
 10  Integrating Safety into System Engineering 

 Previous chapters have provided the individual pieces of the solution to engineering 

a safer world. This chapter demonstrates how to put these pieces together to inte-

grate safety into a system engineering process. No one process is being proposed: 

Safety must be part of any system engineering process. 

 The glue that integrates the activities of engineering and operating complex 

systems is specifications and the safety information system. Communication is criti-

cal in handling any emergent property in a complex system. Our systems today are 

designed and built by hundreds and often thousands of engineers and then operated 

by thousands and even tens of thousands more people. Enforcing safety constraints 

on system behavior requires that the information needed for decision making is 

available to the right people at the right time, whether during system development, 

operations, maintenance, or reengineering. 

 This chapter starts with a discussion of the role of specifications and how systems 

theory can be used as the foundation for the specification of complex systems. Then 

an example of how to put the components together in system design and develop-

ment is presented. Chapters 11 and 12 cover how to maximize learning from acci-

dents and incidents and how to enforce safety constraints during operations. The 

design of safety information systems is discussed in chapter 13. 

 10.1   The Role of Specifications and the Safety Information System 

 While engineers may have been able to get away with minimal specifications during 

development of the simpler electromechanical systems of the past, specifications are 

critical to the successful engineering of systems of the size and complexity we are 

attempting to build today. Specifications are no longer simply a means of archiving 

information; they need to play an active role in the system engineering process. They 

are a critical tool in stretching our intellectual capabilities to deal with increasing 

complexity. 
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 Our specifications must reflect and support the system safety engineering process 

and the safe operation, evolution and change of the system over time. Specifications 

should support the use of notations and techniques for reasoning about hazards and 

safety, designing the system to eliminate or control hazards, and validating — at each 

step, starting from the very beginning of system development — that the evolving 

system has the desired safety level. Later, specifications must support operations 

and change over time. 

 Specification languages can help (or hinder) human performance of the various 

problem-solving activities involved in system requirements analysis, hazard analysis, 

design, review, verification and validation, debugging, operational use, and mainte-

nance and evolution (sustainment). They do this by including notations and tools 

that enhance our ability to: (1) reason about particular properties, (2) construct the 

system and the software in it to achieve them, and (3) validate — at each step, starting 

from the very beginning of system development — that the evolving system has the 

desired qualities. In addition, systems and particularly the software components are 

continually changing and evolving; they must be designed to be changeable and the 

specifications must support evolution without compromising the confidence in the 

properties that were initially verified. 

 Documenting and tracking hazards and their resolution are basic requirements 

for any effective safety program. But simply having the safety engineer track them 

and maintain a hazard log is not enough — information must be derived from the 

hazards to inform the system engineering process and that information needs to be 

specified and recorded in a way that has an impact on the decisions made during 

system design and operations. To have such an impact, the safety-related informa-

tion required by the engineers needs to be  integrated into  the environment in which 

safety-related engineering decisions are made. Engineers are unlikely to be able to 

read through volumes of hazard analysis information and relate it easily to the 

specific component upon which they are working. The information the system safety 

engineer has generated must be presented to the system designers, implementers, 

maintainers, and operators in such a way that they can easily find what they need 

to make safer decisions. 

 Safety information is not only important during system design; it also needs to 

be presented in a form that people can learn from, apply to their daily jobs, and use 

throughout the life cycle of projects. Too often, preventable accidents have occurred 

due to changes that were made after the initial design period. Accidents are fre-

quently the result of safe designs becoming unsafe over time when changes in the 

system itself or in its environment violate the basic assumptions of the original 

hazard analysis. Clearly, these assumptions must be recorded and easily retrievable 

when changes occur. Good documentation is the most important in complex systems 
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where nobody is able to keep all the information necessary to make safe decisions 

in their head. 

 What types of specifications are needed to support humans in system safety 

engineering and operations? Design decisions at each stage must be mapped into 

the goals and constraints they are derived to satisfy, with earlier decisions mapped 

or traced to later stages of the process. The result should be a seamless and gapless 

record of the progression from high-level requirements down to component require-

ments and designs or operational procedures. The rationale behind the design deci-

sions needs to be recorded in a way that is easily retrievable by those reviewing or 

changing the system design. The specifications must also support the various types 

of formal and informal analysis used to decide between alternative designs and to 

verify the results of the design process. Finally, specifications must assist in the 

coordinated design of the component functions and the interfaces between them. 

 The notations used in specification languages must be easily readable and learn-

able. Usability is enhanced by using notations and models that are close to the 

mental models created by the users of the specification and the standard notations 

in their fields of expertise. 

 The structure of the specification is also important for usability. The structure will 

enhance or limit the ability to retrieve needed information at the appropriate times. 

 Finally, specifications should not limit the problem-solving strategies of the users 

of the specification. Not only do different people prefer different strategies for 

solving problems, but the most effective problem solvers have been found to change 

strategies frequently [167, 58]. Experts switch problem-solving strategy when they 

run into difficulties following a particular strategy and as new information is obtained 

that changes the objectives or subgoals or the mental workload needed to use a 

particular strategy. Tools often limit the strategies that can be used, usually imple-

menting the favorite strategy of the tool designer, and therefore limiting the problem 

solving strategies supported by the specification. 

 One way to implement these principles is to use  intent specifications  [120]. 

 10.2   Intent Specifications 

 Intent specifications are based on systems theory, system engineering principles, and 

psychological research on human problem solving and how to enhance it. The goal 

is to assist humans in dealing with complexity. While commercial tools exist that 

implement intent specifications directly, any specification languages and tools can 

be used that allow implementing the properties of an intent specification. 

 An intent specification differs from a standard specification primarily in its struc-

ture, not its content: no extra information is involved that is not commonly found 
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in detailed specifications — the information is simply organized in a way that has 

been found to assist in its location and use. Most complex systems have voluminous 

documentation, much of it redundant or inconsistent, and it degrades quickly as 

changes are made over time. Sometimes important information is missing, particu-

larly information about  why  something was done the way it was — the intent or 

design rationale. Trying to determine whether a change might have a negative 

impact on safety, if possible at all, is usually enormously expensive and often involves 

regenerating analyses and work that was already done but either not recorded or 

not easily located when needed. Intent specifications were designed to help with 

these problems: Design rationale, safety analysis results, and the assumptions upon 

which the system design and validation are based are integrated directly into the 

system specification and its structure, rather than stored in separate documents, so 

the information is at hand when needed for decision making. 

 The structure of an intent specification is based on the fundamental concept of 

hierarchy in systems theory (see chapter 3) where complex systems are modeled in 

terms of a hierarchy of levels of organization, each level imposing constraints on 

the degree of freedom of the components at the lower level. Different description 

languages may be appropriate at the different levels.   Figure 10.1  shows the seven 

levels of an intent specification. 

    Intent specifications are organized along three dimensions: intent abstraction, 

part-whole abstraction, and refinement. These dimensions constitute the problem 

space in which the human navigates. Part-whole abstraction (along the horizontal 

dimension) and refinement (within each level) allow users to change their 

focus of attention to more or less detailed views within each level or model. 

The vertical dimension specifies the level of intent at which the problem is being 

considered. 

 Each intent level contains information about the characteristics of the environ-

ment, human operators or users, the physical and functional system components, 

and requirements for and results of verification and validation activities for that 

level. The safety information is embedded in each level, instead of being maintained 

in a separate safety log, but linked together so that it can easily be located and 

reviewed. 

 The vertical intent dimension has seven levels. Each level represents a different 

model of the system from a different perspective and supports a different type of 

reasoning about it. Refinement and decomposition occurs within each level of the 

specification, rather than between levels. Each level provides information not just 

about  what  and  how , but  why , that is, the design rationale and reasons behind the 

design decisions, including safety considerations. 

   Figure 10.2  shows an example of the information that might be contained in each 

level of the intent specification. 
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 Figure 10.1 
 The structure of an intent specification. 

    The top level (level 0) provides a project management view and insight into the 

relationship between the plans and the project development status through links 

to the other parts of the intent specification. This level might contain the project 

management plans, the safety plan, status information, and so on. 

 Level 1 is the customer view and assists system engineers and customers in 

agreeing on what should be built and, later, whether that has been accomplished. It 

includes goals, high-level requirements and constraints (both physical and operator), 

environmental assumptions, definitions of accidents, hazard information, and system 

limitations. 

 Level 2 is the system engineering view and helps system engineers record and 

reason about the system in terms of the physical principles and system-level design 

principles upon which the system design is based. 

 Level 3 specifies the system architecture and serves as an unambiguous interface 

between system engineers and component engineers or contractors. At level 3, the 

system functions defined at level 2 are decomposed, allocated to components, and 

specified rigorously and completely. Black-box behavioral component models may 

be used to specify and reason about the logical design of the system as a whole and 
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 Figure 10.2 
 An example of the information in an intent specification. 
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the interactions among individual system components without being distracted by 

implementation details. 

 If the language used at level 3 is formal (rigorously defined), then it can play an 

important role in system validation. For example, the models can be executed in 

system simulation environments to identify system requirements and design errors 

early in development. They can also be used to automate the generation of system 

and component test data, various types of mathematical analyses, and so forth. It is 

important, however, that the black-box (that is, transfer function) models be easily 

reviewed by domain experts — most of the safety-related errors in specifications will 

be found by expert review, not by automated tools or formal proofs. 

 A readable but formal and executable black-box requirements specification lan-

guage was developed by the author and her students while helping the FAA specify 

the TCAS (Traffic Alert and Collision Avoidance System) requirements [123]. 

Reviewers can learn to read the specifications with a few minutes of instruction 

about the notation. Improvements have been made over the years, and it is being 

used successfully on real systems. This language provides an existence case that a 
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readable and easily learnable but formal specification language is possible. Other 

languages with the same properties, of course, can also be used effectively. 

 The next two levels, Design Representation and Physical Representation, 

provide the information necessary to reason about individual component design 

and implementation issues. Some parts of level 4 may not be needed if at least por-

tions of the physical design can be generated automatically from the models at 

level 3. 

 The final level, Operations, provides a view of the operational system and acts as 

the interface between development and operations. It assists in designing and per-

forming system safety activities during system operations. It may contain required 

or suggested operational audit procedures, user manuals, training materials, main-

tenance requirements, error reports and change requests, historical usage informa-

tion, and so on. 

 Each level of an intent specification supports a different type of reasoning about 

the system, with the highest level assisting systems engineers in their reasoning 

about system-level goals, constraints, priorities, and tradeoffs. The second level, 

System Design Principles, allows engineers to reason about the system in terms of 

the physical principles and laws upon which the design is based. The Architecture 

level enhances reasoning about the logical design of the system as a whole, the 

interactions between the components, and the functions computed by the compo-

nents without being distracted by implementation issues. The lowest two levels 

provide the information necessary to reason about individual component design and 

implementation issues. The mappings between levels provide the relational informa-

tion that allows reasoning across hierarchical levels and traceability of requirements 

to design. 

 Hyperlinks are used to provide the relational information that allows reasoning 

within and across levels, including the tracing from high-level requirements down 

to implementation and vice versa. Examples can be found in the rest of this 

chapter. 

 The structure of an intent specification does not imply that the development must 

proceed from the top levels down to the bottom levels in that order, only that at 

the end of the development process, all levels are complete. Almost all development 

involves work at all of the levels at the same time. 

 When the system changes, the environment in which the system operates changes, 

or components are reused in a different system, a new or updated safety analysis is 

required. Intent specifications can make that process feasible and practical. 

 Examples of intent specifications are available [121, 151] as are commercial tools 

to support them. But most of the principles can be implemented without special 

tools beyond a text editor and hyperlinking facilities. The rest of this chapter assumes 

only these very limited facilities are available. 
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 10.3   An Integrated System and Safety Engineering Process 

 There is no agreed upon best system engineering process and probably cannot be 

one — the process needs to match the specific problem and environment in which it 

is being used. What is described in this section is how to integrate safety engineering 

into  any  reasonable system engineering process. 

 The system engineering process provides a logical structure for problem solving. 

Briefly, first a need or problem is specified in terms of objectives that the system 

must satisfy and criteria that can be used to rank alternative designs. Then a process 

of system synthesis takes place that usually involves considering alternative designs. 

Each of the alternatives is analyzed and evaluated in terms of the stated objectives 

and design criteria, and one alternative is selected. In practice, the process is highly 

iterative: The results from later stages are fed back to early stages to modify objec-

tives, criteria, design decisions, and so on. 

 Design alternatives are generated through a process of system architecture devel-

opment and analysis. The system engineers first develop requirements and design 

constraints for the system as a whole and then break the system into subsystems 

and design the subsystem interfaces and the subsystem interface topology. System 

functions and constraints are refined and allocated to the individual subsystems. The 

emerging design is analyzed with respect to desired system performance character-

istics and constraints, and the process is iterated until an acceptable system design 

results. 

 The difference in safety-guided design is that hazard analysis is used throughout 

the process to generate the safety constraints that are factored into the design deci-

sions as they are made. The preliminary design at the end of this process must be 

described in sufficient detail that subsystem implementation can proceed indepen-

dently. The subsystem requirements and design processes are subsets of the larger 

system engineering process. 

 This general system engineering process has some particularly important aspects. 

One of these is the focus on interfaces. System engineering views each system as an 

integrated whole even though it is composed of diverse, specialized components, 

which may be physical, logical (software), or human. The objective is to design 

subsystems that when integrated into the whole provide the most effective system 

possible to achieve the overall objectives. The most challenging problems in building 

complex systems today arise in the interfaces between components. One example 

is the new highly automated aircraft where most incidents and accidents have been 

blamed on human error, but more properly reflect difficulties in the collateral design 

of the aircraft, the avionics systems, the cockpit displays and controls, and the 

demands placed on the pilots. 
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 A second critical factor is the integration of humans and nonhuman system 

components. As with safety, a separate group traditionally does human factors 

design and analysis. Building safety-critical systems requires integrating both 

system safety and human factors into the basic system engineering process, which 

in turn has important implications for engineering education. Unfortunately, 

neither safety nor human factors plays an important role in most engineering 

education today. 

 During program and project planning, a system safety plan, standards, and 

project development safety control structure need to be designed including 

policies, procedures, the safety management and control structure, and communica-

tion channels. More about safety management plans can be found in chapters 12 

and 13. 

   Figure 10.3  shows the types of activities that need to be performed in such an 

integrated process and the system safety and human factors inputs and products. 

Standard validation and verification activities are not shown, since they should be 

included throughout the entire process. 

    The rest of this chapter provides an example using TCAS II. Other examples are 

interspersed where TCAS is not appropriate or does not provide an interesting 

enough example. 

 10.3.1   Establishing the Goals for the System 
 The first step in any system engineering process is to identify the goals of the effort. 

Without agreeing on where you are going, it is not possible to determine how to get 

there or when you have arrived. 

 TCAS II is a box required on most commercial and some general aviation aircraft 

that assists in avoiding midair collisions. The goals for TCAS II are to: 

  G1:     Provide affordable and compatible collision avoidance system options for a 
broad spectrum of National Airspace System users.  

  G2:     Detect potential midair collisions with other aircraft in all meteorological 
conditions; throughout navigable airspace, including airspace not covered 
by ATC primary or secondary radar systems; and in the absence of ground 
equipment.  

 TCAS was intended to be an independent backup to the normal Air Traffic Control 

(ATC) system and the pilot ’ s  “ see and avoid ”  responsibilities. It interrogates air 

traffic control transponders on aircraft in its vicinity and listens for the transponder 

replies. By analyzing these replies with respect to slant range and relative altitude, 

TCAS determines which aircraft represent potential collision threats and provides 

appropriate display indications, called advisories, to the flight crew to assure proper 
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Identify potentially unsafe control actions and restate as constraints 
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 Figure 10.3 
 System safety and human factors integrated into the set of typical system engineering tasks. Standard 
verification and validation activities are not shown as they are assumed to be performed throughout the 
whole process, not just at the end where they are often concentrated. 
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separation. Two types of advisories can be issued.  Resolution advisories  (RAs) 

provide instructions to the pilots to ensure safe separation from nearby traffic in 

the vertical plane.  l    Traffic advisories  (TAs) indicate the positions of intruding air-

craft that may later cause resolution advisories to be displayed. 

 TCAS is an example of a system created to directly impact safety where the goals 

are all directly related to safety. But system safety engineering and safety-driven 

design can be applied to systems where maintaining safety is not the only goal and, 

in fact, human safety is not even a factor. The example of an outer planets explorer 

spacecraft was shown in chapter 7. Another example is the air traffic control system, 

which has both safety and nonsafety (throughput) goals. 

 10.3.2   Defining Accidents 
 Before any safety-related activities can start, the definition of an accident needs to 

be agreed upon by the system customer and other stakeholders. This definition, in 

essence, establishes the goals for the safety effort. 

 Defining accidents in TCAS is straightforward — only one is relevant, a midair 

collision. Other more interesting examples are shown in chapter 7. 

 Basically, the criterion for specifying events as accidents is that the losses are so 

important that they need to play a central role in the design and tradeoff process. 

In the outer planets explorer example in chapter 7, some of the losses involve the 

mission goals themselves while others involve losses to other missions or a negative 

impact on our solar system ecology. 

 Priorities and evaluation criteria may be assigned to the accidents to indicate how 

conflicts are to be resolved, such as conflicts between safety goals or conflicts 

between mission goals and safety goals and to guide design choices at lower levels. 

The priorities are then inherited by the hazards related to each of the accidents and 

traced down to the safety-related design features. 

 10.3.3   Identifying the System Hazards 
 Once the set of accidents has been agreed upon, hazards can be derived from them. 

This process is part of what is called Preliminary Hazard Analysis (PHA) in System 

Safety. The hazard log is usually started as soon as the hazards to be considered are 

identified. While much of the information in the hazard log will be filled in later, 

some information is available at this time. 

 There is no right or wrong list of hazards — only an agreement by all involved on 

what hazards will be considered. Some hazards that were considered during the 

design of TCAS are listed in chapter 7 and are repeated here for convenience: 

1.   Horizontal advisories were originally planned for later versions of TCAS but have not yet been 
implemented.
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 1.   TCAS causes or contributes to a near midair collision (NMAC), defined as a 

pair of controlled aircraft violating minimum separation standards. 

 2.   TCAS causes or contributes to a controlled maneuver into the ground. 

 3.   TCAS causes or contributes to the pilot losing control over the aircraft. 

 4.   TCAS interferes with other safety-related aircraft systems (for example, 

ground proximity warning). 

 5.   TCAS interferes with the ground-based air traffic control system (e.g., tran-

sponder transmissions to the ground or radar or radio services). 

 6.   TCAS interferes with an ATC advisory that is safety-related (e.g., avoiding a 

restricted area or adverse weather conditions). 

 Once accidents and hazards have been identified, early concept formation (some-

times called high-level architecture development) can be started for the integrated 

system and safety engineering process. 

 10.3.4   Integrating Safety into Architecture Selection and System Trade Studies 
 An early activity in the system engineering of complex systems is the selection of 

an overall architecture for the system, or as it is sometimes called, system concept 

formation. For example, an architecture for manned space exploration might include 

a transportation system with parameters and options for each possible architectural 

feature related to technology, policy, and operations. Decisions will need to be made 

early, for example, about the number and type of vehicles and modules, the destina-

tions for the vehicles, the roles and activities for each vehicle including dockings 

and undockings, trajectories, assembly of the vehicles (in space or on Earth), discard-

ing of vehicles, prepositioning of vehicles in orbit and on the planet surface, and so 

on. Technology options include type of propulsion, level of autonomy, support 

systems (water and oxygen if the vehicle is used to transport humans), and many 

others. Policy and operational options may include crew size, level of international 

investment, types of missions and their duration, landing sites, and so on. Decisions 

about these overall system concepts clearly must precede the actual implementation 

of the system. 

 How are these decisions made? The selection process usually involves extensive 

tradeoff analysis that compares the different feasible architectures with respect to 

some important system property or properties. Cost, not surprisingly, usually plays 

a large role in the selection process while other properties, including system safety, 

are usually left as a problem to be addressed later in the development lifecycle. 

Many of the early architectural decisions, however, have a significant and lasting 

impact on safety and may not be reversible after the basic architectural decisions 

have been made. For example, the decision not to include a crew escape system on 
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the Space Shuttle was an early architectural decision and has been impacting Shuttle 

safety for more than thirty years [74, 136]. After the  Challenger  accident and again 

after the  Columbia  loss, the idea resurfaced, but there was no cost-effective way to 

add crew escape at that time. 

 The primary reason why safety is rarely factored in during the early architectural 

tradeoff process, except perhaps informally, is that practical methods for analyzing 

safety, that is, hazard analysis methods that can be applied at that time, do not exist. 

But if information about safety were available early, it could be used in the selection 

process and hazards could be eliminated by the selection of appropriate architec-

tural options or mitigated early when the cost of doing so is much less than later in 

the system lifecycle. Making basic design changes downstream becomes increasingly 

costly and disruptive as development progresses and, often, compromises in safety 

must be accepted that could have been eliminated if safety had been considered in 

the early architectural evaluation process. 

 While it is relatively easy to identify hazards at system conception, performing a 

hazard or risk assessment before a design is available is more problematic. At best, 

only a very rough estimate is possible. Risk is usually defined as a combination of 

severity and likelihood. Because these two different qualities (severity and likeli-

hood) cannot be combined mathematically, they are commonly qualitatively com-

bined using a risk matrix.   Figure 10.4  shows a fairly standard form for such a matrix. 
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 Figure 10.4 
 A standard risk matrix. 
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High-level hazards are first identified and, for each identified hazard, a qualitative 

evaluation is performed by classifying the hazard according to its severity and 

likelihood. 

    While severity can usually be evaluated using the worst possible consequences 

of that hazard, likelihood is almost always unknown and, arguably, unknowable for 

complex systems before any system design decisions have been made. The problem 

is even worse before a system architecture has been selected. Some probabilistic 

information is usually available about physical events, of course, and historical 

information may theoretically be available. But new systems are usually being 

created because existing systems and designs are not adequate to achieve the system 

goals, and the new systems will probably use new technology and design features 

that limit the accuracy of historical information. For example, historical information 

about the likelihood of propulsion-related losses may not be accurate for new space-

craft designs using nuclear propulsion. Similarly, historical information about the 

errors air traffic controllers make has no relevance for new air traffic control systems, 

where the type of errors may change dramatically. 

 The increasing use of software in most complex systems complicates the situation 

further. Much or even most of the software in the system will be new and have no 

historical usage information. In addition, statistical techniques that assume random-

ness are not applicable to software design flaws. Software and digital systems also 

introduce new ways for hazards to occur, including new types of component interac-

tion accidents. Safety is a system property, and, as argued in part I, combining the 

probability of failure of the system components to be used has little or no relation-

ship to the safety of the system as a whole. 

 There are no known or accepted rigorous or scientific ways to obtain probabilistic 

or even subjective likelihood information using historical data or analysis in the case 

of non-random failures and system design errors, including unsafe software behav-

ior. When forced to come up with such evaluations, engineering judgment is usually 

used, which in most cases amounts to pulling numbers out of the air, often influ-

enced by political and other nontechnical factors. Selection of a system architecture 

and early architectural trade evaluations on such a basis is questionable and perhaps 

one reason why risk usually does not play a primary role in the early architectural 

trade process. 

 Alternatives to the standard risk matrix are possible, but they tend to be applica-

tion specific and so must be constructed for each new system. For many systems, 

the use of severity alone is often adequate to categorize the hazards in trade studies. 

Two examples of other alternatives are presented here, one created for augmented 

air traffic control technology and the other created and used in the early architec-

tural trade study of NASA ’ s Project Constellation, the program to return to the 

moon and later go on to Mars. The reader is encouraged to come up with their own 
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methods appropriate for their particular application. The examples are not meant 

to be definitive, but simply illustrative of what is possible. 

 Example 1:   A Human-Intensive System: Air Traffic Control Enhancements 
 Enhancements to the air traffic control (ATC) system are unique in that the problem 

is not to create a new or safer system but to maintain the very high level of safety 

built into the current system: The goal is to not degrade safety. The risk likelihood 

estimate can be restated, in this case, as the likelihood that safety will be degraded 

by the proposed changes and new tools. To tackle this problem, we created a set of 

criteria to be used in the evaluation of likelihood.  2   The criteria ranked various high-

level architectural design features of the proposed set of ATC tools on a variety of 

factors related to risk in these systems. The ranking was qualitative and most criteria 

were ranked as having low, medium, or high impact on the likelihood of safety being 

degraded from the current level. For the majority of factors,  “ low ”  meant insignifi-

cant or no change in safety with respect to that factor in the new versus the current 

system,  “ medium ”  denoted the potential for a minor change, and  “ high ”  signified 

potential for a significant change in safety. Many of the criteria involve human-

automation interaction, since ATC is a very human-intensive system and the new 

features being proposed involved primarily new automation to assist human air 

traffic controllers. Here are examples of the likelihood level criteria used: 

  •     Safety margins:    Does the new feature have the potential for (1) an insignifi-

cant or no change to the existing safety margins, (2) a minor change, or (3) a 

significant change. 

  •     Situation awareness:    What is the level of change in the potential for reducing 

situation awareness. 

   •      Skills currently used and those necessary to backup and monitor the new deci-
sion-support tools:    Is there an insignificant or no change in the controller 

skills, a minor change, or a significant change. 

  •     Introduction of new failure modes and hazard causes:    Do the new tools have 

the same function and failure modes as the system components they are replac-

ing, are new failure modes and hazards introduced but well understood and 

effective mitigation measures can be designed, or are the new failure modes 

and hazard causes difficult to control. 

  •     Effect of the new software functions on the current system hazard mitigation 
measures:    Can the new features render the current safety measures ineffective 

or are they unrelated to current safety features. 

2.   These criteria were developed for a NASA contract by the author and have not been published 
previously.
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  •     Need for new system hazard mitigation measures:    Will the proposed changes 

require new hazard mitigation measures. 

 These criteria and others were converted into a numerical scheme so they could be 

combined and used in an early risk assessment of the changes being contemplated 

and their potential likelihood for introducing significant new risk into the system. 

The criteria were weighted to reflect their relative importance in the risk analysis. 

 Example 2:   Early Risk Analysis of Manned Space Exploration 
 A second example was created by Nicolas Dulac and others as part of an MIT and 

Draper Labs contract with NASA to perform an architectural tradeoff analysis for 

future human space exploration [59]. The system engineers wanted to include safety 

along with the usual factors, such as mass, to evaluate the candidate architectures, 

but once again little information was available at this early stage of system engineer-

ing. It was not possible to evaluate likelihood using historical information; all of the 

potential architectures involved new technology, new missions, and significant 

amounts of software. 

 In the procedure developed to achieve the goal, the hazards were first identified 

as shown in   figure 10.5 . As is the case at the beginning of any project, identifying 

system hazards involved ten percent creativity and ninety percent experience. 

Hazards were identified for each mission phase by domain experts under the guid-

ance of the safety experts. Some hazards, such as fire, explosion, or loss of life-

support span multiple (if not all) mission phases and were grouped as  General 
Hazards . The control strategies used to mitigate them, however, may depend on the 

mission phase in which they occur. 

    Once the hazards were identified, the severity of each hazard was evaluated by 

considering the worst-case loss associated with the hazard. In the example, the losses 

are evaluated for each of three categories: humans (H), mission (M), and equipment 

(E). Initially, potential damage to the Earth and planet surface environment was 

included in the hazard log. In the end, the environment component was left out of 

the analysis because project managers decided to replace the analysis with manda-

tory compliance with NASA ’ s planetary protection standards. A risk analysis can be 

replaced by a customer policy on how the hazards are to be treated. A more com-

plete example, however, for a different system would normally include environmen-

tal hazards. 

 A severity scale was created to account for the losses associated with each of the 

three categories. The scale used is shown in   figure 10.6 , but obviously a different 

scale could easily be created to match the specific policies or standard practice in 

different industries and companies. 

    As usual, severity was relatively easy to handle but the likelihood of the potential 

hazard occurring was unknowable at this early stage of system engineering. In 
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 Figure 10.5 
 System-level hazards and associated severities. 

 Figure 10.6 
 Custom severity scale for the candidate architectures analysis. 
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addition, space exploration is the polar opposite of the ATC example above as the 

system did not already exist and the architectures and missions would involve things 

never attempted before, which created a need for a different approach to estimating 

likelihood. 

 We decided to use the  mitigation potential  of the hazard in the candidate archi-

tecture as an estimator of, or surrogate for, likelihood. Hazards that are more easily 

mitigated in the design and operations are less likely to lead to accidents. Similarly, 

hazards that have been eliminated during system design, and thus are not part of 

that candidate architecture or can easily be eliminated in the detailed design process, 

cannot lead to an accident. 

 The safety goal of the architectural analysis process was to assist in selecting the 

architecture with the fewest serious hazards and highest mitigation potential for 

those hazards that were not eliminated. Not all hazards will be eliminated even if 

they can be. One reason for not eliminating hazards might be that it would reduce 

the potential for achieving other important system goals or constraints. Obviously, 

safety is not the only consideration in the architecture selection process, but it is 

important enough in this case to be a criterion in the selection process. 

 Mitigation potential was chosen as a surrogate for likelihood for two reasons: 

(1) the potential for eliminating or controlling the hazard in the design or operations 

has a direct and important bearing on the likelihood of the hazard occurring 

(whether traditional or new designs and technology are used) and (2) mitigatibility 

of the hazard can be determined before an architecture or design is selected —

 indeed, it assists in the selection process. 

   Figure 10.7  shows an example from the hazard log created during the PHA effort. 

The example hazard shown is  nuclear reactor overheating . Nuclear power generation 

and use, particularly during planetary surface operations, was considered to be an 

important option in the architectural tradeoffs. The potential accident and its effects 

are described in the hazard log as: 

 Nuclear core meltdown would cause loss of power, and possibly radiation exposure. 

Surface operations must abort mission and evacuate. If abort is unsuccessful or unavailable 

at the time, the crew and surface equipment could be lost. There would be no environ-

mental impact on Earth. 

 The hazard is defined as the nuclear reactor operating at temperatures above the 

design limits. 

    Although some causal factors can be hypothesized early, a hazard analysis using 

STPA can be used to generate a more complete list of causal factors later in the 

development process to guide the design process after an architecture is chosen. 

 Like severity, mitigatibility was evaluated by domain experts under the guidance 

of safety experts. Both the cost of the potential mitigation strategy and its 
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 Figure 10.7 
 A sample from the hazard log generated during the preliminary hazard analysis for the space architecture 
candidate tradeoff analysis. 
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effectiveness were evaluated. For the nuclear power example, two strategies were 

identified: the first is not to use nuclear power generation at all. The cost of this option 

was evaluated as medium (on a low, medium, high scale). But the mitigation potential 

was rated as high because it eliminates the hazard completely. The mitigation priority 

scale used is shown in   figure 10.8 . The second mitigation potential identified by 

the engineers was to provide a backup power generation system for surface opera-

tions. The difficulty and cost was rated high and the mitigation rating was 1, which was 

the lowest possible level, because at best it would only reduce the damage if an acci-

dent occurred but potential serious losses would still occur. Other mitigation strate-

gies are also possible but have been omitted from the sample hazard log entry shown. 

    None of the effort expended here is wasted. The information included in the 

hazard log about the mitigation strategies will be useful later in the design process 

if the final architecture selected uses surface nuclear power generation. NASA might 

also be able to use the information in future projects and the creation of such early 

risk analysis information might be common to companies or industries and not have 

to be created for each project. As new technologies are introduced to an industry, 

new hazards or mitigation possibilities could be added to the previously stored 

information. 

 The final step in the process is to create safety risk metrics for each candidate 

architecture. Because the system engineers on the project created hundreds of fea-

sible architectures, the evaluation process was automated. The actual details of the 

mathematical procedures used are of limited general interest and are available 

elsewhere [59]. Weighted averages were used to combine mitigation factors and 

severity factors to come up with a final  Overall Residual Safety-Risk Metric . This 

metric was then used in the evaluation and ranking of the potential manned space 

exploration architectures. 

 By selecting and deselecting options in the architecture description, it was also 

possible to perform a first-order assessment of the relative importance of each 

architectural option in determining the Overall Residual Safety-Risk Metric. 

 While hundreds of parameters were considered in the risk analysis, the process 

allowed the identification of major contributors to the hazard mitigation potential 

of selected architectures and thus informed the architecture selection process and 

 Figure 10.8 
 A sample hazard-mitigation priority scale. 
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the tradeoff analysis. For example, important contributors to increased safety were 

determined to include the use of heavy module and equipment prepositioning on 

the surface of Mars and the use of minimal rendezvous and docking maneuvers. 

Prepositioning modules allows for pretesting and mitigates the hazards associated 

with loss of life support, equipment damage, and so on. On the other hand, prepo-

sitioning modules increases the reliance on precision landing to ensure that all 

landed modules are within range of each other. Consequently, using heavy preposi-

tioning may require additional mitigation strategies and technology development 

to reduce the risk associated with landing in the wrong location. All of this infor-

mation must be considered in selecting the best architecture. As another example, 

on one hand, a transportation architecture requiring no docking at Mars orbit 

or upon return to Earth inherently mitigates hazards associated with collisions or 

failed rendezvous and docking maneuvers. On the other hand, having the capability 

to dock during an emergency, even though it is not required during nominal opera-

tions, provides additional mitigation potential for loss of life support, especially in 

Earth orbit. 

 Reducing these considerations to a number is clearly not ideal, but with hundreds 

of potential architectures it was necessary in this case in order to pare down the 

choices to a smaller number. More careful tradeoff analysis is then possible on the 

reduced set of choices. 

 While mitigatibility is widely applicable as a surrogate for likelihood in many 

types of domains, the actual process used above is just one example of how it might 

be used. Engineers will need to adapt the scales and other features of the process 

to the customary practices in their own industry. Other types of surrogates or ways 

to handle likelihood estimates in early phases of projects are possible beyond the 

two examples provided in this section. While none of these approaches is ideal, they 

are much better than ignoring safety in decision making or selecting likelihood 

estimates based solely on wishful thinking or the politics that often surround the 

preliminary hazard analysis process. 

 After a conceptual design is chosen, development begins. 

 10.3.5   Documenting Environmental Assumptions 
 An important part of the system development process is to determine and document 

the assumptions under which the system requirements and design features are 

derived and upon which the hazard analysis is based. Assumptions will be identified 

and specified throughout the system engineering process and the engineering speci-

fications to explain decisions or to record fundamental information upon which the 

design is based. If the assumptions change over time or the system changes and the 

assumptions are no longer true, then the requirements and the safety constraints 

and design features based on those assumptions need to be revisited to ensure safety 

has not been compromised by the change. 
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 Because operational safety depends on the accuracy of the assumptions and 

models underlying the design and hazard analysis processes, the operational system 

should be monitored to ensure that: 

 1.   The system is constructed, operated, and maintained in the manner assumed 

by the designers. 

 2.   The models and assumptions used during initial decision making and design 

are correct. 

 3.   The models and assumptions are not violated by changes in the system, such 

as workarounds or unauthorized changes in procedures, or by changes in the 

environment. 

 Operational feedback on trends, incidents, and accidents should trigger reanalysis 

when appropriate. Linking the assumptions throughout the document with the parts 

of the hazard analysis based on that assumption will assist in performing safety 

maintenance activities. 

 Several types of assumptions are relevant. One is the assumptions under which 

the system will be used and the environment in which the system will operate. Not 

only will these assumptions play an important role in system development, but they 

also provide part of the basis for creating the operational safety control structure 

and other operational safety controls such as creating feedback loops to ensure the 

assumptions underlying the system design and the safety analyses are not violated 

during operations as the system and its environment change over time. 

 While many of the assumptions that originate in the existing environment into 

which the new system will be integrated can be identified at the beginning of devel-

opment, additional assumptions will be identified as the design process continues 

and new requirements and design decisions and features are identified. In addition, 

assumptions that the emerging system design imposes on the surrounding environ-

ment will become clear only after detailed decisions are made in the design and 

safety analyses. 

 Examples of important environment assumptions for TCAS II are that: 

  EA1:     High-integrity communications exist between aircraft.  

  EA2:     The TCAS-equipped aircraft carries a Mode-S air traffic control transponder.   3   

3.   An aircraft  transponder  sends information to help air traffic control maintain aircraft separation. 
Primary radar generally provides bearing and range position information, but lacks altitude information. 
Mode A transponders transmit only an identification signal, while Mode C and Mode S transponders 
also report pressure altitude. Mode S is newer and has more capabilities than Mode C, some of which 
are required for the collision avoidance functions in TCAS.
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  EA3:     All aircraft have operating transponders.j  

  EA4:     All aircraft have legal identification numbers.  

  EA5:     Altitude information is available from intruding targets with a minimum 
precision of 100 feet.  

  EA6:     The altimetry system that provides own aircraft pressure altitude to the TCAS 
equipment will satisfy the requirements in RTCA Standard . . .  

  EA7:     Threat aircraft will not make an abrupt maneuver that thwarts the TCAS 
escape maneuver.  

 As noted, these assumptions must be enforced in the overall safety control struc-

ture. With respect to assumption EA4, for example, identification numbers are 

usually provided by the aviation authorities in each country, and that requirement 

will need to be ensured by international agreement or by some international agency. 

The assumption that aircraft have operating transponders (EA3) may be enforced 

by the airspace rules in a particular country and, again, must be ensured by some 

group. Clearly, these assumptions play an important role in the construction of the 

safety control structure and assignments of responsibilities for the final system. For 

TCAS, some of these assumptions will already be imposed by the existing air trans-

portation safety control structure while others may need to be added to the respon-

sibilities of some group(s) in the control structure. The last assumption, EA7, imposes 

constraints on pilots and the air traffic control system. 

  Environment requirements and constraints may  lead to restrictions on the use of 

the new system (in this case, TCAS) or may indicate the need for system safety and 

other analyses to determine the constraints that must be imposed on the system 

being created (TCAS again) or the larger encompassing system to ensure safety. The 

requirements for the integration of the new subsystem safely into the larger system 

must be determined early. Examples for TCAS include: 

  E1:     The behavior or interaction of non-TCAS equipment with TCAS must not 
degrade the performance of the TCAS equipment or the performance of the 
equipment with which TCAS interacts.  

  E2:     Among the aircraft environmental alerts, the hierarchy shall be: Windshear has 
first priority, then the Ground Proximity Warning System (GPWS), then TCAS.  

  E3:     The TCAS alerts and advisories must be independent of those using the master 
caution and warming system.  

 10.3.6   System-Level Requirements Generation 
 Once the goals and hazards have been identified and a conceptual system architec-

ture has been selected, system-level requirements generation can begin. Usually, in 
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the early stages of a project, goals are stated in very general terms, as shown in G1 

and G2. One of the first steps in the design process is to refine the goals into test-

able and achievable high-level requirements (the  “ shall ”  statements). Examples of 

high-level functional requirements implementing the goals for TCAS are: 

  1.18:     TCAS shall provide collision avoidance protection for any two aircraft 
closing horizontally at any rate up to 1200 knots and vertically up to 10,000 feet 
per minute.  

  Assumption:     This requirement is derived from the assumption that commer-
cial aircraft can operate up to 600 knots and 5000 fpm during vertical climb 
or controlled descent (and therefore two planes can close horizontally up to 
1200 knots and vertically up to 10,000 fpm).     

  1.19.1:     TCAS shall operate in enroute and terminal areas with traffic densities up 
to 0.3 aircraft per square nautical miles (i.e., 24 aircraft within 5 nmi).  

  Assumption:     Traffic density may increase to this level by 1990, and this will 
be the maximum density over the next 20 years.     

 As stated earlier,  assumptions  should continue to be specified when appropriate to 

explain a decision or to record fundamental information on which the design is 

based. Assumptions are an important component of the documentation of design 

rationale and form the basis for safety audits during operations. Consider the above 

requirement labeled 1.18, for example. In the future, if aircraft performance limits 

change or there are proposed changes in airspace management, the origin of the 

specific numbers in the requirement (1,200 and 10,000) can be determined and 

evaluated for their continued relevance. In the absence of the documentation of 

such assumptions and how they impact the detailed design decisions, numbers tend 

to become  “ gospel, ”  and everyone is afraid to change them. 

 Requirements (and constraints) must also be included for the human operator 

and for the human – computer interface. These requirements will in part be derived 

from the  concept of operations , which should in turn include a  human task analysis  

[48, 47], to determine how TCAS is expected to be used by pilots (which, again, 

should be checked in safety audits during operations). These analyses use infor-

mation about the goals of the system, the constraints on how the goals are achieved, 

including safety constraints, how the automation will be used, how humans now 

control the system and work in the system without automation, and the tasks 

humans need to perform and how the automation will support them in performing 

these tasks. The task analysis must also consider workload and its impact on opera-

tor performance. Note that a low workload may be more dangerous than a high one. 

 Requirements on the operator (in this case, the pilot) are used to guide the design 

of the TCAS-pilot interface, the design of the automation logic, flight-crew tasks 
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and procedures, aircraft flight manuals, and training plans and program. Traceability 

links should be provided to show the relationships. Links should also be provided 

to the parts of the hazard analysis from which safety-related requirements are 

derived. Examples of TCAS II operator safety requirements and constraints are: 

  OP.4:     After the threat is resolved, the pilot shall return promptly and smoothly to 
his/her previously assigned fight path (  →    HA-560 ,   ↓   3.3 ).  

  OP.9:     The pilot must not maneuver on the basis of a Traffic Advisory only (  →  

  HA-630 ,   ↓   2.71.3 ).  

 The requirements and constraints include links to the hazard analysis that produced 

the information and to design documents and decisions to show where the require-

ments are applied. These two examples have links to the parts of the hazard analysis 

from which they were derived, links to the system design and operator procedures 

where they are enforced, and links to the user manuals (in this case, the pilot 

manuals) to explain why certain activities or behaviors are required. 

 The links not only provide traceability from requirements to implementation and 

vice versa to assist in review activities, but they also embed the design rationale 

information into the specification. If changes need to be made to the system, it is 

easy to follow the links and determine why and how particular design decisions 

were made. 

 10.3.7   Identifying High-Level Design and Safety Constraints 
  Design constraints  are restrictions on how the system can achieve its purpose. For 

example, TCAS is not allowed to interfere with the ground-level air traffic control 

system while it is trying to maintain adequate separation between aircraft. Avoiding 

interference is not a goal or purpose of TCAS — the best way to achieve the goal is 

not to build the system at all. It is instead a constraint on how the system can achieve 

its purpose, that is, a constraint on the potential system designs. Because of the need 

to evaluate and clarify tradeoffs among alternative designs, separating these two 

types of intent information (goals and design constraints) is important. 

 For safety-critical systems, constraints should be further separated into safety-

related and not safety-related. One nonsafety constraint identified for TCAS, for 

example, was that requirements for new hardware and equipment on the aircraft be 

minimized or the airlines would not be able to afford this new collision avoidance 

system. Examples of nonsafety constraints for TCAS II are: 

  C.1:     The system must use the transponders routinely carried by aircraft for ground 
ATC purposes (  ↓   2.3 ,  2.6 ).  

  Rationale:     To be acceptable to airlines, TCAS must minimize the amount of 
new hardware needed.  
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  C.4:     TCAS must comply with all applicable FAA and FCC policies, rules, and 
philosophies  ( ↓   2.30 ,  2.79 ).  

 The physical environment with which TCAS interacts is shown in   figure 10.9 . The 

constraints imposed by these existing environmental components must also be 

identified before system design can begin. 

     Safety-related constraints  should have two-way links to the system hazard log and 

to any analysis results that led to that constraint being identified as well as links to 

the design features (usually level 2) included to eliminate or control them. Hazard 

analyses are linked to level 1 requirements and constraints, to design features on 

level 2, and to system limitations (or accepted risks). An example of a level 1 safety 

constraint derived to prevent hazards is: 

  SC.3:     TCAS must generate advisories that require as little deviation as possible 
from ATC clearances (  →    H6 ,  HA-550 ,   ↓   2.30 ).  
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 Figure 10.9 
 The system interface topology for TCAS. 
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 The link in SC.3 to  2.30  points to the level 2 system design feature that implements 

this safety constraint. The other links provide traceability to the hazard (H6) from 

which the constraint was derived and to the parts of the hazard analysis involved, 

in this case the part of the hazard analysis labeled HA-550. 

 The following is another example of a safety constraint for TCAS II and some 

constraints refined from it, all of which stem from a high-level environmental con-

straint derived from safety considerations in the encompassing system into which 

TCAS will be integrated. The refinement will occur as safety-related decisions are 

made and guided by an STPA hazard analysis: 

  SC.2:     TCAS must not interfere with the ground ATC system or other aircraft 
transmissions to the ground ATC system (  →    H5 ).  

  SC.2.1:     The system design must limit interference with ground-based second-
ary surveillance radar, distance-measuring equipment channels, and with 
other radio services that operate in the 1030/1090 MHz frequency band 
(  ↓   2.5.1 ).  

  SC.2.1.1:     The design of the Mode S waveforms used by TCAS must provide 
compatibility with Modes A and C of the ground-based secondary surveil-
lance radar system (  ↓   2.6 ).  

  SC.2.1.2:     The frequency spectrum of Mode S transmissions must be 
controlled to protect adjacent distance-measuring equipment channels 
(  ↓   2.13 ).  

  SC.2.1.3:     The design must ensure electromagnetic compatibility between 
TCAS and [...] [  ↓   21.4 ).  

  SC.2.2:     Multiple TCAS units within detection range of one another (approxi-
mately 30 nmi) must be designed to limit their own transmissions. As the 
number of such TCAS units within this region increases, the interrogation 
rate and power allocation for each of them must decrease in order to prevent 
undesired interference with ATC (  ↓   2.13 ).  

 Assumptions are also associated with safety constraints. As an example of such an 

assumption, consider: 

  SC.6:     TCAS must not disrupt the pilot and ATC operations during critical 
phases of flight nor disrupt aircraft operation (  →    H3 ,   ↓   2.2.3 ,  2.19 , 
 2.24.2 ).  

  SC.6.1:     The pilot of a TCAS-equipped aircraft must have the option to switch 
to the Traffic-Advisory-Only mode where TAs are displayed but display of 
resolution advisories is inhibited (  ↓    2.2.3 ).  
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  Assumption:     This feature will be used during final approach to parallel 
runways, when two aircraft are projected to come close to each other and 
TCAS would call for an evasive maneuver (  ↓    6.17 ).     

 The specified assumption is critical for evaluating safety during operations. Humans 

tend to change their behavior over time and use automation in different ways than 

originally intended by the designers. Sometimes, these new uses are dangerous. The 

hyperlink at the end of the assumption ( ↓   6.17 ) points to the required auditing 

procedures for safety during operations and to where the procedures for auditing 

this assumption are specified. 

 Where do these safety constraints come from? Is the system engineer required 

to simply make them up? While domain knowledge and expertise is always going 

to be required, there are procedures that can be used to guide this process. 

 The highest-level safety constraints come directly from the identified hazards for 

the system. For example, TCAS must not cause or contribute to a near miss (H1), 

TCAS must not cause or contribute to a controlled maneuver into the ground (H2), 

and TCAS must not interfere with the ground-based ATC system. STPA can be used 

to refine these high-level design constraints into more detailed design constraints 

as described in chapter 8. 

 The first step in STPA is to create the high-level TCAS operational safety control 

structure. For TCAS, this structure is shown in   figure 10.10 . For simplicity, much of 

the structure above ATC operations management has been omitted and the roles and 

responsibilities have been simplified here. In a real design project, roles and respon-

sibilities will be augmented and refined as development proceeds, analyses are per-

formed, and design decisions are made. Early in the system concept formation, 

specific roles may not all have been determined, and more will be added as the design 

concepts are refined. One thing to note is that there are three groups with potential 

responsibilities over the pilot ’ s response to a potential NMAC: TCAS, the ground 

ATC, and the airline operations center which provides the airline procedures for 

responding to TCAS alerts. Clearly any potential conflicts and coordination prob-

lems between these three controllers will need to be resolved in the overall air traffic 

management system design. In the case of TCAS, the designers decided that because 

there was no practical way, at that time, to downlink information to the ground con-

trollers about any TCAS advisories that might have been issued for the crew, the pilot 

was to immediately implement the TCAS advisory and the co-pilot would transmit 

the TCAS alert information by radio to ground ATC. The airline would provide the 

appropriate procedures and training to implement this protocol. 

    Part of defining this control structure involves identifying the responsibilities of 

each of the components related to the goal of the system, in this case collision avoid-

ance. For TCAS, these responsibilities include: 
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  •     Aircraft Components  (e.g., transponders, antennas):   Execute control maneu-

vers, read and send messages to other aircraft, etc. 

  •     TCAS:    Receive information about its own and other aircraft, analyze the 

information received and provide the pilot with (1) information about where 

other aircraft in the vicinity are located and (2) an escape maneuver to avoid 

potential NMAC threats. 

  •     Aircraft Components  (e.g., transponders, antennas):   Execute pilot-generated 

TCAS control maneuvers, read and send messages to and from other aircraft, 

etc. 

  •     Pilot:    Maintain separation between own and other aircraft, monitor the TCAS 

displays, and implement TCAS escape maneuvers. The pilot must also follow 

ATC advisories. 

  •     Air Traffic Control:    Maintain separation between aircraft in the controlled 

airspace by providing advisories (control actions) for the pilot to follow. TCAS 

is designed to be independent of and a backup for the air traffic controller so 

ATC does not have a direct role in the TCAS safety control structure but clearly 

has an indirect one. 
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 Figure 10.10 
 The high-level operational TCAS control structure. 
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  •     Airline Operations Management:    Provide procedures for using TCAS and 

following TCAS advisories, train pilots, and audit pilot performance. 

  •     ATC Operations Management:    Provide procedures, train controllers, audit 

performance of controllers and of the overall collision avoidance system. 

  •     ICAO:    Provide worldwide procedures and policies for the use of TCAS and 

provide oversight that each country is implementing them. 

 After the general control structure has been defined (or alternative candidate 

control structures identified), the next step is to determine how the controlled 

system (the two aircraft) can get into a hazardous state. That information will be 

used to generate safety constraints for the designers. STAMP assumes that hazard-

ous states (states that violate the safety constraints) are the result of ineffective 

control. Step 1 of STPA is to identify the potentially inadequate control actions. 

 Control actions in TCAS are called resolution advisories or RAs. An RA is an 

aircraft escape maneuver created by TCAS for the pilots to follow. Example reso-

lution advisories are  descend ,  increase rate of climb to  2500  fmp , and  don  ’  t 

descend . Consider the TCAS component of the control structure (see   figure 10.10 ) 

and the NMAC hazard. The four types of control flaws for this example translate 

into: 

 1.   The aircraft are on a near collision course, and TCAS does not provide an RA 

that avoids it (that is, does not provide an RA, or provides an RA that does 

not avoid the NMAC). 

 2.   The aircraft are in close proximity and TCAS provides an RA that degrades 

vertical separation (causes an NMAC). 

 3.   The aircraft are on a near collision course and TCAS provides a maneuver too 

late to avoid an NMAC. 

 4.   TCAS removes an RA too soon. 

 These inadequate control actions can be restated as high-level constraints on the 

behavior of TCAS: 

 1.   TCAS must provide resolution advisories that avoid near midair collisions. 

 2.   TCAS must not provide resolution advisories that degrade vertical separation 

between two aircraft (that is, cause an NMAC). 

 3.   TCAS must provide the resolution advisory while enough time remains for 

the pilot to avoid an NMAC. (A human factors and aerodynamic analysis 

should be performed at this point to determine exactly how much time that 

implies.) 

 4.   TCAS must not remove the resolution advisory before the NMAC is resolved. 
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 Similarly, for the pilot, the inadequate control actions are: 

 1.   The pilot does not provide a control action to avoid a near midair collision. 

 2.   The pilot provides a control action that does not avoid the NMAC. 

 3.   The pilot provides a control action that causes an NMAC that would not oth-

erwise have occurred. 

 4.   The pilot provides a control action that could have avoided the NMAC but it 

was too late. 

 5.   The pilot starts a control action to avoid an NMAC but stops it too soon. 

 Again, these inadequate pilot control actions can be restated as safety constraints 

that can be used to generate pilot procedures. Similar hazardous control actions and 

constraints must be identified for each of the other system components. In addition, 

inadequate control actions must be identified for the other functions provided by 

TCAS (beyond RAs) such as traffic advisories. 

 Once the high-level design constraints have been identified, they must be refined 

into more detailed design constraints to guide the system design and then aug-

mented with new constraints as design decisions are made, creating a seamless 

integrated and iterative process of system design and hazard analysis. 

 Refinement of the constraints involves determining how they could be violated. 

The refined constraints will be used to guide attempts to eliminate or control the 

hazards in the system design or, if that is not possible, to prevent or control them 

in the system or component design. This process of scenario development is exactly 

the goal of hazard analysis and STPA. As an example of how the results of the 

analysis are used to refine the high-level safety constraints, consider the second 

high-level TCAS constraint: that TCAS must not provide resolution advisories that 

degrade vertical separation between two aircraft (cause an NMAC): 

  SC.7:     TCAS must not create near misses (result in a hazardous level of vertical 
separation that would not have occurred had the aircraft not carried TCAS) 
(  →    H1 ).  

  SC.7.1:     Crossing Maneuvers must be avoided if possible ( ↓   2.36 ,  ↓   2.38 ,  ↓   2.48 , 
 ↓   2.49.2 ).  

  SC.7.2:     The reversal of a displayed advisory must be extremely rare   4    ( ↓   2.51 , 
 ↓   2.56.3 ,  ↓   2.65.3 ,  ↓   2.66 ).  

  SC.7.3:     TCAS must not reverse an advisory if the pilot will have insufficient 
time to respond to the RA before the closest point of approach (four seconds 

4.   This requirement is clearly vague and untestable. Unfortunately, I could find no definition of  “ extremely 
rare ”  in any of the TCAS documentation to which I had access.
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or less) or if own and intruder aircraft are separated by less than 200 feet 
vertically when ten seconds or less remain to closest point of approach 
(  ↓    2.52 ).  

 Note again that pointers are used to trace these constraints into the design features 

used to implement them. 

 10.3.8   System Design and Analysis 
 Once the basic requirements and design constraints have been at least partially 

specified, the system design features that will be used to implement them must be 

created. A strict top-down design process is, of course, not usually feasible. As design 

decisions are made and the system behavior becomes better understood, additions 

and changes will likely be made in the requirements and constraints. The specifica-

tion of assumptions and the inclusion of traceability links will assist in this process 

and in ensuring that safety is not compromised by later decisions and changes. It is 

surprising how quickly the rationale behind the decisions that were made earlier is 

forgotten. 

 Once the system design features are determined, (1) an internal control structure 

for the system itself is constructed along with the interfaces between the com-

ponents and (2) functional requirements and design constraints, derived from the 

system-level requirements and constraints, are allocated to the individual system 

components. 

 System Design 
 What has been presented so far in this chapter would appear in level 1 of an intent 

specification. The second level of an intent specification contains  System Design 
Principles  — the basic system design and scientific and engineering principles needed 

to achieve the behavior specified in the top level, as well as any derived require-

ments and design features not related to the level 1 requirements. 

 While traditional design processes can be used, STAMP and STPA provide the 

potential for safety-driven design. In safety-driven design, the refinement of the 

high-level hazard analysis is intertwined with the refinement of the system design 

to guide the development of the system design and system architecture. STPA can 

be used to generate safe design alternatives or applied to the design alternatives 

generated in some other way to continually evaluate safety as the design progresses 

and to assist in eliminating or controlling hazards in the emerging design, as described 

in chapter 9. 

 For TCAS, this level of the intent specification includes such general principles 

as the basic  tau  concept, which is related to all the high-level alerting goals and 

constraints: 
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  2.2:     Each TCAS-equipped aircraft is surrounded by a protected volume of air-
space. The boundaries of this volume are shaped by the tau and DMOD criteria 
(  ↑   1.20.3 ).  

  2.2.1:     TAU:     In collision avoidance, time-to-go to the closest point of approach 
(CPA) is more important than distance-to-go to the CPA. Tau is an approxi-
mation of the time in seconds to CPA. Tau equals 3600 times the slant range 
in nmi, divided by the closing speed in knots.  

  2.2.2:     DMOD:     If the rate of closure is very low, a target could slip in very 
close without crossing the tau boundaries and triggering an advisory. In order 
to provide added protection against a possible maneuver or speed change by 
either aircraft, the tau boundaries are modified (called DMOD). DMOD 
varies depending on own aircraft ’ s altitude regime (  →    2.2.4 ).  

 The principles are linked to the related higher-level requirements, constraints, 

assumptions, limitations, and hazard analysis as well as to lower-level system design 

and documentation and to other information at the same level. Assumptions used 

in the formulation of the design principles should also be specified at this level. 

 For example, design principle 2.51 (related to safety constraint SC-7.2 shown in 

the previous section) describes how sense  5   reversals are handled: 

  2.51:     Sense Reversals:     (  ↓    Reversal-Provides-More-Separation ) In most encoun-
ter situations, the resolution advisory will be maintained for the duration of an 
encounter with a threat aircraft (  ↑   SC-7.2 ). However, under certain circumstances, 
it may be necessary for that sense to be reversed. For example, a conflict between 
two TCAS-equipped aircraft will, with very high probability, result in selection 
of complementary advisory senses because of the coordination protocol between 
the two aircraft. However, if coordination communication between the two air-
craft is disrupted at a critical time of sense selection, both aircraft may choose 
their advisories independently (  ↑   HA-130 ). This could possibly result in selec-
tion of incompatible senses (  ↑   HA-395 ).  

  2.51.1:    . . .  [information about how incompatibilities are handled]  

 Design principle 2.51 describes the conditions under which reversals of TCAS advi-

sories can result in incompatible senses and lead to the creation of a hazard by 

TCAS. The pointer labeled  HA-395  points to the part of the hazard analysis analyz-

ing that problem. The hazard analysis portion labeled  HA-395  would have a com-

plementary pointer to section 2.51. The design decisions made to handle such 

5.   The  sense  is the direction of the advisory, such as descend or climb.
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incompatibilities are described in 2.51.1, but that part of the specification is omitted 

here. 2.51 also contains a hyperlink ( ↓  Reversal-Provides-More-Separation ) to the 

detailed functional level 3 logic (component black-box requirements specification) 

used to implement the design decision. 

 Information about the allocation of these design decisions to individual system 

components and the logic involved is located in level 3, which in turn has links to 

the implementation of the logic in lower levels. If a change has to be made to a 

system component (such as a change to a software module), it is possible to trace 

the function computed by that module upward in the intent specification levels to 

determine whether the module is safety critical and if (and how) the change might 

affect system safety. 

 As another example, the TCAS design has a built-in bias against generating 

advisories that would result in the aircraft crossing paths (called  altitude crossing 
advisories ). 

  2.36.2:     A bias against altitude crossing RAs is also used in situations involving 
intruder level-offs at least 600 feet above or below the TCAS aircraft (  ↑   SC.7.1 ). 
In such a situation, an altitude-crossing advisory is deferred if an intruder 
aircraft that is projected to cross own aircraft ’ s altitude is more than 600 feet 
away vertically  ( ↓    Alt_Separation_Test ).  

  Assumption:     In most cases, the intruder will begin a level-off maneuver 
when it is more than 600 feet away and so should have a greatly reduced 
vertical rate by the time it is within 200 feet of its altitude clearance (thereby 
either not requiring an RA if it levels off more than   zthr   6    feet away or 
requiring a non-crossing advisory for level-offs begun after   zthr   is crossed 
but before the 600 foot threshold is reached).     

 Again, the example above includes a pointer down to the part of the black box 

component requirements (functional) specification ( Alt_Separation_Test)  that 

embodies the design principle. Links could also be provided to detailed mathemati-

cal analyses used to support and validate the design decisions. 

 As another example of using links to embed design rationale in the specification 

and of specifying limitations (defined later) and potential hazardous behavior that 

could not be controlled in the design, consider the following. TCAS II advisories 

may need to be inhibited because of an inadequate climb performance for the par-

ticular aircraft on which TCAS is installed. The collision avoidance maneuvers 

posted as advisories (called RAs or resolution advisories) by TCAS assume an 

aircraft ’ s ability to safely achieve them. If it is likely they are beyond the capability 

6.   The vertical dimension, called  zthr , used to determine whether advisories should be issued varies 
from 750 to 950 feet, depending on the TCAS aircraft ’ s altitude.
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of the aircraft, then TCAS must know beforehand so it can change its strategy and 

issue an alternative advisory. The performance characteristics are provided to TCAS 

through the aircraft interface (via what are called  aircraft discretes ). In some cases, 

no feasible solutions to the problem could be found. An example design principle 

related to this problem found at level 2 of the TCAS intent specification is: 

  2.39:     Because of the limited number of inputs to TCAS for aircraft, performance 
inhibits, in some instances where inhibiting RAs would be appropriate it is not 
possible to do so (  ↑   L6 ). In these cases, TCAS may command maneuvers that 
may significantly reduce stall margins or result in stall warning (  ↑   SC9.1 ). Con-
ditions where this may occur include . . . The aircraft flight manual or flight 
manual supplement should provide information concerning this aspect of TCAS 
so that flight crews may take appropriate action  ( ↓  [Pointers to pilot procedures 

on level 3 and Aircraft Flight Manual on level 6). 

 Finally, design principles may reflect tradeoffs between higher-level goals and con-

straints. As examples: 

  2.2.3:     Tradeoffs must be made between necessary protection (  ↑   1.18 ) and unnec-
essary advisories (  ↑   SC.5 ,  SC.6 ). This is accomplished by controlling the 
sensitivity level, which controls the tau, and therefore the dimensions of the 
protected airspace around each TCAS-equipped aircraft. The greater the 
sensitivity level, the more protection is provided but the higher is the incidence 
of unnecessary alerts. Sensitivity level is determined by . . .  

  2.38:     The need to inhibit   climb   RAs because of inadequate aircraft climb perfor-
mance will increase the likelihood of TCAS II (a) issuing crossing maneuvers, 
which in turn increases the possibility that an RA may be thwarted by the 
intruder maneuvering (  ↑   SC7.1 ,  HA-115 ), (b) causing an increase in   descend  

 RAs at low altitude (  ↑   SC8.1 ), and (c) providing no RAs if below the descend 
inhibit level (1200 feet above ground level on takeoff and 1000 feet above 
ground level on approach).  

 Architectural Design, Functional Allocation, and Component Implementation 
(Level 3) 
 Once the general system design concepts are agreed upon, the next step usually 

involves developing the design architecture and allocating behavioral requirements 

and constraints to the subsystems and components. Once again, two-way tracing 

should exist between the component requirements and the system design principles 

and requirements. These links will be available to the subsystem developers to be 

used in their implementation and development activities and in verification (testing 

and reviews). Finally, during field testing and operations, the links and recorded 

assumptions and design rationale can be used in safety change analysis, incident and 
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accident analysis, periodic audits, and performance monitoring as required to ensure 

that the operational system is and remains safe. 

 Level 3 of an intent specification contains the system architecture, that is, the 

allocation of functions to components and the designed communication paths 

among those components (including human operators). At this point, a black-box 

functional requirements specification language becomes useful, particularly a formal 

language that is executable. SpecTRM-RL is used as the example specification 

language in this section [85, 86]). An early version of the language was developed 

in 1990 to specify the requirements for TCAS II and has been refined and improved 

since that time. SpecTRM-RL is part of a larger specification management system 

called SpecTRM (Specification Tools and Requirements Methodology). Other 

languages, of course, can be used. 

 One of the first steps in low-level architectural design is to break the system into 

a set of components. For TCAS, only three components were used: surveillance, 

collision avoidance, and performance monitoring. 

 The environment description at level 3 includes the assumed behavior of the 

external components (such as the altimeters and transponders for TCAS), including 

perhaps failure behavior, upon which the correctness of the system design is pre-

dicated, along with a description of the interfaces between the TCAS system 

and its environment.   Figure 10.11  shows part of a SpecTRM-RL description of an 

environment component, in this case an altimeter. 

Stuck on Single Value

Sending Zeros

Not Sending Output

Failed Self-Test

Sending Max Value

Sending Random Values

RADIO ALTIMETER

Operating Mode Failure Mode

Malfunction Undetected

Malfunction Detected

Operating Normally

 Figure 10.11 
 Part of the SpecTRM-RL description of an environment component (a radio altimeter). Modeling failure 
behavior is especially important for safety analyses. In this example, (1) the altimeter may be operating 
correctly, (2) it may have failed in a way that the failure can be detected by TCAS II (that is, it fails a 
self-test and sends a status message to TCAS or it is not sending any output at all), or (3) the malfunc-
tioning is undetected and it sends an incorrect radio altitude. 
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    A system is an abstraction and the system boundaries can be set anywhere con-

venient for the purposes of the specifier. In this example, the environment includes 

any component that was already on the aircraft or in the airspace control system 

and was not newly designed or built as part of the TCAS effort. 

 All communications between the system and external components need to be 

described in detail, including the designed interfaces. The black-box behavior of 

each component also needs to be specified. This specification serves as the func-

tional requirements for the components. What is included in the component speci-

fication will depend on whether the component is part of the environment or part 

of the system being constructed.   Figure 10.12  shows part of the SpecTRM-RL 

description of the behavior of the CAS (collision avoidance system) subcomponent. 

SpecTRM-RL specifications are intended to be both easily readable with minimum 

instruction and formally analyzable. They are also executable and can be used in a 
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Description: A threat is reclassified as other traffic if its altitude reporting
 has been lost (  2.13) and either the bearing or range inputs are invalid;
 if its altitude reporting has been lost and both the range and bearing are
 valid but neither the proximate nor potential threat classification criteria
 are satisfied; or the aircraft is on the ground (  2.12).   
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INTRUDER.STATUS Other−Traffic

Potential−Threat

Proximate−Traffic

Unknown

Threat

Other−Traffic Alt−Reporting in-state Lost

Bearing−Valid

Range−Valid

Proximate−Traffic−Condition

Potential−Threat−Condition

Other−Aircraft in-state On−Ground

Mapping to Level 4:   4.7.1, Traffic–Advisory

Mapping to Level 2:   2.23,   2.29

 Figure 10.12 
 Example from the level 3 SpecTRM-RL model of the collision avoidance logic. It defines the criteria 
for downgrading the status of an intruder (into our protected volume) from being labeled a threat to 
being considered simply as other traffic. Intruders can be classified in decreasing order of importance as 
a threat, a potential threat, proximate traffic, and other traffic. In the example, the criterion for taking 
the transition from state  Threat  to state  Other Traffic  is represented by an  and/or  table, which evaluates 
to  true  if any of its columns evaluates to  true . A column is  true  if all of its rows that have a  “  t  ”  are 
 true  and all of its rows with an  “  f  ”  are  false . Rows containing a dot represent  “ don ’ t care ”  conditions. 
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system simulation environment. Readability was a primary goal in the design of 

SpecTRM-RL, as was completeness with regard to safety. Most of the requirements 

completeness criteria described in  Safeware  and rewritten as functional design prin-

ciples in chapter 9 of this book are included in the syntax of the language to assist 

in system safety reviews of the requirements. 

 SpecTRM-RL explicitly shows the process model used by the controller and 

describes the required behavior in terms of this model. A state machine model is used 

to describe the system component ’ s process model, in this case the state of the air-

craft and the air space around it, and the ways the process model can change state. 

 Logical behavior is specified in SpecTRM-RL using  and / or  tables.   Figure 10.12  

shows a small part of the specification of the TCAS collision avoidance logic. For 

TCAS, an important state variable is the status of the other aircraft around the 

TCAS aircraft, called  intruders . Intruders are classified into four groups: Other 

Traffic, Potential Threat, and Threat. The figure shows the logic for classifying an 

intruder as Other Traffic using an  and / or  table. The information in the tables can 

be visualized in additional ways. 

    The rows of the table represent  and  relationships, while the columns represent 

 or . The state variable takes the specified value (in this case,  Other Traffic ) if any of 

the columns evaluate to  true . A column evaluates to  true  if all the rows have the 

value specified for that row in the column. A dot in the table indicates that the value 

for the row is irrelevant. Underlined variables represent hyperlinks. For example, 

clicking on  “  Alt Reporting  ”  would show how the Alt Reporting variable is defined: 

In our TCAS intent specification  7   [121], the altitude report for an aircraft is defined 

as  Lost  if no valid altitude report has been received in the past six seconds. Bearing 

Valid, Range Valid, Proximate Traffic Condition, and Proximate Threat Condition 

are  macros , which simply means that they are defined using separate logic tables. 

The additional logic for the macros could have been inserted here, but sometimes 

the logic gets very complex and it is easier for specifiers and reviewers if, in those 

cases, the tables are broken up into smaller pieces (a form of refinement abstrac-

tion). This decision is, of course, up to the creator of the table. 

 The behavioral descriptions at this level are purely black-box: They describe the 

inputs and outputs of each component and their relationships  only  in terms of 

externally visible behavior. Essentially it represents the transfer function across the 

component. Any of these components (except the humans, of course) could be 

implemented either in hardware or software. Some of the TCAS surveillance 

7.   A SpecTRM-RL model of TCAS was created by the author and her students Jon Reese, Mats Heim-
dahl, and Holly Hildreth to assist in the certification of TCAS II. Later, as an experiment to show the 
feasibility of creating intent specifications, the author created the level 1 and level 2 intent specification 
for TCAS. Jon Reese rewrote the level 3 collision avoidance system logic from the early version of the 
language into SpecTRM-RL.
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functions are, in fact, implemented using analog devices by some vendors and digital 

by others. Decisions about physical implementation, software design, internal vari-

ables, and so on are limited to levels of the specification below this one. Thus, this 

level serves as a rugged interface between the system designers and the component 

designers and implementers (including subcontractors). 

 Software need not be treated any differently than the other parts of the system. 

Most safety-related software problems stem from requirements flaws. The system 

requirements and system hazard analysis should be used to determine the behav-

ioral safety constraints that must be enforced on software behavior and that the 

software must enforce on the controlled system. Once that is accomplished, those 

requirements and constraints are passed to the software developers (through the 

black-box requirements specifications), and they use them to generate and validate 

their designs just as the hardware developers do. 

 Other information at this level might include flight crew requirements such as 

description of tasks and operational procedures, interface requirements, and the 

testing requirements for the functionality described on this level. If the black-box 

requirements specification is executable, system testing can be performed early to 

validate requirements using system and environment simulators or hardware-in-

the-loop simulation. Including a visual operator task-modeling language permits 

integrated simulation and analysis of the entire system, including human – computer 

interactions [15, 177]. 

 Models at this level are reusable, and we have found that these models provide the 

best place to provide component reuse and build component libraries [119]. Reuse 

of application software at the code level has been problematic at best, contributing 

to a surprising number of accidents [116]. Level 3 black-box behavioral specifications 

provide a way to make the changes almost always necessary to reuse software in a 

format that is both reviewable and verifiable. In addition, the black-box models can 

be used to maintain the system and to specify and validate changes before they are 

made in the various manufacturers ’  products. Once the changed level 3 specifications 

have been validated, the links to the modules implementing the modeled behavior 

can be used to determine which modules need to be changed and how. Libraries of 

component models can also be developed and used in a plug-and-play fashion, 

making changes as required, in order to develop product families [211]. 

 The rest of the development process, involving the implementation of the com-

ponent requirements and constraints and documented at levels 4 and 5 of intent 

specifications, is straightforward and differs little from what is normally done today. 

 10.3.9   Documenting System Limitations 
 When the system is completed, the system limitations need to be identified and 

documented. Some of the identification will, of course, be done throughout the 
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development. This information is used by management and stakeholders to deter-

mine whether the system is adequately safe to use, along with information about 

each of the identified hazards and how they were handled. 

 Limitations should be included in level 1 of the intent specification, because they 

properly belong in the customer view of the system and will affect both acceptance 

and certification. 

 Some limitations may be related to the basic functional requirements, such as 

these: 

  L4:     TCAS does not currently indicate horizontal escape maneuvers and therefore 
does not (and is not intended to) increase horizontal separation.  

 Limitations may also relate to environment assumptions. For example: 

  L1:     TCAS provides no protection against aircraft without transponders or with 
nonoperational transponders (  →   EA3 ,  HA-430 ).  

  L6:     Aircraft, performance limitations constrain the magnitude of the escape 
maneuver that the flight crew can safely execute in response to a resolution 
advisory. It is possible for these limitations to preclude a successful resolution 
of the conflict (  →   H3 ,   ↓   2.38 ,  2.39 ).  

  L4:     TCAS is dependent on the accuracy of the threat aircraft ’ s reported altitude. 
Separation assurance may be degraded by errors in intruder pressure altitude 
as reported by the transponder of the intruder aircraft (  →   EA5 ).  

  Assumption:     This limitation holds for the airspace existing at the time of the 
initial TCAS deployment, where many aircraft use pressure altimeters rather 
than GPS. As more aircraft install GPS systems with greater accuracy than 
current pressure altimeters, this limitation will be reduced or eliminated.     

 Limitations are often associated with hazards or hazard causal factors that could 

not be completely eliminated or controlled in the design. Thus they represent 

accepted risks. For example, 

  L3:     TCAS will not issue an advisory if it is turned on or enabled to issue resolution 
advisories in the middle of a conflict (  →    HA-405 ).  

  L5:     If only one of two aircraft is TCAS equipped while the other has only ATCRBS 
altitude-reporting capability, the assurance of safe separation may be reduced 
(  →    HA-290 ).  

 In the specification, both of these system limitations would have pointers to the 

relevant parts of the hazard analysis along with an explanation of why they could 

not be eliminated or adequately controlled in the system design. Decisions about 

deployment and certification of the system will need to be based partially on these 
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limitations and their impact on the safety analysis and safety assumptions of the 

encompassing system, which, in the case of TCAS, is the overall air traffic system. 

 A final type of limitation is related to problems encountered or tradeoffs made 

during system design. For example, TCAS has a high-level performance-monitoring 

requirement that led to the inclusion of a self-test function in the system design to 

determine whether TCAS is operating correctly. The following system limitation 

relates to this self-test facility: 

  L9:     Use by the pilot of the self-test function in flight will inhibit TCAS operation 
for up to 20 seconds depending upon the number of targets being tracked. The 
ATC transponder will not function during some portion of the self-test sequence 
(  ↓   6.52 ).  

 These limitations should be linked to the relevant parts of the development and, 

most important, operational specifications. For example, L9 may be linked to the 

pilot operations manual. 

 10.3.10   System Certification, Maintenance, and Evolution 
 At this point in development, the safety requirements and constraints are docu-

mented and traced to the design features used to implement them. A hazard log 

contains the hazard information (or links to it) generated during the development 

process and the results of the hazard analysis performed. The log will contain 

embedded links to the resolution of each hazard, such as functional requirements, 

design constraints, system design features, operational procedures, and system limi-

tations. The information documented should be easy to collect into a form that can 

be used for the final safety assessment and certification of the system. 

 Whenever changes are made in safety-critical systems or software (during devel-

opment or during maintenance and evolution), the safety of the change needs to be 

reevaluated. This process can be difficult and expensive if it has to start from scratch 

each time. By providing links throughout the specification, it should be easy to assess 

whether a particular design decision or piece of code was based on the original 

safety analysis or safety-related design constraint and only that part of the safety 

analysis process repeated or reevaluated. 
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