
 10 Integrating Safety into System Engineering

 Previous chapters have provided the individual pieces of the solution to engineering

a safer world. This chapter demonstrates how to put these pieces together to inte-

grate safety into a system engineering process. No one process is being proposed:

Safety must be part of any system engineering process.

 The glue that integrates the activities of engineering and operating complex

systems is specifications and the safety information system. Communication is criti-

cal in handling any emergent property in a complex system. Our systems today are

designed and built by hundreds and often thousands of engineers and then operated

by thousands and even tens of thousands more people. Enforcing safety constraints

on system behavior requires that the information needed for decision making is

available to the right people at the right time, whether during system development,

operations, maintenance, or reengineering.

 This chapter starts with a discussion of the role of specifications and how systems

theory can be used as the foundation for the specification of complex systems. Then

an example of how to put the components together in system design and develop-

ment is presented. Chapters 11 and 12 cover how to maximize learning from acci-

dents and incidents and how to enforce safety constraints during operations. The

design of safety information systems is discussed in chapter 13.

 10.1 The Role of Specifications and the Safety Information System

 While engineers may have been able to get away with minimal specifications during

development of the simpler electromechanical systems of the past, specifications are

critical to the successful engineering of systems of the size and complexity we are

attempting to build today. Specifications are no longer simply a means of archiving

information; they need to play an active role in the system engineering process. They

are a critical tool in stretching our intellectual capabilities to deal with increasing

complexity.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

308 Chapter 10

 Our specifications must reflect and support the system safety engineering process

and the safe operation, evolution and change of the system over time. Specifications

should support the use of notations and techniques for reasoning about hazards and

safety, designing the system to eliminate or control hazards, and validating — at each

step, starting from the very beginning of system development — that the evolving

system has the desired safety level. Later, specifications must support operations

and change over time.

 Specification languages can help (or hinder) human performance of the various

problem-solving activities involved in system requirements analysis, hazard analysis,

design, review, verification and validation, debugging, operational use, and mainte-

nance and evolution (sustainment). They do this by including notations and tools

that enhance our ability to: (1) reason about particular properties, (2) construct the

system and the software in it to achieve them, and (3) validate — at each step, starting

from the very beginning of system development — that the evolving system has the

desired qualities. In addition, systems and particularly the software components are

continually changing and evolving; they must be designed to be changeable and the

specifications must support evolution without compromising the confidence in the

properties that were initially verified.

 Documenting and tracking hazards and their resolution are basic requirements

for any effective safety program. But simply having the safety engineer track them

and maintain a hazard log is not enough — information must be derived from the

hazards to inform the system engineering process and that information needs to be

specified and recorded in a way that has an impact on the decisions made during

system design and operations. To have such an impact, the safety-related informa-

tion required by the engineers needs to be integrated into the environment in which

safety-related engineering decisions are made. Engineers are unlikely to be able to

read through volumes of hazard analysis information and relate it easily to the

specific component upon which they are working. The information the system safety

engineer has generated must be presented to the system designers, implementers,

maintainers, and operators in such a way that they can easily find what they need

to make safer decisions.

 Safety information is not only important during system design; it also needs to

be presented in a form that people can learn from, apply to their daily jobs, and use

throughout the life cycle of projects. Too often, preventable accidents have occurred

due to changes that were made after the initial design period. Accidents are fre-

quently the result of safe designs becoming unsafe over time when changes in the

system itself or in its environment violate the basic assumptions of the original

hazard analysis. Clearly, these assumptions must be recorded and easily retrievable

when changes occur. Good documentation is the most important in complex systems

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 309

where nobody is able to keep all the information necessary to make safe decisions

in their head.

 What types of specifications are needed to support humans in system safety

engineering and operations? Design decisions at each stage must be mapped into

the goals and constraints they are derived to satisfy, with earlier decisions mapped

or traced to later stages of the process. The result should be a seamless and gapless

record of the progression from high-level requirements down to component require-

ments and designs or operational procedures. The rationale behind the design deci-

sions needs to be recorded in a way that is easily retrievable by those reviewing or

changing the system design. The specifications must also support the various types

of formal and informal analysis used to decide between alternative designs and to

verify the results of the design process. Finally, specifications must assist in the

coordinated design of the component functions and the interfaces between them.

 The notations used in specification languages must be easily readable and learn-

able. Usability is enhanced by using notations and models that are close to the

mental models created by the users of the specification and the standard notations

in their fields of expertise.

 The structure of the specification is also important for usability. The structure will

enhance or limit the ability to retrieve needed information at the appropriate times.

 Finally, specifications should not limit the problem-solving strategies of the users

of the specification. Not only do different people prefer different strategies for

solving problems, but the most effective problem solvers have been found to change

strategies frequently [167, 58]. Experts switch problem-solving strategy when they

run into difficulties following a particular strategy and as new information is obtained

that changes the objectives or subgoals or the mental workload needed to use a

particular strategy. Tools often limit the strategies that can be used, usually imple-

menting the favorite strategy of the tool designer, and therefore limiting the problem

solving strategies supported by the specification.

 One way to implement these principles is to use intent specifications [120].

 10.2 Intent Specifications

 Intent specifications are based on systems theory, system engineering principles, and

psychological research on human problem solving and how to enhance it. The goal

is to assist humans in dealing with complexity. While commercial tools exist that

implement intent specifications directly, any specification languages and tools can

be used that allow implementing the properties of an intent specification.

 An intent specification differs from a standard specification primarily in its struc-

ture, not its content: no extra information is involved that is not commonly found

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

310 Chapter 10

in detailed specifications — the information is simply organized in a way that has

been found to assist in its location and use. Most complex systems have voluminous

documentation, much of it redundant or inconsistent, and it degrades quickly as

changes are made over time. Sometimes important information is missing, particu-

larly information about why something was done the way it was — the intent or

design rationale. Trying to determine whether a change might have a negative

impact on safety, if possible at all, is usually enormously expensive and often involves

regenerating analyses and work that was already done but either not recorded or

not easily located when needed. Intent specifications were designed to help with

these problems: Design rationale, safety analysis results, and the assumptions upon

which the system design and validation are based are integrated directly into the

system specification and its structure, rather than stored in separate documents, so

the information is at hand when needed for decision making.

 The structure of an intent specification is based on the fundamental concept of

hierarchy in systems theory (see chapter 3) where complex systems are modeled in

terms of a hierarchy of levels of organization, each level imposing constraints on

the degree of freedom of the components at the lower level. Different description

languages may be appropriate at the different levels. Figure 10.1 shows the seven

levels of an intent specification.

 Intent specifications are organized along three dimensions: intent abstraction,

part-whole abstraction, and refinement. These dimensions constitute the problem

space in which the human navigates. Part-whole abstraction (along the horizontal

dimension) and refinement (within each level) allow users to change their

focus of attention to more or less detailed views within each level or model.

The vertical dimension specifies the level of intent at which the problem is being

considered.

 Each intent level contains information about the characteristics of the environ-

ment, human operators or users, the physical and functional system components,

and requirements for and results of verification and validation activities for that

level. The safety information is embedded in each level, instead of being maintained

in a separate safety log, but linked together so that it can easily be located and

reviewed.

 The vertical intent dimension has seven levels. Each level represents a different

model of the system from a different perspective and supports a different type of

reasoning about it. Refinement and decomposition occurs within each level of the

specification, rather than between levels. Each level provides information not just

about what and how , but why , that is, the design rationale and reasons behind the

design decisions, including safety considerations.

 Figure 10.2 shows an example of the information that might be contained in each

level of the intent specification.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 311

(Operations View)

(Component Designer View)

(Component Implementer View)

(Interface between System and Component Engineers)

(Management View)

(Customer View)

(System Engineering View)

OperatorEnvironment

Intent

Management

Level 1: System
Purpose

Level 2: System
Design Principles

Level 4: Design
Representation

Representation
Level 5: Physical

Refinement

Level 6: System
Operations

Level 3: System
Architecture

Subsystems

System

Part−Whole

Components

Validation

Level 0: Program

Verification/

 Figure 10.1
 The structure of an intent specification.

 The top level (level 0) provides a project management view and insight into the

relationship between the plans and the project development status through links

to the other parts of the intent specification. This level might contain the project

management plans, the safety plan, status information, and so on.

 Level 1 is the customer view and assists system engineers and customers in

agreeing on what should be built and, later, whether that has been accomplished. It

includes goals, high-level requirements and constraints (both physical and operator),

environmental assumptions, definitions of accidents, hazard information, and system

limitations.

 Level 2 is the system engineering view and helps system engineers record and

reason about the system in terms of the physical principles and system-level design

principles upon which the system design is based.

 Level 3 specifies the system architecture and serves as an unambiguous interface

between system engineers and component engineers or contractors. At level 3, the

system functions defined at level 2 are decomposed, allocated to components, and

specified rigorously and completely. Black-box behavioral component models may

be used to specify and reason about the logical design of the system as a whole and

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

312 Chapter 10

 Figure 10.2
 An example of the information in an intent specification.

Responsibilities
Requirements

I/F requirements

System goals, high-level
requirements, design

constraints, limitations

External
interfaces

Task analyses

Controls, displays
Task allocation

functional decomposition
and allocation

Project management plans, status information, safety plan, etc.

Environment
models models

Operator Task

HCI models

Blackbox functional
models

Interface specifications

Constraints
Assumptions

Review s

Validation plan
and results,

Analysis plans
and results,

control laws,
Logic principles,

System Hazard
Analysis

Hazard Analysis
Subsystem

System
Purpose

Blackbox
Models

System
Principles

HCI design Software and hardware
design specs

Rep.

GUI design,
physical controls

design

Software code, hardware
assembly instructions

Audit
procedures

Operator manuals
Maintenance

Training materials

Error reports, change
requests, etc.

Test plans
and results

Test plans
and results

Performance
monitoring
and audits

Design
Rep.

Operations

Level 5
Physical

Level 4

Level 3

Level 2

Level 1

Level 6

Level 0
Prog. Mgmt.

Hazard Analysis,
Preliminary

Environment Operator System and components V&V

the interactions among individual system components without being distracted by

implementation details.

 If the language used at level 3 is formal (rigorously defined), then it can play an

important role in system validation. For example, the models can be executed in

system simulation environments to identify system requirements and design errors

early in development. They can also be used to automate the generation of system

and component test data, various types of mathematical analyses, and so forth. It is

important, however, that the black-box (that is, transfer function) models be easily

reviewed by domain experts — most of the safety-related errors in specifications will

be found by expert review, not by automated tools or formal proofs.

 A readable but formal and executable black-box requirements specification lan-

guage was developed by the author and her students while helping the FAA specify

the TCAS (Traffic Alert and Collision Avoidance System) requirements [123].

Reviewers can learn to read the specifications with a few minutes of instruction

about the notation. Improvements have been made over the years, and it is being

used successfully on real systems. This language provides an existence case that a

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 313

readable and easily learnable but formal specification language is possible. Other

languages with the same properties, of course, can also be used effectively.

 The next two levels, Design Representation and Physical Representation,

provide the information necessary to reason about individual component design

and implementation issues. Some parts of level 4 may not be needed if at least por-

tions of the physical design can be generated automatically from the models at

level 3.

 The final level, Operations, provides a view of the operational system and acts as

the interface between development and operations. It assists in designing and per-

forming system safety activities during system operations. It may contain required

or suggested operational audit procedures, user manuals, training materials, main-

tenance requirements, error reports and change requests, historical usage informa-

tion, and so on.

 Each level of an intent specification supports a different type of reasoning about

the system, with the highest level assisting systems engineers in their reasoning

about system-level goals, constraints, priorities, and tradeoffs. The second level,

System Design Principles, allows engineers to reason about the system in terms of

the physical principles and laws upon which the design is based. The Architecture

level enhances reasoning about the logical design of the system as a whole, the

interactions between the components, and the functions computed by the compo-

nents without being distracted by implementation issues. The lowest two levels

provide the information necessary to reason about individual component design and

implementation issues. The mappings between levels provide the relational informa-

tion that allows reasoning across hierarchical levels and traceability of requirements

to design.

 Hyperlinks are used to provide the relational information that allows reasoning

within and across levels, including the tracing from high-level requirements down

to implementation and vice versa. Examples can be found in the rest of this

chapter.

 The structure of an intent specification does not imply that the development must

proceed from the top levels down to the bottom levels in that order, only that at

the end of the development process, all levels are complete. Almost all development

involves work at all of the levels at the same time.

 When the system changes, the environment in which the system operates changes,

or components are reused in a different system, a new or updated safety analysis is

required. Intent specifications can make that process feasible and practical.

 Examples of intent specifications are available [121, 151] as are commercial tools

to support them. But most of the principles can be implemented without special

tools beyond a text editor and hyperlinking facilities. The rest of this chapter assumes

only these very limited facilities are available.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

314 Chapter 10

 10.3 An Integrated System and Safety Engineering Process

 There is no agreed upon best system engineering process and probably cannot be

one — the process needs to match the specific problem and environment in which it

is being used. What is described in this section is how to integrate safety engineering

into any reasonable system engineering process.

 The system engineering process provides a logical structure for problem solving.

Briefly, first a need or problem is specified in terms of objectives that the system

must satisfy and criteria that can be used to rank alternative designs. Then a process

of system synthesis takes place that usually involves considering alternative designs.

Each of the alternatives is analyzed and evaluated in terms of the stated objectives

and design criteria, and one alternative is selected. In practice, the process is highly

iterative: The results from later stages are fed back to early stages to modify objec-

tives, criteria, design decisions, and so on.

 Design alternatives are generated through a process of system architecture devel-

opment and analysis. The system engineers first develop requirements and design

constraints for the system as a whole and then break the system into subsystems

and design the subsystem interfaces and the subsystem interface topology. System

functions and constraints are refined and allocated to the individual subsystems. The

emerging design is analyzed with respect to desired system performance character-

istics and constraints, and the process is iterated until an acceptable system design

results.

 The difference in safety-guided design is that hazard analysis is used throughout

the process to generate the safety constraints that are factored into the design deci-

sions as they are made. The preliminary design at the end of this process must be

described in sufficient detail that subsystem implementation can proceed indepen-

dently. The subsystem requirements and design processes are subsets of the larger

system engineering process.

 This general system engineering process has some particularly important aspects.

One of these is the focus on interfaces. System engineering views each system as an

integrated whole even though it is composed of diverse, specialized components,

which may be physical, logical (software), or human. The objective is to design

subsystems that when integrated into the whole provide the most effective system

possible to achieve the overall objectives. The most challenging problems in building

complex systems today arise in the interfaces between components. One example

is the new highly automated aircraft where most incidents and accidents have been

blamed on human error, but more properly reflect difficulties in the collateral design

of the aircraft, the avionics systems, the cockpit displays and controls, and the

demands placed on the pilots.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 315

 A second critical factor is the integration of humans and nonhuman system

components. As with safety, a separate group traditionally does human factors

design and analysis. Building safety-critical systems requires integrating both

system safety and human factors into the basic system engineering process, which

in turn has important implications for engineering education. Unfortunately,

neither safety nor human factors plays an important role in most engineering

education today.

 During program and project planning, a system safety plan, standards, and

project development safety control structure need to be designed including

policies, procedures, the safety management and control structure, and communica-

tion channels. More about safety management plans can be found in chapters 12

and 13.

 Figure 10.3 shows the types of activities that need to be performed in such an

integrated process and the system safety and human factors inputs and products.

Standard validation and verification activities are not shown, since they should be

included throughout the entire process.

 The rest of this chapter provides an example using TCAS II. Other examples are

interspersed where TCAS is not appropriate or does not provide an interesting

enough example.

 10.3.1 Establishing the Goals for the System
 The first step in any system engineering process is to identify the goals of the effort.

Without agreeing on where you are going, it is not possible to determine how to get

there or when you have arrived.

 TCAS II is a box required on most commercial and some general aviation aircraft

that assists in avoiding midair collisions. The goals for TCAS II are to:

 G1: Provide affordable and compatible collision avoidance system options for a
broad spectrum of National Airspace System users.

 G2: Detect potential midair collisions with other aircraft in all meteorological
conditions; throughout navigable airspace, including airspace not covered
by ATC primary or secondary radar systems; and in the absence of ground
equipment.

 TCAS was intended to be an independent backup to the normal Air Traffic Control

(ATC) system and the pilot ’ s “ see and avoid ” responsibilities. It interrogates air

traffic control transponders on aircraft in its vicinity and listens for the transponder

replies. By analyzing these replies with respect to slant range and relative altitude,

TCAS determines which aircraft represent potential collision threats and provides

appropriate display indications, called advisories, to the flight crew to assure proper

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

316 Chapter 10

Identify potentially unsafe control actions and restate as constraints

Identify constraints on how goals can be achieved

Identify hazards
Define accidents (unacceptable losses)

Formulate system-level safety and non-safety constraints

Select a system architecture
Architectural trade analysis
Preliminary hazard analysis

Identify environmental assumptions

Create a concept of operations
Perform a preliminary operator task analysis

Refine goals into testable and achievable system-level functional requirements

Perform STPA

Refine safety constraints and functional requirements
Identify preliminary safety control structure

Implementation (construction and manufacturing)

Change analysis
Incident and accident analysis
Performance monitoring
Periodic audits

Operations, including maintenance and upgrades

and safety constraints
Define component responsibilities

on system and component behavior

Perform safety-driven system design and analysis

Agree on system goals

Perform final safety assessment

Document system limitations

Safety certification

Field testing, installation, and training

Decommissioning

Make system-level design decisions to satisfy functional requirements

 Figure 10.3
 System safety and human factors integrated into the set of typical system engineering tasks. Standard
verification and validation activities are not shown as they are assumed to be performed throughout the
whole process, not just at the end where they are often concentrated.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 317

separation. Two types of advisories can be issued. Resolution advisories (RAs)

provide instructions to the pilots to ensure safe separation from nearby traffic in

the vertical plane. l Traffic advisories (TAs) indicate the positions of intruding air-

craft that may later cause resolution advisories to be displayed.

 TCAS is an example of a system created to directly impact safety where the goals

are all directly related to safety. But system safety engineering and safety-driven

design can be applied to systems where maintaining safety is not the only goal and,

in fact, human safety is not even a factor. The example of an outer planets explorer

spacecraft was shown in chapter 7. Another example is the air traffic control system,

which has both safety and nonsafety (throughput) goals.

 10.3.2 Defining Accidents
 Before any safety-related activities can start, the definition of an accident needs to

be agreed upon by the system customer and other stakeholders. This definition, in

essence, establishes the goals for the safety effort.

 Defining accidents in TCAS is straightforward — only one is relevant, a midair

collision. Other more interesting examples are shown in chapter 7.

 Basically, the criterion for specifying events as accidents is that the losses are so

important that they need to play a central role in the design and tradeoff process.

In the outer planets explorer example in chapter 7, some of the losses involve the

mission goals themselves while others involve losses to other missions or a negative

impact on our solar system ecology.

 Priorities and evaluation criteria may be assigned to the accidents to indicate how

conflicts are to be resolved, such as conflicts between safety goals or conflicts

between mission goals and safety goals and to guide design choices at lower levels.

The priorities are then inherited by the hazards related to each of the accidents and

traced down to the safety-related design features.

 10.3.3 Identifying the System Hazards
 Once the set of accidents has been agreed upon, hazards can be derived from them.

This process is part of what is called Preliminary Hazard Analysis (PHA) in System

Safety. The hazard log is usually started as soon as the hazards to be considered are

identified. While much of the information in the hazard log will be filled in later,

some information is available at this time.

 There is no right or wrong list of hazards — only an agreement by all involved on

what hazards will be considered. Some hazards that were considered during the

design of TCAS are listed in chapter 7 and are repeated here for convenience:

1. Horizontal advisories were originally planned for later versions of TCAS but have not yet been
implemented.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

318 Chapter 10

 1. TCAS causes or contributes to a near midair collision (NMAC), defined as a

pair of controlled aircraft violating minimum separation standards.

 2. TCAS causes or contributes to a controlled maneuver into the ground.

 3. TCAS causes or contributes to the pilot losing control over the aircraft.

 4. TCAS interferes with other safety-related aircraft systems (for example,

ground proximity warning).

 5. TCAS interferes with the ground-based air traffic control system (e.g., tran-

sponder transmissions to the ground or radar or radio services).

 6. TCAS interferes with an ATC advisory that is safety-related (e.g., avoiding a

restricted area or adverse weather conditions).

 Once accidents and hazards have been identified, early concept formation (some-

times called high-level architecture development) can be started for the integrated

system and safety engineering process.

 10.3.4 Integrating Safety into Architecture Selection and System Trade Studies
 An early activity in the system engineering of complex systems is the selection of

an overall architecture for the system, or as it is sometimes called, system concept

formation. For example, an architecture for manned space exploration might include

a transportation system with parameters and options for each possible architectural

feature related to technology, policy, and operations. Decisions will need to be made

early, for example, about the number and type of vehicles and modules, the destina-

tions for the vehicles, the roles and activities for each vehicle including dockings

and undockings, trajectories, assembly of the vehicles (in space or on Earth), discard-

ing of vehicles, prepositioning of vehicles in orbit and on the planet surface, and so

on. Technology options include type of propulsion, level of autonomy, support

systems (water and oxygen if the vehicle is used to transport humans), and many

others. Policy and operational options may include crew size, level of international

investment, types of missions and their duration, landing sites, and so on. Decisions

about these overall system concepts clearly must precede the actual implementation

of the system.

 How are these decisions made? The selection process usually involves extensive

tradeoff analysis that compares the different feasible architectures with respect to

some important system property or properties. Cost, not surprisingly, usually plays

a large role in the selection process while other properties, including system safety,

are usually left as a problem to be addressed later in the development lifecycle.

Many of the early architectural decisions, however, have a significant and lasting

impact on safety and may not be reversible after the basic architectural decisions

have been made. For example, the decision not to include a crew escape system on

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 319

the Space Shuttle was an early architectural decision and has been impacting Shuttle

safety for more than thirty years [74, 136]. After the Challenger accident and again

after the Columbia loss, the idea resurfaced, but there was no cost-effective way to

add crew escape at that time.

 The primary reason why safety is rarely factored in during the early architectural

tradeoff process, except perhaps informally, is that practical methods for analyzing

safety, that is, hazard analysis methods that can be applied at that time, do not exist.

But if information about safety were available early, it could be used in the selection

process and hazards could be eliminated by the selection of appropriate architec-

tural options or mitigated early when the cost of doing so is much less than later in

the system lifecycle. Making basic design changes downstream becomes increasingly

costly and disruptive as development progresses and, often, compromises in safety

must be accepted that could have been eliminated if safety had been considered in

the early architectural evaluation process.

 While it is relatively easy to identify hazards at system conception, performing a

hazard or risk assessment before a design is available is more problematic. At best,

only a very rough estimate is possible. Risk is usually defined as a combination of

severity and likelihood. Because these two different qualities (severity and likeli-

hood) cannot be combined mathematically, they are commonly qualitatively com-

bined using a risk matrix. Figure 10.4 shows a fairly standard form for such a matrix.

SEVERITY

A

B

C

D

E

F

Frequent

Moderate

Occasional

Remote

Unlikely

Impossible

Catastrophic Critical Marginal Negligible

I−A

I−B

I−C

I−E

I−F

II−A

II−B

II−C

II−D

II−E

II−F

III−A

III−B

III−C

III−D

III−E

III−F

IV−A

IV−B

IV−C

IV−D

IV−E

IV−F

I−D

IVIIIIII

LIKELIHOOD

 Figure 10.4
 A standard risk matrix.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

320 Chapter 10

High-level hazards are first identified and, for each identified hazard, a qualitative

evaluation is performed by classifying the hazard according to its severity and

likelihood.

 While severity can usually be evaluated using the worst possible consequences

of that hazard, likelihood is almost always unknown and, arguably, unknowable for

complex systems before any system design decisions have been made. The problem

is even worse before a system architecture has been selected. Some probabilistic

information is usually available about physical events, of course, and historical

information may theoretically be available. But new systems are usually being

created because existing systems and designs are not adequate to achieve the system

goals, and the new systems will probably use new technology and design features

that limit the accuracy of historical information. For example, historical information

about the likelihood of propulsion-related losses may not be accurate for new space-

craft designs using nuclear propulsion. Similarly, historical information about the

errors air traffic controllers make has no relevance for new air traffic control systems,

where the type of errors may change dramatically.

 The increasing use of software in most complex systems complicates the situation

further. Much or even most of the software in the system will be new and have no

historical usage information. In addition, statistical techniques that assume random-

ness are not applicable to software design flaws. Software and digital systems also

introduce new ways for hazards to occur, including new types of component interac-

tion accidents. Safety is a system property, and, as argued in part I, combining the

probability of failure of the system components to be used has little or no relation-

ship to the safety of the system as a whole.

 There are no known or accepted rigorous or scientific ways to obtain probabilistic

or even subjective likelihood information using historical data or analysis in the case

of non-random failures and system design errors, including unsafe software behav-

ior. When forced to come up with such evaluations, engineering judgment is usually

used, which in most cases amounts to pulling numbers out of the air, often influ-

enced by political and other nontechnical factors. Selection of a system architecture

and early architectural trade evaluations on such a basis is questionable and perhaps

one reason why risk usually does not play a primary role in the early architectural

trade process.

 Alternatives to the standard risk matrix are possible, but they tend to be applica-

tion specific and so must be constructed for each new system. For many systems,

the use of severity alone is often adequate to categorize the hazards in trade studies.

Two examples of other alternatives are presented here, one created for augmented

air traffic control technology and the other created and used in the early architec-

tural trade study of NASA ’ s Project Constellation, the program to return to the

moon and later go on to Mars. The reader is encouraged to come up with their own

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 321

methods appropriate for their particular application. The examples are not meant

to be definitive, but simply illustrative of what is possible.

 Example 1: A Human-Intensive System: Air Traffic Control Enhancements
 Enhancements to the air traffic control (ATC) system are unique in that the problem

is not to create a new or safer system but to maintain the very high level of safety

built into the current system: The goal is to not degrade safety. The risk likelihood

estimate can be restated, in this case, as the likelihood that safety will be degraded

by the proposed changes and new tools. To tackle this problem, we created a set of

criteria to be used in the evaluation of likelihood. 2 The criteria ranked various high-

level architectural design features of the proposed set of ATC tools on a variety of

factors related to risk in these systems. The ranking was qualitative and most criteria

were ranked as having low, medium, or high impact on the likelihood of safety being

degraded from the current level. For the majority of factors, “ low ” meant insignifi-

cant or no change in safety with respect to that factor in the new versus the current

system, “ medium ” denoted the potential for a minor change, and “ high ” signified

potential for a significant change in safety. Many of the criteria involve human-

automation interaction, since ATC is a very human-intensive system and the new

features being proposed involved primarily new automation to assist human air

traffic controllers. Here are examples of the likelihood level criteria used:

 • Safety margins: Does the new feature have the potential for (1) an insignifi-

cant or no change to the existing safety margins, (2) a minor change, or (3) a

significant change.

 • Situation awareness: What is the level of change in the potential for reducing

situation awareness.

 • Skills currently used and those necessary to backup and monitor the new deci-
sion-support tools: Is there an insignificant or no change in the controller

skills, a minor change, or a significant change.

 • Introduction of new failure modes and hazard causes: Do the new tools have

the same function and failure modes as the system components they are replac-

ing, are new failure modes and hazards introduced but well understood and

effective mitigation measures can be designed, or are the new failure modes

and hazard causes difficult to control.

 • Effect of the new software functions on the current system hazard mitigation
measures: Can the new features render the current safety measures ineffective

or are they unrelated to current safety features.

2. These criteria were developed for a NASA contract by the author and have not been published
previously.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

322 Chapter 10

 • Need for new system hazard mitigation measures: Will the proposed changes

require new hazard mitigation measures.

 These criteria and others were converted into a numerical scheme so they could be

combined and used in an early risk assessment of the changes being contemplated

and their potential likelihood for introducing significant new risk into the system.

The criteria were weighted to reflect their relative importance in the risk analysis.

 Example 2: Early Risk Analysis of Manned Space Exploration
 A second example was created by Nicolas Dulac and others as part of an MIT and

Draper Labs contract with NASA to perform an architectural tradeoff analysis for

future human space exploration [59]. The system engineers wanted to include safety

along with the usual factors, such as mass, to evaluate the candidate architectures,

but once again little information was available at this early stage of system engineer-

ing. It was not possible to evaluate likelihood using historical information; all of the

potential architectures involved new technology, new missions, and significant

amounts of software.

 In the procedure developed to achieve the goal, the hazards were first identified

as shown in figure 10.5 . As is the case at the beginning of any project, identifying

system hazards involved ten percent creativity and ninety percent experience.

Hazards were identified for each mission phase by domain experts under the guid-

ance of the safety experts. Some hazards, such as fire, explosion, or loss of life-

support span multiple (if not all) mission phases and were grouped as General
Hazards . The control strategies used to mitigate them, however, may depend on the

mission phase in which they occur.

 Once the hazards were identified, the severity of each hazard was evaluated by

considering the worst-case loss associated with the hazard. In the example, the losses

are evaluated for each of three categories: humans (H), mission (M), and equipment

(E). Initially, potential damage to the Earth and planet surface environment was

included in the hazard log. In the end, the environment component was left out of

the analysis because project managers decided to replace the analysis with manda-

tory compliance with NASA ’ s planetary protection standards. A risk analysis can be

replaced by a customer policy on how the hazards are to be treated. A more com-

plete example, however, for a different system would normally include environmen-

tal hazards.

 A severity scale was created to account for the losses associated with each of the

three categories. The scale used is shown in figure 10.6 , but obviously a different

scale could easily be created to match the specific policies or standard practice in

different industries and companies.

 As usual, severity was relatively easy to handle but the likelihood of the potential

hazard occurring was unknowable at this early stage of system engineering. In

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 323

 Figure 10.5
 System-level hazards and associated severities.

 Figure 10.6
 Custom severity scale for the candidate architectures analysis.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

324 Chapter 10

addition, space exploration is the polar opposite of the ATC example above as the

system did not already exist and the architectures and missions would involve things

never attempted before, which created a need for a different approach to estimating

likelihood.

 We decided to use the mitigation potential of the hazard in the candidate archi-

tecture as an estimator of, or surrogate for, likelihood. Hazards that are more easily

mitigated in the design and operations are less likely to lead to accidents. Similarly,

hazards that have been eliminated during system design, and thus are not part of

that candidate architecture or can easily be eliminated in the detailed design process,

cannot lead to an accident.

 The safety goal of the architectural analysis process was to assist in selecting the

architecture with the fewest serious hazards and highest mitigation potential for

those hazards that were not eliminated. Not all hazards will be eliminated even if

they can be. One reason for not eliminating hazards might be that it would reduce

the potential for achieving other important system goals or constraints. Obviously,

safety is not the only consideration in the architecture selection process, but it is

important enough in this case to be a criterion in the selection process.

 Mitigation potential was chosen as a surrogate for likelihood for two reasons:

(1) the potential for eliminating or controlling the hazard in the design or operations

has a direct and important bearing on the likelihood of the hazard occurring

(whether traditional or new designs and technology are used) and (2) mitigatibility

of the hazard can be determined before an architecture or design is selected —

 indeed, it assists in the selection process.

 Figure 10.7 shows an example from the hazard log created during the PHA effort.

The example hazard shown is nuclear reactor overheating . Nuclear power generation

and use, particularly during planetary surface operations, was considered to be an

important option in the architectural tradeoffs. The potential accident and its effects

are described in the hazard log as:

 Nuclear core meltdown would cause loss of power, and possibly radiation exposure.

Surface operations must abort mission and evacuate. If abort is unsuccessful or unavailable

at the time, the crew and surface equipment could be lost. There would be no environ-

mental impact on Earth.

 The hazard is defined as the nuclear reactor operating at temperatures above the

design limits.

 Although some causal factors can be hypothesized early, a hazard analysis using

STPA can be used to generate a more complete list of causal factors later in the

development process to guide the design process after an architecture is chosen.

 Like severity, mitigatibility was evaluated by domain experts under the guidance

of safety experts. Both the cost of the potential mitigation strategy and its

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 325

 Figure 10.7
 A sample from the hazard log generated during the preliminary hazard analysis for the space architecture
candidate tradeoff analysis.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

326 Chapter 10

effectiveness were evaluated. For the nuclear power example, two strategies were

identified: the first is not to use nuclear power generation at all. The cost of this option

was evaluated as medium (on a low, medium, high scale). But the mitigation potential

was rated as high because it eliminates the hazard completely. The mitigation priority

scale used is shown in figure 10.8 . The second mitigation potential identified by

the engineers was to provide a backup power generation system for surface opera-

tions. The difficulty and cost was rated high and the mitigation rating was 1, which was

the lowest possible level, because at best it would only reduce the damage if an acci-

dent occurred but potential serious losses would still occur. Other mitigation strate-

gies are also possible but have been omitted from the sample hazard log entry shown.

 None of the effort expended here is wasted. The information included in the

hazard log about the mitigation strategies will be useful later in the design process

if the final architecture selected uses surface nuclear power generation. NASA might

also be able to use the information in future projects and the creation of such early

risk analysis information might be common to companies or industries and not have

to be created for each project. As new technologies are introduced to an industry,

new hazards or mitigation possibilities could be added to the previously stored

information.

 The final step in the process is to create safety risk metrics for each candidate

architecture. Because the system engineers on the project created hundreds of fea-

sible architectures, the evaluation process was automated. The actual details of the

mathematical procedures used are of limited general interest and are available

elsewhere [59]. Weighted averages were used to combine mitigation factors and

severity factors to come up with a final Overall Residual Safety-Risk Metric . This

metric was then used in the evaluation and ranking of the potential manned space

exploration architectures.

 By selecting and deselecting options in the architecture description, it was also

possible to perform a first-order assessment of the relative importance of each

architectural option in determining the Overall Residual Safety-Risk Metric.

 While hundreds of parameters were considered in the risk analysis, the process

allowed the identification of major contributors to the hazard mitigation potential

of selected architectures and thus informed the architecture selection process and

 Figure 10.8
 A sample hazard-mitigation priority scale.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 327

the tradeoff analysis. For example, important contributors to increased safety were

determined to include the use of heavy module and equipment prepositioning on

the surface of Mars and the use of minimal rendezvous and docking maneuvers.

Prepositioning modules allows for pretesting and mitigates the hazards associated

with loss of life support, equipment damage, and so on. On the other hand, prepo-

sitioning modules increases the reliance on precision landing to ensure that all

landed modules are within range of each other. Consequently, using heavy preposi-

tioning may require additional mitigation strategies and technology development

to reduce the risk associated with landing in the wrong location. All of this infor-

mation must be considered in selecting the best architecture. As another example,

on one hand, a transportation architecture requiring no docking at Mars orbit

or upon return to Earth inherently mitigates hazards associated with collisions or

failed rendezvous and docking maneuvers. On the other hand, having the capability

to dock during an emergency, even though it is not required during nominal opera-

tions, provides additional mitigation potential for loss of life support, especially in

Earth orbit.

 Reducing these considerations to a number is clearly not ideal, but with hundreds

of potential architectures it was necessary in this case in order to pare down the

choices to a smaller number. More careful tradeoff analysis is then possible on the

reduced set of choices.

 While mitigatibility is widely applicable as a surrogate for likelihood in many

types of domains, the actual process used above is just one example of how it might

be used. Engineers will need to adapt the scales and other features of the process

to the customary practices in their own industry. Other types of surrogates or ways

to handle likelihood estimates in early phases of projects are possible beyond the

two examples provided in this section. While none of these approaches is ideal, they

are much better than ignoring safety in decision making or selecting likelihood

estimates based solely on wishful thinking or the politics that often surround the

preliminary hazard analysis process.

 After a conceptual design is chosen, development begins.

 10.3.5 Documenting Environmental Assumptions
 An important part of the system development process is to determine and document

the assumptions under which the system requirements and design features are

derived and upon which the hazard analysis is based. Assumptions will be identified

and specified throughout the system engineering process and the engineering speci-

fications to explain decisions or to record fundamental information upon which the

design is based. If the assumptions change over time or the system changes and the

assumptions are no longer true, then the requirements and the safety constraints

and design features based on those assumptions need to be revisited to ensure safety

has not been compromised by the change.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

328 Chapter 10

 Because operational safety depends on the accuracy of the assumptions and

models underlying the design and hazard analysis processes, the operational system

should be monitored to ensure that:

 1. The system is constructed, operated, and maintained in the manner assumed

by the designers.

 2. The models and assumptions used during initial decision making and design

are correct.

 3. The models and assumptions are not violated by changes in the system, such

as workarounds or unauthorized changes in procedures, or by changes in the

environment.

 Operational feedback on trends, incidents, and accidents should trigger reanalysis

when appropriate. Linking the assumptions throughout the document with the parts

of the hazard analysis based on that assumption will assist in performing safety

maintenance activities.

 Several types of assumptions are relevant. One is the assumptions under which

the system will be used and the environment in which the system will operate. Not

only will these assumptions play an important role in system development, but they

also provide part of the basis for creating the operational safety control structure

and other operational safety controls such as creating feedback loops to ensure the

assumptions underlying the system design and the safety analyses are not violated

during operations as the system and its environment change over time.

 While many of the assumptions that originate in the existing environment into

which the new system will be integrated can be identified at the beginning of devel-

opment, additional assumptions will be identified as the design process continues

and new requirements and design decisions and features are identified. In addition,

assumptions that the emerging system design imposes on the surrounding environ-

ment will become clear only after detailed decisions are made in the design and

safety analyses.

 Examples of important environment assumptions for TCAS II are that:

 EA1: High-integrity communications exist between aircraft.

 EA2: The TCAS-equipped aircraft carries a Mode-S air traffic control transponder. 3

3. An aircraft transponder sends information to help air traffic control maintain aircraft separation.
Primary radar generally provides bearing and range position information, but lacks altitude information.
Mode A transponders transmit only an identification signal, while Mode C and Mode S transponders
also report pressure altitude. Mode S is newer and has more capabilities than Mode C, some of which
are required for the collision avoidance functions in TCAS.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 329

 EA3: All aircraft have operating transponders.j

 EA4: All aircraft have legal identification numbers.

 EA5: Altitude information is available from intruding targets with a minimum
precision of 100 feet.

 EA6: The altimetry system that provides own aircraft pressure altitude to the TCAS
equipment will satisfy the requirements in RTCA Standard . . .

 EA7: Threat aircraft will not make an abrupt maneuver that thwarts the TCAS
escape maneuver.

 As noted, these assumptions must be enforced in the overall safety control struc-

ture. With respect to assumption EA4, for example, identification numbers are

usually provided by the aviation authorities in each country, and that requirement

will need to be ensured by international agreement or by some international agency.

The assumption that aircraft have operating transponders (EA3) may be enforced

by the airspace rules in a particular country and, again, must be ensured by some

group. Clearly, these assumptions play an important role in the construction of the

safety control structure and assignments of responsibilities for the final system. For

TCAS, some of these assumptions will already be imposed by the existing air trans-

portation safety control structure while others may need to be added to the respon-

sibilities of some group(s) in the control structure. The last assumption, EA7, imposes

constraints on pilots and the air traffic control system.

 Environment requirements and constraints may lead to restrictions on the use of

the new system (in this case, TCAS) or may indicate the need for system safety and

other analyses to determine the constraints that must be imposed on the system

being created (TCAS again) or the larger encompassing system to ensure safety. The

requirements for the integration of the new subsystem safely into the larger system

must be determined early. Examples for TCAS include:

 E1: The behavior or interaction of non-TCAS equipment with TCAS must not
degrade the performance of the TCAS equipment or the performance of the
equipment with which TCAS interacts.

 E2: Among the aircraft environmental alerts, the hierarchy shall be: Windshear has
first priority, then the Ground Proximity Warning System (GPWS), then TCAS.

 E3: The TCAS alerts and advisories must be independent of those using the master
caution and warming system.

 10.3.6 System-Level Requirements Generation
 Once the goals and hazards have been identified and a conceptual system architec-

ture has been selected, system-level requirements generation can begin. Usually, in

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

330 Chapter 10

the early stages of a project, goals are stated in very general terms, as shown in G1

and G2. One of the first steps in the design process is to refine the goals into test-

able and achievable high-level requirements (the “ shall ” statements). Examples of

high-level functional requirements implementing the goals for TCAS are:

 1.18: TCAS shall provide collision avoidance protection for any two aircraft
closing horizontally at any rate up to 1200 knots and vertically up to 10,000 feet
per minute.

 Assumption: This requirement is derived from the assumption that commer-
cial aircraft can operate up to 600 knots and 5000 fpm during vertical climb
or controlled descent (and therefore two planes can close horizontally up to
1200 knots and vertically up to 10,000 fpm).

 1.19.1: TCAS shall operate in enroute and terminal areas with traffic densities up
to 0.3 aircraft per square nautical miles (i.e., 24 aircraft within 5 nmi).

 Assumption: Traffic density may increase to this level by 1990, and this will
be the maximum density over the next 20 years.

 As stated earlier, assumptions should continue to be specified when appropriate to

explain a decision or to record fundamental information on which the design is

based. Assumptions are an important component of the documentation of design

rationale and form the basis for safety audits during operations. Consider the above

requirement labeled 1.18, for example. In the future, if aircraft performance limits

change or there are proposed changes in airspace management, the origin of the

specific numbers in the requirement (1,200 and 10,000) can be determined and

evaluated for their continued relevance. In the absence of the documentation of

such assumptions and how they impact the detailed design decisions, numbers tend

to become “ gospel, ” and everyone is afraid to change them.

 Requirements (and constraints) must also be included for the human operator

and for the human – computer interface. These requirements will in part be derived

from the concept of operations , which should in turn include a human task analysis

[48, 47], to determine how TCAS is expected to be used by pilots (which, again,

should be checked in safety audits during operations). These analyses use infor-

mation about the goals of the system, the constraints on how the goals are achieved,

including safety constraints, how the automation will be used, how humans now

control the system and work in the system without automation, and the tasks

humans need to perform and how the automation will support them in performing

these tasks. The task analysis must also consider workload and its impact on opera-

tor performance. Note that a low workload may be more dangerous than a high one.

 Requirements on the operator (in this case, the pilot) are used to guide the design

of the TCAS-pilot interface, the design of the automation logic, flight-crew tasks

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 331

and procedures, aircraft flight manuals, and training plans and program. Traceability

links should be provided to show the relationships. Links should also be provided

to the parts of the hazard analysis from which safety-related requirements are

derived. Examples of TCAS II operator safety requirements and constraints are:

 OP.4: After the threat is resolved, the pilot shall return promptly and smoothly to
his/her previously assigned fight path (→ HA-560 , ↓ 3.3).

 OP.9: The pilot must not maneuver on the basis of a Traffic Advisory only (→

 HA-630 , ↓ 2.71.3).

 The requirements and constraints include links to the hazard analysis that produced

the information and to design documents and decisions to show where the require-

ments are applied. These two examples have links to the parts of the hazard analysis

from which they were derived, links to the system design and operator procedures

where they are enforced, and links to the user manuals (in this case, the pilot

manuals) to explain why certain activities or behaviors are required.

 The links not only provide traceability from requirements to implementation and

vice versa to assist in review activities, but they also embed the design rationale

information into the specification. If changes need to be made to the system, it is

easy to follow the links and determine why and how particular design decisions

were made.

 10.3.7 Identifying High-Level Design and Safety Constraints
 Design constraints are restrictions on how the system can achieve its purpose. For

example, TCAS is not allowed to interfere with the ground-level air traffic control

system while it is trying to maintain adequate separation between aircraft. Avoiding

interference is not a goal or purpose of TCAS — the best way to achieve the goal is

not to build the system at all. It is instead a constraint on how the system can achieve

its purpose, that is, a constraint on the potential system designs. Because of the need

to evaluate and clarify tradeoffs among alternative designs, separating these two

types of intent information (goals and design constraints) is important.

 For safety-critical systems, constraints should be further separated into safety-

related and not safety-related. One nonsafety constraint identified for TCAS, for

example, was that requirements for new hardware and equipment on the aircraft be

minimized or the airlines would not be able to afford this new collision avoidance

system. Examples of nonsafety constraints for TCAS II are:

 C.1: The system must use the transponders routinely carried by aircraft for ground
ATC purposes (↓ 2.3 , 2.6).

 Rationale: To be acceptable to airlines, TCAS must minimize the amount of
new hardware needed.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

332 Chapter 10

 C.4: TCAS must comply with all applicable FAA and FCC policies, rules, and
philosophies (↓ 2.30 , 2.79).

 The physical environment with which TCAS interacts is shown in figure 10.9 . The

constraints imposed by these existing environmental components must also be

identified before system design can begin.

 Safety-related constraints should have two-way links to the system hazard log and

to any analysis results that led to that constraint being identified as well as links to

the design features (usually level 2) included to eliminate or control them. Hazard

analyses are linked to level 1 requirements and constraints, to design features on

level 2, and to system limitations (or accepted risks). An example of a level 1 safety

constraint derived to prevent hazards is:

 SC.3: TCAS must generate advisories that require as little deviation as possible
from ATC clearances (→ H6 , HA-550 , ↓ 2.30).

OWN AIRCRAFT
Pilot

Displays and
Aural Alerts

Mode Selector

Mode-S
Transponder

TransmitterAntennasA/C
DiscretesAltimeter

Radio

Intruders Ground Station

Pressure
Altimeter

Computer
Air Data

TCAS

 Figure 10.9
 The system interface topology for TCAS.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 333

 The link in SC.3 to 2.30 points to the level 2 system design feature that implements

this safety constraint. The other links provide traceability to the hazard (H6) from

which the constraint was derived and to the parts of the hazard analysis involved,

in this case the part of the hazard analysis labeled HA-550.

 The following is another example of a safety constraint for TCAS II and some

constraints refined from it, all of which stem from a high-level environmental con-

straint derived from safety considerations in the encompassing system into which

TCAS will be integrated. The refinement will occur as safety-related decisions are

made and guided by an STPA hazard analysis:

 SC.2: TCAS must not interfere with the ground ATC system or other aircraft
transmissions to the ground ATC system (→ H5).

 SC.2.1: The system design must limit interference with ground-based second-
ary surveillance radar, distance-measuring equipment channels, and with
other radio services that operate in the 1030/1090 MHz frequency band
(↓ 2.5.1).

 SC.2.1.1: The design of the Mode S waveforms used by TCAS must provide
compatibility with Modes A and C of the ground-based secondary surveil-
lance radar system (↓ 2.6).

 SC.2.1.2: The frequency spectrum of Mode S transmissions must be
controlled to protect adjacent distance-measuring equipment channels
(↓ 2.13).

 SC.2.1.3: The design must ensure electromagnetic compatibility between
TCAS and [...] [↓ 21.4).

 SC.2.2: Multiple TCAS units within detection range of one another (approxi-
mately 30 nmi) must be designed to limit their own transmissions. As the
number of such TCAS units within this region increases, the interrogation
rate and power allocation for each of them must decrease in order to prevent
undesired interference with ATC (↓ 2.13).

 Assumptions are also associated with safety constraints. As an example of such an

assumption, consider:

 SC.6: TCAS must not disrupt the pilot and ATC operations during critical
phases of flight nor disrupt aircraft operation (→ H3 , ↓ 2.2.3 , 2.19 ,
 2.24.2).

 SC.6.1: The pilot of a TCAS-equipped aircraft must have the option to switch
to the Traffic-Advisory-Only mode where TAs are displayed but display of
resolution advisories is inhibited (↓ 2.2.3).

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

334 Chapter 10

 Assumption: This feature will be used during final approach to parallel
runways, when two aircraft are projected to come close to each other and
TCAS would call for an evasive maneuver (↓ 6.17).

 The specified assumption is critical for evaluating safety during operations. Humans

tend to change their behavior over time and use automation in different ways than

originally intended by the designers. Sometimes, these new uses are dangerous. The

hyperlink at the end of the assumption (↓ 6.17) points to the required auditing

procedures for safety during operations and to where the procedures for auditing

this assumption are specified.

 Where do these safety constraints come from? Is the system engineer required

to simply make them up? While domain knowledge and expertise is always going

to be required, there are procedures that can be used to guide this process.

 The highest-level safety constraints come directly from the identified hazards for

the system. For example, TCAS must not cause or contribute to a near miss (H1),

TCAS must not cause or contribute to a controlled maneuver into the ground (H2),

and TCAS must not interfere with the ground-based ATC system. STPA can be used

to refine these high-level design constraints into more detailed design constraints

as described in chapter 8.

 The first step in STPA is to create the high-level TCAS operational safety control

structure. For TCAS, this structure is shown in figure 10.10 . For simplicity, much of

the structure above ATC operations management has been omitted and the roles and

responsibilities have been simplified here. In a real design project, roles and respon-

sibilities will be augmented and refined as development proceeds, analyses are per-

formed, and design decisions are made. Early in the system concept formation,

specific roles may not all have been determined, and more will be added as the design

concepts are refined. One thing to note is that there are three groups with potential

responsibilities over the pilot ’ s response to a potential NMAC: TCAS, the ground

ATC, and the airline operations center which provides the airline procedures for

responding to TCAS alerts. Clearly any potential conflicts and coordination prob-

lems between these three controllers will need to be resolved in the overall air traffic

management system design. In the case of TCAS, the designers decided that because

there was no practical way, at that time, to downlink information to the ground con-

trollers about any TCAS advisories that might have been issued for the crew, the pilot

was to immediately implement the TCAS advisory and the co-pilot would transmit

the TCAS alert information by radio to ground ATC. The airline would provide the

appropriate procedures and training to implement this protocol.

 Part of defining this control structure involves identifying the responsibilities of

each of the components related to the goal of the system, in this case collision avoid-

ance. For TCAS, these responsibilities include:

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 335

 • Aircraft Components (e.g., transponders, antennas): Execute control maneu-

vers, read and send messages to other aircraft, etc.

 • TCAS: Receive information about its own and other aircraft, analyze the

information received and provide the pilot with (1) information about where

other aircraft in the vicinity are located and (2) an escape maneuver to avoid

potential NMAC threats.

 • Aircraft Components (e.g., transponders, antennas): Execute pilot-generated

TCAS control maneuvers, read and send messages to and from other aircraft,

etc.

 • Pilot: Maintain separation between own and other aircraft, monitor the TCAS

displays, and implement TCAS escape maneuvers. The pilot must also follow

ATC advisories.

 • Air Traffic Control: Maintain separation between aircraft in the controlled

airspace by providing advisories (control actions) for the pilot to follow. TCAS

is designed to be independent of and a backup for the air traffic controller so

ATC does not have a direct role in the TCAS safety control structure but clearly

has an indirect one.

Radar

Local
ATC
Ops
Mgmt.

Processor
Flight Data

Airline
Ops
Mgmt.

Airline
Ops
Mgmt.

TCAS

FAA
Air Traffic

Controller

Advisories Pilot

Radio

Advisories

Displays
Aural Alerts

Pilot

Displays
Aural Alerts

Operating
Mode

Mode
Operating

TCAS

Own and Other
Aircraft Information

Own and Other
Aircraft Information

Aircraft

Aircraft

ICAO ...

 Figure 10.10
 The high-level operational TCAS control structure.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

336 Chapter 10

 • Airline Operations Management: Provide procedures for using TCAS and

following TCAS advisories, train pilots, and audit pilot performance.

 • ATC Operations Management: Provide procedures, train controllers, audit

performance of controllers and of the overall collision avoidance system.

 • ICAO: Provide worldwide procedures and policies for the use of TCAS and

provide oversight that each country is implementing them.

 After the general control structure has been defined (or alternative candidate

control structures identified), the next step is to determine how the controlled

system (the two aircraft) can get into a hazardous state. That information will be

used to generate safety constraints for the designers. STAMP assumes that hazard-

ous states (states that violate the safety constraints) are the result of ineffective

control. Step 1 of STPA is to identify the potentially inadequate control actions.

 Control actions in TCAS are called resolution advisories or RAs. An RA is an

aircraft escape maneuver created by TCAS for the pilots to follow. Example reso-

lution advisories are descend , increase rate of climb to 2500 fmp , and don ’ t

descend . Consider the TCAS component of the control structure (see figure 10.10)

and the NMAC hazard. The four types of control flaws for this example translate

into:

 1. The aircraft are on a near collision course, and TCAS does not provide an RA

that avoids it (that is, does not provide an RA, or provides an RA that does

not avoid the NMAC).

 2. The aircraft are in close proximity and TCAS provides an RA that degrades

vertical separation (causes an NMAC).

 3. The aircraft are on a near collision course and TCAS provides a maneuver too

late to avoid an NMAC.

 4. TCAS removes an RA too soon.

 These inadequate control actions can be restated as high-level constraints on the

behavior of TCAS:

 1. TCAS must provide resolution advisories that avoid near midair collisions.

 2. TCAS must not provide resolution advisories that degrade vertical separation

between two aircraft (that is, cause an NMAC).

 3. TCAS must provide the resolution advisory while enough time remains for

the pilot to avoid an NMAC. (A human factors and aerodynamic analysis

should be performed at this point to determine exactly how much time that

implies.)

 4. TCAS must not remove the resolution advisory before the NMAC is resolved.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 337

 Similarly, for the pilot, the inadequate control actions are:

 1. The pilot does not provide a control action to avoid a near midair collision.

 2. The pilot provides a control action that does not avoid the NMAC.

 3. The pilot provides a control action that causes an NMAC that would not oth-

erwise have occurred.

 4. The pilot provides a control action that could have avoided the NMAC but it

was too late.

 5. The pilot starts a control action to avoid an NMAC but stops it too soon.

 Again, these inadequate pilot control actions can be restated as safety constraints

that can be used to generate pilot procedures. Similar hazardous control actions and

constraints must be identified for each of the other system components. In addition,

inadequate control actions must be identified for the other functions provided by

TCAS (beyond RAs) such as traffic advisories.

 Once the high-level design constraints have been identified, they must be refined

into more detailed design constraints to guide the system design and then aug-

mented with new constraints as design decisions are made, creating a seamless

integrated and iterative process of system design and hazard analysis.

 Refinement of the constraints involves determining how they could be violated.

The refined constraints will be used to guide attempts to eliminate or control the

hazards in the system design or, if that is not possible, to prevent or control them

in the system or component design. This process of scenario development is exactly

the goal of hazard analysis and STPA. As an example of how the results of the

analysis are used to refine the high-level safety constraints, consider the second

high-level TCAS constraint: that TCAS must not provide resolution advisories that

degrade vertical separation between two aircraft (cause an NMAC):

 SC.7: TCAS must not create near misses (result in a hazardous level of vertical
separation that would not have occurred had the aircraft not carried TCAS)
(→ H1).

 SC.7.1: Crossing Maneuvers must be avoided if possible (↓ 2.36 , ↓ 2.38 , ↓ 2.48 ,
 ↓ 2.49.2).

 SC.7.2: The reversal of a displayed advisory must be extremely rare 4 (↓ 2.51 ,
 ↓ 2.56.3 , ↓ 2.65.3 , ↓ 2.66).

 SC.7.3: TCAS must not reverse an advisory if the pilot will have insufficient
time to respond to the RA before the closest point of approach (four seconds

4. This requirement is clearly vague and untestable. Unfortunately, I could find no definition of “ extremely
rare ” in any of the TCAS documentation to which I had access.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

338 Chapter 10

or less) or if own and intruder aircraft are separated by less than 200 feet
vertically when ten seconds or less remain to closest point of approach
(↓ 2.52).

 Note again that pointers are used to trace these constraints into the design features

used to implement them.

 10.3.8 System Design and Analysis
 Once the basic requirements and design constraints have been at least partially

specified, the system design features that will be used to implement them must be

created. A strict top-down design process is, of course, not usually feasible. As design

decisions are made and the system behavior becomes better understood, additions

and changes will likely be made in the requirements and constraints. The specifica-

tion of assumptions and the inclusion of traceability links will assist in this process

and in ensuring that safety is not compromised by later decisions and changes. It is

surprising how quickly the rationale behind the decisions that were made earlier is

forgotten.

 Once the system design features are determined, (1) an internal control structure

for the system itself is constructed along with the interfaces between the com-

ponents and (2) functional requirements and design constraints, derived from the

system-level requirements and constraints, are allocated to the individual system

components.

 System Design
 What has been presented so far in this chapter would appear in level 1 of an intent

specification. The second level of an intent specification contains System Design
Principles — the basic system design and scientific and engineering principles needed

to achieve the behavior specified in the top level, as well as any derived require-

ments and design features not related to the level 1 requirements.

 While traditional design processes can be used, STAMP and STPA provide the

potential for safety-driven design. In safety-driven design, the refinement of the

high-level hazard analysis is intertwined with the refinement of the system design

to guide the development of the system design and system architecture. STPA can

be used to generate safe design alternatives or applied to the design alternatives

generated in some other way to continually evaluate safety as the design progresses

and to assist in eliminating or controlling hazards in the emerging design, as described

in chapter 9.

 For TCAS, this level of the intent specification includes such general principles

as the basic tau concept, which is related to all the high-level alerting goals and

constraints:

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 339

 2.2: Each TCAS-equipped aircraft is surrounded by a protected volume of air-
space. The boundaries of this volume are shaped by the tau and DMOD criteria
(↑ 1.20.3).

 2.2.1: TAU: In collision avoidance, time-to-go to the closest point of approach
(CPA) is more important than distance-to-go to the CPA. Tau is an approxi-
mation of the time in seconds to CPA. Tau equals 3600 times the slant range
in nmi, divided by the closing speed in knots.

 2.2.2: DMOD: If the rate of closure is very low, a target could slip in very
close without crossing the tau boundaries and triggering an advisory. In order
to provide added protection against a possible maneuver or speed change by
either aircraft, the tau boundaries are modified (called DMOD). DMOD
varies depending on own aircraft ’ s altitude regime (→ 2.2.4).

 The principles are linked to the related higher-level requirements, constraints,

assumptions, limitations, and hazard analysis as well as to lower-level system design

and documentation and to other information at the same level. Assumptions used

in the formulation of the design principles should also be specified at this level.

 For example, design principle 2.51 (related to safety constraint SC-7.2 shown in

the previous section) describes how sense 5 reversals are handled:

 2.51: Sense Reversals: (↓ Reversal-Provides-More-Separation) In most encoun-
ter situations, the resolution advisory will be maintained for the duration of an
encounter with a threat aircraft (↑ SC-7.2). However, under certain circumstances,
it may be necessary for that sense to be reversed. For example, a conflict between
two TCAS-equipped aircraft will, with very high probability, result in selection
of complementary advisory senses because of the coordination protocol between
the two aircraft. However, if coordination communication between the two air-
craft is disrupted at a critical time of sense selection, both aircraft may choose
their advisories independently (↑ HA-130). This could possibly result in selec-
tion of incompatible senses (↑ HA-395).

 2.51.1: . . . [information about how incompatibilities are handled]

 Design principle 2.51 describes the conditions under which reversals of TCAS advi-

sories can result in incompatible senses and lead to the creation of a hazard by

TCAS. The pointer labeled HA-395 points to the part of the hazard analysis analyz-

ing that problem. The hazard analysis portion labeled HA-395 would have a com-

plementary pointer to section 2.51. The design decisions made to handle such

5. The sense is the direction of the advisory, such as descend or climb.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

340 Chapter 10

incompatibilities are described in 2.51.1, but that part of the specification is omitted

here. 2.51 also contains a hyperlink (↓ Reversal-Provides-More-Separation) to the

detailed functional level 3 logic (component black-box requirements specification)

used to implement the design decision.

 Information about the allocation of these design decisions to individual system

components and the logic involved is located in level 3, which in turn has links to

the implementation of the logic in lower levels. If a change has to be made to a

system component (such as a change to a software module), it is possible to trace

the function computed by that module upward in the intent specification levels to

determine whether the module is safety critical and if (and how) the change might

affect system safety.

 As another example, the TCAS design has a built-in bias against generating

advisories that would result in the aircraft crossing paths (called altitude crossing
advisories).

 2.36.2: A bias against altitude crossing RAs is also used in situations involving
intruder level-offs at least 600 feet above or below the TCAS aircraft (↑ SC.7.1).
In such a situation, an altitude-crossing advisory is deferred if an intruder
aircraft that is projected to cross own aircraft ’ s altitude is more than 600 feet
away vertically (↓ Alt_Separation_Test).

 Assumption: In most cases, the intruder will begin a level-off maneuver
when it is more than 600 feet away and so should have a greatly reduced
vertical rate by the time it is within 200 feet of its altitude clearance (thereby
either not requiring an RA if it levels off more than zthr 6 feet away or
requiring a non-crossing advisory for level-offs begun after zthr is crossed
but before the 600 foot threshold is reached).

 Again, the example above includes a pointer down to the part of the black box

component requirements (functional) specification (Alt_Separation_Test) that

embodies the design principle. Links could also be provided to detailed mathemati-

cal analyses used to support and validate the design decisions.

 As another example of using links to embed design rationale in the specification

and of specifying limitations (defined later) and potential hazardous behavior that

could not be controlled in the design, consider the following. TCAS II advisories

may need to be inhibited because of an inadequate climb performance for the par-

ticular aircraft on which TCAS is installed. The collision avoidance maneuvers

posted as advisories (called RAs or resolution advisories) by TCAS assume an

aircraft ’ s ability to safely achieve them. If it is likely they are beyond the capability

6. The vertical dimension, called zthr , used to determine whether advisories should be issued varies
from 750 to 950 feet, depending on the TCAS aircraft ’ s altitude.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 341

of the aircraft, then TCAS must know beforehand so it can change its strategy and

issue an alternative advisory. The performance characteristics are provided to TCAS

through the aircraft interface (via what are called aircraft discretes). In some cases,

no feasible solutions to the problem could be found. An example design principle

related to this problem found at level 2 of the TCAS intent specification is:

 2.39: Because of the limited number of inputs to TCAS for aircraft, performance
inhibits, in some instances where inhibiting RAs would be appropriate it is not
possible to do so (↑ L6). In these cases, TCAS may command maneuvers that
may significantly reduce stall margins or result in stall warning (↑ SC9.1). Con-
ditions where this may occur include . . . The aircraft flight manual or flight
manual supplement should provide information concerning this aspect of TCAS
so that flight crews may take appropriate action (↓ [Pointers to pilot procedures

on level 3 and Aircraft Flight Manual on level 6).

 Finally, design principles may reflect tradeoffs between higher-level goals and con-

straints. As examples:

 2.2.3: Tradeoffs must be made between necessary protection (↑ 1.18) and unnec-
essary advisories (↑ SC.5 , SC.6). This is accomplished by controlling the
sensitivity level, which controls the tau, and therefore the dimensions of the
protected airspace around each TCAS-equipped aircraft. The greater the
sensitivity level, the more protection is provided but the higher is the incidence
of unnecessary alerts. Sensitivity level is determined by . . .

 2.38: The need to inhibit climb RAs because of inadequate aircraft climb perfor-
mance will increase the likelihood of TCAS II (a) issuing crossing maneuvers,
which in turn increases the possibility that an RA may be thwarted by the
intruder maneuvering (↑ SC7.1 , HA-115), (b) causing an increase in descend

 RAs at low altitude (↑ SC8.1), and (c) providing no RAs if below the descend
inhibit level (1200 feet above ground level on takeoff and 1000 feet above
ground level on approach).

 Architectural Design, Functional Allocation, and Component Implementation
(Level 3)
 Once the general system design concepts are agreed upon, the next step usually

involves developing the design architecture and allocating behavioral requirements

and constraints to the subsystems and components. Once again, two-way tracing

should exist between the component requirements and the system design principles

and requirements. These links will be available to the subsystem developers to be

used in their implementation and development activities and in verification (testing

and reviews). Finally, during field testing and operations, the links and recorded

assumptions and design rationale can be used in safety change analysis, incident and

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

342 Chapter 10

accident analysis, periodic audits, and performance monitoring as required to ensure

that the operational system is and remains safe.

 Level 3 of an intent specification contains the system architecture, that is, the

allocation of functions to components and the designed communication paths

among those components (including human operators). At this point, a black-box

functional requirements specification language becomes useful, particularly a formal

language that is executable. SpecTRM-RL is used as the example specification

language in this section [85, 86]). An early version of the language was developed

in 1990 to specify the requirements for TCAS II and has been refined and improved

since that time. SpecTRM-RL is part of a larger specification management system

called SpecTRM (Specification Tools and Requirements Methodology). Other

languages, of course, can be used.

 One of the first steps in low-level architectural design is to break the system into

a set of components. For TCAS, only three components were used: surveillance,

collision avoidance, and performance monitoring.

 The environment description at level 3 includes the assumed behavior of the

external components (such as the altimeters and transponders for TCAS), including

perhaps failure behavior, upon which the correctness of the system design is pre-

dicated, along with a description of the interfaces between the TCAS system

and its environment. Figure 10.11 shows part of a SpecTRM-RL description of an

environment component, in this case an altimeter.

Stuck on Single Value

Sending Zeros

Not Sending Output

Failed Self-Test

Sending Max Value

Sending Random Values

RADIO ALTIMETER

Operating Mode Failure Mode

Malfunction Undetected

Malfunction Detected

Operating Normally

 Figure 10.11
 Part of the SpecTRM-RL description of an environment component (a radio altimeter). Modeling failure
behavior is especially important for safety analyses. In this example, (1) the altimeter may be operating
correctly, (2) it may have failed in a way that the failure can be detected by TCAS II (that is, it fails a
self-test and sends a status message to TCAS or it is not sending any output at all), or (3) the malfunc-
tioning is undetected and it sends an incorrect radio altitude.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 343

 A system is an abstraction and the system boundaries can be set anywhere con-

venient for the purposes of the specifier. In this example, the environment includes

any component that was already on the aircraft or in the airspace control system

and was not newly designed or built as part of the TCAS effort.

 All communications between the system and external components need to be

described in detail, including the designed interfaces. The black-box behavior of

each component also needs to be specified. This specification serves as the func-

tional requirements for the components. What is included in the component speci-

fication will depend on whether the component is part of the environment or part

of the system being constructed. Figure 10.12 shows part of the SpecTRM-RL

description of the behavior of the CAS (collision avoidance system) subcomponent.

SpecTRM-RL specifications are intended to be both easily readable with minimum

instruction and formally analyzable. They are also executable and can be used in a

T

.

.

.

..

.

.

.

.

.

.

.

.

.

OR

T T

T

T

F

F

F

F

T

Description: A threat is reclassified as other traffic if its altitude reporting
 has been lost (2.13) and either the bearing or range inputs are invalid;
 if its altitude reporting has been lost and both the range and bearing are
 valid but neither the proximate nor potential threat classification criteria
 are satisfied; or the aircraft is on the ground (2.12).

N
D

A

INTRUDER.STATUS Other−Traffic

Potential−Threat

Proximate−Traffic

Unknown

Threat

Other−Traffic Alt−Reporting in-state Lost

Bearing−Valid

Range−Valid

Proximate−Traffic−Condition

Potential−Threat−Condition

Other−Aircraft in-state On−Ground

Mapping to Level 4: 4.7.1, Traffic–Advisory

Mapping to Level 2: 2.23, 2.29

 Figure 10.12
 Example from the level 3 SpecTRM-RL model of the collision avoidance logic. It defines the criteria
for downgrading the status of an intruder (into our protected volume) from being labeled a threat to
being considered simply as other traffic. Intruders can be classified in decreasing order of importance as
a threat, a potential threat, proximate traffic, and other traffic. In the example, the criterion for taking
the transition from state Threat to state Other Traffic is represented by an and/or table, which evaluates
to true if any of its columns evaluates to true . A column is true if all of its rows that have a “ t ” are
 true and all of its rows with an “ f ” are false . Rows containing a dot represent “ don ’ t care ” conditions.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

344 Chapter 10

system simulation environment. Readability was a primary goal in the design of

SpecTRM-RL, as was completeness with regard to safety. Most of the requirements

completeness criteria described in Safeware and rewritten as functional design prin-

ciples in chapter 9 of this book are included in the syntax of the language to assist

in system safety reviews of the requirements.

 SpecTRM-RL explicitly shows the process model used by the controller and

describes the required behavior in terms of this model. A state machine model is used

to describe the system component ’ s process model, in this case the state of the air-

craft and the air space around it, and the ways the process model can change state.

 Logical behavior is specified in SpecTRM-RL using and / or tables. Figure 10.12

shows a small part of the specification of the TCAS collision avoidance logic. For

TCAS, an important state variable is the status of the other aircraft around the

TCAS aircraft, called intruders . Intruders are classified into four groups: Other

Traffic, Potential Threat, and Threat. The figure shows the logic for classifying an

intruder as Other Traffic using an and / or table. The information in the tables can

be visualized in additional ways.

 The rows of the table represent and relationships, while the columns represent

 or . The state variable takes the specified value (in this case, Other Traffic) if any of

the columns evaluate to true . A column evaluates to true if all the rows have the

value specified for that row in the column. A dot in the table indicates that the value

for the row is irrelevant. Underlined variables represent hyperlinks. For example,

clicking on “ Alt Reporting ” would show how the Alt Reporting variable is defined:

In our TCAS intent specification 7 [121], the altitude report for an aircraft is defined

as Lost if no valid altitude report has been received in the past six seconds. Bearing

Valid, Range Valid, Proximate Traffic Condition, and Proximate Threat Condition

are macros , which simply means that they are defined using separate logic tables.

The additional logic for the macros could have been inserted here, but sometimes

the logic gets very complex and it is easier for specifiers and reviewers if, in those

cases, the tables are broken up into smaller pieces (a form of refinement abstrac-

tion). This decision is, of course, up to the creator of the table.

 The behavioral descriptions at this level are purely black-box: They describe the

inputs and outputs of each component and their relationships only in terms of

externally visible behavior. Essentially it represents the transfer function across the

component. Any of these components (except the humans, of course) could be

implemented either in hardware or software. Some of the TCAS surveillance

7. A SpecTRM-RL model of TCAS was created by the author and her students Jon Reese, Mats Heim-
dahl, and Holly Hildreth to assist in the certification of TCAS II. Later, as an experiment to show the
feasibility of creating intent specifications, the author created the level 1 and level 2 intent specification
for TCAS. Jon Reese rewrote the level 3 collision avoidance system logic from the early version of the
language into SpecTRM-RL.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 345

functions are, in fact, implemented using analog devices by some vendors and digital

by others. Decisions about physical implementation, software design, internal vari-

ables, and so on are limited to levels of the specification below this one. Thus, this

level serves as a rugged interface between the system designers and the component

designers and implementers (including subcontractors).

 Software need not be treated any differently than the other parts of the system.

Most safety-related software problems stem from requirements flaws. The system

requirements and system hazard analysis should be used to determine the behav-

ioral safety constraints that must be enforced on software behavior and that the

software must enforce on the controlled system. Once that is accomplished, those

requirements and constraints are passed to the software developers (through the

black-box requirements specifications), and they use them to generate and validate

their designs just as the hardware developers do.

 Other information at this level might include flight crew requirements such as

description of tasks and operational procedures, interface requirements, and the

testing requirements for the functionality described on this level. If the black-box

requirements specification is executable, system testing can be performed early to

validate requirements using system and environment simulators or hardware-in-

the-loop simulation. Including a visual operator task-modeling language permits

integrated simulation and analysis of the entire system, including human – computer

interactions [15, 177].

 Models at this level are reusable, and we have found that these models provide the

best place to provide component reuse and build component libraries [119]. Reuse

of application software at the code level has been problematic at best, contributing

to a surprising number of accidents [116]. Level 3 black-box behavioral specifications

provide a way to make the changes almost always necessary to reuse software in a

format that is both reviewable and verifiable. In addition, the black-box models can

be used to maintain the system and to specify and validate changes before they are

made in the various manufacturers ’ products. Once the changed level 3 specifications

have been validated, the links to the modules implementing the modeled behavior

can be used to determine which modules need to be changed and how. Libraries of

component models can also be developed and used in a plug-and-play fashion,

making changes as required, in order to develop product families [211].

 The rest of the development process, involving the implementation of the com-

ponent requirements and constraints and documented at levels 4 and 5 of intent

specifications, is straightforward and differs little from what is normally done today.

 10.3.9 Documenting System Limitations
 When the system is completed, the system limitations need to be identified and

documented. Some of the identification will, of course, be done throughout the

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

346 Chapter 10

development. This information is used by management and stakeholders to deter-

mine whether the system is adequately safe to use, along with information about

each of the identified hazards and how they were handled.

 Limitations should be included in level 1 of the intent specification, because they

properly belong in the customer view of the system and will affect both acceptance

and certification.

 Some limitations may be related to the basic functional requirements, such as

these:

 L4: TCAS does not currently indicate horizontal escape maneuvers and therefore
does not (and is not intended to) increase horizontal separation.

 Limitations may also relate to environment assumptions. For example:

 L1: TCAS provides no protection against aircraft without transponders or with
nonoperational transponders (→ EA3 , HA-430).

 L6: Aircraft, performance limitations constrain the magnitude of the escape
maneuver that the flight crew can safely execute in response to a resolution
advisory. It is possible for these limitations to preclude a successful resolution
of the conflict (→ H3 , ↓ 2.38 , 2.39).

 L4: TCAS is dependent on the accuracy of the threat aircraft ’ s reported altitude.
Separation assurance may be degraded by errors in intruder pressure altitude
as reported by the transponder of the intruder aircraft (→ EA5).

 Assumption: This limitation holds for the airspace existing at the time of the
initial TCAS deployment, where many aircraft use pressure altimeters rather
than GPS. As more aircraft install GPS systems with greater accuracy than
current pressure altimeters, this limitation will be reduced or eliminated.

 Limitations are often associated with hazards or hazard causal factors that could

not be completely eliminated or controlled in the design. Thus they represent

accepted risks. For example,

 L3: TCAS will not issue an advisory if it is turned on or enabled to issue resolution
advisories in the middle of a conflict (→ HA-405).

 L5: If only one of two aircraft is TCAS equipped while the other has only ATCRBS
altitude-reporting capability, the assurance of safe separation may be reduced
(→ HA-290).

 In the specification, both of these system limitations would have pointers to the

relevant parts of the hazard analysis along with an explanation of why they could

not be eliminated or adequately controlled in the system design. Decisions about

deployment and certification of the system will need to be based partially on these

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Integrating Safety into System Engineering 347

limitations and their impact on the safety analysis and safety assumptions of the

encompassing system, which, in the case of TCAS, is the overall air traffic system.

 A final type of limitation is related to problems encountered or tradeoffs made

during system design. For example, TCAS has a high-level performance-monitoring

requirement that led to the inclusion of a self-test function in the system design to

determine whether TCAS is operating correctly. The following system limitation

relates to this self-test facility:

 L9: Use by the pilot of the self-test function in flight will inhibit TCAS operation
for up to 20 seconds depending upon the number of targets being tracked. The
ATC transponder will not function during some portion of the self-test sequence
(↓ 6.52).

 These limitations should be linked to the relevant parts of the development and,

most important, operational specifications. For example, L9 may be linked to the

pilot operations manual.

 10.3.10 System Certification, Maintenance, and Evolution
 At this point in development, the safety requirements and constraints are docu-

mented and traced to the design features used to implement them. A hazard log

contains the hazard information (or links to it) generated during the development

process and the results of the hazard analysis performed. The log will contain

embedded links to the resolution of each hazard, such as functional requirements,

design constraints, system design features, operational procedures, and system limi-

tations. The information documented should be easy to collect into a form that can

be used for the final safety assessment and certification of the system.

 Whenever changes are made in safety-critical systems or software (during devel-

opment or during maintenance and evolution), the safety of the change needs to be

reevaluated. This process can be difficult and expensive if it has to start from scratch

each time. By providing links throughout the specification, it should be easy to assess

whether a particular design decision or piece of code was based on the original

safety analysis or safety-related design constraint and only that part of the safety

analysis process repeated or reevaluated.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268377/9780262298247_can.pdf by guest on 26 June 2022

