimate the
IRM.

3.3.4 System Architecture

The block diagram of proposed system is shown in Fig. 3.4. At the train-

ing stage, the two training targets DM and IRM are calculated by using the

speech signal, noise and reverberant noisy speech mixture. The feature com-

bination of training data is extracted from the reverberant mixture. Feature

combination and DM are applied to train the LSTM 1. Besides, the LSTM

2 is trained by feature combination and IRM. The relationship between the

training targets and feature combination are learnt by two LSTMs.

For the testing stage, the feature combination from testing data is also
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extracted, then input to the two trained LSTMs which predict the DM and

IRM to be exploited in the enhancement module. Input is the reverberant

noisy speech mixture to the enhancement module, the speech source is es-

timated from the reverberant mixture. Besides, the compression module is

applied to map the range of DM. The DM is decompressed to its original

value by using the recovery module.

3.4 Simulation for DRM

3.4.1 Datasets

The speech signals are selected from the IEEE corpus which contains 720

utterances [65]. 500 utterances are used to genenrate the training data sam-

ples, 100 utterances are applied as development data and 120 utterances are

exploited to generate the testing data. factory noise and babble noise are

used as background noise, which are selected from the NOISEX datasbase,

and both of them are non-stationary [67]. The direct-path impulse responses

are obtained by using the geometric information, which is assumed to be ava-

iable and can be estimated from our previous multimodal human tracking

systems [20, 74]. The simulated and real room impulse responses (RIRs)

are used to generate the noisy reverberant speech mixtures. The simulated

RIRs are generated by the image method [76]. The room dimensions are 9

m × 5 m × 3 m, and the target source and microphone are located at 5.5

m × 2.5 m × 1.5 m and 4.5 m × 2.5 m × 1.5 m, respectively. The RT60

is increased from 0.3 s to 0.9 s with the stepsize of 0.2 s. The database

recorded by Surrey University is used for the real RIRs [77], and the RT60s

are 0.32 s, 0.47 s and 0.68 s. The SNR levels are set to 3 dB, 0 dB and -3

dB as in [72]. In summary for detailed evaluation of proposed method, there

are 21000 training samples, and 4200 testing samples.

The separation performance is evaluated quantitatively by two measures,
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they are STOI and PESQ [61,62].

3.4.2 DNN Settings and Speech Features

The DNN includes four hidden layers, and every hidden layer has 1024 units.

The rectified linear unit (ReLU) function is used as the activation function

of each unit at hidden layers and the activation function of the output unit is

the sigmoid. The maximum number of epochs is 50. The dropout is applied

to solve the over-fitting problem, and the rate of dropout is 0.2 [26]. The

parameters of the DNN are initialized by random initialization, then they are

optimized at every epoch by using adaptive subgradient descent algorithm

that has 0.005 learning rate. After 50 epochs, the epoch with minimum cost

function value is selected to perform the speech separation task, which is

measured by the mean squared error (MSE) cost function.

A complementary set of features is applied [72]. These features are

mel-frequency cepstral coefficient (MFCC), spectral transform and percep-

tual linear prediction (RASTA-PLP) and amplitude modulation spectrum

(AMS), and they are spectrum based features [78]. Also, the deltas of

RASTA-PLP, AMS and MFCC are appended to the features. The features

are normalized to zero mean and unit variance.

3.4.3 Evaluations with Synthetic RIRs

The IRM is used as the benchmark. Table 3.1 and Fig. 3.5 show the PESQ

and the STOI values of unprocessed and processed signals with different

background noise and RT60s.

In terms of PESQ, both the IRM and the proposed DRM provide con-

siderable improvement over the unprocessed noisy reverberant signal. The

proposed DRM outperforms the IRM at all RT60s. And the best PESQ

performance is obtained by the DRM at the lowest RT60 (0.3 s). For ex-

ample, at -3 dB SNR level with factory noise, the proposed method obtains
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the PESQ-improvements over the IRM as 0.16, 0.12, 0.16, 0.14 at different

RT60s (0.3 s, 0.5 s, 0.7 s, 0.9 s), respectively. Because the higher RT60

increases the complexity in noisy reverberant speech mixture, the PESQ-

improvement with the lower RT60 (0.3 s) is better than the higher RT60

(0.9 s). Since the noise has less effect in higher SNR levels speech mixtures,

the speech separation performance will be better.

In terms of STOI scores, it is similar with the trend of PESQ. The DRM

and the IRM improve the STOI scores, and the average improvement of the

DRM over the IRM is approximately 0.021.

Figure 3.5. Averaged STOI scores of 120 experiments for unprocessed
reverberant signals, the IRM [26] and the proposed DRM systems with
simulated impulse responses, subfigure:(a) 3 dB factory noise, (b) 0 dB
factory noise, (c) -3 dB factory noise, (d) 3 dB babble noise, (e) 0 dB
babble noise and (f) -3 dB babble noise.

3.4.4 Evaluations with Real RIRs

Fig. 3.6 and Table 3.2 show the evaluation performance of the proposed

approach and the IRM with the real impulse responses. For the STOI per-

formance, the average STOI improvement of the DRM over the IRM is 0.20.

When comparing with STOI at different RT60s (0.32 s, 0.47 s), the higher
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RT60 (0.47 s) causes worse separation performance, due to higher complex-

ity. Besides, the direct to reverberant ratio (DDR) has positive effect on

separation performance. For instance, by using the DRM, when the RT60

is 0.68, the performance is better than the one with lower RT60 (0.47 s),

due to the influence of DDR, which strongly justifies another advantage of

the geometric information based approach. PESQ performance is consistent

with STOI performance.

In summary, the above experimental results confirm the proposed method

can separate the target speech from the noisy reverberant mixture in both

simulated and real room environments effectively. The proposed method

outperforms the state-of-the-art method [26].

Figure 3.6. Averaged STOI scores of 120 experiments for unprocessed
reverberant signals, the IRM [26] and the proposed DRM systems with
real impulse responses, subfigure: (a) 3 dB factory noise, (b) 0 dB
factory noise, (c) -3 dB factory noise, (d) 3 dB babble noise, (e) 0 dB
babble noise and (f) -3 dB babble noise.
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Figure 3.7. Spectrograms of different signals, including the clean
speech, noisy mixture, enhanced speeches by DNNs [75] and Proposed
LSTMs. The reverberant noisy speech mixture is generated by factory
noise at -3dB, 0dB and 3dB SNR levels. The color version is better to
understand.
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3.5 Simulation for parallel LSTM

A set of spectrograms are shown in Fig. 3.7. It can be observed that both of

the DNNs and the proposed LSTMs based methods can be used to recover

speech signal. However, the spectrogram of LSTMs based method is more

similar to the spectrogram of clean speech.

3.5.1 Datasets

The IEEE [65] and TIMIT corpora [64] are database of speech source. The

IEEE contains 720 utterances spoken by a single male speaker, all sentences

are downsampled to 16kHz. The TIMT corpora has 630 male and female

speakers, everyone spoken 10 utterances, the utterances are recorded as 16-

bits, 16kHz speech waveform. To teset the proposed system particularly

for speaker-independent case, the training data has 150 male and female

speakers from the database, and the 50 unseen speakers are selected from the

database in testting set. The factory and babble noise signals are selected

from NOISEX database [67]. In general, the noises have duration of four

minutes, 16-bits word length and 20kHz sample rate. The factory noise is

applied to represent the industrial noise, and the babble noise is the recording

of several unseen speakers’ voice, both of them are non-stationary. The clean

utterances are mixed with noise signals with three signal-to-noise ratio levels

(3 dB, 0 dB, -3 dB).

The real room impulse responses (Real RIRs) [77] are convoluted with

speech and noise signal to generate the reverberant speech mixture. The

RIRs include four types of rooms with different dimensions and RT60s. The

detailed parameters are shown in Table 3.3. In total, 12,000 monaural mix-

tures are generated for training the proposed system, and testing data in-

cludes 2880 monaural mixtures.

The separation performance is evaluated quantitatively by SDR improve-



Section 3.5. Simulation for parallel LSTM 41

ment [63]. The higher value means better performance.

Table 3.3. The Parameters of Real RIRs for Different Rooms [77]

Room Size Dimension (m3) RT60(s)

A Medium 5.7×6.6×2.3 0.32
B Small 4.7×4.7×2.7 0.47
C Large 23.5×18.8×4.6 0.68
D Medium 8.0×8.7×4.3 0.89

3.5.2 LSTM Settings and Speech Features

Both LSTM networks have three hidden layers, each hidden layer has 512

units. To justify the comparison, the DNNs have the same configuration [75].

The number of epoch is 30. The LSTM is trained using stochastic gradient

descent (SGD) with momentum. The learning rate is selected as 0.001. The

initial momentum is fixed to 0.5 with change for every 5 epoch, and the final

momentum is selected as 0.9. The batch size is fixed to 64.

The mel-frequency cepstral coefficient (MFCC), spectral transform and

perceptual linear prediction (RASTA-PLP) and amplitude modulation spec-

trum (AMS) [26] are used to generated the feature combination, which is

used to train and test the proposed system.

3.5.3 Evaluations with RIRs
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Figure 3.8. Averaged ∆SDR of DNNs method [75] and the proposed
LSTMs mentod in Room A with factory and babble noises.
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Figs. 3.8, 3.9, 3.10 & 3.11 show the ∆SDR performances of the base-

line [75] and the proposed methods with reverberant room environments and

two background noises. Since the method in [75] has been confirmed to out-

perform the IRM- and cIRM-based methods in [72]. Therefore, the method

in [75] is used for state-of-the-art comparison.
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Figure 3.9. Averaged ∆SDR of DNNs method [75] and the proposed
LSTMs mentod in Room B with factory and babble noises.

Fig. 3.8 shows both the proposed LSTMs method and baseline DNNs

method can provide the consistent ∆SDR in the lowest reverberant envi-

ronments, which proves they successfully remove the noise component from

the noisy speech mixture. Meanwhile, it can be observed that the pro-

posed LSTMs method generates, on average, 1.4dB improvement over DNNs

method.

-3 0 3

SNR(dB)

2

4

6

8

∆
S

D
R

Room C with Factory Noise

-3 0 3

SNR(dB)

2

4

6

8

Room C with Babble Noise

Proposed LSTMs

DNNs

Figure 3.10. Averaged ∆SDR of DNNs method [75] and the proposed
LSTMs mentod in Room C with factory and babble noises.

In Room B, the LSTMs method provides, on average, 0.6dB improve-

ment. When compared Room A and Room B, for factory noise, the proposed

LSTMs and DNNs obtain the better ∆SDR in Room B. Although Room B

has the higher RT60s, which proves the proposed LSTMs can efficiently ad-
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dress the dereverberation problem.

In Room C, the proposed LSTMs method obtains, on average, 1dB im-

provement over the DNNs method. The ∆SDR of Room C is less than

other reverberant rooms for both DNNs and LSTMs, because the direct-to-

reverberation ratio (DDR) is higher than other rooms [75]. When compared

the factory noise with babble noise, the proposed LSTMs method obtains

a better ∆SDR with factory noise, because babble noise is a recording of

people’s conversation, when it is mixed with the speech signal, it increases

the complexity in speech enhancement.
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Figure 3.11. Averaged ∆SDR of DNNs method [75] and the proposed
two-stage LSTMs mentod in Room D with factory and babble noise.

In Room D, the proposed LSTMs method generates, on average, 1.5

dB improvement over the DNNs method. Meanwhile, the proposed LSTMs

method provides the highest ∆SDR across four reverberant room environ-

ments even in the highest RT60s environment. It proves the main advantage

of the proposed method over the baseline method is the improved perfor-

mance at high RT60s. The reduced performance is observed with the increase

of the SNR level. The aforementioned results show the DM can remove the

speech reverberations in the high RT60s.

In summary, the proposed two-stage LSTMs method obtains, on average,

1.1dB improvement over the two-stage DNNs. The LSTMs can use temporal

information to estimate the training targets. Therefore, estimated masks

are more accurate, which increase the generalization ability of the system.

Moreover, in the high reverberant room environment, the LSTMs provide
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significant enhancement performance improvements over the DNNs, which

again confirm the temporal information is important for the estimation of

the DM.

3.6 Summary

In the this chapter, two methods were proposed to address the speech en-

hancement in reverberant environment. In first method, the geometric infor-

mation is utilized to provide the position information of the target speaker

and microphone to estimate the direct-path impulse response, which is used

to calculate the direct-path speech. Based on the direct-path speech, the

DRM was calculated, which is a new training target. The experimental

results confirmed the DRM outperforms the state-of-the-art method. In

second method, LSTMs were introduced to solve the monaural speech en-

hancement problem with the speaker-independent case in real reverberant

room environments. Two T-F masks were trained separately in the LSTM

models to solve the dereverberation and speech enhancement tasks. The

proposed method was evaluated with speaker-independent signals and real

RIRs to confirm its generalization ability. The experimental results prove

the proposed LSTMs method outperforms state-of-the-art DNNs method.

In next chapter, a multi-scale CNN will be provided to capture the fea-

tures in different scales.



Chapter 4

A MULTI-SCALE FEATURE

RECALIBRATION NETWORK

FOR END-TO-END

MONAURAL SPEECH

ENHANCEMENT

4.1 Introduction

Nowadays, a promising direction has been on the exploitation of convolu-

tional neural network (CNN), such as [57], where a convolutional encoder

decoder (CED) is introduced to estimate the mapping relation between

the noisy mixture and target speech. This is further improved for learn-

ing multi-resolution features, with a multi-resolution convolutional auto-

encoders (MCARE) model [58], learning with dilated convolution to enlarge

the receptive fields of the network in Wavenet, and learning with a gated

mechanism to control the information flow among each layer [79]. Further-

more, the gated recurrent network (GRN) method is used with dilated 2-D

convolutional layers to enlarge the receptive fields in the time-frequency (T-

F) domain [30].

45
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The recurrent and convolutional architectures have been used together

to further improve enhancement performance. For example, in the convo-

lutional recurrent network (CRN) [80], the convolutional encoder-decoder is

integrated with the LSTM, where the CED is used to capture the local T-F

patterns, and the LSTM is used to capture long-term interdependency [80].

The CRN method was shown to perform better than the LSTM.

All the above methods are supervised methods where class labels are re-

quired for training the model. In contrast, unsupervised methods have also

been proposed for speech enhancement without the requirement of class la-

bels. A well-known method is the speech enhancement generative adversarial

network (SEGAN) method [81].

The aforementioned methods are promising and represent current state-

of-the-art. However, there are still several limitations. For the CED and

CRN methods, a fixed kernel (filter) size is often used. The local informa-

tion (i.e. feature) in the signal can be extracted by using a kernel of small

size, while the contextual feature needs to be extracted with a larger kernel

size. A method that can extract both local and contextual information is

desired. In the LSTM and CRN models, causal systems are often designed

by considering only current and past samples from the signal. However, in

terms of [79], the prediction performance of the model can be further im-

proved by considering the future samples. Therefore, in the proposed work,

the future information (i.e. a non-causal system) is considered to improve

the enhancement performance.

In addition, the implementation of LSTM often involves computational

loads for calculating the input, output, forget gates and cell memory [53,82,

83], sometimes, this can be problematic when the models are deployed on

resource-limited devices. It would be desirable to use more efficient RNN

models such as BGRU, with performance comparable to BLSTM but less

memory requirements. In addition, in the Inception network [55], the fea-
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tures of different scales are concatenated directly, and they are assigned with

the equal weight. This means that features are considered as equally impor-

tant, which may be problematic especially when the features are induced by

noise. This could be further improved by assigning features with different

weights, as shown in proposed work.

In this paper, the MCGN is proposed, with following specific contribu-

tions.

First, a multi-scale feature recalibration (MCFR) convolutional encoder-

decoder module is introduced, where the kernels with different sizes are

exploited in each convolutional layer, to obtain features in different scales.

This helps capture the interdependency between the local and contextual

information within the signal, and allows the feature in each scale to be

assigned with a different weight in order to retain the components from

speech while suppressing the components from noise.

Second, the bottleneck convolutional layers are introduced, which uses

the 1-D convolutional layer with kernels of size (1,1) to compress the infor-

mation flow inside the proposed MCGN.

Third, connection layers are used in MCGN, including fully connected

(FC) layer and BGRU layers. The FC layer is exploited to reduce the

dimension of encoder output. The BGRU layers can capture the inter-

dependencies among the past, current and future temporal frames. Com-

pared with BLSTM, they offer similar performance but require fewer pa-

rameters.

Fourth, the multi-scale convolutional output layer is proposed to accel-

erate the convergence. The output layer enables the enhanced output with

access to the different scale convolutional operators, which facilitate network

training.

The remainder of this chapter is organized as follows. The a multi-scale

feature recalibration (MCFR) convolutional encoder-decoder module with
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bidirectional GRU is firstly introduced in Section 4.2. Then, the experiments

are performed to make comparison and evaluation between the baselines and

the proposed methods in Section 4.3. Section 4.4 stated the summary of this

chapter.

This chapter focuses on the second objective of this thesis, which relate

to multi-scale feature for monaural speech enhancement accepted by IEEE

Journal of selected topics [84] and leading conference [85].

4.2 Algorithm of MCGN Method

4.2.1 Proposed Network Architecture

The details of the proposed MCGN architecture are shown in Fig. 4.1. The

MCGN contains four parts, i.e. convolutional encoder, convolutional de-

coder, connection layers, and multi-scale convolutional output layers. The

magnitude spectrum of the noisy mixture is fed to the proposed MCGN,

which outputs the estimated magnitude spectrum of the target speech. The

convolutional encoder consists of six convolutional layers, except the first

convolutional layer and bottleneck convolutional layer, other layers are multi-

scale convolutional layers which contain five sub convolutional blocks with

varied kernel sizes. Similarly, the convolutional decoder has the symmetric

structure with the convolutional encoder. The output of the convolutional

encoder is fed to the connection module. After processed by the connec-

tion layers, the information flow is fed to the convolutional decoder. In

addition, the skip connections are added among the convolutional encoder

and decoder. More specifically, the outputs of the convolutional encoder are

concatenated with the input of the convolutional decoder, which prevents

the information loss and encourage the information reuse. The layer hyper-

parameters can be found in Fig. 4.1. Note, the stride size of all layers is (1,2)

except the multi-scale output layer which has a fixed stride size of (1,1).
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4.2.2 Multi-Scale Feature Recalibration Convolutional Layer

The receptive field is a region where CNN can affect a particular high-level

feature. A small receptive field is feasible to extract local information, and

a large receptive field offers contextual information [30]. In conventional

CNN, a fixed kernel size is often used, as a result, it compromises between

local and contextual information extracted from the signal. To address this

limitation, a multi-scale convolutional feature recalibration (MCFR) layer

is designed to capture the information on different scales and generate the

multi-scaled feature. As shown in Fig. 4.2, MCFR contains several con-

volutional operators, which use the kernels of different sizes to capture the

information with various scales. The convolutional operators with the small

kernel sizes can extract the feature from the short duration speech, thus cap-

turing the adjacent T-F points local dependency. The smallest kernel size

(1,2) is employed, which allows the feature from two adjacent T-F points

to be extracted. The convolutional operators with large kernel sizes offer

large receptive fields and can extract features from long-duration speech.

These features contain contextual information compared with the feature

extracted by kernels with smaller sizes. The batch-normalization is used

after each convolutional operator. Different from the standard CNN, which

uses the ReLU activation function [86], the proposed MCGN utilizes the

activation function LeakyReLU [87]. Then, outputs of each convolutional

operator are connected into a single output vector, forming the input of

the next stage, as shown in Fig. 4.2. The multi-scale decovolutional layer

has a similar structure as the one in MCFR, by replacing the convolutional

operators with deconvolutional operators.

After the features at different scales are extracted by using the convo-

lutional operators with varied kernel sizes, a feature recalibration module

is introduced to help the network to be selective when using these scaled

features, i.e. by assigning different weights to features. It is shown on the
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tion module, features are assigned different weights to retain speech
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bottom of Fig. 4.2. The proposed multi-scale convolutional feature recali-

bration layer is referred as the MCFR layer. In the MCFR layer, there are n

sub-convolutional blocks, and each block has the same number of channels

but different kernel sizes to capture the features in different scales. The input

of the multi-scale layer is XM , and the output is KM = [k1,k2, ..,kn], where

kn is captured by the n-th sub 2-D convolutional block that has different

kernel size compared with other 2-D convolutional blocks.

There are several operations for estimating the recalibration coefficients,

based on two criteria: the recalibration coefficient could capture the non-

linear relation inside the multi-scaled feature, and allocate relatively higher

weights to speech components and lower weights to noise components within

the feature. The following operations is used to meet these criteria: two FC

layers, ReLU and Sigmoid activations. These operations are shown as fol-

lows,

c1n = w1n � kn + b1n (4.2.1)

an = max[0, c1n] (4.2.2)

c2n = w2n � an + b2n (4.2.3)

rsn = ec2n ./(ec2n + j) (4.2.4)

where w1n, w2n denote the weight parameters, � denotes element-wise mul-

tiplication, b1n, b2n represent the biases. c1n and c2n represent the opera-

tions in FC1 and FC2 layers, respectively. j = [1, 1, ..., 1], and it has the same

dimension as c2n. The exponential function e is operated element-wise on

c2n, so is the division in the right hand side of equation (4.2.4). The vector

rsn contains the recalibration coefficient of the n-th scaled feature. Empiri-

cally, the ReLU function as (4.2.2) is employed as a non-negative constraint.

Inspired by the success of the gating mechanism, Sigmoid is introduced as

a gating function to control the information flow, which aims to assign dif-
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ferent weights to speech and noise components. The rescaled n-th feature

is:

pn = kn � rsn (4.2.5)

Therefore, the rescaled multi-scale feature is PM = [p1,p2, ...,pn]. The deep

skip connection (as in residual learning [88]) is introduced inside the MCFR

layer. In addition, the residual learning does not introduce any additional

parameters. Mathematically, the original relation for the MCFR layer is

DM = PM , by using the residual learning and the ReLU function, the

relation becomes:

DM = max[0,KM + PM ] (4.2.6)

Following the extraction of multi-scale features, the proposed MCGN learns

the weights and applies them to these features which help retain speech

components and suppresses the noise components in the noisy mixture.

4.2.3 Bottlenecks Convolutioal Layers

One of the practical problems in multi-scale convolutional layers that need

to be solved is the concatenation of the multi-scale features, which would

increase the dimension of the features and cause an increase in computa-

tional cost. Therefore, a structure that can retain the information while

reducing the complexity (e.g. dimension) is needed. Inspired by the embed-

ding techniques that a low dimensional embedding might contain sufficient

information about a relatively large patch [55, 56, 89], the bottleneck con-

volutional layers are introduced in the proposed MCGN architecture. The

bottleneck convolutional layer is a 2-D convolutional layer with (1,1) kernels

and 64 channels, followed by the batch-normalization and LeakeyReLU [87].

It is located before the last convolutional encoder layer and the first decoder

layer, as shown in Fig. 4.1 (red convolutional blocks). The first bottleneck

convolutional layer reduces the dimension from 640-D to 64-D for the last
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encoder layer, and the second bottleneck convolutional layer reduces the

dimension from 128-D to 64-D for the first decoder layer

4.2.4 Connection Layers

The original convolutional encoder-decoder does not well utilized the long-

term temporal information, which, nevertheless, may be valuable in speech

enhancement [54, 80]. The CRN method uses the LSTM to capture the

long-term interdependency between the past and current temporal frames.

However, CRN is designed for the casual problem, which utilizes long-term

interdependency between past and current temporal frames. According

to [79], the future frames could be used to improve enhancement perfor-

mance. BGRU layers are introduced to capture the long-term interdepen-

dency among the past, current and future temporal frames. In comparison,

GRU offers comparable performance to LSTM [83, 90–92], but has an ad-

vantage in parameter efficiency. However, the merging of the multi-scaled

convolutional sub-blocks would lead to an inevitable increase in its dimen-

sion. Therefore, it is necessary to find a way to retain the information and, at

the same time, to reduce the dimension and computational cost. To address

this, we use a fully connected (FC) layer, as the number of parameters of

the fully connected dense layer is smaller than that of the RNN based layer,

leading to a reduced dimension in the output of the FC layer, as compared

with the output of the encoder.

4.2.5 Multi-Scale Output Layer

The skip connection from the input to the multi-scale output layer is added,

as shown at the bottom of Fig. 4.1. As a result, the multi-scale output

layer can estimate the magnitude of the target speech from the previous

layer’s information flow and the input magnitude of the noisy mixture. The

multi-scale output layer is a 2-D deconvolutional layer, which contains five
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sub-blocks, and the kernel sizes of these sub-layers are different. Unlike the

MCFR layer, these varying scaled features are concatenated, the different

scaled features are summed together to generate an output matrix with the

same size as the input matrix. Thus, the multi-scale output layer utilizes

local and contextual information. The stride size of the output layer is set

to (1,1). Batch-normalization and linear activation are followed.

4.3 Experimental Evaluations

4.3.1 Datasets

The proposed system is evaluated with three experiments using three differ-

ent datasets. In the first experiment, we use 1000 clean utterances mixed

with 20 noise signals to generate the training set in first experiment. The

clean utterances are randomly selected from the TIMIT corpus [64], and

noise files are selected from Non-Speech Sounds [68] and NOISEX-92 [67]

datasets. Similarly, 100 clean utterances are mixed with 6 noise signals to

generate the testing datasets. To better evaluate enhancement performance,

the speakers in the training set are different from the speakers in the testing

dataset. Meanwhile, the testing noisy interferences are categorized into two

types, the seen noises (Babble, Leopard, F16) and the unseen noises (N56,

N72, White). Babble, Leopard, F16, N56, N72 are non-stationary noises,

and White is stationary noise. N56 and N72 are wind and water sounds, re-

spectively. The noisy mixtures are generated by mixing the clean utterances

and noises at -5dB, 0dB and 5dB signal-to-noise ratio (SNR) levels. In total,

about 50 hours (3×3×1000×20÷3600) noisy mixtures are used to train the

networks.

In the second experiment, the proposed method is evaluated on a pub-

lished dataset [79, 81]. The datasets are generated by using the VCTK cor-

pus [66] and DEMAND Database [69]. The utterances from 28 speakers and
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2 speakers are used for training and testing, respectively. Each speaker has

spoken around 400 sentences. The training utterances are mixed with 10

types of noise in four SNR levels (0dB, 5dB, 10dB and 15dB). In total, there

are 11,572 noisy mixtures for training. Similarly, the testing utterances are

mixed with 5 types of noise in four SNR levels (2.5dB, 7.5dB, 12.5dB and

17.5dB). In total, the testing set includes 824 noisy mixtures, where both

the speakers and noises are unseen in the training set.

In the third experiment, the proposed MCGN method is evaluated with

a larger dataset. For the training set, 2500 clean utterances are randomly

selected from the TIMIT [64] and VCTK [66] corpora, mix them with 20 dif-

ferent noise signals selected from the Non-Speech Sounds [68] and NOISEX-

92 [67] datasets, to generate 50000 training mixtures for each SNR level

(-5dB, 0dB, and 5dB). Similarly, for the testing set, we randomly select 500

clean utterances and mix them with 5 different noise signals, to generate 2500

noisy mixtures for each SNR level. The speakers of the training dataset are

different from those in the testing dataset. The Babble, Leopard, F16 are

seen noises, while N56 and N72 are unseen noises.

The signal to distortion ratio improvement (∆SDR) [63], perceptual eval-

uation of speech quality (PESQ) [61] and short-time objective intelligibility

(STOI) [62] are used to measure the performance. The higher values of the

measurements indicate better enhancement performance.

4.3.2 Baselines and Parameters

The proposed MCGN is compared with seven baseline methods, including

the standard DNN method from [25], the DNN method with skip connection

S-DNN from [31], the LSTM model used in [54], the BLSTM model used

in [30], the CNN based methods, the MRCAE method from [58], and the

GRN method in [30]. The parameters of the CRN model are set by follow-

ing [80]. LSTM and BLSTM have four hidden layers, where each hidden
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layer contains 1024 units with a dropout rate of 0.2, and the output layer

is a dense layer. The MRCAE is a five-layered 1-D convolutional encoder

decoder. The encoder consists of two multi-resolution 1-D convolutional

layers, and the decoder mirrors the encoder. A deconvolutional layer is

used as the output layer of MRCAE. The CRN consists of the 2-D convo-

lutional encoder, two-layered LSTM and 2-D convolutional decoder, which

are connected by standard feed-forward connections and skip connections.

The GRN is a 62-layered fully connected dilated convolutional neural net-

work with the residual. The aforementioned baseline methods and proposed

MCGN method take the STFT magnitude spectrum of the noisy speech

mixture as the input features, and output the corresponding magnitude

spectrum of the estimated target speech. The estimated magnitude spec-

trum is combined with the noisy phase to re-synthesize the estimated target

speech waveform. Furthermore, the proposed MCGN model trained on the

published dataset [79, 81] is compared with the SEGAN and Wavenet. The

SEGAN employs generator and discriminator to learn and judge the input

data distribution, which uses the adversarial training [81]. The Wavenet is

a 30-layered fully connected convolutional neural network [79].

The input and output layers for all methods contain 257 units. The

baseline methods and proposed MCGN method are trained with the Adam

optimization algorithm [93]. The initial learning rate is set to 0.0001. The

mean square error (MSE) is employed as the objective function for the base-

line and the proposed MCGN methods. The dropout rate is fixed to 0.2.

The sample rate of noisy speech mixtures is 16kHz, and the window length is

512. The time resolution is 32ms, and frequency resolution is 32.15Hz. The

next two sections (i.e. Sections 4.3.3 and 4.3.4) report the results based on

the first dataset, while Sections 4.3.5 and 4.3.6 present results for the second

and third dataset, respectively.
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Table 4.3. The p-value of the t-test at 5% significance level, between
the proposed method and the baseline methods. H0 denotes the null
hypothesis, and (+) indicates that the difference among the pair is
statistically significant at the 95% confidence level.

Measures STOI PESQ

p-value H0 p-value H0

Noisy 1.49E-05 (+) 4.14E-12 (+)
DNN [25] 5.22E-06 (+) 1.76E-07 (+)

S-DNN [31] 1.08E-05 (+) 3.20E-09 (+)
LSTM [54] 8.16E-05 (+) 3.49E-07 (+)

BLSTM [30] 1.93E-04 (+) 1.46E-06 (+)
MRCAE [58] 3.19E-06 (+) 1.87E-06 (+)

CRN [80] 1.44E-04 (+) 2.74E-07 (+)
CRBN 7.71E-05 (+) 1.13E-05 (+)

GRN [30] 1.01E-04 (+) 1.08E-06 (+)

4.3.3 Unseen Speakers with Seen Noise

Fig. 4.3 and Tables 4.1 & 4.2 provide experimental results in terms of ∆SDR,

STOI and PESQ for the baseline and the proposed methods with real-world

noises. The speakers used in testing are unseen in the training data. The

noises used in testing include Babble, Leopard, and F16.

The DNN generates, on average, ∆SDR = 5.49dB, STOI = 76.26% and

PESQ = 2.07, which offers the worst enhancement performance across all

the compared methods. These results show that the generalization ability

of DNN remains insufficient. The S-DNN slightly outperforms the DNN,

because S-DNN explicates the skip connection to build the residual mapping

relation, which mitigates performance degradation. The MRCAE method

uses the multi-resolution 1-D convolutional encoder decoder and offers a

small improvement over the DNN in terms of ∆SDR, and PESQ.

The LSTM generates, on average, ∆SDR = 8.03dB, STOI = 78.77% and

PESQ = 2.33, which shows better generalization ability over the DNN, S-

DNN and MRCAE. Different from the DNN, S-DNN and MRCAE method,

the LSTM exploits the memory cell to keep the hidden states from the past
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temporal frame. Incorporating the past and current temporal frames, the

inter-dependencies between them are captured by the LSTM. The BLSTM

outperforms the LSTM, due to the use of forward-LSTM and backward-

LSTM in every BLSTM layer. The forward-LSTM is the same as the stan-

dard LSTM, which is used to capture the interdependency between the past

and current temporal frames. However, the backward-LSTM is fed by reverse

input sequence, and thus the interdependency between current and future

temporal frames are also utilized, to achieve further improvement over the

LSTM.

The CRN obtains, on average, ∆SDR = 8.81dB, STOI = 79.49% and

PESQ = 2.39, which provides higher improvements over the DNN, S-DNN

and LSTM methods. Since the local spatial patterns of the input magnitude

spectrum are captured by CRN, it is capable of leveraging the T-F structure

of the magnitude spectrum. Moreover, the LSTM layers inside the CRN

exploit the temporal dependency by using past and current temporal frames.

In addition, experiments are performed for the non-casual version of CRN,

namely CRBN, where the LSTM layers are replaced by the BLSTM layers.

The experimental results show that the CRBN offers slight improvements

over the CRN method, which confirms that the interdependency between

the current and future frames is helpful for improving predictions by the

model. The GRN outperforms the CRN by using the dilated convolutional

layers.

The proposed MCGN gets the highest improvements over the baseline

methods, and it achieves, on average, ∆SDR = 10.88dB, STOI = 82.42% and

PESQ = 2.58, which are almost 1.7dB, 2.53% and 0.16 higher than those

achieved by the CRN method. The MCGN using the MC to encode the

input magnitude spectrum in different scales. The local interdependency

is captured by the convolutional sub-layers with small kernel sizes. The

convolutional sub-layers with large kernel sizes are used to find the inter-
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dependency between the remote frames. By using the small and large size

kernels, the receptive field of MCGN is enlarged, and the different scaled

features are assigned with different weights. Furthermore, the BGRU layers

are introduced to connect the multi-scale encoder and multi-scale decoder,

which are capable of exploiting the interdependency of the past, current and

future temporal frames. Besides, the raw data is fed to the output layer of

the MCGN to learn the residual mapping relation.

The t-test [94, 95] between the proposed MCGN method and baseline

methods are also performed, noisy mixtures for the unseen speakers with

seen noises cases. The t-test results are shown in Table 4.3. It can be seen

that the p-values are all smaller than 0.05 and all the null hypothesis is

(+), which shows that the proposed MCGN method yields a statistically

significant improvement over the baseline methods.

Table 4.4. The p-value of the t-test at 5% Significance Level, com-
parison of proposed method with the baseline methods. H0 denotes
the null hypothesis, and (+) indicates the improvement of two pairs is
statistically significant at the 95% confidence level.

Measures STOI PESQ

p-value H0 p-value H0

Noisy 1.49E-04 (+) 2.06E-05 (+)
DNN [25] 2.97E-04 (+) 1.73E-05 (+)

S-DNN [31] 6.75E-04 (+) 3.80E-04 (+)
LSTM [54] 4.18E-04 (+) 3.05E-04 (+)

BLSTM [30] 2.24E-04 (+) 4.17E-05 (+)
MRCAE [58] 9.94E-04 (+) 2.42E-04 (+)

CRN [80] 1.89E-04 (+) 2.62E-05 (+)
CRBN 1.06E-04 (+) 1.18E-05 (+)

GRN [30] 1.94E-04 (+) 2.82E-05 (+)
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Figure 4.4. Speech enhancement performance comparison in terms of
∆SDR for three types of noise with different methods and SNR levels.
Each result is the average value of 100 experiments.

4.3.4 Unseen Speaker with Unseen Noises

Fig. 4.4 and Tables 4.5 & 4.6 provide experimental results in terms of ∆SDR,

STOI and PESQ for the baseline and the proposed methods with real-world

noise. The testing speakers are unseen in training data. The testing noises
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are N56, N72 and White noises, which are also unseen in the training data.

The DNN method offers slight improvement over the original noisy mix-

ture. The MRACE outperforms the DNN method in terms of ∆SDR and

PESQ, but its STOI performance is worse than that of DNN and S-DNN.

These results show that the shallow structure and small channel numbers

can limit the performance of MRCAE. Besides, the large size filters increase

computational cost. The skip connection in S-DNN boosts enhancement

performance compared to the DNN method. The LSTM obtains further im-

provement by incorporating the past and current temporal information. The

utilization of past, current and future temporal information in BLSTM shows

advantages over the LSTM and DNN based method. The CRN method

incorporates the CNN encoder-decoder with the LSTM, the convolutional

encoder-encoder takes advantage of the convolutional layer and batch nor-

malization to provide a high-level representation of the input feature, which

accelerates the training and improves the enhancement performance. Due

to the incorporation of the BLSTM layers, the CRBN offers advantages over

the CRN method in terms of ∆SDR, STOI and PESQ. The GRN method

uses gated linear units to control the information flow, and dilated convo-

lutional layers to expand the receptive fields. These strategies enable the

GRN method to outperform the aforementioned methods.

The proposed MCGN method offers improvements over all the baseline

methods in terms of ∆SDR, STOI and PESQ. The t-test results in Table

4.4 also show that the improvement of the proposed MCGN methods is

statistically significant.

4.3.5 Experiments on Published Dataset

The proposed MCGN method is evaluated on the second dataset i.e. the

published dataset generated by the VCTK corpus. Fig. 4.5 shows experi-

mental results. Note that the model size (i.e. the number of parameters)
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of SEGAN, Wavenet and the proposed MCGN is 193M, 34.3M, 77.5M re-

spectively. The no-casual, dilated convolutions controlled by the Sigmoid

gate in every layer help to enlarge the receptive fields of every kernel, and

thus to utilize the interdependency among input features. The future sam-

ples help the Wavenet to perform better. The proposed MCGN method

produces substantially better enhancement performance, since the MCFR

model provides weighted multi-scale feature in every layer, and captures the

interdependency among different frames including future frames.
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Figure 4.5. Speech enhancement comparison in terms of ∆SDR and
∆PESQ for Segan [81], Wavenet [79] and the proposed MCGN. The
enhancement results are the average value of 824 noisy mixtures.

4.3.6 Additional Experiments

Figs. 4.6 & 4.7 and Tables 4.7 & 4.8 provide experimental results in terms of

∆SDR, STOI and PESQ for the proposed MCGN and four baseline methods

(i.e. LSTM, BLSTM, CRN and GRN) with seen and unseen noises, for the

larger dataset (i.e. 50000 training signals and 2500 testing signals for each

SNR level, described in Section 4.3.1).

It can be observed that the proposed MCGN method performs better

than all the baseline methods, and shows similar trends as for the smaller

dataset tested earlier. All the methods provide some improvements over
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the noisy mixtures, which indicate that they are effective for speech en-

hancement with seen and unseen noises. The BLSTM provides more im-

provements than LSTM, since it uses additional information from the future

frames, in contrast to the information from only current and previous frames

used in LSTM. The CRN uses the CED to capture local T-F patterns from

input noisy mixtures, also uses the LSTM layers to relate the past frames

with current frames, thus offering higher improvements than the LSTM and

BLSTM. The GRN shows advantage over LSTM, BLTM and CRN, due to

the employment of the dilated 2-D convolutional layers for expanding the

receptive fields in the T-F domain, and the gated convolution to control the

information flow between layers.
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Figure 4.6. Speech enhancement performance comparison in terms of
∆SDR for two unseen noises with different methods and SNR levels.
Each result is the averaged value of 500 experiments.



Section 4.3. Experimental Evaluations 70

B
ab

b
le

  -
5

  0
  5

S
N

R
 L

ev
el

 (
d

B
)

68101214 SDR (dB)

L
eo

p
ar

d

  -
5

  0
  5

S
N

R
 L

ev
el

 (
d

B
)

F
16

  -
5

  0
  5

S
N

R
 L

ev
el

 (
d

B
)L

S
T

M

B
L

S
T

M

C
R

N

G
R

N

M
C

G
N

Figure 4.7. Speech enhancement performance comparison in terms of
∆SDR for three types of noise with different methods and SNR levels.
Each result is the averaged value of 500 experiments.



Section 4.3. Experimental Evaluations 71

T
a
b
le

4
.7
.

S
p

ee
ch

en
h
an

ce
m

en
t

p
er

fo
rm

an
ce

co
m

p
ar

is
on

s
in

te
rm

s
of

S
T

O
I

an
d

P
E

S
Q

ov
er

tw
o

d
iff

er
en

t
ty

p
es

of
u
n
se

en
n
oi

se
s

w
it

h
b
as

el
in

e
m

et
h
o
d
s

an
d

S
N

R
le

ve
ls

.
E

ac
h

re
su

lt
is

th
e

av
er

ag
ed

va
lu

e
of

50
0

ex
p

er
im

en
ts

.
It
al
ic

te
x
t

re
fe

rs
to

th
e

p
ro

p
os

ed
m

et
h
o
d
.
B
o
ld

n
u
m

b
er

in
d
ic

at
es

th
e

b
es

t
p

er
fo

rm
an

ce
.

M
ea

su
re

S
T

O
I

(%
)

N
oi

se
s

N
56

N
72

S
N

R
-5

d
B

0d
B

5d
B

A
v
g.

-5
d
B

0d
B

5d
B

A
v
g.

M
ix

tu
re

57
.8

3
67

.1
9

76
.0

2
67

.0
1

79
.1

9
78

.3
7

83
.4

4
80

.3
3

L
S
T

M
[5

4]
77

.2
9

82
.2

5
85

.9
3

81
.8

2
81

.7
5

85
.6

2
88

.3
6

85
.2

4
B

L
S
T

M
[3

0]
77

.5
9

82
.5

4
86

.4
5

82
.1

9
82

.5
9

86
.1

8
89

.1
1

85
.9

6
C

R
N

[8
0]

77
.9

0
83

.6
2

87
.2

4
82

.9
2

82
.6

1
86

.8
1

89
.2

5
86

.2
2

G
R

N
[3

0]
78

.5
0

83
.8

8
87

.5
6

83
.3

1
83

.0
0

87
.4

89
.3

5
86

.5
8

M
C
G
N

8
3
.8
7

8
7
.2
0

8
9
.6
7

8
6
.9
1

8
5
.5
7

8
8
.5
5

9
0
.5
4

8
8
.2
2

M
ea

su
re

P
E

S
Q

N
oi

se
s

N
56

N
72

S
N

R
-5

d
B

0d
B

5d
B

A
v
g.

-5
d
B

0d
B

5d
B

A
v
g.

M
ix

tu
re

1.
20

1.
33

1.
56

1.
36

1.
57

1.
84

2.
10

1.
84

L
S
T

M
[5

4]
2.

03
2.

22
2.

40
2.

22
2.

15
2.

39
2.

58
2.

37
B

L
S
T

M
[3

0]
2.

05
2.

26
2.

44
2.

25
2.

23
2.

42
2.

62
2.

42
C

R
N

[8
0]

2.
07

2.
31

2.
47

2.
28

2.
28

2.
46

2.
65

2.
46

G
R

N
[3

0]
2.

08
2.

32
2.

45
2.

28
2.

29
2.

46
2.

67
2.

47
M
C
G
N

2
.2
7

2
.5
1

2
.6
4

2
.4
7

2
.4
2

2
.6
1

2
.8
2

2
.6
2



Section 4.3. Experimental Evaluations 72

T
a
b
le

4
.8
.

S
p

ee
ch

en
h
an

ce
m

en
t

p
er

fo
rm

an
ce

co
m

p
ar

is
on

s
in

te
rm

s
of

S
T

O
I

an
d

P
E

S
Q

ov
er

th
re

e
d
iff

er
en

t
ty

p
es

of
se

en
n
oi

se
s

w
it

h
d
iff

er
en

t
b
as

el
in

e
m

et
h
o
d
s

an
d

S
N

R
le

ve
ls

.
E

ac
h

re
su

lt
is

th
e

av
er

ag
ed

va
lu

e
of

50
0

ex
p

er
im

en
ts

.
It
al
ic

te
x
t

re
fe

rs
to

th
e

p
ro

p
os

ed
m

et
h
o
d
.
B
o
ld

n
u
m

b
er

in
d
ic

at
es

th
e

b
es

t
p

er
fo

rm
an

ce
.

M
ea

su
re

S
T

O
I

(%
)

N
oi

se
s

B
ab

b
le

L
eo

p
ar

d
F

16
S
N

R
-5

d
B

0d
B

5d
B

A
v
g.

-5
d
B

0d
B

5d
B

A
v
g.

-5
d
B

0d
B

5d
B

A
v
g.

N
oi

sy
M

ix
tu

re
56

.6
3

66
.3

6
75

.2
8

66
.0

9
73

.2
2

78
.0

6
82

.2
6

77
.8

5
57

.4
66

.8
3

75
.6

1
66

.6
1

L
S
T

M
[5

4]
70

.3
0

78
.1

8
83

.9
6

77
.4

8
81

.1
5

84
.7

6
87

.4
5

84
.4

5
74

.2
1

80
.9

1
85

.2
3

80
.1

2
B

L
S
T

M
[3

0]
71

.2
4

78
.8

6
84

.5
3

78
.2

1
82

.0
2

85
.3

9
87

.9
9

85
.1

3
74

.9
8

81
.2

8
85

.9
3

80
.7

3
C

R
N

[8
0]

71
.3

4
79

.1
8

84
.6

7
78

.4
0

82
.3

0
85

.7
7

88
.1

7
85

.4
1

75
.0

6
81

.9
8

86
.1

3
81

.0
6

G
R

N
[3

0]
73

.5
3

80
.0

6
84

.2
9

79
.2

7
82

.7
7

85
.9

88
.2

1
85

.6
3

77
.3

8
82

.6
6

86
.1

1
82

.0
5

M
C
G
N

7
8
.4
6

8
3
.1
9

8
6
.9
7

8
2
.8
7

8
5
.0
1

8
7
.4
5

8
9
.4
5

8
7
.3
0

7
9
.5
6

8
4
.2
7

8
7
.6
4

8
3
.8
2

M
ea

su
re

P
E

S
Q

N
oi

se
s

B
ab

b
le

L
eo

p
ar

d
F

16
S
N

R
-5

d
B

0d
B

5d
B

A
v
g.

-5
d
B

0d
B

5d
B

A
v
g.

-5
d
B

0d
B

5d
B

A
v
g.

N
oi

sy
M

ix
tu

re
1.

38
1.

65
1.

96
1.

66
1.

77
2.

09
2.

37
2.

08
1.

31
1.

55
1.

83
1.

56
L

S
T

M
[5

4]
1.

88
2.

25
2.

56
2.

23
2.

44
2.

69
2.

92
2.

68
2.

02
2.

37
2.

63
2.

34
B

L
S
T

M
[3

0]
1.

91
2.

29
2.

60
2.

26
2.

50
2.

75
2.

98
2.

74
2.

10
2.

41
2.

67
2.

39
C

R
N

[8
0]

1.
93

2.
31

2.
61

2.
28

2.
53

2.
79

3.
00

2.
77

2.
14

2.
45

2.
69

2.
43

G
R

N
[3

0]
2.

03
2.

33
2.

62
2.

33
2.

53
2.

80
3.

01
2.

78
2.

20
2.

47
2.

70
2.

46
M
C
G
N

2
.2
7

2
.5
5

2
.7
7

2
.5
3

2
.7
1

2
.9
3

3
.1
0

2
.9
1

2
.3
5

2
.6
0

2
.8
1

2
.5
9



Section 4.3. Experimental Evaluations 73

4.3.7 Kernel Size Analysis

Further experiments are performed to analyse the relation between enhance-

ment performance and kernel sizes. These experiments use kernel size varied

from 1 × 2 to 11 × 11, thus exploiting different receptive fields in the T-F

domain. Table 4.9 provides the experimental results in terms of ∆SDR,

STOI, and PESQ. It can be observed that the performance increases with

the increase in the kernal size, e.g. from 2 × 2 to 7 × 7, but then starts

to saturate for the further increase to 11 × 11. However, the performance

difference is relatively small.

A larger kernel size can provide a larger receptive field, which helps the

kernel to filter the output from a longer sequence i.e. contextual information,

and a smaller kernel size helps capture the local information. However, there

is a trade-off between the kernel size and performance, when the kernel

size is larger than a certain value, it may cause performance degradation.

Using paralleled multi-kernel helps the model to capture the features in

different scales, thus exploiting both local and contextual information, as in

the proposed method.

To interpret the use of different kernel sizes, an example of the feature

map is provided, it is obtained by using kernels of different sizes in the

first multi-scale convolutional layer, as shown in Fig. 4.8, using kernels of

Table 4.9. Kernel Size Analysis

Filte Size ∆SDR STOI PESQ

1× 2 10.55 72.07 1.71
2× 2 10.72 72.21 1.72
2× 3 10.76 72.30 1.73
4× 5 10.88 72.37 1.73
5× 5 11.16 72.97 1.76
7× 7 11.18 73.15 1.77

11× 11 11.23 73.07 1.75
Multi-Kernel 11.72 76.21 1.92
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size 1 × 2, 3 × 4, and 7 × 7. It can be seen, although the kernel at each

scale extracted both speech and noise components, as shown in the regions

highlighted with blue and black, the feature maps obtained with these kernels

characterise different receptive fields, for example, with the large kernel,

more heavy smoothing is applied which is effective in mitigating the impact

of noise, while the use of a small kernel can retain the fine structure of the

spectrum. Therefore, using a bank of kernels, the system has a better chance

to capture and distinguish the features from speech and noise, thus further

improves the speech enhancement performance.

Target Speech 

Noisy Mixture 

1×2 

3×4

7×7

-0.8

-0.6

-0.4

-0.2

 0.2

 0

 0.4

 0.6

Figure 4.8. The weights obtained by feature recalibration are shown
as a hot-map, where the horizontal and vertical axis denote the time
and frequency, respectively, and the color-bar shows the values of the
weights.

4.3.8 Component Analysis

A series of experiments are conducted to investigate the efficiency of different

components in the proposed model. In the component analysis, the ablation

experiments are performed, by removing different components to show how

it affects the enhancement performance.
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Table 4.10 provides the experimental results of using various compo-

nents in terms of the ∆SDR, STOI, PESQ and the parameters (million).

Full means the full MCGN framework. No bottleneck represents removing

the bottleneck layers in MCGN. No FC represents removing the fully con-

nected layers in MCGN. No MCFR means using the single kernel in each

encoder-decoder layer. No CL represents removing the connection layers

that include a dense layer and two BGRU layers. No FR denotes removing

feature recalibration, which means that the different scaled features use the

same weight and are concatenated directly.

The bottleneck layers employ fewer channels than previous layers to com-

press the information from previous convolutional layers, and this can reduce

the computational cost with slight information loss, as shown in the exper-

imental results. Unlike bottleneck layers in the convolutional encoder and

decoder, the FC layer with non-linear activation can produce a compact rep-

resentation of the encoder output before the BGRU layer is applied. The

bottleneck and FC layers help capture global information from the mixture.

In addition, the interdependency among the past, current and future frames

is captured by the BGRU layers. Therefore, the CL can employ BGRU and

FC layers to provide improvements of enhancement performance and param-

eter efficiency. The results also show that the MCFR module can improve

the performance by capturing the features in different scales using paralleled

kernels of different size.

0.8

0.6

0.4

0.2

Feature Recalibration

Figure 4.9. The weights obtained by feature recalibration are shown
as a hot-map, where the horizontal and vertical axis denote the time
and frequency, respectively, and the color-bar shows the values of the
weights.
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Table 4.10. Component Analysis

Measures ∆SDR STOI PESQ Parameters(Millions)

Full 10.20 81.40 2.40 77.5
No Bottleneck 10.39 81.60 2.43 133.4

No FC 10.24 81.51 2.40 123.7
No CL 9.27 77.25 2.23 41.9

No MCFR 9.12 77.42 2.20 27.9
No FR 9.61 79.87 2.32 68.8

Fig. 4.9 shows the weights obtained by feature recalibration in the last

layer of the multi-scale decovolutional layer. The color-bar shows the weight

values, and the deeper color represents a smaller value. Comparing Fig. 4.9

with Fig. 4.11 (A), (B), it can be observed that the weights of high values

capture the target speech very well. For example, the areas highlighted with

the red blocks represent speech components, while those highlighted with

yellow blocks represent components from noise. It can be observed that the

feature recalibration tends to assign the features from speech with higher

weights, and features from noise with lower weights. Therefore, the feature

recalibration helps suppress noise and improve reconstruction of the target

speech.

4.3.9 Convergence Lines and Spectrums

Fig. 4.10 demonstrates the testing MSEs of the baseline methods and the

propose MCGN and MCGN without multi-scale output (MCGN(NM)) lay-

ers over epochs. It can be seen that the MCGN converges faster than the

baseline methods and reaches the lowest MSE. After 20 epochs training, the

MCGN and MCGN(NM) offer similar MSEs, but the convergence speech

of MCGN is faster than MCGN(NM) at 1-5 epochs. It shows that the

multi-scale output layer accelerates the convergence speed. Furthermore,

the MCGN provides better performance than the state-of-the-art baseline

methods.
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0 5 10 15 20

No. of Epochs

0

0.3

0.6
M

S
E

Convergence Lines

S-DNN

LSTM

BLSTM

CRN

GRN

MCGN(NM)

MCGN

Figure 4.10. Mean squared errors over training epochs for S-DNN,
LSTM, BLSTM, CRN, GRN, MCGN and MCGN(NM) on the test set.
The MCGN(NM) represents the delete the multi-scale output layers,
only use the normal output layer. All models are evaluated with a test
set of unseen speakers.

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

Figure 4.11. Spectrums of different signals: (A) clean speech; (B)
noisy speech mixture; (C) enhanced speech by S-DNN [31]; (D) en-
hanced speech by LSTM [54]; (E) enhanced speech by BLSTM [30]; (F)
enhanced speech by the proposed MRCAE [58] (G) enhanced speech by
the proposed CRN [80]; (H) enhanced speech by the proposed CRBN;
(I) enhanced speech by the proposed GRN [30]. (J) enhanced speech
by the proposed MCGN.
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A set of spectra are offered in Fig. 4.11. It can be seen that the baseline

methods and the proposed MCGN method provide different enhancement

performance in terms of reconstruction of target speech. The spectrums of

the proposed MCGN method is closer to the specgtrums of the target speech,

which again confirmes that the MCGN outperforms the baseline methods.

4.4 Summary

An advanced network structure named MCGN was proposed to address

monaural speech enhancement. A series of novel strategies were utilized to

refine enhancement performance and improve parameter efficiency. The fea-

ture in different scales were captured by using varied sized kernels in MCFR.

Larger kernels captured global information. On the contrary, the local infor-

mation was obtained by smaller kernels. Moreover, the feature recalibration

was achieved, which exploit the gating mechanism to assign higher weights

to essential features. As a result, the MCFR paid more attention to speech

components and suppressed the noise components. In addition, the bot-

tleneck convolutional and deconvolutional layers were introduced to retain

the information and reduce parameters. Similarly, the FC layer was intro-

duced to offer compressed information flow. Furthermore, the BGRU layers

were utilized to capture interdependency among the past, current and fu-

ture temporal frames. The unseen speakers and noises were used to examine

the enhancement performance of the proposed MCGN method. The experi-

mental results confirmed the improved performance of the proposed method

overs the state-of-the-art baseline methods.

In next chapter, a convolutional fusion network will be discussed to im-

prove the model capacity of speech enhancement method.



Chapter 5

CONVOLUTIONAL FUSION

NETWORK FOR MONAURAL

SPEECH ENHANCEMENT

5.1 Introduction

The aforementioned methods, however, still have limitations. For instance,

although a large kernel size used can enlarge the receptive fields of the model

in the conventional convolutional encoder-decoder network, it increases the

computational cost [96]. The InceptionNet and MRCAE utilize multiple ker-

nels with various sizes to improve the model capacity, it also requires larger

computational resource [58], which will decrease the parameter efficiency

and limits its applicability in resource-limited applications. The AlexNet

uses two group convolutions in parallel at each layer, with each group taking

half of the input sequence [97]. As a result, the output from a certain chan-

nel will only be partially related to the input channels, this will limit the

information flowing between channels [98]. The Shuffle Network (ShuffleNet)

introduces the channel shuffling to rearrange and concatenate the outputs of

different groups, which entangles the information across the channels [98].

However, for each group of convolution, only part of input sequence is used,

which may limit each kernel to only obtaining partial information from the

79
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full input sequence and potentially degrade the model performance. The

AECNN model only employs the skip connections between the encoder and

decoder, which feds the information flow from the encoder to the decoder,

but the information flow within the encoder or decoder is not considered [96].

In this chapter,a new framework is proposed, namely, convolutional fu-

sion network (CFN) to mitigate some of these limitations. More specifically,

the following contributions are offered.

First, a convolutional fusion unit is proposed consisting of standard con-

volution and depth-wise separable convolution with smaller kernel size. The

weighted outputs from these two convolutions are concatenated as the out-

put of the convolutional fusion unit. The convolutional fusion units are used

to build the encoder, instead of using only standard (vanilla) convolution.

Second, a novel decoder is proposed that includes deconvolution, depth-

wise separable convolution and upsampling layers to improve the model ca-

pacity.

Third, a full input sequence (full information) based channel shuffling is

introduced to exploit the inter-channel dependency. More specifically, the

full input sequence is fed to standard convolution and depth-wise separable

convolution, and their outputs are re-arranged and concatenated to utilize

the inter-channel dependency according to the channel order. As a result,

both groups of convolution can exploit the full information from the input

sequence.

Lastly, intra skip connection mechanisms are applied inside the encoder

and decoder. With intra skip connection, the ability of reusing information

flow within the encoder and decoder is refined.

The remainder of this chapter is organized as follows. Section 5.2 presents

the proposed CFN method. The experimental settings and results are dis-

cussed in Section 5.3. Section 5.4 draws the conclusions.

This chapter focuses on the third objective of this thesis, which relate to
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Figure 5.1. The architecture diagram of the proposed CFN. The
components and their function are listed in bottom of the figure. For
example, E64 represent GCFU with 64 output channel in the encoder,
and D64 represents GDFU in the decoder. The encoder is on the top
of the figure, and the decoder is on the bottom of the figure. The
kernel sizes of standard convolution and deconvolution are set as (1,3),
and their strides sizes are set to (1,2). The kernel size of depth-wise
separable convolution is set to (3,3), and strides size is (1,1). The
pooling layer with strides size (1,2) is used to reduce the dimension
of depth-wise separable convolution output in GCFU, and upsampling
layer with size (1,2) is employed to increase its dimension in GDFU.
Besides, the last layer of encoder uses stride size (1,1) for convolution
and depth-wise separable convolution, and pooling with strides (1,1)
for depth-wise separable convolution.

the covolutional fusion structure method for monaural speech enhancement

submitted to Elsevier Journal of Neural Network.
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5.2 Algorithm of CFN Method

5.2.1 Proposed Network Architecture

The convolutional encoder-decoder structure with multiple skip connections

are exploited for monaural speech enhancement. The details of the proposed

CFN are shown in Fig. 5.1. The proposed CFN takes the magnitude spec-

trum of the noisy spectrum as input, and outputs the magnitude spectrum

of estimated target speech. The estimated target speech is reconstructed by

using the estimated magnitude of the target speech and the phase informa-

tion of the noisy speech mixture. The encoder has multiple layers of group

convolutional fusion units, and each unit consists of a standard convolution

and depth-wise separable convolution. The number of output channels of

the group convolutional fusion units is increased from 16 to 128 in the en-

coder. The encoder is applied to reduce the dimension of input sequence by

using the strides in group convolutional fusion units. The decoder has a mir-

ror structure with the encoder, and each group deconvolutional fusion unit

consists of standard deconvolution and depth-wise separable deconvolution.

The decoder is used to recover the dimension of the encoder output and

generate the final output. In addition, multiple types of skip connections

are applied to improve feature re-use. More specifically, the group decon-

volutional fusion unit of the decoder is connected with the output from the

corresponding symmetric group deconvolutional fusion unit of the encoder

by skip connection. Furthermore, the skip connections are used to connect

different group convolutional/deconvolutional fusion units inside the encoder

or decoder.

5.2.2 Group Convolutional Fusion Units

The CFN is proposed by employing group convolutional fusion units (GCFU)

of two different network architectures, i.e. standard convolution and depth-
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wise separable convolution, and the weighted outputs of the two convolutions

are concatenated together. The details of the proposed GCFU is shown in

Fig. 5.2. For every unit, the input matrix X ∈ RH×W×M , where H and W

represent heigh and width of matrix respectively. M represents channels of

matrix.

A standard 2D-convolutional layer can be characterized by an input X,

and a bank of filters F ∈ RK×L×M×N , K and L represent the width and

length of kernel respectively, N represents the number of filters i.e. the

number of output channels of the standard 2D-convolutional layer. The

operation of the standard 2D-convolutional layer is:

C(k,l,n) =
K∑
i=1

L∑
j=1

M∑
m=1

F(i,j,m,n)X(k+i−1,l+j−1,m) (5.2.1)

The output of the standard 2D-convolutional layer is C ∈ RH×W×N . Also,

the stride sizes are used to control the output size of C. The batch normal-

ization and activation function LeakyReLU [87] are followed to generate the

2D-convolution output.

Different from the standard 2D-convolution, the depth-wise separable

convolution has two steps: depth-wise convolution i.e. a spatial convolution

performed independently over every input channel, and the point-wise con-

volution i.e. a standard convolution, which projects every channel’s output

of the depth-wise convolution to a new channel space. Mathematically, the

filter F are spilt into two filters, the depth-wise filter D ∈ RK×L×1×1, and

point-wise filter P ∈ R1×1×M×N .

S(k,l,n) =

K∑
i=1

L∑
j=1

M∑
m=1

F(i,j,m,n)X(k+i−1,l+j−1,m)

=
K∑
i=1

L∑
j=1

M∑
m=1

D(i,j,m)P(m,n)X(k+i−1,l+j−1,m)
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=
M∑
m=1

P(m,n)

 K∑
i=1

L∑
j=1

D(i,j,m)X(k−i,l−j,m)

 (5.2.2)

The output of the depth-wise separable convolutional layer is S ∈ RH×W×N .

Similarly, the batch normalization and activation function LeakyReLU [87]

are followed after depth-wise separable convolutional layers. In addition, the

max pooling operation is used to down-sample the output of the depth-wise

separable convolution.

Different from the conventional residual structure that sums two output

convolutions [30]. The convolutional fusion is realized by concatenating the

weighted outputs of the two convolutions:

B = [α1C, α2S] (5.2.3)

where α1 and α2 represent the weight parameters of the standard and depth-

wise separable convolutions.

5.2.3 Full Information Channel Shuffle

The concept of group convolution is first proposed in AlexNet [97], which

employs two parallel convolutions in each layer. Furthermore, the group

convolution has been demonstrated its effectiveness in many works [55, 88].

In the proposed method, the outputs of these two parallel convolutions are

concatenated to generate the final output.

For the next layer, the output of a certain channel is only related to a

small fraction of the input channels, and information flow between channels

is limited in conventional group convolution [98]. Therefore, motivated by

the idea in [98], a strategy is introduced for shuffling group channels in the

proposed CFN model, which allows each channel of the next layer to obtain

information flow from two kinds of convolutions. In addition, the input and

output of this layer will be related. In the original group channel shuffle
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Figure 5.2. (a) Conventional group convolution that consists of the
standard convolution and depth-wise separable convolution. 2N repre-
sents the number of output channels of convolutional layers. The stan-
dard convolution and depth-wise separable convolution take half input
sequence as input, each of them generates output with 2N channels,
and the output of convolution and depth-wise separable convolution
are concatenated directly. (b) Group convolution with channel shuffle.
The input sequence is divided into two parts based channel index, the
first part of the input sequence is feed to the standard convolution, and
the second part of the input sequence is fed to the depth-wise separa-
ble convolution layer. Their outputs are re-arranged the channel and
concatenated by using the channel shuffle, and final output with 4N
channels. (c) Proposed full information channel shuffle. The full input
sequence (full information) is fed to the N channel standard convolu-
tion and N channel depth-wise separable convolution. Their outputs
are re-arranged channel and concatenated by using the channel shuffle,
and final output with dimension 2N .

method [98] as shown in Fig. 5.2.(b), the input sequence is divided into two

parts, where the first part is fed to the standard convolution, and the second

part is fed to the depth-wise separable convolution. Therefore, the standard

convolution and depth-wise separable convolution cannot fully utilize the

input sequence, which causes the model capacities of two kinds of convo-

lutions to be not well utilized. To address this problem, in the proposed
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GCFU, a new structure is designed to exploit the full information channel

shuffle as shown in Fig. 5.2.(c). The full input sequence (full information)

is fed to both standard convolution and depth-wise separable convolution in

the proposed structure, different from Fig. 5.2.(b). They are employed to

generate the feature representations for the full input sequence. As shown

in Fig. 5.2.(c), the outputs of standard convolution and depth-wise separa-

ble convolution are re-arranged and concatenated according to the channel

order.

Both the standard convolution and depth-wise separable convolution

have N output channels, and they can be represented as C = [C1,C2...,CN ]

and S = [S1,S2, ...,SN ]. The full information channel shuffle of GCFU is:

Bs = [α1C1, α2S1, ..., α1CN , α2SN ] (5.2.4)

where Bs represents the channel shuffled group convolution. By using

the full information channel shuffle, the output of the standard convolution

and depth-wise convolution are fully related, and the next layers can obtain

the shuffled information flow. In addition, the channel shuffle enables us to

halve the number of convolutions output channels as shown in Fig. 5.2.(c).

5.2.4 Group Deconvolutional Fusion Units

In the convolutional encoder-decoder structure, the decoder is exploited to

map the low dimension encoder feature representation to the original dimen-

sion of the input sequence that with a higher dimension. The standard de-

coder uses deconvolutional layers to up-sample the encoder output. However,

there is no depth-wise separable deconvolution structure. A group deconvo-

lutional fusion unit (GDFU) is proposed to up-sample the encoder feature

map, which can increase the feature dimension. The GDFU architecture

is shown in Fig. 5.3. The low dimensional feature representation is fed to
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Figure 5.3. Structure diagram of the proposed GDFU with full infor-
mation channel shuffle. The full input sequence is fed to the standard
deconvolution and depth-wise separable convolution. N Deconv repre-
sents N channel standard deconvolution, and N D-S Conv denotes the
N channel depth-wise separable convolution.

deconvolutional and depth-wise separable convolutional layers respectively,

to generate the dense feature representations. The batch normalization and

LeakeyRelu [87] steps are followed. Inspired by the work [99], which uses

the transferred pooling layers and standard convolutional layers to build the

convolutional decoder, the upsampling layer is used to up-sample the feature

representation of the depth-wise separable convolutional layers. Finally, full

information channel shuffle is utilized to rearrange the outputs of standard

deconvolution and depth-wise separable convolution as shown in Fig. 5.3.

5.2.5 Skip Connection inside Encoder or Decoder

In the convolutional encoder-decoder, the input sequence is processed with

many layers. Some information may have lost due to the variations in the

dimension of feature representation of the signal [96]. The skip connections

between encoder and decoder can be introduced to address this issue. For

example, in AECNN [96], the encoder layers are connected with the decoder



Section 5.3. Experimental Evaluations 88

layers. Unlike this work,the skip connection mechanism is proposed as shown

in Fig. 5.1, to connect the layers inside the encoder (decoder), which facil-

itates the feature re-use inside the encoder or decoder. However, densely

connecting all the layers will significantly increase the computational cost.

Therefore, block dense connections are proposed, where the encoder layers

with the same number of output channels are set as a block, e.g. block-16,

block-32, block-64 and block-128. For instance, the output of block-16 is

fed to the other blocks (block-32, block-64 and block-128) of the encoder.

Since GCFU has stride size (1, 2) in the encoder layers, the output sizes

of different layers are varied, as a result, the output of block-16 cannot be

directly concatenated with the output of the other blocks. Therefore, a new

mechanism is designed to down-sample the features of block-16 using a max-

pooling layer with the stride of size (1, 8). Then, the down-sampled output

is concatenated with the output block-32, concatenated representation is fed

to block-64. Similarly, other skip connections are developed within the en-

coder as shown in Fig. 5.1. On the contrary, the layers are up-sampled in

the decoder to match the size of the skip connections.

5.3 Experimental Evaluations

5.3.1 Data and Setup

To build the training and testing data, the clean utterances from TIMIT [64]

and IEEE [65] corpora are mixed with the environmental noises from the

NOISEX-92 [67] dataset. 1500 utterances are randomly selected from TIMIT

and IEEE corpora as the training utterances. In addition, 100 utterances

are selected from TIMIT corpus as the testing utterances, and the speakers

of testing utterances are different from the speakers of training utterances,

which is speaker-dependent case. The training and testing utterances are

mixed with the Babble, Artillery, Airplane, Factory, Tank, and White noises.
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The noises’ names indicate their recording environments, and they are four

minutes long. The training and testing datasets are generated with three

signal-to-noise ratio (SNR) levels i.e. -5dB, 0dB and 5dB.

Furthermore, the proposed method is evaluated with speaker- and noise-

independent cases. These experiments aim to evaluate the performance of

the proposed method under the challenging mismatch conditions. 200 ut-

terances are randomly selected from the TIMIT corpus [64] as the train-

ing utterances, and 100 utterances from the TIMIT corpus as the testing

utterances, and the speakers of testing utterances are different from the

speakers of training utterances. Three types of unseen noise i.e. Water,

Wind and Pink noises, are chosen as the testing noises from the Non-

Speech Sounds and NOISEX-92 datasets. 108 noises that consist of 98

noises from Non-Speech Sounds dataset and 10 from NOISEX-92 dataset

are used as the training noises. The Non-Speech Sounds dataset contains

100 environmental noises. The training noises are mixed with the train-

ing speeches in SNR levels of -5dB, 0dB and 5dB. Similarly, the testing

speeches are mixed with three unseen environmental noises at SNR lev-

els of -5dB, 0dB and 5dB to generate the testing dataset. In total, 60

hours (1500×6×3×2.5÷3600+200×100×3×2.5÷3600=60.42) noisy speech

mixtures are used to train the proposed model, and about 2 hours noisy

speech mixtures to test the proposed model.

The parameters of the CFN are shown in Fig. 5.1 and its caption. The

signals in the training and testing datasets are re-sampled at 16 kHz. The

magnitude spectrum of these signals is obtained by using STFT with Han-

ning window of 512 samples and 50% overlap between the neighboring win-

dows, and then log-compressed. The MAE is used as the cost function

for the baselines (discussed in the next sub-section) and the proposed CFN

methods, and the Adam optimization algorithm with 0.0001 initial learning

rate [93] is employed. The best models are selected. The training and testing
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processes are executed by GeForce GTX-1080. For quantitative evaluation,

short-time objective intelligibility (STOI) [62] and perceptual evaluation of

speech quality (PESQ) [61] are used to measure the enhancement perfor-

mance. The STOI indicates the intelligibility quality of the estimated target

speech which ranges in (0, 1), and the PESQ indicates the perceptual quality

of the estimated speech which ranges in (0, 4.5). The higher value of the

measurements indicates better enhancement performance.

5.3.2 Baseline Methods

Three state-of-the-art speech enhancement methods are used as the base-

lines, and they are, respectively, the DNN in [25], GRN in [30], and AECNN

in [96]. DNN is a fundamental method in deep learning, and the GRN and

AECNN show advantages over RNN. DNN has four hidden layers, and each

hidden layer has 1024 units. Also, the dropout with a rate of 0.2 is used

in DNN to reduce the over-fitting [100]. The output layer of DNN has the

same number of units as the length of the input sequence. The GRN model

is a 62-layered deep fully connected convolutional model with residual con-

nections. The stacked convolutional layers use gated convolution with an

increased dilated ratio. The dilated convolution offers larger receptive fields,

which enables each kernel to filter out information on longer-term of the

sequence than standard convolution. Also, the Sigmoid activation function

follows the dilated convolution to build a gate mechanism to control the in-

formation flow in GRN. Finally, the prediction module takes the information

flow from the stacked dilated convolution layers by the feed-forward and skip

connections, and generates the magnitude spectrum of the estimated target

speech.

The AECNN is a 18-layered convolutional encoder-decoder structure.

The convolutional encoder is exploited to reduce the dimension of the input

magnitude spectrum by using the convolutional layers with strides sized 2.
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The deconvolutional decoder has a minor structure with the convolutional

encoder, which is employed to recover the dimension of the output of the

convolutional encoder to the original dimension i.e same as the input noisy

speech magnitude spectrum. The number of output channel of the convolu-

tional encoder is increased from 64 to 256, but the number of the convolution

decoder is reduced from 256 to 64, and the output layer of the AECNN has

one channel. The layers of the encoder are connected with layers of the

decoder that has the same number of the output channels by skip connec-

tions. The MAE between the magnitude spectrum of noisy speech and the

estimated target speech is employed in AECNN. To make a fair comparison,

magnitude spectrum of 257 units are fed into the baseline methods and the

proposed CFN, and they output the magnitude of estimated target speech.

The same training and testing datasets are employed for the baselines and

the proposed method. The number of parameters for the baseline meth-

ods: DNN (5.5 Million), GRN (2.5 Million), AECNN (6.4 Million), and the

number of parameters of the proposed CFN is 3.5 Million.

5.3.3 Experimental Results for Seen Noises

Tables 5.1 & 5.2 provide comparisons among the proposed CFN and the base-

line methods in terms of STOI and PESQ for speaker-independent case with

seen Babble, Artillery, Airplane, Factory, Tank, and White noises. The DNN

offers, on average, STOI = 75.39% and PESQ = 2.14, which provides the

lowest improvement over the noisy speech mixture across all compared meth-

ods. The results show that the DNN under-performs for speaker-independent

speech enhancement, where the speakers in the test set are different from

those in the training set, as compared with other method including the pro-

posed method.

The GRN provides, on average, STOI = 78.69% and PESQ = 2.27. The

GRN offers further improvement over the DNN methods. The GRN utilizes
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the dilated convolutional layers to enlarge the receptive fields, which means

one kernel (filter) can take information from a longer sequence and generate

the output. Therefore, the temporal information from the long-term frames

is captured. Also, the convolutional layer with Sigmoid is employed to build

the gated mechanism to control the information flow in GRN. In addition,

residual learning is employed by using the skip connections among the differ-

ent layers of GRN. By joint using these strategies, the GRN offers a better

enhancement performance in terms of STOI and PESQ, as compared with

DNN in the speaker-independent speech enhancement.

The AECNN provides, on average, STOI = 79.75% and PESQ = 2.34,

which outperforms GRN and DNN methods, which is consistent with the

finding in [96]. The AECNN employs a speech encoder-decoder structure

to estimate the magnitude spectrum of target speech. The convolutional

encoder takes the magnitude spectrum of the noisy speech mixture as input,

which generates a lower dimension output. The convolutional decoder is

utilized to recover the dimension of the encoder output. In addition, MAE

between the magnitude spectrums of the estimated target speech and the

original target speech is utilized as the cost function. The experimental

results show the AECNN i.e. convolutional encoder-decoder is an advanced

method over DNN and GRN methods.
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Table 5.3. The p-value of the t-test at 5% Significance Level, and
comparison of proposed method with the baseline methods for speaker-
independent case. H0 denotes the null hypothesis, and (+) indicates
the improvement of two pairs is statistically significant at the 95%
confidence level.

Measures STOI PESQ
p-value H0 p-value H0

Noisy 1.63E-10 (+) 1.29E-14 (+)
DNN 1.75E-10 (+) 5.34E-12 (+)
GRN 4.33E-10 (+) 1.85E-12 (+)

AECNN 1.21E-07 (+) 5.53E-12 (+)

The proposed CFN method offers, on average, STOI = 82.20% and PESQ

= 2.52, which provides over 2.45% STOI improvement and 0.17 PESQ im-

provement over the AECNN, GRN and DNN methods. It shows advantages

in processing speaker-independent speech enhancement. In addition, the

CFN uses a fewer number of parameters, thus offers a higher parameter

efficiency. The reason will be discussed in the next subsection.

To further evaluate whether the improvement in terms of STOI and

PESQ is statistically significant, the t-test is performed between proposed

CFN with baseline methods and noisy speech mixture at a significant level of

0.05 in Table 5.3. The t-test is performed following statistical analysis in [95].

When p-values smaller than 0.05, it means there is statistical significant

difference between values of two group. All p-values are smaller than 0.05,

and all H0 are +, which confirms that the improvements by the proposed

CFN over the baselines are statistically significant.

5.3.4 Experimental Results for Unseen Noises

Table 5.4 provides comparisons among the proposed CFN and baseline meth-

ods in terms of STOI and PESQ for speaker- and noise-independent cases

with unseen Water, Wind, Pink noises.

Similarly, experimental results of speaker- and noise-independent cases
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show similar trends of enhancement performances. The DNN offers the worst

enhancement performance in terms of STOI and PESQ, which shown the

limitation of DNN in processing challenging speech enhancement problems.

The GRN offers improvements over the DNN method. Also, the AECNN

outperforms DNN and GRN methods, which yields, on average, STOI =

79.07% and PESQ = 2.06.

The proposed CFN method yields the best enhancement performance,

on average, STOI = 81.85% and PESQ = 2.25. Several contributions are

exploited to boost enhancement performance. The CFN uses standard con-

volution and depth-wise separable convolution to produce the representation

of feature, which reinforce the model capacity of the proposed CFN method.

Also, a novel decoder that consists of deconvolution and depth-wise separable

convolution is employed to up-sample the encoder output. In addition, full

information channel shuffle structure is designed to reduce the parameters

and improve the channel related. Also, the two types of skip connections are

introduced to improve the feature re-use, especially the intra skip connec-

tions are employed in encoder or decoder, to make proceeding layers of the

encoder can receive more information from previous layers of the encoder. By

combining using the aforementioned contributions, the CFN shows advan-

tages over the DNN, GRN and AECNN for noise- and speaker-independent

cases. Also, the results of the t-test in Table 5.5 demonstrates the proposed

CFN method yields statistically significant improvements over the baseline

methods.
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Table 5.5. The p-value of the t-test at 5% Significance Level, and
comparison of proposed method with the baseline methods for speaker-
and noise-independent cases. H0 denotes the null hypothesis, and (+)
indicates the improvement of two pairs is statistically significant at the
95% confidence level.

Measures STOI PESQ
p-value H0 p-value H0

Noisy 7.03E-5 (+) 1.04E-06 (+)
DNN 1.21E-06 (+) 2.68E-07 (+)
GRN 2.24E-05 (+) 8.63E-08 (+)

AECNN 1.45E-04 (+) 5.55E-8 (+)

5.3.5 Ablation Analysis and Spectrums

The ablation analysis is realized by removing certain components in proposed

network to show the contribution of the component for overall system. More

specifically, the ablation analysis is performed in Table 5.6 to show the con-

tribution of every component in the proposed CFN. Full denotes results of

the proposed CFN method. No SC denotes deleting the standard convolu-

tion, No D-SC represents ablating the depth-wise separable convolution, No

ISCED is deleting the intra skip connections of encoder(decoder).

Table 5.6. Ablation analysis in terms of STOI, PESQ and number of
parameters.

Measures STOI PESQ No. of Parameters
Full 70.18 1.73 3.5 Million

No SC 65.89 1.57 1.2 Million
No D-SC 66.12 1.55 0.6 Million

No ISCED 69.31 1.70 3.1 Million

The standard convolution yields the most improvements in terms of STOI

and PESQ, which proves the standard convolution has a better model capac-

ity over the depth-wise separable convolution in the proposed CFN. Mean-

while, the depth-wise separable convolution has similar importance when

compared with standard convolution. However, there are around 4% STOI
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and 0.2 PESQ performance decrease when using the standard convolution

or depth-wise separable convolution. These results confirm the standard

convolution and depth-wise Separable convolution are limited in processing

mismatch speech enhancement, but the proposed CFN is capable to provide

a better model capacity for speech enhancement. Besides, the intra skip con-

nections of encoder or decoder also have the contribution to enhancement

performance, it demonstrated the layers of CFN may not well reconstruct

the input sequence, and the intra skip connections fed more information

from previous layers which promote the feature re-use in the proposed CFN

model.

Fig. 5.4 shows the spectrums of target speech, noisy mixture and en-

hanced speech of different methods. DNN, GRN, AECNN and the proposed

CFN remove most of the noise from the noisy mixture. Meanwhile, en-

hanced speeches by DNN, GRN and AECNN remain some noise in the low

frequency region. The enhanced spectrum of CFN is the closest to that of

target speech, which confirms it can remove the noise from the noisy speech

mixture successfully and provides the best performance over the DNN, GRN

and AECNN methods.
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Figure 5.4. Spectrums of different signals: (a) target speech, (b) noisy
speech mixture, (c) enhanced speech by DNN, (d) enhanced speech by
GRN, (e) enhanced speech by AECNN, (f) enhanced speech by CFN.
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Figure 5.5. The STOI performance, PESQ performance and the num-
ber of parameters with different depth multipliers. The depth multiplier
D with increment 2 from 1 to 11.

5.3.6 Depth Multiplier of Depth-wise Separable Convolution

The experiments is offered to analyze the effects of depth multiplier in depth-

wise separable convolution, the experimental results are provided in Fig. 5.5.

The depth multiplier represents the number of depth-wise convolution

output channels for each input channel. The target of this series of exper-

iments aims to find the balance between speech enhancement performance

and depth multiplier i.e the parameter efficiency. The experimental results

are shown in Fig. 5.5. With the increase D value, speech enhancement per-

formance in terms of STOI and PESQ is improved. However, a larger number

of parameters is needed, which means it will need more computational re-

source. D=1 offers, on average, STOI = 75.18% and PESQ = 2.10, which

provides the lowest enhancement performance but requires the fewest num-

ber of parameters around 1.7 Million. However, when D=11, it provides on

average, STOI=76.83% and PESQ = 2.17, which offers the highest enhance-

ment performance but needs more parameters around 6.3 Million. When D

increases to 3, significant improvements are observed in terms of STOI and

PESQ. If D larger than 5, the improvements of STOI and PESQ become

stable. For example, the D=5 offers on average STOI=76.27%, and D=7 of-
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fers STOI= 76.35%. In summary, taking the number of parameters, memory

size and enhancement performance, D=5 in the proposed CFN model.

In addition, when comparing the proposed CFN methods with the afore-

mentioned DNN and CNN methods, the proposed CFN obtains better per-

formance and has lesser parameters, which proves CFN has better parameter

efficiency. More specifically, the number of parameters for different meth-

ods are: DNN-DRM (5.5M), LSTMs (11.8M), CFN (3.5M). The DRM and

LSTMs are designed for speech separation in reverberation environments.

CFN is designed for speech enhancement, which uses several strategies to

further improve parameter efficiency.

5.4 Summary

A novel network model was offered as CFN to address the monaural speech

enhancement problem. The CFN considered the speech enhancement prob-

lem as a sequence-to-sequence problem. Therefore, the CFN was exploited to

finding the mapping relation between the spectrums of the noisy speech mix-

ture and clean target speech. The model capacity, inter-channel dependency,

parameter efficiency was improved by using the CFN model. More specifi-

cally, the standard convolution and depth-wise separable convolutions were

used to build convolutional fusion units. Then, the group channel shuffle

was introduced to reinforce the interdependency among different channels.

Furthermore, the skip connections were utilized in both the encoder and

decoder to promote feature re-use. The dataset with unseen speakers and

noises was exploited to test the proposed CFN model. The experimental

results confirmed the proposed CNF model shows advantages over state-of-

the-art methods.



Chapter 6

CONCLUSIONS AND

FUTURE WORK

In this chapter, the contributions of this thesis are summarized in Section

6.1, and the suggestions for future work are given in Section 6.2.

6.1 Conclusions

This thesis contributed neural network-based methods to address the monau-

ral speech enhancement and separation problems. These advanced methods

are designed to improve the enhancement performance, generalization abil-

ity and model capacity with the real environment. The proposed methods

were evaluated over benchmark datasets generated by TIMIT, IEEE, VCTK,

NOISEX-92, DEMAND database. Besides, they are compared with state-

of-the-art methods.

In this thesis, four methods were proposed to achieve these targets, the

advanced training targets, system structure and neural network model ar-

chitectures were introduced in these algorithms. The contributions satisfy

the three objectives. The first contribution offered two methods, which in-

troduced new training targets and network structure to exploit spatial and

temporal information to address the speech separation and enhancement in

reverberant environment. The second contribution offered MCGN method

to capture the weighted multi-scale features, and interdependency among

102
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different frames for speech enhancement. The third contribution offered

CFN method to employ depthwise separable convolution and channel shuf-

fle, which improved the generalization and model capacity.

In Chapter 3, in the first proposed method, the geometric information of

target speech and microphone was used to estimate the direct path impulse

response. Furthermore, DRM was obtained by using the energy of direct

path target speech and noisy mixtures. The direct path target speech was

obtained by multiplying DRM with the noisy mixture, which could denoise

from noisy mixture. Finally, the estimated target speech was recovered from

the direct path speech, which realized dereverberation. The experimental

results confirmed the DRM outperforms the IRM in terms of speech en-

hancement. In the second method, the paralleled LSTMs were exploited

to estimate the DRM and IRM, respectively. More specifically, the LSTMs

could keep and memory the information of past time frames even with long-

term intervals, as a result, the interdependency among the past and current

frames was extracted. The first LSTM was used to estimated DM, which

could remove the reverberation. Simultaneously, the IRM was estimated by

the second LSTM to remove the noisy component from the mixture. The

experimental results confirmed the proposed paralleled LSTM offered per-

formance improvement over the baseline method. Meanwhile, they proved

the LSTM capture past information to improve enhancement performance.

The experimental results proved the DRM obtained over 2.5% STOI and 0.1

PESQ improvements over IRM. In additional, the parallel LSTMs offered

more than 1dB SDR improvements over DNNs.

In Chapter 4, a new framework was presented for monaural speech

enhancement. The proposed MCGN introduced several novel strategies

to improve speech enhancement performance and computational efficiency.

Firstly, the MCFR structure was introduced to extract the features in dif-

ferent scales, capturing both the local and contextual information from the
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speech mixtures. In addition, the feature recalibration network was imple-

mented using the gated mechanism to control the information flow, and to

assign different weights to multi-scale feature. Also, the skip connections be-

tween the convolutional encoder-decoder were exploited to alleviate perfor-

mance degradation. Secondly, bottleneck convolutional and deconvolutional

layers were introduced to reduce information flow dimension in encoder and

decoder, but to retain the information. Thirdly, the efficiency connection

module was introduced. The fully connected layer was used to reduce the

dimension of the output of the convolutional encoder. The BGRU was ex-

ploited to capture the interdependency among the past, current and future

temporal frames, which provides comparable performance with fewer pa-

rameters than BLSTM. Finally, we introduced the multi-scale convolutional

output layer, then summed the multi-scale outputs to accelerate the con-

vergence speed. A variety of noises were used to examine the enhancement

performance of the system. The unseen speakers with the seen and unseen

noises were exploited to evaluate the efficacy of the proposed method. The

experimental results confirmed the improved performance of the proposed

MCGN method provided over 1.3dB SDR, 2% STOI, and 0.14 PESQ im-

provements over the state-of-the-art baseline methods.

In Chapter 5, a novel convolutional model was proposed, named convolu-

tional fusion network (CFN), to address the monaural speech enhancement

problem. Speech enhancement was considered as a sequence-to-sequence

problem by the CFN, where the magnitude spectrum of the noisy speech

mixture is taken as the input, for estimating the magnitude spectrum of

the target speech. The proposed CFN model improves the model capac-

ity, inter-channel dependency, parameter efficiency and feature re-use. With

the proposed group convolutional fusion units, the standard convolution and

depth-wise separable convolution were used to reinforce the model capacity

of CFN. Then, the novel decoder allowed the CFN to take advantage of two
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different convolutions. The experimental results confirmed that the group

convolutional model had better model capacity than standard convolution.

The group channel shuffle structure halved the number of output channels,

thereby increasing parameter efficiency and exploiting inter-channel depen-

dent information. In addition, utilizing skip connections inside the encoder

and decoder can promote feature re-use and improve the performance. The

experimental results showed the CFN offered more than 2.1% STOI, and

0.15 PESQ improvement over the baseline method.

Although this thesis offered feasible solutions to the monaural speech

enhancement problems, further improvements could be obtained by intro-

ducing further advanced strategies in following aspects. More specifically,

the proposed methods mainly focused on time-frequency domain speech en-

hancement. The phase information of noisy speech mixture was used to

reconstruct target speech. Moreover, the proposed methods mainly used

DNN, LSTM and CNN structures, more advanced network structures can be

introduced. Furthermore, the neural network only utilized the audio-based

feature, as a result, the video information was underestimated. In addi-

tion, the number of parameters of proposed methods can be further reduced,

which enables these methods to be further applied in low-computational and

resource devices. As a result, the influence of noise will be reduced in speech

communication, audio recording for mobile phone an laptops.

6.2 Suggestions for Future Work

To further improve this study, some potential contribution points could be

further researched.

Firstly, the phase information can be used to improve enhancement per-

formance. The neural network can take the phase information of noisy mix-

ture as input, and estimate the phase of target speech. Although such ap-
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proaches have been investigated, these techniques can be combined with the

advanced network structure to obtain accurate estimation.

Secondly, unsupervised learning can be further introduced. Unlike the

conventional DNN based methods that learn mapping or masking (i.e. la-

bels) relation between input and output, unsupervised learning without of

class label is proposed. The advanced network can be combined with unsu-

pervised learning to improve the generalization ability of the method.

Thirdly, video information can be employed in speech enhancement. The

mouth movement and facial expression could provide the length, energy level

even the contextual information of the target speaker. This information can

generate fusion feature with audio data, and the advanced network structure

can learn mapping or masking relation from these fusion features.

Finally, the parameter efficiency structure can be exploited in the en-

hancement framework, which offers tremendous potential for low-power de-

vices such as mobile phones and laptops. Also, these structures should be

easy to utilize in other network structures.
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